Science.gov

Sample records for base na teoria

  1. Campo de velocidade peculiar na teoria linear

    NASA Astrophysics Data System (ADS)

    Pires, N.

    2003-08-01

    Aglomerados e superaglomerados de galáxias são responsáveis pela chamada velocidade peculiar (movimentos relativos à expansão pura do universo) das galáxias. A amplitude destas perturbações depende da densidade de matéria do universo e do contraste de densidade no interior do volume onde está localizada a galáxia. Em 1980, Peebles introduziu o fator "f", que relaciona a amplitude das perturbações da velocidade com o campo gravitacional peculiar, no contexto da teoria linear. No presente trabalho obtemos uma solução geral analítica para o fator "f" de Peebles do campo de velocidades peculiares, em termos de funções hipergeométricas, válida para qualquer geometria do universo. Como um teste de nossa solução, os resultados encontrados originalmente por Peebles em 1980 e os resultados mais gerais encontrados por O. Lahav e colaboradores em 1991, são reobtidos.

  2. Magnetism in Na-filled Fe-based skutterudites

    PubMed Central

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J.

    2015-01-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. Here we investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material near an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form. PMID:26027504

  3. Magnetism in Na-filled Fe-based skutterudites.

    PubMed

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. Here we investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material near an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.

  4. Magnetism in Na-filled Fe-based skutterudites

    DOE PAGES

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; ...

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material nearmore » an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.« less

  5. Magnetism in Na-filled Fe-based skutterudites

    SciTech Connect

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; Ma, Yanming; Shi, Hongliang; Singh, David J.

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe4Sb12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for a material near an itinerant ferromagnetic quantum critical point. NaFe4P12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe4Sb12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe4As12 shows intermediate behavior. We also present results for skutterudite FeSb3, which is a metastable phase that has been reported in thin film form.

  6. A long-life Na-air battery based on a soluble NaI catalyst.

    PubMed

    Yin, Wen-Wen; Shadike, Zulipiya; Yang, Yin; Ding, Fei; Sang, Lin; Li, Hong; Fu, Zheng-Wen

    2015-02-11

    A Na-air battery with NaI dissolved in a typical organic electrolyte could run up to 150 cycles with a capacity limit of 1000 mA h g(-1). The low charge voltage plateau of 3.2 V vs. Na(+)/Na in a Na-air battery should mainly be attributed to the oxidation reaction of active iodine anions.

  7. Kaolin-based geopolymers with various NaOH concentrations

    NASA Astrophysics Data System (ADS)

    Heah, C. Y.; Kamarudin, H.; Mustafa Al Bakri, A. M.; Bnhussain, M.; Luqman, M.; Khairul Nizar, I.; Ruzaidi, C. M.; Liew, Y. M.

    2013-03-01

    Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80°C for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na2O decreased. The increased Na2O content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.

  8. Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic electrolytes

    NASA Astrophysics Data System (ADS)

    Zhao, Liping; Qi, Li; Wang, Hongyu

    2013-11-01

    Sodium titanate nanotube (Na-TNT) sample has been prepared by a hydrothermal method using TiO2 and NaOH as starting materials and then calcined at 400 °C in air. X-ray diffraction and N2 adsorption-desorption tests have been employed to characterize its crystal and pore structure. The Na-TNT can be used as the negative electrode for electric energy storage devices using Na+-based organic electrolytes. The charge storage mechanism at the Na-TNT negative electrode has been investigated by electrochemical tests (galvanostatic charge-discharge, cyclic voltammetry, etc.), ex-situ XRD and HRTEM measurements. The electric energy storage devices of Na-TNT/graphite have been constructed and the influence of graphite/Na-TNT mass ratio on their performance has been studied.

  9. Estudo de soluções locais e cosmológicas em teorias do tipo tensor-escalar

    NASA Astrophysics Data System (ADS)

    Silva E Costa, S.

    2003-08-01

    Teorias do tipo tensor-escalar são a mais simples extensão possí vel da Relatividade Geral. Nessas teorias, cujo modelo padrão é a teoria de Brans-Dicke, a curvatura do espaço-tempo, descrita por componentes tensoriais, aparece acoplada a um campo escalar que, de certo modo, representa uma variação na constante de acoplamento da gravitação. Tais teorias apresentam soluções locais e cosmológicas que, em determinados limites, recaem nas apresentadas pela Relatividade Geral, mas que em outros limites trazem novidades, tais como conseqüências observacionais da evolução de flutuações primordiais distintas daquelas previstas pela Relatividade Geral (ver, por ex., Nagata et al., PRD 66, p. 103510 (2002)). Graças a esta possibilidade de trazer à luz novidades em relação à gravitação, teorias do tipo tensor-escalar podem ser vistas como um interessante campo alternativo de pesquisas para soluções dos problemas de massa faltante (ou escura) e/ou energia escura. Seguindo tal linha, este trabalho, ainda em sua fase inicial, apresenta soluções gerais de teorias do tipo tensor-escalar para diversas situações, verificando-se em que consiste a divergência dessas soluções dos casos tradicionais possí veis na Relatividade Geral. Como exemplos das soluções aqui apresentadas pode-se destacar uma expressão geral para diferentes soluções cosmológicas englobando diferentes tipos de matéria (representados por diferentes equações de estado), e a expressão para uma solução local representando um buraco negro com rotação, similar à solução de Kerr da Relatividade Geral. Por fim, é importante ressaltar que, embora aqui apresentem-se poucos resultados novos, na literatura sobre o assunto a maior parte das soluções apresentadas limita-se a uns poucos casos especí ficos, tal como soluções cosmológicas apenas com curvatura nula, e que mesmo as soluções disponí veis são, em geral, pouco divulgadas e, portanto, pouco conhecidas, e

  10. New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes

    PubMed Central

    Chen, Liang; Gu, Qingwen; Zhou, Xufeng; Lee, Saixi; Xia, Yonggao; Liu, Zhaoping

    2013-01-01

    Rechargeable batteries made from low-cost and abundant materials operating in safe aqueous electrolytes are attractive for large-scale energy storage. Sodium-ion battery is considered as a potential alternative of current lithium-ion battery. As sodium-intercalation compounds suitable for aqueous batteries are limited, we adopt a novel concept of Li+/Na+ mixed-ion electrolytes to create two batteries (LiMn2O4/Na0.22MnO2 and Na0.44MnO2/TiP2O7), which relies on two electrochemical processes. One involves Li+ insertion/extraction reaction, and the other mainly relates to Na+ extraction/insertion reaction. Two batteries exhibit specific energy of 17 Wh kg−1 and 25 Wh kg−1 based on the total weight of active electrode materials, respectively. As well, aqueous LiMn2O4/Na0.22MnO2 battery is capable of separating Li+ and Na+ due to its specific mechanism unlike the traditional “rocking-chair” lithium-ion batteries. Hence, the Li+/Na+ mixed-ion batteries offer promising applications in energy storage and Li+/Na+ separation. PMID:23736113

  11. Investigation of the Effects of Biodiesel-based Na on Emissions Control Components

    SciTech Connect

    Brookshear, D. William; Nguyen, Ke; Toops, Todd J; Bunting, Bruce G; Howe, Janet E

    2012-01-01

    A single-cylinder diesel engine was used to investigate the impact of biodiesel-based Na on emissions control components using specially blended 20% biodiesel fuel (B20). The emissions control components investigated were a diesel oxidation catalyst (DOC), a Cu-zeolite-based NH{sub 3}-SCR (selective catalytic reduction) catalyst, and a diesel particulate filter (DPF). Both light-duty vehicle, DOC-SCR-DPF, and heavy-duty vehicle, DOC-DPF-SCR, emissions control configurations were employed. The accelerated Na aging is achieved by introducing elevated Na levels in the fuel, to represent full useful life exposure, and periodically increasing the exhaust temperature to replicate DPF regeneration. To assess the validity of the implemented accelerated Na aging protocol, engine-aged lean NO{sub x} traps (LNTs), DOCs and DPFs are also evaluated. To fully characterize the impact on the catalytic activity the LNT, DOC and SCR catalysts were evaluated using a bench flow reactor. The evaluation of the aged DOC samples and LNT show little to no deactivation as a result of Na contamination. However, the SCR in the light-duty configuration (DOC-SCR-DPF) was severely affected by Na contamination, especially when NO was the only fed NO{sub x} source. In the heavy-duty configuration (DOC-DPF-SCR), no impact is observed in the SCR NO{sub x} reduction activity. Electron probe micro-analysis (EPMA) reveals that Na contamination on the LNT, DOC, and SCR samples is present throughout the length of the catalysts with a higher concentration on the washcoat surface. In both the long-term engine-aged DPF and the accelerated Na-aged DPFs, there is significant Na ash present in the upstream channels; however, in the engine-aged sample lube oil-based ash is the predominant constituent.

  12. Microstructural evolution in NaNbO3-based antiferroelectrics

    NASA Astrophysics Data System (ADS)

    Guo, Hanzheng; Shimizu, Hiroyuki; Randall, Clive A.

    2015-11-01

    Our recent study found that CaZrO3 doping can effectively enhance the antiferroelectric P phase in NaNbO3 ceramics, leading to a double polarization hysteresis loop characteristic of a reversible antiferroelectric ↔ ferroelectric phase transition [Shimizu et al., Dalton Trans. 44, 10763 (2015)]. Here, a thorough transmission electron microscope study was performed to illustrate the CaZrO3 doping-assisted antiferroelectricity stabilization. In parallel to the bright-field imaging and selected area electron diffraction from multiple zone axes, detailed dark-field imaging was utilized to determine the superlattice structural origins, from either oxygen octahedral tilting or antiparallel cation displacements. By analogy with Pb(Zr1-xTix)O3 and rare-earth doped BiFeO3 systems, the chemical substitutions are such as to an induced polar-to-antipolar transition that is consistent with a tolerance factor reduction. The resultant chemical pressure has a similar effect to the compressive hydrostatic pressure where the antiferroelectric state is favored over the ferroelectric state.

  13. Microbial control of food-related surfaces: Na-Chlorophyllin-based photosensitization.

    PubMed

    Luksiene, Zivile; Paskeviciute, Egle

    2011-10-05

    The aim of this study was to evaluate efficiency of photosensitization as surface sanitation alternative using model systems when food pathogens, their spores and biofilms were attached to the food-related surface (polyolefine). In addition it was important to compare antibacterial efficiency of Na-Chlorophyllin (Na-Chl)-based photosensitization with conventional sanitizers. Obtained results indicate that Bacilluscereus ATCC 12826 and Listeriamonocytogenes ATCC 7644 as well as their thermoresistant strains B.cereus SV90 and L.monocytogenes 56LY were effectively inactivated (7 log) by Na-Chl-based photosensitization in vitro. Inactivation rate of thermoresistant strains was slower. The number of attached to the surface B.cereus ATCC 12826 and L.monocytogenes ATCC 7644 was reduced from 4-4.5 log to 0 log after photosensitization treatment. To achieve adequate inactivation of thermoresistant strains the higher Na-Chl concentration and longer illumination times had to be used. Comparison of different surface decontamination treatments reveal that photosensitization is much more effective against all surface-attached B.cereus and L.monocytogenes strains than washing with water or 200 ppm Na-hypochlorite. It is important to note, that surface-attached B.cereus spores and L.monocytogenes biofilms can be eliminated from it by photosensitization as well. Our data support the idea that Na-Chlorophyllin-based photosensitization has high antibacterial potential which may serve in the future for the development of human and environment friendly, non-thermal surface decontamination technique.

  14. Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies.

    PubMed

    Nejati, K; Hosseinian, A; Bekhradnia, A; Vessally, E; Edjlali, L

    2017-03-06

    It has been recently indicated that the Li-ion batteries may be replaced by Na-ion batteries because of their low safety, high cost, and low-temperature performance, and lack of the Li mineral reserves. Here, using density functional theory calculations, we studied the potential application of B12N12 nanoclusters as anode in Na-ion batteries. Our calculations indicate that the adsorption energy of Na(+) and Na are about -23.4 and -1.4kcal/mol, respectively, and the pristine BN cage to improve suffers from a low cell voltage (∼0.92V) as an anode in Na-ion batteries. We presented a strategy to increase the cell voltage and performance of Na-ion batteries. We showed that encapsulation of different halides (X=F(-), Cl(-), or Br(-)) into BN cage significantly increases the cell voltage. By increasing the atomic number of X, the Gibbs free energy change of cell becomes more negative and the cell voltage is increased up to 3.93V. The results are discussed based on the structural, energetic, frontier molecular orbital, charge transfer and electronic properties and compared with the performance of other nanostructured anodes.

  15. Microsized Sn as Advanced Anodes in Glyme-Based Electrolyte for Na-Ion Batteries.

    PubMed

    Zhang, Biao; Rousse, Gwenaëlle; Foix, Dominique; Dugas, Romain; Corte, Daniel Alves Dalla; Tarascon, Jean-Marie

    2016-11-01

    Microsized Sn presents stable cyclic performance in a glyme-based electrolyte, which brings 19% increase in energy density of Sn/Na3 V2 (PO4 )3 cells as compared to the cells using a hard carbon anode. The NaSn intermediate phases are also clarified.

  16. NaNet-10: a 10GbE network interface card for the GPU-based low-level trigger of the NA62 RICH detector.

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Fiorini, M.; Frezza, O.; Lonardo, A.; Lamanna, G.; Lo Cicero, F.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.

    2016-03-01

    A GPU-based low level (L0) trigger is currently integrated in the experimental setup of the RICH detector of the NA62 experiment to assess the feasibility of building more refined physics-related trigger primitives and thus improve the trigger discriminating power. To ensure the real-time operation of the system, a dedicated data transport mechanism has been implemented: an FPGA-based Network Interface Card (NaNet-10) receives data from detectors and forwards them with low, predictable latency to the memory of the GPU performing the trigger algorithms. Results of the ring-shaped hit patterns reconstruction will be reported and discussed.

  17. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    SciTech Connect

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  18. Synthetic control of manganese birnessite: Impact of crystallite size on Li, Na, and Mg based electrochemistry

    DOE PAGES

    Yin, Jiefu; Takeuchi, Esther S.; Takeuchi, Kenneth J.; ...

    2016-08-12

    We demonstrated the synthesis and characterization of Mg-birnessite (MgxMnO2) with different crystallite sizes, prepared though low temperature precipitation and ion exchange. The influence of crystallite size on electrochemical performance of Mg-birnessite was studied for the first time, where material with smaller crystallite size was demonstrated to have enhanced capacity and rate capability in Li ion, Na ion, and Mg ion based electrolytes. Cation diffusion using GITT type testing demonstrated the ion diffusion coefficient of Mg2+ was ~10× lower compared with Li+ and Na+. This work illustrates that tuning of inorganic materials properties can lead to significant enhancement of electrochemical performancemore » in lithium, sodium as well as magnesium based batteries for materials such as Mg-birnessite and provides a deliberate approach to improve electrochemical performance.« less

  19. Synthetic control of manganese birnessite: Impact of crystallite size on Li, Na, and Mg based electrochemistry

    SciTech Connect

    Yin, Jiefu; Takeuchi, Esther S.; Takeuchi, Kenneth J.; Marschilok, Amy C.

    2016-08-12

    We demonstrated the synthesis and characterization of Mg-birnessite (MgxMnO2) with different crystallite sizes, prepared though low temperature precipitation and ion exchange. The influence of crystallite size on electrochemical performance of Mg-birnessite was studied for the first time, where material with smaller crystallite size was demonstrated to have enhanced capacity and rate capability in Li ion, Na ion, and Mg ion based electrolytes. Cation diffusion using GITT type testing demonstrated the ion diffusion coefficient of Mg2+ was ~10× lower compared with Li+ and Na+. This work illustrates that tuning of inorganic materials properties can lead to significant enhancement of electrochemical performance in lithium, sodium as well as magnesium based batteries for materials such as Mg-birnessite and provides a deliberate approach to improve electrochemical performance.

  20. Field Tests of a NaI(Tl)-Based Vehicle Portal Monitor at Border Crossings

    SciTech Connect

    Stromswold, David C.; Darkoch, Justin; Ely, James H.; Hansen, Randy R.; Kouzes, Richard T.; Milbrath, Brian D.; Runkle, Robert C.; Sliger, William A.; Smart, John E.; Stephens, Daniel L.; Todd, Lindsay C.; Woodring, Mitchell L.

    2004-10-01

    Radiation portal monitors are commonly used at international border crossings to detect illicit transport of radioactive material. Most monitors use plastic scintillators to detect gamma rays, but next-generation monitors may contain NaI(Tl). In order to directly compare the performance of the two types of detectors, a prototype NaI(Tl) monitor was tested at two international border crossings adjacent to a comparable plastic scintillator monitor. The NaI(Tl) monitor housed four large detectors, each 10.2 cm x 10.2 cm x 41 cm. The empirical data set from the two field tests contains approximately 3800 passages with known cargo loads for each vehicle For a small subset of the vehicles, high purity germanium detector spectra were also collected. During the survey period several vehicles containing commercial products with naturally occurring radioactive material (NORM) passed through the monitor. Typical NORM cargo included pottery, large granite slabs, rock-based floor tiles, construction stone blocks, abrasive material, and fertilizer. Non-NORM sources encountered during the field tests included a large source of 60Co (200,000 GBq) and a shipment of uranium oxide, both items being legally transported. The information obtained during the tests provides a good empirical data set to compare the effectiveness of NaI(Tl) and plastic-scintillator portal monitors. The capability to be sensitive to illicit materials, but not alarm on NORM, is a key figure of merit for portal monitors. (PIET-43741-TM-210)

  1. A Biophysically Based Mathematical Model for the Kinetics of Mitochondrial Na+-Ca2+ Antiporter

    PubMed Central

    Pradhan, Ranjan K.; Beard, Daniel A.; Dash, Ranjan K.

    2010-01-01

    Sodium-calcium antiporter is the primary efflux pathway for Ca2+ in respiring mitochondria, and hence plays an important role in mitochondrial Ca2+ homeostasis. Although experimental data on the kinetics of Na+-Ca2+ antiporter are available, the structure and composition of its functional unit and kinetic mechanisms associated with the Na+-Ca2+ exchange (including the stoichiometry) remains unclear. To gain a quantitative understanding of mitochondrial Ca2+ homeostasis, a biophysical model of Na+-Ca2+ antiporter is introduced that is thermodynamically balanced and satisfactorily describes a number of independent data sets under a variety of experimental conditions. The model is based on a multistate catalytic binding mechanism for carrier-mediated facilitated transport and Eyring's free energy barrier theory for interconversion and electrodiffusion. The model predicts the activating effect of membrane potential on the antiporter function for a 3Na+:1Ca2+ electrogenic exchange as well as the inhibitory effects of both high and low pH seen experimentally. The model is useful for further development of mechanistic integrated models of mitochondrial Ca2+ handling and bioenergetics to understand the mechanisms by which Ca2+ plays a role in mitochondrial signaling pathways and energy metabolism. PMID:20338843

  2. Fluoride gastrointestinal absorption from Na2FPO3/CaCO3- and NaF/SiO2-based toothpastes.

    PubMed

    Falcão, A; Tenuta, L M A; Cury, J A

    2013-01-01

    Depending on toothpaste formulation, part of the fluoride is insoluble and would not be totally absorbable in the gastrointestinal tract, thus changing dental fluorosis risk estimation. This hypothesis was tested with formulations with either all fluoride in a soluble form (NaF/SiO2-based toothpaste, 1,100 µg F/g as labeled, 1,129.7 ± 49.4 µg F/g soluble fluoride as analyzed) or with around 20% of insoluble fluoride (Na2FPO3/CaCO3-based toothpaste, 1,450 µg F/g as labeled, 1,122.4 ± 76.4 µg F/g soluble fluoride as analyzed). Toothpastes were evaluated either fresh or after accelerated aging, which increased insoluble fluoride to 40% in the Na2FPO3/CaCO3-based toothpaste. In a blind, crossover clinical trial conducted in five legs, 20 adult volunteers ingested 49.5 µg of total fluoride/kg body weight from each formulation or purified water (control). Whole saliva and urine were collected as bioavailability indicators, and pharmacokinetics parameters calculated showed significantly (p < 0.05) lower fluoride bioavailability for Na2FPO3/CaCO3 toothpaste, which was reduced further after aging. A significant correlation between the amount of soluble fluoride ingested, but not total fluoride, and fluoride bioavailability was found (r = 0.57, p < 0.0001). The findings suggest that the estimated fluorosis risk as a result of ingestion of Na2FPO3/CaCO3-based toothpastes should be calculated based on the toothpaste's soluble rather than total fluoride concentration.

  3. Characterization of the synchrotron-based 0.3-NA EUV microexposuretool at the ALS

    SciTech Connect

    Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik; Dean,Kim; Denham, Paul; Cain, Jason P.; Hoef, Brian; Jackson, Keith

    2005-06-01

    Synchrotron-based EUV exposure tools continue to play a crucial roll in the development of EUV lithography. Utilizing a programmable-pupil-fill illuminator, the 0.3-NA microexposure tool at Lawrence Berkeley National Laboratory's Advanced Light Source synchrotron radiation facility provides the highest resolution EUV projection printing capabilities available today. This makes it ideal for the characterization of advanced resist and mask processes. The Berkeley tool also serves as a good benchmarking platform for commercial implementations of 0.3-NA EUV microsteppers because its illuminator can be programmed to emulate the coherence conditions of the commercial tools. Here we present the latest resist and tool characterization results from the Berkeley EUV exposure station.

  4. Alkali (NaOH) pretreatment of switchgrass by radio frequency-based dielectric heating.

    PubMed

    Hu, Zhenhu; Wang, Yifen; Wen, Zhiyou

    2008-03-01

    Radio-frequency (RF)-based dielectric heating was used in the alkali (NaOH) pretreatment of switchgrass to enhance its enzymatic digestibility. Due to the unique features of RF heating (i.e., volumetric heat transfer, deep heat penetration of the samples, etc.), switchgrass could be treated on a large scale, high solid content, and uniform temperature profile. At 20% solid content, RF-assisted alkali pretreatment (at 0.1 g NaOH/g biomass loading and 90 degrees C) resulted in a higher xylose yield than the conventional heating pretreatment. The enzymatic hydrolysis of RF-treated solids led to a higher glucose yield than the corresponding value obtained from conventional heating treatment. When the solid content exceeded 25%, conventional heating could not handle this high-solid sample due to the loss of fluidity, poor mixing, and heating transfer of the samples. As a result, there was a significantly lower sugar yield, but the sugar yield of the RF-based pretreatment process was still maintained at high levels. Furthermore, the optimal particle size and alkali loading in the RF pretreatment was determined as 0.25-0.50 mm and 0.25 g NaOH/g biomass, respectively. At alkali loading of 0.20-0.25 g NaOH/g biomass, heating temperature of 90(o)C, and solid content of 20%, the glucose, xylose, and total sugar yield from the combined RF pretreatment and the enzymatic hydrolysis were 25.3, 21.2, and 46.5 g/g biomass, respectively.

  5. Alkali (NaOH) Pretreatment of Switchgrass by Radio Frequency-based Dielectric Heating

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhu; Wang, Yifen; Wen, Zhiyou

    Radio-frequency (RF)-based dielectric heating was used in the alkali (NaOH) pre-treatment of switchgrass to enhance its enzymatic digestibility. Due to the unique features of RF heating (i.e., volumetric heat transfer, deep heat penetration of the samples, etc.), switchgrass could be treated on a large scale, high solid content, and uniform temperature profile. At 20% solid content, RF-assisted alkali pretreatment (at 0.1 g NaOH/g biomass loading and 90°C) resulted in a higher xylose yield than the conventional heating pretreatment. The enzymatic hydrolysis of RF-treated solids led to a higher glucose yield than the corresponding value obtained from conventional heating treatment. When the solid content exceeded 25%, conventional heating could not handle this high-solid sample due to the loss of fluidity, poor mixing, and heating transfer of the samples. As a result, there was a significantly lower sugar yield, but the sugar yield of the RF-based pretreatment process was still maintained at high levels. Furthermore, the optimal particle size and alkali loading in the RF pretreatment was determined as 0.25-0.50 mm and 0.25 g NaOH/g biomass, respectively. At alkali loading of 0.20-0.25 g NaOH/g biomass, heating temperature of 90°C, and solid content of 20%, the glucose, xylose, and total sugar yield from the combined RF pretreatment and the enzymatic hydrolysis were 25.3, 21.2, and 46.5 g/g biomass, respectively.

  6. Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-Chlorophyllin-based photosensitization.

    PubMed

    Luksiene, Zivile; Buchovec, Irina; Paskeviciute, Egle

    2010-12-02

    This study was focused on the possibility to inactivate thermosensitive Listeria monocytogenes ATC(L3)C 7644 and thermoresistant 56 Ly strain by Na-Chlorophyllin (Na-Chl)-based photosensitization in vitro and on the surface of packaging. Comparative analysis of antimicrobial efficiency of photosensitization with conventional surface cleaning was performed. Data indicate that both Listeria strains, after incubation with Na-Chl and following illumination (λ=400nm, 20mWcm(-2)), were inactivated by 7 log in vitro. This treatment cleaned both Listeria strains from packaging surfaces. Comparative analysis indicates that washing with water diminishes pathogens by less than 1 log, 200ppm Na-hypochlorite by 1.7 log, Na-Chl-based photosensitization by 4.5 log. Listeria biofilms were totally removed from the surface by photosensitization at higher photosensitizer concentrations and longer incubation times. In conclusion, both strains of L. monocytogenes can be effectively inactivated by photosensitization in vitro and on the surface of packaging. Listeria biofilms are susceptible to this treatment as well. Comparison of different surface decontamination treatments reveals that photosensitization is much more effective against both Listeria strains than washing with water or 200ppm Na-hypochlorite. Our data support the idea that Na-Chl-based photosensitization is an effective antimicrobial tool which may serve in the future for the development of human and environmentally friendly surface decontamination techniques.

  7. NaNet: a flexible and configurable low-latency NIC for real-time trigger systems based on GPUs

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lamanna, G.; Lonardo, A.; Lo Cicero, F.; Paolucci, P. S.; Pantaleo, F.; Rossetti, D.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.

    2014-02-01

    NaNet is an FPGA-based PCIe X8 Gen2 NIC supporting 1/10 GbE links and the custom 34 Gbps APElink channel. The design has GPUDirect RDMA capabilities and features a network stack protocol offloading module, making it suitable for building low-latency, real-time GPU-based computing systems. We provide a detailed description of the NaNet hardware modular architecture. Benchmarks for latency and bandwidth for GbE and APElink channels are presented, followed by a performance analysis on the case study of the GPU-based low level trigger for the RICH detector in the NA62 CERN experiment, using either the NaNet GbE and APElink channels. Finally, we give an outline of project future activities.

  8. Understanding the Effect of Na in Improving the Performance of CuInSe2 Based Photovoltaics

    SciTech Connect

    Dobson, Kevin D.

    2015-11-17

    Cu(In,Ga)Se2 (CIGS) thin film photovoltaic technology is in the early stages of commercialization with an annual manufacturing capacity over 1 GW and has demonstrated the highest module efficiency of any of the thin film technologies. However there still is a lack of fundamental understanding of the relationship between the material properties and solar cell device operation. It is well known that the incorporation of a small amount of Na into the CIGS film during processing is essential for high efficiency devices. However, there are conflicting explanations for how Na behaves at the atomic scale. This report investigates how Na is incorporated into the CIGS device structure and evaluates the diffusion of Na into CIGS grain boundaries (GBs) and bulk crystallites. Participants: This project was carried out at the Institute of Energy Conversion at the University of Delaware, collaborating with the Rockett group at the University of Illinois Urbana-Champagne. Significant Findings: The significant outcomes of this project for each task include; Task 1.0: Effect of Na in Devices Fabricated on PVD Deposited CIGS; Na diffusion occurs through the Mo back contact via GBs driven by the presence of oxygen; Na reversibly compensates donor defects in CIGS GBs,Task 2.0: Na Incorporation in Single Crystal CIGS; and bulk Na diffusion proceeds rapidly such that grains are Na-saturated immediately following CIGS thin film manufacture. Industry Guidance: The presented results offer interesting concepts for modification of manufacturing processes of CIGS-based PV modules. Possible approaches to improve control of Na uptake and uniformly increase levels in CIGS films are highlighted for processes that employ either soda-lime glass or NaF as the Na source. Concepts include the potential of O2 or oxidative based treatments of Mo back contacts to improve Na diffusion through the metal film and increase Na uptake into the growing CIGS. This project has also offered

  9. Determinação de elementos próprios dos asteróides troianos: comparação entre as teorias semi-analítica e sintética

    NASA Astrophysics Data System (ADS)

    Roig, F.; Beaugé, C.

    2003-08-01

    Além do cálculo semi-analítico de elementos próprios dos asteróides Troianos (Beaugé & Roig 2001, Icarus 153, 391), recentemente foi apresentado um novo conjunto destes elementos próprios determinado através de uma teoria sintética (Knenezevic & Milani 2003, comunicação pessoal). As bases de dados contendo estas determinações estão disponiveis na pagina web do Asteroid Dynamical Site (http://hamilton.dm.unipi.it/cgi-bin/astdys/astibo). Nesta comunicação apresentamos os primeiros resultados de um estudo comparativo entre ambos conjuntos de elementos próprios, analisando suas vantagens e desvantagens, assim como os limites de precisão de cada conjunto. Mostramos que os elementos próprios sintéticos são mais precisos que os smi-analíticos para grandes amplitudes de libração do ângulo s = l-lJup, embora acontece o contrario para os corpos cuja amplitude de libração é muito pequena. Finalmente discutimos a influencia destes erros na determinação de familias de asteroides e da estrutura resonante em torno dos pontos Lagrangeanos L4 e L5.

  10. NaNet: a low-latency NIC enabling GPU-based, real-time low level trigger systems

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Fantechi, Riccardo; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Stanislao Paolucci, Pier; Pantaleo, Felice; Piandani, Roberto; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Tosoratto, Laura; Vicini, Piero

    2014-06-01

    We implemented the NaNet FPGA-based PCIe Gen2 GbE/APElink NIC, featuring GPUDirect RDMA capabilities and UDP protocol management offloading. NaNet is able to receive a UDP input data stream from its GbE interface and redirect it, without any intermediate buffering or CPU intervention, to the memory of a Fermi/Kepler GPU hosted on the same PCIe bus, provided that the two devices share the same upstream root complex. Synthetic benchmarks for latency and bandwidth are presented. We describe how NaNet can be employed in the prototype of the GPU-based RICH low-level trigger processor of the NA62 CERN experiment, to implement the data link between the TEL62 readout boards and the low level trigger processor. Results for the throughput and latency of the integrated system are presented and discussed.

  11. The first Fe-based Na+-ion cathode with two distinct types of polyanions: Fe3P5SiO19

    DOE PAGES

    Kan, W. H.; Huq, A.; Manthiram, A.

    2015-01-01

    We report the synthesis, structure, and electrochemistry of the first Na+-ion cathode with two distinct types of polyanions: Fe3P5SiO19. The Fe-based cathode has a reversible capacity of ca. 70 mAh g-1; ca. 1.7 Na+ ions per formula can be inserted/extracted at an average voltage of 2.5 V versus Na+/Na.

  12. Effect of NaCl Addition on Rheological Behaviors of Commercial Gum-Based Food Thickener Used for Dysphagia Diets

    PubMed Central

    Cho, Hyun-Moon; Yoo, Whachun; Yoo, Byoungseung

    2015-01-01

    Rheological properties of thickened fluids used for consumption by people with dysphagia (swallowing difficulty) are very sensitive to several factors, such as thickener type, temperature, pH, sugar, protein, and NaCl. In this study, steady and dynamic rheological properties of thickened water samples mixed with five commercial xanthan gum-based food thickeners (A~E) were studied in the presence of NaCl at different concentrations (0.3%, 0.6%, 0.9%, and 1.2%). The magnitudes of apparent viscosity (ηa,50), consistency index (K), yield stress (σoc), and dynamic moduli (G′ and G″) showed significant differences in rheological behaviors between thickened samples with various NaCl concentrations. Dynamic moduli values of all thickened samples, except for samples with thickener C, were much higher than those of the control (0% NaCl). All rheological parameter values (K, G′, and G″) in a thickener A were much higher than those in other thickeners. These results suggest that rheological properties of thickened samples containing NaCl are strongly affected by xanthan gum-NaCl interaction and depended on the type of thickener. PMID:26176002

  13. Electrode Engineering of Conversion-based Negative Electrodes for Na-ion Batteries.

    PubMed

    Vogt, Leonie O; Marino, Cyril; Villevieille, Claire

    2015-01-01

    Due to lower costs and higher abundance of sodium, Na-ion battery technology can offer a good alternative to Li-ion batteries. Much research is focusing on developing new cathode and anode materials but the importance of the electrode engineering on the electrochemical performance is often neglected. The electrode composition is especially crucial for conversion reaction-based materials where the composite electrode (active material, conducting additive and binder) has to buffer the huge volume change occurring upon cycling. This work highlights the differences observed on Sn-CMC electrode performance by using different Sn particle sizes (micro- and nanoparticles) and evaluating the role of the conductive additive in the electrode. Carbon fibers (VGCF) demonstrate a good ability to surround micrometer particles but not especially nanometer particles leading to an improvement in the performance of microparticles but not of nanoparticles. For a high loading electrode suitable for full cell applications (>3.5 mg/cm(2) of active material), nanometer particles show limited performance for long-term cycling. The combination of VGCF with micrometer particles seems to be the most promising composition to obtain good performances for conversion reaction based-materials.

  14. Meditation-Based Treatment Yielding Immediate Relief for Meditation-Naïve Migraineurs

    PubMed Central

    Tonelli, Makenzie E.; Wachholtz, Amy B.

    2014-01-01

    Meditation is gaining popularity as an effective means of managing and attenuating pain and has been particularly effective for migraines. Meditation additionally addresses the negative emotional states known to exist with migraines. The purpose of this study was to evaluate the effectiveness of meditation as an immediate intervention for reducing migraine pain as well as alleviating emotional tension, examined herein as a negative affect hypothesized to be correlated with pain. Twenty-seven migraineurs, with two to ten migraines per month, reported migraine-related pain and emotional tension ratings on a Likert scale (ranging from 0 to 10) before and after exposure to a brief meditation-based treatment. All participants were meditation-naïve, and attended one 20-minute guided meditation session based on the Buddhist “loving kindness” approach. After the session, participants reported a 33% decrease in pain and a 43% decrease in emotional tension. The data suggest that a single exposure to a brief meditative technique can significantly reduce pain and tension, as well as offer several clinical implications. It can be concluded that single exposure to a meditative technique can significantly reduce pain and tension. The effectiveness and immediacy of this intervention offers several implications for nurses. PMID:24602422

  15. Meditation-based treatment yielding immediate relief for meditation-naïve migraineurs.

    PubMed

    Tonelli, Makenzie E; Wachholtz, Amy B

    2014-03-01

    Meditation is gaining popularity as an effective means of managing and attenuating pain and has been particularly effective for migraines. Meditation additionally addresses the negative emotional states known to exist with migraines. The purpose of this study was to evaluate the effectiveness of meditation as an immediate intervention for reducing migraine pain as well as alleviating emotional tension, examined herein as a negative affect hypothesized to be correlated with pain. Twenty-seven migraineurs, with two to ten migraines per month, reported migraine-related pain and emotional tension ratings on a Likert scale (ranging from 0 to 10) before and after exposure to a brief meditation-based treatment. All participants were meditation- naïve, and attended one 20-minute guided meditation session based on the Buddhist "loving kindness" approach. After the session, participants reported a 33% decrease in pain and a 43% decrease in emotional tension. The data suggest that a single exposure to a brief meditative technique can significantly reduce pain and tension, as well as offer several clinical implications. It can be concluded that single exposure to a meditative technique can significantly reduce pain and tension. The effectiveness and immediacy of this intervention offers several implications for nurses.

  16. K-teoria de operadores pseudodiferenciais na reta com simbolos semiperiodicos (in Portuguese)

    NASA Astrophysics Data System (ADS)

    Silva, Cintia C.

    2005-05-01

    Let A denote the smallest C*-subalgebra of the algebra of all bounded operators on L^2(R) containing: (i) all multiplications a(M) by functions a in C[-infty,+infty], (ii) all multiplications e^{ijM}, j in Z, and (iii) all operators of the form F^{-1}b(M)F, where F denotes the Fourier transform and b is in C[-infty,+infty]. It is known that the principal symbol mapping extends to a surjective C*-homomorphism sigma from A into C(M), where M is a certain compactification of two copies of R. It is also known that E, the kernel of sigma, contains the compact ideal K and that the quotient of E by K, is isomorphic to the direct sum of two copies of C(S^1,K). Using the explicit form of these two isomorphisms, we are able to compute the connecting mappings in the cyclic exact sequence in K-theory associated to the homomorphism sigma and to proof that K_0(A) is isomorphic to Z and that K_1(A) is isomorphic to Z^2. The isomorphism from E/K into C(S^1,K) can be to extended to a C*-homomorphism γ from A into the direct sum of two copies of C(S^1,B), where B denotes the algebra of all bounded operators on L^2(Z). We prove that the image of γ is isomorphic to the direct sum of two copies of the crossed product of C[-infty,+infty] by the translation-by-one automorphism. Using the Pimsner-Voiculescu exact sequence, we then compute the K-theory of the image of γ. That leads to a second proof that K_0(A) is isomorphic to Z and that K_1(A) is isomorphic to Z^2.

  17. CORROSION OF AMORPHOUS AND NANOCRYSTALLINE Fe-BASED ALLOYS IN NaCl AND H2SO4 SOLUTIONS

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Lu, Wei; Wang, Yuxin; Yan, Biao; Pan, Deng

    2013-07-01

    Corrosion resistance of nanocrystalline Fe73.5Si13.5B9Nb3Cu1 alloy was investigated and compared to its amorphous counterpart. Low-temperature crystallization occurred during the annealing of amorphous tapes was used to obtain a nanocrystalline structure. The influence of annealing condition on the structure and corrosion resistance of the alloy in NaCl and H2SO4 solutions was investigated. Based on the testing results, it was found that nanocrystalline tapes have higher corrosion resistance than amorphous counterpart and H2SO4 can promote the occurrence of corrosion compared with NaCl.

  18. Mechanism of corrosion of Ni base superalloys by molten Na2MoO4 at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Stearns, C. A.

    1983-01-01

    The corrosion of nickel base superalloy, U-700, by molten Na2MoO4 was studied in the temperature range of 750 deg to 950 deg C. After an induction period, the rate of corrosion is linear and catastrophic corrosion is observed. It is shown that the induction period is associated with the attainment of a minimum MoO3 activity in the melt, which corresponds to the equilibrium MoO3 activity for the reaction, 2MoO3(l) + Mo = 3MoO2(s). A mechanism is proposed to describe the catastrophic nature of corrosion, which involves transport of Ni++ through the melt resulting in formulation of NiO at the melt gas interface and basic fluxing of Cr2O3. The effect of the amount of Na2MoO4 on the corrosion kinetics was also studied. It is found that evaporation and the thermodynamic calculations for the Na2MoO4 - MoO3 system the activity of MoO3 is reduced considerably when dissolved in Na2MoO4, which causes a sharp decrease in the rate of evaporation of MoO3 from a Na2MoO4 - MoO3 melt.

  19. Ionic conductivity and battery characteristic studies of a new PAN-based Na+ ion conducting gel polymer electrolyte system

    NASA Astrophysics Data System (ADS)

    Krishna Jyothi, N.; Vijaya Kumar, K.; Sunita Sundari, G.; Narayana Murthy, P.

    2016-03-01

    Sodium ion conducting gel polymer electrolytes based on polyacrylonitrile (PAN) with ethylene carbonate and dimethyl formamide as plasticizing solvents are prepared by the solution cast technique. These electrolyte films are free standing, transparent and dimensionally stable. Na+ ions are derived from NaI. The structural properties of pure and complex formations have been examined by X-ray diffraction, Fourier transform infrared spectroscopic studies and differential scanning calorimetric studies. The variation of the conductivity with salt concentration ranging from 10 to 40 wt% is studied. The sample containing 30 wt% of NaI exhibits the highest conductivity of 2.35 × 10-4 S cm-1 at room temperature (303 K) and 1 × 10-3 S cm-1 at 373 K. The conductivity-temperature dependence of polymer electrolyte films obeys Arrhenius behavior with activation energy in the range of 0.25-0.46 eV. The transport numbers both electronic ( t e) and ionic ( t i) are evaluated using Wagner's polarization technique. It is revealed that the conducting species are predominantly due to ions. The ionic transport number of highest conducting film is found to be 0.991. Solid-state battery with configuration Na/(PAN + NaI)/(I2 + C + electrolyte) is developed using the highest conducting gel polymer electrolyte system and the discharge characteristics of the cell are evaluated over the load of 100 KΩ.

  20. A physiologically based pharmacokinetic model for lactational transfer of Na-131I

    NASA Astrophysics Data System (ADS)

    Turner, Anita Loretta

    The excretion of radionuclides in human breast milk after administration of radiopharmaceuticals is a concern as a radiation risk to nursing infants. It is not uncommon to administer radiopharmaceuticals to lactating patients due to emergency nuclear medicine investigations such as thyroid complications, kidney failure, and pulmonary embolism. There is a need to quantify the amount of radioactivity translocated into breast milk in cases of ingestion by a breast-fed infant. A physiologically based pharmacokinetic model (PBPK) and a modified International Commission on Radiological Protection (ICRP) model have been developed to predict iodine concentrations in breast milk after ingestion of radioiodine by the mother. In the PBPK model, all compartments are interconnected by blood flow and represent real anatomic tissue regions in the body. All parameters involved are measurable values with physiological or physiochemical meaning such as tissue masses, blood flow rates, partition coefficients and cardiac output. However, some of the parameters such as the partition coefficients and metabolic constants are not available for iodine and had to be inferred from other information. The structure of the PBPK model for the mother consists of the following tissue compartments: gastrointestinal tract, blood, kidney, thyroid, milk, and other tissues. With the exception of the milk compartment, the model for the nursing infant is structured similarly to the mother. The ICRP model describing iodine metabolism in a standard 70-kg man was modified to represent iodine metabolism in a lactating woman and nursing infant. The parameters involved in this model are transfer rates and biological half-lives which are based on experimental observations. The results of the PBPK model and the modified ICRP model describing the lactational transfer of iodine were compared. When administering 1 mCi of Na131I to the lactating mother, the concentration reaches a maximum of 0.1 mCi/liter in 24

  1. Wetting ability of an acetone/based etch&rinse adhesive after NaOCl-treatment

    PubMed Central

    Aguilera, Fátima S.; Osorio, Raquel; Osorio, Estrella; Moura, Pedro

    2012-01-01

    Objectives: to evaluate the effect of sodium hypochlorite (NaOCl) treatment on surface dentin roughness (Ra) and contact angle (CA) when using Prime&Bond NT adhesive (PB NT). Study Design: Extracted human third molars were sectioned to expose flat, superficial and deep dentin surfaces. CA and Ra were measured (1) before and (2) after 35% H3PO4 etching, and (3) H3PO4 etching + 5% NaOCl treated for 2 minutes before the application of PB NT. CA was measured by the Axisymmetric Drop Shape Analysis Technique using distilled and deionized water and PB NT. Roughness was evaluated with a profilometer, twelve radial measurements were performed in each treatment surface. Data were analyzed with two-way ANOVA and Newman-Keuls multiple comparison test procedures. Results: CA values decreased after acid etching and even more after NaOCl treatment on deep dentin when water was tested. With resin, there were not differences on CA results after H3PO4 neither after NaOCl treatment, in both dentin surfaces. Etching and NaOCl treatment resulted in surface roughness increase. Conclusions: In spite of the higher roughness after NaOCl treatment on superficial and deep dentin, the use of 5% NaOCl for 2 min after dentin demineralization when PB NT was employed did not improved the wettability of dentin, probably due to nanofiller content and/or hydrogen-bonding interactions with residues of the organic matrix on collagen-depleted dentin. Key words:Sodium hypochlorite, contact angle, roughness, Prime&Bond NT, superficial dentin, deep dentin. PMID:22322490

  2. Constraints on Mercury's Na Exosphere: Combined MESSENGER and Ground-Based Data

    NASA Technical Reports Server (NTRS)

    Mouawad, Nelly; Burger, Matthew H.; Killen, Rosemary M.; Potter, Andrew E.; McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Benna, Mehdi; Naidu, Shantanu

    2010-01-01

    We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury's sodium exosphere, The distribution of sodium in Mercury's exosphere during the period January 12-15. 2008. was mapped using the McMath-Pierce solar telescope with the 5" X 5" image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury's anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD. but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization, We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 x 10(exp 6) sq cm/s, The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.

  3. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry.

    PubMed

    Wu, Xian-Yong; Sun, Meng-Ying; Shen, Yi-Fei; Qian, Jiang-Feng; Cao, Yu-Liang; Ai, Xin-Ping; Yang, Han-Xi

    2014-02-01

    Aqueous rechargeable sodium-ion batteries have the potential to meet growing demand for grid-scale electric energy storage because of the widespread availability and low cost of sodium resources. In this study, we synthesized a Na-rich copper hexacyanoferrate(II) Na2 CuFe(CN)6 as a high potential cathode and used NaTi2 (PO4 )3 as a Na-deficient anode to assemble an aqueous sodium ion battery. This battery works very well with a high average discharge voltage of 1.4 V, a specific energy of 48 Wh kg(-1) , and an excellent high-rate cycle stability with approximately 90 % capacity retention over 1000 cycles, achieving a new record in the electrochemical performance of aqueous Na-ion batteries. Moreover, all the anode, cathode, and electrolyte materials are low cost and naturally abundant and are affordable for widespread applications.

  4. The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity

    PubMed Central

    Ziemert, Nadine; Podell, Sheila; Penn, Kevin; Badger, Jonathan H.; Allen, Eric; Jensen, Paul R.

    2012-01-01

    New bioinformatic tools are needed to analyze the growing volume of DNA sequence data. This is especially true in the case of secondary metabolite biosynthesis, where the highly repetitive nature of the associated genes creates major challenges for accurate sequence assembly and analysis. Here we introduce the web tool Natural Product Domain Seeker (NaPDoS), which provides an automated method to assess the secondary metabolite biosynthetic gene diversity and novelty of strains or environments. NaPDoS analyses are based on the phylogenetic relationships of sequence tags derived from polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, respectively. The sequence tags correspond to PKS-derived ketosynthase domains and NRPS-derived condensation domains and are compared to an internal database of experimentally characterized biosynthetic genes. NaPDoS provides a rapid mechanism to extract and classify ketosynthase and condensation domains from PCR products, genomes, and metagenomic datasets. Close database matches provide a mechanism to infer the generalized structures of secondary metabolites while new phylogenetic lineages provide targets for the discovery of new enzyme architectures or mechanisms of secondary metabolite assembly. Here we outline the main features of NaPDoS and test it on four draft genome sequences and two metagenomic datasets. The results provide a rapid method to assess secondary metabolite biosynthetic gene diversity and richness in organisms or environments and a mechanism to identify genes that may be associated with uncharacterized biochemistry. PMID:22479523

  5. Mn(2+)-doped NaYF4:Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A.

    PubMed

    Guo, Xiaofei; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2016-05-01

    A novel aptasensor labeled with Mn(2+)-doped NaYF4:Yb/Er upconversion nanoparticles (NaYF4:Yb,Er/Mn UCNPs) was employed in electrogenerated chemiluminescence (ECL) for the sensitive detection of bisphenol A (BPA). The ECL aptasensor was assembled by immobilizing the thiolated aptamers of BPA covalently on a gold nanoparticle (AuNPs)-modified electrode and pairing with complementary DNA labeled with NaYF4:Yb,Er/Mn UCNPs. The ECL aptasensor can not only rapidly and accurately detect BPA concentrations from 0.05 to 100 ng/mL with a detection limit of 0.037 ng/mL but also provides a new platform for ECL applications based on the use of upconversion nanoparticles as a promising alternative material. Graphical Abstract The NaYF4:Yb,Er/Mn UCNPs combining with the BPA aptamer serving as recognition elements create a ECL platform for the sensitive detection of bisphenol A. The change in ECL signals induced by aptamer-target interactions was measured and a significant decrease in intensity was found on interaction with BPA in the concentration range of 0.05 to 100 ng/mL.

  6. The COSINUS project: Development of new NaI-based cryogenic detectors for direct dark matter search

    NASA Astrophysics Data System (ADS)

    Gütlein, A.; Angloher, G.; Gotti, C.; Hauff, D.; Maino, M.; Nagorny, S. S.; Pagnanini, L.; Pessina, G.; Petricca, F.; Pirro, S.; Pröbst, F.; Reindl, F.; Schäffner, K.; Schieck, J.; Seidel, W.

    2017-02-01

    The current results of direct dark matter searches are controversial. The long-standing dark-matter claim from the DAMA/LIBRA collaboration is excluded by null-results of several other experiments. However, a comparison of the results by experiments with different detector materials introduces model dependencies. The R&D project COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) aims to develop cryogenic detectors based on (hygroscopic) sodium iodide (NaI). If successful, such detectors could be used in future experiments to investigate the origin of the annual modulation signal seen by the NaI-based scintillation detectors of the DAMA/LIBRA experiment. COSINUS detectors should be able to simultaneously detect phonons and scintillation light produced by a particle interaction inside the NaI crystal. This technique allows for an active suppression of β/γ backgrounds as well as detailed studies of a large variety of dark-matter models predicting nuclear interactions. For such kind of studies only moderate exposures of ≲ 100 kg-days are needed. In addition to the projected sensitivities of COSINUS detectors, we also show the result of first tests using (only mildly hygroscopic) caesium iodide (CsI) crystals as target material. For this measurement we achieved an energy threshold of ∼4.7 keV for nuclear recoils.

  7. An Energy Dense-AI-NaBH4-PEMFC Based Power Generator for Unmanned Undersea Vehicles

    DTIC Science & Technology

    2016-03-01

    Florida Solar Energy Center Se. TASK NUMBER Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION ...combination of polymer electrolyte membrane fuel cell (PEMFC) with a compact hydrogen generator util izing AI-NaBH4 composite fuel. The conditions...www.florldaenergycenter.org FINAL REPORT Contract Information Contract Number: Contract Title: Program Officer: PI: Organization : Email: Co

  8. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO3 Piezoelectric Nanofibers

    PubMed Central

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-01-01

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO3 piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO3 sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO3 nanofibers, which was generated due to proton hopping among the H3O+ groups in the absorbed H2O layers under the driving force of the piezoelectric potential. PMID:27338376

  9. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO₃ Piezoelectric Nanofibers.

    PubMed

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-06-07

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO₃ piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO₃ sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO₃ nanofibers, which was generated due to proton hopping among the H₃O⁺ groups in the absorbed H₂O layers under the driving force of the piezoelectric potential.

  10. Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type Na(x)Ni(0.22)Co(0.11)Mn(0.66)O(2)-NaTi2(PO4)3.

    PubMed

    Ventosa, Edgar; Buchholz, Daniel; Klink, Stefan; Flox, Cristina; Chagas, Luciana Gomes; Vaalma, Christoph; Schuhmann, Wolfgang; Passerini, Stefano; Morante, Joan Ramon

    2015-04-30

    We report the first proof of concept for a non-aqueous semi-solid flow battery (SSFB) based on Na-ion chemistry using P2-type NaxNi0.22Co0.11Mn0.66O2 and NaTi2(PO4)3 as positive and negative electrodes, respectively. This concept opens the door for developing a new low-cost type of non-aqueous semi-solid flow batteries based on the rich chemistry of Na-ion intercalating compounds.

  11. A low cost, all-organic Na-ion battery based on polymeric cathode and anode.

    PubMed

    Deng, Wenwen; Liang, Xinmiao; Wu, Xianyong; Qian, Jiangfeng; Cao, Yuliang; Ai, Xinping; Feng, Jiwen; Yang, Hanxi

    2013-01-01

    Current battery systems have severe cost and resource restrictions, difficultly to meet the large scale electric storage applications. Herein, we report an all-organic Na-ion battery using p-dopable polytriphenylamine as cathode and n-type redox-active poly(anthraquinonyl sulphide) as anode, excluding the use of transition-metals as in conventional electrochemical batteries. Such a Na-ion battery can work well with a voltage output of 1.8 V and realize a considerable specific energy of 92 Wh kg(-1). Due to the structural flexibility and stability of the redox-active polymers, this battery has a superior rate capability with 60% capacity released at a very high rate of 16 C (3200 mA g(-1)) and also exhibit an excellent cycling stability with 85% capacity retention after 500 cycles at 8 C rate. Most significantly, this type of all-organic batteries could be made from renewable and earth-abundant materials, thus offering a new possibility for widespread energy storage applications.

  12. Photomultiplier tube calibration based on Na lidar observation and its effect on heat flux bias.

    PubMed

    Liu, Alan Z; Guo, Yafang

    2016-11-20

    Na lidar can measure vertical wind and temperature at high temporal and vertical resolutions, enough to resolve gravity wave perturbations. Heat flux due to dissipating gravity waves is an important quantity that can be derived from such perturbations. When lidar signals are high, a photomultiplier tube (PMT) used to count incoming photons may suffer from the saturation effect, and its output count is not linearly related to incoming photon counts. Corrections to this effect can be measured in a laboratory setting but may have large errors at high count rates. We show that the errors in the PMT correction can cause significant bias in the heat flux calculation due to the inherent correlation between wind and temperature errors. Using the measurements made by Na lidar at the Andes Lidar Observatory with Hamamatsu PMTs, we developed a calibration procedure to remove such PMT correction errors from laboratory measurements. By applying the revised PMT correction curve we demonstrated that the heat flux bias can be removed through this procedure.

  13. A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode

    PubMed Central

    Deng, Wenwen; Liang, Xinmiao; Wu, Xianyong; Qian, Jiangfeng; Cao, Yuliang; Ai, Xinping; Feng, Jiwen; Yang, Hanxi

    2013-01-01

    Current battery systems have severe cost and resource restrictions, difficultly to meet the large scale electric storage applications. Herein, we report an all-organic Na-ion battery using p-dopable polytriphenylamine as cathode and n-type redox-active poly(anthraquinonyl sulphide) as anode, excluding the use of transition-metals as in conventional electrochemical batteries. Such a Na-ion battery can work well with a voltage output of 1.8 V and realize a considerable specific energy of 92 Wh kg−1. Due to the structural flexibility and stability of the redox-active polymers, this battery has a superior rate capability with 60% capacity released at a very high rate of 16 C (3200 mA g−1) and also exhibit an excellent cycling stability with 85% capacity retention after 500 cycles at 8 C rate. Most significantly, this type of all-organic batteries could be made from renewable and earth-abundant materials, thus offering a new possibility for widespread energy storage applications. PMID:24036973

  14. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer.

    PubMed

    Razak, Rafiza Abdul; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-05-21

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.

  15. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer

    PubMed Central

    Abdul Razak, Rafiza; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Hardjito, Djwantoro; Yahya, Zarina

    2015-01-01

    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced. PMID:26006238

  16. Silver-Containing α-MnO2 Nanorods: Electrochemistry in Na-Based Battery Systems.

    PubMed

    Huang, Jianping; Poyraz, Altug S; Lee, Seung-Yong; Wu, Lijun; Zhu, Yimei; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2017-02-08

    Manganese oxides are considered attractive cathode materials for rechargeable batteries due to the high abundance and environmental friendliness of manganese. In particular, cryptomelane and hollandite are desirable due to their ability to host cations within their octahedral molecular sieve (OMS-2) α-MnO2 structure. In this work, we investigate silver containing α-MnO2 structured materials (AgxMn8O16, x = 1.22, L-Ag-OMS-2 or 1.66, H-Ag-OMS-2) as host materials for Li ion and Na ion insertion/deinsertion. The results indicate a significant difference in the lithiation versus sodiation process of the OMS-2 materials. Initial reduction of Ag1.22Mn8O16 to 1.0 V delivered ∼370 mAh/g. Cycling of Ag1.22Mn8O16 between voltage ranges of 3.8-1.7 V and 3.8-1.3 V in a Na battery delivered initial capacities of 113 and 247 mAh/g, respectively. In contrast, Ag1.66Mn8O16 delivered only 15 mAh/g, ∼ 0.5 electron equivalents, to 1.7 and 1.3 V. Study of the system by electrochemical impedance spectroscopy (EIS) showed a significant decrease in charge transfer resistance from 2029 Ω to 594 Ω after 1.5 electron equivalents per Ag1.22Mn8O16 formula unit of Na ion insertion. In contrast, both Ag1.22Mn8O16 and Ag1.66Mn8O16 exhibited gradual impedance increases during lithiation. The formation of silver metal could be detected only in the sodiated material by X-ray diffraction (XRD). Thus, the impedance of Ag-OMS-2 decreases upon sodiation coincident with the formation of silver metal during the discharge process, consistent with the more favorable formation of silver metal during the sodiation process relative to the lithation process.

  17. Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS).

    PubMed

    Chiang, Chia-Chun; Wei, Ming-Tzo; Chen, Yin-Quan; Yen, Pei-Wen; Huang, Yi-Chiao; Chen, Jun-Yeh; Lavastre, Olivier; Guillaume, Husson; Guillaume, Darsy; Chiou, Arthur

    2011-04-25

    We used oscillatory optical tweezers to investigate the microrheological properties of Sodium polystyrene sulfonate (NaPSS; Mw = 70 kDa) polymer solutions with different concentrations from 0.001 mM to 10 mM in terms of elastic modulus G'(ω) and loss modulus G"(ω) as a function of angular frequency (ω) in the range of 6 rad/s to 6000 rad/s. The viscoelastic properties (including zero-shear-rate viscosity, crossing frequency and transition frequency) as a function of polymer concentration, deduced from our primary data, reveal the subtle structural changes in the polymer solutions as the polymer concentration increases from dilute to semi-dilute regimes, passing through the critical micelle formation concentration and the polymer overlapping concentration. The experimental results are consistent with the Maxwell model in some regime, and with the Rouse model in other, indicating the transient network character and the micelles formation in different regimes.

  18. Regulation of branchial V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias).

    PubMed

    Tresguerres, Martin; Katoh, Fumi; Fenton, Heather; Jasinska, Edyta; Goss, Greg G

    2005-01-01

    To study the mechanisms of branchial acid-base regulation, Pacific spiny dogfish were infused intravenously for 24 h with either HCl (495+/- 79 micromol kg(-1) h(-1)) or NaHCO(3) (981+/-235 micromol kg(-1) h(-1)). Infusion of HCl produced a transient reduction in blood pH. Despite continued infusion of acid, pH returned to normal by 12 h. Infusion of NaHCO(3) resulted in a new steady-state acid-base status at approximately 0.3 pH units higher than the controls. Immunostained serial sections of gill revealed the presence of separate vacuolar proton ATPase (V-H(+)-ATPase)-rich or sodium-potassium ATPase (Na(+)/K(+)-ATPase)-rich cells in all fish examined. A minority of the cells also labeled positive for both transporters. Gill cell membranes prepared from NaHCO(3)-infused fish showed significant increases in both V-H(+)-ATPase abundance (300+/-81%) and activity. In addition, we found that V-H(+)-ATPase subcellular localization was mainly cytoplasmic in control and HCl-infused fish, while NaHCO(3)-infused fish demonstrated a distinctly basolateral staining pattern. Western analysis in gill membranes from HCl-infused fish also revealed increased abundance of Na(+)/H(+) exchanger 2 (213+/-5%) and Na(+)/K(+)-ATPase (315+/-88%) compared to the control.

  19. Direct evidence of an incommensurate phase in NaNbO{sub 3} and its implication in NaNbO{sub 3}-based lead-free antiferroelectrics

    SciTech Connect

    Guo, Hanzheng; Randall, Clive A.; Shimizu, Hiroyuki

    2015-09-14

    Hot-stage in situ transmission electron microscopy was employed to investigate the temperature-induced complex sequence of phase transitions in NaNbO{sub 3} polycrystalline. In addition to the commonly recognized P (Pbma) → R (Pmnm) → S (Pnmm) phase transitions, incommensurate phases were observed to exist in P and R phase regions. The former (in the P → R transition region) is coincident with a diffused dielectric peak appearing at ∼170 °C, and the latter (in the R → S transition region) serves as an intermediate structure to bridge the two sub-phases in the R phase region. The incommensurate phase in the P phase region can be inferred from the polarization current density and differential dielectric permittivity anomalies, and it provides the bridge structure during the electric field-induced polarization reversal and antiferroelectric-to-ferroelectric transition in NaNbO{sub 3} solid solutions.

  20. CaO--P2O5--Na2O-based sintering additives for hydroxyapatite (HAp) ceramics.

    PubMed

    Kalita, S J; Bose, S; Hosick, H L; Bandyopadhyay, A

    2004-05-01

    We have assessed the effect of CaO--P2O5--Na2O-based sintering additives on mechanical and biological properties of hydroxyapatite (HAp) ceramics. Five different compositions of sintering additives were selected and prepared by mixing of CaO, P2O5, and Na2CO3 powders. 2.5 wt% of each additive was combined with commercial HAp powder, separately, followed by ball milling, and sintering at 1250 degrees C and 1300 degrees C in a muffle furnace. Green and sintered densities of the compacts were analyzed for the influence of additives on densification of HAp. Phase analyses were carried out using an X-ray diffractometer. Vickers microhardness testing was used to evaluate hardness of sintered compacts of different compositions. A maximum microhardness of 4.6 (+/- 0.28) GPa was attained for a composition with 2.5 wt% addition of CaO:P2O5:Na2O in the ratio of 3:3:4. Results from mechanical property evaluation showed that some of these sintering additives improved failure strength of HAp under compressive loading. Maximum compressive strength was observed for samples with 2.5 wt% addition of CaO. Average failure strength for this set of samples was calculated to be 220 (+/- 50) MPa. Cytotoxicity, and cell attachment studies were carried out using a modified human osteoblast cell line called OPC-1. In vitro results showed that these compositions were non-toxic. Some sintering aids enhanced cell attachment and proliferation, which was revealed from SEM examination of the scaffolds seeded with OPC-1 cells.

  1. Energy-based scatter correction for 3-D PET scanners using NaI(T1) detectors.

    PubMed

    Adam, L E; Karp, J S; Freifelder, R

    2000-05-01

    Earlier investigations with BGO positron emission tomography (PET) scanners showed that the scatter correction technique based on multiple acquisitions with different energy windows are problematic to implement because of the poor energy resolution of BGO (22%), particularly for whole-body studies. We believe that these methods are likely to work better with NaI(TI) because of the better energy resolution achievable with NaI(TI) detectors (10%). Therefore, we investigate two different choices for the energy window, a low-energy window (LEW) on the Compton spectrum at 400-450 keV, and a high-energy window (HEW) within the photopeak (lower threshold above 511 keV). The results obtained for our three-dimensional (3-D) (septa-less) whole-body scanners [axial field of view (FOV) of 12.8 cm and 25.6 cm] as well as for our 3-D brain scanner (axial FOV of 25.6 cm) show an accurate prediction of the scatter distribution for the estimation of trues method (ETM) using a HEW, leading to a significant reduction of the scatter contamination. The dual-energy window (DEW) technique using a LEW is shown to be intrinsically wrong; in particular, it fails for line source and bar phantom measurements. However, the method is able to produce good results for homogeneous activity distributions. Both methods are easy to implement, are fast, have a low noise propagation, and will be applicable to other PET scanners with good energy resolution and stability, such as hybrid NaI(TI) PET/SPECT dual-head cameras and future PET cameras with GSO or LSO scintillators.

  2. Microstructural evolution in NaNbO{sub 3}-based antiferroelectrics

    SciTech Connect

    Guo, Hanzheng Randall, Clive A.; Shimizu, Hiroyuki

    2015-11-07

    Our recent study found that CaZrO{sub 3} doping can effectively enhance the antiferroelectric P phase in NaNbO{sub 3} ceramics, leading to a double polarization hysteresis loop characteristic of a reversible antiferroelectric ↔ ferroelectric phase transition [Shimizu et al., Dalton Trans. 44, 10763 (2015)]. Here, a thorough transmission electron microscope study was performed to illustrate the CaZrO{sub 3} doping-assisted antiferroelectricity stabilization. In parallel to the bright-field imaging and selected area electron diffraction from multiple zone axes, detailed dark-field imaging was utilized to determine the superlattice structural origins, from either oxygen octahedral tilting or antiparallel cation displacements. By analogy with Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} and rare-earth doped BiFeO{sub 3} systems, the chemical substitutions are such as to an induced polar-to-antipolar transition that is consistent with a tolerance factor reduction. The resultant chemical pressure has a similar effect to the compressive hydrostatic pressure where the antiferroelectric state is favored over the ferroelectric state.

  3. Structure based identification of inhibitors for the SLC13 family of Na+/dicarboxylate cotransporters

    PubMed Central

    Colas, Claire; Pajor, Ana M.; Schlessinger, Avner

    2016-01-01

    In mammals, citric acid cycle intermediates play a key role in regulating various metabolic processes, such as fatty acid synthesis and glycolysis. Members of the sodium dependent SLC13 transporter family mediate the transport of di and tricarboxylates into cells. SLC13 members have been implicated in lifespan extension and resistance to high fat diets, thus, they are emerging drug targets for aging and metabolic disorders. We previously characterized key structural determinants of substrate and cation binding for the human NaDC3/SLC13A3 transporter using a homology model. Here, we combine computational modeling and virtual screening with functional and biochemical testing, to identify 9 previously unknown inhibitors for multiple members of the SLC13 family from human and mouse. Our results reveal previously unknown substrate selectivity determinants for the SLC13 family, including key residues that mediate ligand binding and transport, as well as promiscuous and specific SLC13 small molecule ligands. The newly discovered ligands can serve as chemical tools to further characterize the SLC13 family or as lead molecules for future development of potent inhibitors for the treatment of metabolic diseases and aging. Our results improve our understanding of the structural components that are important for substrate specificity in this physiologically important family as well as in other structurally related transport systems. PMID:26176240

  4. Phase transition and piezoelectric properties of Nd3+ doped nonstoichiometric (K,Na)NbO3-based lead free ceramics

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Tan, Zhi; Jiang, Laiming; Wu, Yangjie; Yue, Yang; Chen, Qiang; Wu, Jiagang; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2017-01-01

    0.968[(K0.48Na0.52)]1-3xNdxNb0.95+ySb0.05O3-0.032(Bi0.5Na0.5)ZrO3[KNNdxNb0.95+yS-BNZ] lead-free piezoelectric ceramics were prepared via conventional solid state technique for improving the piezoelectric properties. The influences of Nd3+ with excess Nb5+ on the phase structure, electrical properties, and temperature stability were investigated systematically. The rhombohedral-tetragonal phase boundary was observed in the ceramics with 0.001 ≤ x ≤ 0.004, y ≥ 0.01 at room temperature. Rietveld refinement is performed to explore the phase evolution in ceramics. There is a piezoelectric property enhancement in the ceramic with x = 0.001 y = 0.01: d33 = 414 pC/N, kp ˜ 48%, and TC ˜ 227 °C. All results suggest that KNNdxNb0.95+yS-BNZ ceramics developed in this study are expected to be suitable substitutes for lead-based ceramics.

  5. Seven novel modulators of the analgesic target NaV 1.7 uncovered using a high-throughput venom-based discovery approach

    PubMed Central

    Klint, Julie K; Smith, Jennifer J; Vetter, Irina; Rupasinghe, Darshani B; Er, Sing Yan; Senff, Sebastian; Herzig, Volker; Mobli, Mehdi; Lewis, Richard J; Bosmans, Frank; King, Glenn F

    2015-01-01

    Background and Purpose Chronic pain is a serious worldwide health issue, with current analgesics having limited efficacy and dose-limiting side effects. Humans with loss-of-function mutations in the voltage-gated sodium channel NaV1.7 (hNaV1.7) are indifferent to pain, making hNaV1.7 a promising target for analgesic development. Since spider venoms are replete with NaV channel modulators, we examined their potential as a source of hNaV1.7 inhibitors. Experimental Approach We developed a high-throughput fluorescent-based assay to screen spider venoms against hNaV1.7 and isolate ‘hit’ peptides. To examine the binding site of these peptides, we constructed a panel of chimeric channels in which the S3b-S4 paddle motif from each voltage sensor domain of hNaV1.7 was transplanted into the homotetrameric KV2.1 channel. Key Results We screened 205 spider venoms and found that 40% contain at least one inhibitor of hNaV1.7. By deconvoluting ‘hit’ venoms, we discovered seven novel members of the NaSpTx family 1. One of these peptides, Hd1a (peptide μ-TRTX-Hd1a from venom of the spider Haplopelma doriae), inhibited hNaV1.7 with a high level of selectivity over all other subtypes, except hNaV1.1. We showed that Hd1a is a gating modifier that inhibits hNaV1.7 by interacting with the S3b-S4 paddle motif in channel domain II. The structure of Hd1a, determined using heteronuclear NMR, contains an inhibitor cystine knot motif that is likely to confer high levels of chemical, thermal and biological stability. Conclusion and Implications Our data indicate that spider venoms are a rich natural source of hNaV1.7 inhibitors that might be useful leads for the development of novel analgesics. PMID:25754331

  6. Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+.

