Sample records for base pair mutation

  1. Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing

    PubMed Central

    Yoon, Song-Ro; Arnheim, Norman; Calabrese, Peter

    2016-01-01

    We used targeted next generation deep-sequencing (Safe Sequencing System) to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11) were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10−8) suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments. PMID:27341568

  2. Multiple point mutations in a shuttle vector propagated in human cells: evidence for an error-prone DNA polymerase activity.

    PubMed

    Seidman, M M; Bredberg, A; Seetharam, S; Kraemer, K H

    1987-07-01

    Mutagenesis was studied at the DNA-sequence level in human fibroblast and lymphoid cells by use of a shuttle vector plasmid, pZ189, containing a suppressor tRNA marker gene. In a series of experiments, 62 plasmids were recovered that had two to six base substitutions in the 160-base-pair marker gene. Approximately 20-30% of the mutant plasmids that were recovered after passing ultraviolet-treated pZ189 through a repair-proficient human fibroblast line contained these multiple mutations. In contrast, passage of ultraviolet-treated pZ189 through an excision-repair-deficient (xeroderma pigmentosum) line yielded only 2% multiple base substitution mutants. Introducing a single-strand nick in otherwise unmodified pZ189 adjacent to the marker, followed by passage through the xeroderma pigmentosum cells, resulted in about 66% multiple base substitution mutants. The multiple mutations were found in a 160-base-pair region containing the marker gene but were rarely found in an adjacent 170-base-pair region. Passing ultraviolet-treated or nicked pZ189 through a repair-proficient human B-cell line also yielded multiple base substitution mutations in 20-33% of the mutant plasmids. An explanation for these multiple mutations is that they were generated by an error-prone polymerase while filling gaps. These mutations share many of the properties displayed by mutations in the immunoglobulin hypervariable regions.

  3. Mutation load in melanoma is affected by MC1R genotype.

    PubMed

    Johansson, Peter A; Pritchard, Antonia L; Patch, Ann-Marie; Wilmott, James S; Pearson, John V; Waddell, Nicola; Scolyer, Richard A; Mann, Graham J; Hayward, Nicholas K

    2017-03-01

    Whole-genome sequencing of matched germline and tumour pairs in a well-characterized cohort of melanoma patients allowed investigation of associations between melanoma body site, age at melanoma onset and MC1R variant status with overall mutation burden and specific base pair changes observed in the corresponding melanoma. We observed statistically significant associations between mutation burden in melanoma and body site, age at onset and MC1R genotype, for both ultraviolet radiation (UVR) signature changes (C>T and CC>TT) and non-UVR base pair substitutions, as well as with overall variant load. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. A Constant Rate of Spontaneous Mutation in DNA-Based Microbes

    NASA Astrophysics Data System (ADS)

    Drake, John W.

    1991-08-01

    In terms of evolution and fitness, the most significant spontaneous mutation rate is likely to be that for the entire genome (or its nonfrivolous fraction). Information is now available to calculate this rate for several DNA-based haploid microbes, including bacteriophages with single- or double-stranded DNA, a bacterium, a yeast, and a filamentous fungus. Their genome sizes vary by ≈6500-fold. Their average mutation rates per base pair vary by ≈16,000-fold, whereas their mutation rates per genome vary by only ≈2.5-fold, apparently randomly, around a mean value of 0.0033 per DNA replication. The average mutation rate per base pair is inversely proportional to genome size. Therefore, a nearly invariant microbial mutation rate appears to have evolved. Because this rate is uniform in such diverse organisms, it is likely to be determined by deep general forces, perhaps by a balance between the usually deleterious effects of mutation and the physiological costs of further reducing mutation rates.

  5. Base pairing between the 3' exon and an internal guide sequence increases 3' splice site specificity in the Tetrahymena self-splicing rRNA intron.

    PubMed Central

    Suh, E R; Waring, R B

    1990-01-01

    It has been proposed that recognition of the 3' splice site in many group I introns involves base pairing between the start of the 3' exon and a region of the intron known as the internal guide sequence (R. W. Davies, R. B. Waring, J. Ray, T. A. Brown, and C. Scazzocchio, Nature [London] 300:719-724, 1982). We have examined this hypothesis, using the self-splicing rRNA intron from Tetrahymena thermophila. Mutations in the 3' exon that weaken this proposed pairing increased use of a downstream cryptic 3' splice site. Compensatory mutations in the guide sequence that restore this pairing resulted in even stronger selection of the normal 3' splice site. These changes in 3' splice site usage were more pronounced in the background of a mutation (414A) which resulted in an adenine instead of a guanine being the last base of the intron. These results show that the proposed pairing (P10) plays an important role in ensuring that cryptic 3' splice sites are selected against. Surprisingly, the 414A mutation alone did not result in activation of the cryptic 3' splice site. Images PMID:2342465

  6. Determinants of Base-Pair Substitution Patterns Revealed by Whole-Genome Sequencing of DNA Mismatch Repair Defective Escherichia coli.