    PubMed

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-06-01

    The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu(2+), Pb(2+)). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3=2.3, Na2O/SiO2=1.4, H2O/Na2O=50, crystallization time 8h, crystallization temperature 95 °C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g(-1) for Cu(2+), Pb(2+) with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu(2+), Pb(2+) from water with metallic contaminants and can be separated easily after a magnetic process.

  7. Electronic absorption spectra of rare earth (III) species in NaCl-2CsCl eutectic based melts

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Ivanov, A. B.; Yakimov, S. M.; Tsarevskii, D. V.; Golovanova, O. A.; Sukhikh, V. V.; Griffiths, T. R.

    2016-09-01

    Electronic absorption spectra of ions of trivalent rare earth elements were measured in the melts based on NaCl-2CsCl eutectic in the wavelength ranges of 190-1350 and 1450-1700 nm. The measurements were performed at 550-850 °C. The EAS of Y, La, Ce and Lu containing melts have no absorption bands in the studied regions. For the remaining REEs (Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) the absorption bands in the EAS were assigned to the corresponding f-f electron transitions. The Stark effect was observed for Yb(III) F5/2 excited state. Increasing temperature leads to decreasing intensity of the absorption bands, except for the bands resulting from hypersensitive transitions. Beer's law was confirmed up to 0.4 M solutions of REE.

  8. Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard.

    PubMed

    Liu, Rui; Chen, Yun; Wu, Jianping; Gao, Lei; Barrett, Damian; Xu, Tingbao; Li, Xiaojuan; Li, Linyi; Huang, Chang; Yu, Jia

    2016-09-24

    Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net-water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics-based entropy method. The weighted indices were input into the WNB-based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image-based sampling and validation, cell-by-cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood-related environmental hazard studies.

  9. Corrosion-related changes on Ti-based orthodontic brackets in acetic NaF solutions: surface morphology, microhardness, and element release.

    PubMed

    Kang, Eun-Hee; Park, Soo-Byung; Kim, Hyung-Il; Kwon, Yong Hoon

    2008-07-01

    This study sought to investigate the effects of acetic NaF solutions on titanium and Ti alloy brackets. To this end, two different brackets were immersed in various NaF-containing solutions for three days. The Equilibrium Ti (EQ) bracket was composed of Ti only, whereas the Ortho 2 (OR) bracket was composed of Ti (base) and Ti-6A1-4V (wings). Brackets that were immersed in the acetic NaF solution of pH 3.5 yielded no reliable surface microhardness values due to corrosion. In other test solutions, however, there was minimal reduction (at best 3%) in microhardness. Further on microhardness, the values of the OR bracket at the base and wings were different. On the release of elements, it was significant only in the acetic NaF solution of pH 3.5. However, the release of Al (6.11+/-0.93 ppm) and V (1.16+/-0.40 ppm) in this solution was low. In conclusion, an acetic NaF solution of low pH could damage Ti-based orthodontic brackets.

  10. Optic nerve: Separating compartments based on 23Na TQF spectra and TQF-diffusion anisotropy

    NASA Astrophysics Data System (ADS)

    Eliav, Uzi; Xu, Xiang; Jerschow, Alexej; Navon, Gil

    2013-06-01

    We present a triple quantum filtered (TQF) sodium spectroscopy study of an excised bovine optic nerve. By choosing proper experimental parameters, this technique allowed us to independently observe the satellite transitions originating from the various compartments in the tissue. TQF-based diffusion experiments provided further characterization of the compartments in terms of their geometry. As a result, the peak that exhibited the smallest residual quadrupolar splitting, and the largest diffusion anisotropy was assigned to axons. Two other pairs of satellite peaks were assigned to extra-cellular compartments on the basis of either the size of their quadrupolar splitting or the diffusion properties.

  11. Latest research results on the effects of nanomaterials on humans and the environment: DaNa - Knowledge Base Nanomaterials

    NASA Astrophysics Data System (ADS)

    Marquardt, C.; Kühnel, D.; Richter, V.; Krug, H. F.; Mathes, B.; Steinbach, C.; Nau, K.

    2013-04-01

    Nanotechnology is considered one of the key technologies of the 21st century. The success of this fascinating technology is based on its versatility. It will bring about fundamental changes of basic research as well as of many sectors of industry and also of daily life from electronics to the health care system. However, consumers often miss reliable and understandable information on nanomaterials and all aspects of this versatile technology. A huge body of data on the potential hazards of nanoobjects towards human and environmental health already exists, but is either not easily accessible for a broad audience or presented unprocessable for nonexperts. But risk communication is an essential and thus integral component of risk management. For that purpose, the DaNa-Project aims at filling this gap by collecting and evaluating scientific results in an interdisciplinary approach with scientists from different research areas, such as human and environmental toxicology, biology, physics, chemistry, and sociology. Research findings from the field of human and environmental nanotoxicology are being prepared and presented together with material properties and possible applications for interested laymen and stakeholders. For the evaluation of literature a "Literature Criteria Checklist" has been developed as well as a Standard Operation Procedure template (SOP) based on careful scientific practice.

  12. Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments

    NASA Astrophysics Data System (ADS)

    Ouyang, Fan-Yi; Chang, Chi-Hung; You, Bo-Chien; Yeh, Tsung-Kuang; Kai, Ji-Jung

    2013-06-01

    We investigated the corrosion characteristics on several selected alloys at 600 and 700 °C in FLiNaK molten salts with different moisture contents. Hastelloys-N and Hastelloys-B3 exhibited better corrosion resistances, while Haynes 263 showed the poorest corrosion resistance. The mass loss of the tested alloys is primarily determined by the purity of FLiNaK salts; however, the effect of temperature becomes more important on the mass loss of the tested alloys in the non-purified FLiNaK salts. When the residual moisture is present in the FLiNaK salts, the mass losses of the tested alloys varied linearly with original Cr content plus one-third of Mo content. The results of structural characterization revealed that the tested alloys in the FLiNaK salts with higher moisture content would aggravate intergranular corrosion and pitting.

  13. The influence of ionic strength on carbonate-based spectroscopic barometry for aqueous fluids: an in-situ Raman study on Na2CO3-NaCl solutions

    PubMed Central

    Wu, Jia; Wang, Shixia; Zheng, Haifei

    2016-01-01

    The Raman wavenumber of the symmetric stretching vibration of carbonate ion (ν1-CO32−) was measured in three aqueous solutions containing 2.0 mol·L−1 Na2CO3 and 0.20, 0.42, or 0.92 mol·L−1 NaCl, respectively, from 122 to 1538 MPa at 22 °C using a moissanite anvil cell. The ν1 Raman signal linearly shifted to higher wavenumbers with increasing pressure. Most importantly, the slope of ν1-CO32− Raman frequency shift (∂ν1/∂P)I was independent of NaCl concentration. Moreover, elevated ionic strength was found to shift the apparent outline of the carbonate peak toward low wavenumbers, possibly by increasing the proportion of the contact ion pair NaCO3−. Further investigations revealed no cross-interaction between the pressure effect and the ionic strength effect on the Raman spectra, possibly because the distribution of different ion-pair species in the carbonate equilibrium was largely pressure-independent. These results suggested that the ionic strength should be incorporated as an additional constraint for measuring the internal pressure of various solution-based systems. Combining the ν1-CO32− Raman frequency slope with the pressure herein with the values for the temperature or the ionic strength dependencies determined from previous studies, we developed an empirical equation that can be used to estimate the pressure of carbonate-bearing aqueous solutions. PMID:27982064

  14. A study of a novel Na ion battery and its anodic degradation using sodium rich prussian blue cathode coupled with different titanium based oxide anodes

    NASA Astrophysics Data System (ADS)

    Mukherjee, Santanu; Bates, Alex; Schuppert, Nicholas; Son, Byungrak; Kim, Joo Gon; Choi, Jae Sung; Choi, Moon Jong; Lee, Dong-Ha; Kwon, Osung; Jasinski, Jacek; Park, Sam

    2015-07-01

    This paper analyzes the behavior and studies the thermal degradation phenomena of a novel sodium rich Prussian blue cathode with a sodium deficient and sodium rich anode system viz. amorphous TiO2, crystalline (pristine), and heat treated TiO2 and Na2Ti3O7, respectively. The primary aim of the research was to demonstrate the superiority of the Na2Ti3O7 anode, which in principle can be considered "pre-stressed" by Na atoms when converted from TiO2 to Na2Ti3O7. Another motive of the research was to analyze exhaustively the layered anode structure and its degradation phenomena using the unique technique of thermal imaging to correlate it with post cycled X-ray diffraction (XRD) and an AC impedance study. The Na2Ti3O7 system was seen as more stable than the other tested TiO2 based anodes and produced an open circuit voltage (OCV) of 3.59 V and a maximum specific capacity of 92.18 mAh g-1 when the electrolyte used was dissolved in an organic solvent. Under the same conditions, the TiO2 sample showed an OCV of 3.41 V and a maximum specific capacity of 71.93 mAh g-1. Thermal imaging studies show that the maximum electrochemical degradation occurs at the anode of the samples with the TiO2 sample being more susceptible to corrosion.

  15. Dose evaluation based on 24Na activity in the human body at the JCO criticality accident in Tokai-mura.

    PubMed

    Momose, T; Tsujimura, N; Tasaki, T; Kanai, K; Kurihara, O; Hayashi, N; Shinohara, K

    2001-09-01

    24Na in the human body, activated by neutrons emitted at the JCO criticality accident, was observed for 62 subjects, where 148 subjects were measured by the whole body counter of JNC Tokai Works. The 148 subjects, including JCO employees and the contractors, residents neighboring the site and emergency service officers, were measured by the whole-body counter. The neutron-energy spectrum around the facility was calculated using neutron transport codes (ANISN and MCNP), and the relation between an amount of activated sodium in human body and neutron dose was evaluated from the calculated neutron energy spectrum and theoretical neutron capture probability by the human body. The maximum 24Na activity in the body was 7.7 kBq (83 Bq(24Na)/g(23Na)) and the relevant effective dose equivalent was 47 mSv.

  16. Domain configuration changes under electric field-induced antiferroelectric-ferroelectric phase transitions in NaNbO{sub 3}-based ceramics

    SciTech Connect

    Guo, Hanzheng Randall, Clive A.; Shimizu, Hiroyuki; Mizuno, Youichi

    2015-08-07

    We recently developed a feasible crystal chemistry strategy to stabilize the antiferroelectricity in NaNbO{sub 3} through a chemical substitution to decrease the tolerance factor and increase the average electronegativity of the system [Shimizu et al., Dalton Trans. 44, 10763 (2015) and Guo et al., J. Appl. Phys. 117, 214103 (2015)]. Two novel lead-free antiferroelectric (AFE) solid solutions, (1-x)NaNbO{sub 3}-xCaZrO{sub 3} and (1-x)NaNbO{sub 3}-xSrZrO{sub 3}, have been found to exhibit the double polarization hysteresis typical of a reversible AFE ↔ ferroelectric (FE) phase transition. In this study, as demonstrated by (1-x)NaNbO{sub 3}-xCaZrO{sub 3} system, the influence of chemical modification and electrical poling on the AFE/FE phase stability was investigated, primarily focusing on the microstructural and crystallographic evolutions. Together with the macroscopic polarization hysteresis measurements, a well-demonstrated structure-property relationship was presented. It was found that the CaZrO{sub 3} substitution into NaNbO{sub 3} can effectively destabilize the FE Q phase and correspondingly lead to a spontaneous reverting to AFE P phase. In contrast to the reversible AFE ↔ FE phase transition, the domain morphology evolution exhibits irreversible nature with a growing process of the orientational domains after applying electric field. Moreover, a multiple-zone axes electron diffraction map of P and Q phases has been summarized and is believed to be an efficient diagram to determine the AFE/FE nature of the NaNbO{sub 3}-based systems.

  17. 14N NQR Studies of Impurity Effects on the Local Structure of NaNO2 -based Mixed Systems

    NASA Astrophysics Data System (ADS)

    Song, S. K.; Park, Y. M.; Jung, J. K.; Seo, Y. M.; Choh, S. H.

    2000-02-01

    The influence of impurities on the 14N NQR lineshape of Na1-xAgxNO2 and [NaNO2]1-x-[BNO3]x (B = Na, K) at room temperature has been investigated. Carrying out spectral analysis in conjunction with classification of the local field inhomogeneities according to the structurally isomorphic, Na1-xAgxNO2 , and anisomorphic [NaNO2]1-x[BNO3]x systems, enabled an under-standing of the microscopic nature of impurity-induced local disorder. The iso-and anisomorphic systems reveal their own unique features of the impurity induced local disorder. They are charac-terized by a static, random distribution of impurities in the isomorphic system and a fast motion of the impurity-induced mobile point defects in the anisomorphic system. However, for both systems, neither a change of the 14N NQR frequency nor a multisplitting of the lines is observed because of the relatively low symmetry.

  18. Nanocomposite Cryogels Based on Poly (Vinyl Alcohol)/Unmodified Na+-Montmorillonite Suitable for Wound Dressing Application: Optimizing Nanoclay Content

    NASA Astrophysics Data System (ADS)

    Karimi, Ali; Wan Daud, Wan Mohd Ashri

    2016-11-01

    A new type of nanocomposite cryogels containing polyvinyl alcohol and 0-10% of hydrophilic natural Na-montmorillonite (Na+-MMT), free from any modification, were prepared with a freeze-thaw process. The effects of nanoclay content and the sonication process on the morphology and thermomechanical properties, equilibrium water content (EWC), and the water vapor transmission rate (WVTR) of nanocomposite films were investigated at 37°C, and the amount of optimized nanocaly content was found. The kinetics of water sorption and desorption of the nanocomposites were also studied. The results showed that (Na+-MMT) may act as a co-crosslinker and improve the water vapor transmission rate and the swelling characteristics of the nanocomposite cryogels. They also showed the optimized critical concentration of nanoclay in achievement of the required sorption and desorption characteristics as well as WVTR and EWC were within the acceptable range for wound dressing and skin treatment.

  19. Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb(3+), Er(3+)-incorporated nanocrystalline TiO2 electrodes.

    PubMed

    Zhu, Guang; Wang, Hongyan; Zhang, Quanxin; Zhang, Li

    2015-08-01

    Near infrared to visible up-conversion of light by rare earth ion-doped phosphors (NaYF4:Yb(3+), Er(3+)) that convert multiple photons of lower energy to higher energy photons offer new possibilities for improved performance of photovoltaic devices. Here, up-conversion phosphor NaYF4:Yb(3+), Er(3+) doped nanocrystalline TiO2 films are designed and used as a electrode for dye-sensitized solar cells, and the photovoltaic performance of DSSCs based on composite electrodes are investigated. The results show the cell with NaYF4:Yb(3+), Er(3+) achieves a power conversion efficiency of 7.65% under one sun illumination (AM 1.5G, 100mWcm(-2)), which is an increase of 14% compared to the cell without NaYF4:Yb(3+), Er(3+) (6.71%). The performance improvement is attributed to the dual effects of enhanced light harvesting from extended light absorption range and increased light scattering, and lower electron transfer resistance.

  20. Ti-based catalytic effect on hydrogen desorption in crystalline NaBH4: an ab initio investigation

    NASA Astrophysics Data System (ADS)

    Moysés Araújo, C.; Jena, Puru

    2005-03-01

    The application of hydrogen fuel cell technology in portable electronic devices and transportation vehicles has led to a great deal of interest in the study of complex alkali hydrides (MXH4 with M=Na, Li and X=Al,B) primarily due to their high gravimetric hydrogen density (eg.18.5% in LiBH4). In particular, NaBH4 slurry has been suggested as the most promising system for applications in fuel cell technology (1) as it provides one of the simplest ways of generating hydrogen. Additionally, the NaBH4 itself is also a promising hydrogen storage material since it has one of the highest gravimetric hydrogen density (13.0 wt%) among the alkali metal hydrides. However, its irreversibility with respect to hydrogen absorpton/desorption cycle limits its practical application for hydrogen storage. To overcome this limitation we have explored the role of Ti on the electronic and crystalline structures of NaBH4. Using density functional calculations we show that Ti prefers to occupy the Na site in sodium borohydride. In addition, Ti weakens the strength of the covalent bond between B and H atoms and the hydrogen removal energy is reduced from 5.64 eV in pure sodium borohydride to 4.70 eV when doped with Ti. Thus, Ti might work as a catalytic agent allowing hydrogen to desorb at a lower temperature. Calculations are underway to examine if other dopants may be even better candidates for hydrogen desorption from sodium borohydride. 1. Z. P. Li, B. H. Liu, K. Arai, K. Asaba and S. Suda Journal of Power Sources 126, 28 (2004).

  1. Gene profiling approach to establish the molecular bases for partial versus full activation of naïve CD8 T lymphocytes.

    PubMed

    Verdeil, Gréory; Puthier, Denis; Nguyen, Catherine; Schmitt-Verhulst, Anne-Marie; Auphan-Anezin, Nathalie

    2002-12-01

    When initial antigen encounter involves optimal antigenic and costimulatory stimuli, naïve CD8 T cells undergo a developmental program that leads to their activation, expansion and acquisition of effector functions (including production of IL-2, IFNgamma and expression of cytolytic effector molecules). A subset of the activated CD8 T cells thrives as long-lived memory cells. Encounter of tissue-associated, and in particular tumor-associated antigen, may often be suboptimal in terms of antigenicity and costimulation, however. We previously developed a model of naïve CD8 T cells from transgenic mice expressing an alloreactive TCR for which a mutant alloantigen behaved as a partial agonist, inducing only some of the effector functions induced by the native alloantigen. To ascertain the molecular bases for the establishment of divergent fates within the same naïve CD8 T cells, we have used cDNA microarrays to monitor sequential gene expression patterns in conditions of full or partial response of these naïve CD8 T cells. Of the 5000 different genes monitored on the array, 18% showed changes in expression in activated versus naïve CD8 T cells, independent of whether stimulation was with full or partial agonist. These included antigen-induced upregulated as well as downregulated genes. Clusters of genes that were differentially expressed were also identified, being either (i) weakly versus strongly, or (ii) transiently versus stably expressed in response to partial and full agonist, respectively. They included (i) genes encoding costimulatory molecules and (ii) genes controlling cytolytic function, cytokine production, and chemokines. Therefore, the cDNA microarray approach was a sensitive tool to provide an exhaustive picture of T cell activation as it could discriminate quantitative, qualitative and dynamic differences in mRNA expression profiles between fully or partially activated T cells.

  2. The first Fe-based Na+-ion cathode with two distinct types of polyanions: Fe3P5SiO19

    SciTech Connect

    Kan, W. H.; Huq, A.; Manthiram, A.

    2015-01-01

    We report the synthesis, structure, and electrochemistry of the first Na+-ion cathode with two distinct types of polyanions: Fe3P5SiO19. The Fe-based cathode has a reversible capacity of ca. 70 mAh g-1; ca. 1.7 Na+ ions per formula can be inserted/extracted at an average voltage of 2.5 V versus Na+/Na.

  3. Comparison between Earth-based Na observations of Mercury's exosphere by THEMIS and in-situ magnetic field measurements by MESSENGER

    NASA Astrophysics Data System (ADS)

    Mangano, Valeria; Massetti, Stefano; Milillo, Anna; Plainaki, Christina; Orsini, Stefano; Rispoli, Rosanna; Leblanc, Francois

    2015-04-01

    The Na exosphere of Mercury is being studied since its discovery in mid '80s from Earth-based telescopes, and it has revealed a high dynamicity and variability. Though the processes and inter-relations at the basis of the Hermean exosphere dynamics are not still clearly understood, there is no doubt that a connection exists among the surface, the exosphere, the intrinsic magnetic field of the body and the Interplanetary Magnetic Field (IMF), which drives the Solar Wind ions into the Mercury's magnetosphere and surface, via the magnetic reconnection. In this work we analyze our dataset of images of the exospheric Na emission, collected from 2009 to 2013 by the THEMIS ground-based telescope, to perform a comprehensive statistical study of the recurrent patterns, and their relationship with the variability of the IMF. For this purpose, we take advantage of a subset (years 2011-2013) of contemporary in situ measurements of the IMF obtained by the MAG instrument onboard the MESSENGER spacecraft. We found that the mid-high latitude double peaks is the most common Na emission pattern, supporting the view that the solar wind ion precipitation through the polar cusps has an important role in the generation of the observed Na exospheric emission. Moreover, the lack of a statistically significant North-South asymmetry seems to disfavour the idea of an asymmetric and/or shifted magnetic dipole. By analysing a subset of quasi-full disk images, we found that most of the Na emission patterns seems to occur in the pre-noon sector (53%), about 1/3 is roughly aligned along the noon meridian (36%), while only 11% takes place in the post-noon sector. Finally, the comparison with the IMF data indicates that the contribution of the IMF Bx component to the magnetic reconnection is generally weak, even if we found a noticeable correlation between positive IMB Bx and symmetric double peaks pattern. Negative IMF Bz values are usually connected with double peaks emission (likely by widening

  4. Characterization and humidity sensing properties of the sensor based on Na2Ti3O7 nanotubes.

    PubMed

    Zhang, Yupeng; Wu, Jian; Zhang, Ying; Guo, Wenbin; Ruan, Shenping

    2014-06-01

    Na2Ti3O7 nanotubes was synthesized by a hydrothermal method, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Then the material was coated on Al2O3 ceramic substrate to fabricate humidity sensors using Ag-Pd as interdigitated electrodes. The sensor shows high humidity sensitivity and quick response-recovery time. The impedance changes about five orders of magnitude within humidity range from 11% to 95% relative humidity (RH). At the frequency of 100 Hz, the response time is 2 s and recovery time is 4 s, and the maximum hysteresis is less than 3% RH. Moreover, complex impedance property at different RH was investigated to study sensing mechanism. The results indicate the potential applications of Na2Ti3O7 nanotubes for fabricating high-performance humidity sensors.

  5. Molecular dynamics study of coagulation in silica-nanocolloid-water-NaCl systems based on the atomistic model.

    PubMed

    Habasaki, Junko; Ishikawa, Masamichi

    2014-11-21

    In the present work, large scale molecular dynamics (MD) simulations of nanocolloidal silica in aqueous NaCl solutions were performed using a fully atomistic model to study the microscopic structures and dynamics of the systems that lead to aggregation or gelation. Our attention is focused on the self-organizations that occur in the structures of the colloidal silica and water for various concentrations of NaCl. As the salt concentration increased, coagulation developed through the direct bonding of SiO4 units. The trend was explained by the systematic changes in the pair correlation functions related to the barrier height in the potential of mean force [J. G. Kirkwood, J. Chem. Phys., 1935, 3, 300]. Network structures of silica were visualised, and their fractal dimensions were examined by computing the running coordination numbers of Si-Si pairs and also by the analysis of two dimensional images. The calculated dimension by the former method was comparable to the experimental observations for the aggregation of silica colloids, and at longer length scales, super-aggregation was evident in the gelation process. The result from the 2D images is found to be insensitive to the differences in the structure. Clear changes in both the structure and mobility of the water were observed as the NaCl concentration increased, suggesting the importance of the solvent structures to these processes, although such a feature is lacking in the conventional models and most simulations of colloids.

  6. High-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4: Yb(3+), Er(3+) NPs-PMMA covalent-linking nanocomposites.

    PubMed

    Zhang, Meiling; Zhang, Weiwei; Wang, Fei; Zhao, Dan; Qu, Chunyang; Wang, Xibin; Yi, Yunji; Cassan, Eric; Zhang, Daming

    2016-11-09

    Waveguide amplifiers have always been significant key components for optical communication. Unfortunately, the low concentration of rare earth ions doped in the host material and the inadequate optimization of the waveguide structure have been the common bottleneck limitations. Here, a novel material, NaYF4/NaLuF4: 20% Yb(3+), 2% Er(3+) nanoparticle-Polymeric Methyl Methacrylate covalent-linking nanocomposite, was synthesized. The concentrations of Er(3+) and Yb(3+) doping increased an order of magnitude. Under a 980 nm laser excitation, highly efficient emission at 1.53 μm was obtained. The characteristic parameters of the single mode waveguide were carefully designed and optimized by using a finite difference method. A formulized iteration method is presented for solving the rate equations and the propagation equations of the EYCDWA, and both the steady state behavior and the gain were numerically simulated. The optimal Er(3+) and Yb(3+) concentrations are 2.8 × 10(26) m(-3) and 2.8 × 10(27) m(-3), and the optimal waveguide length is 1.3 cm. Both theoretical and experimental results indicated that, for an input signal power of 0.1 mW and a pump power of 400 mW, a net gain of 15.1 dB at 1530 nm is demonstrated. This result is the highest gain ever reported in polymer-based waveguide amplifiers doped with inorganic Er(3+)-Yb(3+) codoped nanocrystals.

  7. High-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4: Yb3+, Er3+ NPs-PMMA covalent-linking nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Meiling; Zhang, Weiwei; Wang, Fei; Zhao, Dan; Qu, Chunyang; Wang, Xibin; Yi, Yunji; Cassan, Eric; Zhang, Daming

    2016-11-01

    Waveguide amplifiers have always been significant key components for optical communication. Unfortunately, the low concentration of rare earth ions doped in the host material and the inadequate optimization of the waveguide structure have been the common bottleneck limitations. Here, a novel material, NaYF4/NaLuF4: 20% Yb3+, 2% Er3+ nanoparticle-Polymeric Methyl Methacrylate covalent-linking nanocomposite, was synthesized. The concentrations of Er3+ and Yb3+ doping increased an order of magnitude. Under a 980 nm laser excitation, highly efficient emission at 1.53 μm was obtained. The characteristic parameters of the single mode waveguide were carefully designed and optimized by using a finite difference method. A formulized iteration method is presented for solving the rate equations and the propagation equations of the EYCDWA, and both the steady state behavior and the gain were numerically simulated. The optimal Er3+ and Yb3+ concentrations are 2.8 × 1026 m‑3 and 2.8 × 1027 m‑3, and the optimal waveguide length is 1.3 cm. Both theoretical and experimental results indicated that, for an input signal power of 0.1 mW and a pump power of 400 mW, a net gain of 15.1 dB at 1530 nm is demonstrated. This result is the highest gain ever reported in polymer-based waveguide amplifiers doped with inorganic Er3+-Yb3+ codoped nanocrystals.

  8. High-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4: Yb3+, Er3+ NPs-PMMA covalent-linking nanocomposites

    PubMed Central

    Zhang, Meiling; Zhang, Weiwei; Wang, Fei; Zhao, Dan; Qu, Chunyang; Wang, Xibin; Yi, Yunji; Cassan, Eric; Zhang, Daming

    2016-01-01

    Waveguide amplifiers have always been significant key components for optical communication. Unfortunately, the low concentration of rare earth ions doped in the host material and the inadequate optimization of the waveguide structure have been the common bottleneck limitations. Here, a novel material, NaYF4/NaLuF4: 20% Yb3+, 2% Er3+ nanoparticle-Polymeric Methyl Methacrylate covalent-linking nanocomposite, was synthesized. The concentrations of Er3+ and Yb3+ doping increased an order of magnitude. Under a 980 nm laser excitation, highly efficient emission at 1.53 μm was obtained. The characteristic parameters of the single mode waveguide were carefully designed and optimized by using a finite difference method. A formulized iteration method is presented for solving the rate equations and the propagation equations of the EYCDWA, and both the steady state behavior and the gain were numerically simulated. The optimal Er3+ and Yb3+ concentrations are 2.8 × 1026 m−3 and 2.8 × 1027 m−3, and the optimal waveguide length is 1.3 cm. Both theoretical and experimental results indicated that, for an input signal power of 0.1 mW and a pump power of 400 mW, a net gain of 15.1 dB at 1530 nm is demonstrated. This result is the highest gain ever reported in polymer-based waveguide amplifiers doped with inorganic Er3+-Yb3+ codoped nanocrystals. PMID:27827414

  9. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    PubMed Central

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-01-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834

  10. Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application

    NASA Astrophysics Data System (ADS)

    Hu, Yingying; Wen, Zhaoyin; Wu, Xiangwei; Jin, Jun

    2012-12-01

    Porous carbon films with tunable pore structure to modify the β″-alumina electrolyte surface are fabricated through a low-cost and direct wet chemistry method with glucose and poly(methyl-methacrylate) (PMMA) as precursors. FTIR analysis confirms the effective connection between the carbohydrate and the pore-forming agent PMMA through hydrogen bonds. The experimental results indicate that the structural parameters of the porous carbon films, including mean pore size and film thickness, can be tuned simply by adjusting the amount of PMMA in the glucose/PMMA composite. This soft-template-assisted method could be readily extended to modify any other ceramic surfaces. The porous carbon films are demonstrated to greatly improve the wettability of the β″-alumina ceramics by molten sodium. Na/β″-alumina/Na cells are used to investigate the interfacial properties between sodium and the β″-alumina electrolyte. The results obtained at 350 °C reveal that the polarization behavior of the cell is alleviated by the porous coating. This work represents a successful method to coat ceramics with porous carbon and offers a promising solution to overcome the polarization problems of the sodium/β″-alumina interface in Na-based batteries.

  11. Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo.

    PubMed

    Liu, Chunyan; Gao, Zhenyu; Zeng, Jianfeng; Hou, Yi; Fang, Fang; Li, Yilin; Qiao, Ruirui; Shen, Lin; Lei, Hao; Yang, Wensheng; Gao, Mingyuan

    2013-08-27

    Detection of early malignant tumors remains clinically difficult; developing ultrasensitive imaging agents is therefore highly demanded. Owing to the unusual magnetic and optical properties associated with f-electrons, rare-earth elements are very suitable for creating functional materials potentially useful for tumor imaging. Nanometer-sized particles offer such a platform with which versatile unique properties of the rare-earth elements can be integrated. Yet the development of rare-earth nanoparticle-based tumor probes suitable for imaging tiny tumors in vivo remains difficult, which challenges not only the physical properties of the nanoparticles but also the rationality of the probe design. Here we report new approaches for size control synthesis of magnetic/upconversion fluorescent NaGdF4:Yb,Er nanocrystals and their applications for imaging tiny tumors in vivo. By independently varying F(-):Ln(3+) and Na(+):Ln(3+) ratios, the size and shape regulation mechanisms were investigated. By replacing the oleic acid ligand with PEG2000 bearing a maleimide group at one end and two phosphate groups at the other end, PEGylated NaGdF4:Yb,Er nanoparticles with optimized size and upconversion fluorescence were obtained. Accordingly, a dual-modality molecular tumor probe was prepared, as a proof of concept, by covalently attaching antitumor antibody to PEGylated NaGdF4:Yb,Er nanoparticles through a "click" reaction. Systematic investigations on tumor detections, through magnetic resonance imaging and upconversion fluorescence imaging, were carried out to image intraperitoneal tumors and subcutaneous tumors in vivo. Owing to the excellent properties of the molecular probes, tumors smaller than 2 mm was successfully imaged in vivo. In addition, pharmacokinetic studies on differently sized particles were performed to disclose the particle size dependent biodistributions and elimination pathways.

  12. Influence of NaX (X=I or Cl) additions on GeS{sub 2}–Ga{sub 2}S{sub 3} based glasses

    SciTech Connect

    Bréhault, A.; Cozic, S.; Boidin, R.; Calvez, L.; Bychkov, E.; Masselin, P.; Zhang, X.; Le Coq, D.

    2014-12-15

    Chalcogenide glasses in the pseudo-ternary system NaX–GeS{sub 2}–Ga{sub 2}S{sub 3} (X=Cl or I) were synthesized. Different series were investigated in order to highlight the influence of the sodium halide addition on two different host glasses (GeS{sub 2}){sub 80}(Ga{sub 2}S{sub 3}){sub 20} and (GeS{sub 2}){sub 72}(Ga{sub 2}S{sub 3}){sub 28}. Macroscopic properties including density and characteristic temperatures, such as glass transition temperatures T{sub g} and crystallization temperature T{sub x}, were determined for a maximum molar content of NaX equal to 15%. The evolution of the optical band-gap and the chemical stability following the composition were also studied. Conductivity measurements were also performed and compared to other Li-based GeS{sub 2}–Ga{sub 2}S{sub 3} glasses. The results were discussed taking into account the cation and anion nature and also the glass packing density. - Graphical abstract: Characterizations of NaX–GeS{sub 2}–Ga{sub 2}S{sub 3} chalcogenide glasses (X=Cl or I). - Highlights: • Synthesis and characterization of NaX–GeS{sub 2}–Ga{sub 2}S{sub 3} chalcogenide glasses (X=Cl or I). • We compare results with analoguous LiX-bearing glasses. • Correlation between electrical conductivity and glass packing density.

  13. Application of the New Propulsion Theory to the Design of Propellers. Comparison with the Lifting Line Theory (Aplicacion de la Nueva Teoria de la Impulsion al Diseno de Propulsores. Comparacion con la Teoria de las Lineas Sustentadoras),

    DTIC Science & Technology

    1983-11-07

    Results and Improvement Thereon," Ingenieria Naval, May 1978. 11. Perez Gomez, G., "Fundamentos teoricos de los modernos procedimientos de proyecto de...TRANSLATED BY: 9198 SOJRCE: INGENIERIA NAVAL, JULY 1983, PP. 267-278; SPANISH DTICSELECTE DEC 9 I983 ~D MWS TRANSLATION No 72D DATE 7 NOVEMBER 1903 [-M...Impulsion al Diseno de Propulsores. Comparacion con la Teoria de las Lineas Sustentadoras.; Ingenieria Naval, July 1983; pp. 267-278] *Department of Ship

  14. Na+ dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies

    PubMed Central

    Christensen, Henriette L.; Nguyen, An T.; Pedersen, Fredrik D.; Damkier, Helle H.

    2013-01-01

    The choroid plexus epithelium (CPE) is located in the ventricular system of the brain, where it secretes the majority of the cerebrospinal fluid (CSF) that fills the ventricular system and surrounds the central nervous system. The CPE is a highly vascularized single layer of cuboidal cells with an unsurpassed transepithelial water and solute transport rate. Several members of the slc4a family of bicarbonate transporters are expressed in the CPE. In the basolateral membrane the electroneutral Na+ dependent Cl−/HCO3− exchanger, NCBE (slc4a10) is expressed. In the luminal membrane, the electrogenic Na+:HCO3− cotransporter, NBCe2 (slc4a5) is expressed. The electroneutral Na+:HCO3− cotransporter, NBCn1 (slc4a7), has been located in both membranes. In addition to the bicarbonate transporters, the Na+/H+ exchanger, NHE1 (slc9a1), is located in the luminal membrane of the CPE. Genetically modified mice targeting slc4a2, slc4a5, slc4a7, slc4a10, and slc9a1 have been generated. Deletion of slc4a5, 7 or 10, or slc9a1 has numerous impacts on CP function and structure in these mice. Removal of the transporters affects brain ventricle size (slc4a5 and slc4a10) and intracellular pH regulation (slc4a7 and slc4a10). In some instances, removal of the proteins from the CPE (slc4a5, 7, and 10) causes changes in abundance and localization of non-target transporters known to be involved in pH regulation and CSF secretion. The focus of this review is to combine the insights gathered from these knockout mice to highlight the impact of slc4 gene deletion on the CSF production and intracellular pH regulation resulting from the deletion of slc4a5, 7 and 10, and slc9a1. Furthermore, the review contains a comparison of the described human mutations of these genes to the findings in the knockout studies. Finally, the future perspective of utilizing these proteins as potential targets for the treatment of CSF disorders will be discussed. PMID:24155723

  15. A homochiral magnet based on D₃ symmetric [(NaO₃)Co₃] clusters: from spontaneous resolution to absolute chiral induction.

    PubMed

    Yao, Ru-Xin; Cui, Xin; Wang, Jun; Zhang, Xian-Ming

    2015-03-25

    A pair of novel enantiomeric 3D magnetic complexes [NaCo3(IA)6](NO3)·H2O (1Δ and 1Λ) have been synthesized using an achiral ligand HIA via spontaneous resolution, which crystallize in the hexagonal crystal system with a chiral P63 space group, and diamagnetic sodium cations are located at the center of D3 symmetric clusters. This kind of spontaneous resolution is uncontrollable and dependent on batches. By utilizing cheap enantiopure mandelic acid as a chiral inducing agent, they are driven to controllable homochiral crystallization of the desired enantiomorph, confirmed by circular dichroism spectra.

  16. 10BaF2:NaF, Na3AlF6/TiO2 composite as a novel visible-light-driven photocatalyst based on upconversion emission

    NASA Astrophysics Data System (ADS)

    Liu, En-Zhou; Fan, Jun; Hu, Xiao-Yun; Hou, Wen-Qian; Dai, Hong-Zhe

    2012-04-01

    A rare-earth free upconversion luminescent material, 10BaF2:NaF, Na3AlF6, is synthesized by a hydrothermal method. The study of fluorescent spectrum indicates that it can convert visible light (550 nm—610 nm) into ultraviolet light (290 nm—350 nm), and two emission peaks at 304 nm and 324 nm are observed under the excitation of 583 nm at room temperature. Subsequently, 10BaF2:NaF, Na3AlF6/TiO2 composite photocatalyst is prepared and its catalytic activity is evaluated by the photocatalytic reduction of CO2 under visible light irradiation (λ > 515 nm). The results show that 10BaF2:NaF, Na3AlF6/TiO2 is a more effective photocatalyst for CO2 reduction than pure TiO2, their corresponding methanol yields are 179 and 0 μmol/g-cat under the same conditions. Additionally, the mechanism of photocatalytic reduction of CO2 on 10BaF2:NaF, Na3AlF6/TiO2 is proposed.

  17. Band structure renormalization and weak pseudogap behavior in Na0.33CoO2 : Fluctuation exchange study based on a single-band model

    NASA Astrophysics Data System (ADS)

    Yao, Zi-Jian; Li, Jian-Xin; Wang, Z. D.

    2007-12-01

    Based on a single-band Hubbard model and the fluctuation exchange approximation, the effective mass and the energy band renormalization in Na0.33CoO2 is elaborated. The renormalization is observed to exhibit certain kind of anisotropy, which agrees qualitatively with the angle-resolved photoemission spectroscopy measurements. Moreover, the spectral function and density of states in the normal state are calculated, with a weak pseudogap behavior being seen, which is explained as a result of the strong Coulomb correlations. Our results suggest that the large Fermi surface associated with the a1g band plays likely a central role in the charge dynamics.

  18. Temperature dependent structures and properties of Bi0.5Na0.5TiO3-based lead free piezoelectric composite.

    PubMed

    Zhang, Ji; Sun, Lei; Geng, Xiao-Yu; Zhang, Bin-Bin; Yuan, Guo-Liang; Zhang, Shan-Tao

    2016-07-05

    The thermal depolarization around 100 °C of the Bi0.5Na0.5TiO3-based piezoelectric solid solutions leads to the disappearance of macroscopic ferroelectric/piezoelectric properties and remains a long-standing obstacle for their actual applications. In this communication, we report lead-free piezoelectric composites of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3:0.5ZnO (BNT-6BT:0.5ZnO, where 0.5 is the mole ratio of ZnO to BNT-6BT) with deferred thermal depolarization, which is experimentally confirmed by systematic temperature dependent dielectric, ferroelectric, piezoelectric measurements. Especially, based on temperature dependent X-ray diffraction measurements on unpoled and poled samples, thermal depolarization is confirmed to have no relationship with the structural phase transition, the possible mechanism for the deferred thermal depolarization is correlated with the ZnO-induced local electric field which can suppress the depolarization field. We believe our results may be helpful for understanding the origin of thermal depolarization in BNT-based piezoelectric materials, and thus provide an effective way to overcoming this obstacle.

  19. Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles.

    PubMed

    Wang, Zhijiang; Wu, Lina; Shen, Baozhong; Jiang, Zhaohua

    2013-09-30

    Fluorescent detection is an attractive method for the detection of toxic chemicals. However, most chemosensors that are currently utilized in fluorescent detection are based on organic dyes or quantum dots, which suffer from instability, high background noise and interference from organic impurities in solution, which can also be excited by UV radiation. In the present research, we developed a novel NaYF4:Yb,Ho/Au nanocomposite-based chemosensor with high sensitivity (10 ppb) and selectivity over competing analytes for the detection of the insecticide cartap. This nanosensor is excited with a 970-nm laser instead of UV radiation to give an emission peak at 541 nm. In the presence of cartap, the nanocomposites aggregate, resulting in enhanced luminescence resonance energy transfer between the NaYF4:Yb,Ho nanocrystals and the gold nanoparticles, which decreases the emission intensity at 541 nm. The relative luminescence intensity at 541 nm has a linear relationship with the concentration of cartap in the solution. Based on this behavior, the developed nanosensor successfully detected cartap in farm produce and water samples with satisfactory results.

  20. High temperature (NaBi)0.48□0.04Bi2Nb2O9-based piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-Gang; Wang, Jin-Feng; Zhao, Ming-Lei; Wang, Chun-Ming; Zang, Guo-Zhong; Ming, Bao-Quan; Qi, Peng; Zhang, Shujun; Shrout, Thomas R.

    2006-07-01

    The effect of (LiCe) substitution for A site on the properties of (NaBi)0.48◻0.04Bi2Nb2O9 (NB◻N)-based ceramics was investigated. The coercive fields (EC) of NB◻N)-based ceramics were significantly decreased from 61.0to32.5kV/cm and the Curie temperature (TC) gradually decreases from 820to803°C with increasing the (LiCe) modification. The piezoelectric coefficient d33, planar coupling factor kp, and mechanical quality factor Q of (NaBi)0.38(LiCe)0.05◻0.14Bi2Nb2O9 ceramic were found to be 27pC/N, 11.2%, and 2600, respectively, together with the high TC (˜809°C) and stable piezoelectric properties, demonstrating that the (LiCe) modified NB◻N-based material a promising candidate for high temperature applications.

  1. Sequence Based Prediction of DNA-Binding Proteins Based on Hybrid Feature Selection Using Random Forest and Gaussian Naïve Bayes

    PubMed Central

    Lou, Wangchao; Wang, Xiaoqing; Chen, Fan; Chen, Yixiao; Jiang, Bo; Zhang, Hua

    2014-01-01

    Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred

  2. Zr and Sn substituted (Na0.5Bi0.5)TiO3 -based solid solutions

    NASA Astrophysics Data System (ADS)

    Ishchuk, V. M.; Gusakova, L. G.; Kisel, N. G.; Kuzenko, D. V.; Spiridonov, N. A.; Sobolev, V. L.

    2016-02-01

    The paper attempts to investigate the phase formation of a Zr- and Sn-substituted [(Na0.5Bi0.5)0.80Ba0.20](Ti1-yBy)O3 system during its solid state synthesis. The synthesis was found to be a multi-step process associated with the formation of a number of intermediate phases which however depended on the compositions and sintering temperatures. Single phase solid solutions were obtained when the sintering temperature was increased to 1000 °C-1100 °C. Increase in the concentration of substituting ions, on the one hand, tends to linearly increase the crystal cell size whereas the tolerance factor, on the other hand, gets reduced bolstering the stability of anti-ferroelectric phase as compared to that of ferroelectric phase’.

  3. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    NASA Astrophysics Data System (ADS)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.

  4. Strong domain configuration dependence of the nonlinear dielectric response in (K,Na)NbO{sub 3}-based ceramics

    SciTech Connect

    Huan, Yu; Wang, Xiaohui Li, Longtu; Koruza, Jurij

    2015-11-16

    The nonlinear dielectric response in (Na{sub 0.52}K{sub 0.4425}Li{sub 0.0375})(Nb{sub 0.92−x}Ta{sub x}Sb{sub 0.08})O{sub 3} ceramics with different amounts of Ta was measured using subcoercive electric fields and quantified by the Rayleigh model. The irreversible extrinsic contribution, mainly caused by the irreversible domain wall translation, was strongly dependent on the domain configuration. The irreversible extrinsic contributions remained approximately the same within the single-phase regions, either orthorhombic or tetragonal, due to the similar domain morphology. However, in the polymorphic phase transition region, the domain wall density was increased by minimized domain size, as observed by transmission electron microscopy. This resulted in constrained domain wall motion due to self-clamping and reduced the irreversible extrinsic contribution.

  5. Electromechanical properties of hydrogels based on chitosan and poly(hydroxyethyl methacrylate) in NaCl solution

    NASA Astrophysics Data System (ADS)

    Kim, Seon Jeong; Ryon Shin, Su; Lee, Sang Min; Kim, In Young; Kim, Sun I.

    2004-10-01

    A semi-interpenetrating polymer network (semi-IPN) hydrogel, composed of chitosan and poly(hydroxyethyl methacrylate) (PHEMA), exhibited electrically sensitive behavior. The swelling behavior of the chitosan/PHEMA semi-IPN hydrogel was studied by immersion of the gel in aqueous NaCl solutions at various concentrations. The stimulus response of the chitosan/PHEMA semi-IPN hydrogel in electric fields was also investigated. When swollen, the semi-IPN was placed between a pair of electrodes, and showed bending behavior upon the application of an electric field. The electro-responsive behavior of the present semi-IPN was also affected by the electrolyte concentration of the external solution, and also showed various degrees of increased bending behavior depending on the electrical stimulus.

  6. Hot-stage transmission electron microscopy study of (Na, K)NbO{sub 3} based lead-free piezoceramics

    SciTech Connect

    Lu, Shengbo; Xu, Zhengkui; Kwok, K. W.; Chan, Helen L. W.

    2014-07-28

    Hierarchical nanodomains assembled into micron-sized stripe domains, which is believed to be associated with outstanding piezoelectric properties, were observed at room temperature in a typical lead free piezoceramics, (Na{sub 0.52}K{sub 0.48−x})(Nb{sub 0.95−x}Ta{sub 0.05})-xLiSbO{sub 3}, with finely tuned polymorphic phase boundaries (x = 0.0465) by transmission electron microscopy. The evolution of domain morphology and crystal structure under heating and cooling cycles in the ceramic was investigated by in-situ hot stage study. It is found that the nanodomains are irreversibly transformed into micron-sized rectangular domains during heating and cooling cycles, which lead to the thermal instability of piezoelectric properties of the materials.

  7. Mitogen-activated protein kinase 6 controls root growth in Arabidopsis by modulating Ca2+ -based Na+ flux in root cell under salt stress.

    PubMed

    Han, Shuan; Wang, Chi-wen; Wang, Wen-le; Jiang, Jing

    2014-03-01

    Little is known about the role of mitogen-activated protein kinase 6 (MPK6) in Na(+) toxicity and inhibition of root growth in Arabidopsis under NaCl stress. In this study, we found that root elongation in seedlings of the loss-of-function mutants mpk6-2 and mpk6-3 was less sensitive to NaCl or Na-glutamate, but not to KCl or mannitol, as compared with that of wild-type (WT) seedlings. The less sensitive characteristic was eliminated by adding the Ca(2+) chelator EGTA or the Ca(2+) channel inhibitor LaCl3, but not the Ca(2+) ionophore A23187. This suggested that the tolerance of mpk6 to Na(+) toxicity was Ca(2+)-dependent. We measured plasma membrane (PM) Na(+)-conducted currents (NCCs) in root cells. Increased concentrations of NaCl increased the inward NCCs while decreased the outward NCCs in WT root cells, attended by a positive shift in membrane potential. In mpk6 root cells, NaCl significantly increased outward but not inward NCCs, accompanied by a negative shift in membrane potential. That is, mpk6 decreased NaCl-induced the Na(+) accumulation by modifying PM Na(+) flux in root cells. Observations of aequorin luminescence revealed a NaCl-induced increase of cytosolic Ca(2+) in mpk6 root cells, resulting from PM Ca(2+) influx. An increase of cytosolic Ca(2+) was required to alleviate the NaCl-increased Na(+) content and Na(+)/K(+) ratio in mpk6 roots. Together, these results show that mpk6 accumulated less Na(+) in response to NaCl because of the increased cytosolic Ca(2+) level in root cells; thus, its root elongation was less inhibited than that of WT by NaCl.

  8. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Xianwen; Li, Yehua; Xiang, Yanhong; Liu, Zhixiong; He, Zeqiang; Wu, Xianming; Li, Youji; Xiong, Lizhi; Li, Chuanchang; Chen, Jian

    2016-12-01

    There is a broad application prospect for smart grid about aqueous rechargeable sodium-ion battery. In order to improve its electrochemical performance, a hybrid cationic aqueous-based rechargeable battery system based on the nanostructural Na0.44MnO2 and metallic zinc foil as the positive and negative electrodes respectively is built up. Nano rod-like Na0.44MnO2 is synthesized by sol-gel method followed by calcination at 850 °C for 9 h, and various characterization techniques including the X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to investigate the structure and morphology of the as-prepared material. The cyclic voltammetry, galvanostatic charge-discharge and self-discharge measurements are performed at the same time. The results show that the battery delivers a very high initial discharge capacity of 186.2 mAh g-1 at 0.2 C-rate in the range of 0.5-2.0 V, and it exhibits a discharge capacity of 113.3 mAh g-1 at high current density of 4 C-rate, indicative of excellent rate capability.

  9. Tribocorrosion Behavior of Fe-Based Amorphous Composite Coating Reinforced by Al2O3 in 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Yasir, Muhammad; Zhang, Cheng; Wang, Wei; Zhang, Zhi-Wei; Liu, Lin

    2016-12-01

    Although corrosion and friction/wear behavior of Fe-based amorphous coatings and their composites has been extensively studied during the past decade, there is very limited work related to tribocorrosion behavior. In this paper, the tribocorrosion behavior of a Fe-based amorphous composite coating reinforced with 20 wt.% Al2O3 particles was investigated in a 3.5% NaCl solution on a ball-on-disk tester and was compared to the monolithic amorphous coating and 316L stainless steel (SS). The results showed that the amorphous composite coating exhibited the highest tribocorrosion resistance among the three materials tested, as evidenced by the lowest coefficient of friction ( 0.3) and tribocorrosion wear rate ( 1.2 × 10-5 mm3/N·m). In addition, potentiodynamic polarization measurements before and during tribocorrosion testing demonstrated that corrosion resistance of the amorphous composite coating was not influenced so much by mechanical loading compared to the amorphous coating and the 316L SS. Observations on the worn surface revealed a corrosion-wear- and oxidational-wear-dominated tribocorrosion mechanism for the composite coatings. The excellent tribocorrosion resistance of the composite coating results from the effect of chemically stable Al2O3 phase which resists oxidation and delamination during sliding, along with poor wettability with corrosive NaCl droplets.

  10. Simplified NaCl based (68)Ga concentration and labeling procedure for rapid synthesis of (68)Ga radiopharmaceuticals in high radiochemical purity.

    PubMed

    Mueller, Dirk; Klette, Ingo; Baum, Richard P; Gottschaldt, M; Schultz, Michael K; Breeman, Wouter A P

    2012-08-15

    A simple sodium chloride (NaCl) based (68)Ga eluate concentration and labeling method that enables rapid, high-efficiency labeling of DOTA conjugated peptides in high radiochemical purity is described. The method utilizes relatively few reagents and comprises minimal procedural steps. It is particularly well-suited for routine automated synthesis of clinical radiopharmaceuticals. For the (68)Ga generator eluate concentration step, commercially available cation-exchange cartridges and (68)Ga generators were used. The (68)Ga generator eluate was collected by use of a strong cation exchange cartridge. 98% of the total activity of (68)Ga was then eluted from the cation exchange cartridge with 0.5 mL of 5 M NaCl solution containing a small amount of 5.5 M HCl. After buffering with ammonium acetate, the eluate was used directly for radiolabeling of DOTATOC and DOTATATE. The (68)Ga-labeled peptides were obtained in higher radiochemical purity compared to other commonly used procedures, with radiochemical yields greater than 80%. The presence of (68)Ge could not be detected in the final product. The new method obviates the need for organic solvents, which eliminates the required quality control of the final product by gas chromatography, thereby reducing postsynthesis analytical effort significantly. The (68)Ga-labeled products were used directly, with no subsequent purification steps, such as solid-phase extraction. The NaCl method was further evaluated using an automated fluid handling system and it routinely facilitates radiochemical yields in excess of 65% in less than 15 min, with radiochemical purity consistently greater than 99% for the preparation of (68)Ga-DOTATOC.

  11. Lunar regolith dynamics based on analysis of the cosmogenic radionuclides Na-22, Al-26, and Mn-53

    NASA Technical Reports Server (NTRS)

    Fruchter, J. S.; Rancitelli, L. A.; Laul, J. C.; Perkins, R. W.

    1977-01-01

    Depth profiles of Na-22 and Al-26 in the upper portions of five lunar cores are analyzed. From the analyses, it is concluded that the natural gardening processes on the lunar surface result in mixing of the regolith to a depth of 2-3 cm over a time period which is short compared with the half-life of Al-26 (0.73 m.y.). It is also concluded that the rotary drill processes which were used to obtain the deep drill samples generally resulted in loss and/or mixing of the upper portions of the cores. In contrast, the near-surface regions of the drive tube cores appear to have a well-preserved stratigraphy. Analysis of Mn-53 in samples of six lunar rocks helps substantiate the accuracy of age date estimates by other means, and provides definite information that the total lunar surface exposure of two of these rocks has occurred during a single surface event which continued to their collection.

  12. An Automatic Multidocument Text Summarization Approach Based on Naïve Bayesian Classifier Using Timestamp Strategy

    PubMed Central

    Ramanujam, Nedunchelian; Kaliappan, Manivannan

    2016-01-01

    Nowadays, automatic multidocument text summarization systems can successfully retrieve the summary sentences from the input documents. But, it has many limitations such as inaccurate extraction to essential sentences, low coverage, poor coherence among the sentences, and redundancy. This paper introduces a new concept of timestamp approach with Naïve Bayesian Classification approach for multidocument text summarization. The timestamp provides the summary an ordered look, which achieves the coherent looking summary. It extracts the more relevant information from the multiple documents. Here, scoring strategy is also used to calculate the score for the words to obtain the word frequency. The higher linguistic quality is estimated in terms of readability and comprehensibility. In order to show the efficiency of the proposed method, this paper presents the comparison between the proposed methods with the existing MEAD algorithm. The timestamp procedure is also applied on the MEAD algorithm and the results are examined with the proposed method. The results show that the proposed method results in lesser time than the existing MEAD algorithm to execute the summarization process. Moreover, the proposed method results in better precision, recall, and F-score than the existing clustering with lexical chaining approach. PMID:27034971

  13. Direct and indirect characterization of electrocaloric effect in (Na,K)NbO3 based lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jianting; Bai, Yang; Qin, Shiqiang; Fu, Jian; Zuo, Ruzhong; Qiao, Lijie

    2016-10-01

    This paper demonstrated the electrocaloric effect (ECE) of (Na0.52K0.48-x)(Nb0.92-xSb0.08)O3-xLiTaO3 lead-free ceramics by direct differential scanning calorimetry measurement and indirect thermodynamic method. Both results show good consistency, where the direct one more accurately depicts ECE value and its evolution according to phase diagram. Due to the diffuse orthorhombic-tetragonal phase transition, the samples show a broad ECE peak which shifts to lower temperature with increasing LiTaO3 amount. Compared to previous direct results in lead-free ceramics at corresponding temperatures, they show a competitive ECE performance with ΔTmax of 0.41 K (@80 °C), 0.30 K (@35 °C) and 0.16 K (@15 °C) under 20 kV/cm fields for x = 0.02, 0.0375 and 0.045.

  14. Improvement of the piezoelectric properties in (K,Na)NbO{sub 3}-based lead-free piezoelectric ceramic with two-phase co-existing state

    SciTech Connect

    Yamada, H. Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.

    2015-06-07

    Two phases of (K,Na)NbO{sub 3} (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K{sub 1−x}Na{sub x}){sub 0.86}Ca{sub 0.04}Li{sub 0.02}Nb{sub 0.85}O{sub 3−δ}–0.042K{sub 0.85}Ti{sub 0.85}Nb{sub 1.15}O{sub 5} –0.036BaZrO{sub 3}–0.0016Co{sub 3}O{sub 4}– 0.0025Fe{sub 2}O{sub 3}–0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains of the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, k{sub p} = 0.56, has been observed at the composition x = 0.56.

  15. Evaluation of Static Thermophysical Properties of the Ternary Molten Salt System Li, Na and Be/F Based on the Modified Peng-Robinson Equation

    NASA Astrophysics Data System (ADS)

    Zhang, Dalin; Qiu, Suizheng; Su, Guanghui; Jia, Dounan

    The static thermophysical properties of the molten salt system like LiF-NaF-BeF2 influence the design and construction of the fuel salt and coolant in the Molten Salt Reactor for the new generation. In this paper, the equation of state of the ternary system 0.15LiF-0.58NaF-0.27BeF2, over the temperature range from 873.15K to 1073.15K at one atmosphere pressure, is described by using modified Peng-Robinson equation. The density of the ternary system is evaluated by this equation directly, and compared with the experimental data. Base on the equation of state, the other static thermophysical properties such as the enthalpy, entropy and heat capacity at constant pressure are evaluated by the fugacity coefficient and residual function methods respectively. The density calculated by Peng-Robinson equation is in highly agreement with the experimental data, and the enthalpy, entropy and heat capacity evaluated by such two different methods are consistent with each other. It could be concluded that the modified Peng-Robinson equation could be applicable to estimate the density of the molten salt system, and the Peng-Robinson equation is recommended to be as the fundamental to evaluate the enthalpy, entropy and heat capacity of the molten salt system.

  16. Heavy-metal extraction from sewage sludge using phosphorous-based salts: optimization process with Na2H2P2O7.

    PubMed

    Navarro-González, Milagros; Ortega-López, Vanesa; Lópéz-Fernández, Juana I; Amo-Salas, Mariano; González-Carcedo, Salvador

    2016-11-24

    Land application is one of the important disposal alternatives for sewage sludge, but availability of potential toxic metals often restricts its uses. Three phosphorous-based salts (Na2H2P2O7, K4P2O7, KH2PO4) were studied as potential metal extractants. The conclusions of the research were that greater extractive efficiency is achieved through a 30-min process of vertical shaking with disodium diacid pyrophosphate - Na2H2P2O7 - at a concentration of 0.2 M at pH 2. Alternatively, the optimized process with oscillating shaking equipment would require 60 min. In both cases the average of set of extracted metals is around 50%. A second extraction process with potassium pyrophosphate - K4P2O7 at pH 6 achieved the reduction of further total amounts of metal, upper 65% with respect to the initial content. In this way the sludge could be used in land applications, with restrictions on each soil, according to the limit values specified in the future regulations.

  17. Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4:Ybl+, Er3+ Nanocrystals at 0.54 µm Wavelength.

    PubMed

    Zhang, Meiling; Yin, Jiao; Jia, Zhixu; Song, Weiye; Wang, Xibin; Qin, Guanshi; Zhao, Dan; Qin, Weiping; Wang, Fei; Zhang, Daming

    2016-04-01

    Gain characteristics of polymer waveguide amplifiers based on NaYF4:Yb3+, Er3+ nanocrystals (NCs) at 0.54 µm wavelength were investigated through numerical simulations. NaYF4:18%Yb3+, 1 0%Er3+ NCs were doped into SU-8 2005 polymer matrix as the core of a polymer waveguide. The absorption spectrum and photoluminescence spectrum of the NCs were recorded and analyzed. The Judd-Ofelt parameters were achieved by means of Judd-Ofelt theory: Ω2 = 6.302 x 10(-20) cm2, Ω4 = 0.69 x 10(-20) cm2, Ω6 =7.572 x 10(-20) cm2. We simulated the gain characteristics of the waveguide amplifier at 0.54 µm wavelength by combining the atomic rate equations with power propaga- tion equations. The gain curves had the saturation effects. A maximum gain -4.3 dB for the 5 cm waveguide with the Er3+ concentration of ~7.5 x 1025 m-3 was obtained.

  18. GPU-based low-level trigger system for the standalone reconstruction of the ring-shaped hit patterns in the RICH Cherenkov detector of NA62 experiment

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-03-01

    This project aims to exploit the parallel computing power of a commercial Graphics Processing Unit (GPU) to implement fast pattern matching in the Ring Imaging Cherenkov (RICH) detector for the level 0 (L0) trigger of the NA62 experiment. In this approach, the ring-fitting algorithm is seedless, being fed with raw RICH data, with no previous information on the ring position from other detectors. Moreover, since the L0 trigger is provided with a more elaborated information than a simple multiplicity number, it results in a higher selection power. Two methods have been studied in order to reduce the data transfer latency from the readout boards of the detector to the GPU, i.e., the use of a dedicated NIC device driver with very low latency and a direct data transfer protocol from a custom FPGA-based NIC to the GPU. The performance of the system, developed through the FPGA approach, for multi-ring Cherenkov online reconstruction obtained during the NA62 physics runs is presented.

  19. Leakage current phenomena in Mn-doped Bi(Na,K)TiO3-based ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Walenza-Slabe, J.; Gibbons, B. J.

    2016-08-01

    Mn-doped 80(Bi0.5Na0.5)TiO3-20(Bi0.5K0.5)TiO3 thin films were fabricated by chemical solution deposition on Pt/TiO2/SiO2/Si substrates. Steady state and time-dependent leakage current were investigated from room temperature to 180 °C. Undoped and low-doped films showed space-charge-limited current (SCLC) at high temperatures. The electric field marking the transition from Ohmic to trap-filling-limited current increased monotonically with Mn-doping. With 2 mol. % Mn, the current was Ohmic up to 430 kV/cm, even at 180 °C. Modeling of the SCLC showed that all films exhibited shallow trap levels and high trap concentrations. In the regime of steady state leakage, there were also observations of negative differential resistivity and positive temperature coefficient of resistivity near room temperature. Both of these phenomena were confined to relatively low temperatures (below ˜60 °C). Transient currents were observed in the time-dependent leakage data, which was measured out to several hundred seconds. In the undoped films, these were found to be a consequence of oxygen vacancy migration modulating the electronic conductivity. The mobility and thermal activation energy for oxygen vacancies was extracted as μion ≈ 1.7 × 10-12 cm2 V-1 s-1 and EA,ion ≈ 0.92 eV, respectively. The transient current displayed different characteristics in the 1 mol. % Mn-doped films which were not readily explained by oxygen vacancy migration.

  20. High frequency ultrasound measurements on a translucent thin bioglass, based on Si, Ca, Na: Study of the distribution of elastic modulus

    NASA Astrophysics Data System (ADS)

    Bachar, Ahmed; Nassar, Georges; Mercier, Cyrille; Bouchart, Franck; Follet, Claudine; Amrousse, Rachid; Kazan, Michel

    2013-11-01

    In this work, an ultrasonic high frequency focused sensor (100 MHz) has been used to study the variation of the elastic modulus of a thin bioglass element, based on Si, Ca, Na. In fact, physical functionalization of materials may play a role in defining the properties of interfaces of the surface depending of the physico-chemical characteristics of the materials used. The study is restricted to the characterization by an ultrasonic method of the elastic modulus profile of the bioglass element during the final phase of processing: before and after thermal treatment. The initial objective is to produce an ultrasonic map of the element under investigation, such as a substrate, prior to further tests involving adhesion of biological cells in order to try to understand the relationship between the distribution of the measured mechanical properties and the adhesion phenomenon.

  1. Performance and advantages of a soft-core based parallel architecture for energy peak detection in the calorimeter Level 0 trigger for the NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Barbanera, M.; Bizzarri, M.; Bonaiuto, V.; Ceccucci, A.; Checcucci, B.; De Simone, N.; Fantechi, R.; Federici, L.; Fucci, A.; Lupi, M.; Paoluzzi, G.; Papi, A.; Piccini, M.; Ryjov, V.; Salamon, A.; Salina, G.; Sargeni, F.; Venditti, S.

    2017-03-01

    The NA62 experiment at CERN SPS has started its data-taking. Its aim is to measure the branching ratio of the ultra-rare decay K+ → π+ν ν̅ . In this context, rejecting the background is a crucial topic. One of the main background to the measurement is represented by the K+ → π+π0 decay. In the 1-8.5 mrad decay region this background is rejected by the calorimetric trigger processor (Cal-L0). In this work we present the performance of a soft-core based parallel architecture built on FPGAs for the energy peak reconstruction as an alternative to an implementation completely founded on VHDL language.

  2. Inverted electro-mechanical behaviour induced by the irreversible domain configuration transformation in (K,Na)NbO3-based ceramics

    PubMed Central

    Huan, Yu; Wang, Xiaohui; Koruza, Jurij; Wang, Ke; Webber, Kyle G.; Hao, Yanan; Li, Longtu

    2016-01-01

    Miniaturization of domains to the nanometer scale has been previously reported in many piezoelectrics with two-phase coexistence. Despite the observation of nanoscale domain configuration near the polymorphic phase transition (PPT) regionin virgin (K0.5Na0.5)NbO3 (KNN) based ceramics, it remains unclear how this domain state responds to external loads and influences the macroscopic electro-mechanical properties. To this end, the electric-field-induced and stress-induced strain curves of KNN-based ceramics over a wide compositional range across PPT were characterized. It was found that the coercive field of the virgin samples was highest in PPT region, which was related to the inhibited domain wall motion due to the presence of nanodomains. However, the coercive field was found to be the lowest in the PPT region after electrical poling. This was related to the irreversible transformation of the nanodomains into micron-sized domains during the poling process. With the similar micron-sized domain configuration for all poled ceramics, the domains in the PPT region move more easily due to the additional polarization vectors. The results demonstrate that the poling process can give rise to the irreversible domain configuration transformation and then account for the inverted macroscopic piezoelectricity in the PPT region of KNN-based ceramics. PMID:26915972

  3. Inverted electro-mechanical behaviour induced by the irreversible domain configuration transformation in (K,Na)NbO3-based ceramics

    NASA Astrophysics Data System (ADS)

    Huan, Yu; Wang, Xiaohui; Koruza, Jurij; Wang, Ke; Webber, Kyle G.; Hao, Yanan; Li, Longtu

    2016-02-01

    Miniaturization of domains to the nanometer scale has been previously reported in many piezoelectrics with two-phase coexistence. Despite the observation of nanoscale domain configuration near the polymorphic phase transition (PPT) regionin virgin (K0.5Na0.5)NbO3 (KNN) based ceramics, it remains unclear how this domain state responds to external loads and influences the macroscopic electro-mechanical properties. To this end, the electric-field-induced and stress-induced strain curves of KNN-based ceramics over a wide compositional range across PPT were characterized. It was found that the coercive field of the virgin samples was highest in PPT region, which was related to the inhibited domain wall motion due to the presence of nanodomains. However, the coercive field was found to be the lowest in the PPT region after electrical poling. This was related to the irreversible transformation of the nanodomains into micron-sized domains during the poling process. With the similar micron-sized domain configuration for all poled ceramics, the domains in the PPT region move more easily due to the additional polarization vectors. The results demonstrate that the poling process can give rise to the irreversible domain configuration transformation and then account for the inverted macroscopic piezoelectricity in the PPT region of KNN-based ceramics.

  4. Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy.

    PubMed

    Cortez, Juliana; Pasquini, Celio

    2013-02-05

    The ring-oven technique, originally applied for classical qualitative analysis in the years 1950s to 1970s, is revisited to be used in a simple though highly efficient and green procedure for analyte preconcentration prior to its determination by the microanalytical techniques presently available. The proposed preconcentration technique is based on the dropwise delivery of a small volume of sample to a filter paper substrate, assisted by a flow-injection-like system. The filter paper is maintained in a small circular heated oven (the ring oven). Drops of the sample solution diffuse by capillarity from the center to a circular area of the paper substrate. After the total sample volume has been delivered, a ring with a sharp (c.a. 350 μm) circular contour, of about 2.0 cm diameter, is formed on the paper to contain most of the analytes originally present in the sample volume. Preconcentration coefficients of the analyte can reach 250-fold (on a m/m basis) for a sample volume as small as 600 μL. The proposed system and procedure have been evaluated to concentrate Na, Fe, and Cu in fuel ethanol, followed by simultaneous direct determination of these species in the ring contour, employing the microanalytical technique of laser induced breakdown spectroscopy (LIBS). Detection limits of 0.7, 0.4, and 0.3 μg mL(-1) and mean recoveries of (109 ± 13)%, (92 ± 18)%, and (98 ± 12)%, for Na, Fe, and Cu, respectively, were obtained in fuel ethanol. It is possible to anticipate the application of the technique, coupled to modern microanalytical and multianalyte techniques, to several analytical problems requiring analyte preconcentration and/or sample stabilization.

  5. Essential role of the electroneutral Na+-HCO3- cotransporter NBCn1 in murine duodenal acid-base balance and colonic mucus layer build-up in vivo.

    PubMed

    Singh, Anurag Kumar; Xia, Weiliang; Riederer, Brigitte; Juric, Marina; Li, Junhua; Zheng, Wen; Cinar, Ayhan; Xiao, Fang; Bachmann, Oliver; Song, Penghong; Praetorius, Jeppe; Aalkjaer, Christian; Seidler, Ursula

    2013-04-15

    Duodenal epithelial cells need efficient defence strategies during gastric acidification of the lumen, while colonic mucosa counteracts damage by pathogens by building up a bacteria-free adherent mucus layer. Transport of HCO3(-) is considered crucial for duodenal defence against acid as well as for mucus release and expansion, but the transport pathways involved are incompletely understood. This study investigated the significance of the electroneutral Na(+)-HCO3(-) cotransporter NBCn1 for duodenal defence against acid and colonic mucus release. NBCn1 was localized to the basolateral membrane of duodenal villous enterocytes and of colonic crypt cells, with predominant expression in goblet cells. Duodenal villous enterocyte intracellular pH was studied before and during a luminal acid load by two-photon microscopy in exteriorized, vascularly perfused, indicator (SNARF-1 AM)-loaded duodenum of isoflurane-anaesthetized, systemic acid-base-controlled mice. Acid-induced HCO3(-) secretion was measured in vivo by single-pass perfusion and pH-stat titration. After a luminal acid load, NBCn1-deficient duodenocytes were unable to recover rapidly from intracellular acidification and could not respond adequately with protective HCO3(-) secretion. In the colon, build-up of the mucus layer was delayed, and a decreased thickness of the adherent mucus layer was observed, suggesting that basolateral HCO3(-) uptake is essential for optimal release of mucus. The electroneutral Na(+)-HCO3(-) cotransporter NBCn1 displays a differential cellular distribution in the murine intestine and is essential for HCO3(-)-dependent mucosal protective functions, such as recovery of intracellular pH and HCO3(-) secretion in the duodenum and secretion of mucus in the colon.

  6. Glycemic Effectiveness of Metformin-Based Dual-Combination Therapies with Sulphonylurea, Pioglitazone, or DPP4-Inhibitor in Drug-Naïve Korean Type 2 Diabetic Patients

    PubMed Central

    Lee, Young Ki; Song, Sun Ok; Kim, Kwang Joon; Cho, Yongin; Choi, Younjeong; Yun, Yujung; Kang, Eun-Seok; Cha, Bong Soo; Lee, Hyun Chul

    2013-01-01

    Background This study compared the glycemic effectiveness of three metformin-based dual therapies according to baseline hemoglobin A1c (HbA1c) to evaluate the appropriateness of the guideline enforced by the National Health Insurance Corporation of Korea for initial medication of type 2 diabetes (T2D). Methods This prospective observational study was conducted across 24 weeks for drug-naïve Korean T2D patients with HbA1c greater than 7.5%. Subjects were first divided into three groups based on the agent combined with metformin (group 1, gliclazide-modified release or glimepiride; group 2, pioglitazone; group 3, sitagliptin). Subjects were also classified into three categories according to baseline HbA1c (category I, 7.5%≤HbA1c<9.0%; category II, 9.0%≤HbA1c<11.0%; category III, 11.0%≤HbA1c). Results Among 116 subjects, 99 subjects completed the study, with 88 subjects maintaining the initial medication. While each of the metformin-based dual therapies showed a significant decrease in HbA1c (group 1, 8.9% to 6.4%; group 2, 9.0% to 6.6%; group 3, 9.3% to 6.3%; P<0.001 for each), there was no significant difference in the magnitude of HbA1c change among the groups. While the three HbA1c categories showed significantly different baseline HbA1c levels (8.2% vs. 9.9% vs. 11.9%; P<0.001), endpoint HbA1c was not different (6.4% vs. 6.6% vs. 6.0%; P=0.051). Conclusion The three dual therapies using a combination of metformin and either sulfonylurea, pioglitazone, or sitagliptin showed similar glycemic effectiveness among drug-naïve Korean T2D patients. In addition, these regimens were similarly effective across a wide range of baseline HbA1c levels. PMID:24404518

  7. Characterization of Na(+) transport to gain insight into the mechanism of acid-base and ion regulation in white sturgeon (Acipenser transmontanus).

    PubMed

    Shartau, Ryan B; Brix, Kevin V; Brauner, Colin J

    2017-02-01

    Freshwater fish actively take up ions via specific transporters to counter diffusive losses to their hypotonic environment. While much is known about the specific mechanisms employed by teleosts, almost nothing is known about the basal fishes, such as white sturgeon (Acipenser transmontanus) which may offer insight into the evolution of osmo- and ionoregulation in fishes. We investigated Na(+) uptake in juvenile white sturgeon in the presence and absence of transporter inhibitors. We found that sturgeon acclimated to 100μmoll(-1) Na(+) have Na(+) uptake kinetics typical of teleosts and that a Na(+)/H(+) exchanger (NHE) is the predominant transporter for Na(+) uptake. White sturgeon are tolerant to hypercarbia-induced respiratory acidoses and recover blood pH (pHe) at 1.5kPa PCO2 but not at higher PCO2 (6kPa PCO2) where they preferentially regulate intracellular pH (pHi). It was hypothesized that during exposure to hypercarbia Na(+) uptake would increase at CO2 tensions at which fish were capable of pHe regulation but decrease at higher tensions when they were preferentially regulating pHi. We found that Na(+) uptake did not increase at 1.5kPa PCO2, but at 6kPa PCO2 Na(+) uptake was reduced by 95% while low water pH equivalent to 6kPa PCO2 reduced Na(+) uptake by 71%. Lastly, we measured net acid flux during hypercarbia, which indicates that net acid flux is not associated with Na(+) uptake. These findings indicate Na(+) uptake in sturgeon is not different from freshwater teleosts but is sensitive to hypercarbia and is not associated with pHe compensation during hypercarbia.

  8. NA22 Model Cities Project - LL244T An Intelligent Transportation System-Based Radiation Alert and Detection System

    SciTech Connect

    Peglow, S

    2004-02-24

    The purpose of this project was twofold: first, provide an understanding of the technical foundation and planning required for deployment of Intelligent Transportation System (ITS)-based system architectures for the protection of New York City from a terrorist attack using a vehicle-deployed nuclear device; second, work with stakeholders to develop mutual understanding of the technologies and tactics required for threat detection/identification and establish guidelines for designing operational systems and procedures. During the course of this project we interviewed and coordinated analysis with people from the New Jersey State Attorney General's office, the New Jersey State Police, the Port Authority of New York/New Jersey, the Counterterrorism Division of the New York City Police Department, the New Jersey Transit Authority, the State of New Jersey Department of Transportation, TRANSCOM and a number of contractors involved with state and federal intelligent transportation development and implementation. The basic system architecture is shown in the figure below. In an actual system deployment, radiation sensors would be co-located with existing ITS elements and the data will be sent to the Traffic Operations Center. A key element of successful system operation is the integration of vehicle data, such as license plate, EZ pass ID, vehicle type/color and radiation signature. A threat data base can also be implemented and utilized in cases where there is a suspect vehicle identified from other intelligence sources or a mobile detector system. Another key aspect of an operational architecture is the procedures used to verify the threat and plan interdiction. This was a major focus of our work and discussed later in detail. In support of the operational analysis, we developed a detailed traffic simulation model that is described extensively in the body of the report.

  9. [Suitability of spatial pattern of camping sites in Langxiang Natural Reserve, Northeast Chi- na, based on GIS technology].

    PubMed

    Yuan, Wei; Zhang, Jie; Tan Ji-qiang; Zhou, Bo; Kang, Rui-cun; Wang, Ai-hong; Liu, Wei; Zhang, Lu

    2015-09-01

    It is an effective way for natural reserves to enhance self-supportive ability and realize sustainable development by developing ecotourism. Taking the experimental zone of Langxiang Natural Reserve in Heilongjiang Province as research object, the forest sub-compartment as research unit, and spatial pattern of environmental suitability of camping sites as research content, an evaluation index system taking natural environment, geographical security, infrastructure and traffic as project levels was built. Delphi and AHP methods were used to determine index weights. A spatial distribution map of camping environmental suitability in Langxiang Natural Reserve was drawn using the GIS spatial information processing technology based on "3S" measurement and the survey data. The results showed that the highest score for quantification of environmental suitability was 90, while the lowest score was 78, and the average value was 83.66 in the 1067 forest sub-compartments for test. The area of forest sub-compartments which were suitable for camping was 1094.44 hm2, being 12.2% of the experimental zone. The forest sub-compartments which had high environmental suitability in the research area were distributed uniformly and centralized with low degree of fragmentation. It was suggested that the contiguous forest sub-compartments with high scores of environmental suitability could be integrated for camping tourism. Due to the high level of environmental suitability for camping, the experimental zone of Langxiang Natural Reserve is suitable for developing camping tourism. Based on "3S" technology, the land use conditions of ecotourism environment of a natural reserve could be evaluated quickly and quantitatively by mathematical model.

  10. Understanding the Size-Dependent Sodium Storage Properties of Na2C6O6-Based Organic Electrodes for Sodium-Ion Batteries.

    PubMed

    Wang, Yaqun; Ding, Yu; Pan, Lijia; Shi, Ye; Yue, Zhuanghao; Shi, Yi; Yu, Guihua

    2016-05-11

    Organic electroactive materials represent a new generation of sustainable energy storage technology due to their unique features including environmental benignity, material sustainability, and highly tailorable properties. Here a carbonyl-based organic salt Na2C6O6, sodium rhodizonate (SR) dibasic, is systematically investigated for high-performance sodium-ion batteries. A combination of structural control, electrochemical analysis, and computational simulation show that rational morphological control can lead to significantly improved sodium storage performance. A facile antisolvent method was developed to synthesize microbulk, microrod, and nanorod structured SRs, which exhibit strong size-dependent sodium ion storage properties. The SR nanorod exhibited the best performance to deliver a reversible capacity of ∼190 mA h g(-1) at 0.1 C with over 90% retention after 100 cycles. At a high rate of 10 C, 50% of the capacity can be obtained due to enhanced reaction kinetics, and such high electrochemical activity maintains even at 80 °C. These results demonstrate a generic design route toward high-performance organic-based electrode materials for beyond Li-ion batteries. Using such a biomass-derived organic electrode material enables access to sustainable energy storage devices with low cost, high electrochemical performance and thermal stability.

  11. Origin of discrepancy between electrical and mechanical anomalies in lead-free (K ,Na ) NbO3 -based ceramics

    NASA Astrophysics Data System (ADS)

    Mazuera, A. M.; Silva, P. S.; Rodrigues, A. D.; Pizani, P. S.; Romaguera-Barcelay, Y.; Venet, M.; Algueró, M.

    2016-11-01

    Ferroelectric polymorphic phase coexistence, associated with either the presence of a morphotropic phase boundary or a temperature-driven polymorphic phase transition, is currently acknowledged as the key to high piezoelectric activity and is searched when new perovskite materials are developed, like lead-free alternatives to state-of-the-art Pb (Zr ,Ti ) O3 . This requires characterization tools that allow phase coexistence and transitions to be readily identified, among which measurements of the temperature dependences of Young's modulus and mechanical losses by dynamical mechanical analysis stand out as a powerful technique to complement standard electrical characterizations. We report here the application of this technique to (K1 -xNax )NbO3-based materials, which are under extensive investigation as environmentally friendly high sensitivity piezoelectrics. The elastic anomalies associated with the different phase transitions are identified and are shown to be distinctively shifted in relation to the dielectric ones. The origin of this discrepancy is discussed with the help of temperature-dependent Raman spectroscopy and is proposed to be a characteristic of diffuse phase transitions.

  12. Arterial acid-base status during digestion and following vascular infusion of NaHCO(3) and HCl in the South American rattlesnake, Crotalus durissus.

    PubMed

    Arvedsen, Sine K; Andersen, Johnnie B; Zaar, Morten; Andrade, Denis; Abe, Augusto S; Wang, Tobias

    2005-12-01

    Digestion is associated with gastric secretion that leads to an alkalinisation of the blood, termed the "alkaline tide". Numerous studies on different reptiles and amphibians show that while plasma bicarbonate concentration ([HCO(3)(-)](pl)) increases substantially during digestion, arterial pH (pHa) remains virtually unchanged, due to a concurrent rise in arterial PCO(2) (PaCO(2)) caused by a relative hypoventilation. This has led to the suggestion that postprandial amphibians and reptiles regulate pHa rather than PaCO(2). Here we characterize blood gases in the South American rattlesnake (Crotalus durissus) during digestion and following systemic infusions of NaHCO(3) and HCl in fasting animals to induce a metabolic alkalosis or acidosis in fasting animals. The magnitude of these acid-base disturbances were similar in magnitude to that mediated by digestion and exercise. Plasma [HCO(3)(-)] increased from 18.4+/-1.5 to 23.7+/-1.0 mmol L(-1) during digestion and was accompanied by a respiratory compensation where PaCO(2) increased from 13.0+/-0.7 to 19.1+/-1.4 mm Hg at 24 h. As a result, pHa decreased slightly, but were significantly below fasting levels 36 h into digestion. Infusion of NaHCO(3) (7 mmol kg(-1)) resulted in a 10 mmol L(-1) increase in plasma [HCO(3)(-)] within 1 h and was accompanied by a rapid elevation of pHa (from 7.58+/-0.01 to 7.78+/-0.02). PaCO(2), however, did not change following HCO(3)(-) infusion, which indicates a lack of respiratory compensation. Following infusion of HCl (4 mmol kg(-1)), plasma pHa decreased by 0.07 units and [HCO(3)(-)](pl) was reduced by 4.6 mmol L(-1) within the first 3 h. PaCO(2), however, was not affected and there was no evidence for respiratory compensation. Our data show that digesting rattlesnakes exhibit respiratory compensations to the alkaline tide, whereas artificially induced metabolic acid-base disturbances of same magnitude remain uncompensated. It seems difficult to envision that the central and

  13. Na+ recirculation and isosmotic transport.

    PubMed

    Larsen, E H; Møbjerg, N

    2006-01-01

    The Na(+) recirculation theory for solute-coupled fluid absorption is an expansion of the local osmosis concept introduced by Curran and analyzed by Diamond & Bossert. Based on studies on small intestine the theory assumes that the observed recirculation of Na(+) serves regulation of the osmolarity of the absorbate. Mathematical modeling reproducing bioelectric and hydrosmotic properties of small intestine and proximal tubule, respectively, predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag, the residual hydraulic permeability in proximal tubule of AQP1 (-/-) mice, and the inverse relationship between hydraulic permeability and the concentration difference needed to reverse transepithelial water flow. The model reproduces the volume responses of cells and lateral intercellular space (lis) following replacement of luminal NaCl by sucrose as well as the linear dependence of volume absorption on luminal NaCl concentration. Analysis of solvent drag on Na(+) in tight junctions provides explanation for the surprisingly high metabolic efficiency of Na(+) reabsorption. The model predicts and explains low metabolic efficiency in diluted external baths. Hyperosmolarity of lis is governed by the hydraulic permeability of the apical plasma membrane and tight junction with 6-7 mOsm in small intestine and < or = 1 mOsm in proximal tubule. Truly isosmotic transport demands a Na(+) recirculation of 50-70% in small intestine but might be barely measurable in proximal tubule. The model fails to reproduce a certain type of observations: The reduced volume absorption at transepithelial osmotic equilibrium in AQP1 knockout mice, and the stimulated water absorption by gallbladder in diluted external solutions. Thus, it indicates cellular regulation of apical Na(+) uptake, which is not included in the mathematical treatment.

  14. Innovative Approach to Prevent Acid Drainage from Uranium Mill Tailings Based on the Application of Na-Ferrate (VI)

    SciTech Connect

    Fernandes, H.M.; Reinhart, D.; Lettie, L.; Franklin, M.R.; Fernandes, H.M.; Franklin, M.R.; Daly, L.J.

    2006-07-01

    The operation of uranium mining and milling plants gives rise to huge amounts of wastes from both mining and milling operations. When pyrite is present in these materials, the generation of acid drainage can take place and result in the contamination of underground and surface waters through the leaching of heavy metals and radionuclides. To solve this problem, many studies have been conducted to find cost-effective solutions to manage acid mine drainage; however, no adequate strategy to deal with sulfide-ric h wastes is currently available. Ferrate (VI) is a powerful oxidizing agent in aqueous media. Under acidic conditions, the redox potential of the Ferrate (VI) ion is the highest of any other oxidant used in wastewater treatment processes. The standard half cell reduction potential of ferrate (VI) has been determined as +2.20 V to + 0.72 V in acidic and basic solutions, respectively. Ferrate (VI) exhibits a multitude of advantageous properties, including higher reactivity and selectivity than traditional oxidant alternatives, as well as disinfectant, flocculating, and coagulant properties. Despite numerous beneficial properties in environmental applications, ferrate (VI) has remained commercially unavailable. Starting in 1953, different methods for producing a high purity, powdered ferrate (VI) product were developed. However, producing this dry, stabilized ferrate (VI) product required numerous process steps which led to excessive synthesis costs (over $20/lb) thereby preventing bulk industrial use. Recently a novel synthesis method for the production of a liquid ferrate (VI) based on hypochlorite oxidation of ferric ion in strongly alkaline solutions has been discovered (USPTO 6,790,428; September 14, 2004). This on-site synthesis process dramatically reduces manufacturing cost for the production of ferrate (VI) by utilizing common commodity feedstocks. This breakthrough means that for the first time ferrate (VI) can be an economical alternative to treating

  15. Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium.

    PubMed

    J, Balaji; M G, Sethuraman

    2017-03-22

    The study outlines the role of chitosan, a biopolymer on corrosion behavior of Hy/nano-TiO2 based sol-gel coating over aluminum metal. In this study organic-inorganic hybrid sols were synthesized through hydrolysis and condensation of 3-glycidoxypropyltrimethoxy silane (GPTMS), tetraethoxysilane (TEOS) and titanium (IV) isopropoxide (TIP) in acidic solution. Chitosan was doped into sol-gel matrix and self-assembled over aluminum substrate. The resultant chitosan-doped-Hy/nano-TiO2 sol-gel coating was characterized by Fourier Transform Infrared (FT-IR) spectra, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Energy-Dispersive X-ray Spectroscopy (EDX) analyses. The as-tailored aluminum substrate was evaluated for corrosion resistance in neutral medium. The protection ability of these coatings was evaluated by electrochemical impedance studies (EIS) and potentiodynamic polarization (PP) measurements in 3.5% NaCl medium. The EIS and PP results showed that chitosan-doped- Hy/nano-TiO2 sol-gel coating exhibited better protection from corrosion than the undoped Hy/TiO2 nanocomposite coating.

  16. Naïve Bayes QSDR classification based on spiral-graph Shannon entropies for protein biomarkers in human colon cancer.

    PubMed

    Aguiar-Pulido, Vanessa; Munteanu, Cristian R; Seoane, José A; Fernández-Blanco, Enrique; Pérez-Montoto, Lázaro G; González-Díaz, Humberto; Dorado, Julián

    2012-06-01

    Fast cancer diagnosis represents a real necessity in applied medicine due to the importance of this disease. Thus, theoretical models can help as prediction tools. Graph theory representation is one option because it permits us to numerically describe any real system such as the protein macromolecules by transforming real properties into molecular graph topological indices. This study proposes a new classification model for proteins linked with human colon cancer by using spiral graph topological indices of protein amino acid sequences. The best quantitative structure-disease relationship model is based on eleven Shannon entropy indices. It was obtained with the Naïve Bayes method and shows excellent predictive ability (90.92%) for new proteins linked with this type of cancer. The statistical analysis confirms that this model allows diagnosing the absence of human colon cancer obtaining an area under receiver operating characteristic of 0.91. The methodology presented can be used for any type of sequential information such as any protein and nucleic acid sequence.

  17. Solubility and modeling acid-base properties of adrenaline in NaCl aqueous solutions at different ionic strengths and temperatures.

    PubMed

    Bretti, Clemente; Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Vianelli, Giuseppina

    2015-10-12

    Solubility and acid-base properties of adrenaline were studied in NaCl aqueous solutions at different ionic strengths (0

  18. Increasing the impact of medical image computing using community-based open-access hackathons: The NA-MIC and 3D Slicer experience.

    PubMed

    Kapur, Tina; Pieper, Steve; Fedorov, Andriy; Fillion-Robin, J-C; Halle, Michael; O'Donnell, Lauren; Lasso, Andras; Ungi, Tamas; Pinter, Csaba; Finet, Julien; Pujol, Sonia; Jagadeesan, Jayender; Tokuda, Junichi; Norton, Isaiah; Estepar, Raul San Jose; Gering, David; Aerts, Hugo J W L; Jakab, Marianna; Hata, Nobuhiko; Ibanez, Luiz; Blezek, Daniel; Miller, Jim; Aylward, Stephen; Grimson, W Eric L; Fichtinger, Gabor; Wells, William M; Lorensen, William E; Schroeder, Will; Kikinis, Ron

    2016-10-01

    The National Alliance for Medical Image Computing (NA-MIC) was launched in 2004 with the goal of investigating and developing an open source software infrastructure for the extraction of information and knowledge from medical images using computational methods. Several leading research and engineering groups participated in this effort that was funded by the US National Institutes of Health through a variety of infrastructure grants. This effort transformed 3D Slicer from an internal, Boston-based, academic research software application into a professionally maintained, robust, open source platform with an international leadership and developer and user communities. Critical improvements to the widely used underlying open source libraries and tools-VTK, ITK, CMake, CDash, DCMTK-were an additional consequence of this effort. This project has contributed to close to a thousand peer-reviewed publications and a growing portfolio of US and international funded efforts expanding the use of these tools in new medical computing applications every year. In this editorial, we discuss what we believe are gaps in the way medical image computing is pursued today; how a well-executed research platform can enable discovery, innovation and reproducible science ("Open Science"); and how our quest to build such a software platform has evolved into a productive and rewarding social engineering exercise in building an open-access community with a shared vision.

  19. Mechanism of Na2SO4-induced corrosion of molybdenum containing nickel-base superalloys at high temperatures. I - Corrosion in atmospheres containing O2 only. II - Corrosion in O2 + SO2 atmospheres

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1986-01-01

    Kinetics of the Na2SO4-induced corrosion of the molybdenum-containing nickel-base superalloys, B-1900 and Udimet 700, coated with Na2MoO4, has been studied in oxygen atmosphere at temperatures ranging from 750 to 950 C. Because the gas turbine atmosphere always contains some SO2 and SO3, the effect of atmospheric SO2 content on corrosion of Udimet-700 has also been studied. It was found that in the O2 atmosphere the melt in the catastrophic corrosion phase consists of Na2MoO4 plus MoO3, with the onset of the catastrophic corrosion coinciding with the appearance of MoO3. In the presence of low levels of atmospheric SO2 (below 0.24 percent), the melt during catastrophic corrosion contains, in addition to Na2MoO4 and MoO3, some quantities of Na2SO4. At the levels of SO2 above 1 percent, no catastrophic corrosion was observed. At these SO2 levels, internal sulfidation appears to be the primary mode of degradation.

  20. Mechanism of Na2SO4-induced corrosion of molybdenum containing nickel-base superalloys at high temperatures. I. Corrosion in atmospheres containing O2 only. II. Corrosion in O2 + SO2 atmospheres

    SciTech Connect

    Misra, A.K.

    1986-05-01

    Kinetics of the Na2SO4-induced corrosion of the molybdenum-containing nickel-base superalloys, B-1900 and Udimet 700, coated with Na2MoO4, has been studied in oxygen atmosphere at temperatures ranging from 750 to 950 C. Because the gas turbine atmosphere always contains some SO2 and SO3, the effect of atmospheric SO2 content on corrosion of Udimet-700 has also been studied. It was found that in the O2 atmosphere the melt in the catastrophic corrosion phase consists of Na2MoO4 plus MoO3, with the onset of the catastrophic corrosion coinciding with the appearance of MoO3. In the presence of low levels of atmospheric SO2 (below 0.24 percent), the melt during catastrophic corrosion contains, in addition to Na2MoO4 and MoO3, some quantities of Na2SO4. At the levels of SO2 above 1 percent, no catastrophic corrosion was observed. At these SO2 levels, internal sulfidation appears to be the primary mode of degradation. 40 references.

  1. Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos

    PubMed Central

    2013-01-01

    Background Regulation of pH homeostasis is a central feature of all animals to cope with acid–base disturbances caused by respiratory CO2. Although a large body of knowledge is available for vertebrate and mammalian pH regulatory systems, the mechanisms of pH regulation in marine invertebrates remain largely unexplored. Results We used squid (Sepioteuthis lessoniana), which are known as powerful acid–base regulators to investigate the pH regulatory machinery with a special focus on proton secretion pathways during environmental hypercapnia. We cloned a Rhesus protein (slRhP), V-type H+-ATPase (slVHA) and the Na+/H+ exchanger 3 (slNHE3) from S. lessoniana, which are hypothesized to represent key players in proton secretion pathways among different animal taxa. Specifically designed antibodies for S. lessoniana demonstrated the sub-cellular localization of NKA, VHA (basolateral) and NHE3 (apical) in epidermal ionocytes of early life stages. Gene expression analyses demonstrated that slNHE3, slVHA and slRhP are up regulated in response to environmental hypercapnia (pH 7.31; 0.46 kPa pCO2) in body and yolk tissues compared to control conditions (pH 8.1; 0.045 kPa pCO2). This observation is supported by H+ selective electrode measurements, which detected increased proton gradients in CO2 treated embryos. This compensatory proton secretion is EIPA sensitive and thus confirms the central role of NHE based proton secretion in cephalopods. Conclusion The present work shows that in convergence to teleosts and mammalian pH regulatory systems, cephalopod early life stages have evolved a unique acid–base regulatory machinery located in epidermal ionocytes. Using cephalopod molluscs as an invertebrate model this work provides important insights regarding the unifying evolutionary principles of pH regulation in different animal taxa that enables them to cope with CO2 induced acid–base disturbances. PMID:23988184

  2. Assessment of Impact of the Rheological Parameters Change on Sensitivity of the Asphalt Strain Based on the Test Results / Ocena Wpływu Zmiany Parametrów Reologicznych Na Wrażliwość Deformacji Mieszanek Mineralno - Asfaltowych Na Podstawie Wyników Badań

    NASA Astrophysics Data System (ADS)

    Kurpiel, Artur; Wysokowski, Adam

    2015-03-01

    The creep test under the static loading, that allows to determine rheological properties of asphalt based on the creep curve, is the most effective test nowadays. Applied loads are non-destructive and allow to observe the course of the strain after the test load. The test can be carried out on compressing, shearing, bending as well as on triaxial test, that depends on the applied apparatus implementing different intensity [1, 2, 3, 4, 5, 6]. Based on the creep test, the stress of different properties can be specified. Among them there are valuable rheological properties based on selected viscoelascity models [1]. The properties of the viscoelascity models are relevant indexes depicting resistance to deformation. They can be used to forecast the wheel-truck in the accepted rheological model [1]. In this article it is shown the impact of different rheological properties of the viscoelacity model on the wheel-truck as well as the impact of different properties on shape and the course of the creep curve. The asphalt mixtures presented in this article are characterized by variable rheological properties. It is therefore difficult to determine which property mostly affects the size of the strain. However, the authors of this article attempted to analyse the change of the asphalt strain value of the different variables in particular rheological model, called Bürgers's model. Badanie pełzania pod obciążeniem statycznym jest obecnie najbardziej efektywnym badaniem pozwalającym na określenie reologicznych parametrów mieszanek mineralno - asfaltowych na podstawie krzywej pełzania. Stosowane obciążenia mają poziom nieniszczący i pozwalają na obserwację przebiegu odkształceń w czasie również po odciążeniu. Badanie może być realizowane przy ściskaniu, ścinaniu, rozciąganiu i zginaniu, a także w zakresie trójosiowym, w zależności od stosowanego aparatu realizującego zadany schemat naprężeń [1, 2, 3, 4, 5, 6]. Na podstawie badania pełzania można

  3. Application of accelerated carbonation with a combination of Na2CO3 and CO2 in cement-based solidification/stabilization of heavy metal-bearing sediment.

    PubMed

    Chen, Quanyuan; Ke, Yujuan; Zhang, Lina; Tyrer, Mark; Hills, Colin D; Xue, Gang

    2009-07-15

    The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO(2) as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1:1. The concentrations of mercury and other heavy metals in the leachates were below 0.10mg/L and 5mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na(2)CO(3) and CO(2) may practically apply to cement-based s/s of heavy metal-bearing sediment.

  4. Structure and magnetic properties of the spin-1/2-based honeycomb NaNi2BiO(6-δ) and its hydrate NaNi2BiO(6-δ)·1.7H2O.

    PubMed

    Seibel, Elizabeth M; Roudebush, John H; Ali, Mazhar N; Ross, K A; Cava, R J

    2014-10-20

    We present the structure and magnetic properties of the honeycomb anhydrate NaNi2BiO6-δ and its monolayer hydrate NaNi2BiO6-δ·1.7H2O, synthesized by deintercalation of the layered α-NaFeO2-type honeycomb compound Na3Ni2BiO6. The anhydrate adopts ABAB-type oxygen packing and a one-layer hexagonal unit cell, whereas the hydrate adopts an oxygen packing sequence based on a three-layer rhombohedral subcell. The metal-oxide layer separations are 5.7 Å in the anhydrate and 7.1 Å in the hydrate, making the hydrate a quasi 2-D honeycomb system. The compounds were characterized through single crystal diffraction, powder X-ray diffraction, thermogravimetric analysis, and elemental analysis. Temperature-dependent magnetic susceptibility measurements show both to have negative Weiss temperatures (-18.5 and -14.6 K, respectively) and similar magnetic moments (2.21 and 2.26 μB/Ni, respectively), though the field-dependent magnetization and heat capacity data suggest subtle differences in their magnetic behavior. The magnetic moments per Ni are relatively high, which we suggest is due to the presence of a mixture of Ni(2+) and Ni(3+) caused by oxygen vacancies.

  5. Fabrication and evaluation of chitosan/NaYF4:Yb(3+)/Tm(3+) upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets.

    PubMed

    Yan, Huiqiong; Chen, Xiuqiong; Shi, Jia; Shi, Zaifeng; Sun, Wei; Lin, Qiang; Wang, Xianghui; Dai, Zihao

    2017-02-01

    The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF4:Yb(3+)/Tm(3+) UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF4:Yb(3+)/Tm(3+) composite beads (CS/NaYF4:Yb(3+)/Tm(3+) CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF4:Yb(3+)/Tm(3+) UCNPs with an average size of 20nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF4:Yb(3+)/Tm(3+) UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF4:Yb(3+)/Tm(3+) CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance.

  6. Revisiting the hydration structure of aqueous Na().

    PubMed

    Galib, M; Baer, M D; Skinner, L B; Mundy, C J; Huthwelker, T; Schenter, G K; Benmore, C J; Govind, N; Fulton, J L

    2017-02-28

    A combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na(+). The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å(-1) while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å(-1). Both provide an accurate measure of the shape and position of the first peak in the Na-O pair distribution function, gNaO(r). The measured Na-O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Å (EXAFS) are in excellent agreement. These measurements show a much shorter Na-O distance than generally reported in the experimental literature (Na-Oavg ∼ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na-O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na-O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (-D3 and -D2) significantly worsens the agreement with experiment by further increasing the Na-O distance by 0.07 Å. In contrast, the use of a classical Na-O Lennard-Jones potential with SPC/E water accurately predicts the Na-O distance as 2.39 Å although the Na-O peak is over-structured with respect to experiment.

  7. Synthesis of Graphene Oxide-Based Sulfonated Oligoanilines Coatings for Synergistically Enhanced Corrosion Protection in 3.5% NaCl Solution.

    PubMed

    Lu, Hao; Zhang, Shengtao; Li, Weihua; Cui, Yanan; Yang, Tao

    2017-02-01

    As a vital derivative of graphene, graphene oxide (GO) is widely applied in various fields, such as transparent electrodes, solar cells, energy storage, and corrosion protection due to the large specific surface area and abundant active sites. However, compared with graphene, the application of GO has been less reported in metal corrosion protection field. Therefore, in our study, 3-aminobenzenesulfonic acid was selected to combine with oligoanilines to fabricate the GO-based sulfonated oligoanilines coatings for marine corrosion protection application. The obtained composite coatings were covered on the surface of Q235 steel, which is one of the most important structural marine materials. Fourier transform infrared spectra were utilized to prove the existence of different bonds and functional groups of aniline trimer and sulfonated aniline trimer (SAT). Scanning electron microscopy was applied to verify the combination of GO and SAT. What's more, transmission electron microscopy was applied to observe the surface appearance of the obtained GO-SAT composite material. Besides, the results of electrochemical measurements performed in 3.5 wt % NaCl solution showed excellent corrosion-protective properties of GO/SAT-coated epoxy resin with a dosage of 10 mg of GO compared with the pure epoxy resin. Moreover, the enhancement of surface hydrophobic property, to some extent, is in favor of preventing the absorption of corrosive medium and water molecules revealed by contact angle test. The addition of GO can make the diffusion pathway of the corrosive medium longer and more circuitous, while SAT has displayed excellent solvent solubility while maintaining corrosion-protective properties similar to those of polyanilines so that the corrosion-protective properties of the modified coatings improve significantly due to the synergistically enhanced corrosion protection of GO and SAT.

  8. Studies on solid solutions based on layered honeycomb-ordered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn)

    SciTech Connect

    Berthelot, Romain; Schmidt, Whitney; Sleight, A.W.; Subramanian, M.A.

    2012-12-15

    Three complete solid solutions between the layered phases P2-Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) have been prepared by conventional solid state method and investigated through X-ray diffraction, magnetism and optical measurements. All compositions are characterized by a M{sup 2+}/X{sup 6+} honeycomb ordering within the slabs and crystallize in a hexagonal unit cell. However, a structural transition based on a different stacking is observed as nickel (space group P6{sub 3}/mcm) is substituted by zinc or cobalt (space group P6{sub 3}22). All compositions exhibit a paramagnetic Curie-Weiss behavior at high temperatures; and the magnetic moment values confirm the presence of Ni{sup 2+} and/or Co{sup 2+} cations. The low-temperature antiferromagnetic order of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. The color of the obtained compositions varies from pink, to light green and white when M=Co, Ni, Zn, respectively. - Graphical abstract: The comparison between the structure of Na{sub 2}Ni{sub 2}TeO{sub 6} (left) and Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Zn) (right) evidences the stacking difference with distinct atom sequences along the hexagonal c-axis. Highlights: Black-Right-Pointing-Pointer Solid solutions between lamellar phases Na{sub 2}M{sub 2}TeO{sub 6} (M=Co, Ni, Zn) are investigated. Black-Right-Pointing-Pointer A M{sup 2+}/X{sup 6+} honeycomb ordering characterized all the compositions. Black-Right-Pointing-Pointer A structural transition is shown when Ni is replaced by Co or Zn. Black-Right-Pointing-Pointer The low-temperature AFM ordering of Na{sub 2}Ni{sub 2}TeO{sub 6} and Na{sub 2}Co{sub 2}TeO{sub 6} is suppressed by zinc substitution. Black-Right-Pointing-Pointer Color changes from pink to light green and white when M=Co, Ni, Zn, respectively.

  9. Prediction of Setschenow constants of N-heteroaromatics in NaCl solutions based on the partial charge on the heterocyclic nitrogen atom.

    PubMed

    Yang, Bin; Li, Zhongjian; Lei, Lecheng; Sun, Feifei; Zhu, Jingke

    2016-02-01

    The solubilities of 19 different kinds of N-heteroaromatic compounds in aqueous solutions with different concentrations of NaCl were determined at 298.15 K with a UV-vis spectrophotometry and titration method, respectively. Setschenow constants, Ks, were employed to describe the solubility behavior, and it is found that the higher ring numbers of N-heteroaromatics gave rise to the lower values of Ks. Moreover, Ks showed a good linear relationship with the partial charge on the nitrogen atom (QN) for either QN > 0 or QN < 0 N-heteroaromatics. It further revealed that QN was well-matched in the prediction of salting-out effect for N-heteroaromatics compared to the conventional descriptors such as molar volume (VH) and the octanol-water partition coefficient (Kow). The heterocyclic N in N-heteroaromatics may interact with Na(+) ions in NaCl solution for QN < 0 and with Cl(-) for QN > 0.

  10. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes.

    PubMed

    Wang, Feng; Deng, Renren; Liu, Xiaogang

    2014-07-01

    Sodium gadolinium fluoride (NaGdF4) is an ideal host material for the incorporation of luminescent lanthanide ions because of its high photochemical stability, low vibrational energy and its ability to mediate energy exchanges between the lanthanide dopants. This protocol describes the detailed experimental procedure for synthesizing core-shell NaGdF4 nanoparticles that incorporate lanthanide ions into different layers for efficiently converting a single-wavelength, near-IR excitation into a tunable visible emission. These nanoparticles can then be used as luminescent probes in biological samples, in 3D displays, in solar energy conversion and in photodynamic therapy. The NaGdF4 nanoparticles are grown through co-precipitation in a binary solvent mixture of oleic acid and 1-octadecene. Doping by lanthanides with controlled compositions and concentrations can be achieved concomitantly with particle growth. The lanthanide-doped NaGdF4 nanoparticles then serve as seed crystals for subsequent epitaxial growth of shell layers comprising different lanthanide dopants. The entire procedure for the preparation and isolation of the core-shell nanoparticles comprising two epitaxial shell layers requires ∼15 h for completion.

  11. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals.

    PubMed

    Yin, Anxiang; Zhang, Yawen; Sun, Lingdong; Yan, Chunhua

    2010-06-01

    Monodisperse beta-NaYF4:Yb,Tm nanocrystals with controlled size (25-150 nm), shape (sphere, hexagonal prism, and hexagonal plate), and composition (Yb: 20-40%, Tm: 0.2-5%) were synthesized from the thermolysis of metal trifluoroacetates in hot surfactant solutions. The upconversion (UC) of near-infrared light (980 nm) to ultra-violet (360 nm), blue (450 and 475 nm), red (650 and 695 nm) and infrared (800 nm) light in the beta-NaYF4:Yb,Tm nanocrystals has been studied by UC spectroscopy. Both the total intensity of UC emissions and the relative intensities of emissions at different wavelengths have shown a strong dependence on different particle sizes and different Tm3+ and Yb3+ concentrations. As a result, different overall output colors of UC emissions can be achieved by altering sizes and Yb3+/Tm3+ doping concentrations of the beta-NaYF4:Yb,Tm nanocrystals. The intensity-power curves of a series of samples have proved that emissions at 360 and 450 nm can be ascribed to four-photon process (1D2 to 3H6 and 1D2 to 3H4, respectively), while emissions at 475 and 650 nm are three-photon processes (1G4 to 3H6 and 1G4 to 3H4, respectively) and emissions at 695 and 800 nm are two-photon ones (3F2 to 3H6 and 3F4 to 3H6, respectively). A UC saturation effect would occur under a certain excitation intensity of the 980 nm CW diode laser for the as-obtained beta-NaYF4:Yb,Tm nanocrystals, leading to the decrease of the slopes of the I-P curves. The results of our study also revealed that the successive transfer model instead of the cooperative sensitization model can be applied to explain the UC behaviors of the beta-NaYF4:Yb,Tm nanocrystals. Further, an unexpected stronger emissions of four-photon process at 360 and 450 nm for approximately 50 nm beta-NaYF4:Yb,Tm nanocrystals than those for the bigger (approximately 150 nm) nanocrystals was observed and explained in terms of the effects of crystallite size, surface-to-volume ratio and homogeneity of the doping cations.

  12. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4 : Yb,Tm nanocrystals

    NASA Astrophysics Data System (ADS)

    Yin, Anxiang; Zhang, Yawen; Sun, Lingdong; Yan, Chunhua

    2010-06-01

    Monodisperse β-NaYF4 : Yb,Tm nanocrystals with controlled size (25-150 nm), shape (sphere, hexagonal prism, and hexagonal plate), and composition (Yb: 20-40%, Tm: 0.2-5%) were synthesized from the thermolysis of metal trifluoroacetates in hot surfactant solutions. The upconversion (UC) of near-infrared light (980 nm) to ultra-violet (360 nm), blue (450 and 475 nm), red (650 and 695 nm) and infrared (800 nm) light in the β-NaYF4 : Yb,Tm nanocrystals has been studied by UC spectroscopy. Both the total intensity of UC emissions and the relative intensities of emissions at different wavelengths have shown a strong dependence on different particle sizes and different Tm3+ and Yb3+ concentrations. As a result, different overall output colors of UC emissions can be achieved by altering sizes and Yb3+/Tm3+ doping concentrations of the β-NaYF4 : Yb,Tm nanocrystals. The intensity-power curves of a series of samples have proved that emissions at 360 and 450 nm can be ascribed to four-photon process (1D2 to 3H6 and 1D2 to 3H4, respectively), while emissions at 475 and 650 nm are three-photon processes (1G4 to 3H6 and 1G4 to 3H4, respectively) and emissions at 695 and 800 nm are two-photon ones (3F2 to 3H6 and 3F4 to 3H6, respectively). A UC saturation effect would occur under a certain excitation intensity of the 980 nm CW diode laser for the as-obtained β-NaYF4 : Yb,Tm nanocrystals, leading to the decrease of the slopes of the I-P curves. The results of our study also revealed that the successive transfer model instead of the cooperative sensitization model can be applied to explain the UC behaviors of the β-NaYF4 : Yb,Tm nanocrystals. Further, an unexpected stronger emissions of four-photon process at 360 and 450 nm for ~50 nm β-NaYF4 : Yb,Tm nanocrystals than those for the bigger (~150 nm) nanocrystals was observed and explained in terms of the effects of crystallite size, surface-to-volume ratio and homogeneity of the doping cations.Monodisperse β-NaYF4 : Yb

  13. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage

    NASA Astrophysics Data System (ADS)

    Li, Guolong; Yang, Ze; Jiang, Yan; Zhang, Wuxing; Huang, Yunhui

    2016-03-01

    A hybrid aqueous rechargeable battery with Na3V2(PO4)3 as cathode and metal Zn as anode has been proposed. Na3V2(PO4)3 is co-incorporated by carbon and reduced graphene oxide. The battery delivers a capacity of 92 mAh g-1 at a current density of 50 mA g-1 with a high and flat operating voltage of 1.42 V. It exhibits a capacity of 60 mAh g-1 at a high current density of 2000 mA g-1, indicative of excellent rate capability. Such inexpensive and safe battery shows an energy density as high as 112 Wh kg-1, demonstrating that it is potential for future application in large-scale energy storage.

  14. Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods.

    PubMed

    Zhang, Jianguo; Wang, Shaozhen; Gao, Ni; Feng, Dexiang; Wang, Lun; Chen, Hongqi

    2015-10-15

    A new turn-on luminescence energy transfer (LET) system has been designed for the detection of prostate specific antigen (PSA, a cancer marker) that utilizes Mn(2+)-enhanced long wavelength luminescence NaYF4:Yb, Er upconversion nanorods as the donor and gold nanorods as the acceptor. The Mn(2+)-doped NaYF4:Yb,Er upconversion luminescence nanorods with an emission peak located in the red region were synthesized. The presence of Mn(2+) markedly increased the luminescence intensity over that of the NaYF4:Yb, Er upconversion nanomaterials (excited by a 980 nm continuous wavelength laser). The surfaces of Mn(2+)-doped NaYF4:Yb, Er upconversion nanorods were modified with poly(acrylic acid). Antibodies against prostate specific antigen were bound to the surface of the carboxyl-functionalized upconversion nanorods, which acted as the energy donor in this LET system. Gold nanorods with an absorption band at ~666 nm were synthesized by the seed growth method, acted as the energy acceptor. The emission band of the upconversion nanorods overlapped well with the absorption band of the gold nanorods. The luminescence was quenched because of the electrostatic interactions that shortened the distance between the donor (negatively charged) and the accepter (positively charged).When the PSA antigen was added into the system, the energy acceptor and the energy donors were separated because the binding affinity between PSA and anti-PSA was greater than the electrostatic interactions, and thereby the luminescence was recovered. The linear range of detecting PSA was from 0.1172 to 18.75 ng/mL (R=0.995), with a limit of detection for PSA as low as 0.1129 ng/mL. The method was successfully applied to the sensing of PSA in human serum samples.

  15. Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2 +-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods

    NASA Astrophysics Data System (ADS)

    Cheng, Keyi; Zhang, Jianguo; Zhang, Liping; Wang, Lun; Chen, Hongqi

    2017-01-01

    A highly sensitive luminescent bioassay for the detection of Salmonella typhimurium was fabricated using Mn2 +-doped NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) as the donor and gold nanorods (Au NRs) as the acceptor and utilizing an energy transfer (LET) system. Mn2 +-doped NaYF4:Yb,Tm UCNPs with a strong emission peak at 807 nm were obtained by changing the doped ion ratio. Carboxyl-terminated Mn2 +-doped NaYF4:Yb,Tm UCNPs were coupled with S. typhimurium aptamers, which were employed to capture and concentrate S. typhimurium. The electrostatic interactions shorten the distance between the negatively charged donor and the positively charged acceptor, which results in luminescence quenching. The added S. typhimurium leads to the restoration of luminescence due to the formation of UCNPs-aptamers-S. typhimurium, which repels the UCNPs-aptamers from the Au NRs. The LET system does not occur because of the nonexistence of the luminescence emission band of Mn2 +-doped NaYF4:Yb,Tm UCNPs, which had large spectral overlap with the absorption band of Au NRs. Under optimal conditions, the linear range of detecting S. typhimurium was 12 to 5 × 105 cfu/mL (R = 0.99). The limit of detection for S. typhimurium was as low as 11 cfu/mL in an aqueous buffer. The measurement of S. typhimurium in milk samples was satisfied in accordance with the plate-counting method, suggesting that the proposed method was of practical value in the application of food security.

  16. Na(+) doping induced changes in the reduction and charge transport characteristics of Al2O3-stabilized, CuO-based materials for CO2 capture.

    PubMed

    Imtiaz, Q; Abdala, P M; Kierzkowska, A M; van Beek, W; Schweiger, S; Rupp, J L M; Müller, C R

    2016-04-28

    Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are emerging CO2 capture technologies that could reduce appreciably the costs associated with the capture of CO2. In CLC and CLOU, the oxygen required to combust a hydrocarbon is provided by a solid oxygen carrier. Among the transition metal oxides typically considered for CLC and CLOU, copper oxide (CuO) stands out owing to its high oxygen carrying capacity, exothermic reduction reactions and fast reduction kinetics. However, the low Tammann (sintering) temperature of CuO is a serious drawback. In this context, it has been proposed to support CuO on high Tammann temperature and low cost alumina (Al2O3), thus, reducing the morphological changes occurring over multiple CLC or CLOU redox cycles and stabilizing, in turn, the high activity of CuO. However, in CuO-Al2O3 systems, phase stabilization and avoiding the formation of the CuAl2O4 spinel is key to obtaining a material with a high redox stability and activity. Here, we report a Na(+) doping strategy to phase stabilize Al2O3-supported CuO, yielding in turn an inexpensive material with a high redox stability and CO2 capture efficiency. We also demonstrate that doping CuO-Al2O3 with Na(+) improves the oxygen uncoupling characteristics and coke resistance of the oxygen carriers. Utilizing in situ and ex situ X-ray absorption spectroscopy (XAS), the local structure of Cu and the reduction pathways of CuO were determined as a function of the Na(+) content and cycle number. Finally, using 4-point conductivity measurements, we confirm that doping of Al2O3-supported CuO with Na(+) lowers the activation energy for charge transport explaining conclusively the improved redox characteristics of the new oxygen carriers developed.

  17. A novel Ni/Na - Containing inorganic-organic hybrid supramolecule based on polyoxometalate and EDTA with ultraviolet-visible light photochromism

    NASA Astrophysics Data System (ADS)

    Xiao, Han-Xi; Teng, Chun-Lin; Cai, Qing; Sun, Su-Qin; Cai, Tie-Jun; Deng, Qian

    2016-08-01

    A novel Ni/Na - containing inorganic-organic hybrid supramolecule {(PW12O40)·[Na2(NiH2EDTA·H2O)(H4EDTA)·2H2O]·2H2O·H3O}n (short for NiEDTA-PW12) has been successfully synthesized by solution method, and investigated by thermogravimetric-differential thermal analysis (TG-DTA), ultraviolet visible (UV-Vis) spectroscopy, cyclic voltammetry (CV), photoluminescence (PL), ultraviolet visible diffuse reflectance spectrum (UV-vis DRS) and single-crystal X-ray diffraction (XRD). NiEDTA-PW12 exhibits intriguing infinite supramolecular structure with Na+ ions as linker. Furthermore, NiEDTA-PW12 displays a fast-responsive reversible photochromism under ultraviolet or visible light. The photochromic property of NiEDTA-PW12 has been investigated by techniques of UV-vis DRS and PL, and the impact of the O2 on fading of the colored NiEDTA-PW12 has been investigated.

  18. Testing Na+ in blood

    PubMed Central

    Lava, Sebastiano A.G.; Bianchetti, Mario G.; Milani, Gregorio P.

    2017-01-01

    Abstract Both direct potentiometry and indirect potentiometry are currently used for Na+ testing in blood. These measurement techniques show good agreement as long as protein and lipid concentrations in blood remain normal. In severely ill patients, indirect potentiometry commonly leads to relevant errors in Na+ estimation: 25% of specimens show a disagreement between direct and indirect potentiometry, which is ≥4 mmol/L (mostly spuriously elevated Na+ level due to low circulating albumin concentration). There is a need for increased awareness of the poor performance of indirect potentiometry in some clinical settings.

  19. Europlanet NA2 Science Networking

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Szego, Karoly; Genzer, Maria; Schmidt, Walter; Krupp, Norbert; Lammer, Helmut; Kallio, Esa; Haukka, Harri

    2013-04-01

    Europlanet RI / NA2 Science Networking [1] focused on determining the major goals of current and future European planetary science, relating them to the Research Infrastructure that the Europlanet RI project [2] developed, and placing them in a more global context. NA2 also enhanced the ability of European planetary scientists to participate on the global scene with their own agenda-setting projects and ideas. The Networking Activity NA2 included five working groups, aimed at identifying key science issues and producing reference books on major science themes that will bridge the gap between the results of present and past missions and the scientific preparation of the future ones. Within the Europlanet RI project (2009-2012) the NA2 and NA2-WGs organized thematic workshops, an expert exchange program and training groups to improve the scientific impact of this Infrastructure. The principal tasks addressed by NA2 were: • Science activities in support to the optimal use of data from past and present space missions, involving the broad planetary science community beyond the "space club" • Science activities in support to the preparation of future planetary missions: Earth-based preparatory observations, laboratory studies, R&D on advanced instrumentation and exploration technologies for the future, theory and modeling etc. • Develop scientific activities, joint publications, dedicated meetings, tools and services, education activities, engaging the public and industries • Update science themes and addressing the two main scientific objectives • Prepare and support workshops of the International Space Science Institute (ISSI) in Bern and • Support Trans National Activities (TNAs), Joined Research Activities (JRAs) and the Integrated and Distributed Information Service (IDIS) of the Europlanet project These tasks were achieved by WG workshops organized by the NA2 working groups, by ISSI workshops and by an Expert Exchange Program. There were 17 official WG

  20. Bulk modulus of basic sodalite, Na{sub 8}[AlSiO{sub 4}]{sub 6}(OH){sub 2}.2H{sub 2}O, a possible zeolitic precursor in coal-fly-ash-based geopolymers

    SciTech Connect

    Oh, Jae Eun; Moon, Juhyuk; Mancio, Mauricio; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-01-15

    Synthetic basic sodalite, Na{sub 8}[AlSiO{sub 4}]{sub 6}(OH){sub 2}.2H{sub 2}O, cubic, P43n, (also known as hydroxysodalite hydrate) was prepared by the alkaline activation of amorphous aluminosilicate glass, obtained from the phase separation of Class F fly ash. The sample was subjected to a process similar to geopolymerization, using high concentrations of a NaOH solution at 90 {sup o}C for 24 hours. Basic sodalite was chosen as a representative analogue of the zeolite precursor existing in Na-based Class F fly ash geopolymers. To determine its bulk modulus, high-pressure synchrotron X-ray powder diffraction was applied using a diamond anvil cell (DAC) up to a pressure of 4.5 GPa. A curve-fit with a truncated third-order Birch-Murnaghan equation of state with a fixed K'{sub o} = 4 to pressure-normalized volume data yielded the isothermal bulk modulus, K{sub o} = 43 {+-} 4 GPa, indicating that basic sodalite is more compressible than sodalite, possibly due to a difference in interactions between the framework host and the guest molecules.

  1. Pharmacological modulation of human cardiac Na+ channels.

    PubMed

    Krafte, D S; Davison, K; Dugrenier, N; Estep, K; Josef, K; Barchi, R L; Kallen, R G; Silver, P J; Ezrin, A M

    1994-02-15

    Pharmacological modulation of human sodium current was examined in Xenopus oocytes expressing human heart Na+ channels. Na+ currents activated near -50 mV with maximum current amplitudes observed at -20 mV. Steady-state inactivation was characterized by a V1/2 value of -57 +/- 0.5 mV and a slope factor (k) of 7.3 +/- 0.3 mV. Sodium currents were blocked by tetrodotoxin with an IC50 value of 1.8 microM. These properties are consistent with those of Na+ channels expressed in mammalian myocardial cells. We have investigated the effects of several pharmacological agents which, with the exception of lidocaine, have not been characterized against cRNA-derived Na+ channels expressed in Xenopus oocytes. Lidocaine, quinidine and flecainide blocked resting Na+ channels with IC50 values of 521 microM, 198 microM, and 41 microM, respectively. Use-dependent block was also observed for all three agents, but concentrations necessary to induce block were higher than expected for quinidine and flecainide. This may reflect differences arising due to expression in the Xenopus oocyte system or could be a true difference in the interaction between human cardiac Na+ channels and these drugs compared to other mammalian Na+ channels. Importantly, however, this result would not have been predicted based upon previous studies of mammalian cardiac Na+ channels. The effects of DPI 201-106, RWJ 24517, and BDF 9148 were also tested and all three agents slowed and/or removed Na+ current inactivation, reduced peak current amplitudes, and induced use-dependent block. These data suggest that the alpha-subunit is the site of interaction between cardiac Na+ channels and Class I antiarrhythmic drugs as well as inactivation modifiers such as DPI 201-106.

  2. Crystal structure of a sodium, zinc and iron(III)-based non-stoichiometric phosphate with an alluaudite-like structure: Na1.67Zn1.67Fe1.33(PO4)3.

    PubMed

    Khmiyas, Jamal; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen

    2015-06-01

    The new title compound, disodium dizinc iron(III) tris-(phosphate), Na1.67Zn1.67Fe1.33(PO4)3, which belongs to the alluaudite family, has been synthesized by solid-state reactions. In this structure, all atoms are in general positions except for four, which are located on special positions of the C2/c space group. This structure is characterized by cation substitutional disorder at two sites, one situated on the special position 4e (2) and the other on the general position 8f. The 4e site is partially occupied by Na(+) [0.332 (3)], whereas the 8f site is entirely filled by a mixture of Fe and Zn. The full-occupancy sodium and zinc atoms are located at the Wyckoff positions on the inversion center 4a (-1) and on the twofold rotation axis 4e, respectively. Refinement of the occupancy ratios, bond-valence analysis and the electrical neutrality requirement of the structure lead to the given composition for the title compound. The three-dimensional framework of this structure consists of kinked chains of edge-sharing octa-hedra stacked parallel to [10-1]. The chains are formed by a succession of trimers based on [ZnO6] octa-hedra and the mixed-cation Fe(III)/Zn(II) [(Fe/Zn)O6] octa-hedra [Fe(III):Zn(III) ratio 0.668 (3)/0.332 (3)]. Continuous chains are held together by PO4 phosphate groups, forming polyhedral sheets perpendicular to [010]. The stacked sheets delimit two types of tunnels parallel to the c axis in which the sodium cations are located. Each Na(+) cation is coordinated by eight O atoms. The disorder of Na in the tunnel might presage ionic mobility for this material.

  3. Synthesis-driven, structure-dependent optical behavior in phase-tunable NaYF4:Yb,Er-based motifs and associated heterostructures

    DOE PAGES

    Liu, Haiqing; Han, Jinkyu; McBean, Coray; ...

    2017-01-03

    Understanding the key parameters necessary for generating uniform Er,Yb co-activated NaYF4 possessing various selected phases (i.e. cubic or hexagonal) represents an important chemical strategy towards tailoring optical behavior in these systems. In this paper, we report on a straightforward hydrothermal synthesis in which the separate effects of reaction temperature, reaction time, and precursor stoichiometry in the absence of any surfactant were independently investigated. Interestingly, the presence and the concentration of NH4OH appear to be the most critical determinants of the phase and morphology. For example, with NH4OH as an additive, we have observed the formation of novel hierarchical nanowire bundlesmore » which possess overall lengths of ~5 μm and widths of ~1.5 μm but are composed of constituent component sub-units of long, ultrathin (~5 nm) nanowires. These motifs have yet to be reported as distinctive morphological manifestations of fluoride materials. The optical properties of as-generated structures have also been carefully analyzed. Specifically, we have observed tunable, structure-dependent energy transfer behavior associated with the formation of a unique class of NaYF4–CdSe quantum dot (QD) heterostructures, incorporating zero-dimensional (0D), one-dimensional (1D), and three-dimensional (3D) NaYF4 structures. Our results have demonstrated the key roles of the intrinsic morphology-specific physical surface area and porosity as factors in governing the resulting opto-electronic behavior. Finally and specifically, the trend in energy transfer efficiency correlates well with the corresponding QD loading within these heterostructures, thereby implying that the efficiency of FRET appears to be directly affected by the amount of QDs immobilized onto the external surfaces of the underlying fluoride host materials.« less

  4. Lanthanide luminescent switches: modulation of the luminescence of bis-macrocyclic based Tb(III) conjugates in water by H+, Na+ and K+.

    PubMed

    Gunnlaugsson, Thorfinnur; Leonard, Joseph P

    2005-10-07

    The synthesis of four bis-macrocyclic conjugates made from the coupling of either diaza-15-crown-5 ethers (1 and 3) and diaza-18-crown-6 ethers (2 and 4) to either amide or carboxylate functionalized cyclen (1,4,7,10-tetraazacyclododecane), and their corresponding cationic Tb(III) complexes, Tb-1, Tb-2, and neutral complexes Tb-3 and Tb-4 are described. The effect on the ground, singlet excited states and the Tb(III) emission, was investigated either as a function of pH or the concentration of several Group I and II cations, upon excitation at 300 nm. The ground state and singlet excited states of the Tb(III) complexes were found to be modulated by ions such as H+, Na+ or K+, signifying the recognition of these ions by the crown ether receptors. In acidic media, below pH 4, the Tb(III) emission was highly pH sensitive, gradually increasing with large orders of magnitude of luminescence enhancements. For Tb-1 and Tb-2 complexes, the Tb(III) emission was also "switched on" in alkaline media above pH 8. At pH 7.4, the recognition of Na+ or K+ also gave rise to a significant change in the Tb(III) emission due to the modulation of the antenna-receptor moieties by these ions. For Tb-1 and Tb-3 the largest changes were seen for Na+, whereas for Tb-2 and Tb-4 the largest changes were seen for K+.

  5. Diagnosing, Optimizing and Designing Ni & Mn based Layered Oxides as Cathode Materials for Next Generation Li-ion Batteries and Na-ion Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Haodong

    The progressive advancements in communication and transportation has changed human daily life to a great extent. While important advancements in battery technology has come since its first demonstration, the high energy demands needed to electrify the automotive industry have not yet been met with the current technology. One considerable bottleneck is the cathode energy density, the Li-rich layered oxide compounds xLi2MnO3.(1-x)LiMO 2 (M= Ni, Mn, Co) (0.5= Co) (0.5=discharge capacities greater than 280 mAh g-1 (almost twice the practical capacity of LiCoO 2). In this work, neutron diffraction under operando battery cycling is developed to study the lithium and oxygen dynamics of Li-rich compounds that exhibits oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show movement of oxygen and lattice contractions during the high voltage plateau until the end of charge. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer and transition metal layer are related to the different charge and discharge characteristics. In the second part, a combination of multi-modality surface sensitive tools was applied in an attempt to obtain a complete picture to understand the role of NH4F and Al2O3 surface co-modification on Li-rich. The enhanced discharge capacity of the modified material can be primary assigned to three aspects: decreased irreversible oxygen loss, the activation of cathode material was facilitated with pre-activated Mn3+ on the surface, and stabilization of the Ni redox pair. These insights will provide guidance for the surface modification in high voltage cathode battery materials of the future. In the last part, the idea of Li-rich has transferred to the Na-ion battery cathode. A new O3 - Na0.78Li0.18Ni0.25Mn 0.583Ow is prepared as the cathode material for Na-ion batteries, delivering exceptionally high

  6. HIV-1 Antiretroviral Drug Resistance Mutations in Treatment Naïve and Experienced Panamanian Subjects: Impact on National Use of EFV-Based Schemes

    PubMed Central

    Mendoza, Yaxelis; Castillo Mewa, Juan; Martínez, Alexander A.; Zaldívar, Yamitzel; Sosa, Néstor; Arteaga, Griselda; Armién, Blas; Bautista, Christian T.; García-Morales, Claudia; Tapia-Trejo, Daniela; Ávila-Ríos, Santiago; Reyes-Terán, Gustavo; Bello, Gonzalo; Pascale, Juan M.

    2016-01-01

    The use of antiretroviral therapy in HIV infected subjects prevents AIDS-related illness and delayed occurrence of death. In Panama, rollout of ART started in 1999 and national coverage has reached 62.8% since then. The objective of this study was to determine the level and patterns of acquired drug resistance mutations of clinical relevance (ADR-CRM) and surveillance drug resistance mutations (SDRMs) from 717 HIV-1 pol gene sequences obtained from 467 ARV drug-experienced and 250 ARV drug-naïve HIV-1 subtypes B infected subjects during 2007–2013, respectively. The overall prevalence of SDRM and of ADR-CRM during the study period was 9.2% and 87.6%, respectively. The majority of subjects with ADR-CRM had a pattern of mutations that confer resistance to at least two classes of ARV inhibitors. The non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations K103N and P225H were more prevalent in both ARV drug-naïve and ARV drug-experienced subjects. The nucleoside reverse transcriptase inhibitor (NRTI) mutation M184V was more frequent in ARV drug-experienced individuals, while T215YFrev and M41L were more frequent in ARV drug-naïve subjects. Prevalence of mutations associated to protease inhibitors (PI) was lower than 4.1% in both types of subjects. Therefore, there is a high level of resistance (>73%) to Efavirenz/Nevirapine, Lamivudine and Azidothymidine in ARV drug-experienced subjects, and an intermediate to high level of resistance (5–10%) to Efavirenz/Nevirapine in ARV drug-naïve subjects. During the study period, we observed an increasing trend in the prevalence of ADR-CRM in subjects under first-line schemes, but not significant changes in the prevalence of SDRM. These results reinforce the paramount importance of a national surveillance system of ADR-CRM and SDRM for national management policies of subjects living with HIV. PMID:27119150

  7. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    NASA Astrophysics Data System (ADS)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-01-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials (E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance (R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance (R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  8. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    NASA Astrophysics Data System (ADS)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-04-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials ( E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance ( R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance ( R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  9. Enhanced cycle performance of a Na/NiCl2 battery based on Ni particles encapsulated with Ni3S2 layer

    NASA Astrophysics Data System (ADS)

    Ao, Xin; Wen, Zhaoyin; Hu, Yingying; Wu, Tian; Wu, Xiangwei; He, Qiming

    2017-02-01

    Nickel particles with different contents of Ni3S2 surface layer were prepared for their application as cathode materials in Na/NiCl2 batteries. The surface modification of nickel particles is found to prevent their growth and battery degradation during cycling. The optimum level of surface modification was determined by electrochemical tests and morphology characterization. Excessive Ni3S2 layer seems to cause particle aggregation resulting in low reversible capacity. The capacity of the cell with optimum level of Ni3S2 surface modification layer after 50 cycles is about 4 times greater than that without Ni3S2 surface modification layer.

  10. Multilayer passive shielding of scintillation detectors based on BGO, NaI(Tl), and stilbene crystals operating in intense neutron fields with an energy of 14.1 MeV

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Valkovic, V.; Grozdanov, D. N.; Zontikov, A. O.; Ivanov, I. Zh.; Kopatch, Yu. N.; Krylov, A. R.; Rogov, Yu. N.; Ruskov, I. N.; Sapozhnikov, M. G.; Skoy, V. R.; Shvetsov, V. N.

    2015-03-01

    We discuss the issues related to choosing the optimum type of passive shielding of scintillation detectors based on BGO, NaI(Tl), and stilbene crystals from the direct penetration of neutron radiation with an energy of 14.1 MeV that was emitted isotropically into a solid angle of 4π. A series of experimental measurements of the count-rate suppression factor that may be obtained for the indicated detectors through the use of various shielding filters comprising iron, lead, and borated polyethylene layers with a total thickness not exceeding 50 cm are conducted.

  11. Redox additives of Na2MoO4 and KI: Synergistic effect and the improved capacitive performances for carbon-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Hu, Wei; Sun, Xiao Na; Cui, Peng; Chen, Xiang Ying

    2017-02-01

    A dual system of redox additive by incorporating Na2MoO4 and KI into H2SO4 solution has been developed to highly elevate the capacitance of supercapacitors primarily owing to the synergistic effect between them at the superposed redox voltage. Furthermore, the synergistic effect therein is attributed to the formation of complex substance of (MoxIyO4x)n-Cz, which can promote redox reaction of Mon+ and In- at the interface of carbon electrode and electrolyte. On the other hand, many crucial factors mainly including the molar ratio, concentration of redox additive and voltage window strongly determine the final capacitive behaviors. For example, when adding Na2MoO4 and KI into H2SO4 with the same concentration of 0.1 mol L-1, the resultant capacitance has remarkably increased by 17.4 times, compared with the one without any redox additive, at 3 A g-1 in a two-electrode system. What's more, the homologous energy density can reach up to 65.3 Wh kg-1 at the suitable voltage window (0-1 V). Hence, the present synergism of various kinds of redox additives is intriguing and easily extended to other systems, which could highly elevate the capacitive performances of supercapacitors.

  12. Accelerated materials design of Na0.5Bi0.5TiO3 oxygen ionic conductors based on first principles calculations.

    PubMed

    He, Xingfeng; Mo, Yifei

    2015-07-21

    We perform a first principles computational study of designing the Na0.5Bi0.5TiO3 (NBT) perovskite material to increase its oxygen ionic conductivity. In agreement with the previous experiments, our computation results confirm fast oxygen ionic diffusion and good stability of the NBT material. The oxygen diffusion mechanisms in this new material were systematically investigated, and the effects of local atomistic configurations and dopants on oxygen diffusion were revealed. Novel doping strategies focusing on the Na/Bi sublattice were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm(-1) at 900 K compared to the previous Mg doped compositions. This study demonstrated the advantages of first principles calculations in understanding the fundamental structure-property relationship and in accelerating the materials design of the ionic conductor materials.

  13. "Speech Act" Fra Teoria e Prassi Didattica. (The Speech Act between Theory and Pedagogical Practice).

    ERIC Educational Resources Information Center

    Minardi, Giovanni

    1982-01-01

    The author traces the development of speech act theory from Wittgenstein and Austin through Searle to Grice and shows how their work led to the notional functional approach to language teaching, which is based on the learner and his/her communicative needs. (CFM)

  14. The solubility of Cr(OH){sub 3}(am) in concentrated NaOH and NaOH-NaNO{sub 3} solutions

    SciTech Connect

    Felmy, A.R.; Rai, D.; Fulton, R.W.

    1994-08-01

    Chromium is a major component of the Hanford waste tank sludges, and the presence of Cr in the sludges is a significant concern in the disposal of these sludges because Cr can interfere with the formation of waste glasses. One of the current pretreatment strategies for removing constituents that can interfere with glass formation, such as P and Cr, is to wash/dissolve the sludges in basic NaOH solutions. The solubility of Cr(OH){sub 3}(am) was measured in concentrated NaOH ranging in concentration from 0.1M to 6.0M and in NaOH-NaNO{sub 3} solutions with fixed NaOH concentration and variable NaNO{sub 3} concentration at room temperature (22--23 C). Equilibrium between solids and solutions was approached relatively slowly and required approximately 60--70 days before steady-state concentrations were reached. A thermodynamic model, based upon the Pitzer equations, was developed from the solubility data in NaOH, which includes only two aqueous Cr species (Cr(OH){sub 4}{sup {minus}} and NaCr(OH){sub 4}(aq)) and ion-interaction parameters for Na{sup +} with Cr(OH){sub 4}{sup {minus}}. This model was then tested in the mixed NaOH-NaNO{sub 3} solutions and found to be reliable.