    PubMed

    Foster, Patricia L; Niccum, Brittany A; Popodi, Ellen; Townes, Jesse P; Lee, Heewook; MohammedIsmail, Wazim; Tang, Haixu

    2018-06-15

    Mismatch repair (MMR) is a major contributor to replication fidelity, but its impact varies with sequence context and the nature of the mismatch. Mutation accumulation experiments followed by whole-genome sequencing of MMR-defective E. coli strains yielded ≈30,000 base-pair substitutions, revealing mutational patterns across the entire chromosome. The base-pair substitution spectrum was dominated by A:T > G:C transitions, which occurred predominantly at the center base of 5'N A C3'+5'G T N3' triplets. Surprisingly, growth on minimal medium or at low temperature attenuated these mutations. Mononucleotide runs were also hotspots for base-pair substitutions, and the rate at which these occurred increased with run length. Comparison with ≈2000 base-pair substitutions accumulated in MMR-proficient strains revealed that both kinds of hotspots appeared in the wild-type spectrum and so are likely to be sites of frequent replication errors. In MMR-defective strains transitions were strand biased, occurring twice as often when A and C rather than T and G were on the lagging-strand template. Loss of nucleotide diphosphate kinase increases the cellular concentration of dCTP, which resulted in increased rates of mutations due to misinsertion of C opposite A and T. In an mmr ndk double mutant strain, these mutations were more frequent when the template A and T were on the leading strand, suggesting that lagging-strand synthesis was more error-prone or less well corrected by proofreading than was leading strand synthesis. Copyright © 2018, Genetics.

  7. Rates of spontaneous mutation.

    PubMed Central

    Drake, J W; Charlesworth, B; Charlesworth, D; Crow, J F

    1998-01-01

    Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates. PMID:9560386

  8. Exploring the common molecular basis for the universal DNA mutation bias: Revival of Loewdin mutation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Liang-Yu; Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070; Wang, Guang-Zhong

    2011-06-10

    Highlights: {yields} There exists a universal G:C {yields} A:T mutation bias in three domains of life. {yields} This universal mutation bias has not been sufficiently explained. {yields} A DNA mutation model proposed by Loewdin 40 years ago offers a common explanation. -- Abstract: Recently, numerous genome analyses revealed the existence of a universal G:C {yields} A:T mutation bias in bacteria, fungi, plants and animals. To explore the molecular basis for this mutation bias, we examined the three well-known DNA mutation models, i.e., oxidative damage model, UV-radiation damage model and CpG hypermutation model. It was revealed that these models cannot providemore » a sufficient explanation to the universal mutation bias. Therefore, we resorted to a DNA mutation model proposed by Loewdin 40 years ago, which was based on inter-base double proton transfers (DPT). Since DPT is a fundamental and spontaneous chemical process and occurs much more frequently within GC pairs than AT pairs, Loewdin model offers a common explanation for the observed universal mutation bias and thus has broad biological implications.« less

  9. Study of base pair mutations in proline-rich homeodomain (PRH)-DNA complexes using molecular dynamics.

    PubMed

    Jalili, Seifollah; Karami, Leila; Schofield, Jeremy

    2013-06-01

    Proline-rich homeodomain (PRH) is a regulatory protein controlling transcription and gene expression processes by binding to the specific sequence of DNA, especially to the sequence 5'-TAATNN-3'. The impact of base pair mutations on the binding between the PRH protein and DNA is investigated using molecular dynamics and free energy simulations to identify DNA sequences that form stable complexes with PRH. Three 20-ns molecular dynamics simulations (PRH-TAATTG, PRH-TAATTA and PRH-TAATGG complexes) in explicit solvent water were performed to investigate three complexes structurally. Structural analysis shows that the native TAATTG sequence forms a complex that is more stable than complexes with base pair mutations. It is also observed that upon mutation, the number and occupancy of the direct and water-mediated hydrogen bonds decrease. Free energy calculations performed with the thermodynamic integration method predict relative binding free energies of 0.64 and 2 kcal/mol for GC to AT and TA to GC mutations, respectively, suggesting that among the three DNA sequences, the PRH-TAATTG complex is more stable than the two mutated complexes. In addition, it is demonstrated that the stability of the PRH-TAATTA complex is greater than that of the PRH-TAATGG complex.

  10. Computational DNA hole spectroscopy: A new tool to predict mutation hotspots, critical base pairs, and disease ‘driver’ mutations

    PubMed Central

    Suárez, Martha Y.; Villagrán; Miller, John H.