  15. Peginterferon alfa-2a plus Weight-Based or Flat-Dose Ribavirin for Treatment-Naïve Hepatitis C Virus Genotype 2 Rapid Responders: A Randomized Trial

    PubMed Central

    Liu, Chen-Hua; Huang, Chung-Feng; Liu, Chun-Jen; Dai, Chia-Yen; Huang, Jee-Fu; Lin, Jou-Wei; Liang, Cheng-Chao; Yang, Sheng-Shun; Lin, Chih-Lin; Su, Tung-Hung; Yang, Hung-Chih; Chen, Pei-Jer; Chen, Ding-Shinn; Chuang, Wan-Long; Kao, Jia-Horng; Yu, Ming-Lung

    2015-01-01

    The impact of ribavirin (RBV) dosage on sustained virologic response (SVR) rates remains elusive in hepatitis C virus genotype 2 (HCV-2) rapid responders receiving 16 weeks of peginterferon (Peg-IFN) plus RBV. Treatment-naïve HCV-2 patients with rapid virologic response (RVR) received Peg-IFN alfa-2a 180 μg/week plus weight-based RBV (1,000 or 1,200 mg/day; cut-off body weight: 75 kg) for 6 weeks, and then randomly received Peg-IFN alfa-2a 180 μg/week plus weight-based (1,000 or 1,200 mg/day; n = 247) or flat-dose (800 mg/day; n = 246) RBV for additional 10 weeks. The primary endpoint was SVR24. Patients receiving weight-based and flat-dose RBV therapies had comparable SVR24 rates (93.5% versus 91.9%, P = 0.49). The risk differences (RDs) of SVR24 receiving weight-based and flat-dose RBV arms were 7.1% [95% CI: 0.7% to 13.6%] in males, and −5.8% [95% CI: −12.1% to 0.5%] in females (interaction P = 0.01). The SVR24 rate was higher in males receiving ≥13 mg/kg/day than those receiving <13 mg/kg/day (96.3% versus 85.1%, P = 0.001). In conclusion, Peg-IFN alfa-2a plus weight-based or flat-dose RBV for 16 weeks provides comparable SVR24 rates in treatment-naïve HCV-2 rapid responders. However, males should receive weight-based RBV to achieve a high SVR24 rate. PMID:26469083

  16. A thermochemical explanation for the stability of NaCl3 and NaCl7

    NASA Astrophysics Data System (ADS)

    Fernandes de Farias, Robson

    2017-03-01

    Thermodynamically stable cubic and orthorhombic NaCl3 as well as NaCl7 have been synthesized (Zhang et al., 2013). In the present work, a thermochemical explanation for the stability of such unusual sodium chlorides is provided, based on lattice energy values. Using the Glasser-Jenkins generalized equation (Glasser and Jenkins, 2000) lattice energies (kJ mol-1) of -162.5, -168.9 and -113.1 are calculated for Pm3n NaCl3, Pnma NaCl3 and NaCl7, respectively. It is postulated that any NaxCly compound could be synthesized, if the ionic character of the Nasbnd Cl bond in the prepared compound remains around 80%, and the sodium charge below unit.

  17. Design and simulation of high resolution optical imaging system based on near-field using solid immersion lens with NA = 2.2

    NASA Astrophysics Data System (ADS)

    Abbasian, Karim; Sadeghi, Rasool; Sadeghi, Parvin

    2014-03-01

    In this work, by changing annular aperture zones transmittance, we could get a spot size smaller than any reported one by utilizing annular aperture. Where, by dividing the annular aperture to more than three zones and utilizing of Sony corporation Produced SIL that has NA higher than 2, we could improve imaging resolution for radial polarization (RP); also we could decrease the FWHM from around ? to near ?. Here, the FWHM variation, according to the refractive index changing, has decreased to zero for RP. After that, circular polarization (CP) has been introduced to get a spot size less than ?. This image resolution improving can be applied to enhance optical data storage, microscopes and lithographic and other high accurate optical systems.

  18. Development and validation of a thallium flux-based functional assay for the sodium channel NaV1.7 and its utility for lead discovery and compound profiling.

    PubMed

    Du, Yu; Days, Emily; Romaine, Ian; Abney, Kris K; Kaufmann, Kristian; Sulikowski, Gary; Stauffer, Shaun; Lindsley, Craig W; Weaver, C David

    2015-06-17

    Ion channels are critical for life, and they are targets of numerous drugs. The sequencing of the human genome has revealed the existence of hundreds of different ion channel subunits capable of forming thousands of ion channels. In the face of this diversity, we only have a few selective small-molecule tools to aid in our understanding of the role specific ion channels in physiology which may in turn help illuminate their therapeutic potential. Although the advent of automated electrophysiology has increased the rate at which we can screen for and characterize ion channel modulators, the technique's high per-measurement cost and moderate throughput compared to other high-throughput screening approaches limit its utility for large-scale high-throughput screening. Therefore, lower cost, more rapid techniques are needed. While ion channel types capable of fluxing calcium are well-served by low cost, very high-throughput fluorescence-based assays, other channel types such as sodium channels remain underserved by present functional assay techniques. In order to address this shortcoming, we have developed a thallium flux-based assay for sodium channels using the NaV1.7 channel as a model target. We show that the assay is able to rapidly and cost-effectively identify NaV1.7 inhibitors thus providing a new method useful for the discovery and profiling of sodium channel modulators.

  19. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes.

    PubMed

    Cardona, Karen; Trenor, Beatriz; Giles, Wayne R

    2016-01-01

    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase.

  20. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes

    PubMed Central

    Giles, Wayne R.

    2016-01-01

    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O’Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase. PMID:27875582

  1. La teoria economica y el enfoque Box-Jenkins en la modelizacion de la demanda de productos energeticos: el fuel-oil y la energia electrica en Espana

    NASA Astrophysics Data System (ADS)

    Garcia-Pardo, Maria Jimena

    Esta tesis trata de integrar la teoria economica el enfoque box-jenkins del analisis de series temporales y un conjunto de datos de la economia espanola en un intento de elaborar modelos empiricos de demanda de productos energeticos con especial atencion a la deteccion y medicion de los efectos precio. Se analizan para ello las demandas de tres productos: la energia electrica el fuel - oil utilizado en las centrales termicas para la generacion de electricidad y el fuel - oil no termico. El periodo muestral es el comprendido entre enero de 1970 y diciembre de 1977.

  2. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans

    PubMed Central

    Griffis, Joseph C.; Allendorfer, Jane B.; Szaflarski, Jerzy P.

    2015-01-01

    Background Manual lesion delineation by an expert is the standard for lesion identification in MRI scans, but is time-consuming and can introduce subjective bias. Alternative methods often require multi-modal MRI data, user interaction, scans from a control population, and/or arbitrary statistical thresholding. New Method We present an approach for automatically identifying stroke lesions in individual T1-weighted MRI scans using naïve Bayes classification. Probabilistic tissue segmentation and image algebra were used to create feature maps encoding information about missing and abnormal tissue. Leave-one-case-out training and cross-validation was used to obtain out-of-sample predictions for each of 30 cases with left hemisphere stroke lesions. Results Our method correctly predicted lesion locations for 30/30 un-trained cases. Post-processing with smoothing (8mm FWHM) and cluster-extent thresholding (100 voxels) was found to improve performance. Comparison with Existing Method Quantitative evaluations of post-processed out-of-sample predictions on 30 cases revealed high spatial overlap (mean Dice similarity coefficient = 0.66) and volume agreement (mean percent volume difference = 28.91; Pearson’s r = 0.97) with manual lesion delineations. Conclusions Our automated approach agrees with manual tracing. It provides an alternative to automated methods that require multi-modal MRI data, additional control scans, or user interaction to achieve optimal performance. Our fully trained classifier has applications in neuroimaging and clinical contexts. PMID:26432931

  3. ITH33/IQM9.21 provides neuroprotection in a novel ALS model based on TDP-43 and Na(+)/Ca(2+) overload induced by VTD.

    PubMed

    Mouhid Al-Achbili, Lamia; Moreno-Ortega, Ana J; Matías-Guiu, Jorge; Cano-Abad, María F; Ruiz-Nuño, Ana

    2016-10-28

    Therapeutic options for amyotrophic lateral sclerosis (ALS) are scarce and controversial. Although the aetiology of neuronal vulnerability is unknown, growing evidence supports a complex network in which multiple toxicity pathways, rather than a single mechanism, are involved in the pathogenesis of ALS. However, most cellular models only explain single pathogenic mechanisms. The present study proposes the two main cytotoxic mechanisms: (1) veratridine (VTD), which induced Na(+) and Ca(2+) overload; and (2) the TARD DNA-binding protein 43 (TDP-43) in NSC-34 cell line as an in vitro model of ALS. The study was carried out by MTT as an indirect measurement of cell viability and by flow cytometry to determine cell death stages. The impact of Ca(2+) overload combined with TDP-43 overexpression increased early apoptosis of NSC-34 cells. Furthermore, we found that ITH33/IQM9.21 (ITH33) exerted a neuroprotective effect in this model by reducing activation of the apoptotic pathway. Therefore, treatment with VTD in TDP-43 overexpressing NSC-34 cells is a good in vitro ALS model that makes it possible to test new neuroprotective compounds such as ITH33.

  4. Structure-based functional study reveals multiple roles of transmembrane segment IX and loop VIII-IX in NhaA Na+/H+ antiporter of Escherichia coli at physiological pH.

    PubMed

    Tzubery, Tzvi; Rimon, Abraham; Padan, Etana

    2008-06-06

    The three-dimensional crystal structure of Escherichia coli NhaA determined at pH 4 provided the first structural insights into the mechanism of antiport and pH regulation of a Na(+)/H(+) antiporter. However, because NhaA is activated at physiological pH (pH 6.5-8.5), many questions pertaining to the active state of NhaA have remained open including the structural and physiological roles of helix IX and its loop VIII-IX. Here we studied this NhaA segment (Glu(241)-Phe(267)) by structure-based biochemical approaches at physiological pH. Cysteine-scanning mutagenesis identified new mutations affecting the pH dependence of NhaA, suggesting their contribution to the "pH sensor." Furthermore mutation F267C reduced the H(+)/Na(+) stoichiometry of the antiporter, and F267C/F344C inactivated the antiporter activity. Tests of accessibility to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide, a membrane-impermeant positively charged SH reagent with a width similar to the diameter of hydrated Na(+), suggested that at physiological pH the cytoplasmic cation funnel is more accessible than at acidic pH. Assaying intermolecular cross-linking in situ between single Cys replacement mutants uncovered the NhaA dimer interface at the cytoplasmic side of the membrane; between Leu(255) and the cytoplasm, many Cys replacements cross-link with various cross-linkers spanning different distances (10-18 A) implying a flexible interface. L255C formed intermolecular S-S bonds, cross-linked only with a 5-A cross-linker, and when chemically modified caused an alkaline shift of 1 pH unit in the pH dependence of NhaA and a 6-fold increase in the apparent K(m) for Na(+) of the exchange activity suggesting a rigid point in the dimer interface critical for NhaA activity and pH regulation.

  5. Effects of Combined CCR5/Integrase Inhibitors-Based Regimen on Mucosal Immunity in HIV-Infected Patients Naïve to Antiretroviral Therapy: A Pilot Randomized Trial

    PubMed Central

    Ma, Zhong-Min; Utay, Netanya S.; Wook-Chun, Tae; Mann, Surinder; Kashuba, Angela D.; Siewe, Basile; Albanese, Anthony; Troia-Cancio, Paolo; Sinclair, Elizabeth; Somasunderam, Anoma; Yotter, Tammy; Deeks, Steven G.; Landay, Alan; Pollard, Richard B.; Miller, Christopher J.; Moreno, Santiago; Asmuth, David M.

    2016-01-01

    Whether initiation of antiretroviral therapy (ART) regimens aimed at achieving greater concentrations within gut associated lymphoid tissue (GALT) impacts the level of mucosal immune reconstitution, inflammatory markers and the viral reservoir remains unknown. We included 12 HIV- controls and 32 ART-naïve HIV patients who were randomized to efavirenz, maraviroc or maraviroc+raltegravir, each with fixed-dose tenofovir disoproxil fumarate/emtricitabine. Rectal and duodenal biopsies were obtained at baseline and at 9 months of ART. We performed a comprehensive assay of T-cell subsets by flow cytometry, T-cell density in intestinal biopsies, plasma and tissue concentrations of antiretroviral drugs by high-performance liquid chromatography/mass spectroscopy, and plasma interleukin-6 (IL-6), lipoteichoic acid (LTA), soluble CD14 (sCD14) and zonulin-1 each measured by ELISA. Total cell-associated HIV DNA was measured in PBMC and rectal and duodenal mononuclear cells. Twenty-six HIV-infected patients completed the follow-up. In the duodenum, the quadruple regimen resulted in greater CD8+ T-cell density decline, greater normalization of mucosal CCR5+CD4+ T-cells and increase of the naïve/memory CD8+ T-cell ratio, and a greater decline of sCD14 levels and duodenal HIV DNA levels (P = 0.004 and P = 0.067, respectively), with no changes in HIV RNA in plasma or tissue. Maraviroc showed the highest drug distribution to the gut tissue, and duodenal concentrations correlated well with other T-cell markers in duodenum, i.e., the CD4/CD8 ratio, %CD4+ and %CD8+ HLA-DR+CD38+ T-cells. Maraviroc use elicited greater activation of the mucosal naïve CD8+ T-cell subset, ameliorated the distribution of the CD8+ T-cell maturational subsets and induced higher improvement of zonulin-1 levels. These data suggest that combined CCR5 and integrase inhibitor based combination therapy in ART treatment naïve patients might more effectively reconstitute duodenal immunity, decrease inflammatory

  6. Structural, electronic, sodium diffusion and elastic properties of Na-P alloy anode for Na-ion batteries: Insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Lu, Huansheng; Xu, Bo; Shi, Jing; Wu, Musheng; Hu, Yinquan; Ouyang, Chuying

    2016-11-01

    Sodium-ion batteries (NIBs) as an alternative to lithium-ion batteries (LIBs) have recently received great attentions because of the relatively high abundance of sodium. Searching for suitable anode materials has always been a hot topic in the field of NIB study. Recent reports show that phosphorus-based materials are potential as the anode materials for NIBs. Using first-principles calculations, herein, we study the atomic and electronic structures, diffusion dynamics and intrinsic elastic properties of various Na-P alloy compounds (NaP5, Na3P11, NaP and Na3P) as the intermediate phases during Na extraction/insertion in phosphorus-based anode materials. It is found that all the crystalline phases of Na-P alloy phases considered in our study are semiconductors with band gaps larger than that of black phosphorus (BP). The calculations of Na diffusion dynamics indicate a relatively fast Na diffusion in these materials, which is important for good rate performance. In addition, the diffusion channels of sodium ions are one-dimensional in NaP5 phase and three-dimensional in other three phases (Na3P11, NaP and Na3P). Elastic constant calculations indicate that all four phases are mechanically stable. Among them, however, NaP5, Na3P11 and NaP alloy phases are ductile, while the fully sodiated phase Na3P is brittle. In order to improve the electrochemical performance of Na-P alloy anodes for NIBs, thus, promoting ductility of Na-P phase with high sodium concentration may be an effective way.

  7. Decreased gray matter volume is associated with the subtypes of psychotic symptoms in patients with antipsychotic-naïve mild or moderate Alzheimer's disease: A voxel-based morphometry study.

    PubMed

    Lee, Young-Min; Chung, Young-In; Park, Je-Min; Lee, Byung-Dae; Moon, Eunsoo; Jeong, Hee-Jeong; Kim, Ji-Hoon; Kim, Hak-Jin; Mun, Chi-Woong; Kim, Tae-Hyung; Kim, Young-Hoon; Kim, Eun-Joo

    2016-03-30

    The purpose of this study was to investigate the association between brain regional gray matter volume and two subtypes of psychotic symptoms, namely paranoid and misidentification subtypes, in antipsychotic-naïve mild or moderate Alzheimer's disease (AD) patients. Forty AD patients with psychotic symptoms and 25 AD patients without psychotic symptoms were assessed for cognitive and functional impairment. Presence and subtype of psychotic symptoms were assessed by using the delusion and hallucination subscale of the Korean Neuropsychiatric Inventory (K-NPI). Structural MRI images were acquired on a 3 T scanner, and were analyzed using voxel-based morphometry (VBM) for automated analysis. The misidentification subtype is associated with more severe gray matter atrophy, and paranoid subtype is associated with less severe gray matter atrophy compared to non-psychosis group. These results suggest that the misidentification, the paranoid subtype and the non-psychosis group have a distinct neural correlation.

  8. High-NA HPCS optical fibers for medical diagnosis and treatment

    NASA Astrophysics Data System (ADS)

    Skutnik, Bolesh J.

    2010-02-01

    Hard Plastic Clad Silica (HPCS) optical fibers with pure silica cores have been developed which are robust and have NA(Numerical Aperture)>0.50. Improved clad only HPCS fibers have been produced for both new 'standard' and 'high' NA versions. Based on new cladding formulations, the 'standard' NA fiber has an NA of 0.41, while the new ultrahigh NA fiber has an NA of 0.54. Mechanical strength and preliminary fatigue data are presented along with spectral characterization data. For the first time significant results were obtained for clad only high NA fibers, The fibers are useful for diagnostic and surgical applications. Short to medium length time to failure results, indicate that the static fatigue parameters of the new high numerical aperture (NA) optical fibers are at least as good as those for former standard NA (0.37) HPCS fibers, which is an advance from previous results on the older formulation high NA fibers.

  9. The paranodal cytoskeleton clusters Na(+) channels at nodes of Ranvier.

    PubMed

    Amor, Veronique; Zhang, Chuansheng; Vainshtein, Anna; Zhang, Ao; Zollinger, Daniel R; Eshed-Eisenbach, Yael; Brophy, Peter J; Rasband, Matthew N; Peles, Elior

    2017-01-30

    A high density of Na(+) channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na(+) channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na(+) channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na(+) channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na(+)channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.

  10. Naïve Bayes classification in R

    PubMed Central

    2016-01-01

    Naïve Bayes classification is a kind of simple probabilistic classification methods based on Bayes’ theorem with the assumption of independence between features. The model is trained on training dataset to make predictions by predict() function. This article introduces two functions naiveBayes() and train() for the performance of Naïve Bayes classification. PMID:27429967

  11. Influenza virus neuraminidase (NA): a target for antivirals and vaccines.

    PubMed

    Jagadesh, Anitha; Salam, Abdul Ajees Abdul; Mudgal, Piya Paul; Arunkumar, Govindakarnavar

    2016-08-01

    Influenza, the most common infectious disease, poses a great threat to human health because of its highly contagious nature and fast transmissibility, often leading to high morbidity and mortality. Effective vaccination strategies may aid in the prevention and control of recurring epidemics and pandemics associated with this infectious disease. However, antigenic shifts and drifts are major concerns with influenza virus, requiring effective global monitoring and updating of vaccines. Current vaccines are standardized primarily based on the amount of hemagglutinin, a major surface antigen, which chiefly constitutes these preparations along with the varying amounts of neuraminidase (NA). Anti-influenza drugs targeting the active site of NA have been in use for more than a decade now. However, NA has not been approved as an effective antigenic component of the influenza vaccine because of standardization issues. Although some studies have suggested that NA antibodies are able to reduce the severity of the disease and induce a long-term and cross-protective immunity, a few major scientific issues need to be addressed prior to launching NA-based vaccines. Interestingly, an increasing number of studies have shown NA to be a promising target for future influenza vaccines. This review is an attempt to consolidate studies that reflect the strength of NA as a suitable vaccine target. The studies discussed in this article highlight NA as a potential influenza vaccine candidate and support taking the process of developing NA vaccines to the next stage.

  12. Na+ coordination at the Na2 site of the Na+/I- symporter.

    PubMed

    Ferrandino, Giuseppe; Nicola, Juan Pablo; Sánchez, Yuly E; Echeverria, Ignacia; Liu, Yunlong; Amzel, L Mario; Carrasco, Nancy

    2016-09-13

    The sodium/iodide symporter (NIS) mediates active I(-) transport in the thyroid-the first step in thyroid hormone biosynthesis-with a 2 Na(+): 1 I(-) stoichiometry. The two Na(+) binding sites (Na1 and Na2) and the I(-) binding site interact allosterically: when Na(+) binds to a Na(+) site, the affinity of NIS for the other Na(+) and for I(-) increases significantly. In all Na(+)-dependent transporters with the same fold as NIS, the side chains of two residues, S353 and T354 (NIS numbering), were identified as the Na(+) ligands at Na2. To understand the cooperativity between the substrates, we investigated the coordination at the Na2 site. We determined that four other residues-S66, D191, Q194, and Q263-are also involved in Na(+) coordination at this site. Experiments in whole cells demonstrated that these four residues participate in transport by NIS: mutations at these positions result in proteins that, although expressed at the plasma membrane, transport little or no I(-) These residues are conserved throughout the entire SLC5 family, to which NIS belongs, suggesting that they serve a similar function in the other transporters. Our findings also suggest that the increase in affinity that each site displays when an ion binds to another site may result from changes in the dynamics of the transporter. These mechanistic insights deepen our understanding not only of NIS but also of other transporters, including many that, like NIS, are of great medical relevance.

  13. Development of a Lead-free Piezoelectric (K,Na)NbO3 Thin Film Deposited on Nickel-based Electrodes

    NASA Astrophysics Data System (ADS)

    Bani Milhim, Alaeddin

    It is desirable to replace noble metals used as electrode materials for piezoelectric thin film with base metals. This will reduce the piezoelectric thin film fabrication cost. A nickel?based layer in conjunction with other protective layers is proposed as a bottom electrode for lead-free piezoelectric KNN thin film. The obtained results do not indicate the oxidation of the nickel?based bottom electrode after the deposition of KNN at 600 °C for 10 hours in the presence of oxygen and/or after annealing the sample at 400 °C for an hour in air. The fabricated KNN thin film was fully characterized in this work. The effective piezoelectric coefficients d33 and d31 were estimated to be 37 pm/V and 17.2 pm/V, respectively, at 100 kV/cm. The piezoelectric properties of the fabricated KNN/Ni/Ti/SiO2/Si are affected by the crystal orientation of the KNN layer, which was preferentially oriented in the (110) direction. Optimization of the deposition parameters of the fabricated KNN/Ni/Ti/SiO2/Si film is expected to further enhance the piezoelectric properties. Two novel systems utilizing the developed KNN piezoelectric thin film are proposed and their performance simulated based on the achieved KNN thin film parameters. The first is a precision automated nanomanipulation system using an AFM as a sensor and piezo-actuated manipulators. Real-time feedback of the particle being manipulated can be achieved using the proposed system. The length of the manipulators needs to be at least 2 mm to be incorporated with a commercial AFM system. To fabricate the required manipulators, a three-step electrochemical etching technique was developed. Tungsten tips combining well-defined conical shape, a length as large as 2 mm, and sharpness with a radius of curvature of around 20 nm were fabricated using the proposed technique. By depositing the KNN thin film on the fabricated manipulator, nanomanipulators with out-of-plane actuation can be produced. Ultrasonic piezoelectric fan array, the

  14. Probing the association behavior of poly(ethylene glycol)-based amphiphilic comb-like polymer in NaCl solution.

    PubMed

    Basak, P; Nisha, C K; Manorama, S V; Maiti, Souvik; Jayachandran, K N

    2003-06-15

    The effect of salt on the associative behavior of intramolecular aggregates obtained from poly(ethylene glycol)-based amphiphilic comb-like polymers in aqueous medium at pH 6.2 has been investigated by surface tension, fluorescence probe, dynamic light-scattering, and viscometry techniques. Results reveal that the addition of salt screens the electrostatic repulsion between the charges along the polymer backbone in the aggregates and consequently (1) reduces the surface activity at the air/water interface, (2) leads to the contraction of the polymer backbone, and (3) reduces the hydrodynamic sizes of the aggregates. In contrast, the hydrophobicity of the aggregates remains unperturbed.

  15. Fault Analysis in a Grid Integrated DFIG Based Wind Energy System with NA CB_P Circuit for Ridethrough Capability and Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Swain, Snehaprava; Ray, Pravat Kumar

    2016-12-01

    In this paper a three phase fault analysis is done on a DFIG based grid integrated wind energy system. A Novel Active Crowbar Protection (NACB_P) system is proposed to enhance the Fault-ride through (FRT) capability of DFIG both for symmetrical as well as unsymmetrical grid faults. Hence improves the power quality of the system. The protection scheme proposed here is designed with a capacitor in series with the resistor unlike the conventional Crowbar (CB) having only resistors. The major function of the capacitor in the protection circuit is to eliminate the ripples generated in the rotor current and to protect the converter as well as the DC-link capacitor. It also compensates reactive power required by the DFIG during fault. Due to these advantages the proposed scheme enhances the FRT capability of the DFIG and also improves the power quality of the whole system. Experimentally the fault analysis is done on a 3hp slip ring induction generator and simulation results are carried out on a 1.7 MVA DFIG based WECS under different types of grid faults in MATLAB/Simulation and functionality of the proposed scheme is verified.

  16. Na/beta-alumina/NaAlCl4, Cl2/C circulating cell

    NASA Astrophysics Data System (ADS)

    Cherng, Jing-Yih; Bennion, Douglas N.

    1987-09-01

    A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design.

  17. Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, facts and analysis

    NASA Technical Reports Server (NTRS)

    Batthauer, Byron E.; Mccarthy, G. T.; Hannah, Michael; Hogan, Robert J.; Marlow, Frank J.; Reynard, William D.; Stoklosa, Janis H.; Yager, Thomas J.

    1986-01-01

    On July 17, l985, at 1810 P.d.t., NASA 712, a Convair 990 aircraft, was destroyed by fire at March Air Force Base, California. The fire started during the rollout after the pilot rejected the takeoff on runway 32. The rejected takeoff was initiated during the takeoff roll because of blown tires on the right landing gear. During the rollout, fragments of either the blown tires or the wheel/brake assemblies penetrated a right-wing fuel tank forward of the right main landing gear. Leaking fuel ignited while the aircraft was rolling, and fire engulfed the right wing and the fuselage after the aircraft was stopped on the runway. The 4-man flightcrew and the 15 scientists and technicians seated in the cabin evacuated the aircraft without serious injury. The fire was not extinguished by crash/rescue efforts and the aircraft was destroyed.

  18. Inframolecular acid-base and coordination properties towards Na(+) and Mg(2+) of myo-inositol 1,3,4,5,6-pentakisphosphate: a structural approach to biologically relevant species.

    PubMed

    Veiga, Nicolás; Torres, Julia; Macho, Israel; Gómez, Kerman; Godage, Himali Y; Riley, Andrew M; Potter, Barry V L; González, Gabriel; Kremer, Carlos

    2013-05-07

    The myo-inositol phosphates (InsPs) are specific signalling metabolites ubiquitous in eukaryotic cells. Although Ins(1,3,4,5,6)P(5) is the second most abundant member of the InsPs family, its certain biological roles are far from being elucidated, in part due to the large number of species formed by Ins(1,3,4,5,6)P(5) in the presence of metal ions. In light of this, we have strived in the past to make a complete and at the same time "biological-user-friendly" description of the Ins(1,3,4,5,6)P(5) chemistry with mono and multivalent cations. In this work we expand these studies focusing on the inframolecular aspects of its protonation equilibria and the microscopic details of its coordination behaviour towards biologically relevant metal ions. We present here a systematic study of the Ins(1,3,4,5,6)P(5) intrinsic acid-base processes, in a non-interacting medium, and over a wide pH range, analyzing the (31)P NMR curves by means of a model based on the Cluster Expansion Method. In addition, we have used a computational approach to analyse the energetic and structural features of the protonation and conformational changes of Ins(1,3,4,5,6)P(5), and how they are influenced by the presence of two physiologically relevant cations, Na(+) and Mg(2+).

  19. Synthesis, Characterization, and Application in HeLa Cells of an NIR Light Responsive Doxorubicin Delivery System Based on NaYF4:Yb,Tm@SiO2-PEG Nanoparticles.

    PubMed

    Alonso-Cristobal, Paulino; Oton-Fernandez, Olalla; Mendez-Gonzalez, Diego; Díaz, J Fernando; Lopez-Cabarcos, Enrique; Barasoain, Isabel; Rubio-Retama, Jorge

    2015-07-15

    Herein, we present a phototriggered drug delivery system based on light responsive nanoparticles, which is able to release doxorubicin upon NIR light illumination. The proposed system is based on upconversion fluorescence nanoparticles of β-NaYF4:Yb,Tm@SiO2-PEG with a mean diameter of 52±2.5 nm that absorb the NIR light and emit UV light. The UV radiation causes the degradation of photodegradable ortho-nitrobenzyl alcohol derivates, which are attached on one side to the surface of the nanoparticles and on the other to doxorubicin. This degradation triggers the doxorubicin release. This drug delivery system has been tested "in vitro" with HeLa cells. The results of this study demonstrated that this system caused negligible cytotoxicity when they were not illuminated with NIR light. In contrast, under NIR light illumination, the HeLa cell viability was conspicuously reduced. These results demonstrated the suitability of the proposed system to control the release of doxorubicin via an external NIR light stimulus.

  20. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    PubMed

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.

  1. Probability versus representativeness in infancy: can infants use naïve physics to adjust population base rates in probabilistic inference?

    PubMed

    Denison, Stephanie; Trikutam, Pallavi; Xu, Fei

    2014-08-01

    A rich tradition in developmental psychology explores physical reasoning in infancy. However, no research to date has investigated whether infants can reason about physical objects that behave probabilistically, rather than deterministically. Physical events are often quite variable, in that similar-looking objects can be placed in similar contexts with different outcomes. Can infants rapidly acquire probabilistic physical knowledge, such as some leaves fall and some glasses break by simply observing the statistical regularity with which objects behave and apply that knowledge in subsequent reasoning? We taught 11-month-old infants physical constraints on objects and asked them to reason about the probability of different outcomes when objects were drawn from a large distribution. Infants could have reasoned either by using the perceptual similarity between the samples and larger distributions or by applying physical rules to adjust base rates and estimate the probabilities. Infants learned the physical constraints quickly and used them to estimate probabilities, rather than relying on similarity, a version of the representativeness heuristic. These results indicate that infants can rapidly and flexibly acquire physical knowledge about objects following very brief exposure and apply it in subsequent reasoning.

  2. Long-Term Efficacy, Tolerability, and Renal Safety of Atazanavir/Ritonavir-based Antiretroviral Therapy in a Cohort of Treatment-Naïve Patients with HIV-1 Infection: the REMAIN Study

    PubMed Central

    Teófilo, Eugénio; Rocha-Pereira, Nuno; Kuhlmann, Birger; Antela, Antonio; Knechten, Heribert; Santos, Jesús; Jiménez-Expósito, Maria Jesús

    2016-01-01

    Background: Boosted protease inhibitors (PIs), including ritonavir-boosted atazanavir (ATV/r), are a recommended option for the initial treatment of HIV-1 infection based upon clinical trial data; however, long-term real-life clinical data are limited. Objective: We evaluated the long-term use of ATV/r as a component of antiretroviral combination therapy in the real-life setting in the REMAIN study. Methods: This was an observational cohort study conducted at sites across Germany, Portugal, and Spain. Retrospective historical and prospective longitudinal follow-up data were extracted every six months from medical records of HIV-infected treatment-naïve patients aged ≥ 18 years initiating a first-line ATV/r-containing regimen. Results: Eligible patients (n = 517) were followed up for a median of 3.4 years. The proportion remaining on ATV/r at 5 years was 51.5% with an estimated Kaplan-Meier median time to treatment discontinuation of 4.9 years. Principal reasons for discontinuation were adverse events (15.9%; 8.9% due to hyperbilirubinemia) and virologic failure (6.8%). The Kaplan-Meier probability of not having virologic failure (HIV-1 RNA < 50 copies/mL) was 0.79 (95% CI: 0.75, 0.83) at five years. No treatment-emergent major PI resistance occurred. ATV/r was generally well tolerated during long-term treatment with no significant changes in estimated glomerular filtration rate over five years. Conclusions: In a real-life clinical setting over five years, treatment-naïve patients with HIV-1 infection initiating an ATV/r-based regimen showed sustained virologic suppression, an overall treatment persistence rate of 51.5%, an absence of treatment-emergent major PI resistance mutations at virologic failure, a long-term safety profile consistent with that observed in clinical trials, and no significant decline in renal function. PMID:26899539

  3. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles.

    PubMed

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-28

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO4). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  4. RNA adducts with Na 2SeO 4 and Na 2SeO 3 - Stability and structural features

    NASA Astrophysics Data System (ADS)

    Nafisi, Shohreh; Manouchehri, Firouzeh; Montazeri, Maryam

    2011-12-01

    Selenium compounds are widely available in dietary supplements and have been extensively studied for their antioxidant and anticancer properties. Low blood Se levels were found to be associated with an increased incidence and mortality from various types of cancers. Although many in vivo and clinical trials have been conducted using these compounds, their biochemical and chemical mechanisms of efficacy are the focus of much current research. This study was designed to examine the interaction of Na 2SeO 4 and Na 2SeO 3 with RNA in aqueous solution at physiological conditions, using a constant RNA concentration (6.25 mM) and various sodium selenate and sodium selenite/polynucleotide (phosphate) ratios of 1/80, 1/40, 1/20, 1/10, 1/5, 1/2 and 1/1. Fourier transform infrared, UV-Visible spectroscopic methods were used to determine the drug binding modes, the binding constants, and the stability of Na 2SeO 4 and Na 2SeO 3-RNA complexes in aqueous solution. Spectroscopic evidence showed that Na 2SeO 4 and Na 2SeO 3 bind to the major and minor grooves of RNA ( via G, A and U bases) with some degree of the Se-phosphate (PO 2) interaction for both compounds with overall binding constants of K(Na 2SeO 4-RNA) = 8.34 × 10 3 and K(Na 2SeO 3-RNA) = 4.57 × 10 3 M -1. The order of selenium salts-biopolymer stability was Na 2SeO 4-RNA > Na 2SeO 3-RNA. RNA aggregations occurred at higher selenium concentrations. No biopolymer conformational changes were observed upon Na 2SeO 4 and Na 2SeO 3 interactions, while RNA remains in the A-family structure.

  5. Na Cauda do Cometa

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.

    2009-01-01

    Quando viam um cometa, os antigos gregos imaginavam uma estrela com uma vasta cabeleira. Não à toa, a palavra deriva do termo koma, que significa cabelo. Constituídos por fragmentos de gelo e gases, os cometas possuem um núcleo sólido, que pode ter vários quilômetros de diâmetro, e uma cauda que sempre aponta na direção contrária ao Sol, devido aos ventos solares. Graças à aparência de pontos luminosos em movimento (ao contrário de outros astros, que parecem estáticos), esses corpos celestes foram interpretados por diferentes povos com muito misticismo, inspirando mitos tanto de boas-novas como de maus presságios. Conheça algumas dessas histórias:

  6. Na+ coordination at the Na2 site of the Na+/I− symporter

    PubMed Central

    Ferrandino, Giuseppe; Nicola, Juan Pablo; Sánchez, Yuly E.; Echeverria, Ignacia; Liu, Yunlong; Amzel, L. Mario; Carrasco, Nancy

    2016-01-01

    The sodium/iodide symporter (NIS) mediates active I− transport in the thyroid—the first step in thyroid hormone biosynthesis—with a 2 Na+: 1 I− stoichiometry. The two Na+ binding sites (Na1 and Na2) and the I− binding site interact allosterically: when Na+ binds to a Na+ site, the affinity of NIS for the other Na+ and for I− increases significantly. In all Na+-dependent transporters with the same fold as NIS, the side chains of two residues, S353 and T354 (NIS numbering), were identified as the Na+ ligands at Na2. To understand the cooperativity between the substrates, we investigated the coordination at the Na2 site. We determined that four other residues—S66, D191, Q194, and Q263—are also involved in Na+ coordination at this site. Experiments in whole cells demonstrated that these four residues participate in transport by NIS: mutations at these positions result in proteins that, although expressed at the plasma membrane, transport little or no I−. These residues are conserved throughout the entire SLC5 family, to which NIS belongs, suggesting that they serve a similar function in the other transporters. Our findings also suggest that the increase in affinity that each site displays when an ion binds to another site may result from changes in the dynamics of the transporter. These mechanistic insights deepen our understanding not only of NIS but also of other transporters, including many that, like NIS, are of great medical relevance. PMID:27562170

  7. Long-range antiferromagnetic order in malonate-based compounds Na2M(H2C3O4)2·2H2O (M = Mn, Fe, Co, Ni).

    PubMed

    Rousse, G; Radtke, G; Klein, Y; Ahouari, H

    2016-02-14

    The recently discovered metal-malonate compounds of formulae Na2M(H2C3O4)2·2H2O with M = Mn, Fe, Co, Ni are investigated for their magnetic properties. While the Cu-based material is a weak ferromagnet, all other members present antiferromagnetic interactions. Neutron powder diffraction experiments reveal the establishment of a long range magnetic order at low temperature in the Pbca Shubnikov magnetic group. The magnetic structures are characterized by antiferromagnetic layers perpendicular to [001]. These layers are stacked antiparallel (M = Fe) or parallel (M = Mn, Ni) in the (a, c) plane. Magnetic moments are collinear to b for the former and to c for the latter. The M = Co malonate exhibits a non-collinear magnetic structure intermediate between the two latter, with components along b and c. Density functional theory calculations indicate that the dominant magnetic interaction, J1, occurs along a malonate group via a carboxylate and links two transition metals within the same layer, while other interactions (inter- or intra-layer) are much weaker, so that these compounds present the dominant characteristics of 2D-antiferromagnets.

  8. Estimating the hydrogen ion concentration in concentrated NaCl and Na{sub 2}SO{sub 4} electrolytes

    SciTech Connect

    Rai, D.; Felmy, A.R.; Juracich, S.P.; Rao, F.

    1995-06-01

    Combination glass electrodes were tested for determining H{sup +} concentrations in concentrated pure and mixed NaCl and Na{sub 2}SO{sub 4} solutions, as well as natural brine systems. NaCl, Na{sub 2}SO{sub 4}, and mixtures of NaCl and Na{sub 2}SO{sub 4} solutions were analyzed. Correction factors for estimating pC{sub H}{sup +} (negative logarithm of H{sup +} concentration) were determined from measured/observed pH values. Required Gran-type titrations were done with HCl and/or NaOH. The titration method is described and a step-by-step procedure provided; it has been used previously for determining pC{sub H}{sup +} values of synthetic chloride-dominated brines. Precautions are required to determine correction factors for electrolytes that react with H{sup +} or OH{sup {minus}} [sulfate brines for titration with acid; magnesium brines for titration with base because of precipitation of Mg(OH)2]. Correction factors A (pC{sub H}{sup +} = pH{sub ob} + A) from HCl titrations were similar to those from NaOH titrations where the concentration of free H{sup +} was calculated using a thermodynamic model. These values should be applicable to solns with a very large range in measured pH values (2 to 12). Because a large number of solns were titrated with HCl and the A values are similar for HCl and NaOH titrations, the A values for NaCl and Na2SO4 solns were fit as a function of molality to allow extrapolation. For NaCl solns 0 to 6.0 M, A can be obtained by multiplying the molality by 0.159. For Na2SO4 solns 0 to 2.0 M, the values of A can be obtained from (0.221 {minus} 0.549X + 0.201X{sup 2}), where X is the molality of Na{sub 2}SO{sub 4}. Orion-Ross electrode evaluations indicated that the A values did not differ significantly for different electrodes. Results suggest that the data in this report can be used to estimate A values for different NaCl and Na{sub 2}SO{sub 4} solns even for noncalibrated electrodes.

  9. Lead-free piezoelectric ceramics based on (0.97 - x)K0.48Na0.52NbO3-0.03Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3-xB0.5Na0.5TiO3 ternary system

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaojing; Wu, Jiagang; Wang, Xiaopeng; Zhang, Binyu; Zhu, Jianguo; Xiao, Dingquan; Wang, Xiangjian; Lou, Xiaojie; Liang, Wenfeng

    2013-09-01

    In this work, the ternary system of potassium-sodium niobate has been designed to enhance the piezoelectric properties without sacrificing the Curie temperature greatly, and (0.97 - x)K0.48Na0.52NbO3-0.03Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3-xB0.5Na0.5TiO3 ceramics have been prepared by the conventional solid-state method. The effect of B0.5Na0.5TiO3 content on the microstructure and electrical properties of the ceramics is studied. The phase diagram shows a phase boundary of the rhombohedral-tetragonal (R-T) phase coexistence in the composition range of 0.5% < x < 1.5%, and then an enhanced dielectric, ferroelectric, and piezoelectric behavior is obtained at such a phase boundary zone. The ceramic with x = 0.01 has an optimum electrical behavior of d33 ˜ 285 pC/N, kp ˜ 0.40, ɛr ˜ 1235, tan δ ˜ 0.031, Pr ˜ 14.9 μC/cm2, and Ec ˜ 15.2 kV/cm, together with a high Curie temperature of ˜347 °C. The large d33 in such a ternary system is due to a composition-induced R-T phase transition and a higher ɛrPr, and the thermal stability performance is strongly dependent on the phase structure. As a result, the design of the ternary system is an effective way to enhance the piezoelectric properties of potassium-sodium niobate materials.

  10. Solidification of NaCl-NaF eutectic in space

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yu, J. G.

    1974-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, have been produced in space and on earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis.

  11. First principles study of the crystal, electronic structure, and diffusion mechanism of polaron-Na vacancy of Na3MnPO4CO3 for Na-ion battery applications

    NASA Astrophysics Data System (ADS)

    Debbichi, M.; Debbichi, L.; Dinh, Van An; Lebègue, S.

    2017-02-01

    Based on first principles calculations, we investigate the geometry, electronic structure, and diffusion mechanism of Na ions in Na3MnPO4CO3 using density functional theory with a Hubbard potential correction. Our results suggest that the structure of Na3MnPO4CO3 can be deintercalated with more than one Na ion, and that the removal of a Na ion can form a bound polaron. We find that our calculations of the intercalation voltages for the redox couples Mn2+ /Mn3+ and Mn3+ /Mn4+ agree very well with the experimental data. In addition, we demonstrate that Na in Na3MnPO4CO3 can diffuse in three directions with low activation energy barriers, allowing a fast charging rate.

  12. Decomposition reactions for NaAl H4 , Na3 Al H6 , and NaH: First-principles study

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Tanaka, Isao

    2005-01-01

    The electronic properties and lattice dynamics of the sodium alanate phases have been studied by the density functional calculations. The phases include NaAlH4 (space group, I41/a ), Na3AlH6 (space group, P21/n ), and NaH (space group, Fm-3m ). The electronic properties are discussed on the basis of the electronic band structures, the atomic charges, the bond overlap population analysis, and the Born effective charges. The phonon dispersion relations and phonon density of states (DOS) of the phases are calculated by a direct force-constant method. Within the quasiharmonic approximation, the calculated thermodynamic functions including the heat capacity, the vibrational enthalpy, and the vibrational entropy are in good agreement with experimental values. Three decomposition reactions are studied based on the thermodynamic functions. The reactions are (1) NaAlH4→(1)/(3)Na3AlH6+(2)/(3)Al+H2 , (2) (1)/(3)Na3AlH6→NaH+(1)/(3)Al+(1)/(2)H2 , and (3) NaH→Na+(1)/(2)H2 . The reactions (1), (2), and (3) are predicted to take place at 285, 390, and 726K , respectively, which are in good agreement with the experiment (353, 423, and 698K , respectively). The individual contributions to the reactions including the enthalpy and entropy are investigated. We found that the enthalpy for the reaction is almost constant, and the net entropy contribution ( TΔS ) to the reaction is approximately equal to the entropy contribution of the H2 gas molecule (produced in that reaction).

  13. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  14. Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics.

    PubMed

    Bai, Wangfeng; Chen, Daqin; Zheng, Peng; Shen, Bo; Zhai, Jiwei; Ji, Zhenguo

    2016-05-17

    In this study, a lead-free ceramic system comprising (0.94 - x)Bi0.5Na0.5TiO3-0.06BaTiO3-xBi(Zn0.5Ti0.5)O3 (BNT-BT-BZT) was designed and prepared by a conventional solid-state reaction method. The effect of the addition of BZT on the phase transition characteristics and associated electromechanical properties of BNT-BT was systematically discussed and a schematic phase diagram was established. The addition of BZT had a strong impact on the phase transition as well as the strain and piezoelectric activity. The phase coexistence, which involves ferroelectric rhombohedral-relaxor pseudocubic phases, can be driven by modification with BZT and increases in temperature and can be confirmed by XRD measurements, analysis of Raman spectra and temperature-dependent changes in polarization and strain hysteresis loops. Accompanied by a shift in the ferroelectric-to-relaxor temperature TF-R to below room temperature on the addition of BZT, a compositionally induced ferroelectric-to-relaxor phase transition occurred, which gave rise to a large strain of 0.33% with a normalized strain Smax/Emax of 550 pm V(-1) at the critical BZT content x of 0.0275. The results were closely correlated with the composition and dependence on temperature of the phase transition, which significantly influenced the electromechanical properties, and the origin of the large strain observed in the present system was also addressed in detail. As a result, the design principles provided in this study open the possibility of obtaining BNT-based lead-free ceramics with enhanced electromechanical properties for actuator applications.

  15. Beyond lithium-ion batteries: A computational study on Na-S and Na-O batteries

    NASA Astrophysics Data System (ADS)

    Masedi, M. C.; Ngoepe, P. E.; Sithole, H. M.

    2017-02-01

    The first principle pseudopotential calculations based on the Perdew-Burke-Ernzerhof (PBE) form of generalized gradient approximation (GGA) within density functional theory (DFT) has been utilized to investigate the stabilities of insoluble discharge products of oxygen and sulphur in the Na-O and Na-S batteries. Their structural, mechanical and electronic properties were determined. The lattice parameters were well reproduced and agree with the available experimental data. The heats of formation predict that all structures are generally stable and Na2S has the lowest value. The elastic constants suggest that all the structures are mechanically stable which in good agreement with the calculated phonon dispersions.

  16. The β-γ decay of 21Na

    NASA Astrophysics Data System (ADS)

    Achouri, N. L.; Angélique, J. C.; Ban, G.; Bastin, B.; Blank, B.; Dean, S.; Dendooven, P.; Giovinazzo, J.; Grévy, S.; Jungmann, K.; Laurent, B.; Liénard, E.; Naviliat-Cuncic, O.; Orr, N. A.; Rogachevskiy, A.; Sohani, M.; Traykov, E.; Wilschut, H.

    2010-04-01

    A new and independent determination of the Gamow-Teller branching ratio in the β-decay of 21Na is reported. The value 5.13 ± 0.43% obtained is in agreement with the currently adopted value and the most recent measurement. In contrast to previous experiments, the present method was based on the counting of the parent 21Na ions and the resulting 351 keV γ-rays without coincident β-particle detection.

  17. Self-biased large magnetoelectric coupling in co-sintered Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} based piezoelectric and CoFe{sub 2}O{sub 4} based magnetostrictive bilayered composite

    SciTech Connect

    Kumari, Mukesh; Singh, Amrita; Chatterjee, Ratnamala E-mail: ratnamalac@gmail.com; Gupta, Arti; Prakash, Chandra

    2014-12-28

    In this work, magnetoelectric properties of a co-sintered bilayered composite of non-lead based piezoelectric 0.97(Bi{sub 0.5}Na{sub 0.5}TiO{sub 3})–0.03(K{sub 0.47}Na{sub 0.47}Li{sub 0.06}Nb{sub 0.74}Sb{sub 0.06}Ta{sub 0.2}O{sub 3}) and magnetostrictive Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4} are presented. Similar optimal sintering conditions of the individual components lead to a very clean interface as evidenced in the scanning electron microscopy, angle dispersive X-ray diffraction, and energy-dispersive X-ray (EDX) results. Clean interface results in strong intimate mechanical coupling between both components and causes a maximum transfer of induced strain, leading to a large magnetoelectric coupling ∼142 mV/cm·Oe measured in longitudinally magnetized-transversely polarized configuration (L-T mode). Remnant polarization ∼32 μC/cm{sup 2}, remnant magnetization ∼0.50 emu/g, and sufficiently high self biased magnetoelectricity ∼135 mV/cm Oe (L-T mode) were observed for this composite.

  18. The influence of salt (NaCl) on ochratoxin A biosynthetic genes, growth and ochratoxin A production by three strains of Penicillium nordicum on a dry-cured ham-based medium.

    PubMed

    Rodríguez, Alicia; Medina, Ángel; Córdoba, Juan J; Magan, Naresh

    2014-05-16

    Iberian dry-cured ham is colonised by moulds during the ripening process. The environmental conditions occurring during the process including the salt content predisposes the surface to colonisation by Penicillium species, including Penicillium nordicum which can contaminate the curing ham with ochratoxin A (OTA). The objective of this study was to examine the effect of NaCl (10% and 22%=0.94 and 0.87 water activity (aw)) on the activation of two genes involved in the biosynthetic pathway for OTA production, otapksPN and otanpsPN, relative growth and phenotypic OTA production by three strains of P. nordicum (CBS 110.769, FHSCC1 and FHSCC2) on a ham-based medium over a period of 12days at 25°C. Growth of the three strains was faster at 0.87 than 0.94 aw on the ham-based media. However, some intra- and inter-strain differences were observed. Of the three strains, only two (CBS 110.789; FHSCC2) were able to express the two genes involved in the biosynthesis of OTA in the two salt treatments. RT-qPCR showed that the temporal expression of the two genes (otapksPN and otanpsPN) was relatively similar for the wild type strain (FHSCC2) at both 0.94 and 0.87 aw over the 12day period. However, in the type strain (CBS 110.769) expression increased rapidly at 0.94 aw but was significantly lower at 0.87 aw. Expression of these two genes occurred after 3day incubation, while phenotypic OTA production was observed only after 6days in the two toxigenic strains. The other strain did not produce any OTA. The OTA concentrations confirmed the results observed with the molecular tools. This suggests that the RT-qPCR gene expression of these two genes may be a good early indicator of potential contamination of dry-cured ham with OTA during dry-cured ham ripening.

  19. In rat hepatocytes, the hypertonic activation of Na(+) conductance and Na(+)-K(+)-2Cl(-) symport--but not Na(+)-H(+) antiport--is mediated by protein kinase C.

    PubMed

    Heinzinger, H; van den Boom, F; Tinel, H; Wehner, F

    2001-11-01

    1. The initial event in the regulatory volume increase (RVI) of rat hepatocytes is an import of extracellular Na(+) via Na(+) conductance, Na(+)-K(+)-2Cl(-) symport, and Na(+)-H(+) antiport. 2. Here, the protein kinase inhibitors staurosporine (100 nmol l(-1)) and bis-indolyl-maleimide I (400 nmol l(-1)) were used to test for a possible contribution of protein kinase C (PKC) to the hypertonic activation of these transporters in confluent primary cultures. 3. Stimulation of Na(+) conductance was monitored: (i) by use of a differential approach based on Na(+) fluxes, (ii) by means of cable analysis, and (iii) in experiments with low Na(+) pulses. All three experimental protocols in concert demonstrated a block of the activation of Na(+) conductance by staurosporine and bis-indolyl-maleimide I. 4. In addition, both compounds significantly reduced the hypertonic activation of Na(+)-K(+)-2Cl(-) symport (quantified on the basis of furosemide-sensitive (86)Rb(+) uptake) to approximately 30 %. 5. In contrast, neither staurosporine nor bis-indolyl-maleimide I had any detectable effect on the hypertonicity-induced alkalinization of cell pH via Na(+)-H(+) antiport (determined fluorometrically). 6. Staurosporine and bis-indolyl-maleimide I completely blocked the RVI of rat hepatocytes (quantified by means of confocal laser-scanning microscopy). The high efficiency of the block suggests an additional inhibitory effect of both compounds on the activity of Na(+)/K(+)-ATPase (determined as ouabain-sensitive (86)Rb(+) uptake). 7. It is concluded that the hypertonic activation of rat hepatocyte Na(+) conductance and Na(+)-K(+)-2Cl(-) symport--but not Na(+)-H(+) antiport--is probably mediated by PKC.

  20. A teoria da percolação aplicada às galáxias aneladas peculiares

    NASA Astrophysics Data System (ADS)

    Poppe, P. C. R.; Martin, V. A. F.; de Medeiros, N. G. F.; Faúndez-Abans, M.; Oliveira-Abans, M.

    2003-08-01

    Formulado no final da década de 50, o modelo de percolação concentra-se em descrever o meio poroso, que será visto neste trabalho como uma rede de canais aleatórios, por onde escoa um fluido determinístico. Se o número de canais for suficientemente grande, então eles estarão ligados e o meio se tornará permeável à passagem do fluido. Neste caso, dizemos que houve a percolação do fluido. Reformulando o modelo acima, podemos escrever um código particularmente adaptado para simulações em Galáxias, onde iremos supor que os canais formam um reticulado, e que cada sítio da rede representa um poro que será interpretado como uma região ativa de formação estelar. Para cada elo teremos um pequeno canal ligando dois sítios vizinhos, que poderá, após um tempo "t", induzir ou não a formação de uma região ativa no poro vizinho. Para simular a passagem desta região ativa através dos poros, diremos que um elo está aberto com probabilidade p e fechado com probabilidade 1-p. Dessa forma, passamos a imaginar configurações de elos abertos e fechados, onde cada configuração ocorre com uma certa probabilidade, dada por p|A|(1-p)|F|, onde |A| é o número de elos abertos e |F| o número de elos fechados da configuração. A expressão anterior só tem importância física se |A| e |F| forem ambos finitos, pois, caso contrário, a probabilidade de ocorrência de uma dada configuração será sempre nula. Neste trabalho, foram considerados dados cinemáticos publicados na literatura bem como aqueles obtidos pelos autores a partir de observações fotométricas realizadas no Observatório de Las Campanãs, em 1994, para a Galáxia Anelada Peculiar HRG 03401. Mostraremos que para certos valores de p, situados entre 0,5 e 0,6, os clusters assim formados irão simular, de maneira coerente, o referido objeto.

  1. Carbon dioxide sequestration using NaHSO4 and NaOH: A dissolution and carbonation optimisation study.

    PubMed

    Sanna, Aimaro; Steel, Luc; Maroto-Valer, M Mercedes

    2017-03-15

    The use of NaHSO4 to leach out Mg fromlizardite-rich serpentinite (in form of MgSO4) and the carbonation of CO2 (captured in form of Na2CO3 using NaOH) to form MgCO3 and Na2SO4 was investigated. Unlike ammonium sulphate, sodium sulphate can be separated via precipitation during the recycling step avoiding energy intensive evaporation process required in NH4-based processes. To determine the effectiveness of the NaHSO4/NaOH process when applied to lizardite, the optimisation of the dissolution and carbonation steps were performed using a UK lizardite-rich serpentine. Temperature, solid/liquid ratio, particle size, concentration and molar ratio were evaluated. An optimal dissolution efficiency of 69.6% was achieved over 3 h at 100 °C using 1.4 M sodium bisulphate and 50 g/l serpentine with particle size 75-150 μm. An optimal carbonation efficiency of 95.4% was achieved over 30 min at 90 °C and 1:1 magnesium:sodium carbonate molar ratio using non-synthesised solution. The CO2 sequestration capacity was 223.6 g carbon dioxide/kg serpentine (66.4% in terms of Mg bonded to hydromagnesite), which is comparable with those obtained using ammonium based processes. Therefore, lizardite-rich serpentinites represent a valuable resource for the NaHSO4/NaOH based pH swing mineralisation process.

  2. Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle.

    PubMed

    Balashov, Sergei P; Imasheva, Eleonora S; Dioumaev, Andrei K; Wang, Jennifer M; Jung, Kwang-Hwan; Lanyi, Janos K

    2014-12-09

    A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na(+). The absorption spectrum of GLR is insensitive to Na(+) at concentrations of ≤3 M. However, very low concentrations of Na(+) cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a "Na(+)-independent" to a "Na(+)-dependent" photocycle (or photocycle branch) at ∼60 μM Na(+). The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na(+) concentration. This suggests that a high-affinity Na(+) binding site is created transiently after photoexcitation, and entry of Na(+) from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na(+) is needed for switching the reaction path at lower pH. The data suggest therefore competition between H(+) and Na(+) to determine the two alternative pathways. The idea that a Na(+) binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na(+) binds without photoexcitation. Binding of Na(+) to the mutant shifts the chromophore maximum to the red like that of H(+), which occurs in the photocycle of the wild type.

  3. 915 nm Light-Triggered Photodynamic Therapy and MR/CT Dual-Modal Imaging of Tumor Based on the Nonstoichiometric Na0.52 YbF3.52 :Er Upconversion Nanoprobes.

    PubMed

    Huang, Yanan; Xiao, Qingbo; Hu, Huishan; Zhang, Kunchi; Feng, Yamin; Li, Fujin; Wang, Jian; Ding, Xianguang; Jiang, Jiang; Li, Yanfang; Shi, Liyi; Lin, Hongzhen

    2016-08-01

    Lanthanide (Ln(3+) )-doped upconversion nanoparticles (UCNPs) as a new generation of multimodal bioprobes have attracted great interest for theranostic purpose. Herein, red emitting nonstoichiometric Na0.52 YbF3.52 :Er UCNPs of high luminescence intensity and color purity are synthesized via a facile solvothermal method. The red UC emission from the present nanophosphors is three times more intense than the well-known green emission from the ≈30 nm sized hexagonal-phase NaYF4 :Yb,Er UCNPs. By utilizing Na0.52 YbF3.52 :Er@SrF2 UCNPs as multifunctional nanoplatforms, highly efficient in vitro and in vivo 915 nm light-triggered photodynamic therapies are realized for the first time, with dramatically diminished overheating yet similar therapeutic effects in comparison to those triggered by 980 nm light. Moreover, by virtue of the high transverse relaxivity (r 2 ) and the strong X-ray attenuation ability of Yb(3+) ions, these UCNPs also demonstrate good performances as contrast agents for high contrast magnetic resonance and X-ray computed tomography dual-modal imaging. Our research shows the great potential of the red emitting Na0.52 YbF3.52 :Er UCNPs for multimodal imaging-guided photodynamic therapy of tumors.

  4. High plasma efavirenz level and CYP2B6*6 are associated with efavirenz-based HAART-induced liver injury in the treatment of naïve HIV patients from Ethiopia: a prospective cohort study.

    PubMed

    Yimer, G; Amogne, W; Habtewold, A; Makonnen, E; Ueda, N; Suda, A; Worku, A; Haefeli, W E; Burhenne, J; Aderaye, G; Lindquist, L; Aklillu, E

    2012-12-01

    The objective of this study was to assess the incidence, timing and identify pharmacogenetic, efavirenz (EFV) pharmacokinetic and biochemical predictors of EFV-based antiretroviral therapy (ART) drug-induced liver injury (DILI). ART-naïve HIV patients (n = 285) were prospectively enrolled. Pretreatment laboratory evaluations included hepatitis B surface antigen and C antibody, CD4 count and viral load. Liver tests were done at baseline, 1st, 2nd, 4th, 8th, 12th, 24th and 48th weeks during ART. Plasma EFV and 8-hydroxyefvairenz concentration was determined at week 4 using liquid chromatography-mass spectrometry. CYP2B6, CYP3A5, ABCB1 3435C/T and UGT2B7*2 genotyping was done using Taqman genotyping assay. Data were analyzed using survival analysis and Cox proportional hazards model. The incidence of DILI was 15.7% or 27.9 per 100 person-years and that of severe injury was 3.4% or 6.13 per 100 person-years. The median time for the development of DILI and severe injury was 2 and 4 weeks after initiation of ART, respectively. There was significant association of DILI with lower baseline platelet, albumin, log plasma viral load and CD4 count (P = 0.031, 0.037, 0.06 and 0.019, respectively). Elevated baseline alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, plasma EFV level and CYP2B6*6 were good predictors for the development of DILI (P = 0.03, 0.01, 0.016, 0.017 and 0.04, respectively). We report for the first time CYP2B6*6 as a putative genetic marker and high plasma EFV concentration as intermediate biomarker for vulnerability to EFV-induced liver injury in HIV patients. CYP2B6 genotyping and/or regular monitoring of EFV and lever enzymes level during early therapy is advised for early diagnosis and management of DILI.

  5. Measurement and Modeling of Mean Activity Coefficients of NaCl in an Aqueous Mixed Electrolyte Solution Containing Glycine

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Paniz; Dehghani, M. R.; Safahieh, Tina

    2016-08-01

    An electrochemical cell with two ion-selective electrodes (Na+ glass) and (Cl- solid state) was used to measure the mean ionic activity coefficient of NaCl in an aqueous mixture containing NaCl, glycine, and NaNO3 at 308.15 K. The experiments were conducted at fixed molality of NaNO3 (0.1 m) and various molalities of glycine (0-1 m) and NaCl (up to 0.8 m). The experimental data were modeled using a modified version of the Pitzer equation. Finally the activity coefficient ratio of glycine was determined based on the Maxwell equation.

  6. Development of Network Interface Cards for TRIDAQ systems with the NaNet framework

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Di Lorenzo, S.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Valente, P.; Vicini, P.

    2017-03-01

    NaNet is a framework for the development of FPGA-based PCI Express (PCIe) Network Interface Cards (NICs) with real-time data transport architecture that can be effectively employed in TRIDAQ systems. Key features of the architecture are the flexibility in the configuration of the number and kind of the I/O channels, the hardware offloading of the network protocol stack, the stream processing capability, and the zero-copy CPU and GPU Remote Direct Memory Access (RDMA). Three NIC designs have been developed with the NaNet framework: NaNet-1 and NaNet-10 for the CERN NA62 low level trigger and NaNet3 for the KM3NeT-IT underwater neutrino telescope DAQ system. We will focus our description on the NaNet-10 design, as it is the most complete of the three in terms of capabilities and integrated IPs of the framework.

  7. Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3-SrTiO3-(K0.5Na0.5)NbO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Liu, Laijun; Shi, Danping; Knapp, Michael; Ehrenberg, Helmut; Fang, Liang; Chen, Jun

    2014-11-01

    The effect of (K0.5Na0.5)NbO3 (KNN) addition on the ferroelectric and dielectric behavior of 90Bi0.5Na0.5TiO3-10SrTiO3 (BNT-ST) lead-free piezoceramics was investigated. Polarization and strain hysteresis loops indicate that a relaxor-antiferroelectric coherence will be produced with the addition of KNN as a replacement for ST up to 5% and the destabilization of the phase coherence is accompanied by an enhancement of the bipolar strain with the increase of temperature, which is ˜0.37% (corresponding to a large signal d33* of ˜530 pm/V at 90 °C) at 5 mol. % KNN content. This strain was analyzed as derived from an electrostrictive effect at lower electric fields and a field-induced antiferroelectric-ferroelectric phase transition at higher electric fields. The large polar strain response would be of great interest for environmental friendly high-temperature actuators.

  8. Anodic Corrosion Behavior of NiFe2O4-Based Cermet in Na3AlF6-K3AlF6-AlF3 for Aluminum Electrolysis

    NASA Astrophysics Data System (ADS)

    Tian, Zhongliang; Lai, Yanqing; Yang, Shu; Li, Jie; Hwang, Jiann-Yang; Liu, Yexiang

    2015-03-01

    A (Cu,Ni)/(10NiO-NiFe2O4) cermet was tested as an inert anode for aluminum electrolysis in Na3AlF6-K3AlF6-AlF3 melt at 1173 K (900 °C), and its corrosion behavior was studied. The results show that the low-temperature Na3AlF6-K3AlF6-AlF3 bath is beneficial, improving the service conditions. With the combined effects of the electrolyte composition and the nascent oxygen during electrolysis, the metal phase (Cu,Ni) at the surface of anode will not be leached preferentially, but be transferred into the aluminates including FeAl2O4, NiAl2O4 and CuAl2O4. This is helpful for the anode to improve its corrosion resistance.

  9. Band gap modification and ferroelectric properties of Bi{sub 0.5}(Na,K){sub 0.5}TiO{sub 3}-based by Li substitution

    SciTech Connect

    Quan, Ngo Duc; Hung, Vu Ngoc; Quyet, Nguyen Van; Chung, Hoang Vu; Dung, Dang Duc

    2014-01-15

    We report on the reduction of band gap in Bi{sub 0.5}(Na{sub 0.82-x}Li{sub x}K{sub 0.18}){sub 0.5}(Ti{sub 0.95}Sn{sub 0.05})O{sub 3} from 2.99 eV to 2.84 eV due to the substitutions of Li{sup +} ions to Na{sup +} sites. In addition, the lithium substitution samples exhibit an increasing of the maximal polarizations from 21.8 to 25.7 μC/cm{sup 2}. The polarization enhancement of ferroelectric and reduction of the band gaps are strongly related to the Li substitution concentration as evaluated via the electronegative between A-site and oxygen and tolerance factor. The results are promising for photovoltaic and photocatalytic applications.

  10. The paranodal cytoskeleton clusters Na+ channels at nodes of Ranvier

    PubMed Central

    Amor, Veronique; Zhang, Chuansheng; Vainshtein, Anna; Zhang, Ao; Zollinger, Daniel R; Eshed-Eisenbach, Yael; Brophy, Peter J; Rasband, Matthew N; Peles, Elior

    2017-01-01

    A high density of Na+ channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na+ channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na+ channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na+ channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na+channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton. DOI: http://dx.doi.org/10.7554/eLife.21392.001 PMID:28134616

  11. Theoretical considerations underlying Na(+) uptake mechanisms in freshwater fishes.

    PubMed

    Parks, Scott K; Tresguerres, Martin; Goss, Greg G

    2008-11-01

    Ion and acid-base regulating mechanisms have been studied at the fish gill for almost a century. Original models proposed for Na(+) and Cl(-) uptake, and their linkage with H(+) and HCO(3)(-) secretion have changed substantially with the development of more sophisticated physiological techniques. At the freshwater fish gill, two dominant mechanisms for Na(+) uptake from dilute environments have persisted in the literature. The use of an apical Na(+)/H(+) exchanger driven by a basolateral Na(+)/K(+)-ATPase versus an apical Na(+) channel electrogenically coupled to an apical H(+)-ATPase have been the source of debate for a number of years. Advances in molecular biology have greatly enhanced our understanding of the basic ion transport mechanisms at the fish gill. However, it is imperative to ensure that thermodynamic principles are followed in the development of new models for gill ion transport. This review will focus on the recent molecular advances for Na(+) uptake in freshwater fish. Emphasis will be placed on thermodynamic constraints that prevent electroneutral apical NHE function in most freshwater environments. By combining recent advances in molecular and functional physiology of fish gills with thermodynamic considerations of ion transport, our knowledge in the field should continue to grow in a logical manner.

  12. Astrocytes generate Na+-mediated metabolic waves.

    PubMed

    Bernardinelli, Yann; Magistretti, Pierre J; Chatton, Jean-Yves

    2004-10-12

    Glutamate-evoked Na+ increase in astrocytes has been identified as a signal coupling synaptic activity to glucose consumption. Astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. Here we show that intercellular Na+ waves are also evoked by activation of single cultured cortical mouse astrocytes in parallel with Ca2+ waves; however, there are spatial and temporal differences. Indeed, maneuvers that inhibit Ca2+ waves also inhibit Na+ waves; however, inhibition of the Na+/glutamate cotransporters or enzymatic degradation of extracellular glutamate selectively inhibit the Na+ wave. Thus, glutamate released by a Ca2+ wave-dependent mechanism is taken up by the Na+/glutamate cotransporters, resulting in a regenerative propagation of cytosolic Na+ increases. The Na+ wave gives rise to a spatially correlated increase in glucose uptake, which is prevented by glutamate transporter inhibition. Therefore, astrocytes appear to function as a network for concerted neurometabolic coupling through the generation of intercellular Na+ and metabolic waves.

  13. An empirical NaKCa geothermometer for natural waters

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1973-01-01

    An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340??C. The data for most geothermal waters cluster near a straight line when plotted as the function log ( Na K) + ?? log [ ??? (Ca) Na] vs reciprocal of absolute temperature, where ?? is either 1 3 or 4 3 depending upon whether the water equilibrated above or below 100??C. For most waters tested, the method gives better results than the Na K methods suggested by other workers. The ratio Na K should not be used to estimate temperature if ??? ( MCa) MNa is greater than 1. The Na K values of such waters generally yield calculated temperatures much higher than the actual temperature at which water interacted with the rock. A comparison of the composition of boiling hot-spring water with that obtained from a nearby well (170??C) in Yellowstone Park shows that continued water-rock reactions may occur during ascent of water even though that ascent is so rapid that little or no heat is lost to the country rock, i.e. the water cools adiabatically. As a result of such continued reaction, waters which dissolve additional Ca as they ascend from the aquifer to the surface will yield estimated aquifer temperatures that are too low. On the other hand, waters initially having enough Ca to deposit calcium carbonate during ascent may yield estimated aquifer temperatures that are too high if aqueous Na and K are prevented from further reaction with country rock owing to armoring by calcite or silica minerals. The Na-K-Ca geothermometer is of particular interest to those prospecting for geothermal energy. The method also may be of use in interpreting compositions of fluid inclusions. ?? 1973.

  14. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGES

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  15. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    SciTech Connect

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  16. Concepciones y concepciones alternativas de estudiantes universitarios/as de biologia y futuros maestros/as de Ciencia de escuela secundaria sobre la teoria de evolucion biologica por seleccion natural

    NASA Astrophysics Data System (ADS)

    Morales Ramos, Egda M.

    La teoria de evolucion biologica (TEB) por seleccion natural es uno de los conceptos unificadores mas importantes del curriculo de Biologia. En Puerto Rico se han hecho pocas investigaciones que abunden sobre las concepciones y concepciones alternativas (CA) que tienen los estudiantes universitarios/as de Biologia y los maestros/as de Ciencia del nivel secundario sobre esta teoria. La politica publica educativa actual establece mediante documentos normativos como los Estandares de contenido y Expectativas de grado del Programa de Ciencias [Puerto Rico Core Standards] la ensenanza de esta teoria. Sin embargo, no se encontraron preguntas sobre la seleccion natural en los ejercicios de practica provistos por el Departamento de Educacion para las pruebas estandarizadas lo cual puede influir para que no se ensene adecuadamente. Las preguntas de investigacion fueron 1. ¿Cuales son las concepciones y concepciones alternativas de estudiantes universitarios/as y de los futuros maestros y maestras de Ciencia sobre la TEB? 2. ¿Cuales conceptos que seleccionan los estudiantes universitarios/as y los futuros maestros y maestras de Ciencia sobre la TEB coinciden con lo aceptado como valido por la comunidad cientifica? y 3. ¿Como comparan las respuestas de la prueba original. v. Entendiendo el cambio biologico que mide concepciones y CA sobre la TEB por seleccion natural, con las de la traducida al idioma espanol? Se utilizo el metodo cuantitativo con un diseno de investigacion transversal por encuesta. La tecnica principal para recopilar los datos fue una prueba con doce items, que formo parte de un instrumento para el cual se recopilaron diversas fuentes de evidencia acerca de su validez. Las muestras estuvieron formadas por 69 estudiantes de Ciencias Naturales y por 16 estudiantes futuros maestros y maestras del nivel secundario de la UPR-RP. Se utilizaron estadisticas descriptivas, analisis de Ji cuadrado y se calcularon los coeficientes alfa de Cronbach y de Spearman

  17. Ionic regulation of Na absorption in proximal colon: cation inhibition of electroneutral Na absorption

    SciTech Connect

    Sellin, J.H.; De Soignie, R.

    1987-01-01

    Active Na absorption (J/sub net//sup NA/) in rabbit proximal colon in vitro is paradoxically stimulated as (Na) in the bathing media is lowered with constant osmolarity. J/sub m..-->..s//sup Na/ increases almost linearly from 0 to 50 mM (Na)/sub 0/ but then plateaus and actually decreases from 50 to 140 mM (Na)/sub 0/, consistent with inhibition of an active transport process. Both lithium and Na are equally effective inhibitors of J/sub net//sup Na/, whereas choline and mannitol do not block the high rate of J/sub net//sup Na/ observed in decreased (Na)/sub 0/. Either gluconate or proprionate replacement of Cl inhibits J/sub net//sup Na/. J/sub net//sup Na/ at lowered (Na)/sub 0/ is electrically silent and is accompanied by increased Cl absorption; it is inhibited by 10/sup -3/ M amiloride and 10/sup -3/ theophylline but not by 10/sup -4/ M bumetanide. Epinephrine is equally effective at stimulating Na absorption at 50 and 140 mM (Na). Na gradient experiments are consistent with a predominantly serosal effect of the decreased (Na)/sub 0/. These results suggest that 1) Na absorption in rabbit proximal colon in vitro is stimulated by decreased (Na); 2) the effect is cation specific, both Na and Li blocking the stimulatory effect; 3) the transport is mediated by Na-H exchange and is Cl dependent but 4) is under different regulatory mechanisms than the epinephrine-sensitive Na-Cl cotransport previously described in proximal colon. Under the appropriate conditions, proximal colon absorbs Na extremely efficiently. Na-H exchange in this epithelium is cation inhibitable, either directly or by a secondary regulatory process.

  18. Effect of NaCl and NaHCO3 on serum ionised calcium and blood gas status during sprinting.

    PubMed

    Beard, L A; Hinchcliff, K W

    2002-09-01

    Sodium bicarbonate is often administered to horses before racing in an attempt to delay fatigue and improve performance. We examined the effect of acid-base status on serum ionised calcium concentration (iCa) during high intensity exercise in 8 Standardbred mares. In a randomised, blinded, cross-over study, mares were administered each of 3 treatments, NaCl (0.7 g/kg bwt), NaHCO3 (1 g/kg bwt) in 3 l water, or 3 l of water only, 4 h before performing a standardised exercise test to fatigue on a treadmill. Mixed venous blood samples were collected as the horses ran for 5 min at 3 m/s, to fatigue at a predetermined speed (approximately 113% VO2max) and for 5 min at 3 m/s. There was no effect of treatment on time to fatigue (P = 0.744). NaHCO3 attenuated (P<0.05) the exercise-induced decrease in venous pH (mean +/- s.e. 6.97, 6.95 and 7.06 +/- 0.02 at end of sprint for water, NaCl and NaHCO3, respectively). Both serum total calcium concentration (tCa) and iCa increased (P<0.05) with running. NaHCO3 decreased iCa (P<0.05) compared to water; iCa of 1.58 and 1.44 +/- 0.04 mmol/l before exercise and 1.69 and 1.49 +/- 0.05 end sprint, for water and NaHCO3 treatments, respectively. These results demonstrate an effect of NaHCO3 on iCa during exercise. Further study is necessary to determine the effect of alterations in iCa on exercise performance.

  19. Deliquescence of NaCl-NaNO3 and KNO3-NaNO3 Salt Mixtures at 90C

    SciTech Connect

    Carroll, S; Craig, L; Wolery, T

    2003-12-29

    We conducted reversed deliquescence experiments in saturated NaCl-NaNO3-H2O and KNO{sub 3}-NaNO{sub 3}-H{sub 2}O systems at 90 C to determine relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Model predictions agree with experimental results for the NaCl-NaNO{sub 3}-H{sub 2}O system, but underestimate relative humidity by as much as 8% and solution composition by as much as 50% in the KNO{sub 3}-NaNO{sub 3}-H{sub 2}O system.

  20. Na+ Tolerance and Na+ Transport in Higher Plants

    PubMed Central

    TESTER, MARK; DAVENPORT, ROMOLA

    2003-01-01

    Tolerance to high soil [Na+] involves processes in many different parts of the plant, and is manifested in a wide range of specializations at disparate levels of organization, such as gross morphology, membrane transport, biochemistry and gene transcription. Multiple adaptations to high [Na+] operate concurrently within a particular plant, and mechanisms of tolerance show large taxonomic variation. These mechanisms can occur in all cells within the plant, or can occur in specific cell types, reflecting adaptations at two major levels of organization: those that confer tolerance to individual cells, and those that contribute to tolerance not of cells per se, but of the whole plant. Salt‐tolerant cells can contribute to salt tolerance of plants; but we suggest that equally important in a wide range of conditions are processes involving the management of Na+ movements within the plant. These require specific cell types in specific locations within the plant catalysing transport in a coordinated manner. For further understanding of whole plant tolerance, we require more knowledge of cell‐specific transport processes and the consequences of manipulation of transporters and signalling elements in specific cell types. PMID:12646496

  1. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Mezger, E. M.; Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  2. Do Src Kinase and Caveolin Interact Directly with Na,K-ATPase?

    PubMed

    Yosef, Eliyahu; Katz, Adriana; Peleg, Yoav; Mehlman, Tevie; Karlish, Steven J D

    2016-05-27

    Much evidence points to a role of Na,K-ATPase in ouabain-dependent signal transduction. Based on experiments with different cell lines and native tissue membranes, a current hypothesis postulates direct interactions between the Na,K-ATPase and Src kinase (non-receptor tyrosine kinase). Na,K-ATPase is proposed to bind Src kinase and inhibit its activity, whereas ouabain, the specific Na,K-ATPase inhibitor, binds and stabilizes the E2 conformation, thus exposing the Src kinase domain and its active site Tyr-418 for activation. Ouabain-dependent signaling is thought to be mediated within caveolae by a complex consisting of Na,K-ATPase, caveolin, and Src kinase. In the current work, we have looked for direct interactions utilizing purified recombinant Na,K-ATPase (human α1β1FXYD1 or porcine α1D369Nβ1FXYD1) and purified human Src kinase and human caveolin 1 or interactions between these proteins in native membrane vesicles isolated from rabbit kidney. By several independent criteria and techniques, no stable interactions were detected between Na,K-ATPase and purified Src kinase. Na,K-ATPase was found to be a substrate for Src kinase phosphorylation at Tyr-144. Clear evidence for a direct interaction between purified human Na,K-ATPase and human caveolin was obtained, albeit with a low molar stoichiometry (1:15-30 caveolin 1/Na,K-ATPase). In native renal membranes, a specific caveolin 14-5 oligomer (95 kDa) was found to be in direct interaction with Na,K-ATPase. We inferred that a small fraction of the renal Na,K-ATPase molecules is in a ∼1:1 complex with a caveolin 14-5 oligomer. Thus, overall, whereas a direct caveolin 1/Na,K-ATPase interaction is confirmed, the lack of direct Src kinase/Na,K-ATPase binding requires reassessment of the mechanism of ouabain-dependent signaling.

  3. Evaluation of recombinant monoclonal antibody SVmab1 binding to Na V1.7 target sequences and block of human Na V1.7 currents.

    PubMed

    Liu, Dong; Tseng, Mandy; Epstein, Linda F; Green, Lydia; Chan, Brian; Soriano, Brian; Lim, Desiree; Pan, Oscar; Murawsky, Christopher M; King, Chadwick T; Moyer, Bryan D

    2016-01-01

    Identification of small and large molecule pain therapeutics that target the genetically validated voltage-gated sodium channel Na V1.7 is a challenging endeavor under vigorous pursuit. The monoclonal antibody SVmab1 was recently published to bind the Na V1.7 DII voltage sensor domain and block human Na V1.7 sodium currents in heterologous cells. We produced purified SVmab1 protein based on publically available sequence information, and evaluated its activity in a battery of binding and functional assays. Herein, we report that our recombinant SVmAb1 does not bind peptide immunogen or purified Na V1.7 DII voltage sensor domain via ELISA, and does not bind Na V1.7 in live HEK293, U-2 OS, and CHO-K1 cells via FACS. Whole cell manual patch clamp electrophysiology protocols interrogating diverse Na V1.7 gating states in HEK293 cells, revealed that recombinant SVmab1 does not block Na V1.7 currents to an extent greater than observed with an isotype matched control antibody. Collectively, our results show that recombinant SVmab1 monoclonal antibody does not bind Na V1.7 target sequences or specifically inhibit Na V1.7 current.

  4. Evaluation of recombinant monoclonal antibody SVmab1 binding to Na V1.7 target sequences and block of human Na V1.7 currents

    PubMed Central

    Liu, Dong; Tseng, Mandy; Epstein, Linda F.; Green, Lydia; Chan, Brian; Soriano, Brian; Lim, Desiree; Pan, Oscar; Murawsky, Christopher M.; King, Chadwick T.; Moyer, Bryan D.

    2016-01-01

    Identification of small and large molecule pain therapeutics that target the genetically validated voltage-gated sodium channel Na V1.7 is a challenging endeavor under vigorous pursuit. The monoclonal antibody SVmab1 was recently published to bind the Na V1.7 DII voltage sensor domain and block human Na V1.7 sodium currents in heterologous cells. We produced purified SVmab1 protein based on publically available sequence information, and evaluated its activity in a battery of binding and functional assays. Herein, we report that our recombinant SVmAb1 does not bind peptide immunogen or purified Na V1.7 DII voltage sensor domain via ELISA, and does not bind Na V1.7 in live HEK293, U-2 OS, and CHO-K1 cells via FACS. Whole cell manual patch clamp electrophysiology protocols interrogating diverse Na V1.7 gating states in HEK293 cells, revealed that recombinant SVmab1 does not block Na V1.7 currents to an extent greater than observed with an isotype matched control antibody. Collectively, our results show that recombinant SVmab1 monoclonal antibody does not bind Na V1.7 target sequences or specifically inhibit Na V1.7 current. PMID:27990272

  5. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon.

    PubMed

    Soto, Fernando A; Yan, Pengfei; Engelhard, Mark H; Marzouk, Asma; Wang, Chongmin; Xu, Guiliang; Chen, Zonghai; Amine, Khalil; Liu, Jun; Sprenkle, Vincent L; El-Mellouhi, Fedwa; Balbuena, Perla B; Li, Xiaolin

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1) ; ≈ 1/10 of the normal capacity (250 mAh g(-1) ). Unusual selective/preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  6. Modeling solubility and acid-base properties of some amino acids in aqueous NaCl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures.

    PubMed

    Bretti, Clemente; Giuffrè, Ottavia; Lando, Gabriele; Sammartano, Silvio

    2016-01-01

    New potentiometric experiments have been performed in NaCl and in (CH3)4NCl media, to determine the protonation constants, the protonation enthalpy changes and the solubility of six natural α-amino acids, namely Glycine (Gly), Alanine (Ala), Valine (Val), Leucine (Leu), Serine (Ser) and Phenylalanine (Phe). The aim of the work is the rationalization of the protonation thermodynamics (log [Formula: see text], solubility and [Formula: see text]) in NaCl, determining recommended, tentative or provisional values in selected experimental conditions and to report, for the first time, data in a weak interacting medium, as (CH3)4NCl. Literature data analysis was performed selecting the most reliable values, analyzed together with new data here reported. Significant trends and similarities were observed in the behavior of the six amino acids, and in some cases it was possible to determine common parameters for the ionic strength and temperature dependence. In general, the first protonation step, relative to the amino group, is significantly exothermic (average value is [Formula: see text] = -44.5 ± 0.4 kJ mol(-1) at infinite dilution and T = 298.15 K), and the second, relative to the carboxylate group, is fairly close to zero ([Formula: see text] = -2.5 ± 1.6, same conditions). In both cases, the main contribution to the proton binding reaction is mainly entropic in nature. For phenylalanine and leucine, solubility measurements at different concentrations of supporting electrolyte allowed to determine total and specific solubility values, then used to obtain the Setschenow and the activity coefficients of all the species involved in the protonation equilibria. The values of the first protonation constant in (CH3)4NCl are lower than the corresponding values in NaCl, due to the weak interaction between the deprotonated amino group and (CH3)4N(+). In this light, differences between the protonation functions in NaCl and (CH3)4NCl were used for the quantification

  7. Fluid dilution and efficiency of Na+ transport in a mathematical model of a thick ascending limb cell

    PubMed Central

    Clausen, Chris; Marcano, Mariano; Layton, Anita T.; Layton, Harold E.; Moore, Leon C.

    2013-01-01

    Thick ascending limb (TAL) cells are capable of reducing tubular fluid Na+ concentration to as low as ∼25 mM, and yet they are thought to transport Na+ efficiently owing to passive paracellular Na+ absorption. Transport efficiency in the TAL is of particular importance in the outer medulla where O2 availability is limited by low blood flow. We used a mathematical model of a TAL cell to estimate the efficiency of Na+ transport and to examine how tubular dilution and cell volume regulation influence transport efficiency. The TAL cell model represents 13 major solutes and the associated transporters and channels; model equations are based on mass conservation and electroneutrality constraints. We analyzed TAL transport in cells with conditions relevant to the inner stripe of the outer medulla, the cortico-medullary junction, and the distal cortical TAL. At each location Na+ transport efficiency was computed as functions of changes in luminal NaCl concentration ([NaCl]), [K+], [NH4+], junctional Na+ permeability, and apical K+ permeability. Na+ transport efficiency was calculated as the ratio of total net Na+ transport to transcellular Na+ transport. Transport efficiency is predicted to be highest at the cortico-medullary boundary where the transepithelial Na+ gradient is the smallest. Transport efficiency is lowest in the cortex where luminal [NaCl] approaches static head. PMID:23097469

  8. GPU real-time processing in NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-01-01

    A commercial Graphics Processing Unit (GPU) is used to build a fast Level 0 (L0) trigger system tested parasitically with the TDAQ (Trigger and Data Acquisition systems) of the NA62 experiment at CERN. In particular, the parallel computing power of the GPU is exploited to perform real-time fitting in the Ring Imaging CHerenkov (RICH) detector. Direct GPU communication using a FPGA-based board has been used to reduce the data transmission latency. The performance of the system for multi-ring reconstrunction obtained during the NA62 physics run will be presented.

  9. Modification of thermal and electronic properties of bilayer graphene by using slow Na+ ions

    NASA Astrophysics Data System (ADS)

    Ryu, Mintae; Lee, Paengro; Kim, Jingul; Park, Heemin; Chung, Jinwook

    2016-12-01

    Bilayer graphene (BLG) has an extensive list of industrial applications in graphene-based nanodevices such as energy storage devices, flexible displays, and thermoelectric devices. By doping slow Na+ ions on Li-intercalated BLG, we find significantly improved thermal and electronic properties of BLG by using angle-resolved photoemission and high-resolution core level spectroscopy (HRCLS) with synchrotron photons. Our HRCLS data reveal that the adsorbed Na+ ions on a BLG produced by Li-intercalation through single layer graphene (SLG) spontaneously intercalate below the BLG, and substitute Li atoms to form Na-Si bonds at the SiC interface while preserving the same phase of BLG. This is in sharp contrast with no intercalation of Na+ ions on SLG though neutral Na atoms intercalate. The Na+-induced BLG is found to be stable upon heating up to T = 400 °C, but returns to SLG when heated at T d = 500 °C. The evolution of the π-bands upon doping the Na+ ions followed by thermal annealing shows that the carrier concentration of the π-band may be artificially controlled without damaging the Dirac nature of the π-electrons. The doubled desorption temperature from that (T d = 250 °C) of the Na-intercalated SLG together with the electronic stability of the Na+-intercalated BLG may find more practical and effective applications in advancing graphene-based thermoelectric devices and anode materials for rechargeable batteries.

  10. Conversion and Distribution of Lead and Tin in NaOH-NaNO3 Fusion Process

    NASA Astrophysics Data System (ADS)

    Liu, Jingxin; Guo, Xueyi

    2017-04-01

    Oxidizing alkali fusion process has been studied to extract amphoteric metals. Transformation and distribution behaviors of typical amphoteric metals Pb and Sn in the NaOH-NaNO3 fusion process are systemically studied by theoretical analysis and experimental verification done in this work. Functions of NaOH and NaNO3 in the fusion process were also investigated. The results show the fused products, Na2PbO3 and Na2SnO3, are captured in the flux, and Na2PbO4 is speculated to reduce to Pb(II) in the following leaching process. By measuring solubility data of NaOH-Na2SnO3-PbO-H2O system, a strategy of crystallization is proposed to separate Sn with Pb in concentrated alkaline solution, and slice Na2Sn(OH)6 is obtained as a product.

  11. Conversion and Distribution of Lead and Tin in NaOH-NaNO3 Fusion Process

    NASA Astrophysics Data System (ADS)

    Liu, Jingxin; Guo, Xueyi

    2016-12-01

    Oxidizing alkali fusion process has been studied to extract amphoteric metals. Transformation and distribution behaviors of typical amphoteric metals Pb and Sn in the NaOH-NaNO3 fusion process are systemically studied by theoretical analysis and experimental verification done in this work. Functions of NaOH and NaNO3 in the fusion process were also investigated. The results show the fused products, Na2PbO3 and Na2SnO3, are captured in the flux, and Na2PbO4 is speculated to reduce to Pb(II) in the following leaching process. By measuring solubility data of NaOH-Na2SnO3-PbO-H2O system, a strategy of crystallization is proposed to separate Sn with Pb in concentrated alkaline solution, and slice Na2Sn(OH)6 is obtained as a product.

  12. Silicene for Na-ion battery applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Schwingenschlögl, Udo

    2016-09-01

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954 mAh/g for freestanding silicene and 730 mAh/g for the graphene-silicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of \\gt 0.3 {{V}} against the Na{}+/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be \\lt 0.3 {eV}.

  13. Plant response to Na/sup +/, K/sup +/ and K/sup +//Na/sup +/ ratios under saline conditions

    SciTech Connect

    Devitt, D.A.

    1983-01-01

    This research was undertaken to more clearly determine plant response to saline-sodic waters. In the first experiment, the response of wheat and sorghum to different K/sup +//Na/sup +/ ratios at different osmotic potentials was investigated. The plants were grown in outdoor solution culture tanks containing polyethylene glycol and/or NaCl as osmoticum with 1/2 strength Hoagland as the base nutrient solution. The mass of the root system for both wheat and sorghum was determined primarily by the osmotic potential. However, root elongation was controlled primarily by the Na/sup +/ concentration. Sorghum root elongation rates decreased with increasing Na/sup +/ while those for wheat increased. Sodium was not translocated out of the sorghum root system until a critical Na/sup +/ root saturation level of .6 moles/kg was obtained. The second experiment was designed to investigate the water, nutrient and growth responses of the second crop of wheat in a wheat-sorghum-wheat rotation to zonal saline-sodic conditions.

  14. NaV3O8 nanosheet@polypyrrole core-shell composites with good electrochemical performance as cathodes for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Kang, Hongyan; Liu, Yongchang; Shang, Minghui; Lu, Tianyu; Wang, Yijing; Jiao, Lifang

    2015-05-01

    Novel NaV3O8 nanosheet@polypyrrole core-shell composites have been successfully prepared for the first time via a chemical oxidative polymerization method. Based on the morphological and microstructural characterization, it was found that polypyrrole (PPy) was uniformly wrapped on the surfaces of the NaV3O8 nanosheets. When used as a cathode for Na-ion batteries, the as-synthesized NaV3O8@10% PPy composite showed significantly improved cycling performance (with a discharge capacity of 99 mA h g-1 after 60 cycles at 80 mA g-1) and better rate capacity (with a discharge capacity of 63 mA h g-1 at a high current density of 640 mA g-1) than pristine NaV3O8 nanosheets. The greatly enhanced performance benefits from the unique core-shell structure, where the PPy coating not only prevents the pulverization and aggregation of the lamellar NaV3O8 nanosheets during cycling, which can improve the cycling stability, but also enhances the electrical conductivity of the composite, which can facilitate Na+ ion diffusion.Novel NaV3O8 nanosheet@polypyrrole core-shell composites have been successfully prepared for the first time via a chemical oxidative polymerization method. Based on the morphological and microstructural characterization, it was found that polypyrrole (PPy) was uniformly wrapped on the surfaces of the NaV3O8 nanosheets. When used as a cathode for Na-ion batteries, the as-synthesized NaV3O8@10% PPy composite showed significantly improved cycling performance (with a discharge capacity of 99 mA h g-1 after 60 cycles at 80 mA g-1) and better rate capacity (with a discharge capacity of 63 mA h g-1 at a high current density of 640 mA g-1) than pristine NaV3O8 nanosheets. The greatly enhanced performance benefits from the unique core-shell structure, where the PPy coating not only prevents the pulverization and aggregation of the lamellar NaV3O8 nanosheets during cycling, which can improve the cycling stability, but also enhances the electrical conductivity of the

  15. Thermodynamic Phase And Chemical Equilibrium At 0-110°C For The H+-K+-Na+-Cl--H2O System Up To 16 Molal And The HNO3-H2O System Up To 20 Molal Using An Association-Based Pitzer Model Compatible With ASPEN Plus

    SciTech Connect

    Todd T. Nichols; Dean D. Taylor

    2003-09-01

    A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100° C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110° C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry.s law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry’s law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.

  16. Thermodynamic Phase And Chemical Equilibrium At 0-110 C For The H+-K+-Na+-Cl--H2O System Up To 16 Molal And The HNO3-H2O System Up To 20 Molal Using An Association-Based Pitzer Model Compatible With ASPEN Plus

    SciTech Connect

    Nichols,T.T.; Taylor,D.D.

    2003-09-26

    A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100 C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110 C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry's law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry's law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.

  17. Energetics of phosphate frameworks containing zinc and cobalt: NaZnPO{sub 4}, NaH(ZnPO{sub 4}){sub 2}, NaZnPO{sub 4}.H{sub 2}O, NaZnPO{sub 4}.4/3 H{sub 2}O, and NaCo{sub x}Zn{sub 1-x}PO{sub 4}.4/3 H{sub 2}O

    SciTech Connect

    Le, So-Nhu; Navrotsky, Alexandra

    2007-09-15

    Differential scanning calorimetry and high temperature oxide melt solution calorimetry were used to study the enthalpy of the {alpha}-{beta} phase transformation of NaZnPO{sub 4} and enthalpies of formation of {alpha}-NaZnPO{sub 4}, NaH(ZnPO{sub 4}){sub 2}, NaZnPO{sub 4}.H{sub 2}O, and NaCo{sub x}Zn{sub 1-x}PO{sub 4}.4/3 H{sub 2}O (x=0, 0.1, 0.2, 0.3). The enthalpies of formation from the oxides of cobalt substituted in NaZnPO{sub 4}.4/3 H{sub 2}O do not depend on cobalt content, confirming similar acid-base interactions for Zn-PO{sub 4} and Co-PO{sub 4}. While water molecules stabilize zinc phosphate frameworks through solvating a cation or forming extra hydrogen bonds, the partial substitution of water for sodium oxide to form NaH(ZnPO{sub 4}){sub 2} represents the formation of an acidic compound with weaker acid-base interactions and less exothermic enthalpy of formation from oxides than Na{sub 2}(ZnPO{sub 4}){sub 2}. - Graphical abstract: Relative stability of NaZnPO{sub 4} dense phases, open frameworks, and hydrated frameworks. Enthalpy of interaction between water and NaZnPO{sub 4} frameworks is presented by reaction: NaZnPO{sub 4} (cr, open framework) + nH{sub 2}O (l) {yields} NaZnPO{sub 4}.nH{sub 2}O (cr, hydrated framework)

  18. The effect of Na vapor on the Na content of chondrules

    NASA Technical Reports Server (NTRS)

    Lewis, R. Dean; Lofgren, Gary E.; Franzen, Hugo F.; Windom, Kenneth E.

    1993-01-01

    Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasibility. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325 +/- 5 C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 C - 1350 C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the P(sub Na) for these experimental conditions to be in the 10(exp -6) atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable

  19. A highly specific sodium aptamer probed by 2-aminopurine for robust Na+ sensing.

    PubMed

    Zhou, Wenhu; Ding, Jinsong; Liu, Juewen

    2016-12-01

    Sodium is one of the most abundant metals in the environment and in biology, playing critical ecological and physiological roles. Na(+) is also the most common buffer salt for nucleic acids research, while its specific interaction with DNA has yet to be fully studied. Herein, we probe a highly selective and robust Na(+) aptamer using 2-aminopurine (2AP), a fluorescent adenine analog. This aptamer has two DNA strands derived from the Ce13d DNAzyme. By introducing a 2AP at the cleavage site of the substrate strand, Na(+) induces ∼40% fluorescence increase. The signaling is improved by a series of rational mutations, reaching >600% with the C10A20 double mutant. This fluorescence enhancement suggests relaxed base stacking near the 2AP label upon Na(+) binding. By replacing a non-conserved adenine in the enzyme strand by 2AP, Na(+)-dependent fluorescence quenching is observed, suggesting that the enzyme loop folds into a more compact structure upon Na(+) binding. The fluorescence changes allow for Na(+) detection. With an optimized sequence, a detection limit of 0.4 mM Na(+) is achieved, reaching saturated signal in less than 10 s. The sensor response is insensitive to ionic strength, which is critical for Na(+) detection.

  20. A highly specific sodium aptamer probed by 2-aminopurine for robust Na+ sensing

    PubMed Central

    Zhou, Wenhu; Ding, Jinsong; Liu, Juewen

    2016-01-01

    Sodium is one of the most abundant metals in the environment and in biology, playing critical ecological and physiological roles. Na+ is also the most common buffer salt for nucleic acids research, while its specific interaction with DNA has yet to be fully studied. Herein, we probe a highly selective and robust Na+ aptamer using 2-aminopurine (2AP), a fluorescent adenine analog. This aptamer has two DNA strands derived from the Ce13d DNAzyme. By introducing a 2AP at the cleavage site of the substrate strand, Na+ induces ∼40% fluorescence increase. The signaling is improved by a series of rational mutations, reaching >600% with the C10A20 double mutant. This fluorescence enhancement suggests relaxed base stacking near the 2AP label upon Na+ binding. By replacing a non-conserved adenine in the enzyme strand by 2AP, Na+-dependent fluorescence quenching is observed, suggesting that the enzyme loop folds into a more compact structure upon Na+ binding. The fluorescence changes allow for Na+ detection. With an optimized sequence, a detection limit of 0.4 mM Na+ is achieved, reaching saturated signal in less than 10 s. The sensor response is insensitive to ionic strength, which is critical for Na+ detection. PMID:27655630

  1. Growth of binary organic NLO crystals: m.NA-p.NA and m.NA-CNA system

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.

    1993-01-01

    Experiments were carried out to grow 3.Nitroaniline (m.NA) crystals doped with 4.Nitroaniline (p.NA) and 2.chloro 4.Nitroaniline (CNA). The measured undercooling for m.NA, p.NA, and CNA were 0.21 tm K, 0.23 tm K, and 0.35 tm K respectively, where tm represents the melting temperature of the pure component. Because of the crystals' large heat of fusion and large undercooling, it was not possible to grow good quality crystals with low thermal gradients. In the conventional two-zone Bridgman furnace we had to raise the temperature of the hot zone above the decomposition temperature of CNA, p.NA, and m.NA to achieve the desired thermal gradient. To avoid decomposition, we used an unconventional Bridgman furnace. Two immiscible liquids, silicone oil and ethylene glycol, were used to build a special two-zone Bridgman furnace. A temperature gradient of 18 K/cm was achieved without exceeding the decomposition temperature of the crystal. The binary crystals, m.NA-p.NA and m.NA-CNA, were grown in centimeter size in this furnace. X-ray and optical characterization showed good optical quality.

  2. Modification of single Na+ channels by batrachotoxin.

    PubMed Central

    Quandt, F N; Narahashi, T

    1982-01-01

    The modifications in the properties of voltage-gated Na+ channels caused by batrachotoxin were studied by using the patch clamp method for measuring single channel currents from excised membranes of N1E-115 neuroblastoma cells. The toxin-modified open state of the Na+ channel has a decreased conductance in comparison to that of normal Na+ channels. The lifetime of the modified open state is drastically prolonged, and channels now continue to open during a maintained depolarization so that the probability of a channel being open becomes constant. Modified and normal open states of Na+ channels coexist in batrachotoxin-exposed membrane patches. Unlike the normal condition, Na+ channels exposed to batrachotoxin open spontaneously at large negative potentials. These spontaneous openings apparently cause the toxin-induced increase in Na+ permeability which, in turn, causes membrane depolarization. PMID:6292915

  3. Maintaining the NA atmosphere of Mercury

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Morgan, T. H.

    1993-02-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  4. Maintaining the Na atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Morgan, Thomas H.

    1993-01-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  5. Ab initio calculations of Na and Ni diffusion in NaNi1/2Mn1/2O2 and NaNi1/3Mn1/3Co1/3O2 for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, J. J.; Yin, G. Q.; Jing, L. M.; Guan, J.; Wu, M. P.; Zhou, Y. L.; Lou, H. L.; Wang, Zhiguo

    2014-09-01

    In this paper, sodium and nickel ion dynamics in layered cathode materials of NaNi1/2Mn1/2O2 and NaNi1/3Mn1/3Co1/3O2 for Na-ion battery applications were investigated using first principles based on density functional theory. The diffusion pathways for sodium and nickel migration inside the layered cathode materials were optimized and their energy barriers were calculated based on the nudged elastic band method. The energy barrier of Na diffusion in NaNi1/2Mn1/2O2 and NaNi1/3Mn1/3Co1/3O2 is about 1.0 eV. However, when the Ni is located at the Na layer, i.e. occupying the Na position, the energy barrier for Ni diffusion inside the layered cathode materials is about 0.36 eV, which indicates that Ni will diffuse to the surface of electrode materials, thus will block or slow down the sodium diffusion, limiting the battery performance.

  6. EFFECTS OF PRECURSOR SOLUTION MODIFICATION ON THE CRYSTALLINITY AND ELECTRICAL PROPERTIES OF Na0.5Bi0.5TiO3-BiFeO3 BASED THIN FILM

    NASA Astrophysics Data System (ADS)

    Sui, Huiting; Yang, Changhong; Wang, Gaoyun; Feng, Chao

    2014-07-01

    For chemical solution decomposition process, the precursor solution is a basic factor affecting the quality of the deposited-film. In this paper, we choose (l00)-oriented 0.7[(Bi0.95Ce0.05)0.5Na0.5(Ti0.99Fe0.01)O3]-0.3BiFe0.97Mn0.03O3(0.7NBTCeFe-0.3BFOMn) thin films prepared by various precursor solutions for investigation. The roles of precursor solution modification on crystallinity, ferroelectric and dielectric properties are characterized. With the addition of polyethylene glycol into the solution, phase-pure perovskite structure can be obtained. Furthermore, when the volume ratio for the solvents (ethylene glycol to acetic acid) is modified as 2:1, enhanced ferroelectricity can be achieved with a remanent polarization (Pr) of 27.5 μC/cm2, which coincides well with the capacitance-voltage curve with relatively sharp feature. Also, the 0.7NBTCeFe-0.3BFOMn film exhibits a dielectric constant (ɛr) of 576 and dielectric loss (tan δ) of 0.123 at 100 kHz.

  7. Vibronic transitions in the alkali-metal (Li, Na, K, Rb) - alkaline-earth-metal (Ca, Sr) series: A systematic analysis of de-excitation mechanisms based on the graphical mapping of Frank-Condon integrals

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Meyer, Ralf; Hauser, Andreas W.; Ernst, Wolfgang E.

    2017-02-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. After forming weakly bound molecules from atoms in cold collisions, the preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. Accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. This paper is dedicated to the vibrational analysis of potentially relevant electronically excited states in the alkali-metal (Li, Na, K, Rb)- alkaline-earth metal (Ca,Sr) diatomic series. Graphical maps of Frank-Condon overlap integrals are presented for all molecules of the group. By comparison to overlap graphics produced for idealized potential surfaces, we judge the usability of the selected states for future experiments on laser-enhanced molecular formation from mixtures of quantum degenerate gases.

  8. Search of the Na in the Region of the Sublimation of the Near-Sun Dust

    NASA Astrophysics Data System (ADS)

    Delone, A. B.; Divlekeev, M. I.; Suchanov, E. A.; Gulyaev, R. A.; Yakunina, G. V.; Porfir'eva, G. A.

    An evaluation of the Na number in the sublimation zone of the near-Sun interplanetary dust, based on a comparison with the intensity of the radiation of the Na in the Earth atmosphere, has been obtained. The abundance of the Na in the column along the line of sight is less than 2 x 108atom cm-2. This result is compared with the values, determined on the base of the brightness of the zodiacal light, F-corona and by direct measurements of the dust density with space experiments.

  9. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. . Dept. of Computer Science Oak Ridge National Lab., TN ); Rosener, B. . Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  10. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. |; Rosener, B.

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  11. Simulation study of Na-majorite

    NASA Astrophysics Data System (ADS)

    Dymshits, A.; Vinograd, V.; Paulsen, N.; Winkler, B.; Perchuk, L.; Bobrov, A.

    2009-04-01

    Garnets, which are found as inclusions in diamonds, often have the excess of Na2O and SiO2 [Stachel, 2001]. Experimental studies suggest that Na is incorporated in pyrope-rich garnet via the coupled substitution Mg+Al=Na+Si [Bobrov et al., 2008]. This study is concerned with the determination of the structure and the thermodynamic properties of NaGrt (Na2MgSi5O12), which is assumed to be the end-member of pyrope-rich garnets with the excess of Na2O and SiO2. Static lattice energy calculations were performed with the program GULP [Gale & Rohl, 2003] using the force-field model [Vinograd et al., 2007] for 200 structures of Na2MgSi5O12 composition. These structures were prepared from Ia3-d pyrope Mg3Al2Si3O12 by replacing all octahedral Al atoms with Si and 2/3 of Mg atoms with Na. The distribution of Mg and Na was varied randomly. The static energies of these structures were cluster expanded using 8 pairwise effective cluster interactions (ECI). The ECIs were used to constrain Monte Carlo simulations within a 4×4×4 supercell (NNN exchangeable sites). The annealing experiments have shown that the lowest energy structure has the space group I4

  12. Painful Na-channelopathies: an expanding universe.

    PubMed

    Waxman, Stephen G

    2013-07-01

    The universe of painful Na-channelopathies--human disorders caused by mutations in voltage-gated sodium channels--has recently expanded in three dimensions. We now know that mutations of sodium channels cause not only rare genetic 'model disorders' such as inherited erythromelalgia and channelopathy-associated insensitivity to pain but also common painful neuropathies. We have learned that mutations of NaV1.8, as well as mutations of NaV1.7, can cause painful Na-channelopathies. Moreover, recent studies combining atomic level structural models and pharmacogenomics suggest that the goal of genomically guided pain therapy may not be unrealistic.

  13. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart

    PubMed Central

    Shattock, Michael J; Ottolia, Michela; Bers, Donald M; Blaustein, Mordecai P; Boguslavskyi, Andrii; Bossuyt, Julie; Bridge, John H B; Chen-Izu, Ye; Clancy, Colleen E; Edwards, Andrew; Goldhaber, Joshua; Kaplan, Jack; Lingrel, Jerry B; Pavlovic, Davor; Philipson, Kenneth; Sipido, Karin R; Xie, Zi-Jian

    2015-01-01

    This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field. PMID:25772291

  14. Rechargeable Room-Temperature Na-CO2 Batteries.

    PubMed

    Hu, Xiaofei; Sun, Jianchao; Li, Zifan; Zhao, Qing; Chen, Chengcheng; Chen, Jun

    2016-05-23

    Developing rechargeable Na-CO2 batteries is significant for energy conversion and utilization of CO2 . However, the reported batteries in pure CO2 atmosphere are non-rechargeable with limited discharge capacity of 200 mAh g(-1) . Herein, we realized the rechargeability of a Na-CO2 battery, with the proposed and demonstrated reversible reaction of 3 CO2 +4 Na↔2 Na2 CO3 +C. The battery consists of a Na anode, an ether-based electrolyte, and a designed cathode with electrolyte-treated multi-wall carbon nanotubes, and shows reversible capacity of 60000 mAh g(-1) at 1 A g(-1) (≈1000 Wh kg(-1) ) and runs for 200 cycles with controlled capacity of 2000 mAh g(-1) at charge voltage <3.7 V. The porous structure, high electro-conductivity, and good wettability of electrolyte to cathode lead to reduced electrochemical polarization of the battery and further result in high performance. Our work provides an alternative approach towards clean recycling and utilization of CO2 .

  15. Exploration of NaVOPO4 as a cathode for a Na-ion battery.

    PubMed

    Song, Jie; Xu, Maowen; Wang, Long; Goodenough, John B

    2013-06-11

    Monoclinic NaVOPO4 is explored as a cathode material for a sodium ion battery. It exhibits electrochemical activity operating at an average potential of 3.6 V (vs. Na(+)/Na) and delivers a reversible capacity of 90 mA h g(-1) at 1/15 C.

  16. Spectroscopy of new Sm(III) orange emitting phosphors of the type Na[Sm(SP)4], Na[Sm(WO)4] (where SP = C6H5S(O)2NP(O)(OCH3)2-; WO = CCl3C(O)NP(O)(OCH3)2-) and the polymeric materials obtained on their base

    NASA Astrophysics Data System (ADS)

    Cybińska, Joanna; Guzik, Małgorzata; Gerasymchuk, Yuriy; Trush, Victor A.; Lisiecki, Radosław; Legendziewicz, Janina

    2017-01-01

    Among a wide variety of solid state materials lanthanide beta-diketonates, their derivatives and polymeric materials based on them have become essential for advance technologies. Thus they are the subject of extensive spectroscopic studies. Using appropriate lanthanide chelates for the emission layer one can achieve electroluminescence covering the spectrum from blue to infrared. Moreover, compounds with proper chromophores can be the best way to excite and enhance the emission although the f-f transitions have forbidden character. Two types of new Sm(III) chelates; phosphoro and sulfono-derivatives of beta-diketones and polymeric materials on their base were obtained and characterized by the high resolution photoluminescence spectroscopy at 293, 77 and 4 K, as well as by luminescence decay times. Those new type of phosphors shows strong orange emission after excitation at 404 nm Sm(III) states and 280 nm ligand bands. Radiative transition probabilities were calculated from absorption spectra and Judd- Ofelt parameters evaluated. Effects of the temperature, rigidity of polymeric lattice and the energy of excitation on intensities of the Sm(III) fluorescence were studied. The paths of energy transfer are analysed and mechanism of this process is proposed.

  17. Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels*

    PubMed Central

    Thomson, Steven J.; Hansen, Angela; Sanguinetti, Michael C.

    2015-01-01

    Slo2 potassium channels have a very low open probability under normal physiological conditions, but are readily activated in response to an elevated [Na+]i (e.g. during ischemia). An intracellular Na+ coordination motif (DX(R/K)XXH) was previously identified in Kir3.2, Kir3.4, Kir5.1, and Slo2.2 channel subunits. Based loosely on this sequence, we identified five potential Na+ coordination motifs in the C terminus of the Slo2.1 subunit. The Asp residue in each sequence was substituted with Arg, and single mutant channels were heterologously expressed in Xenopus oocytes. The Na+ sensitivity of each of the mutant channels was assessed by voltage clamp of oocytes using micropipettes filled with 2 m NaCl. Wild-type channels and four of the mutant Slo2.1 channels were rapidly activated by leakage of NaCl solution into the cytoplasm. D757R Slo2.1 channels were not activated by NaCl, but were activated by the fenamate niflumic acid, confirming their functional expression. In whole cell voltage clamp recordings of HEK293 cells, wild-type but not D757R Slo2.1 channels were activated by a [NaCl]i of 70 mm. Thus, a single Asp residue can account for the sensitivity of Slo2.1 channels to intracellular Na+. In excised inside-out macropatches of HEK293 cells, activation of wild-type Slo2.1 currents by 3 mm niflumic acid was 14-fold greater than activation achieved by increasing [NaCl]i from 3 to 100 mm. Thus, relative to fenamates, intracellular Na+ is a poor activator of Slo2.1. PMID:25903137

  18. Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels.

    PubMed

    Thomson, Steven J; Hansen, Angela; Sanguinetti, Michael C

    2015-06-05

    Slo2 potassium channels have a very low open probability under normal physiological conditions, but are readily activated in response to an elevated [Na(+)]i (e.g. during ischemia). An intracellular Na(+) coordination motif (DX(R/K)XXH) was previously identified in Kir3.2, Kir3.4, Kir5.1, and Slo2.2 channel subunits. Based loosely on this sequence, we identified five potential Na(+) coordination motifs in the C terminus of the Slo2.1 subunit. The Asp residue in each sequence was substituted with Arg, and single mutant channels were heterologously expressed in Xenopus oocytes. The Na(+) sensitivity of each of the mutant channels was assessed by voltage clamp of oocytes using micropipettes filled with 2 M NaCl. Wild-type channels and four of the mutant Slo2.1 channels were rapidly activated by leakage of NaCl solution into the cytoplasm. D757R Slo2.1 channels were not activated by NaCl, but were activated by the fenamate niflumic acid, confirming their functional expression. In whole cell voltage clamp recordings of HEK293 cells, wild-type but not D757R Slo2.1 channels were activated by a [NaCl]i of 70 mM. Thus, a single Asp residue can account for the sensitivity of Slo2.1 channels to intracellular Na(+). In excised inside-out macropatches of HEK293 cells, activation of wild-type Slo2.1 currents by 3 mM niflumic acid was 14-fold greater than activation achieved by increasing [NaCl]i from 3 to 100 mM. Thus, relative to fenamates, intracellular Na(+) is a poor activator of Slo2.1.

  19. Alkali therapy attenuates the progression of kidney injury via Na/H exchanger inhibition in 5/6 nephrectomized rats.

    PubMed

    Kim, Sejoong; Lee, Jeonghwan; Heo, Nam Ju; Lee, Jae Wook; Han, Jin Suk

    2014-05-01

    Metabolic acidosis is a cause of renal disease progression, and alkali therapy ameliorates its progression. However, there are few reports on the role of renal acid-base transporters during alkali therapy. We evaluated the effect of sodium bicarbonate therapy and the role of acid-base transporters on renal disease progression in rats with a remnant kidney. Sprague-Dawley rats consumed dietary sodium bicarbonate (NaHCO3) or sodium chloride (NaCl) with 20% casein after a 5/6 nephrectomy. After being provided with a casein diet, the NaHCO3-treated group had higher levels of serum bicarbonate than the control group. At week 4, the glomerular filtration rate in the NaHCO3 group was higher than that in the NaCl group, and the difference became prominent at week 10. The glomerulosclerosis and tubulointerstitial damage indices in the NaHCO3 group were less severe compared with controls at week 4 and 10. The expression of the Na/H exchanger (NHE) was decreased, and apical reactivity was decreased in the NaHCO3 group, compared with the NaCl group. Endothelin-1 levels in the kidney were also decreased in the NaHCO3 group. Dietary sodium bicarbonate has the effects of ameliorating renal disease progression, which may be related to the altered expression of NHE in the remaining kidney.

  20. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  1. High NA Nicrostepper Final Optical Design Report

    SciTech Connect

    Hudyma, R

    1999-09-24

    The development of a new EUV high NA small-field exposure tool has been proposed for obtaining mask defect printability data in a timeframe several years before beta-tools are available. The imaging system for this new Micro-Exposure Tool (MET), would have a numerical aperture (NA) of about 0.3, similar to the NA for a beta-tool, but substantially larger than the 0.10 NA for the Engineering Test Stand (ETS) and 0.088 NA for the existing 10x Microstepper. This memorandum discusses the development and summarizes the performance of the camera for the MET and includes a listing of the design prescription, detailed analysis of the distortion, and analysis demonstrating the capability to resolution 30 nm features under the conditions of partially coherent illumination.

  2. Empirical evidence of Lat Heavy Bombardement (LHB) on the Moon based on data taken from Geologic Atlas of the Moon/Empiryczne dowody wielkiego bombardowania (LHB) na Księżycu na podstawie danych zaczerpniętych z Geologicznego atlasu Księżyca

    NASA Astrophysics Data System (ADS)

    Telecka, Małgorzata

    2013-12-01

    Lunar cratering chronology is a basis for chronology of meteorite impacts on Mars, Earth and on the other terrestrial planets. Moon is a calibration plate for cratering record for all inner solar system. There are two methods of preparing lunar flux curve: theoretical size-frequency distribution (SFD) proposed by Neukum et al. (2001) and empirical, based on the samples collected by the space probes Apollo and Luna. In this paper I checked empirically SFD method based on two maps: Geologic Map of the North Side of the Moon (1978) and Geologic Map of the South Side of the Moon (1979) collected in the Geologic Atlas of the Moon. There was count all craters dated on the each of the lunar stratigraphic units. Boundaries of the lunar geologic units are related to impact structures and lava flows. The most problematic is the age of these forms. Most of the known ages of the lunar basins and craters which are the limits of the stratigraphic units (Nectaris, Imbrium and Orientale basins and Copernicus crater - Table 1) were compared in this paper. If the number of craters in the lunar geological period is constant, duration of the geological units affects the diagram of the impact flux (Fig. 3-8). The period with the most intensive frequency of meteorite collisions is called Large Heavy Bombardment (LHB), but, as we see on figures 3-8, it changes depending on the used data. The length and boundaries of LHB period is a clue to understanding of early evolution of terrestrial planets and inner solar system

  3. Na+ binding to the Na(+)-glucose cotransporter is potential dependent.

    PubMed

    Bennett, E; Kimmich, G A

    1992-02-01

    Activity of the Na(+)-glucose cotransporter in LLC-PK1 epithelial cells was assayed by measuring sugar-induced currents (IAMG) using whole cell recording techniques. IAMG was compared among cells by standardizing the measured currents to cell size using cell capacitance measurements. IAMG at a given membrane potential was measured as a function of alpha-methylglucoside (AMG) concentration and can be fit to Michaelis-Menten kinetics. IAMG at varying Na+ concentrations can be described by the Hill equation with a Hill coefficient of 1.6 at all tested potentials. At high external Na+ levels (155 mM), Na+ is at least 90% saturating at all tested potentials. Maximal currents at a given membrane potential (Im) are calculated from the Michaelis-Menten equation fit to data measuring IAMG vs. AMG concentration at a constant Na+ concentration. Im showed potential dependence under all conditions. Potential-dependent Na+ binding rate(s) cannot alone explain the observed potential dependence of Im under saturating Na+ conditions. Therefore, because Im is potential dependent, at least one step of the transport cycle other than external Na+ binding must be potential dependent. Im was also calculated from data taken at 40 mM external Na+. At all potentials studied, Im at 155 mM Na+ is greater than Im calculated at 40 mM Na+. This implies that the rate of external Na+ binding to the transporter at 40 mM also affects the maximal transport rate. Furthermore, Im at 40 mM external Na+ increases with hyperpolarization faster than Im at 155 mM Na+. Together, these facts indicate that the rate at which Na+ binds to the transporter is also potential dependent.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Gibbs ensemble Monte Carlo simulation of supercritical CO2 adsorption on NaA and NaX zeolites

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan; Yang, Xiaoning

    2006-06-01

    Adsorption of supercritical carbon dioxide on two kinds of zeolites with identical chemical composition but different pore structure (NaA and NaX) was studied using the Gibbs ensemble Monte Carlo simulation. The model frameworks for the two zeolites with Si /Al ratio being unity have been chosen as the solid structures in the simulation. The adsorption behaviors of supercritical CO2 on the NaA and NaX zeolites, based on the adsorption isotherms and isosteric heats of adsorption, were discussed in detail and were compared with the available experimental results. A good agreement between the simulated and experimental results is obtained for both the adsorbed amount and the bulk phase density. The intermediate configurational snapshots and the radial distribution functions between zeolite and adsorbed CO2 molecules were collected in order to investigate the preferable adsorption locations and the confined structure behavior of CO2. The structure behaviors of the adsorbed CO2 molecules show various performances, as compared with the bulk phase, due to the confined effect in the zeolite pores.

  5. Relationship between L-glutamate-regulated intracellular Na+ dynamics and ATP hydrolysis in astrocytes.

    PubMed

    Magistretti, P J; Chatton, J-Y

    2005-01-01

    Glutamate uptake into astrocytes and the resulting increase in intracellular Na+ (Na+(i)) have been identified as a key signal coupling excitatory neuronal activity to increased glucose utilization. Arguments based mostly on mathematical modeling led to the conclusion that physiological concentrations of glutamate more than double astrocytic Na+/K+-ATPase activity, which should proportionally increase its ATP hydrolysis rate. This hypothesis was tested in the present study by fluorescence monitoring of free Mg2+ (Mg2+(i)), a parameter that inversely correlates with ATP levels. Glutamate application measurably increased Mg2+(i) (i.e. decreased ATP), which was reversible after glutamate washout. Na+(i) and ATP changes were then directly compared by simultaneous Na+(i) and Mg2+ imaging. Glutamate increased both parameters with different rates and blocking the Na+/K+-ATPase during the glutamate-evoked Na+(i) response, resulted in a drop of Mg2+(i) levels (i.e. increased ATP). Taken together, this study demonstrates the tight correlation between glutamate transport, Na+ homeostasis and ATP levels in astrocytes.

  6. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis.

    PubMed

    Shah, Preeya T; Martin, Rebecca; Yan, Yanling; Shapiro, Joseph I; Liu, Jiang

    2016-01-01

    Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT).

  7. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis

    PubMed Central

    Shah, Preeya T.; Martin, Rebecca; Yan, Yanling; Shapiro, Joseph I.; Liu, Jiang

    2016-01-01

    Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT). PMID:27445847

  8. Na-doped optical Germanium bulk crystals

    NASA Astrophysics Data System (ADS)

    Pekar, G. S.; Singaevsky, A. F.

    2012-09-01

    In an effort to develop a material for infrared (IR) optics with improved parameters, bulk crystals of optical germanium doped with Na have been first grown and studied. Single-crystalline and coarse-crystalline Ge:Na boules of different shapes and dimensions, up to 10 kg by weight, have been grown. Sodium was incorporated into the Ge crystal during the crystal growing from the melt. Despite the fact that Na contamination in the source material was not strictly controlled, the density of Na in the grown crystals determined by the neutron activation analysis as well as by the glow discharge mass spectrometry did not exceed 1015 cm-3. Just this value may be supposed to be close to the solubility limit of Na incorporated in Ge in the course of bulk crystal growth. A first demonstration of donor behavior of Na in bulk Ge crystals is made by means of a thermoelectric type of testing. An interstitial location of Na impurity has been verified by experiments on donor drift in the dc electric field. The crystals are grown with free electron density in the range from 5ṡ1013 to 4ṡ1014 cm-3 which is optimal for using Ge crystals as an optical material for fabricating passive elements of the IR technique. A comparison between the properties of Ge:Na crystals and Ge crystals doped with Sb, a conventional impurity in optical germanium, grown under the same technological conditions and from the same intrinsic Ge as a source material, revealed a number of advantages of Ge:Na crystals; among them, the higher transparency in the IR region, smaller radiation scattering and higher regular optical transmission, lower dislocation density, more uniform distribution of electrical and optical characteristics over the crystal volume, the identity of optical parameters in the single-crystalline, and coarse-crystalline boules. No degradation of optical elements fabricated from Ge:Na crystals was detected in the course of their commercial application, starting from 1998.

  9. Anomalously high Na(+) and low Li(+) mobility in intercalated Na2Ti6O13.

    PubMed

    Ling, Chen; Zhang, Ruigang

    2017-04-12

    We report an anomalous diffusion behavior in intercalated Na2Ti6O13. Using first-principles calculations, the direct migration of inserted Na(+) along the tunnel direction is predicted to have a barrier of 0.24-0.44 eV, while the migration of inserted Li(+) along the tunnel direction has a barrier of 0.86-1.15 eV. Although Li(+) can also diffuse along a zig-zag path in the tunnel, the barrier of 0.86-0.99 eV is still much higher than that for Na(+). Our results surprisingly lead to the conclusion that the diffusion of larger Na(+) is 4-8 orders of magnitude faster than Li(+) in the same host lattice, and explain the experimentally observed exceptional rate capability of Na2Ti6O13 as the Na-ion battery anode. The anomalous diffusion behavior is attributed to the geometric features of Na2Ti6O13. For migration of Li(+) it is necessary to weaken Li-O bonds and to overcome the repulsion between Li and host Na ions simultaneously, while for Na(+) diffusion the improved Na-O bonding at the transition state partially compensates for the energy penalty from the repulsion of host Na ions.

  10. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  11. Cytosolic Na+ controls and epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein.

    PubMed Central

    Komwatana, P; Dinudom, A; Young, J A; Cook, D I

    1996-01-01

    In tight Na+-absorbing epithelial cells, the fate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-beta-S, pertussis toxin, and antibodies against the alpha-subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-. Images Fig. 4 PMID:8755611

  12. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  13. Laser-induced ionization of Na vapor

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. Robert; Judge, D. L.; Roussel, F.; Carré, B.; Breger, P.; Spiess, G.

    1982-09-01

    The production of Na2+ ions by off-resonant laser excitation in the 5800-6200Å region mainly results from two-photon absorption by the Na2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na2 D1Πu Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na2+ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al. we estimate that the cross section for producing Na2+ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na2 molecules.

  14. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions.

    PubMed

    Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  15. NMR studies on Na+ transport in Synechococcus PCC 6311

    NASA Technical Reports Server (NTRS)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  16. Search for compounds of the NaBaR(BO{sub 3}){sub 2} family (R = La, Nd, Gd, and Yb) and the new NaBaYb(BO{sub 3}){sub 2} orthoborate

    SciTech Connect

    Svetlyakova, T. N. Kokh, A. E.; Kononova, N. G.; Fedorov, P. P.; Rashchenko, S. V.; Maillard, A.

    2013-01-15

    A search for compounds of the NaBaR(BO{sub 3}){sub 2} composition (where R = La{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, or Yb{sup 3+}) is performed by solid state synthesis and spontaneous crystallization. A new compound, NaBaYb(BO{sub 3}){sub 2}, is found in this series. It crystallizes in space group R3{sup -} and belongs to the family of sublayer complex orthoborates with isolated BO{sub 3} groups NaBaR(BO{sub 3}){sub 2} (R = Y, Sc, and Yb). Theoretical X-ray powder diffraction patterns of NaBaY(BO{sub 3}){sub 2}, NaBaSc(BO{sub 3}){sub 2}, and NaBaYb(BO{sub 3}){sub 2} are calculated based on single-crystal data.

  17. Energetics of cobalt phosphate frameworks: {alpha}, {beta}, and red NaCoPO{sub 4}

    SciTech Connect

    Le, So-Nhu; Eng, Hank W.; Navrotsky, Alexandra . E-mail: anavrotsky@ucdavis.edu

    2006-12-15

    Thermal behavior, relative stability, and enthalpy of formation of {alpha} (pink phase), {beta} (blue phase), and red NaCoPO{sub 4} are studied by differential scanning calorimetry, X-ray diffraction, and high-temperature oxide melt drop solution calorimetry. Red NaCoPO{sub 4} with cobalt in trigonal bipyramidal coordination is metastable, irreversibly changing to {alpha} NaCoPO{sub 4} at 827 K with an enthalpy of phase transition of -17.4{+-}6.9 kJ mol{sup -1}. {alpha} NaCoPO{sub 4} with cobalt in octahedral coordination is the most stable phase at room temperature. It undergoes a reversible phase transition to the {beta} phase (cobalt in tetrahedra) at 1006 K with an enthalpy of phase transition of 17.6{+-}1.3 kJ mol{sup -1}. Enthalpy of formation from oxides of {alpha}, {beta}, and red NaCoPO{sub 4} are -349.7{+-}2.3, -332.1{+-}2.5, and -332.3{+-}7.2 kJ mol{sup -1}; standard enthalpy of formation of {alpha}, {beta}, and red NaCoPO{sub 4} are -1547.5{+-}2.7, -1529.9{+-}2.8, and -1530.0{+-}7.3 kJ mol{sup -1}, respectively. The more exothermic enthalpy of formation from oxides of {beta} NaCoPO{sub 4} compared to a structurally related aluminosilicate, NaAlSiO{sub 4} nepheline, results from the stronger acid-base interaction of oxides in {beta} NaCoPO{sub 4} (Na{sub 2}O, CoO, P{sub 2}O{sub 5}) than in NaAlSiO{sub 4} nepheline (Na{sub 2}O, Al{sub 2}O{sub 3}, SiO{sub 2}). - Graphical abstract: Relative stability of NaCoPO{sub 4} polymorphs compared to the most stable phase, {alpha} NaCoPO{sub 4}.

  18. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis.

    PubMed

    Inoue, Takashi A; Hata, Tamako; Asaoka, Kiyoshi; Ito, Tetsuo; Niihara, Kinuko; Hagiya, Hiroshi; Yokohari, Fumio

    2012-12-01

    Many butterflies acquire nutrients from non-nectar sources such as puddles. To better understand how male Papilio butterflies identify suitable sites for puddling, we used behavioral and electrophysiological methods to examine the responses of Japanese Papilio butterflies to Na(+), K(+), Ca(2+), and Mg(2+). Based on behavioral analyses, these butterflies preferred a 10-mM Na(+) solution to K(+), Ca(2+), and Mg(2+) solutions of the same concentration and among a tested range of 1 mM to 1 M NaCl. We also measured the ion concentrations of solutions sampled from puddling sites in the field. Na(+) concentrations of the samples were up to 6 mM, slightly lower than that preferred by butterflies in the behavioral experiments. Butterflies that sipped the 10 mM Na(+) solution from the experimental trays did not continue to puddle on the ground. Additionally, butterflies puddled at sites where the concentrations of K(+), Ca(2+), and/or Mg(2+) were higher than that of Na(+). This suggests that K(+), Ca(2+), and Mg(2+) do not interfere with the detection of Na(+) by the Papilio butterfly. Using an electrophysiological method, tip recordings, receptor neurons in contact chemosensilla inside the proboscis evoked regularly firing impulses to 1, 10, and 100 mM NaCl solutions but not to CaCl(2) or MgCl(2). The dose-response patterns to the NaCl solutions were different among the neurons, which were classified into three types. These results showed that Japanese Papilio butterflies puddle using Na(+) detected by the contact chemosensilla in the proboscis, which measure its concentration.

  19. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis

    NASA Astrophysics Data System (ADS)

    Inoue, Takashi A.; Hata, Tamako; Asaoka, Kiyoshi; Ito, Tetsuo; Niihara, Kinuko; Hagiya, Hiroshi; Yokohari, Fumio

    2012-12-01

    Many butterflies acquire nutrients from non-nectar sources such as puddles. To better understand how male Papilio butterflies identify suitable sites for puddling, we used behavioral and electrophysiological methods to examine the responses of Japanese Papilio butterflies to Na+, K+, Ca2+, and Mg2+. Based on behavioral analyses, these butterflies preferred a 10-mM Na+ solution to K+, Ca2+, and Mg2+ solutions of the same concentration and among a tested range of 1 mM to 1 M NaCl. We also measured the ion concentrations of solutions sampled from puddling sites in the field. Na+ concentrations of the samples were up to 6 mM, slightly lower than that preferred by butterflies in the behavioral experiments. Butterflies that sipped the 10 mM Na+ solution from the experimental trays did not continue to puddle on the ground. Additionally, butterflies puddled at sites where the concentrations of K+, Ca2+, and/or Mg2+ were higher than that of Na+. This suggests that K+, Ca2+, and Mg2+ do not interfere with the detection of Na+ by the Papilio butterfly. Using an electrophysiological method, tip recordings, receptor neurons in contact chemosensilla inside the proboscis evoked regularly firing impulses to 1, 10, and 100 mM NaCl solutions but not to CaCl2 or MgCl2. The dose-response patterns to the NaCl solutions were different among the neurons, which were classified into three types. These results showed that Japanese Papilio butterflies puddle using Na+ detected by the contact chemosensilla in the proboscis, which measure its concentration.

  20. Characteristics and pharmacological regulation of epithelial Na+ channel (ENaC) and epithelial Na+ transport.

    PubMed

    Marunaka, Yoshinori

    2014-01-01

    Epithelial Na(+) transport participates in control of various body functions and conditions: e.g., homeostasis of body fluid content influencing blood pressure, control of amounts of fluids covering the apical surface of alveolar epithelial cells at appropriate levels for normal gas exchange, and prevention of bacterial/viral infection. Epithelial Na(+) transport via the transcellular pathway is mediated by the entry step of Na(+) across the apical membrane via Epithelial Na(+) Channel (ENaC) located at the apical membrane, and the extrusion step of Na(+) across the basolateral membrane via the Na(+),K(+)-ATPase located at the basolateral membrane. The rate-limiting step of the epithelial Na(+) transport via the transcellular pathway is generally recognized to be the entry step of Na(+) across the apical membrane via ENaC. Thus, up-/down-regulation of ENaC essentially participates in regulatory systems of blood pressure and normal gas exchange. Amount of ENaC-mediated Na(+) transport is determined by the number of ENaCs located at the apical membrane, activity (open probability) of individual ENaC located at the apical membrane, single channel conductance of ENaC located at the apical membrane, and driving force for the Na(+) entry via ENaCs across the apical membrane. In the present review article, I discuss the characteristics of ENaC and how these factors are regulated.

  1. Dissociation energy of the ground state of NaH

    NASA Astrophysics Data System (ADS)

    Huang, Hsien-Yu; Lu, Tsai-Lien; Whang, Thou-Jen; Chang, Yung-Yung; Tsai, Chin-Chun

    2010-07-01

    The dissociation energy of the ground state of NaH was determined by analyzing the observed near dissociation rovibrational levels. These levels were reached by stimulated emission pumping and fluorescence depletion spectroscopy. A total of 114 rovibrational levels in the ranges 9≤v″≤21 and 1≤J″≤14 were assigned to the X Σ1+ state of NaH. The highest vibrational level observed was only about 40 cm-1 from the dissociation limit in the ground state. One quasibound state, above the dissociation limit and confined by the centrifugal barrier, was observed. Determining the vibrational quantum number at dissociation vD from the highest four vibrational levels yielded the dissociation energy De=15 815±5 cm-1. Based on new observations and available data, a set of Dunham coefficients and the rotationless Rydberg-Klein-Rees curve were constructed. The effective potential curve and the quasibound states were discussed.

  2. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

    PubMed

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2016-03-08

    The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect

  3. Interaction between Na+ and H+ ions on Na-H exchange in sheep cardiac Purkinje fibers.

    PubMed

    Wu, M L; Vaughan-Jones, R D

    1997-04-01

    The interaction between Na+ and H+ ions upon Na-H exchange (NHE) was examined in sheep cardiac Purkinje fibers. Acid equivalent fluxes through NHE were examined using recordings of intracellular pH and Na+ in isolated preparations measured with ion selective microelectrodes. The extent of acid-extrusion by NHE was estimated from pH(i) recovery-rate, multiplied by beta(i) (intracellular buffering power) in response to an internal acid load induced by 20 mm NH4Cl removal (nominally HCO3- free media). A mixed inhibitory effect was found of extracellular H+ on external Na+-activation of NHE (i.e. an increase, at low pH(o), in the apparent Michaelis constant for external Na+ ions [K(Nao)(0.5)] and a decrease in the maximum transport rate [V(Nao)(max)]). In addition, we confirmed that the stoichiometry of Na(o) binding is unaffected by the pH(o) (between 7.5 and 6.5), showing a Hill coefficient close to one. The interaction between Na+ and H+ ions at the internal face of the cardiac NHE was also studied. Our evidence suggests that an increase in the intracellular Na+ ion concentration ([Na+]i) inhibits acid efflux and that this inhibition can be approximated by the decrease in thermodynamic driving force caused by reducing the transmembrane Na+ gradient. It appears, however, that small variations in [Na+]i from the normal resting level (intracellular sodium activity, a(i)Na = 7 to 13 mm) have little or no effect on acid efflux, suggesting that variation of a(i)Na is not a physiologically important controller of NHE activity in heart.

  4. Modification of thermal and electronic properties of bilayer graphene by using slow Na(+) ions.

    PubMed

    Ryu, Mintae; Lee, Paengro; Kim, Jingul; Park, Heemin; Chung, Jinwook

    2016-12-02

    Bilayer graphene (BLG) has an extensive list of industrial applications in graphene-based nanodevices such as energy storage devices, flexible displays, and thermoelectric devices. By doping slow Na(+) ions on Li-intercalated BLG, we find significantly improved thermal and electronic properties of BLG by using angle-resolved photoemission and high-resolution core level spectroscopy (HRCLS) with synchrotron photons. Our HRCLS data reveal that the adsorbed Na(+) ions on a BLG produced by Li-intercalation through single layer graphene (SLG) spontaneously intercalate below the BLG, and substitute Li atoms to form Na-Si bonds at the SiC interface while preserving the same phase of BLG. This is in sharp contrast with no intercalation of Na(+) ions on SLG though neutral Na atoms intercalate. The Na(+)-induced BLG is found to be stable upon heating up to T = 400 °C, but returns to SLG when heated at T d = 500 °C. The evolution of the π-bands upon doping the Na(+) ions followed by thermal annealing shows that the carrier concentration of the π-band may be artificially controlled without damaging the Dirac nature of the π-electrons. The doubled desorption temperature from that (T d = 250 °C) of the Na-intercalated SLG together with the electronic stability of the Na(+)-intercalated BLG may find more practical and effective applications in advancing graphene-based thermoelectric devices and anode materials for rechargeable batteries.

  5. Thermodynamic Model for the Solubility of Cr(OH)(3)(am) in Concentrated NaOH and NaOH-NaNO3 Solutions

    SciTech Connect

    Rai, Dhanpat ); Hess, Nancy J. ); Rao, Linfeng; Zhang, Zhicheng; Felmy, Andrew R. ); Moore, Dean A. ); Clark, Sue B.; Lumetta, Gregg J. )

    2001-12-01

    The objectives of this study were to develop a reliable thermodynamic model for predicting Cr(III) behavior in concentrated NaOH and in mixed NaOH-NaNO3 solutions for application to effective caustic leaching strategies for high-level tank sludges. To meet these objectives, the solubility of Cr(OH)3(am) was measured in 0.003 to 10.5 m NaOH, 3.0 m es in NaOH concentration...

  6. Hydrogen-fluorine exchange in NaBH4-NaBF4.

    PubMed

    Rude, L H; Filsø, U; D'Anna, V; Spyratou, A; Richter, B; Hino, S; Zavorotynska, O; Baricco, M; Sørby, M H; Hauback, B C; Hagemann, H; Besenbacher, F; Skibsted, J; Jensen, T R

    2013-11-07

    Hydrogen-fluorine exchange in the NaBH4-NaBF4 system is investigated using a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed using in situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF2H2 in the temperature range T = 200 to 215 °C. Combined use of solid-state (19)F MAS NMR, FT-IR and DFT calculations supports the formation of a BF2H2(-) complex ion, reproducing the observation of a (19)F chemical shift at -144.2 ppm, which is different from that of NaBF4 at -159.2 ppm, along with the new absorption bands observed in the IR spectra. After further heating, the fluorine substituted compound becomes X-ray amorphous and decomposes to NaF at ~310 °C. This work shows that fluorine-substituted borohydrides tend to decompose to more stable compounds, e.g. NaF and BF3 or amorphous products such as closo-boranes, e.g. Na2B12H12. The NaBH4-NaBF4 composite decomposes at lower temperatures (300 °C) compared to NaBH4 (476 °C), as observed by thermogravimetric analysis. NaBH4-NaBF4 (1:0.5) preserves 30% of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 8% for NaBH4 as measured using Sievert's method under identical conditions, but more than 50% using prolonged hydrogen absorption time. The reversible hydrogen storage capacity tends to decrease possibly due to the formation of NaF and Na2B12H12. On the other hand, the additive sodium fluoride appears to facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material from the sample container for samples of NaBH4-NaF.

  7. Deliquescence of NaCl-NaNO3, KNO3-NaNO3, and NaCl-KNO3 Salt Mixtures From 90 to 120?C

    SciTech Connect

    Carroll, S A; Craig, L; Wolery, T J

    2004-10-20

    We conducted reversed deliquescence experiments in saturated NaCl-NaNO{sub 3}-H{sub 2}O, KNO{sub 3}-NaNO{sub 3}-H{sub 2}O, and NaCl-KNO{sub 3}-H{sub 2}O systems from 90 to 120 C as a function of relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Discrepancy between model prediction and experimental code can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25 C models for Cl-NO{sub 3} and K-NO{sub 3} ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the non-ideal behavior of these highly concentrated solutions.

  8. Undiagnosed leptospirosis cases in naïve and vaccinated dogs: properties of a serological test based on a synthetic peptide derived from Hap1/LipL32 (residues 154-178).

    PubMed

    Andre-Fontaine, Geneviève; Aviat, Florence; Marie, Jean-Lou; Chatrenet, Benoit

    2015-04-01

    Leptospirosis is a common disease in dogs, despite having current vaccinations. However, leptospirosis diagnosis based on the routine Microscopic Agglutination Test (MAT) leads to confusing conclusions, especially for infected vaccinated dogs. Indeed, both bacterin and natural infection stimulate the production of agglutinating antibodies. In experimentally infected dogs, antibodies against the peptide PP derived from Hap1/Lipl32 were raised earlier than agglutinating antibodies. The background level of these antibodies was determined in a group of 109 healthy dogs, either vaccinated or not against leptospirosis, with a specificity for IgM of 96.4% and for IgG of 95.5%. PP ELISA was subsequently performed with 118 sera from dogs with suspected leptospirosis that was not confirmed by MAT. New leptospirosis cases based on the PP ELISA results were suspected in 14 out of 102 vaccinated dogs and in two out of 16 non-vaccinated dogs. These results highlight the importance of serological diagnosis corresponding to an interesting window when it is too late for PCR detection and too early to be confirmed by MAT.

  9. Deep-ultraviolet nonlinear optical materials: Na2Be4B4O11 and LiNa5Be12B12O33.

    PubMed

    Huang, Hongwei; Liu, Lijuan; Jin, Shifeng; Yao, Wenjiao; Zhang, Yihe; Chen, Chuangtian

    2013-12-11

    Deep-UV coherent light generated by nonlinear optical (NLO) materials possesses highly important applications in photonic technologies. Beryllium borates comprising anionic planar layers have been shown to be the most promising deep UV NLO materials. Here, two novel NLO beryllium borates Na2Be4B4O11 and LiNa5Be12B12O33 have been developed through cationic structural engineering. The most closely arranged [Be2BO5]∞ planar layers, connected by the flexible [B2O5] groups, have been found in their structures. This structural regulation strategy successfully resulted in the largest second harmonic generation (SHG) effects in the layered beryllium borates, which is ~1.3 and 1.4 times that of KDP for Na2Be4B4O11 and LiNa5Be12B12O33, respectively. The deep-UV optical transmittance spectra based on single crystals indicated their short-wavelength cut-offs are down to ~170 nm. These results demonstrated that Na2Be4B4O11 and LiNa5Be12B12O33 possess very promising application as deep-UV NLO crystals.

  10. Kinetic Analysis of Membrane Potential Dye Response to NaV1.7 Channel Activation Identifies Antagonists with Pharmacological Selectivity against NaV1.5.

    PubMed

    Finley, Michael; Cassaday, Jason; Kreamer, Tony; Li, Xinnian; Solly, Kelli; O'Donnell, Greg; Clements, Michelle; Converso, Antonella; Cook, Sean; Daley, Chris; Kraus, Richard; Lai, Ming-Tain; Layton, Mark; Lemaire, Wei; Staas, Donnette; Wang, Jixin

    2016-06-01

    The NaV1.7 voltage-gated sodium channel is a highly valued target for the treatment of neuropathic pain due to its expression in pain-sensing neurons and human genetic mutations in the gene encoding NaV1.7, resulting in either loss-of-function (e.g., congenital analgesia) or gain-of-function (e.g., paroxysmal extreme pain disorder) pain phenotypes. We exploited existing technologies in a novel manner to identify selective antagonists of NaV1.7. A full-deck high-throughput screen was developed for both NaV1.7 and cardiac NaV1.5 channels using a cell-based membrane potential dye FLIPR assay. In assay development, known local anesthetic site inhibitors produced a decrease in maximal response; however, a subset of compounds exhibited a concentration-dependent delay in the onset of the response with little change in the peak of the response at any concentration. Therefore, two methods of analysis were employed for the screen: one to measure peak response and another to measure area under the curve, which would capture the delay-to-onset phenotype. Although a number of compounds were identified by a selective reduction in peak response in NaV1.7 relative to 1.5, the AUC measurement and a subsequent refinement of this measurement were able to differentiate compounds with NaV1.7 pharmacological selectivity over NaV1.5 as confirmed in electrophysiology.

  11. Activation of DOR Attenuates Anoxic K+ Derangement via Inhibition of Na+ Entry in Mouse Cortex

    PubMed Central

    Chao, Dongman; Bazzy-Asaad, Alia; Balboni, Gianfranco; Salvadori, Severo

    2008-01-01

    We have recently found that in the mouse cortex, activation of δ-opioid receptor (DOR) attenuates the disruption of K+ homeostasis induced by hypoxia or oxygen–glucose deprivation. This novel observation suggests that DOR may protect neurons from hypoxic/ischemic insults via the regulation of K+ homeostasis because the disruption of K+ homeostasis plays a critical role in neuronal injury under hypoxic/ischemic stress. The present study was performed to explore the ionic mechanism underlying the DOR-induced neuroprotection. Because anoxia causes Na+ influx and thus stimulates K+ leakage, we investigated whether DOR protects the cortex from anoxic K+ derangement by targeting the Na+-based K+ leakage. By using K+-sensitive microelectrodes in mouse cortical slices, we showed that 1) lowering Na+ concentration and substituting with impermeable N-methyl-D-glucamine caused a concentration-dependent attenuation of anoxic K+ derangement; 2) lowering Na+ concentration by substituting with permeable Li+ tended to potentiate the anoxic K+ derangement; and 3) the DOR-induced protection against the anoxic K+ responses was largely abolished by low-Na+ perfusion irrespective of the substituted cation. We conclude that external Na+ concentration greatly influences anoxic K+ derangement and that DOR activation likely attenuates anoxic K+ derangement induced by the Na+-activated mechanisms in the cortex. PMID:18203692

  12. Mesopore control of high surface area NaOH-activated carbon.

    PubMed

    Tseng, Ru-Ling

    2006-11-15

    Activated carbon with BET surface areas in a narrow range from 2318 to 2474 m2/g was made by soaking the char made from corncob in a concentrated NaOH solution at NaOH/char ratios from 3 to 6; the mesopore volumes of the activated carbon were significantly changed from 21 to 58%. The relationships between pore properties (Sp, Vpore, Vmicro/Vpore, Dp) and NaOH dosage were investigated. Comparisons between the methods of NaOH and KOH activation revealed that NaOH activation can suitably control the mesopore specific volume of the activated carbon. Elemental analysis revealed that the H/C and O/C values of the activated carbons of NaOH/char ratios from 3 to 6 were significantly lower. SEM observation of surface hole variation of the activated carbon ascertained that the reaction process was inner pore etching. Based on the above three measurements and experimental investigations, the assumption made by previous researchers, namely that NaOH and KOH produce similar results, was challenged. Furthermore, the adsorption kinetics was used to investigate the adsorption rate of an Elovich equation to determine the relationships between the adsorption behavior on larger molecules (dyes) and smaller molecules (phenols) and the pore structure of the activated carbon.

  13. Solvation structure and dynamics of Na+ in liquid ammonia studied by ONIOM-XS MD simulations

    NASA Astrophysics Data System (ADS)

    Sripradite, Jarukorn; Tongraar, Anan; Kerdcharoen, Teerakiat

    2015-12-01

    The molecular dynamics (MD) technique based on the ONIOM-XS method, known as the ONIOM-XS MD, has been applied to investigate the solvation structure and dynamics of Na+ in liquid ammonia. Regarding the ONIOM-XS MD results, it is observed that Na+ is able to order the surrounding ammonia molecules to form its specific first and second solvation shells with the average coordination numbers of 5.1 and 11.2, respectively. The first solvation shell of Na+ is rather well-defined, forming a preferred 5-fold coordinated complex with a distorted square pyramidal geometry. In this respect, the most preferential Na+(NH3)5 species could convert back and forth to the lower probability Na+(NH3)6 and Na+(NH3)4 configurations. The second solvation shell of Na+ is detectable, in which a number of ammonia molecules, ranging from 7 to 14, are involved in this layer and they are arranged according to recognizable influence of the ion.

  14. Vascular contractile reactivity in hypotension due to reduced renal reabsorption of Na(+) and restricted dietary Na().

    PubMed

    Alshahrani, Saeed; Rapoport, Robert M; Soleimani, Manoocher

    2017-03-01

    Reduced renal Na(+) reabsorption along with restricted dietary Na(+) depletes intravascular plasma volume which can then result in hypotension. Whether hypotension occurs and the magnitude of hypotension depends in part on compensatory angiotensin II-mediated increased vascular resistance. We investigated whether the ability of vascular resistance to mitigate the hypotension was compromised by decreased contractile reactivity. In vitro reactivity was investigated in aorta from mouse models of reduced renal Na(+) reabsorption and restricted dietary Na(+) associated with considerable hypotension and renin-angiotensin system activation: (1) the Na(+)-Cl(-)-Co-transporter (NCC) knockout (KO) with Na(+) restricted diet (0.1%, 2 weeks) and (2) the relatively more severe pendrin (apical chloride/bicarbonate exchanger) and NCC double KO. Contractile sensitivity to KCl, phenylephrine, and/or U46619 remained unaltered in aorta from both models. Maximal KCl and phenylephrine contraction expressed as force/aorta length from NCC KO with Na(+)-restricted diet remained unaltered, while in pendrin/NCC double KO were reduced to 49 and 64%, respectively. Wet weight of aorta from NCC KO with Na(+)-restricted diet remained unaltered, while pendrin/NCC double KO was reduced to 67%, consistent with decreased medial width determined with Verhoeff-Van Gieson stain. These findings suggest that hypotension associated with severe intravascular volume depletion, as the result of decreased renal Na(+) reabsorption, may in part be due to decreased contractile reactivity as a consequence of reduced vascular hypertrophy.

  15. Glutamate Water Gates in the Ion Binding Pocket of Na(+) Bound Na(+), K(+)-ATPase.

    PubMed

    Han, Minwoo; Kopec, Wojciech; Solov'yov, Ilia A; Khandelia, Himanshu

    2017-01-13

    The dynamically changing protonation states of the six acidic amino acid residues in the ion binding pocket of the Na(+), K(+) -ATPase (NKA) during the ion transport cycle are proposed to drive ion binding, release and possibly determine Na(+) or K(+) selectivity. We use molecular dynamics (MD) and density functional theory (DFT) simulations to determine the protonation scheme of the Na(+) bound conformation of NKA. MD simulations of all possible protonation schemes show that the bound Na(+) ions are most stably bound when three or four protons reside in the binding sites, and that Glu954 in site III is always protonated. Glutamic acid residues in the three binding sites act as water gates, and their deprotonation triggers water entry to the binding sites. From DFT calculations of Na(+) binding energies, we conclude that three protons in the binding site are needed to effectively bind Na(+) from water and four are needed to release them in the next step. Protonation of Asp926 in site III will induce Na(+) release, and Glu327, Glu954 and Glu779 are all likely to be protonated in the Na(+) bound occluded conformation. Our data provides key insights into the role of protons in the Na(+) binding and release mechanism of NKA.

  16. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump

    PubMed Central

    1990-01-01

    The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain- sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS- treated, SO4-equilibrated human red blood cells suspended in HEPES- buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o. Addition of 10 mM Ko to tartrate i,o ghosts, with or without Cli,o, resulted in full activation of Na/K exchange and the pump's electrogenicity

  17. Glutamate Water Gates in the Ion Binding Pocket of Na+ Bound Na+, K+-ATPase

    PubMed Central

    Han, Minwoo; Kopec, Wojciech; Solov’yov, Ilia A.; Khandelia, Himanshu

    2017-01-01

    The dynamically changing protonation states of the six acidic amino acid residues in the ion binding pocket of the Na+, K+ -ATPase (NKA) during the ion transport cycle are proposed to drive ion binding, release and possibly determine Na+ or K+ selectivity. We use molecular dynamics (MD) and density functional theory (DFT) simulations to determine the protonation scheme of the Na+ bound conformation of NKA. MD simulations of all possible protonation schemes show that the bound Na+ ions are most stably bound when three or four protons reside in the binding sites, and that Glu954 in site III is always protonated. Glutamic acid residues in the three binding sites act as water gates, and their deprotonation triggers water entry to the binding sites. From DFT calculations of Na+ binding energies, we conclude that three protons in the binding site are needed to effectively bind Na+ from water and four are needed to release them in the next step. Protonation of Asp926 in site III will induce Na+ release, and Glu327, Glu954 and Glu779 are all likely to be protonated in the Na+ bound occluded conformation. Our data provides key insights into the role of protons in the Na+ binding and release mechanism of NKA. PMID:28084301

  18. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters.

    PubMed

    Forster, I C; Loo, D D; Eskandari, S

    1999-04-01

    The stoichiometry of the rat and flounder isoforms of the renal type II sodium-phosphate (Na+-Pi) cotransporter was determined directly by simultaneous measurements of phosphate (Pi)-induced inward current and uptake of radiolabeled Pi and Na+ in Xenopus laevis oocytes expressing the cotransporters. There was a direct correlation between the Pi-induced inward charge and Pi uptake into the oocytes; the slope indicated that one net inward charge was transported per Pi. There was also a direct correlation between the Pi-induced inward charge and Na+ influx; the slope indicated that the influx of three Na+ ions resulted in one net inward charge. This behavior was similar for both isoforms. We conclude that for both Na+-Pi cotransporter isoforms the Na+:Pi stoichiometry is 3:1 and that divalent Pi is the transported substrate. Steady-state activation of the currents showed that the Hill coefficients for Pi were unity for both isoforms, whereas for Na+, they were 1.8 (flounder) and 2.5 (rat). Therefore, despite significant differences in the apparent Na+ binding cooperativity, the estimated Na+:Pi stoichiometry was the same for both isoforms.

  19. Theoretical study of Na-atom emission from NaCl (100) surfaces

    NASA Astrophysics Data System (ADS)

    Puchin, Vladimir; Shluger, Alexander; Nakai, Yasuo; Itoh, Noriaki

    1994-04-01

    Several models for the elementary processes causing the emission of alkali atoms by electronic excitation of NaCl (100) surfaces have been investigated theoretically. First, the desorption of a Na atom neighboring an electronically excited F center on the surface is simulated using a quantum-mechanical embedded-cluster technique. It is shown that emission of a Na atom is energetically favorable. The kinetics of this process is shown to be controlled by the probability of a nonradiative transition between the two states: the excited state of the F center and that corresponding to a Na atom desorbing from the surface. The potential barrier for desorption of an excited Na atom from the excited F-center state is found to be 2.1 eV. It is also found that the energy for emission of a Na atom from a cluster of F centers (the F3 center) is considerably reduced (for a certain configuration of the defect) with respect to the similar energy for a single F center. The energy barrier for emission of a Na atom neighboring an F' center on the surface is calculated to be 1 eV. It is shown that the electronic excitation of kinklike sites, with a Na atom at the edge, can lead to a barrierless emission of a Na atom, leaving a Vk-type defect behind. The results of calculations are discussed critically on the basis of existing experimental data.

  20. Influence of sodium halides (NaF, NaCl, NaBr, NaI) on the photocatalytic performance of hydrothermally synthesized hematite photoanodes.

    PubMed

    Wang, Tsinghai; Huang, Mao-Chia; Hsieh, Yi-Kong; Chang, Wen-Sheng; Lin, Jing-Chie; Lee, Chih-Hao; Wang, Chu-Fang

    2013-08-28

    It has been suggested that a high concentration of Fe(3+) in solution, a low pH, and noncomplexing ions of high ionic strength are all essential for developing a high-quality hematite array. Our curiosity was piqued regarding the role of the electrolyte ions in the hydrothermal synthesis of hematite photoanodes. In this study, we prepared hematite photoanodes hydrothermally from precursor solutions of 0.1 M FeCl3 at pH 1.55 with a background electrolyte of 1.0 M sodium halide (NaF, NaCl, NaBr, or NaI). We compared the structures and properties of the as-obtained hematite photoanodes with those of the material prepared in 1.0 M NaNO3, the most widely adopted electrolyte in previous studies. Among our studied systems, we found that the hematite photoanode prepared in NaCl solution was the only one possessing properties similar to those of the sample obtained from the NaNO3 solution-most importantly in terms of photoelectrochemical performance (ca. 0.2 mA/cm(2) with +0.4 V vs SCE). The hematites obtained from the NaF, NaBr, and NaI solutions exhibited much lower (by approximately 2 orders of magnitude) photocurrent densities under the same conditions, possibly because of their relatively less ordered crystallinity and the absence of rodlike morphologies. Because the synthetic protocol was identical in each case, we believe that these two distinct features reflect the environments in which these hematite photoanodes were formed. Consistent with the latest studies reported in the literature of the X-ray photoelectron spectra of fast-frozen hematite colloids in aqueous solutions, it appears that the degree of surface ion loading at the electrolyte-hematite interface (Stern layer) is critical during the development of hematite photoanodes. We suspect that a lower ion surface loading benefits the hematite developing relatively higher-order and a rodlike texture, thereby improving the photoelectrochemical activity.

  1. Elastic Coulomb breakup of 34Na

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  2. Intermitência alfvênica gerada por caos na atmosfera solar e no vento solar

    NASA Astrophysics Data System (ADS)

    Rempel, E. L.; Chian, A. C.-L.; Macau, E. E. N.; Rosa, R. R.

    2003-08-01

    Dados medidos no vento solar rápido proveniente dos buracos coronais revelam que os plasmas no meio interplanetário são dominados por flutuações Alfvênicas, caracterizadas por uma alta correlação entre as variações do campo magnético e da velocidade do plasma. As flutuações exibem muitas características esperadas em turbulência magneto-hidrodinâmica totalmente desenvolvida, tais como intermitência e espectros contínuos. Contudo, os mecanismos responsáveis pela evolução de turbulência Alfvênica intermitente não são completamente compreendidos. Neste trabalho a teoria de caos é usada para explicar como sistemas Alfvênicos, modelados pela equação Schrödinger não-linear derivativa e pela equação Kuramoto-Sivashinsky, podem se tornar fortemente caóticos à medida em que parâmetros do plasma são variados. Pequenas perturbações no parâmetro de dissipação podem fazer com que o sistema mude bruscamente de um regime periódico, ou fracamente caótico, para um regime fortemente caótico. As séries temporais das flutuações do campo magnético nos regimes fortemente caóticos exibem comportamento intermitente, em que fases laminares ou fracamente caóticas são interrompidas por fortes estouros caóticos. É mostrado que o regime fortemente caótico é atingido quando as soluções periódicas ou fracamente caóticas globalmente estáveis interagem com soluções do sistema que são fortemente caóticas, mas globalmente instáveis. Estas soluções globalmente instáveis são conjuntos caóticos não-atrativos conhecidos como selas caóticas, e são responsáveis pelos fortes estouros nos regimes intermitentes. Selas caóticas têm sido detectadas experimentalmente em uma grande variedade de sistemas, sendo provável que elas desempenhem um papel importante na turbulência intermitente observada em plasmas espaciais.

  3. Optimization of BARC process for hyper-NA immersion lithography

    NASA Astrophysics Data System (ADS)

    Lee, Kilyoung; Lee, Junghyung; Lee, Sungkoo; Park, Dongheok; Bok, Cheolkyu; Moon, Seungchan

    2008-03-01

    The extension of current 193nm immersion lithography technology is depending on increasing the numerical aperture (NA). High-resolution imaging requires the decrease of photoresist thickness to compensate for smaller depth of focus (DOF) and prevent pattern collapse. Poor etch selectivity between photoresist and BARC reads to the use of thinner BARC with faster etch-rate. Also, controlling reflectance over a wider range of incident angles for hyper-NA above 1.0 gives more challenge for thin BARC. To reduce substrate reflectivity, various material strategies (dual-layer BARC such as organic/inorganic BARC or organic/organic BARC, Si-based ARC/spin-on carbon (SOC), and so on) have been introduced through many papers. Organic dual-layer BARC is capable of suppressing reflectivity through wide range of incident angles. But, the inevitable increase of its thickness is not a desirable direction due to the decreasing trend of photoresist thickness. When amorphous carbon (a-C) is used as a hardmask for sub-stack, the combination of organic/inorganic BARC (i.e. SiON) is currently well known process. Si-ARC/SOC may be the promising candidates of hardmask because Si component of Si-ARC affords a high etch selectivity to photoresist and its combination with SOC decreases reflectance. The optical constants of above organic materials can be tuned to control the substrate reflectivity for hyper-NA.

  4. A controllable molecular sieve for Na+ and K+ ions.

    PubMed

    Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

    2010-02-17

    The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems. Molecular sieves for ions can be achieved by steric and electrical effects. However, the radii of Na(+) and K(+) are quite similar; they both carry a positive charge, making them difficult to separate. Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K(+) or Na(+) across the cell membrane. However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e.g., KcsA). Our molecular dynamics simulations show that the remarkable selectivity is attributed to the hydration structure of Na(+) or K(+) confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms. The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water.

  5. Structure and stability of Na+Xen clusters

    NASA Astrophysics Data System (ADS)

    Slama, M.; Issa, K.; Ben Mohamed, F. E.; Ben El Hadj Rhouma, M.; Spiegelman, F.

    2016-11-01

    The structure and stability features of Na+Xen (n ≤ 54) clusters are theoretically investigated via model potential energy surfaces (PES) and unconstrained global optimization. The potential energy is described in terms of pair-additive potentials including polarization parametrized from accurate ab initio data on Na+Xe, complemented by three-body contributions describing the interaction between the dipoles induced by the sodium ion on the rare gas atoms. We show that the three-body contributions stabilize the linear or planar structures versus more compact shapes for n< 4. At larger sizes, the growth around the square antisprism (SA) or capped square antisprism (CSA) core is favored while icosahedral pattern based isomers exist but not as the lowest ones. A transition in the metal ion coordination from 8 (square antiprism) to 12 (icosahedron) is seen to occur near n = 50. The results are discussed and analyzed in view of existing accurate ab initio calculations on Na+Xe2 and comparisons with similar metal-ion clusters.

  6. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function.

    PubMed

    Beuming, Thijs; Shi, Lei; Javitch, Jonathan A; Weinstein, Harel

    2006-11-01

    The recently elucidated crystal structure of a prokaryotic member of the neurotransmitter/sodium symporter (NSS) family (Yamashita et al., 2005) is a major advance toward understanding structure-function relationships in this important class of transporters. To aid in the generalization of these results, we present here a comprehensive sequence alignment of all known prokaryotic and eukaryotic NSS proteins, based on the crystal structure of the leucine transporter from Aquifex aeolicus (LeuT). Regions of low sequence identity between prokaryotic and eukaryotic transporters were aligned with the aid of a number of bioinformatics tools, and the resulting alignments were validated by comparison with experimental data. In a number of regions, including the transmembrane segments 4, 5, and 9 as well as extracellular loops 2, 3, and 4, our alignment differs from the one proposed previously [Nature (Lond) 437: 215-223, 2005]. Important similarities and differences among the sequences of NSS proteins in regions likely to determine selectivity in substrate binding and mechanisms of transport regulation are discussed in the context of the LeuT structure and the alignment.

  7. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes.

    PubMed

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-02-01

    Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi-solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]-4% SiO2/NaClO4-TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm(-1)), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na(+) plating/stripping (5.7 to 16.5 mA cm(-2)). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g(-1) with a fixed capacity of 1000 mA·hour g(-1) in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg(-1)). This study makes quasi-solid state Na-CO2 batteries an attractive prospect.

  8. Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes

    PubMed Central

    Hu, Xiaofei; Li, Zifan; Zhao, Yaran; Sun, Jianchao; Zhao, Qing; Wang, Jianbin; Tao, Zhanliang; Chen, Jun

    2017-01-01

    Na-CO2 batteries using earth-abundant Na and greenhouse gas CO2 are promising tools for mobile and stationary energy storage, but they still pose safety risks from leakage of liquid electrolyte and instability of the Na metal anode. These issues result in extremely harsh operating conditions of Na-CO2 batteries and increase the difficulty of scaling up this technology. We report the development of quasi–solid state Na-CO2 batteries with high safety using composite polymer electrolyte (CPE) and reduced graphene oxide (rGO) Na anodes. The CPE of PVDF-HFP [poly(vinylidene fluoride-co-hexafluoropropylene)]–4% SiO2/NaClO4–TEGDME (tetraethylene glycol dimethyl ether) has high ion conductivity (1.0 mS cm−1), robust toughness, a nonflammable matrix, and strong electrolyte-locking ability. In addition, the rGO-Na anode presents fast and nondendritic Na+ plating/stripping (5.7 to 16.5 mA cm−2). The improved kinetics and safety enable the constructed rGO-Na/CPE/CO2 batteries to successfully cycle in wide CO2 partial pressure window (5 to 100%, simulated car exhaust) and especially to run for 400 cycles at 500 mA g−1 with a fixed capacity of 1000 mA·hour g−1 in pure CO2. Furthermore, we scaled up the reversible capacity to 1.1 A·hour in pouch-type batteries (20 × 20 cm, 10 g, 232 Wh kg−1). This study makes quasi–solid state Na-CO2 batteries an attractive prospect. PMID:28164158

  9. [Detection of an NA gene molecular marker in H7N9 subtype avian influenza viruses by pyrosequencing].

    PubMed

    Zhao, Yong-Gang; Liu, Hua-Lei; Wang, Jing-Jing; Zheng, Dong-Xia; Zhao, Yun-Ling; Ge, Sheng-Qiang; Wang, Zhi-Liang

    2014-07-01

    This study aimed to establish a method for the detection and identification of H7N9 avian influenza viruses based on the NA gene by pyrosequencing. According to the published NA gene sequences of the avian influenza A (H7N9) virus, a 15-nt deletion was found in the NA gene of H7N9 avian influenza viruses. The 15-nt deletion of the NA gene was targeted as the molecular marker for the rapid detection and identification of H7N9 avian influenza viruses by pyrosequencing. Three H7N9 avian influenza virus isolates underwent pyrosequencing using the same assay, and were proven to have the same 15-nt deletion. Pyrosequencing technology based on the NA gene molecular marker can be used to identify H7N9 avian influenza viruses.

  10. Influence of rare earth cation size on the crystal structure in rare earth silicates, Na2RESiO4(OH) (RE = Sc, Yb) and NaRESiO4 (RE = La, Yb)

    NASA Astrophysics Data System (ADS)

    Latshaw, Allison M.; Wilkins, Branford O.; Chance, W. Michael; Smith, Mark D.; zur Loye, Hans-Conrad

    2016-01-01

    Crystals of Na2ScSiO4(OH) and Na2YbSiO4(OH) were synthesized at low temperatures using a sodium hydroxide based hydroflux, while crystals of NaLaSiO4 and NaYbSiO4 were grown at high temperatures using a sodium fluoride/sodium chloride eutectic flux. Both structure types were crystallized under reaction conditions that, when used for medium sized rare earths (RE = Pr, Nd, Sm - Tm) yield the Na5RE4X[SiO4]4 structure type, where X is OH in the hydroflux conditions and F in the eutectic flux conditions. Herein, we report the synthesis, structure, size effect, and magnetic properties of these compositions and introduce the new structure type of Na2RESiO4(OH), which crystallizes in the orthorhombic space group Pca21, of NaLaSiO4, which crystallizes in the orthorhombic space group Pna21, and of NaYbSiO4, which crystallizes in the orthorhombic space group Pnma, where both NaRESiO4 compounds have one silicon structural analog.

  11. Analysis of the Na+/Ca2+ exchanger gene family within the phylum Nematoda.

    PubMed

    He, Chao; O'Halloran, Damien M

    2014-01-01

    Na+/Ca2+ exchangers are low affinity, high capacity transporters that rapidly transport calcium at the plasma membrane, mitochondrion, endoplasmic (and sarcoplasmic) reticulum, and the nucleus. Na+/Ca2+ exchangers are widely expressed in diverse cell types where they contribute homeostatic balance to calcium levels. In animals, Na+/Ca2+ exchangers are divided into three groups based upon stoichiometry: Na+/Ca2+ exchangers (NCX), Na+/Ca2+/K+ exchangers (NCKX), and Ca2+/Cation exchangers (CCX). In mammals there are three NCX genes, five NCKX genes and one CCX (NCLX) gene. The genome of the nematode Caenorhabditis elegans contains ten Na+/Ca2+ exchanger genes: three NCX; five CCX; and two NCKX genes. Here we set out to characterize structural and taxonomic specializations within the family of Na+/Ca2+ exchangers across the phylum Nematoda. In this analysis we identify Na+/Ca2+ exchanger genes from twelve species of nematodes and reconstruct their phylogenetic and evolutionary relationships. The most notable feature of the resulting phylogenies was the heterogeneous evolution observed within exchanger subtypes. Specifically, in the case of the CCX exchangers we did not detect members of this class in three Clade III nematodes. Within the Caenorhabditis and Pristionchus lineages we identify between three and five CCX representatives, whereas in other Clade V and also Clade IV nematode taxa we only observed a single CCX gene in each species, and in the Clade III nematode taxa that we sampled we identify NCX and NCKX encoding genes but no evidence of CCX representatives using our mining approach. We also provided re-annotation for predicted CCX gene structures from Heterorhabditis bacteriophora and Caenorhabditis japonica by RT-PCR and sequencing. Together, these findings reveal a complex picture of Na+/Ca2+ transporters in nematodes that suggest an incongruent evolutionary history of proteins that provide central control of calcium dynamics.

  12. Additive effects of Na+ and Cl- ions on barley growth under salinity stress.

    PubMed

    Tavakkoli, Ehsan; Fatehi, Foad; Coventry, Stewart; Rengasamy, Pichu; McDonald, Glenn K

    2011-03-01

    Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. It has previously been suggested that Cl(-) toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na(+) and Cl(-) reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na(+), Cl(-), and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na(+) and Cl(-) stress. The results demonstrated that Na(+) and Cl(-) exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na(+) reduced K(+) and Ca(2+) uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl(-) concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown.

  13. Analysis of the Na+/Ca2+ Exchanger Gene Family within the Phylum Nematoda

    PubMed Central

    He, Chao; O'Halloran, Damien M.

    2014-01-01

    Na+/Ca2+ exchangers are low affinity, high capacity transporters that rapidly transport calcium at the plasma membrane, mitochondrion, endoplasmic (and sarcoplasmic) reticulum, and the nucleus. Na+/Ca2+ exchangers are widely expressed in diverse cell types where they contribute homeostatic balance to calcium levels. In animals, Na+/Ca2+ exchangers are divided into three groups based upon stoichiometry: Na+/Ca2+ exchangers (NCX), Na+/Ca2+/K+ exchangers (NCKX), and Ca2+/Cation exchangers (CCX). In mammals there are three NCX genes, five NCKX genes and one CCX (NCLX) gene. The genome of the nematode Caenorhabditis elegans contains ten Na+/Ca2+ exchanger genes: three NCX; five CCX; and two NCKX genes. Here we set out to characterize structural and taxonomic specializations within the family of Na+/Ca2+ exchangers across the phylum Nematoda. In this analysis we identify Na+/Ca2+ exchanger genes from twelve species of nematodes and reconstruct their phylogenetic and evolutionary relationships. The most notable feature of the resulting phylogenies was the heterogeneous evolution observed within exchanger subtypes. Specifically, in the case of the CCX exchangers we did not detect members of this class in three Clade III nematodes. Within the Caenorhabditis and Pristionchus lineages we identify between three and five CCX representatives, whereas in other Clade V and also Clade IV nematode taxa we only observed a single CCX gene in each species, and in the Clade III nematode taxa that we sampled we identify NCX and NCKX encoding genes but no evidence of CCX representatives using our mining approach. We also provided re-annotation for predicted CCX gene structures from Heterorhabditis bacteriophora and Caenorhabditis japonica by RT-PCR and sequencing. Together, these findings reveal a complex picture of Na+/Ca2+ transporters in nematodes that suggest an incongruent evolutionary history of proteins that provide central control of calcium dynamics. PMID:25397810

  14. Role of alkali carbonate and salt in topochemical synthesis of K1/2Na1/2NbO3 and NaNbO3 templates

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seok; Jeon, Jae-Ho; Choi, Si-Young

    2013-11-01

    Since the properties of lead-free piezoelectric materials have thus far failed to meet those of lead-based materials, either chemical doping or morphological texturing should be employed to improve the piezoelectric properties of lead-free piezoelectric ceramics. The goal of this study was to synthesize plate-like K1/2Na1/2NbO3 and NaNbO3 particles, which are the most favorable templates for morphological texturing of K1/2Na1/2NbO3 ceramics. To achieve this goal, Bi2.5Na3.5Nb5O18 precursors in a plate-like shape were first synthesized and subsequently converted into K1/2Na1/2NbO3 or NaNbO3 particles that retain the morphology of Bi2.5Na3.5Nb5O18. In this study, we found that sodium or potassium carbonate does not play a major role in converting the Bi2.5Na3.5Nb5O18 precursor to K1/2Na1/2NbO3 or NaNbO3, on the contrary to previous reports; however, the salt contributes to the conversion reaction. All synthesis processes have been performed via a molten salt method, and scanning electron microscopy, scanning probe microscopy, and inductively coupled plasma mass spectroscopy were used to characterize the synthesized K1/2Na1/2NbO3 or NaNbO3 templates.

  15. Electrophysiological Determination of Submembrane Na(+) Concentration in Cardiac Myocytes.

    PubMed

    Hegyi, Bence; Bányász, Tamás; Shannon, Thomas R; Chen-Izu, Ye; Izu, Leighton T

    2016-09-20

    In the heart, Na(+) is a key modulator of the action potential, Ca(2+) homeostasis, energetics, and contractility. Because Na(+) currents and cotransport fluxes depend on the Na(+) concentration in the submembrane region, it is necessary to accurately estimate the submembrane Na(+) concentration ([Na(+)]sm). Current methods using Na(+)-sensitive fluorescent indicators or Na(+) -sensitive electrodes cannot measure [Na(+)]sm. However, electrophysiology methods are ideal for measuring [Na(+)]sm. In this article, we develop patch-clamp protocols and experimental conditions to determine the upper bound of [Na(+)]sm at the peak of action potential and its lower bound at the resting state. During the cardiac cycle, the value of [Na(+)]sm is constrained within these bounds. We conducted experiments in rabbit ventricular myocytes at body temperature and found that 1) at a low pacing frequency of 0.5 Hz, the upper and lower bounds converge at 9 mM, constraining the [Na(+)]sm value to ∼9 mM; 2) at 2 Hz pacing frequency, [Na(+)]sm is bounded between 9 mM at resting state and 11.5 mM; and 3) the cells can maintain [Na(+)]sm to the above values, despite changes in the pipette Na(+) concentration, showing autoregulation of Na(+) in beating cardiomyocytes.

  16. Voltage dependence of Na translocation by the Na/K pump.

    PubMed

    Nakao, M; Gadsby, D C

    During each complete reaction cycle, the Na/K pump transports three Na ions out across the cell membrane and two K ions in. The resulting net extrusion of positive charge generates outward membrane current but, until now, it was unclear how that net charge movement occurs. Reasonable possibilities included a single positive charge moving outwards during Na translocation; or a single negative charge moving inwards during K translocation; or either positive or negative charges moving during both translocation steps, but in unequal quantities. Any step that involves net charge movement through the membrane must have voltage-dependent transition rates. Here we report measurements of transient, voltage-dependent, displacement currents generated by the pump when its normal Na/K transport cycle has been interrupted by removal of external K and it is thus constrained to carry out Na/Na exchange. The quantity and voltage sensitivity of the charge moved during these transient currents suggests that Na translocation includes a voltage-dependent transition involving movement of one positive charge across the membrane. This single step can thus fully account for the electrogenic nature of Na/K exchange. The result provides important new insight into the molecular mechanism of active cation transport.

  17. Interaction of NaCl(g) and HCl(g) with condensed NA2SO4

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.

    1977-01-01

    The interaction of Na2SO4(l) with NaCl(g), HCl(g) and H2O(g) was studied in atmospheric pressure flowing air and oxygen at Na2SO4(l) temperatures of 900 and 1000 C. Thermomicrogravimetric and high pressure mass spectrometric sampling techniques were used. Experimental results establish that previously reported enhanced rates of weight loss of Na2SO4(l) in the presence of NaCl(g) are due to the reaction: Na2SO4(c) + 2HCl(g) = 2NaCl(g) + SO2(g) + H2O(g) + 1/2O2(g) being driven to the right in flowing gas systems. The HCl(g) is the product of hydrolysis of NaCl caused by small but significant amounts of H2O(g) present in the system. Thermochemical calculations are used to show that even with sub-ppm levels of H2O(g) present, significant quantities of HCl(g) are produced.

  18. Dynamics of Na(+)(Benzene) + Benzene Association and Ensuing Na(+)(Benzene)2* Dissociation.

    PubMed

    Paul, Amit K; Kolakkandy, Sujitha; Hase, William L

    2015-07-16

    Chemical dynamics simulations were used to study Bz + Na(+)(Bz) → Na(+)(Bz)2* association and the ensuing dissociation of the Na(+)(Bz)2* cluster (Bz = benzene). An interesting and unexpected reaction found from the simulations is direct displacement, for which the colliding Bz molecule displaces the Bz molecule attached to Na(+), forming Na(+)(Bz). The rate constant for Bz + Na(+)(Bz) association was calculated at 750 and 1000 K, and found to decrease with increase in temperature. By contrast, the direct displacement rate constant increases with temperature. The cross section and rate constant for direct displacement are approximately an order of magnitude lower than those for association. The Na(+)(Bz)2* cluster, formed by association, dissociates with a biexponential probability, with the rate constant for the short-time component approximately an order of magnitude larger than that for the longer time component. The latter rate constant agrees with that of Rice-Ramsperger-Kassel-Marcus (RRKM) theory, consistent with rapid intramolecular vibrational energy redistribution (IVR) and intrinsic RRKM dynamics for the Na(+)(Bz)2* cluster. A coupled phase space model was used to analyze the biexponential dissociation probability.

  19. Exercise-induced increase in maximal in vitro Na-K-ATPase activity in human skeletal muscle.

    PubMed

    Juel, Carsten; Nordsborg, Nikolai B; Bangsbo, Jens

    2013-06-15

    The present study investigated whether maximal in vitro Na-K-ATPase activity in human skeletal muscle is changed with exercise and whether it was altered by acute hypoxia. Needle biopsies from 14 subjects were obtained from vastus lateralis before and after 4 min of intense muscle activity. In addition, six subjects exercised also in hypoxia (12.5% oxygen). The Na-K-ATPase assay revealed a 19% increase (P < 0.05) in maximal velocity (Vmax) for Na⁺-dependent Na-K-ATPase activity after exercise and a tendency (P < 0.1) toward a decrease in Km for Na⁺ (increased Na⁺ affinity) in both normoxia and hypoxia. In contrast, the in vitro Na-K-ATPase activity determined with the 3-O-MFPase technique was 11-32% lower after exercise in normoxia (P < 0.05) and hypoxia (P < 0.1). Based on the different results obtained with the Na-K-ATPase assay and the 3-O-MFPase technique, it was suggested that the 3-O-MFPase method is insensitive to changes in Na-K-ATPase activity. To test this possibility, changes in Na-K-ATPase activity was induced by protein kinase C activation. The changes quantified with the Na-K-ATPase assay could not be detected with the 3-O-MFPase method. In addition, purines stimulated Na-K-ATPase activity in rat muscle membranes; these changes could not be detected with the 3-O-MFPase method. Therefore, the 3-O-MFPase technique is not sensitive to changes in Na⁺ sensitivity, and the method is not suited to detecting changes in Na-K-ATPase activity with exercise. In conclusion, muscle activity in humans induces an increased in vitro Na⁺-dependent Na-K-ATPase activity, which contributes to the upregulation of the Na-K-ATPase in association with exercise both in normoxia and hypoxia.

  20. Low-affinity Na+ uptake in the halophyte Suaeda maritima.

    PubMed

    Wang, Suo-Min; Zhang, Jin-Lin; Flowers, Timothy J

    2007-10-01

    Na(+) uptake by plant roots has largely been explored using species that accumulate little Na(+) into their shoots. By way of contrast, the halophyte Suaeda maritima accumulates, without injury, concentrations of the order of 400 mM NaCl in its leaves. Here we report that cAMP and Ca(2+) (blockers of nonselective cation channels) and Li(+) (a competitive inhibitor of Na(+) uptake) did not have any significant effect on the uptake of Na(+) by the halophyte S. maritima when plants were in 25 or 150 mM NaCl (150 mM NaCl is near optimal for growth). However, the inhibitors of K(+) channels, TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (5 mM), significantly reduced the net uptake of Na(+) from 150 mM NaCl over 48 h, by 54%, 24%, and 29%, respectively. TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (1 mm) also significantly reduced (22)Na(+) influx (measured over 2 min in 150 mM external NaCl) by 47%, 30%, and 31%, respectively. In contrast to the situation in 150 mm NaCl, neither TEA(+) (1-10 mM) nor Cs(+) (0.5-10 mM) significantly reduced net Na(+) uptake or (22)Na(+) influx in 25 mM NaCl. Ba(2+) (at 5 mm) did significantly decrease net Na(+) uptake (by 47%) and (22)Na(+) influx (by 36% with 1 mM Ba(2+)) in 25 mM NaCl. K(+) (10 or 50 mM) had no effect on (22)Na(+) influx at concentrations below 75 mM NaCl, but the influx of (22)Na(+) was inhibited by 50 mM K(+) when the external concentration of NaCl was above 75 mM. The data suggest that neither nonselective cation channels nor a low-affinity cation transporter are major pathways for Na(+) entry into root cells. We propose that two distinct low-affinity Na(+) uptake pathways exist in S. maritima: Pathway 1 is insensitive to TEA(+) or Cs(+), but sensitive to Ba(2+) and mediates Na(+) uptake under low salinities (25 mM NaCl); pathway 2 is sensitive to TEA(+), Cs(+), and Ba(2+) and mediates Na(+) uptake under higher external salt concentrations (150 mM NaCl). Pathway 1 might be mediated by a high-affinity K transporter

  1. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump

    SciTech Connect

    Dissing, S.; Hoffman, J.F. )

    1990-07-01

    The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain-sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS-treated, SO4-equilibrated human red blood cells suspended in HEPES-buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o.

  2. Phase relations in the system NaCl-KCl-H2O II: Differential thermal analysis of the halite liquidus in the NaCl-H2O binary above 450°c

    USGS Publications Warehouse

    Gunter, W.D.; Chou, I.-Ming; Girsperger, Sven

    1983-01-01

    The solubility of halite can be expressed as a function of the mole-fractional-based activity of NaCl in the liquid phase (L) in temperature (T, °K) and pressure (P, bars) In  Our liquidus data (based on 10 compositions) above 500 bars for these brines were combined with this equation to generate activity coefficients of NaCl which were fit within their experimental uncertainties to the following one parameter Margules equation In . Concentrated solutions of NaCl show negative deviations from ideality which rapidly increase in magnitude with decreasing XNaCl.

  3. Phase transitions in antiferromagnets with a NaCl structure

    NASA Astrophysics Data System (ADS)

    Kassan-Ogly, F. A.; Filippov, B. N.

    2006-05-01

    A revised derivation scheme of possible magnetic structures in an FCC lattice with the nearest- and next-nearest-neighbor interactions taken into account is proposed. A model of simultaneous magnetic and structural phase transitions of the first order is developed for antiferromagnets with a NaCl structure and with a strong cubic magnetic anisotropy on the base of synthesis of magnetic modified 6-state Potts model and theoretical models of structural phase transitions in cubic crystals. It is shown that the high-temperature diffuse magnetic scattering of neutrons transforms into magnetic Bragg reflections below Néel point.

  4. Geodetic satellite observations in North American (solution NA-9)

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Reilly, J. P.; Soler, T.

    1972-01-01

    A new detailed geoidal map with claimed accuracies of plus or minus 2 meters (on land), based on gravimetric and satellite data, was presented. With the new geoid and the orthometric heights given, more reliable height constraints were calculated and applied. The basic purpose of this experiment was to compute the new solution NA9 by defining the origin of the system, from the point of view of error propagation, in the most favorable position applying inner constraints and imposing new weighted height constraints to all of the stations. The major differences with respect to formerly published adjustments are presented.

  5. Superionicity in Na3 PO4 : A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yin, Wei-Guo; Liu, Jianjun; Duan, Chun-Gang; Mei, W. N.; Smith, R. W.; Hardy, J. R.

    2004-08-01

    Fast ionic conduction in solid Na3PO4 is studied by use of molecular dynamics simulation based on the modified Lu -Hardy approach. We obtain reasonable agreement with experiment for the structural transition and diffusion of the sodium ions. All the sodium ions are found to contribute comparably to the high ionic conductivity. The results of the simulation are discussed in terms of the relative magnitude of the two proposed transport mechanisms: percolation and paddle-wheel. It appears to us that the percolation mechanism dominates the sodium diffusion.

  6. New reference electrode for Na/MCI2 batteries

    NASA Astrophysics Data System (ADS)

    Ratnakumar, B. V.; Attia, A. I.; Surampudi, S.; Halpert, G.

    1993-12-01

    The use of aluminum as a reference electrode in the neutral and basic chloroaluminate molten salts poses certain problems related to the uncertainty and irreproducibility in the measured electrode potential as well as lack of stability in long-term studies. A new reference electrode based on an insoluble transition metal chloride, e.g., NiCl2 is proposed to address these problems. Ni/NiCl2 forms an electrode of the second kind with high exchange current density and long durability and would be an ideal choice for the electrochemical studies in neutral and basic chloroaluminate melts, including Na/NiCl2 cells.

  7. Liquid-vapor partitioning of NaCl(aq) from concentrated brines at temperatures to 350{degrees}C

    SciTech Connect

    Simonson, J.M.; Palmer, Donald A.; Carter, R.W.

    1994-01-20

    Compositions of coexisting liquid and vapor phases have been determined at temperatures from 250 to 350°C for brines containing NaCl and either HCI or NaOH by direct sampling of both phases from a static phase-equilibration apparatus. In these experiments, NaCl concentrations in the liquid phase ranged to 6.5 mol-kg{sup -1}, with corresponding vapor-phase NaCl concentrations varying strongly with temperature and brine composition. Acid or base was added to the brines to suppress unknown contributions of NaCl(aq) hydrolysis products to the observed volatilities. Thermodynamic partitioning constants for NaCl have been determined from the observed compositions of the coexisting phases combined with the known activity coefficients of NaCl(aq) in the liquid phase. An apparent dependence of the values of these partitioning constants on brine concentration is explained by considering the effect of decreasing pressure on the density of the vapor phase. Concentrations of HCI and NaCl in steam produced from various natural brines may be calculated as hnctions of temperature and brine composition based on these new results coupled with our previous determinations of the partitioning constants for HCl(aq). Application of these results to The Geysers will be discussed in terms of the composition of postulated brines which could be in equilibrium with observed steam compositions at various temperatures.

  8. Sodium dichloroisocyanurate (NaDCC) tablets as an alternative to sodium hypochlorite for the routine treatment of drinking water at the household level.

    PubMed

    Clasen, Thomas; Edmondson, Paul

    2006-03-01

    Household water treatment using sodium hypochlorite (NaOCl) has been recognized as a cost-effective means of reducing the heavy burden of diarrhea and other waterborne diseases, especially among populations without access to improved water supplies. Sodium dichloroisocyanurate (NaDCC), which is widely used in emergencies, is an alternative source of chlorine that may present certain advantages over NaOCl for household-based interventions in development settings. We summarize the basic chemistry and possible benefits of NaDCC, and review the available literature concerning its safety and regulatory treatment and microbiological effectiveness. We review the evidence concerning NaDCC in field studies, including microbiological performance and health outcomes. Finally, we examine studies and data to compare NaDCC with NaOCl in terms of compliance, acceptability, affordability and sustainability, and suggest areas for further research.

  9. Targeting voltage gated sodium channels NaV1.7, Na V1.8, and Na V1.9 for treatment of pathological cough.

    PubMed

    Muroi, Yukiko; Undem, Bradley J

    2014-02-01

    Recent advances in our understanding of voltage-gated sodium channels (NaVs) lead to the rational hypothesis that drugs capable of selective blockade of NaV subtypes may be a safe and effective strategy for the treatment of unwanted cough. Among the nine NaV subtypes (NaV1.1-NaV1.9), the afferent nerves involved in initiating cough, in common with nociceptive neurons in the somatosensory system, express mainly NaV1.7, NaV1.8, and NaV1.9. Although knowledge about the effect of selectively blocking these channels on the cough reflex is limited, their biophysical properties indicate that each may contribute to the hypertussive and allotussive state that typifies subacute and chronic nonproductive cough.

  10. Intracellular [Na+], Na+ pathways, and fluid transport in cultured bovine corneal endothelial cells.

    PubMed

    Kuang, Kunyan; Li, Yansui; Yiming, Maimaiti; Sánchez, José M; Iserovich, Pavel; Cragoe, E J; Diecke, Friedrich P J; Fischbarg, Jorge

    2004-07-01

    The mechanism of fluid transport across corneal endothelium remains unclear. We examine here the relative contributions of cellular mechanisms of Na+ transport and the homeostasis of intracellular [Na+] in cultured bovine corneal endothelial cells, and the influence of ambient Na+ and HCO3- on the deturgescence of rabbit cornea. Bovine corneal endothelial cells plated on glass coverslips were incubated for 60 min with 10 microm of the fluorescent Na+ indicator SBFI precursor in HCO3- HEPES (BH) Ringer's solution. After loading, cells were placed in a perfusion chamber. Indicator fluorescence (490 nm) was determined with a Chance-Legallais time-sharing fluorometer. Its voltage output was the ratio of the emissions excited at 340 and 380 nm. For calibration, cells were treated with gramicidin D. For fluid transport measurements, rabbit corneas were mounted in a Dikstein-Maurice chamber, and stromal thickness was measured with a specular microscope. The steady-state [Na+]i in BH was 14.36+/-0.38 mM (n = mean+/-s.e.). Upon exposure to Na+ -free BH solution (choline substituted), [Na+]i decreased to 1.81+/-0.20mM (n = 19). When going from Na+ -free plus 100 microm ouabain to BH plus ouabain, [Na+]i increased to 46.17+/-2.50 (n = 6) with a half time of 1.26+/-0.04 min; if 0.1 microm phenamil plus ouabain were present, it reached only 21.78+/-1.50mm. The exponential time constants (min-1) were: 0.56+/-0.04 for the Na+ pump; 0.39+/-0.01 for the phenamil sensitive Na+ channel; and 0.17+/-0.02 for the ouabain-phenamil-insensitive pathways. In HCO3- free medium (gluconate substituted), [Na+]i was 14.03+/-0.11mM; upon changing to BH medium, it increased to 30.77+/-0.74 mm. This last [Na+]i increase was inhibited 66% by 100 microm DIDS. Using BH medium, corneal thickness remained nearly constant, increasing at a rate of only 2.9+/-0.9 microm hr-1 during 3 hr. However, stromal thickness increased drastically (swelling rate 36.1+/-2.6 microm hr-1) in corneas superfused with BH

  11. Compact clinical high-NA multiphoton endoscopy

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2012-02-01

    Multiphoton imaging methods are excellent for non-invasive imaging of living tissue without any need of additional contrast agents. The increasing demand for endoscopic techniques has forced the development of multiphoton endoscopes for imaging of areas with reduced accessibility like chronic wounds. Gradient index (GRIN) lenses can miniaturize the bulky distal focusing optics of conventional tomographs to a diameter of less than 1.4 mm and a numerical aperture (NA) of 0.8. We combined a high NA clinical multiphoton endoscope with existing multiphoton tomographs like the DermaInspect® and the MPTflex® to enable the examination of wound healing processes.

  12. Sintassi e tassonomia: Teoria della valenza e lessico-grammatica in tedesco e in italiano (Syntax and Taxonomy: Theory of Valence and Lexical Grammar in German and Italian).

    ERIC Educational Resources Information Center

    Bianco, Maria Teresa

    1986-01-01

    Briefly discusses the concepts of "subject,""complement,""transitivity," and "intransitivity," contrasts the classes of complements in German and Italian based on identical criteria of classification, justifies such a classification for complements, and suggests didactic implications for the theory of…

  13. Sodium-difluoro(oxalato)borate (NaDFOB): a new electrolyte salt for Na-ion batteries.

    PubMed

    Chen, Juner; Huang, Zhenguo; Wang, Caiyun; Porter, Spencer; Wang, Baofeng; Lie, Wilford; Liu, Hua Kun

    2015-06-18

    A new electrolyte salt, sodium-difluoro(oxalato)borate (NaDFOB), was synthesized and studied, which enables excellent reversible capacity and high rate capability when used in Na/Na0.44MnO2 half cells. NaDFOB has excellent compatibility with various common solvents used in Na-ion batteries, in strong contrast to the solvent dependent performances of NaClO4 and NaPF6. In addition, NaDFOB possesses good stability and generates no toxic or dangerous products when exposed to air and water. All these properties demonstrate that NaDFOB could be used to prepare high performance electrolytes for emerging Na-ion batteries.

  14. Linear and nonlinear optical properties of 3-nitroaniline (m-NA) and 4-nitroaniline (p-NA) crystals: A DFT/TDDFT study

    NASA Astrophysics Data System (ADS)

    Dadsetani, M.; Omidi, A. R.

    2015-10-01

    We have studied the electronic structure and optical responses of 3-nitroaniline and 4-nitroaniline crystals within the framework of density functional theory (DFT). In addition, the excitonic effects are investigated by using the recently published bootstrap exchange-correlation kernel within the time dependent density functional theory (TDDFT) framework. Our calculations based on mBJ approximation yield the indirect band gap for both crystals, but the larger one for m-NA. Due to the excitonic effects, the TDDFT calculations gives rise to the enhanced and red-shifted spectra (compared to RPA). Due to the weak intermolecular interactions, band-structure calculations yield bands with low dispersion for both crystals. This study shows that the substituent groups play an important role in the top of valence band and the bottom of conduction band. Due to the linear structure of p-NA molecule, the highest peaks are located in the optical spectra of p-NA crystal, while m-NA has more sharp peaks, especially at lower energies. Both DFT and TDDFT calculations for the energy loss spectra show plasmon peaks around 27 and 28 eV for p-NA and m-NA, respectively. Due to the non-centrosymmetric structure of m-NA crystal, we also have reported its nonlinear spectra and the 2ω/ω intra-band and inter-band contributions to the dominant susceptibilities. Findings indicate the opposite signs for these contributions, especially at higher energies. The comparison between nonlinear spectra and the linear spectra (as a function of both ω and 2ω) reveals the significant resemblance between linear and nonlinear patterns. In addition to the reasonable agreement between our results with experimental data, this study reveals the spectral similarities between crystalline susceptibility and molecular polarizability.

  15. Statistical Optimization of the Production of NaCl-Tolerant Proteases by a Moderate Halophile, Virgibacillus sp. SK37

    PubMed Central

    Sinsuwan, Sornchai; Jangchud, Anuvat; Rodtong, Sureelak; Roytrakul, Sittirak

    2015-01-01

    Summary The objectives of this study are to optimize the conditions for providing high yield of NaCl-tolerant extracellular protease from Virgibacillus sp. SK37 based on a fish-based medium and to investigate the effects of the key factors (mass per volume ratios of dried anchovy, yeast extract and NaCl, and initial pH of the medium) on the secretion pattern of proteases. Based on the predicted response model, the optimized medium contained 1.81% of dried anchovy, 0.33% of yeast extract and 1.25% of NaCl at pH=7.8. Under these conditions, a 5.3-fold increase in protease production was achieved, compared with the broth containing only 1.2% of dried anchovy (5% of NaCl at pH=7). The cubic regression adequately described the protease production. Protease activity was determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) on the synthetic substrate (Suc-Ala-Ala-Pro-Phe-AMC). Proteases of molecular masses of 19, 34, 35 and 44 kDa were secreted in the presence of NaCl, whereas those of 22 and 42 kDa were the main proteases detected in the absence of NaCl. In addition, no secreted proteases were detected when initial pH of the medium was pH=6. The peptide mass fingerprint of the medium cultured with 10% NaCl showed a higher abundance of peptides with lower mass of 500–1000 m/z compared with the medium containing 0% NaCl, indicating the higher proteolytic activity of the high-salt medium. The Virgibacillus sp. SK37 proteases showed a marked preference towards Lys, Arg and Tyr in the presence of NaCl and towards Lys and Arg in the absence of NaCl. PMID:27904342

  16. Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain.

    PubMed

    Deuis, Jennifer R; Wingerd, Joshua S; Winter, Zoltan; Durek, Thomas; Dekan, Zoltan; Sousa, Silmara R; Zimmermann, Katharina; Hoffmann, Tali; Weidner, Christian; Nassar, Mohammed A; Alewood, Paul F; Lewis, Richard J; Vetter, Irina

    2016-03-17

    Loss-of-function mutations of Na(V)1.7 lead to congenital insensitivity to pain, a rare condition resulting in individuals who are otherwise normal except for the inability to sense pain, making pharmacological inhibition of Na(V)1.7 a promising therapeutic strategy for the treatment of pain. We characterized a novel mouse model of Na(V)1.7-mediated pain based on intraplantar injection of the scorpion toxin OD1, which is suitable for rapid in vivo profiling of Na(V)1.7 inhibitors. Intraplantar injection of OD1 caused spontaneous pain behaviors, which were reversed by co-injection with Na(V)1.7 inhibitors and significantly reduced in Na(V)1.7(-/-) mice. To validate the use of the model for profiling Na(V)1.7 inhibitors, we determined the Na(V) selectivity and tested the efficacy of the reported Na(V)1.7 inhibitors GpTx-1, PF-04856264 and CNV1014802 (raxatrigine). GpTx-1 selectively inhibited Na(V)1.7 and was effective when co-administered with OD1, but lacked efficacy when delivered systemically. PF-04856264 state-dependently and selectively inhibited Na(V)1.7 and significantly reduced OD1-induced spontaneous pain when delivered locally and systemically. CNV1014802 state-dependently, but non-selectively, inhibited Na(V) channels and was only effective in the OD1 model when delivered systemically. Our novel model of Na(V)1.7-mediated pain based on intraplantar injection of OD1 is thus suitable for the rapid in vivo characterization of the analgesic efficacy of Na(V)1.7 inhibitors.

  17. Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain

    PubMed Central

    Deuis, Jennifer R.; Wingerd, Joshua S.; Winter, Zoltan; Durek, Thomas; Dekan, Zoltan; Sousa, Silmara R.; Zimmermann, Katharina; Hoffmann, Tali; Weidner, Christian; Nassar, Mohammed A.; Alewood, Paul F.; Lewis, Richard J.; Vetter, Irina

    2016-01-01

    Loss-of-function mutations of NaV1.7 lead to congenital insensitivity to pain, a rare condition resulting in individuals who are otherwise normal except for the inability to sense pain, making pharmacological inhibition of NaV1.7 a promising therapeutic strategy for the treatment of pain. We characterized a novel mouse model of NaV1.7-mediated pain based on intraplantar injection of the scorpion toxin OD1, which is suitable for rapid in vivo profiling of NaV1.7 inhibitors. Intraplantar injection of OD1 caused spontaneous pain behaviors, which were reversed by co-injection with NaV1.7 inhibitors and significantly reduced in NaV1.7−/− mice. To validate the use of the model for profiling NaV1.7 inhibitors, we determined the NaV selectivity and tested the efficacy of the reported NaV1.7 inhibitors GpTx-1, PF-04856264 and CNV1014802 (raxatrigine). GpTx-1 selectively inhibited NaV1.7 and was effective when co-administered with OD1, but lacked efficacy when delivered systemically. PF-04856264 state-dependently and selectively inhibited NaV1.7 and significantly reduced OD1-induced spontaneous pain when delivered locally and systemically. CNV1014802 state-dependently, but non-selectively, inhibited NaV channels and was only effective in the OD1 model when delivered systemically. Our novel model of NaV1.7-mediated pain based on intraplantar injection of OD1 is thus suitable for the rapid in vivo characterization of the analgesic efficacy of NaV1.7 inhibitors. PMID:26999206

  18. Inframolecular acid–base and coordination properties towards Na+ and Mg2+ of myo-inositol 1,3,4,5,6-pentakisphosphate: a structural approach to biologically relevant species† †Electronic supplementary information (ESI) available: Application of the Cluster Expansion Method (Table S1); 31P NMR spectra (Fig. S1); Structural details of Ins(1,3,4,5,6)P 5–Mg2+ interaction (Fig. S2); Comparative fit of alternative chemical models for the Ins(1,3,4,5,6)P 5–Na+ system (Fig. S3). See DOI: 10.1039/c2dt31807e Click here for additional data file.

    PubMed Central

    Torres, Julia; Macho, Israel; Gómez, Kerman; Godage, Himali Y.; Riley, Andrew M.; Potter, Barry V. L.; González, Gabriel; Kremer, Carlos

    2013-01-01

    The myo-inositol phosphates (InsPs) are specific signalling metabolites ubiquitous in eukaryotic cells. Although Ins(1,3,4,5,6)P 5 is the second most abundant member of the InsPs family, its certain biological roles are far from being elucidated, in part due to the large number of species formed by Ins(1,3,4,5,6)P 5 in the presence of metal ions. In light of this, we have strived in the past to make a complete and at the same time “biological-user-friendly” description of the Ins(1,3,4,5,6)P 5 chemistry with mono and multivalent cations. In this work we expand these studies focusing on the inframolecular aspects of its protonation equilibria and the microscopic details of its coordination behaviour towards biologically relevant metal ions. We present here a systematic study of the Ins(1,3,4,5,6)P 5 intrinsic acid–base processes, in a non-interacting medium, and over a wide pH range, analyzing the 31P NMR curves by means of a model based on the Cluster Expansion Method. In addition, we have used a computational approach to analyse the energetic and structural features of the protonation and conformational changes of Ins(1,3,4,5,6)P 5, and how they are influenced by the presence of two physiologically relevant cations, Na+ and Mg2+. PMID:23183928

  19. Understanding hydrothermal transformation from Mn2O3 particles to Na0.55Mn2O4·1.5H2O nanosheets, nanobelts, and single crystalline ultra-long Na4Mn9O18 nanowires

    PubMed Central

    Park, Yohan; Woo Lee, Sung; Kim, Ki Hyeon; Min, Bong-Ki; Kumar Nayak, Arpan; Pradhan, Debabrata; Sohn, Youngku

    2015-01-01

    Manganese oxides are one of the most valuable materials for batteries, fuel cells and catalysis. Herein, we report the change in morphology and phase of as-synthesized Mn2O3 by inserting Na+ ions. In particular, Mn2O3 nanoparticles were first transformed to 2 nm thin Na0.55Mn2O4·1.5H2O nanosheets and nanobelts via hydrothermal exfoliation and Na cation intercalation, and finally to sub-mm ultra-long single crystalline Na4Mn9O18 nanowires. This paper reports the morphology and phase-dependent magnetic and catalytic (CO oxidation) properties of the as-synthesized nanostructured Na intercalated Mn-based materials. PMID:26667348

  20. Role of the Na(+)-translocating NADH:quinone oxidoreductase in voltage generation and Na(+) extrusion in Vibrio cholerae.

    PubMed

    Vorburger, Thomas; Nedielkov, Ruslan; Brosig, Alexander; Bok, Eva; Schunke, Emina; Steffen, Wojtek; Mayer, Sonja; Götz, Friedrich; Möller, Heiko M; Steuber, Julia

    2016-04-01

    For Vibrio cholerae, the coordinated import and export of Na(+) is crucial for adaptation to habitats with different osmolarities. We investigated the Na(+)-extruding branch of the sodium cycle in this human pathogen by in vivo (23)Na-NMR spectroscopy. The Na(+) extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). In a V. cholerae deletion mutant devoid of the Na(+)-NQR encoding genes (nqrA-F), rates of respiratory Na(+) extrusion were decreased by a factor of four, but the cytoplasmic Na(+) concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (ΔΨ, inside negative) and did not grow under hypoosmotic conditions at pH8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na(+)/H(+) antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na(+) concentrations, the Na(+)-NQR is crucial for generation of a transmembrane voltage to drive the import of H(+) by electrogenic Na(+)/H(+) antiporters. Our study provides the basis to understand the role of the Na(+)-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na(+) pump for respiration.

  1. Modeling of single noninactivating Na+ channels: evidence for two open and several fast inactivated states.

    PubMed

    The, Yu-Kai; Fernandes, Jacqueline; Popa, M Oana; Alekov, Alexi K; Timmer, Jens; Lerche, Holger

    2006-05-15

    Voltage-gated Na(+) channels play a fundamental role in the excitability of nerve and muscle cells. Defects in fast Na(+) channel inactivation can cause hereditary muscle diseases with hyper- or hypoexcitability of the sarcolemma. To explore the kinetics and gating mechanisms of noninactivating muscle Na(+) channels on a molecular level, we analyzed single channel currents from wild-type and five mutant Na(+) channels. The mutations were localized in different protein regions which have been previously shown to be important for fast inactivation (D3-D4-linker, D3/S4-S5, D4/S4-S5, D4/S6) and exhibited distinct grades of defective fast inactivation with varying levels of persistent Na(+) currents caused by late channel reopenings. Different gating schemes were fitted to the data using hidden Markov models with a correction for time interval omission and compared statistically. For all investigated channels including the wild-type, two open states were necessary to describe our data. Whereas one inactivated state was sufficient to fit the single channel behavior of wild-type channels, modeling the mutants with impaired fast inactivation revealed evidence for several inactivated states. We propose a single gating scheme with two open and three inactivated states to describe the behavior of all five examined mutants. This scheme provides a biological interpretation of the collected data, based on previous investigations in voltage-gated Na(+) and K(+) channels.

  2. Enhancement of the up-conversion luminescence from NaYF4:Yb3+,Tb3+

    NASA Astrophysics Data System (ADS)

    Hölsä, Jorma; Laihinen, Tero; Laamanen, Taneli; Lastusaari, Mika; Pihlgren, Laura; Rodrigues, Lucas C. V.; Soukka, Tero

    2014-04-01

    The synthesis conditions of the Yb3+ and Tb3+ co-doped NaYF4 were optimized by reducing the number of washings to include only ethanol. The avoidance of the loss of amorphous NaF prior to post-annealing of the as-prepared materials resulted in the enhancement of the otherwise rather weak up-conversion from Tb3+ by 1-2 orders of magnitude. At the same time, the temperature of formation of the hexagonal NaRF4 phase with high up-conversion could be lowered by 100 °C down to 350 °C. This improvement in up-conversion was concluded to result from the better stoichiometry of the material without washing with water. The deficit of Na+ would result in the excess of fluoride which, although not as fatal to the luminescence as the fluoride vacancies, has serious implications to the up-conversion intensity. A further enhancement in the up-conversion luminescence was observed to be due to the Er3+ ion impurity frequently associated with high-concentration Yb3+ materials. The mechanism involving the unintentional Er3+ sensitizer and the resonance energy transfer in the Yb3+-Er3+-Tb3+ co-doped NaYF4 were discussed based on the energy level schemes of the Yb3+, Er3+, and Tb3+ ions in NaYF4.

  3. Solvation of Na2+ in Arn clusters. I. Structures and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Douady, J.; Jacquet, E.; Giglio, E.; Zanuttini, D.; Gervais, B.

    2008-11-01

    We present a theoretical study of Na2+ solvation in an argon matrix Arn for n =1 to a few tens. We use a model based on an explicit description of valence electron interaction with Na+ and Ar cores by means of core polarization pseudopotential. The electronic structure determination is thus reduced to a one-electron problem, which can be handled efficiently. We investigate the ground state geometry and related optical absorption of Na2+Arn clusters. For n ⩽5, the lowest energy isomers are obtained by aggregation of Ar atoms at one single extremity of Na2+, leading to moderate perturbation of the optical transition. For 6⩽n⩽15, the Ar atoms aggregate at both extremities. This structural change is associated with a strong blueshift of the first optical transition (XΣg+2→AΣu+2), which reveals the confinement of the excited AΣu +2 state. The Na2+ energy spectrum is so strongly perturbed that the AΣu +2 state becomes higher than the BΠu +2 states. The closure of the first solvation shell is observed at n =17. Above this size, the second solvation shell develops. Its structure is dominated by a pentagonal organization around the Na2+ molecular axis. The optical transitions vary smoothly with n and the AΣu +2 and BΠu2 states are no longer inverted, though the first optical transition remains strongly blueshifted.

  4. Na+/K+-ATPase activity during early development and growth of an Antarctic sea urchin.

    PubMed

    Leong, P K; Manahan, D T

    1999-08-01

    In Antarctic environments, the physiological bases for long larval life spans under natural conditions of limited food availability are not understood. The Na+ pump is likely to be involved with hypometabolic regulation in such cold environments. Changes in the activity and metabolic importance of Na+/K+-ATPase were measured in embryos of the Antarctic sea urchin Sterechinus neumayeri and in larvae reared under different feeding conditions. The rate of increase of total Na+/K+-ATPase activity was 3.9 times faster in fed than in unfed larvae. During development and growth, there was an increase in the percentage of total, potential Na+/K+-ATPase activity that was physiologically utilized. In early (10-day-old) gastrulae, 17 % was utilized in vivo, increasing to 77 % in six-arm pluteus (48-day-old) larvae. The metabolic importance of in vivo Na+/K+-ATPase activity also increased during development, accounting for 12 % of metabolic rate at day 10 and 84 % at day 48. When compared at the same enzyme assay temperature (15 degrees C), the protein-specific total Na+/K+-ATPase activities for late embryonic (prism) and early larval (pluteus) stages of S. neumayeri were 2.6 times lower than those for comparable developmental stages of two temperate sea urchin species (Strongylocentrotus purpuratus and Lytechinus pictus).

  5. The magnetic structures of double tungstates, NaM(WO 4) 2, M=Fe, Cr: Examples for superexchange couplings mediated by [NaO 6]-octahedra

    NASA Astrophysics Data System (ADS)

    Nyam-Ochir, L.; Ehrenberg, H.; Buchsteiner, A.; Senyshyn, A.; Fuess, H.; Sangaa, D.

    The crystal structures of the double tungstates NaM(WO 4) 2 with M=Fe, Cr and their solid solution are similar to the wolframite-type structure in the space group P2/c, but with doubled a lattice parameter. Magnetization and neutron-diffraction data reveal that NaFe(WO 4) 2 orders antiferromagnetically below 5 K with a commensurate propagation vector k=({1}/{2},{1}/{2},{1}/{2}) and magnetic moments of Fe 3+ ions oriented along the a-axis. NaCr(WO 4) 2 is antiferromagnetic below 10 K. Its magnetic structure is based on the propagation vector k=({1}/{2},{1}/{2},0), and the magnetic moments of Cr 3+ ions are aligned along the b-axis. The magnetic structure in the bc-plane is explained by a supersuperexchange mechanism. Long-range magnetic superexchange interactions along paths including [NaO 6]-octahedra are necessary to explain the observed magnetic structures. Mixed NaFe xCr 1-x(WO 4) 2, with x=0.25, 0.5, 0.75, do not indicate magnetic order, neither in magnetization nor neutron-diffraction data.

  6. Electronic Polarisability of NaNO2-NaNO3 and NaOH-NaNO3 Ionic Melts and Effective Ionic Radius of OH-

    NASA Astrophysics Data System (ADS)

    Iwadate, Yasuhiko; Ohnishi, Ryosuke; Ohkubo, Takahiro

    2017-01-01

    Molar volumes and refractive indexes of molten NaNO2-NaNO3 and NaOH-NaNO3 systems were measured by dilatometry and goniometry, respectively. The molar volumes of both systems increased with increasing temperature. Refractive indexes decreased with a rise of temperature or with increasing wavelength of the incident visible light. Assuming that the electronic polarisability is inherent in an ion, the electronic polarisability of a OH- ion in the melt was estimated from the Lorentz-Lorenz equation to be 1.26×10-30 m3, being comparable with that in the crystal. The effective ionic radius of a OH- ion was evaluated from the obtained electronic polarisability to be 1.34×10-10 m, using the correlation between the third power of the ionic radius and the electronic polarisability of an ion so far reported. The effective ionic radius obtained in this work was in good agreement with that assigned by Shannon.

  7. Recent results and prospects from NA62

    NASA Astrophysics Data System (ADS)

    Bizzeti, Andrea

    2016-11-01

    A large sample of charged kaon decays in 2007 has been collected by the NA62 experiment at CERN SPS using the experimental setup of the former NA48 experiment. Its intense kaon beam provides an abundant source of tagged neutral pions in vacuum. A measurement of the electromagnetic transition form factor slope of the neutral pion from 1:05 × 106 fully reconstructed π0 Dalitz decays is presented. The obtained preliminary value a = (3.70 ± 0.53stat ± 0.36syst) × 10-2 is the first 5.8σ observation of a non-zero slope in the time-like region of momentum transfer. K+ → π+ vv¯ is a theoretically very clean decay where indirect effects of new physics may be detectable. The NA62 apparatus has been significantly upgraded between 2008 and 2014 in order to measure the branching ratio of this decay with 10% precision. The NA62 experiment took data with the new setup in pilot runs in 2014 and 2015, reaching the design beam intensity. Results of first data quality studies in view of the 2016-2017 physics runs are presented.

  8. Light-induced drift of Na atoms

    NASA Astrophysics Data System (ADS)

    Werij, H. G. C.; Woerdman, J. P.

    1988-10-01

    Light can induce a flux of optically absorbing particles immersed in a buffer gas, when these particles have a different mobility in the ground and excited state. This paper presents a study of light-induced drift (LID) of Na atoms in noble gases, which can be regarded as the “canonical” system for experiments in this field. We have experimentally studied the LID effect in the optically thin and the optically thick regimes. Parameters which have been varied are laser frequency, laser intensity, buffer gas pressure and buffer gas species. This work gives the first critical comparison of LID experiments with realistic theory in which the multilevel complications of the Na atom have been incorporated. In the optically thick case (“optical piston”) one can distinguish the open cell and the closed cell regimes. Effects of adsorption and desorption of Na atoms at the surface of the cell wall have been incorporated into the theory. The experimental data are in excellent agreement with the results of a four-level rate-equation model for LID which incorporates the fine and hyperfine structure of the level scheme of the Na absorbers.

  9. Mechanisms contributing to the cardiac inotropic effect of Na pump inhibition and reduction of extracellular Na

    PubMed Central

    1987-01-01

    Reduction of the transsarcolemmal [Na] gradient in rabbit cardiac muscle leads to an increase in the force of contraction. This has frequently been attributed to alteration of Ca movements via the sarcolemmal Na/Ca exchange system. However, the specific mechanisms that mediate the increased force at individual contractions have not been clearly established. In the present study, the [Na] gradient was decreased by reduction of extracellular [Na] or inhibition of the Na pump by either the cardioactive steroid acetylstrophanthidin or by reduction of extracellular [K]. Contractile performance and changes in extracellular Ca (sensed by double-barreled Ca-selective microelectrodes) were studied in order to elucidate the underlying basis for the increase in force. In the presence of agents that inhibit sarcoplasmic reticulum (SR) function (10 mM caffeine, 100-500 nM ryanodine), reduction of the [Na] gradient produced increases in contractile force similar to that observed in the absence of caffeine or ryanodine. It is concluded that an intact, functioning SR is not required for the inotropic effect of [Na] gradient reduction (at least in rabbit ventricle). However, this does not exclude a possible contribution of enhanced SR Ca release in the inotropic response to [Na] gradient reduction in the absence of caffeine or ryanodine. Acetylstrophanthidin (3-5 microM) usually leads to an increase in the magnitude of extracellular Ca depletions associated with individual contractions. However, acetylstrophanthidin can also increase extracellular Ca accumulation during the contraction, especially at potentiated contractions. This extracellular Ca accumulation can be suppressed by ryanodine and it is suggested that this apparent enhancement of Ca efflux is secondary to an enhanced release of Ca from the SR. Under conditions where Ca efflux during contractions is minimized (after a rest interval in the presence of ryanodine), acetylstrophanthidin increased both the rate and the

  10. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean.

    PubMed

    He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean

    2015-11-01

    In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress.

  11. Intracellular Na(+) and metabolic modulation of Na/K pump and excitability in the rat suprachiasmatic nucleus neurons.

    PubMed

    Wang, Yi-Chi; Yang, Jyh-Jeen; Huang, Rong-Chi

    2012-10-01

    Na/K pump activity and metabolic rate are both higher during the day in the suprachiasmatic nucleus (SCN) that houses the circadian clock. Here we investigated the role of intracellular Na(+) and energy metabolism in regulating Na/K pump activity and neuronal excitability. Removal of extracellular K(+) to block the Na/K pump excited SCN neurons to fire at higher rates and return to normal K(+) to reactivate the pump produced rebound hyperpolarization to inhibit firing. In the presence of tetrodotoxin to block the action potentials, both zero K(+)-induced depolarization and rebound hyperpolarization were blocked by the cardiac glycoside strophanthidin. Ratiometric Na(+) imaging with a Na(+)-sensitive fluorescent dye indicated saturating accumulation of intracellular Na(+) in response to pump blockade with zero K(+). The Na(+) ionophore monensin also induced Na(+) loading and hyperpolarized the membrane potential, with the hyperpolarizing effect of monensin abolished in zero Na(+) or by pump blockade. Conversely, Na(+) depletion with Na(+)-free pipette solution depolarized membrane potential but retained residual Na/K pump activity. Cyanide inhibition of oxidative phosphorylation blocked the Na/K pump to depolarize resting potential and increase spontaneous firing in most cells, and to raise intracellular Na(+) levels in all cells. Nonetheless, the Na/K pump was incompletely blocked by cyanide but completely blocked by iodoacetate to inhibit glycolysis, indicating the involvement of both oxidative phosphorylation and glycolysis in fueling the Na/K pump. Together, the results indicate the importance of intracellular Na(+) and energy metabolism in regulating Na/K pump activity as well as neuronal excitability in the SCN neurons.

  12. [Regulation of the Na/Ca exchanger].

    PubMed

    DiPolo, R; Rojas, H; Beaugé, L

    1993-01-01

    The introduction of the squid giant axon preparation to studies on Ca homeostasis has proven very useful in laying the foundations in the study of Ca regulation. In particular the Na/Ca exchange mechanism has been characterized in terms of its regulatory processes using the well define technique of intracellular dialysis and membrane potential control. The Na/Ca exchange countertransport system plays a critical role in physiological processes including cardiac contractility and photoreception. It has also been implicate in the etiology of essential hypertension, cardiac arrhythmias and cell death. The ability of the Na/Ca exchanger to regulate the intracellular ionized Ca concentration ([Ca2+i]) under physiological conditions, is determined by the direction (net Ca efflux or Ca influx), and magnitude of transport. The direction of Ca transport is decided by the chemical gradient of sodium and calcium. The magnitude of the exchange is regulated by kinetic factors. This kinetic factors are critical since they decide whether the exchanger will mediate a net Ca movement under certain conditions. Recently, a large effort has been put together to characterize the secondary modulation of the Na/Ca exchanger. In particular modulation by MgATP and intracellular Ca2+. In nerve cells we have discover that MgATP regulates the exchanger through as phosphorylation-dephosphorylation processes most probably relate to the action of a kinase-phosphatase system. The other important ligand that regulates the exchange activity is the level of [Ca2+i]. We have found the presence of a regulatory site in the cytoplasmic face of the exchanger different from the transport site and probably responsible for turning the carrier "on" or "off". In this article we will depict some of the processes involved in the metabolic and ionic regulation of the Na/Ca exchanger.

  13. Laser trapping of {sup 21}Na atoms

    SciTech Connect

    Lu, Zheng-Tian

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  14. MINOS Calibration and NA49 Hadronic Production Studies

    SciTech Connect

    Morse, Robert James

    2003-08-01

    An overview of the current status of the Main Injector Neutrino Oscillation Search (MINOS) is presented. MINOS is a long-baseline experiment with two detectors situated in North America. The near detector is based at the emission point of the NuMI beam at Fermilab, Chicago, the far detector is 735 km downstream in a disused iron mine in Soudan, Minnesota. A third detector, the calibration detector, is used to cross-calibrate these detectors by sampling different particle beams at CERN. A detailed description of the design and construction of the light-injection calibration system is included. Also presented are experimental investigations into proton-carbon collisions at 158 GeV/c carried out with the NA49 experiment at CERN. The NA49 experiment is a Time Projection Chamber (TPC) based experiment situated at CERN's North Area. It is a well established experiment with well known characteristics. The data gained from this investigation are to be used to parameterize various hadronic production processes in accelerator and atmospheric neutrino production. These hadronic production parameters will be used to improve the neutrino generation models used in calculating the neutrino oscillation parameters in MINOS.

  15. Molecular characterization of the Na+/H+-antiporter NhaA from Salmonella Typhimurium.

    PubMed

    Lentes, Christopher J; Mir, Syed H; Boehm, Marc; Ganea, Constanta; Fendler, Klaus; Hunte, Carola

    2014-01-01

    Na+/H+ antiporters are integral membrane proteins that are present in almost every cell and in every kingdom of life. They are essential for the regulation of intracellular pH-value, Na+-concentration and cell volume. These secondary active transporters exchange sodium ions against protons via an alternating access mechanism, which is not understood in full detail. Na+/H+ antiporters show distinct species-specific transport characteristics and regulatory properties that correlate with respective physiological functions. Here we present the characterization of the Na+/H+ antiporter NhaA from Salmonella enterica serovar Thyphimurium LT2, the causing agent of food-born human gastroenteritis and typhoid like infections. The recombinant antiporter was functional in vivo and in vitro. Expression of its gene complemented the Na+-sensitive phenotype of an E. coli strain that lacks the main Na+/H+ antiporters. Purified to homogeneity, the antiporter was a dimer in solution as accurately determined by size-exclusion chromatography combined with multi-angle laser-light scattering and refractive index monitoring. The purified antiporter was fully capable of electrogenic Na+(Li+)/H+-antiport when reconstituted in proteoliposomes and assayed by solid-supported membrane-based electrophysiological measurements. Transport activity was inhibited by 2-aminoperimidine. The recorded negative currents were in agreement with a 1Na+(Li+)/2H+ stoichiometry. Transport activity was low at pH 7 and up-regulation above this pH value was accompanied by a nearly 10-fold decrease of KmNa (16 mM at pH 8.5) supporting a competitive substrate binding mechanism. K+ does not affect Na+ affinity or transport of substrate cations, indicating that selectivity of the antiport arises from the substrate binding step. In contrast to homologous E. coli NhaA, transport activity remains high at pH values above 8.5. The antiporter from S. Typhimurium is a promising candidate for combined structural and

  16. The Na4(+3) Clusters in Sodium Sodalite

    DTIC Science & Technology

    1992-05-15

    ATES COVOIN0i-15-92 Technical 06-01-91 to 05-31-92 4. TITLE ANA SUGTITLE S. RNORNG NUMBER The Na4+ 3 Clusters in Sodium Sodalite NN l14-e0-J-se59a 𔄀...3 [AlSiO 4]3 sodalite prepared by high vacuum deposition of sodium atoms. The samples with a Na 43 +:Na33+ cluster ratio up to 1:10 show a single...absorption feature with -m. = 628 nm (1.99 eV). The absorption originates from the individual sodalite cages containing Na 43+ cluster. For the Na 43+:Na

  17. An Evaluation of the NaS Battery Storage Potential for Providing Regulation Service in California

    SciTech Connect

    Lu, Ning; Weimar, Mark R.; Makarov, Yuri V.; Loutan, Clyde

    2011-03-23

    Sodium sulfur (NaS) batteries can provide energy storage, real-time dispatch, regulation, frequency response, and other essential services to the power grids. This study presents the technical characteristics, modeling approach, methodologies, and results for providing regulation services in the California Independent System Operator (CAISO) market. Two different scenarios were studied and compared: a scenario without intermittent renewable-energy resource penetration (base case) and a scenario with significant renewable-energy resource penetration (including wind) reaching 20% of CAISO’s energy supply. In addition, breakeven cost analyses were developed for four cases. Based on the results of the technical and cost analyses, the opportunities for the NaS battery providing the regulation services are discussed, design improvements for the battery’s physical characteristics are recommended, and modifications of the regulation signals sent to NaS batteries are proposed.

  18. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton.

    PubMed

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A Egrinya; Li, Weijiang

    2012-03-01

    A new split-root system was established through grafting to study cotton response to non-uniform salinity. Each root half was treated with either uniform (100/100 mM) or non-uniform NaCl concentrations (0/200 and 50/150 mM). In contrast to uniform control, non-uniform salinity treatment improved plant growth and water use, with more water absorbed from the non- and low salinity side. Non-uniform treatments decreased Na(+) concentrations in leaves. The [Na(+)] in the '0' side roots of the 0/200 treatment was significantly higher than that in either side of the 0/0 control, but greatly decreased when the '0' side phloem was girdled, suggesting that the increased [Na(+)] in the '0' side roots was possibly due to transportation of foliar Na(+) to roots through phloem. Plants under non-uniform salinity extruded more Na(+) from the root than those under uniform salinity. Root Na(+) efflux in the low salinity side was greatly enhanced by the higher salinity side. NaCl-induced Na(+) efflux and H(+) influx were inhibited by amiloride and sodium orthovanadate, suggesting that root Na(+) extrusion was probably due to active Na(+)/H(+) antiport across the plasma membrane. Improved plant growth under non-uniform salinity was thus attributed to increased water use, reduced leaf Na(+) concentration, transport of excessive foliar Na(+) to the low salinity side, and enhanced Na(+) efflux from the low salinity root.

  19. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    NASA Astrophysics Data System (ADS)

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-01

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO 2 and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 °C for 2-6 h by changing the SiO 2/Al 2O 3, H 2O/Na 2O and Na 2O/SiO 2 molar ratios of precursors in the two-step process. The surface area and NH 4+-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m 2/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m 2/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of ˜3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously.

  20. Metastability And Crystal Structure of The Bialkali Complex Metal Hydride NaK(BH4)2

    SciTech Connect

    Seballos, L; Zhang, J Z; Ronnebro, E; Herberg, J L; Majzoub, E H

    2008-05-19

    A new bialkali borohydride, NaK(BH{sub 4}){sub 2}, was synthesized by mechanical milling of NaBH4 and KBH4 in a 1:1 ratio. The synthesis was conducted based on a prediction from a computational screening of hydrogen storage materials suggesting the potential stability of NaK(BH{sub 4}){sub 2}. The new phase was characterized using X-ray diffraction, Raman scattering and magic angle spinning (MAS) nuclear magnetic resonance (NMR). The Raman measurements indicated B-H vibrations of the (BH{sub 4}){sup -} anion, while magnetic resonance chemical shifts in {sup 23}Na, and {sup 39}K MAS NMR spectra showed new chemical environments for Na and K resulting from the formation of the new bialkali phase. X-ray diffraction spectra indicated a new crystal structure with rhombohedral symmetry, most likely in the space group R3, distinct from the starting materials NaBH{sub 4}, and KBH{sub 4}. Although in-situ XRD measurements indicated the material to be metastable, decomposing to the starting materials NaBH{sub 4} and KBH{sub 4}, the successful synthesis of NaK(BH{sub 4}){sub 2} demonstrates the ability of computational screening to predict candidates for hydrogen storage materials.

  1. Bioinformatic characterizations and prediction of K+ and Na+ ion channels effector toxins

    PubMed Central

    Soli, Rima; Kaabi, Belhassen; Barhoumi, Mourad; El-Ayeb, Mohamed; Srairi-Abid, Najet

    2009-01-01

    Background K+ and Na+ channel toxins constitute a large set of polypeptides, which interact with their ion channel targets. These polypeptides are classified in two different structural groups. Recently a new structural group called birtoxin-like appeared to contain both types of toxins has been described. We hypothesized that peptides of this group may contain two conserved structural motifs in K+ and/or Na+ channels scorpion toxins, allowing these birtoxin-like peptides to be active on K+ and/or Na+ channels. Results Four multilevel motifs, overrepresented and specific to each group of K+ and/or Na+ ion channel toxins have been identified, using GIBBS and MEME and based on a training dataset of 79 sequences judged as representative of K+ and Na+ toxins. Unexpectedly birtoxin-like peptides appeared to present a new structural motif distinct from those present in K+ and Na+ channels Toxins. This result, supported by previous experimental data, suggests that birtoxin-like peptides may exert their activity on different sites than those targeted by classic K+ or Na+ toxins. Searching, the nr database with these newly identified motifs using MAST, retrieved several sequences (116 with e-value < 1) from various scorpion species (test dataset). The filtering process left 30 new and highly likely ion channel effectors. Phylogenetic analysis was used to classify the newly found sequences. Alternatively, classification tree analysis, using CART algorithm adjusted with the training dataset, using the motifs and their 2D structure as explanatory variables, provided a model for prediction of the activity of the new sequences. Conclusion The phylogenetic results were in perfect agreement with those obtained by the CART algorithm. Our results may be used as criteria for a new classification of scorpion toxins based on functional motifs. PMID:19284552

  2. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase.

    PubMed

    Song, Jianliang; Zhang, Xue-Qian; Wang, JuFang; Cheskis, Ellina; Chan, Tung O; Feldman, Arthur M; Tucker, Amy L; Cheung, Joseph Y

    2008-10-01

    Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct

  3. Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection

    NASA Astrophysics Data System (ADS)

    Ai, Yu; Tu, Datao; Zheng, Wei; Liu, Yongsheng; Kong, Jintao; Hu, Ping; Chen, Zhuo; Huang, Mingdong; Chen, Xueyuan

    2013-06-01

    Trivalent lanthanide ions (Ln3+)-doped inorganic nanoparticles (NPs) as potential luminescent bioprobes have been attracting tremendous interest because of their unique upconversion (UC) and downconversion (DC) luminescence properties. NaScF4, as an important host material, has been rarely reported and its crystal structure remains unclear. Herein, based on the single crystal X-ray diffraction, the space group of NaScF4 crystals was determined to be P31 containing multiple sites of Sc3+ with crystallographic site symmetry of C1, which was verified by high-resolution photoluminescence spectroscopy of Eu3+ at low temperature (10 K). Furthermore, monodisperse and size-controllable NaScF4:Ln3+ NPs were synthesized via a facile thermal decomposition method. The biotinylated NaScF4:Er3+/Yb3+ NPs were demonstrated for their applications as a heterogeneous UC luminescence bioprobe to detect avidin with a detection limit of 180 pM. After bioconjugation with amino-terminal fragment (ATF) of urokinase plasminogen activator (uPA), NaScF4:Ln3+ NPs also exhibited specific recognition of cancer cells overexpressed with uPA receptor (uPAR, an important marker of tumor biology and metastasis), showing great potentials in tumor-targeted bioimaging.Trivalent lanthanide ions (Ln3+)-doped inorganic nanoparticles (NPs) as potential luminescent bioprobes have been attracting tremendous interest because of their unique upconversion (UC) and downconversion (DC) luminescence properties. NaScF4, as an important host material, has been rarely reported and its crystal structure remains unclear. Herein, based on the single crystal X-ray diffraction, the space group of NaScF4 crystals was determined to be P31 containing multiple sites of Sc3+ with crystallographic site symmetry of C1, which was verified by high-resolution photoluminescence spectroscopy of Eu3+ at low temperature (10 K). Furthermore, monodisperse and size-controllable NaScF4:Ln3+ NPs were synthesized via a facile thermal

  4. Final-state symmetry of Na 1s core-shell excitons in NaCl and NaF

    SciTech Connect

    Nagle, K.P.; Seidler, G.T.; Shirley, E.L.; Fister, T.T.; Bradley, J.A.; Brown, F.C.

    2009-08-13

    We report measurements of the Na 1s contribution to the nonresonant inelastic x-ray scattering (NRIXS) from NaCl and NaF. Prior x-ray absorption studies have observed two pre-edge excitons in both materials. The momentum-transfer dependence (q dependence) of the measured NRIXS cross section and of real-space full multiple scattering and Bethe-Salpeter calculations determine that the higher-energy core excitons are s type for each material. The lower-energy core excitons contribute at most weakly to the NRIXS signal and we propose that these may be surface core excitons, as have been observed in several other alkali halides. The analysis of the orbital angular momentum of these features leads to a discussion of the limited sensitivity of NRIXS measurements to d-type final states when investigating 1s initial states. In this case the s- and p-type final density of states can be characterized by measurements at a small number of momentum transfers. This is in contrast to the case of more complex initial states for which measurements at a large number of momentum transfers are needed to separate the rich admixture of accessible and contributing final-state symmetries.

  5. Performance of the NA62 LAV front-end electronics

    NASA Astrophysics Data System (ADS)

    Antonelli, A.; Corradi, G.; Gonnella, F.; Moulson, M.; Paglia, C.; Raggi, M.; Spadaro, T.; Tagnani, D.; Ambrosino, F.; Di Filippo, D.; Massarotti, P.; Napolitano, M.; Costantini, F.; Fantechi, R.; Mannelli, I.; Raffaelli, F.; Leonardi, E.; Palladino, V.; Valente, P.

    2013-01-01

    The NA62 experiment [1] will measure the BR(K+→π+νbar nu) to within about 10%. To reject the dominant background from final state photons, the large-angle vetoes (LAVs) must detect particles with better than 1 ns time resolution and 10% energy resolution over a very large energy range. A low threshold, large dynamic range, Time-over-threshold based solution has been developed for the LAV front end electronics. Our custom 32 channel 9U board uses a pair of low threshold discriminators for each channel to produce LVDS logic signals. The achieved time resolution obtained in laboratory, coupled to an HPTDC based readout board, is ~ 150 ps.

  6. Computational interpretation of 23Na MQMAS NMR spectra: A comprehensive investigation of the Na environment in silicate glasses

    NASA Astrophysics Data System (ADS)

    Gambuzzi, Elisa; Charpentier, Thibault; Menziani, Maria Cristina; Pedone, Alfonso

    2014-09-01

    Molecular dynamics, density functional theory calculations and 23Na NMR experiments have been used to inspect the chemical and structural characteristics of the Na environment in soda-lime silicate (CSN) and aluminosilicate (CASN) glasses. The use of an improved 3QMAS pulse sequence has allowed a clear identification of different Na sites. Average coordination numbers have been extracted by fitting the 23Na 3QMAS spectra with the computed NMR parameters. The results show that the 23Na δiso values correlate with the average <Na-O> distances only when the different coordination numbers are explicitly taken into account.

  7. Excimer lasers for superhigh NA 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Paetzel, Rainer; Albrecht, Hans S.; Lokai, Peter; Zschocke, Wolfgang; Schmidt, Thomas; Bragin, Igor; Schroeder, Thomas; Reusch, Christian; Spratte, Stefan

    2003-06-01

    Excimer lasers are widely used as the light source for microlithography scanners. The volume shipment of scanner systems using 193nm is projected to begin in year 2003. Such tools will directly start with super high numerical aperture (NA) in order to take full advantage of the 193nm wavelength over the advanced 248nm systems. Reliable high repetition rate laser light sources enabling high illumination power and wafer throughput are one of the fundamental prerequisites. In addition these light sources must support a very high NA imaging lens of more than 0.8 which determines the output spectrum of the laser to be less than 0.30 pm FWHM. In this paper we report on our recent progress in the development of high repetition rate ultra-narrow band lasers for high NA 193nm microlithography scanners. The laser, NovaLine A4003, is based on a Single Oscillator Ultral Line-narrowed (SOUL) design which yields a bandwidth of less than 0.30pm FWHM. The SOUL laser enables superior optical performance without adding complexity or cost up to the 4 kHz maximum repetition rate. The A4003's high precision line-narrowing optics used in combination with the high repetition rate of 4 kHz yields an output power of 20 W at an extremely narrow spectral bandwidth of less than 0.30 pm FWHM and highest spectral purity of less than 0.75 pm for the 95% energy content. We present performance and reliability data and discuss the key laser parameters. Improvements in the laser-internal metrology and faster regulation control result in better energy stability and improved overall operation behavior. The design considerations for line narrowing and stable laser operation at high repetition rates are discussed.

  8. A new Bi{sub 0.5}Na{sub 0.5}TiO{sub 3} based lead-free piezoelectric system with calculated end-member Bi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3}

    SciTech Connect

    Liu, Feng; Wahyudi, Olivia; Li, Yongxiang

    2014-03-21

    The phase structure, dielectric and piezoelectric properties of a new lead-free piezoelectric system (1 − x)Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}–xBi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3} [(1 − x)BNT–xBZH, x = 0, 0.01, 0.02, 0.03, and 0.04] were investigated. The structure of Bi(Zn{sub 0.5}Hf{sub 0.5})O{sub 3} was calculated using first-principles method and (1 − x)BNT–xBZH ceramics were fabricated by conventional solid-state process. At room temperature, a morphotropic phase boundary (MPB) from rhombohedral to pseudocubic is identified near x = 0.02 by the analysis of X-ray diffraction patterns. The ceramics with MPB near room temperature exhibit excellent electrical properties: the Curie temperature, maximum polarization, remnant polarization, and coercive field are 340 °C, 56.3 μC/cm{sup 2}, 43.5 μC/cm{sup 2}, and 5.4 kV/mm, respectively, while the maximum positive bipolar strain and piezoelectric coefficient are 0.09% and 92 pC/N, respectively. In addition, a linear relationship between the MPB phase boundary composition and the calculated tetragonality of non-BNT end-member was demonstrated. Thus, this study not only shows a new BNT-based lead-free piezoelectric system but also suggest a new way to predict the composition at MPB a priori when designing new lead-free piezoelectric system.

  9. Elementary immunology: Na(+) as a regulator of immunity.

    PubMed

    Schatz, Valentin; Neubert, Patrick; Schröder, Agnes; Binger, Katrina; Gebhard, Matthias; Müller, Dominik N; Luft, Friedrich C; Titze, Jens; Jantsch, Jonathan

    2017-02-01

    The skin can serve as an interstitial Na(+) reservoir. Local tissue Na(+) accumulation increases with age, inflammation and infection. This increased local Na(+) availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na(+) availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na(+) levels bears broad therapeutic potential: increasing local Na(+) availability may help in treating infections, while lowering tissue Na(+) levels may be used to treat, for example, autoimmune and cardiovascular diseases.

  10. Mechanisms and regulation of Na(+) uptake by freshwater fish.

    PubMed

    Kumai, Yusuke; Perry, Steve F

    2012-12-01

    Mechanisms of ion uptake by freshwater (FW) fish have received considerable attention over the past 80 years. Through an assortment of techniques incorporating whole animal physiology, electrophysiology and molecular biological approaches, three models have been proposed to account for Na(+) uptake. (1) Direct exchange of Na(+) and H(+) via one or more types of Na(+)/H(+) exchanger (slc9), (2) uptake of Na(+) through epithelial Na(+) channels energized by an electrical gradient created by H(+)-ATPase and (3) Na(+)/Cl(-) co-transport (slc12). While each mechanism is supported at least in part by theoretical or experimental data, there are several outstanding questions that have not yet been fully resolved. Furthermore, there are few details concerning how these Na(+) uptake mechanisms are fine tuned in response to the fluctuating FW environments. In this review, we summarize the current understanding of these three Na(+) uptake mechanisms and discuss their regulation by endocrine (cortisol and prolactin) and neurohumoral (catecholamines) factors.

  11. An enhancement to the NA4 gear vibration diagnostic parameter

    NASA Technical Reports Server (NTRS)

    Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.

    1994-01-01

    A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.

  12. U. S. EPA’S NA APPROACH FOR PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Most evaluations of NA of petroleum hydrocarbons use geochemical data to document the NA through biodegradation. The expected trends during biodegradation (plume interior vs. background concentrations) are Dissolved oxygen concentrations below background, Nitrate concentrations ...

  13. Inelastic and reactive collisions with polarized excited Na atoms

    SciTech Connect

    Schmidt, H.; Hertel, I.V.; Lee, Y.T.

    1985-07-01

    Polarization effects in inelastic collisions of laser state-prepared Na(3/sup 2/P, M/sub J/) with Na/sup +/ leading to Na(3/sup 2/D) or Na(3/sup 2/S) are discussed for the energy range E/sub cm/ = 5-47.5eV. Studies with linearly polarized light can be explained with a simple ''locking'' model of the Na(P)-orbital. The investigations employing circularly polarized light are a very sensitive test of the models describing the nonadiabatic angular momentum coupling between electronic and nuclear motion. The dynamical effects of the electronic spin on the angular momentum transfer are discussed. Recent crossed-beam experiments on the Na + O/sub 2/ -> NaO = O reaction in the energy range E/sub cm/ = 0/3-0.8eV show a pronounced dependence on the electric electronic symmetry of Na. 17 refs., 11 figs.

  14. Design of Na(+) -Selective Fluorescent Probes: A Systematic Study of the Na(+) -Complex Stability and the Na(+) /K(+) Selectivity in Acetonitrile and Water.

    PubMed

    Schwarze, Thomas; Müller, Holger; Schmidt, Darya; Riemer, Janine; Holdt, Hans-Jürgen

    2017-02-14

    There is a tremendous demand for highly Na(+) -selective fluoroionophores to monitor the top analyte Na(+) in life science. Here, we report a systematic route to develop highly Na(+) /K(+) selective fluorescent probes. Thus, we synthesized a set of fluoroionophores 1, 3, 4, 5, 8 and 9 (see Scheme ) to investigate the Na(+) /K(+) selectivity and Na(+) - complex stability in CH3 CN and H2 O. These Na(+) -probes bear different 15-crown-5 moieties to bind Na(+) stronger than K(+) . In the set of the diethylaminocoumarin-substituted fluoroionophores 1-5, the following trend of fluorescence quenching 1>3>2>4>5 in CH3 CN was observed. Therefore, the flexibility of the aza-15-crown-5 moieties in 1-4 determines the conjugation of the nitrogen lone pair with the aromatic ring. As a consequence, 1 showed in CH3 CN the highest Na(+) -induced fluorescence enhancement (FE) by a factor of 46.5 and a weaker K(+) induced FE of 3.7. The Na(+) -complex stability of 1-4 in CH3 CN is enhanced in the following order of 2>4>3>1, assuming that the O-atom of the methoxy group in the ortho-position, as shown in 2, strengthened the Na(+) -complex formation. Furthermore, we found for the N-(o-methoxyphenyl)aza-15-crown-5 substituted fluoroionophores 2, 8 and 9 in H2 O, an enhanced Na(+) -complex stability in the following order 8>2>9 and an increased Na(+) /K(+) selectivity in the reverse order 9>2>8. Notably, the Na(+) -induced FE of 8 (FEF=10.9), 2 (FEF=5.0) and 9 (FEF=2.0) showed a similar trend associated with a decreased K(+) -induced FE [8 (FEF=2.7)>2 (FEF=1.5)>9 (FEF=1.1)]. Here, the Na(+) -complex stability and Na(+) /K(+) selectivity is also influenced by the fluorophore moiety. Thus, fluorescent probe 8 (Kd =48 mm) allows high-contrast, sensitive, and selective Na(+) measurements over extracellular K(+) levels. A higher Na(+) /K(+) selectivity showed fluorescent probe 9, but also a higher Kd value of 223 mm. Therefore, 9 is a suitable tool to measure Na(+) concentrations up to

  15. The two C-terminal tyrosines stabilize occluded Na/K pump conformations containing Na or K ions.

    PubMed

    Vedovato, Natascia; Gadsby, David C

    2010-07-01

    Interactions of the three transported Na ions with the Na/K pump remain incompletely understood. Na/K pump crystal structures show that the extended C terminus of the Na,K-adenosine triphosphatase (ATPase) alpha subunit directly contacts transmembrane helices. Deletion of the last five residues (KETYY in almost all Na/K pumps) markedly lowered the apparent affinity for Na activation of pump phosphorylation from ATP, a reflection of cytoplasmic Na affinity for forming the occluded E1P(Na3) conformation. ATPase assays further suggested that C-terminal truncations also interfere with low affinity Na interactions, which are attributable to extracellular effects. Because extracellular Na ions traverse part of the membrane's electric field to reach their binding sites in the Na/K pump, their movements generate currents that can be monitored with high resolution. We report here electrical measurements to examine how Na/K pump interactions with extracellular Na ions are influenced by C-terminal truncations. We deleted the last two (YY) or five (KESYY) residues in Xenopus laevis alpha1 Na/K pumps made ouabain resistant by either of two kinds of point mutations and measured their currents as 10-mM ouabain-sensitive currents in Xenopus oocytes after silencing endogenous Xenopus Na/K pumps with 1 microM ouabain. We found the low affinity inhibitory influence of extracellular Na on outward Na/K pump current at negative voltages to be impaired in all of the C-terminally truncated pumps. Correspondingly, voltage jump-induced transient charge movements that reflect pump interactions with extracellular Na ions were strongly shifted to more negative potentials; this signals a several-fold reduction of the apparent affinity for extracellular Na in the truncated pumps. Parallel lowering of Na affinity on both sides of the membrane argues that the C-terminal contacts provide important stabilization of the occluded E1P(Na3) conformation, regardless of the route of Na ion entry into the

  16. The NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Venditti, Stefano

    2016-12-01

    The goal of the NA62 experiment at CERN is to collect O(100) events of the ultrarare K+→ π +ν bar {ν } decay in two years. After a long R&D phase and a successful pilot run in 2014, the first data-taking phase took place in 2015. In this paper the importance of the experiment's physics goal, as well as the experimental solutions adopted in order to attain it, will be reviewed.

  17. The complex lightcurve of 1992 NA

    NASA Technical Reports Server (NTRS)

    Wisniewski, Wieslaw Z.; Harris, A. W.

    1994-01-01

    Amor asteroid 1992 NA was monitored during three nights at a large phase angle of -65 deg. The lightcurves obtained did not reveal a repeatable curve with two maxima and two minima. However, some features suggested a periodicity with three maxima and three minima. A satisfactory composite lightcurve of this form was obtained by means of an 'eyeball' fit and by Fourier analysis. Individual and composite lightcurves are presented. The observed colors are consistent with the C class.

  18. Investigation of the thermonuclear 18Ne(α,p)21Na reaction rate via resonant elastic scattering of 21Na + p

    NASA Astrophysics Data System (ADS)

    Zhang, L. Y.; He, J. J.; Parikh, A.; Xu, S. W.; Yamaguchi, H.; Kahl, D.; Kubono, S.; Mohr, P.; Hu, J.; Ma, P.; Chen, S. Z.; Wakabayashi, Y.; Wang, H. W.; Tian, W. D.; Chen, R. F.; Guo, B.; Hashimoto, T.; Togano, Y.; Hayakawa, S.; Teranishi, T.; Iwasa, N.; Yamada, T.; Komatsubara, T.; Zhang, Y. H.; Zhou, X. H.

    2014-01-01

    The 18Ne(α,p)21Na reaction is thought to be one of the key breakout reactions from the hot CNO cycles to the rp process in type I x-ray bursts. In this work, the resonant properties of the compound nucleus 22Mg have been investigated by measuring the resonant elastic scattering of 21Na + p. An 89-MeV 21Na radioactive beam delivered from the CNS Radioactive Ion Beam Separator bombarded an 8.8 mg/cm2 thick polyethylene (CH2)n target. The 21Na beam intensity was about 2×105 pps, with a purity of about 70% on target. The recoiled protons were measured at the center-of-mass scattering angles of θc.m.≈175.2∘, 152.2∘, and 150.5∘ by three sets of ΔE-E telescopes, respectively. The excitation function was obtained with the thick-target method over energies Ex(22Mg)=5.5-9.2 MeV. In total, 23 states above the proton-threshold in 22Mg were observed, and their resonant parameters were determined via an R-matrix analysis of the excitation functions. We have made several new Jπ assignments and confirmed some tentative assignments made in previous work. The thermonuclear 18Ne(α,p)21Na rate has been recalculated based on our recommended spin-parity assignments. The astrophysical impact of our new rate has been investigated through one-zone postprocessing x-ray burst calculations. We find that the 18Ne(α,p)21Na rate significantly affects the peak nuclear energy generation rate, reaction fluxes, and onset temperature of this breakout reaction in these astrophysical phenomena.

  19. Spontaneous NA+ transients in individual mitochondria of intact astrocytes.

    PubMed

    Azarias, Guillaume; Van de Ville, Dimitri; Unser, Michael; Chatton, Jean-Yves

    2008-02-01

    Mitochondria in intact cells maintain low Na(+) levels despite the large electrochemical gradient favoring cation influx into the matrix. In addition, they display individual spontaneous transient depolarizations. The authors report here that individual mitochondria in living astrocytes exhibit spontaneous increases in their Na(+) concentration (Na(mit)(+) spiking), as measured using the mitochondrial probe CoroNa Red. In a field of view with approximately 30 astrocytes, up to 1,400 transients per minute were typically detected under resting conditions. Na(mit)(+) spiking was also observed in neurons, but was scarce in two nonneural cell types tested. Astrocytic Na(mit)(+) spikes averaged 12.2 +/- 0.8 s in duration and 35.5 +/- 3.2 mM in amplitude and coincided with brief mitochondrial depolarizations; they were impaired by mitochondrial depolarization and ruthenium red pointing to the involvement of a cation uniporter. Na(mit)(+) spiking activity was significantly inhibited by mitochondrial Na(+)/H(+) exchanger inhibition and sensitive to cellular pH and Na(+) concentration. Ca(2+) played a permissive role on Na(mit)(+) spiking activity. Finally, the authors present evidence suggesting that Na(mit)(+) spiking frequency was correlated with cellular ATP levels. This study shows that, under physiological conditions, individual mitochondria in living astrocytes exhibit fast Na(+) exchange across their inner membrane, which reveals a new form of highly dynamic and localized functional regulation.

  20. Glial Na(+) -dependent ion transporters in pathophysiological conditions.

    PubMed

    Boscia, Francesca; Begum, Gulnaz; Pignataro, Giuseppe; Sirabella, Rossana; Cuomo, Ornella; Casamassa, Antonella; Sun, Dandan; Annunziato, Lucio

    2016-10-01

    Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.

  1. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  2. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    PubMed Central

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  3. Iron oxide nanoparticles in NaA zeolite cages

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, S. K.; Vijayalakshmi, R.; Sudarsan, V.; Salunke, H. G.; Bhargava, S. C.

    2013-07-01

    Zeolite NaA samples with varying concentration of Fe3+ ions have been prepared by wet chemical method. Based on powder X-ray diffraction, 29Si and 27Al MAS NMR and Fe3+ EPR investigations, the formation of nano-sized ferric oxide particles inside the larger α-cages of zeolite NaA has been established. Both Mössbauer effect and magnetization measurements carried out down to 4.5 K established the superparamagnetic behaviour of these Fe2O3 particles with a blocking temperature of ≈20 K, where the magnetization values showed deviation for the zero field cooled and field cooled samples and the appearance of a very narrow magnetic hysteresis loop below this temperature. For all Fe3+ containing samples the room temperature Mössbauer spectrum is a broad quadrupole doublet with chemical shift, δ ≈ 0.33 mm/s and quadrupole splitting, ΔEq ≈ 0.68 mm/s. Variable temperature 57Fe Mössbauer effect measurements exhibited magnetic features below the blocking temperature and at 4.5 K, the observed spectrum is a broad magnetic sextet characterized by an internal hyperfine field value of ≈504 kOe along with a very weak central superparamagnetic quadrupole doublet.

  4. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    NASA Astrophysics Data System (ADS)

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-08-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10‑3 S cm‑1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  5. Rich Non-centrosymmetry in a Na-U-Te Oxo-System Achieved under Extreme Conditions.

    PubMed

    Xiao, Bin; Kegler, Philip; Bosbach, Dirk; Alekseev, Evgeny V

    2016-05-02

    Two new sodium uranyl tellurites and two new sodium uranyl tellurates have been synthesized from high-temperature/high-pressure conditions and structurally characterized. We demonstrated that crystalline phases, forming in a Na-U-Te system under extreme conditions, appear to favorably have non-centrosymmetric structures. Three out of four novel uranyl tellurium compounds, Na[(UO2)Te(IV)2O5(OH)], Na2[(UO2)(Te(VI)2O8)], and Na2[(UO2)Te(VI)O5], crystallize in non-centrosymmetric space groups. The crystal structure of Na[(UO2)Te(IV)2O5(OH)] is based on two-dimensional [UO2Te2O5(OH)](-) corrugated sheets, which are charge balanced by guest Na(+) cations. The structure of Na2[(UO2)Te(VI)2O8] is constructed from [(UO2)2Te2O8](2+) anionic layers composed of UO7 pentagonal bipyramids and TeO6 octahedra. Na2[(UO2)(Te(VI)O5)] is a new type of three-dimensional anionic open framework built from the interconnection of UO7 pentagonal bipyramids and TeO6 octahedra with different types of interlacing channels within the U-Te anionic framework. Na[(UO2)Te(IV)6O13(OH)], as the only centrosymmetric compound isolated in the Na-U-Te family, is crystallized in space group Pa3̅, and its structure is highly related to that of cliffordite (UO2(Te3O7)), which is composed from UO8 hexagonal bipyramids and TeO5 square pyramids. The vibrational modes associated with U-O, Te(IV)-O, and Te(VI)-O bonds are discussed, and the Raman spectra of the four compounds are characterized for signature bands.

  6. [Effects of hot-NaOH pretreatment on Jerusalem artichoke stalk composition and subsequent enzymatic hydrolysis].

    PubMed

    Wang, Qing; Qiu, Jingwen; Li, Yang; Shen, Fei

    2015-10-01

    In order to explore the possibility of Jerusalem artichoke stalk for bioenergy conversion, we analyzed the main composition of whole stalk, pitch, and core of the stalk. Meanwhile, these parts were pretreated with different NaOH concentrations at 121 degrees C. Afterwards, enzymatic hydrolysis was performed to evaluate the pretreatment efficiency. Jerusalem artichoke stalk was characterized by relatively high lignin content (32.0%) compared with traditional crop stalks. The total carbohydrate content was close to that of crop stalks, but with higher cellulose content (40.5%) and lower hemicellulose (19.6%) than those of traditional crop stalks. After pretreatment, the lignin content in the whole stalk, pitch, and core decreased by 13.1%-13.4%, 8.3%-13.5%, and 19.9%-27.2%, respectively, compared with the unpretreated substrates. The hemicellulose content in the whole stalk, pitch, and core decreased 87.8%-96.9%, 87.6%-95.0%, and 74.0%-90.2%, respectively. Correspondingly, the cellulose content in the pretreated whole stalk, pitch, and core increased by 56.5%-60.2%, 52.2%-55.4%, and 62.7%-73.2%, respectively. Moreover, increase of NaOH concentration for pretreatment could improve the enzymatic hydrolysis of the whole stalk and pitch by 2.3-2.6 folds and 10.3-18.5 folds, respectively. The hydrolysis of pretreated stalk core decreased significantly as 2.0 mol/L NaOH was employed, although the increased NaOH concentration can also improve its hydrolysis performance. Based on these results, hot-NaOH can be regarded as an option for Jerusalem artichoke stalk pretreatment. Increasing NaOH concentration was beneficial to hemicellulose and lignin removal, and consequently improved sugar conversion. However, the potential decrease of sugar conversion of the pretreated core by higher NaOH concentration suggested further optimization on the pretreatment conditions should be performed.

  7. Elevated Cytosolic Na+ Increases Mitochondrial Formation of Reactive Oxygen Species in Failing Cardiac Myocytes

    PubMed Central

    Kohlhaas, Michael; Liu, Ting; Knopp, Andreas; Zeller, Tanja; Ong, Mei Fang; Böhm, Michael; O'Rourke, Brian; Maack, Christoph

    2010-01-01

    Background —Oxidative stress is causally linked to the progression of heart failure, and mitochondria are critical sources of reactive oxygen species in failing myocardium. We previously observed that in heart failure, elevated cytosolic Na+ ([Na+]i) reduces mitochondrial Ca2+ ([Ca2+]m) by accelerating Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger. Because the regeneration of antioxidative enzymes requires NADPH, which is indirectly regenerated by the Krebs cycle, and Krebs cycle dehydrogenases are activated by [Ca2+]m, we speculated that in failing myocytes, elevated [Na+]i promotes oxidative stress. Methods and Results —We used a patch-clamp–based approach to simultaneously monitor cytosolic and mitochondrial Ca2+ and, alternatively, mitochondrial H2O2 together with NAD(P)H in guinea pig cardiac myocytes. Cells were depolarized in a voltage-clamp mode (3 Hz), and a transition of workload was induced by β-adrenergic stimulation. During this transition, NAD(P)H initially oxidized but recovered when [Ca2+]m increased. The transient oxidation of NAD(P)H was closely associated with an increase in mitochondrial H2O2 formation. This reactive oxygen species formation was potentiated when mitochondrial Ca2+ uptake was blocked (by Ru360) or Ca2+ efflux was accelerated (by elevation of [Na+]i). In failing myocytes, H2O2 formation was increased, which was prevented by reducing mitochondrial Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger. Conclusions —Besides matching energy supply and demand, mitochondrial Ca2+ uptake critically regulates mitochondrial reactive oxygen species production. In heart failure, elevated [Na+]i promotes reactive oxygen species formation by reducing mitochondrial Ca2+ uptake. This novel mechanism, by which defects in ion homeostasis induce oxidative stress, represents a potential drug target to reduce reactive oxygen species production in the failing heart. PMID:20351235

  8. Active ingredients in Chinese medicines promoting blood circulation as Na+/K+-ATPase inhibitors

    PubMed Central

    Chen, Ronald JY; Jinn, Tzyy-rong; Chen, Yi-ching; Chung, Tse-yu; Yang, Wei-hung; Tzen, Jason TC

    2011-01-01

    The positive inotropic effect of cardiac glycosides lies in their reversible inhibition on the membrane-bound Na+/K+-ATPase in human myocardium. Steroid-like compounds containing a core structure similar to cardiac glycosides are found in many Chinese medicines conventionally used for promoting blood circulation. Some of them are demonstrated to be Na+/K+-ATPase inhibitors and thus putatively responsible for their therapeutic effects via the same molecular mechanism as cardiac glycosides. On the other hand, magnesium lithospermate B of danshen is also proposed to exert its cardiac therapeutic effect by effectively inhibiting Na+/K+-ATPase. Theoretical modeling suggests that the number of hydrogen bonds and the strength of hydrophobic interaction between the effective ingredients of various medicines and residues around the binding pocket of Na+/K+-ATPase are crucial for the inhibitory potency of these active ingredients. Ginsenosides, the active ingredients in ginseng and sanqi, substantially inhibit Na+/K+-ATPase when sugar moieties are attached only to the C-3 position of their steroid-like structure, equivalent to the sugar position in cardiac glycosides. Their inhibitory potency is abolished, however, when sugar moieties are linked to C-6 or C-20 position of the steroid nucleus; presumably, these sugar attachments lead to steric hindrance for the entrance of ginsenosides into the binding pocket of Na+/K+-ATPase. Neuroprotective effects of cardiac glycosides, several steroid-like compounds, and magnesium lithospermate B against ischemic stroke have been accordingly observed in a cortical brain slice-based assay model, and cumulative data support that effective inhibitors of Na+/K+-ATPase in the brain could be potential drugs for the treatment of ischemic stroke. PMID:21293466

  9. Establishment and Maintenance of the Human Naïve CD4+ T-Cell Compartment

    PubMed Central

    Silva, Susana L.; Sousa, Ana E.

    2016-01-01

    The naïve CD4+ T-cell compartment is considered essential to guarantee immune competence throughout life. Its replenishment with naïve cells with broad diverse receptor repertoire, albeit with reduced self-reactivity, is ensured by the thymus. Nevertheless, cumulative data support a major requirement of post-thymic proliferation both for the establishment of the human peripheral naïve compartment during the accelerated somatic growth of childhood, as well as for its lifelong maintenance. Additionally, a dynamic equilibrium is operating at the cell level to fine-tune the T-cell receptor threshold to activation and survival cues, in order to counteract the continuous naïve cell loss by death or conversion into memory/effector cells. The main players in these processes are low-affinity self-peptide/MHC and cytokines, particularly IL-7. Moreover, although naïve CD4+ T-cells are usually seen as a homogeneous population regarding stage of maturation and cell differentiation, increasing evidence points to a variety of phenotypic and functional subsets with distinct homeostatic requirements. The paradigm of cells committed to a distinct lineage in the thymus are the naïve regulatory T-cells, but other functional subpopulations have been identified based on their time span after thymic egress, phenotypic markers, such as CD31, or cytokine production, namely IL-8. Understanding the regulation of these processes is of utmost importance to promote immune reconstitution in several clinical settings, namely transplantation, persistent infections, and aging. In this mini review, we provide an overview of the mechanisms underlying human naïve CD4+ T-cell homeostasis, combining clinical data, experimental studies, and modeling approaches. PMID:27843891

  10. Rheological properties and gelation of aqueous cellulose-NaOH solutions.

    PubMed

    Roy, Cédric; Budtova, Tatiana; Navard, Patrick

    2003-01-01

    The shear rheology of a microcrystalline cellulose dissolved in a 9% NaOH aqueous solution was studied in the steady and oscillatory modes. The cellulose-(9% NaOH-H(2)O) mixtures show not to be true solutions. In the dilute regime, with cellulose concentration below 1%, the rheological behavior is typical of the one of suspensions. The formation of cellulose aggregates is favored when temperature is increased. In the semidilute regime, an irreversible aggregate-based gelation occurs, being faster with increasing temperature.

  11. Role of molybdenum in the Na2SO4 induced corrosion of superalloys at high temperature

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1987-01-01

    Sodium sulfate induced corrosion of a molybdenum containing nickel-base superalloy, Udimet 700, was studied in laboratory furnace test and in a high velocity (Mach 0.3) burner rig. Tlhe effect of SO2 content in the atmosphere on the corrosion behavior in the laboratory furnace tests was determined. catastrophic corrosion occursonly when the melt contains MoO3 in addition to Na2SO4 and Na2MoO4. The conditions under which catastrophic corrosion occurs are identified and a mechanism is described to explain the catastrophic corrosion.

  12. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps.

    PubMed

    Vedovato, Natascia; Gadsby, David C

    2014-04-01

    A single Na(+)/K(+)-ATPase pumps three Na(+) outwards and two K(+) inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na(+) than K(+) generates outward current across the cell membrane. Less well understood is the ability of Na(+)/K(+) pumps to generate an inward current of protons. Originally noted in pumps deprived of external K(+) and Na(+) ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K(+) and Na(+) concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na(+) release from phosphorylated Na(+)/K(+) pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na(+)/K(+) pumps that enables proton import is not required for completion of the 3 Na(+)/2 K(+) transport cycle. However, the back-step occurs readily during Na(+)/K(+) transport when external K(+) ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na(+)-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na(+) and K(+) ions that passes through binding site II. The inferred occurrence of Na(+)/K(+) exchange and H(+) import during the same conformational cycle of a single molecule identifies the Na(+)/K(+) pump as a hybrid transporter. Whether Na(+)/K(+) pump-mediated proton inflow may have any physiological or

  13. pNaKtide inhibits Na/K-ATPase reactive oxygen species amplification and attenuates adipogenesis

    PubMed Central

    Sodhi, Komal; Maxwell, Kyle; Yan, Yanling; Liu, Jiang; Chaudhry, Muhammad A.; Getty, Morghan; Xie, Zijian; Abraham, Nader G.; Shapiro, Joseph I.

    2015-01-01

    Obesity has become a worldwide epidemic and is a major risk factor for metabolic syndrome. Oxidative stress is known to play a role in the generation and maintenance of an obesity phenotype in both isolated adipocytes and intact animals. Because we had identified that the Na/K-ATPase can amplify oxidant signaling, we speculated that a peptide designed to inhibit this pathway, pNaKtide, might ameliorate an obesity phenotype. To test this hypothesis, we first performed studies in isolated murine preadipocytes (3T3L1 cells) and found that pNaKtide attenuated oxidant stress and lipid accumulation in a dose-dependent manner. Complementary experiments in C57Bl6 mice fed a high-fat diet corroborated our in vitro observations. Administration of pNaKtide in these mice reduced body weight gain, restored systemic redox and inflammatory milieu, and, crucially, improved insulin sensitivity. Thus, we propose that inhibition of Na/K-ATPase amplification of oxidative stress may ultimately be a novel way to combat obesity, insulin resistance, and metabolic syndrome. PMID:26601314

  14. Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Allen, F. G.; Yu, J. G.

    1976-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, were produced in space and on earth. The production of continuous fibers in a eutectic mixture is attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It is shown that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis. A new concept is advanced to explain the phenomenon of transmittance versus far infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelengths is known. Experimental data are in agreement with the theoretical prediction.

  15. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi

    PubMed Central

    Dracatos, Peter M.; Payne, Jennifer; Di Pietro, Antonio; Anderson, Marilyn A.; Plummer, Kim M.

    2016-01-01

    Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (An∆pmtA, An∆pmtB, and An∆pmtC). An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2. PMID:27598152

  16. Complexation of pectin with macro- and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes.

    PubMed

    Minzanova, S T; Mironov, V F; Vyshtakalyuk, A B; Tsepaeva, O V; Mironova, L G; Mindubaev, A Z; Nizameev, I R; Kholin, K V; Milyukov, V A

    2015-12-10

    New water-soluble pectin complexes with Ca(2+), Mg(2+), Co(2+), Cu(2+), Fe(2+), Mn(2+), Zn(2+) on the basis of pectin biopolymer have been synthesized and successfully tested on white rats. For a starting, we have obtained a sodium pectate to enhance solubility of target complexes as a whole. Shortly afterwards, running the reaction of ligand exchange of Nа(+) ions with corresponding s-, d- metal cations we were able to synthesize new pectin complexes. The ranges of s-, d-metals salts concentrations were detected experimentally, in which the selective formation of water-soluble complexes occurred. Antianemic effect of new pectin complexes with Na, Fe and Na, Ca, Fe was investigated on white rats with posthemorrhagic anemia. Under the effect of complexes, the improvement of animals and prevention of erythropoiesis disorders were observed. Antianemic effect of the complexes manifested itself in the doses equivalent to 25% or 50% of the iron daily rate, recommended in the treatment of iron-deficiency anemia with the drugs based on iron sulphate.

  17. Effect of Na+ on surface fractal dimension of compacted bentonite

    NASA Astrophysics Data System (ADS)

    Xiang, G. S.; Xu, Y. F.; Jiang, H.

    2015-05-01

    Compacted Tsukinuno bentonite was immersed into NaCl solutions of different concentrations in oedometers, and the surface fractal dimension of bentonite-saline association was measured by nitrogen adsorption isotherms. The application of the Frenkel-Halsey-Hill equation and the Neimark thermodynamic method to nitrogen adsorption isotherms indicated that the surface roughness was greater for the bentonite-saline association. The surface fractal dimension of bentonite increased in the NaCl solution with low Na+ concentration, but decreased at high Na+ concentration. This process was accompanied by the same tendency in specific surface area and microporosity with the presence of Na+ coating in the clay particles.

  18. Na+-K+ pump regulation and skeletal muscle contractility.

    PubMed

    Clausen, Torben

    2003-10-01

    In skeletal muscle, excitation may cause loss of K+, increased extracellular K+ ([K+]o), intracellular Na+ ([Na+]i), and depolarization. Since these events interfere with excitability, the processes of excitation can be self-limiting. During work, therefore, the impending loss of excitability has to be counterbalanced by prompt restoration of Na+-K+ gradients. Since this is the major function of the Na+-K+ pumps, it is crucial that their activity and capacity are adequate. This is achieved in two ways: 1) by acute activation of the Na+-K+ pumps and 2) by long-term regulation of Na+-K+ pump content or capacity. 1) Depending on frequency of stimulation, excitation may activate up to all of the Na+-K+ pumps available within 10 s, causing up to 22-fold increase in Na+ efflux. Activation of the Na+-K+ pumps by hormones is slower and less pronounced. When muscles are inhibited by high [K+]o or low [Na+]o, acute hormone- or excitation-induced activation of the Na+-K+ pumps can restore excitability and contractile force in 10-20 min. Conversely, inhibition of the Na+-K+ pumps by ouabain leads to progressive loss of contractility and endurance. 2) Na+-K+ pump content is upregulated by training, thyroid hormones, insulin, glucocorticoids, and K+ overload. Downregulation is seen during immobilization, K+ deficiency, hypoxia, heart failure, hypothyroidism, starvation, diabetes, alcoholism, myotonic dystrophy, and McArdle disease. Reduced Na+-K+ pump content leads to loss of contractility and endurance, possibly contributing to the fatigue associated with several of these conditions. Increasing excitation-induced Na+ influx by augmenting the open-time or the content of Na+ channels reduces contractile endurance. Excitability and contractility depend on the ratio between passive Na+-K+ leaks and Na+-K+ pump activity, the passive leaks often playing a dominant role. The Na+-K+ pump is a central target for regulation of Na+-K+ distribution and excitability, essential for second

  19. Na+ channel function, regulation, structure, trafficking and sequestration

    PubMed Central

    Chen-Izu, Ye; Shaw, Robin M; Pitt, Geoffrey S; Yarov-Yarovoy, Vladimir; Sack, Jon T; Abriel, Hugues; Aldrich, Richard W; Belardinelli, Luiz; Cannell, Mark B; Catterall, William A; Chazin, Walter J; Chiamvimonvat, Nipavan; Deschenes, Isabelle; Grandi, Eleonora; Hund, Thomas J; Izu, Leighton T; Maier, Lars S; Maltsev, Victor A; Marionneau, Celine; Mohler, Peter J; Rajamani, Sridharan; Rasmusson, Randall L; Sobie, Eric A; Clancy, Colleen E; Bers, Donald M

    2015-01-01

    This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na+ channel function and regulation, Na+ channel structure and function, and Na+ channel trafficking, sequestration and complexing. PMID:25772290

  20. RISC mezzanines for controlling data acquisition in the NA48 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Guzik, Z.; Chlopik, A.; Bal, Fr.; Formenti, F.; Lacourt, A.

    2000-09-01

    A part of the LKr calorimeter data acquisition system of the NA48 experiment (a precision measurements of ɛ/ɛ' in CP violating; K 0→2π decays) is described. The experiment runs on the SPS north area in CERN. This paper presents some aspects of controlling the NA48 readout process based on commercial RIO 8260 RISC processors, which were used as a core for maintaining control algorithms. Several RISC processors were equipped with custom-made VME mezzanine boards providing interfacing, pre-processing and data formatting. These mezzanines are subjects of this paper. They are: RIO-TIC/DAT - time stamp distributor and buffered DT-bus interface, FOL-RIO - optical data formatter and event merger and "TAXI receiver" - handling trigger data of the NA48 Level 2 trigger supervisor. Also the interface between DT-bus and S-link/PCI is described.

  1. Initial Testing of the Stainless Steel NaK-Cooled Circuit (SNaKC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne; Godfroy, Thomas

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK) was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around the 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. This presentation addresses the construction, fill and initial testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).

  2. Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications.

    PubMed

    Subba Reddy, Ch V; Jin, A-P; Zhu, Q-Y; Mai, L-Q; Chen, W

    2006-04-01

    A sodium ion-conducting polymer electrolyte based on polyvinyl pyrrolidone (PVP) complexed with NaClO(4) was prepared using the solution-cast technique. The cathode film of V(2)O(5) xerogel modified with polyvinyl pyrrolidone was prepared using the sol-gel method. Investigations were conducted using X-ray diffractometry (XRD), Fourier transformation infrared (FT-IR) spectroscopy. The ionic conductivity and transference number measurements were performed to characterize the polymer electrolyte for battery applications. The transference number data indicated that the conducting species in these electrolytes are the anions. Using the electrolyte, electrochemical cells with a configuration Na/(PVP + NaClO(4))/V(2)O(5) modified by (PVP) were fabricated and their discharge profiles studied.

  3. Mechanical properties of graphyne and its analogous decorated with Na and Pt

    NASA Astrophysics Data System (ADS)

    Ahmadi, Aidin; Faghihnasiri, Mahdi; Shiraz, Hamid Ghorbani; Sabeti, Moones

    2017-01-01

    In this paper, the mechanical properties of Na and Pt decorated arrays of 2D graphyne sheet is investigated. The proposed structures are consisted of Na and Pt decorated graphyne sheet (CC), analogous system of Boron nitride sheet (BN-yne), and graphyne-like BN sheet (CC-BN-yne). The properties such as In-plane stiffness and Bulk module are studied using Energy-Strain correlation. The calculations were carried out based on Density functional theory (DFT) using the generalized gradient approximation (GGA) framework. The results offered very competitive values of stiffness and Bulk module for Pt decorated CC and BN-yne. However, the Pt decorated CC-BN-yne structure demonstrated around 80% of stiffness and 77% of Bulk module, compared to those of pure structure. Na decorated system showed the same trend for all three mentioned structures.

  4. The new Digital Data Acquisition System for MoNA-LISA

    NASA Astrophysics Data System (ADS)

    Chrisman, Dayah; Deyoung, Paul; The MoNA Collaboration Collaboration

    2017-01-01

    The Modular Neutron Array (MoNA) and the Large multi-Institutional Scintillator Array (LISA) at the National Superconducting Cyclotron Laboratory (NSCL) are used to detect neutrons emitted during the decay of exotic nuclei near the neutron dripline. The arrays consist of 288 10cm x 10cm x 2m long plastic scintillation detectors coupled to photomultipliers at each end. The Time of Flight (TOF) of these neutrons determines the neutron energy, which is needed to find the decay energy of the exotic nuclei. A Digital Data Acquisition System (DDAS) based on the XIA PXI modules is being developed to read out and record the signals of the MoNA-LISA scintillation detectors. A 500 Mega Samples per Second (MSPS) PXI module was used to test the time and energy resolution as it compares to the existing analog DAQ setup. NSF PHY-1002511, DOE-NNSA DE-NA0000979.

  5. Na-Ion Battery Anodes: Materials and Electrochemistry.

    PubMed

    Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing

    2016-02-16

    The intermittent nature of renewable energy sources, such as solar and wind, calls for sustainable electrical energy storage (EES) technologies for stationary applications. Li will be simply too rare for Li-ion batteries (LIBs) to be used for large-scale storage purposes. In contrast, Na-ion batteries (NIBs) are highly promising to meet the demand of grid-level storage because Na is truly earth abundant and ubiquitous around the globe. Furthermore, NIBs share a similar rocking-chair operation mechanism with LIBs, which potentially provides high reversibility and long cycling life. It would be most efficient to transfer knowledge learned on LIBs during the last three decades to the development of NIBs. Following this logic, rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results. On the anode side, pure graphite as the standard anode for LIBs can only form NaC64 in NIBs if solvent co-intercalation does not occur due to the unfavorable thermodynamics. In fact, it was the utilization of a carbon anode in LIBs that enabled the commercial successes. Anodes of metal-ion batteries determine key characteristics, such as safety and cycling life; thus, it is indispensable to identify suitable anode materials for NIBs. In this Account, we review recent development on anode materials for NIBs. Due to the limited space, we will mainly discuss carbon-based and alloy-based anodes and highlight progress made in our groups in this field. We first present what is known about the failure mechanism of graphite anode in NIBs. We then go on to discuss studies on hard carbon anodes, alloy-type anodes, and organic anodes. Especially, the multiple functions of natural cellulose that is used as a low-cost carbon precursor for mass production and as a soft substrate for tin anodes are highlighted. The strategies of minimizing the surface area of carbon anodes for improving the first-cycle Coulombic efficiency are

  6. Praseodymium doped NaYF4 nanocrystals in oxyfluoride glass-ceramics; morphological and spectroscopic studies.

    PubMed

    Dominiak-Dzik, G

    2009-04-01

    The synthesis, morphology, optical properties and excited state dynamics of the Pr-doped NaYF4 nanocrystals in glass-ceramics are presented. The crystalline cubic NaYF4:Pr were synthesized by the controlled heat-treatment of multicomponent oxyfluoride glass based on silica and YF3. A series of the two-hour heat treatments at 620-660 degrees C were carried out yielding visually transparent materials. Above 660 degrees C an opaque material was obtained. The crystalline phase was characterized by the X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The effect of ceramming temperature on the NaYF4:Pr cell parameter (a = 5.470 A for NaYF4 and 5.4899 A, 5.4979 A and 5.5378 A in glass-ceramics) and particle average size (15-40 nm) was observed. Optical characteristics of formed glass-ceramics were favorably affected by the Pr3+ ions in well-defined sites of NaYF4; emission intensities increased and luminescence decay curves become single exponential with the longer corresponding lifetimes.

  7. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  8. Amorphous RE–Fe–B–Na colloidal nanoparticles: High temperature solution synthesis and magnetic properties

    SciTech Connect

    Jia, Li-Ping; Yan, Bing

    2015-04-15

    Graphical abstract: RE–Fe–B–Na (RE = Nd–Er) colloidal nanoparticles by high-temperature solution synthesis are ultra-small monodisperse and air-stable amorphous, whose size and magnetic dependence are studied. - Highlights: • RE–Fe–B–Na nanoparticles are obtained by high-temperature solution synthesis. • These colloidal nanoparticles are monodisperse and size controlled. • The magnetism dependence and possible magnetic coupling mechanism are studied. - Abstract: RE–Fe–B–Na (RE = Nd–Er) colloidal nanoparticles are prepared by high-temperature solution synthesis. These nanoparticles are ultra-small monodisperse, air-stable and amorphous, whose particle size and magnetic property are characterized by transmission electron microscope and superconducting quantum interference device. Taking Nd–Fe–B–Na nanoparticle as an example, it is found that the particle size can be controlled in less than 7 nm. Besides, the magnetic properties of RE–Fe–B–Na colloidal nanoparticles can be compared for different rare earth elements. Based on the bulk ferromagnetic coupling, other possible magnetic coupling mechanism is discussed.

  9. Cation transport coupled to ATP hydrolysis by the (Na, K)-ATPase: An integrated, animated model.

    PubMed

    Leone, Francisco A; Furriel, Rosa P M; McNamara, John C; Horisberger, Jean D; Borin, Ivana A

    2010-07-01

    An Adobe® animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na(+) and K(+) translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P(2c) -type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E(1) /E(2) -ATPase as it undergoes conformational changes between the E(1) and E(2) forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger's scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure-function relationship. The movements of the various domains within the (Na, K)-ATPase α-subunit illustrate the conformational changes that occur during Na(+) and K(+) translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the "core engine" of the pump, with respect to ATP binding, cation transport, and ADP and P(i) release.

  10. Adsorption and kinetic studies of the intercalation of some organic compounds onto Na+-montmorillonite.

    PubMed

    Gemeay, A H; El-Sherbiny, A S; Zaki, A B

    2002-01-01

    The adsorption and the kinetics of the intercalation of metanil yellow dye, p-aminodiphenylamine (p-NH(2)-DPA), and benzidine by colloidally dispersed Na(+)-montmorillonte (Na(+)-MMT) have been studied. The adsorption isotherm parameters confirmed the occurrence of chemical adsorption that is based on the cation-exchange process. The selectivity of these compounds toward Na(+)-MMT follows the order metanil yellowp-NH(2)-DPA>benzidine. The rate of oxidation has been quantitatively measured using a stopped-flow spectrophotometer. The rate constant follows the order benzidineNa(+)-ion in the Na(+)-MMT has been monitored by using the stopped-flow instrument with an electrical conductivity detection unit. The activation energy of the electron transfer reaction is less than that of cation exchange process and has the order metanil yellow

  11. DX-like centers in NaI:Tl upon aliovalent codoping

    SciTech Connect

    Adhikari, Rajendra; Biswas, Koushik; Li, Qi; Williams, Richard T.; Burger, Arnold

    2014-12-14

    Aliovalent doping has been recently shown to remarkably improve energy resolution in some halide scintillators. Based on first-principles calculations we report on the formation of DX-like centers in a well-known scintillator material, Tl-doped NaI (NaI:Tl), when codoped with Ca or Ba. Our calculations indicate a net binding energy favoring formation of the defect complex (Tl{sub Na}{sup −}+Ca{sub Na}{sup +}) involving a new cation-cation bond, instead of the isolated substitutional defects. The pair has properties of a deep DX-like acceptor complex. Doping with the aliovalent anion impurity Te is also found to induce deep centers, which can act as effective electron or hole traps. The hole trapped as Te{sub I}{sup 0} involves large lattice relaxation of the Te and an adjacent iodine, consistent with extrinsic self-trapping of the hole. Thus, in contrast to the positive effect achieved by aliovalent co-doping of the rare-earth tri-halides LaBr{sub 3}:Ce and CeBr{sub 3}:Ca as reported recently, co-doping with donor-like cations Ca, Ba, or the acceptor-like anion Te in monovalent NaI:Tl is found to inhibit scintillation response.

  12. Structure prediction and targeted synthesis: a new Na(n)N2 diazenide crystalline structure.

    PubMed

    Zhang, Xiuwen; Zunger, Alex; Trimarchi, Giancarlo

    2010-11-21

    Significant progress in theoretical and computational techniques for predicting stable crystal structures has recently begun to stimulate targeted synthesis of such predicted structures. Using a global space-group optimization (GSGO) approach that locates ground-state structures and stable stoichiometries from first-principles energy functionals by objectively starting from randomly selected lattice vectors and random atomic positions, we predict the first alkali diazenide compound Na(n)N(2), manifesting homopolar N-N bonds. The previously predicted Na(3)N structure manifests only heteropolar Na-N bonds and has positive formation enthalpy. It was calculated based on local Hartree-Fock relaxation of a fixed-structure type (Li(3)P-type) found by searching an electrostatic point-ion model. Synthesis attempts of this positive ΔH compound using activated nitrogen yielded another structure (anti-ReO(3)-type). The currently predicted (negative formation enthalpy) diazenide Na(2)N(2) completes the series of previously known BaN(2) and SrN(2) diazenides where the metal sublattice transfers charge into the empty N(2) Π(g) orbital. This points to a new class of alkali nitrides with fundamentally different bonding, i.e., homopolar rather than heteropolar bonds and, at the same time, illustrates some of the crucial subtleties and pitfalls involved in structure predictions versus planned synthesis. Attempts at synthesis of the stable Na(2)N(2) predicted here will be interesting.

  13. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    PubMed

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  14. Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries

    SciTech Connect

    Li, Xin; Wang, Yan; Wu, Di; Liu, Lei; Bo, Shou-Hang; Ceder, Gerbrand

    2016-08-30

    Na energy storage technology is strategically attractive for large scale applications such as grid energy storage. Here, we show in this paper that there is a clear relation between the Jahn$-$Teller activity of a transition metal ion at the end of charge and the mobility of Na in a cathode material. This is particularly important as mobility at the end of charge limits the capacity of current materials. Consequently, by using this classical piece of physics in the battery world, it is possible to create higher capacity Na-cathode materials. Even more exciting is that the ideal element to impart this effect on cathodes is Fe, which is the least expensive of the transition metal oxides and can therefore enable low cost cathode materials.

  15. Thermodynamics of Ternary Nitride Formation by Ammonolysis: Application to LiMoN2, Na3WN3 and Na3WO3N

    DTIC Science & Technology

    1992-01-01

    TiN -309.2 ZrO2 -1042 ZrN -336.8 V205 -1423 VN -191.2 Nb205 -1766 NbN -213.4 Ta205 -1920 Ta3N5 -1151b Cr03 -506.3 CrN -92.0 MoO3 -669.4 Mo2N -50.2 W03...reports that Nb2O5, Ta2O5, MoO3 and WCO can be reacted in flowing ammonia gas at 973 - 1123 K to produce NbN, Ta3N5, Mo 2N and W2N, respectively. 28...mol, respectively) Li20 (base) + MoO3 (acid) -4 Li2MO04 (3) Na2O (base) + W03 (acid) -+ Na2WO4 (4) when compared to their standard free energies of

  16. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    SciTech Connect

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-15

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO{sub 2} and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 deg. C for 2-6 h by changing the SiO{sub 2}/Al{sub 2}O{sub 3}, H{sub 2}O/Na{sub 2}O and Na{sub 2}O/SiO{sub 2} molar ratios of precursors in the two-step process. The surface area and NH{sub 4}{sup +}-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m{sup 2}/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m{sup 2}/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of {approx}3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously. - Graphical Abstract: Novel Na-X zeolite/porous carbon composite.

  17. Specific oxidation pattern of soluble starch with TEMPO-NaBr-NaClO system.

    PubMed

    Hao, Jie; Lu, Jiaojiao; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2016-08-01

    Oxidized starch, one of the most important starch derivatives, has many different properties and applications. Currently, there are two ways to produce oxidized starch, through specific and nonspecific oxidation. Specific oxidation using the stable nitroxyl radical, 2,2,6,6-tetramethyl preparidinloxy (TEMPO), with NaBr and NaClO can produce oxidized starches with different properties under good quality control. In the current study, we examine the products of specifically oxidized starch. As the amount of oxidant and the temperature, two critical factors impacting the oxidation of starch were thoroughly investigated. Analysis of the molecular weight (MW), degree of oxidization (DO) and the detailed structures of corresponding products was accomplished using gel permeation chromatography with multi-angle laser light scattering (GPC-MALLS), infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and quadrapole time-of-flight mass spectrometry (Q/TOF-MS). According to the analytical results, the oxidation patterns of starch treated with specific oxidant TEMPO-NaBr-NaClO were established. When high amounts of oxidant was applied, more glucose residues within starch were oxidized to glucuronic acids (higher DO) and substantial degradation to starch oligosaccharides was observed. By selecting a reaction temperature of 25°C a high DO could be obtained for a given amount of oxidant. The reducing end sugar residue within oxidized starch was itself oxidized and ring opened in all TEMPO-NaBr-NaClO reactions. Furthermore, extra oxidant generated additional novel structures in the reducing end residues of some products, particularly in low temperature reactions.

  18. El rol de Ia colaboracion y el Modelo de Aprendizaje Basado en Proyectos (ABPr) mediante el lente de la Teoria de Actividad (CHAT): un estudio de caso con estudiantes de 9no grado

    NASA Astrophysics Data System (ADS)

    Delgado, Isabel C.

    Los modelos de eensenanza y aprendizaje constructivistas conceptualizan el aprendizaje como un proceso activo. El modelo de Aprendizaje Basado en Proyectos (ABPr) se distingue por una serie de componentes, entre los cuales se destaca el aspecto colaborativo y cooperativo como un reto al momento de su implantacion. Son pocas las investigaciones que se concentran en este aspecto del modelo. En este estudio, se analizaron las diversas interacciones que surgen durante la implantacion de una unidad curricular sobre el tema de Geologia de Puerto Rico, la cual se diseno con el modelo ABPr cuyo enfoque es orientacion a proyectos. Particularmente, se examinaron las interacciones sociales que surgen entre los pares y entre pares y docente durante el proceso de planificacion y desarrollo de los productos finales, al igual que las interacciones entre los estudiantes y el material didactico en estas etapas del modelo. La investigacion es de tipo cualitativo e incorpora como diseno el estudio de caso. Las diversas interacciones constituyen la unidad de analisis. En el estudio participaron 19 estudiantes de 9no grado, a quienes se organizaron en 5 grupos colaborativos por temas de interes (Pangea, Placas tectonicas, Volcanes, Tsunamis y Terremotos). Las tecnicas que se utilizaron para recopilar los datos fueron: observaciones participativas, grupos focales y analisis de documentos (cuadernos reflexivos y respuestas de los estudiantes a la pregunta central del proyecto). Para el analisis de los datos se aplico la teoria de actividad (CHAT) que concentra la unidad de analisis en la actividad humana en un contexto particular. Los resultados del estudio senalan que las interacciones entre pares, entre pares y docente, asi como entre estudiantes y material didactico son fundamentales en el proceso de aprendizaje. Una mayor interaccion entre pares durante las etapas de planificar y desarrollar los productos finales de la unidad, promueve una mejor comprension de los conceptos de la

  19. Effect of Na substitution on electronic and optical properties of CuInS{sub 2} chalcopyrite semiconductor

    SciTech Connect

    Mishra, S.; Ganguli, B.

    2015-12-15

    Electronic & optical properties of Na substituted CuNaIn{sub 2}S{sub 4} chalcopyrite semiconductors are significantly modified due to Na substitution in the Cu deficient CuInS{sub 2} semiconductor. These properties are obtained form first principle calculation using density functional theory based tight binding Linear muffin tin orbital method. The presence of Na alters the structural distortion and enhances strengths of Cu d and S p hybridization in CuNaIn{sub 2}S{sub 4}. This effect reduces band gap, in agreement with experimental observations and modify other properties significantly. Calculations of optical matrix elements (OME) and joint density of states (JDOS) show that effects of Na substitution on optical properties come through p–d hybridization and structural distortion. OME contribution is prominent near band edge. Both systems show anisotropic optical properties. - Graphical abstract: The figure shows the band structure and total density of states of CuNaIn{sub 2}S{sub 4}. It illustrates energy bands at various symmetry points, band gap and contribution of various orbitals.

  20. The use Na, Li, K cations for modification of ZSM-5 zewolite to control hydrocarbon cold-start emission

    SciTech Connect

    Golubeva V.; Rohatgi U.; Korableva, A.; Anischenko, O.; Kustov, L.; Nissenbaum, V; Viola, M.B.

    2012-08-29

    This paper addresses the problem of controlling hydrocarbon emissions from cold-start of engines by investigating the adsorbents which could adsorb the hydrocarbons at cold temperatures and hold them to 250-300 ?. The materials, that has been studied, are based on the modification of ZSM-5 (SiO{sub 2}/Al{sub 2}O{sub 3} = 35) zeolite with Li, K, Na cations. It has been shown that the introduction of Li, Na and K in an amount that is equivalent to the content of Al in zeolite results in occurrence of toluene temperature desorption peaks at high-temperatures. The toluene temperature desorption curves for 5%Li-ZSM-5 and 2.3%Na-ZSM-5 zeolites are identical and have peak toluene desorption rate between 200 to 400 ?. Upon analysis of toluene adsorption isotherms for 2.3%Na-ZSM-5 and 5%Li-ZSM-5, it was concluded that the toluene diffusion inside of the modified zeolites channels is extremely slow and the sorption capacity of 2.3%Na-ZSM-5 is higher than with 5%Li-ZSM-5. The 2.3%Na-ZSM-5 didn't change toluene temperature programmed desorption (TPD) rate of curve after the treatment in environment with 10% ?{sub 2}? at 750-800 ? for about 28 h. The 2.3%Na-ZSM-5 zeolite is very promising as adsorbent to control the cold-start hydrocarbon emissions.

  1. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    PubMed

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  2. Energy and temperature dependent dissociation of the Na(+)(benzene)1,2 clusters: importance of anharmonicity.

    PubMed

    Kolakkandy, Sujitha; Paul, Amit K; Pratihar, Subha; Kohale, Swapnil C; Barnes, George L; Wang, Hai; Hase, William L

    2015-01-28

    Chemical dynamics simulations were performed to study the unimolecular dissociation of randomly excited Na(+)(Bz) and Na(+)(Bz)2 clusters; Bz = benzene. The simulations were performed at constant energy, and temperatures in the range of 1200-2200 K relevant to combustion, using an analytic potential energy surface (PES) derived in part from MP2/6-311+G* calculations. The clusters decompose with exponential probabilities, consistent with RRKM unimolecular rate theory. Analyses show that intramolecular vibrational energy redistribution is sufficiently rapid within the clusters that their unimolecular dynamics is intrinsically RRKM. Arrhenius parameters, determined from the simulations of the clusters, are unusual in that Ea is ∼10 kcal/mol lower the Na(+)(Bz) → Na(+) + Bz dissociation energy and the A-factor is approximately two orders-of-magnitude too small. Analyses indicate that temperature dependent anharmonicity is important for the Na(+)(Bz) cluster's unimolecular rate constants k(T). This is consistent with the temperature dependent anharmonicity found for the Na(+)(Bz) cluster from a Monte Carlo calculation based on the analytic PES used for the simulations. Apparently temperature dependent anharmonicity is quite important for unimolecular dissociation of the Na(+)(Bz)1,2 clusters.

  3. Neutron spectroscopy of water dynamics in NaX and NaA zeolites

    NASA Astrophysics Data System (ADS)

    Kamitakahara, William A.; Wada, Noboru

    2008-04-01

    We have investigated the dynamics of water molecules in zeolites NaA and NaX by high-resolution quasielastic neutron scattering methods. Between 260 and 310 K, the local translational diffusive motion of water in the zeolites is one to two orders of magnitude slower than in bulk water. The Q dependence of the scattering shows effects of confinement and the presence of both relatively mobile and immobile molecules. The speed of the diffusive motion depends strongly on hydration level. Comparison with other hydrated siliceous materials indicates that the host charge per water molecule is a major factor in determining the time scale of diffusion.

  4. Design and implementation of the NaI(Tl)/CsI(Na) detectors output signal generator

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Cong-Zhan; Zhao, Jian-Ling; Zhang, Fei; Zhang, Yi-Fei; Li, Zheng-Wei; Zhang, Shuo; Li, Xu-Fang; Lu, Xue-Feng; Xu, Zhen-Ling; Lu, Fang-Jun

    2014-02-01

    We designed and implemented a signal generator that can simulate the output of the NaI(Tl)/CsI(Na) detectors' pre-amplifier onboard the Hard X-ray Modulation Telescope (HXMT). Using the development of the FPGA (Field Programmable Gate Array) with VHDL language and adding a random constituent, we have finally produced the double exponential random pulse signal generator. The statistical distribution of the signal amplitude is programmable. The occurrence time intervals of the adjacent signals contain negative exponential distribution statistically.

  5. Nanoindentation Study of Na-Geopolymers Exposed to High Temperatures

    NASA Astrophysics Data System (ADS)

    Beleña, I.; Zhu, W.

    This paper reports the usefulness of nanoindentation as a characterization and monitoring tool for studying thermal behaviour of Geopolymer materials. The influence of the manufacturing process of Na-Geopolymers in their micro-mechanical properties and thermal behaviour has been studied. Two types of metakaolin-based geopolymer panels with almost identical composition were prepared by injection and pouring methods. Micro-mechanical properties of the two samples exposed to high temperatures up to 1000 ºC were studied by nanoindentation technique, supplemented by X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), Thermogravimetric analysis (TGA) and Microscopy. Remarkable differences in micro-mechanical properties and thermal behaviour between the two samples were found. Statistical nanoindentation has been successfully used to provide information about the micro-mechanical properties of different phases in the material and their volume distributions.

  6. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite.

    PubMed

    Zhirong, Liu; Azhar Uddin, Md; Zhanxue, Sun

    2011-09-01

    Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability. In this work, surface area, total pore volume, mean pore diameter, TG, DTA, FT-IR and XRD were carried out in order to reveal the characteristics of natural Na-bentonite. XRD and FT-IR of natural Na-bentonite (China) and Cu-loaded Na-bentonite as a function of Na-bentonite dosage and temperature using batch technique were characterized in detail, respectively.

  7. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite

    NASA Astrophysics Data System (ADS)

    Zhirong, Liu; Azhar Uddin, Md.; Zhanxue, Sun

    2011-09-01

    Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability. In this work, surface area, total pore volume, mean pore diameter, TG, DTA, FT-IR and XRD were carried out in order to reveal the characteristics of natural Na-bentonite. XRD and FT-IR of natural Na-bentonite (China) and Cu-loaded Na-bentonite as a function of Na-bentonite dosage and temperature using batch technique were characterized in detail, respectively.

  8. The NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Piccini, Mauro

    2016-11-01

    The rare decays K → πvv¯ are excellent processes to make tests of new physics at the highest scale complementary to LHC thanks to their theoretically cleanness. The NA62 experiment at CERN SPS aims to collect of the order of 100 events in two years of data taking for the decay K+ → π+vv¯, keeping the background at the level of 10%. Part of the experimental apparatus has been commissioned during a technical run in 2012. The diverse and innovative experimental techniques will be explained and some preliminary results obtained during the 2014 pilot run will be reviewed.

  9. Status of the NA62 Experiment

    NASA Astrophysics Data System (ADS)

    Palladino, Vito

    2016-04-01

    The rare decays {{{K}}^ + } to {π ^ + }{{ν bar ν }} are excellent processes to make tests of new physics at the highest scale complementary to LHC thanks to their theoretically cleaness. The NA62 experiment at CERN SPS aims to collect of the order of 100 events in two years of data taking, keeping the background at the level of 10%. Part of the experimental apparatus has been commissioned during a technical run in 2012. The physics prospects and the status of the experiment will be reviewed after the commissioning run of 2014 and the data taking in 2015.

  10. The NA62 Gigatracker pixel detector system

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Ceccucci, A.; Cortina, E.; Cotta Ramusino, A.; Dellacasa, G.; Fiorini, M.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Martin, E.; Martoiu, S.; Noy, M.; Petrucci, F.; Riedler, P.; Rivetti, A.; Tiuraniemi, S.

    2010-05-01

    The silicon tracker for the NA62 experiment has to provide both a time resolution of 150 ps rms and a space resolution of about 100 μm rms. These challenging specifications require the development of a new readout electronics in order to address the problem of measuring the tracks arrival time with such a high channel density. Moreover, the high particle density (up to 1.5 MHz/mm2 in the center and 0.8-1 GHz in total) requires a high speed measurement and data transmission in order to keep the dead time below 1%.

  11. Novel regulation of cell [Na(+)] in macula densa cells: apical Na(+) recycling by H-K-ATPase.

    PubMed

    Peti-Peterdi, János; Bebok, Zsuzsa; Lapointe, Jean-Yves; Bell, P Darwin

    2002-02-01

    Na-K-ATPase is the nearly ubiquitous enzyme that maintains low-Na(+), high-K(+) concentrations in cells by actively extruding Na(+) in exchange for K(+). The prevailing paradigm in polarized absorbing epithelial cells, including renal nephron segments and intestine, has been that Na-K-ATPase is restricted to the basolateral membrane domain, where it plays a prominent role in Na(+) absorption. We have found, however, that macula densa (MD) cells lack functionally and immunologically detectable amounts of Na-K-ATPase protein. In fact, these cells appear to regulate their cytosolic [Na(+)] via another member of the P-type ATPase family, the colonic form of H-K-ATPase, which is located at the apical membrane in these cells. We now report that this constitutively expressed apical MD colonic H-K-ATPase can function as a Na(H)-K-ATPase and regulate cytosolic [Na(+)] in a novel manner. This apical Na(+)-recycling mechanism may be important as part of the sensor function of MD cells and represents a new paradigm in cell [Na(+)] regulation.

  12. Genetic relationship between Na-rich chondrules and Ca,Al-rich inclusions? - Formation of Na-rich chondrules by melting of refractory and volatile precursors in the solar nebula

    NASA Astrophysics Data System (ADS)

    Ebert, Samuel; Bischoff, Addi

    2016-03-01

    Al-rich objects (Ca,Al-rich inclusions (CAIs), Al-rich chondrules, Al-rich fragments) occur in all chondrite classes. These objects can be centimeter-sized in CV3 carbonaceous chondrites, but they are generally much smaller in other chondrite groups and classes. Within the ordinary chondrites, most Al-rich objects are chondrules that vary from Ca- to Na-rich. Here, we have investigated the mineralogy and major element chemistry of 32 Na-rich chondrules and 3 Na-rich fragments from 15 different chondrites. Most objects (chondrules and chondrule fragments) are from ordinary chondrites (petrologic types 3.2-3.8), but two of the chondrules are from two CO3 chondrites, and three of the chondrules are from one Rumuruti (R)-chondrite. We found that these Na-rich objects have bulk Na2O-concentrations between 4.3 and 15.2 wt%. Texturally, they typically consist of euhedral to subhedral (often skeletal) mafic minerals (olivine and pyroxenes) embedded within a nepheline-normative, glassy mesostasis, which is brownish in transmitted light. In addition, some chondrules contain euhedral to subhedral spinel. Bulk chondrule compositions show group II, group III, and ultrarefractory rare earth element (REE) patterns similar to those found in CAIs. These results clearly demonstrate that the Na-rich chondrules must have been formed by melting of precursors containing an (ultra-)refractory element-rich component and Na-rich constituents. The Na-rich chondrules showed Sm and Eu anomalies, indicating that they must have formed at low oxygen fugacities. Based on the chemical composition of the Na-rich objects, we can rule out that they were formed as a result of planetary formation due to metasomatic processes or processes related to collisions between molten planetesimals.

  13. Penning and associative ionization in crossed-beam Na/Na collisions assisted by strong resonant laser fields

    SciTech Connect

    Weiner, J.; Polak-Dingels, P.

    1981-01-01

    We observe the production of Na/sub 2//sup +/ and Na/sup +/ arising from single collisions between crossed beams of sodium atoms when a laser field is tuned near the Na(3p /sup 2/P/sub 3/2/) and Na(3p /sup 2/P/sub 1/2/) transitions. Measurements of ion intensity vs laser intensity show that at moderately high power true laser-induced processes dominate over purely collisional effects. Relative intensity of mass-selected ions produced at either member of the Na resonance doublet shows conclusively that Na/sup +/ does not arise simply from photodissociation of Na/sub 2//sup +/ but must result from a direct, laser-induced collisional ionization.

  14. Vanadate sensitivity of Na+, K+-ATPase from Schistosoma mansoni and its modulation by Na+, K+ and Mg2+.

    PubMed

    Noel, F; Pardon, R S

    1989-01-01

    Vanadate inhibitory effects on Na+, K+-ATPases from carcass of Schistosoma mansoni and from lamb kidney outer medulla were compared in the presence of various concentrations of Na+, K+ and Mg2+. Depending on the ionic conditions, the schistosomal Na+, K+-ATPase was 2.4- to 175-fold less sensitive to vanadate than the lamb kidney enzyme. In 100 mM Na+, 3 mM K+ and 3 mM Mg2+, schistosomal Na+, K+-ATPase was surprisingly resistant to vanadate (I50 = 944 microM). The difference in vanadate sensitivity between schistosomal and lamb Na+, K+-ATPases may be due to a species difference in the efficacy of Na+, K+ and Mg2+ in promoting conformational changes between E1 and E2 forms of the enzyme.

  15. Na(+)-dependent Cl-HCO3 exchange in the squid axon. Dependence on extracellular pH

    PubMed Central

    1992-01-01

    Intracellular pH (pHi) in squid giant axons recovers from acid loads by means of a Na(+)-dependent Cl-HCO3 exchanger, the actual mechanism of which might be exchange of: (i) external Na+ and HCO3- for internal Cl- and H+, (ii) Na+ plus two HCO3- for Cl-, (iii) Na+ and CO3= for Cl-, or (iv) the NaCO3- ion pair for Cl-. Here we examine sensitivity of transport to changes of extracellular pH (pHo) in the range 7.1-8.6. We altered pHo in four ways, using: (i) classical "metabolic" disturbances in which we varied [HCO3-]o, [NaCO3-]o, and [CO3=]o at a fixed [CO2]o; (ii) classical "respiratory" disturbances in which we varied [CO2]o, [NaCO3-]o, and [CO3=]o at a fixed [HCO3-]o; (iii) novel mixed-type acid- base disturbances in which we varied [HCO3-]o and [CO2]o at a fixed [CO3=]o and [NaCO3-]o; and (iv) a second series of novel mixed-type disturbances in which we varied [CO2]o, [CO3=]o, and [Na+]o at a fixed [HCO3-]o and [NaCO3-]o. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. The equivalent acid extrusion rate (JH) was computed from the rate of pHi recovery (i.e., increase) in the presence of Na+ and HCO3-. When pHo was varied by method (i), which produced the greatest range of [CO3=]o and [NaCO3-]o values, JH increased with pHo in a sigmoidal fashion; the relation was fitted by a pH titration curve with a pK of approximately 7.7 and a Hill coefficient of approximately 3.0. With method (ii), which produced smaller changes in [CO3=]o and [NaCO3-]o, JH also increased with pHo, though less steeply. With method (iii), which involved changes in neither [CO3=]o nor [NaCO3-]o, JH was insensitive to pHo changes. Finally, with method (iv), which involved changes in neither [HCO3-] nor [NaCO3-]o, but reciprocal changes in [CO3=]o and [Na+]o, JH also was insensitive to pHo changes. We found that decreasing p

  16. NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7: novel single crystal pyrochlore antiferromagnets

    NASA Astrophysics Data System (ADS)

    Sanders, M. B.; Krizan, J. W.; Plumb, K. W.; McQueen, T. M.; Cava, R. J.

    2017-02-01

    The crystal structures and magnetic properties of three previously unreported A2B2F7 pyrochlore materials, NaSrMn2F7, NaCaFe2F7, and NaSrFe2F7 are presented. In these compounds, either S  =  2Fe2+ or S  =  5/2Mn2+ is on the B site, while nonmagnetic Na and Ca (Na and Sr) are disordered on the A site. The materials, which were grown as crystals via the floating zone method, display high effective magnetic moments and large Curie-Weiss thetas. Despite these characteristics, no ordering transition is detected. However, freezing of the magnetic spins, characterized by peaks in the susceptibility or specific heat, is observed at very low temperatures. The empirical frustration index, f  =  -θ CW/T f, for the materials are 36 (NaSrMn2F7), 27 (NaSrFe2F7), and 19 (NaCaFe2F7). AC susceptibility, DC susceptibility, and heat capacity measurements are used to characterize the observed spin glass behavior. The results suggest that the compounds are frustrated pyrochlore antiferromagnets with weak bond disorder. The magnetic phenomena that these fluoride pyrochlores exhibit, in addition to their availability as relatively large single crystals, make them promising candidates for the study of geometric magnetic frustration.

  17. The NA62 GigaTracker

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Feito, D. Alvarez; Arcidiacono, R.; Biino, C.; Bonacini, S.; Ceccucci, A.; Chiozzi, S.; Gil, E. Cortina; Ramusino, A. Cotta; Degrange, J.; Fiorini, M.; Gamberini, E.; Gianoli, A.; Kaplon, J.; Kluge, A.; Mapelli, A.; Marchetto, F.; Minucci, E.; Morel, M.; Noël, J.; Noy, M.; Perktold, L.; Perrin-Terrin, M.; Petagna, P.; Petrucci, F.; Poltorak, K.; Romagnoli, G.; Ruggiero, G.; Velghe, B.; Wahl, H.

    2017-02-01

    The GigaTracker is a hybrid silicon pixel detector built for the NA62 experiment aiming at measuring the branching fraction of the ultra-rare kaon decay K+ →π+ ν ν bar at the CERN SPS. The detector has to track particles in a beam with a flux reaching 1.3 MHz/mm2 and provide single-hit timing with 200 ps RMS resolution for a total material budget of less than 0.5% X0 per station. The tracker comprises three 60.8 mm×27 mm stations installed in vacuum (∼10-6 mbar) and cooled with liquid C6F14 circulating through micro-channels etched inside a few hundred micron thick silicon plates. Each station is composed of a 200 μm thick silicon sensor read out by 2×5 custom 100 μm thick ASICs, called TDCPix. Each chip contains 40×45 asynchronous pixels, 300 μm×300 μm each and is instrumented with 100 ps bin time-to-digital converters. In order to cope with the high rate, the TDCPix is equipped with four 3.2 Gb/s serialisers sending out the data. We will describe the detector and the results from the 2014 and 2015 NA62 runs.

  18. Elevated intracellular Na(+) concentrations in developing spinal neurons.

    PubMed

    Lindsly, Casie; Gonzalez-Islas, Carlos; Wenner, Peter

    2017-03-01

    Over 25 years ago it was first reported that intracellular chloride levels (Cl(-)in ) were higher in developing neurons than in maturity. This finding has had significant implications for understanding the excitability of developing networks and recognizing the underlying causes of hyperexcitability associated with disease and neural injury. While there is some evidence that intracellular sodium levels (Na(+)in ) change during the development of non-neural cells, it has largely been assumed that Na(+)in is the same in developing and mature neurons. Here, using the sodium indicator SBFI, we test this idea and find that Na(+)in is significantly higher in embryonic spinal motoneurons and interneurons than in maturity. We find that Na(+)in reaches ~ 60 mM in mid-embryonic development and is then reduced to ~ 30 mM in late embryonic development. By retrogradely labeling motoneurons with SBFI we can reliably follow Na(+)in levels in vitro for hours. Bursts of spiking activity, and blocking voltage-gated sodium channels did not influence observed motoneuron sodium levels. On the other hand, Na(+)in was reduced by blocking the Na(+) -K(+) -2Cl(-) cotransporter NKCC1, and was highly sensitive to changes in external Na(+) and a blocker of the Na(+) /K(+) ATPase. Our findings suggest that the Na(+) gradient is weaker in embryonic neuronal development and strengthens in maturity in a manner similar to that of Cl(-) .

  19. Minimizing Load Effects on NA4 Gear Vibration Diagnostic Parameter

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Zakrajsek, James J.

    2001-01-01

    NA4 is a vibration diagnostic parameter, developed by researchers at NASA Glenn Research Center, for health monitoring of gears in helicopter transmissions. The NA4 reacts to the onset of gear pitting damage and continues to react to the damage as it spreads. This research also indicates NA4 reacts similarly to load variations. The sensitivity of NA4 to load changes will substantially affect its performance on a helicopter gearbox that experiences continuously changing load throughout its flight regimes. The parameter NA4 has been used to monitor gear fatigue tests at constant load. At constant load, NA4 effectively detects the onset of pitting damage and tracks damage severity. Previous research also shows that NA4 reacts to changes in load applied to the gears in the same way it reacts to the onset of pitting damage. The method used to calculate NA4 was modified to minimize these load effects. The modified NA4 parameter was applied to four sets of experimental data. Results indicate the modified NA4 is no longer sensitive to load changes, but remains sensitive to pitting damage.

  20. Rydberg States of Na-doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Drabbels, Marcel

    2008-03-01

    The dynamics of excited states of Na atoms deposited on the surface of helium nanodroplets has been investigated with velocity map ion imaging, photoelectron spectroscopy and time-of-flight mass-spectroscopy. For the first time, the excitation spectra of Na-doped helium nanodroplets corresponding to Rydberg states of Na atoms have been measured from the lowest excited 3p state up to the ionization threshold. All lines in the excitation spectra are shifted and broadened with respect to the corresponding atomic lines. In addition to bare Na* atoms also Na*HeN (N = 1-6) exciplexes are detected upon excitation. Photoelectron spectroscopy reveals the desorption of Na* not only in the initially excited states but also in lower lying states, indicating that relaxation plays an important role. The recorded velocity distributions show interesting characteristics: for the lowest states the mean kinetic energy of Na* increases linearly with excitation energy. The velocity distributions of Na*HeN exciplexes do not manifest such remarkable properties. The observations can be largely explained by assuming that the interaction of Na* with the helium nanodroplet can be described by the sum of Na*-He pair potentials.

  1. Cosmogenic 22Na as a steady-state tracer of solute transport and water age in first-order catchments

    NASA Astrophysics Data System (ADS)

    Kaste, James M.; Lauer, Nancy E.; Spaetzel, Alana B.; Goydan, Claire

    2016-12-01

    Naturally-occurring cosmogenic 22Na (T1/2 = 2.6 yr) is a potentially powerful tracer of solute and water movement in catchments. However, due to its low abundance in precipitation (∼10-20 molL-1), there are only a handful of datasets documenting cosmogenic 22Na atmospheric fluxes and concentrations in surface waters. Here we present the first record of cosmogenic 22Na fallout to North America and test its use as a radiometric tracer of water age in three small catchments in the Eastern United States. We show that 22Na deposition to southeastern Virginia, USA during 2012-2014 was 187 ± 10 mBqm-2yr-1 and that flux is largely additive with precipitation amounts. Our measurements of fallout combined with previous 22Na deposition data from other regions indicate that approximately 77% of the variability in the annual global 22Na atmospheric flux is controlled by precipitation. Export of 22Na in drainage waters from three first-order forested catchments ranged from 12.5 to 174 mBq m-2 yr-1 and can be explained by a flux-based radioactive decay model, indicating that the watersheds are in steady-state with respect to cosmogenic 22Na on annual timescales. We conclude that in temperate climates with no systematic changes in rainfall amounts at the annual timescale, 22Na may be useful for quantifying the recharge age of relatively young (<20 yr) surface waters and groundwaters and for tracing solute transport at the watershed scale.

  2. Direct interaction of Na-azide with the KATP channel.

    PubMed

    Trapp, S; Ashcroft, F M

    2000-11-01

    1. The effects of the metabolic inhibitor sodium azide were tested on excised macropatches from Xenopus oocytes expressing cloned ATP-sensitive potassium (KATP) channels of the Kir6.2/SUR1 type. 2. In inside-out patches from oocytes expressing Kir6.2 delta C36 (a truncated form of Kir6.2 that expresses in the absence of SUR), intracellular Na-azide inhibited macroscopic currents with an IC50 of 11 mM. The inhibitory effect of Na-azide was mimicked by the same concentration of NaCl, but not by sucrose. 3. Na-azide and NaCl blocked Kir6.2/SUR1 currents with IC50 of 36 mM and 19 mM, respectively. Inhibition was abolished in the absence of intracellular Mg2+. In contrast, Kir6.2 delta C36 currents were inhibited by Na-azide both in the presence or absence of intracellular Mg2+. 4. Kir6.2/SUR1 currents were less sensitive to 3 mM Na-azide in the presence of MgATP. This apparent reduction in sensitivity is caused by a small activatory effect of Na-azide conferred by SUR. 5. We conclude that, in addition to its well-established inhibitory effect on cellular metabolism, which leads to activation of KATP channels in intact cells, intracellular Na-azide has direct effects on the KATP channel. Inhibition is intrinsic to Kir6.2, is mediated by Na+, and is modulated by SUR. There is also a small, ATP-dependent, stimulatory effect of Na-azide mediated by the SUR subunit. The direct effects of 3 mM Na-azide on KATP channels are negligible in comparison to the metabolic activation produced by the same Na-azide concentration.

  3. Theoretical calculation of low-lying states of NaAr and NaXe

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Langhoff, S. R.; Stallcop, J. R.

    1981-01-01

    Potential curves as well as dipole moments and linking transition moments are calculated for the ground X 2 Sigma + and low lying excited A 2 Pi, B 2 Sigma +, C 2 Sigma +, (4) 2 Sigma +, (2) 2 Pi and (1) 2 Delta states of NaAr and NaXe. Calculations are performed using a self-consistent field plus configuration-interaction procedure with the core electrons replaced by an ab initio effective core potential. The potential curves obtained are found to be considerably less repulsive than the semiempirical curves of Pascale and Vandeplanque (1974) and to agree well with existing experimental data, although the binding energies of those states having potential minima due to van der Waals interactions are underestimated. Emission bands are also calculated for the X 2 Sigma + - C 2 Sigma + excimer transitions of NaAr and NaXe using the calculated transition moments and potential curves, and shown to agree well with experiment on the short-wavelength side of the maximum.

  4. 24Mg(p, α)21Na reaction study for spectroscopy of 21Na

    DOE PAGES

    Cha, S. M.; Chae, K. Y.; Kim, A.; ...

    2015-11-03

    The Mg-24(p, alpha)Na-21 reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain the spins and parities of the energy levels in Na-21 for the astrophysically important F-17(alpha, p)Ne-20 reaction rate calculation. 31-MeV proton beams from the 25-MV tandem accelerator and enriched Mg-24 solid targets were used. When recoiling He-4 particles from the Mg-24(p, alpha)Na-21 reaction we used a highly segmented silicon detector array to detect them; it measured the yields of He-4 particles over a range of angles simultaneously. A observed a new level at 6661 ± 5 keVmore » in the present work. The extracted angular distributions for the first four levels of Na-21 and the results from distorted wave Born approximation (DWBA) calculations were compared to verify and extract the angular momentum transfer.« less

  5. Cardiolipins are 'in vitro' inhibitors of rat brain (Na+ + K+)-dependent ATPases. A probable mechanism of action.

    PubMed

    Toro-Goyco, E; Rodriguez, M B; Preston, A M; Rosenthal, A F

    1981-03-20

    Cardiolipins were found to potentiate the 'in vitro' inhibitory activity of (-)-delta 9-tetrahydrocannabinol on (Na+ + K+)-dependent rat brain ATPases. The compounds were found to be powerful inhibitors by themselves. At optimal concentrations of cations (Na+, K+, Mg2+), the compounds were found to be noncompetitive inhibitors of ATP (Ki = 3.5 x 10(-6) M) and 'uncompetitive' inhibitors of Na+. From gas-liquid chromatographic analysis of the cardiolipin preparations it can be inferred that their effectiveness as inhibitors is related to the linoleic acid contents. The preliminary data presented here suggest that cardiolipins inhibit the Na+-dependent phosphorylation step in the hydrolysis of ATP. Based on the observations reported in this work, a hypothesis is presented suggesting that there may be a functional or evolutionary explanation for the paucity of cardiolipins in cell plasma membranes.

  6. The influence of uniaxial compressive stress on the phase transitions and dielectric properties of NaNO2

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Bulut, Nebahat; Salehli, Ferid

    2016-06-01

    The effect of uniaxial stress on dielectric properties of sodium nitrite (NaNO2) ferroelectric has been investigated. The real part of the dielectric susceptibility was measured at the frequency of 1 kHz without and on applying compressive uniaxial stress along different crystallographic directions using a uniaxial compress meter. Extraordinary changes in the dielectric constant of NaNO2 under the influence of applied uniaxial stresses were observed for the first time. The shifts of the phase transition points Ti and Tc under the uniaxial stresses σyy and σzz were investigated. The "uniaxial pressure-temperature" phase diagram of NaNO2 was obtained from these results. The observed phenomena were interpreted on the base of the phenomenological Landau theory of phase transitions in NaNO2 by taking into account the uniaxial compressive stress effect. A best agreement between the theoretical predictions and experimental results has been revealed.

  7. First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites.

    PubMed

    Fang, Hanjun; Kamakoti, Preeti; Ravikovitch, Peter I; Aronson, Matthew; Paur, Charanjit; Sholl, David S

    2013-08-21

    The development of accurate force fields is vital for predicting adsorption in porous materials. Previously, we introduced a first principles-based transferable force field for CO2 adsorption in siliceous zeolites (Fang et al., J. Phys. Chem. C, 2012, 116, 10692). In this study, we extend our approach to CO2 adsorption in cationic zeolites which possess more complex structures. Na-exchanged zeolites are chosen for demonstrating the approach. These methods account for several structural complexities including Al distribution, cation positions and cation mobility, all of which are important for predicting adsorption. The simulation results are validated with high-resolution experimental measurements of isotherms and microcalorimetric heats of adsorption on well-characterized materials. The choice of first-principles method has a significant influence on the ability of force fields to accurately describe CO2-zeolite interactions. The PBE-D2 derived force field, which performed well for CO2 adsorption in siliceous zeolites, does not do so for Na-exchanged zeolites; the PBE-D2 method overestimates CO2 adsorption energies on multi-cation sites that are common in cationic zeolites with low Si/Al ratios. In contrast, a force field derived from the DFT/CC method performed well. Agreement was obtained between simulation and experiment not only for LTA-4A on which the force field fitting is based, but for other two common adsorbents, NaX and NaY.

  8. Hyper-NA imaging of 45nm node random CH layouts using inverse lithography

    NASA Astrophysics Data System (ADS)

    Hendrickx, E.; Tritchkov, A.; Sakajiri, K.; Granik, Y.; Kempsell, M.; Vandenberghe, G.

    2008-03-01

    The imaging of Contact Hole (CH) layouts is one of the most challenging tasks in hyper-NA lithography. Contact Hole layouts can be printed using different illumination conditions, but an illumination condition that provides good imaging at dense pitches (such as Quasar or Quadrupole illumination), will usually suffer from poor image contrast and Depth of Focus (DOF) towards the more isolated pitches. Assist Features (AF) can be used to improve the imaging of more isolated contact holes, but for a random CH layout, an AF placement rule would have to be developed for every CH configuration in the design. This makes optimal AF placement an almost impossible task for random layouts when using rule-based AF placement. We have used an inverse lithography technique by Mentor Graphics, to treat a random contact hole layout (drawn at minimal pitch 115nm) for imaging at NA 1.35. The combination of the dense 115nm pitch and available NA of 1.35 makes the use of Quasar illumination necessary, and the treatment of the clip with inverse lithography automatically generated optimal (model-based) AF for all geometries in the design. Because the inverse lithography solution consists of smooth shapes rather than rectangles, mask manufacturability becomes a concern. The algorithm allows simplification of the smooth shapes into rectangles and greatly improves mask write time. Wafer prints of clips treated with inverse lithography at NA 1.35 confirm the benefit of the assist features.

  9. Hydrogen sulfide donor NaHS induces death of alveolar epithelial L2 cells that is associated with cellular shrinkage, transgelin expression and myosin phosphorylation.

    PubMed

    Fujii, Yusuke; Funakoshi, Takeshi; Unuma, Kana; Noritake, Kanako; Aki, Toshihiko; Uemura, Koichi

    2016-01-01

    Hydrogen sulfide (H2S) is a highly toxic gaseous molecule that causes death to humans exposed to high concentrations. H2S is absorbed into the body through the alveolar epithelium and other tissues. The aim of this study is to evaluate the molecular mechanism underling acute lung injury caused by the inhalation of high concentrations of H2S. Rat lung epithelium-derived L2 cells were exposed to a H2S donor, NaHS, at concentrations of 2-4 mM for 1-6 hr. NaHS caused shrinkage and death of the cells without caspase activation. An actin-binding protein, transgelin, was identified as one of the NaHS-inducible proteins in the cells. NaHS increased myosin light chain (MLC) phosphorylation, indicating that actomyosin-mediated cellular contractility and/or motility could be increased after NaHS exposure. The administration of ML-7, a myosin light chain kinase (MLCK) inhibitor, accelerated cell death after NaHS exposure. Based on these data, we conclude that the increase in MLC phosphorylation in response to NaHS exposure is a cellular protective reaction against NaHS toxicity. Enhancements in smooth muscle cell properties such as transgelin expression and actomyosin-mediated contractility/motility might be involved in cell survival after NaHS exposure.

  10. High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries.

    PubMed

    Fang, Yongjin; Liu, Qi; Xiao, Lifen; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-08-19

    Olivine NaFePO4/C microsphere cathode is prepared by a facile aqueous electrochemical displacement method from LiFePO4/C precursor. The NaFePO4/C cathode shows a high discharge capacity of 111 mAh g(-1), excellent cycling stability with 90% capacity retention over 240 cycles at 0.1 C, and high rate capacity (46 mAh g(-1) at 2 C). The excellent electrochemical performance demonstrates that the aqueous electrochemical displacement method is an effective and promising way to prepare NaFePO4/C material for Na-based energy storage applications. Moreover, the Na2/3FePO4 intermediate is observed for the first time during the Na intercalation process through conventional electrochemical techniques, corroborating an identical two-step phase transition reaction both upon Na intercalation and deintercalation processes. The clarification of the electrochemical reaction mechanism of olivine NaFePO4 could inspire more attention on the investigation of this material for Na ion batteries.

  11. Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels.

    PubMed

    Aman, Teresa K; Grieco-Calub, Tina M; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A; Isom, Lori L; Raman, Indira M

    2009-02-18

    The beta subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming alpha subunits, as well as their trafficking and localization. In heterologous expression systems, beta1, beta2, and beta3 subunits influence inactivation and persistent current in different ways. To test how the beta4 protein regulates Na channel gating, we transfected beta4 into HEK (human embryonic kidney) cells stably expressing Na(V)1.1. Unlike a free peptide with a sequence from the beta4 cytoplasmic domain, the full-length beta4 protein did not block open channels. Instead, beta4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of noninactivating current. Consequently, persistent current tripled in amplitude. Expression of beta1 or chimeric subunits including the beta1 extracellular domain, however, favored inactivation. Coexpressing Na(V)1.1 and beta4 with beta1 produced tiny persistent currents, indicating that beta1 overcomes the effects of beta4 in heterotrimeric channels. In contrast, beta1(C121W), which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by beta4 and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with beta4, persistent current was slightly but significantly increased. Moreover, in beta4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that beta1 and beta4 have antagonistic roles, the former favoring inactivation, and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted beta1 subunits.

  12. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes

    PubMed Central

    1989-01-01

    Na/K pump current was determined between -140 and +60 mV as steady- state, strophanthidin-sensitive, whole-cell current in guinea pig ventricular myocytes, voltage-clamped and internally dialyzed via wide- tipped pipettes. Solutions were designed to minimize all other components of membrane current. A device for exchanging the solution inside the pipette permitted investigation of Na/K pump current-voltage (I-V) relationships at several levels of pipette [Na] [( Na]pip) in a single cell; the effects of changes in external [Na] [( Na]o) or external [K] [( K]o) were also studied. At 50 mM [Na]pip, 5.4 mM [K]o, and approximately 150 mM [Na]o, Na/K pump current was steeply voltage dependent at negative potentials but was approximately constant at positive potentials. Under those conditions, reduction of [Na]o enhanced pump current at negative potentials but had little effect at positive potentials: at zero [Na]o, pump current was only weakly voltage dependent. At 5.4 mM [K]o and approximately 150 mM [Na]o, reduction of [Na]pip from 50 mM scaled down the sigmoid pump I-V relationship and shifted it slightly to the right (toward more positive potentials). Pump current at 0 mV was activated by [Na]pip according to the Hill equation with best-fit K0.5 approximately equal to 11 mM and Hill coefficient nH approximately equal to 1.4. At zero [Na]o, reduction of [Na]pip seemed to simply scale down the relatively flat pump I-V relationship: Hill fit parameters for pump activation by [Na]pip at 0 mV were K0.5 approximately equal to 10 mM, nH approximately equal to 1.4. At 50 mM [Na]pip and high [Na]o, reduction of [K]o from 5.4 mM scaled down the sigmoid I-V relationship and shifted it slightly to the right: at 0 mV, K0.5 approximately equal to 1.5 mM and nH approximately equal to 1.0. At zero [Na]o, lowering [K]o simply scaled down the flat pump I-V relationships yielding, at 0 mV, K0.5 approximately equal to 0.2 mM, nH approximately equal to 1.1. The voltage

  13. Crystal structure of new synthetic Ca,Na carbonate-borate Ca{sub 2}Na(Na{sub x}Ca{sub 0.5-x})[B{sub 3}{sup t}B{sub 2}{sup {delta}}O{sub 8}(OH)(O{sub 1-x}OH{sub x})](CO{sub 3})

    SciTech Connect

    Yamnova, N. A. Borovikova, E. Yu.; Gurbanova, O. A.; Dimitrova, O. V.; Zubkova, N. V.

    2012-05-15

    New Ca,Na carbonate-borate Ca{sub 2}Na(Na{sub x}Ca{sub 0.5-x}) [B{sub 3}{sup t}B{sub 2}{sup {Delta}}O{sub 8}(OH)(O{sub 1-x}OH{sub x})](CO{sub 3}) crystals (x {approx} 0.4) have been synthesized by the hydrothermal method in the Ca(OH){sub 2}-H{sub 3}BO{sub 3}-Na{sub 2}CO{sub 3}-NaCl-system at t = 250 Degree-Sign C and P = 70-80 atm; the structure parameters are found to be a = 11.1848(3) Angstrom-Sign , b = 6.4727(2) Angstrom-Sign , c = 25.8181(7) Angstrom-Sign , {beta} = 96.364(3) Degree-Sign , V = 1857.60(9) Angstrom-Sign {sup 3}, sp. gr. C2/c, Z = 8, and {rho}{sub calcd} = 2.801 g/cm{sup 3} (Xcalibur S autodiffractometer (CCD), 2663 reflections with I > 2{sigma} (I), direct solution, refinement by the least-squares method in the anisotropic approximation of thermal atomic vibrations, hydrogen localization, R{sub 1} = 0.0387). The structure is based on boron-oxygen layers of pentaborate radicals 5(2{Delta} + 3T). Ca and Na polyhedra and CO{sub 3} triangles are located between the layers. A crystallochemical analysis of the new Ca,Na carbonate-borate has established its similarity to natural Na,Ca pentaborates (heidornite and tuzlaite) and synthetic Na,Ba-decaborate.

  14. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1).

    PubMed

    Cheung, Joseph Y; Zhang, Xue-Qian; Song, Jianliang; Gao, Erhe; Chan, Tung O; Rabinowitz, Joseph E; Koch, Walter J; Feldman, Arthur M; Wang, JuFang

    2013-01-01

    Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na(+)-K(+)-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248-252 and 300-304) of the proximal intracellular loop of Na(+)/Ca(2+) exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine(68), resulting in relief of inhibition of Na(+)-K(+)-ATPase by decreasing K(m) for Na(+) and increasing V(max), and simultaneous inhibition of Na(+)/Ca(2+) exchanger. Enhanced Na(+)-K(+)-ATPase activity lowers intracellular Na(+), thereby minimizing Ca(2+) overload and risks of arrhythmias. Inhibition of Na(+)/Ca(2+) exchanger reduces Ca(2+) efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.

  15. Transepithelial glucose transport and Na+/K+ homeostasis in enterocytes: an integrative model

    PubMed Central

    Drengstig, Tormod; Ruoff, Peter

    2014-01-01

    The uptake of glucose and the nutrient coupled transcellular sodium traffic across epithelial cells in the small intestine has been an ongoing topic in physiological research for over half a century. Driving the uptake of nutrients like glucose, enterocytes must have regulatory mechanisms that respond to the considerable changes in the inflow of sodium during absorption. The Na-K-ATPase membrane protein plays a major role in this regulation. We propose the hypothesis that the amount of active Na-K-ATPase in enterocytes is directly regulated by the concentration of intracellular Na+ and that this regulation together with a regulation of basolateral K permeability by intracellular ATP gives the enterocyte the ability to maintain ionic Na+/K+ homeostasis. To explore these regulatory mechanisms, we present a mathematical model of the sodium coupled uptake of glucose in epithelial enterocytes. Our model integrates knowledge about individual transporter proteins including apical SGLT1, basolateral Na-K-ATPase, and GLUT2, together with diffusion and membrane potentials. The intracellular concentrations of glucose, sodium, potassium, and chloride are modeled by nonlinear differential equations, and molecular flows are calculated based on experimental kinetic data from the literature, including substrate saturation, product inhibition, and modulation by membrane potential. Simulation results of the model without the addition of regulatory mechanisms fit well with published short-term observations, including cell depolarization and increased concentration of intracellular glucose and sodium during increased concentration of luminal glucose/sodium. Adding regulatory mechanisms for regulation of Na-K-ATPase and K permeability to the model show that our hypothesis predicts observed long-term ionic homeostasis. PMID:24898586

  16. N-acetylcysteine inhibits Na+ absorption across human nasal epithelial cells.

    PubMed

    Rochat, Thierry; Lacroix, Jean-Silvain; Jornot, Lan

    2004-10-01

    N-acetylcysteine (NAC) is a widely used mucolytic drug in patients with a variety of respiratory disorders. The mechanism of action is based on rupture of the disulfide bridges of the high molecular glycoproteins present in the mucus, resulting in smaller subunits of the glycoproteins and reduced viscosity of the mucus. Because Na(+) absorption regulates airway surface liquid volume and thus the efficiency of mucociliary clearance, we asked whether NAC affects the bioelectric properties of human nasal epithelial cells. A 24-h basolateral treatment with 10 mM of NAC decreased the transepithelial potential difference and short-circuit current (I(SC)) by 40%, and reduced the amiloride-sensitive current by 50%, without affecting the transepithelial resistance. After permeabilization of the basolateral membranes of cells with amphotericin B in the presence of a mucosal-to-serosal Na(+) gradient (135:25 mM), NAC inhibited 45% of the amiloride-sensitive current. The Na(+)-K(+)-ATPase pump activity and the basolateral K(+) conductance were not affected by NAC treatment. NAC did not alter total cell mRNA and protein levels of alpha-epithelial Na(+) channel (EnaC) subunit, but reduced abundance of alpha-ENaC subunits in the apical cell membrane as quantified by biotinylation. This effect can be ascribed to the sulphydryl (SH) group of NAC, since N-acetylserine and S-carboxymethyl-l-cysteine were ineffective. Given the importance of epithelial Na(+) channels in controlling the thin layer of fluid that covers the surface of the airways, the increase in the fluidity of the airway mucus following NAC treatment in vivo might be in part related to downregulation of Na(+) absorption and consequently water transport.

  17. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter.

    PubMed

    Lu, Min; Symersky, Jindrich; Radchenko, Martha; Koide, Akiko; Guo, Yi; Nie, Rongxin; Koide, Shohei

    2013-02-05

    Multidrug transporters belonging to the multidrug and toxic compound extrusion (MATE) family expel dissimilar lipophilic and cationic drugs across cell membranes by dissipating a preexisting Na(+) or H(+) gradient. Despite its clinical relevance, the transport mechanism of MATE proteins remains poorly understood, largely owing to a lack of structural information on the substrate-bound transporter. Here we report crystal structures of a Na(+)-coupled MATE transporter NorM from Neisseria gonorrheae in complexes with three distinct translocation substrates (ethidium, rhodamine 6G, and tetraphenylphosphonium), as well as Cs(+) (a Na(+) congener), all captured in extracellular-facing and drug-bound states. The structures revealed a multidrug-binding cavity festooned with four negatively charged amino acids and surprisingly limited hydrophobic moieties, in stark contrast to the general belief that aromatic amino acids play a prominent role in multidrug recognition. Furthermore, we discovered an uncommon cation-π interaction in the Na(+)-binding site located outside the drug-binding cavity and validated the biological relevance of both the substrate- and cation-binding sites by conducting drug resistance and transport assays. Additionally, we uncovered potential rearrangement of at least two transmembrane helices upon Na(+)-induced drug export. Based on our structural and functional analyses, we suggest that Na(+) triggers multidrug extrusion by inducing protein conformational changes rather than by directly competing for the substrate-binding amino acids. This scenario is distinct from the canonical antiport mechanism, in which both substrate and counterion compete for a shared binding site in the transporter. Collectively, our findings provide an important step toward a detailed and mechanistic understanding of multidrug transport.

  18. Pyrophosphate-Fueled Na+ and H+ Transport in Prokaryotes

    PubMed Central

    Malinen, Anssi M.; Luoto, Heidi H.

    2013-01-01

    SUMMARY In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H+ transport across biological membranes (H+-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na+ (Na+-pyrophosphatase) or both Na+ and H+ (Na+,H+-pyrophosphatase). Both these transporters require Na+ for pyrophosphate hydrolysis and are further activated by K+. The determination of the three-dimensional structures of H+- and Na+-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms. PMID:23699258

  19. Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3

    NASA Astrophysics Data System (ADS)

    Yahia, H. Ben; Essehli, R.; Avdeev, M.; Park, J.-B.; Sun, Y.-K.; Al-Maadeed, M. A.; Belharouak, I.

    2016-06-01

    The new compounds NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 crystallize with a stuffed α-CrPO4-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structures of NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 a statistical disorder Ni2+/Cr3+ was observed on both the 8g and 4a atomic positions, whereas in NaCoCr2(PO4)3 the statistical disorder Co2+/Cr3+ was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 delivered specific capacities of 352, 385, and 368 mA h g-1, respectively, which attests to the electrochemical activity of sodium in these compounds.

  20. Simulation of Na D emission near Europa during eclipse

    USGS Publications Warehouse

    Cassidy, T.A.; Johnson, R.E.; Geissler, P.E.; Leblanc, F.

    2008-01-01

    The Cassini imaging science subsystem observed Europa in eclipse during Cassini's Jupiter flyby. The disk-resolved observations revealed a spatially nonuniform emission in the wavelength range of 200-1050 nm (clear filters). By building on observations and simulations of Europa's Na atmosphere and torus we find that electron-excited Na in Europa's tenuous atmosphere can account for the observed emission if the Na is ejected preferentially from Europa's dark terrain. Copyright 2008 by the American Geophysical Union.

  1. Magnesium correction to the NaKCa chemical geothermometer

    USGS Publications Warehouse

    Fournier, R.O.; Potter, R.W.

    1979-01-01

    Equations and graphs have been devised to correct for the adverse effects of magnesium upon the Na-K-Ca chemical geothermometer. Either the equations or graphs can be used to determine appropriate temperature corrections for given waters with calculated NaKCa temperatures > 70??C and R 50 are probably derived from relatively cool aquifers with temperatures approximately equal to the measured spring temperature, irrespective of much higher calculated Na-K-Ca temperatures. ?? 1979.

  2. Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na+-Channel Scorpion Toxins

    PubMed Central

    Guerrero-Vargas, Jimmy A.; Mourão, Caroline B. F.; Quintero-Hernández, Verónica; Possani, Lourival D.; Schwartz, Elisabeth F.

    2012-01-01

    Background Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species. Methodology/Principal Findings cDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory β-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the α-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the β-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both α and β NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups. Conclusions/Significance This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the Na

  3. Kinetic properties and Na+ dependence of rheogenic Na(+)-HCO3- co-transport in frog retinal pigment epithelium.

    PubMed Central

    la Cour, M

    1991-01-01

    1. Na(+)-HCO3- co-transport across the retinal membrane of the frog retinal pigment epithelium was studied by means of double-barrelled pH-selective microelectrodes. Transient changes in the intracellular pH were monitored in response to abrupt changes in the Na+ concentration on the retinal side of the epithelium. 2. The experiments were performed as follows. The Na(+)-HCO3- co-transport was inhibited by perfusing the retinal side of the epithelium with a Na(+)-free solution. The co-transport was then stimulated by changing the perfusate from the Na(+)-free solution to a solution which contained from 5 to 110 mM-Na+. The resulting inward Na(+)-HCO3- co-transport produced an intracellular alkalinization, the initial rate of which was used to calculate the initial rate of Na(+)-HCO3- co-transport, JHCO3-. 3. The Na+ dependence of the Na(+)-HCO3- co-transport was studied at two different values of extracellular pH (7.40 and 7.10), at constant extracellular HCO3- concentration (27.5 mM) and at two different extracellular HCO3- concentrations (27.5 mM and 55 mM) at constant extracellular pH (7.40). In these experiments, the calculated values of JHCO3- followed single Michaelis-Menten kinetics with respect to the extracellular Na+ concentration. 4. The data are consistent with a model in which the co-transporter has a single binding site for the Na+ ion with an apparent affinity constant (apparent Km) of 37 mM. The apparent affinity constant for Na+ was independent of the extracellular concentration of CO3(2-) in the range of 16-65 microM, and of the extracellular HCO3- concentration in the range 27.5-55 mM. 5. The NaCO3- ion-pair hypothesis, in which sodium binds to the co-transporter and is translocated across the cell membrane as the NaCO3- ion pair, was analysed. For stoichiometries 1:2 and 1:3 of the Na(+)-HCO3- co-transport, the NaCO3- ion-pair hypothesis was found incompatible with the data. 6. The intracellular buffer capacity as measured by the CO2 method was

  4. The NA49 large acceptance hadron detector

    NASA Astrophysics Data System (ADS)

    Afanasiev, S.; Alber, T.; Appelshäuser, H.; Bächler, J.; Barna, D.; Barnby, L. S.; Bartke, J.; Barton, R. A.; Betev, L.; Bialkowska, H.; Bieser, F.; Billmeier, A.; Blyth, C. O.; Bock, R.; Bormann, C.; Bracinik, J.; Brady, F. P.; Brockmann, R.; Brun, R.; Buncic, P.; Caines, H. L.; Cebra, D.; Cooper, G. E.; Cramer, J. G.; Csato, P.; Cyprian, M.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Empl, T.; Eschke, J.; Ferguson, M. I.; Fessler, H.; Fischer, H. G.; Flierl, D.; Fodor, Z.; Frankenfeld, U.; Foka, P.; Freund, P.; Friese, V.; Ftacnik, J.; Fuchs, M.; Gabler, F.; Gal, J.; Ganz, R.; Gaździcki, M.; Gładysz, E.; Grebieszkow, J.; Günther, J.; Harris, J. W.; Hegyi, S.; Henkel, T.; Hill, L. A.; Hlinka, V.; Huang, I.; Hümmler, H.; Igo, G.; Irmscher, D.; Ivanov, M.; Janik, R.; Jacobs, P.; Jones, P. G.; Kadija, K.; Kolesnikov, V. I.; Kowalski, M.; Lasiuk, B.; Lévai, P.; Liebicher, K.; Lynen, U.; Malakhov, A. I.; Margetis, S.; Markert, C.; Marks, C.; Mayes, B.; Melkumov, G. L.; Mock, A.; Molnár, J.; Nelson, J. M.; Oldenburg, M.; Odyniec, G.; Palla, G.; Panagiotou, A. D.; Pestov, Y.; Petridis, A.; Pikna, M.; Pimpl, W.; Pinsky, L.; Piper, A.; Porter, R. J.; Poskanzer, A. M.; Poziombka, S.; Prindle, D. J.; Pühlhofer, F.; Rauch, W.; Reid, J. G.; Renfordt, R.; Retyk, W.; Ritter, H. G.; Röhrich, D.; Roland, C.; Roland, G.; Rudolph, H.; Rybicki, A.; Sammer, T.; Sandoval, A.; Sann, H.; Schäfer, E.; Schmidt, R.; Schmischke, D.; Schmitz, N.; Schönfelder, S.; Semenov, A. Yu.; Seyboth, J.; Seyboth, P.; Seyerlein, J.; Sikler, F.; Sitar, B.; Skrzypczak, E.; Squier, G. T. A.; Stelzer, H.; Stock, R.; Strmen, P.; Ströbele, H.; Struck, C.; Susa, T.; Szarka, I.; Szentpetery, I.; Szymański, P.; Sziklai, J.; Toy, M.; Trainor, T. A.; Trentalange, S.; Ullrich, T.; Vassiliou, M.; Veres, G.; Vesztergombi, G.; Vranic, D.; Wang, F. Q.; Weerasundara, D. D.; Wenig, S.; Whitten, C.; Wieman, H.; Wienold, T.; Wood, L.; Yates, T. A.; Zimanyi, J.; Zhu, X.-Z.; Zybert, R.

    1999-07-01

    The NA49 detector is a wide acceptance spectrometer for the study of hadron production in p+p, p+A, and A+A collisions at the CERN SPS. The main components are 4 large-volume TPCs for tracking and particle identification via d E/d x. TOF scintillator arrays complement particle identification. Calorimeters for transverse energy determination and triggering, a detector for centrality selection in p+A collisions, and beam definition detectors complete the set-up. A description of all detector components is given with emphasis on new technical realizations. Performance and operational experience are discussed in particular with respect to the high track density environment of central Pb+Pb collisions.

  5. Pion and kaon freezeout in NA44

    SciTech Connect

    NA44 Collaboration

    1994-12-01

    The NA44 spectrometer is optimized for the study of single and two-particle particle spectra near mid-rapidity for transverse momenta below {approx} 1 GeV/c. A large fraction of all pairs in the spectrometer`s acceptance are at low relative momenta, resulting in small statistical uncertainties on the extracted size parameters. In addition, the spectrometer`s clean particle identification allows the authors to measure correlation functions for pions, kaons, and protons. This contribution will concentrate on the source size parameters determined from pion and kaon correlation functions. These size parameters will be compared to calculations from the RQMD event generator and also interpreted in the context of a hydrodynamic model. Finally, the measured single particle spectra will be examined from the viewpoint of hydrodynamics.

  6. Na-Zn liquid metal battery

    NASA Astrophysics Data System (ADS)

    Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin

    2016-11-01

    A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.

  7. Study of OSL in NaF: Ca,Cu

    NASA Astrophysics Data System (ADS)

    More, Y. K.; Wankhede, S. P.; Moharil, S. V.

    2013-06-01

    Sodium Fluoride containing Cu+ ions was prepared by R.A.P. followed by melt-quenching technique. Results on photo, thermo and optically stimulated luminescence in NaF:Ca,Cu are reported. OSL sensitivity of NaF:Ca,Cu is approximately 2 times than that of standard phosphor LMP. The rate of OSL depletion for 90% decay for NaF:Ca,Cu is 0.3 times as that of OSL phosphor LMP. NaF:Ca,Cu thus deserves much more attention than it has received up till now.

  8. New solid conductors of Na/+/ and K/+/ ions

    NASA Technical Reports Server (NTRS)

    Singer, J.; Fielder, W. L.; Kautz, H. E.; Fordyce, J. S.

    1976-01-01

    About 40 structure types for solid conductors of Na(+) and K(+) ions are surveyed. Five compounds in three structure types are discovered to be good solid conductors of alkali metal ions, capable of ion transport with conductivities in the vicinity of 0.00001/ohm-cm at 25 C. These compounds are a bcc form of NaSbO3, an orthorhombic layer structure of the composition 2M2O.3Nb2O5 with M equal to Na or K, and the Na pyrochlores NaTa2O5F and NaTaWO6. Ion exchange is required to produce each of these Na compounds. Only the 2K2O.3Nb2O5 can so far be synthesized directly from the oxides and thus is the only one which can be sintered readily. The niobate is about as good a conductor of K(+) ion as is K-beta alumina. The NaSbO3 compares well with Na beta at 280 C. A number of phase diagrams are developed.