    2015-01-01

    We report on a new technique, computational DNA hole spectroscopy, which creates spectra of electron hole probabilities vs. nucleotide position. A hole is a site of positive charge created when an electron is removed. Peaks in the hole spectrum depict sites where holes tend to localize and potentially trigger a base pair mismatch during replication. Our studies of mitochondrial DNA reveal a correlation between L-strand hole spectrum peaks and spikes in the human mutation spectrum. Importantly, we also find that hole peak positions that do not coincide with large variant frequencies often coincide with disease-implicated mutations and/or (for coding DNA) encoded conserved amino acids. This enables combining hole spectra with variant data to identify critical base pairs and potential disease ‘driver’ mutations. Such integration of DNA hole and variance spectra could ultimately prove invaluable for pinpointing critical regions of the vast non-protein-coding genome. An observed asymmetry in correlations, between the spectrum of human mtDNA variations and the L- and H-strand hole spectra, is attributed to asymmetric DNA replication processes that occur for the leading and lagging strands. PMID:26310834

  11. Computational DNA hole spectroscopy: A new tool to predict mutation hotspots, critical base pairs, and disease 'driver' mutations.

    PubMed

    Villagrán, Martha Y Suárez; Miller, John H

    2015-08-27

    We report on a new technique, computational DNA hole spectroscopy, which creates spectra of electron hole probabilities vs. nucleotide position. A hole is a site of positive charge created when an electron is removed. Peaks in the hole spectrum depict sites where holes tend to localize and potentially trigger a base pair mismatch during replication. Our studies of mitochondrial DNA reveal a correlation between L-strand hole spectrum peaks and spikes in the human mutation spectrum. Importantly, we also find that hole peak positions that do not coincide with large variant frequencies often coincide with disease-implicated mutations and/or (for coding DNA) encoded conserved amino acids. This enables combining hole spectra with variant data to identify critical base pairs and potential disease 'driver' mutations. Such integration of DNA hole and variance spectra could ultimately prove invaluable for pinpointing critical regions of the vast non-protein-coding genome. An observed asymmetry in correlations, between the spectrum of human mtDNA variations and the L- and H-strand hole spectra, is attributed to asymmetric DNA replication processes that occur for the leading and lagging strands.

  12. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs.

    PubMed

    Girelli Zubani, Giulia; Zivojnovic, Marija; De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude; Reynaud, Claude-Agnès; Storck, Sébastien

    2017-04-03

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung -/- Pms2 -/- mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. © 2017 Girelli Zubani et al.

  13. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs

    PubMed Central

    De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude

    2017-01-01

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung−/−Pms2−/− mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. PMID:28283534

  14. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations.

    PubMed Central

    Cotton, R G; Rodrigues, N R; Campbell, R D

    1988-01-01

    The chemical reactivity of thymine (T), when mismatched with the bases cytosine, guanine, and thymine, and of cytosine (C), when mismatched with thymine, adenine, and cytosine, has been examined. Heteroduplex DNAs containing such mismatched base pairs were first incubated with osmium tetroxide (for T and C mismatches) or hydroxylamine (for C mismatches) and then incubated with piperidine to cleave the DNA at the modified mismatched base. This cleavage was studied with an internally labeled strand containing the mismatched T or C, such that DNA cleavage and thus reactivity could be detected by gel electrophoresis. Cleavage at a total of 13 T and 21 C mismatches isolated (by at least three properly paired bases on both sides) single-base-pair mismatches was identified. All T or C mismatches studied were cleaved. By using end-labeled DNA probes containing T or C single-base-pair mismatches and conditions for limited cleavage, we were able to show that cleavage was at the base predicted by sequence analysis and that mismatches in a length of DNA could be readily detected by such an approach. This procedure may enable detection of all single-base-pair mismatches by use of sense and antisense probes and thus may be used to identify the mutated base and its position in a heteroduplex. Images PMID:3260032

  15. Electron holes appear to trigger cancer-implicated mutations

    NASA Astrophysics Data System (ADS)

    Miller, John; Villagran, Martha

    Malignant tumors are caused by mutations, which also affect their subsequent growth and evolution. We use a novel approach, computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)], to compute spectra of enhanced hole probability based on actual sequence data. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. Peaks in the hole spectrum depict sites where holes tend to localize and potentially trigger a base pair mismatch during replication. Our studies of reveal a correlation between hole spectrum peaks and spikes in human mutation frequencies. Importantly, we also find that hole peak positions that do not coincide with large variant frequencies often coincide with cancer-implicated mutations and/or (for coding DNA) encoded conserved amino acids. This enables combining hole spectra with variant data to identify critical base pairs and potential cancer `driver' mutations. Such integration of DNA hole and variance spectra could also prove invaluable for pinpointing critical regions, and sites of driver mutations, in the vast non-protein-coding genome. Supported by the State of Texas through the Texas Ctr. for Superconductivity.

  16. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.

    PubMed

    Diaz, M; Velez, J; Singh, M; Cerny, J; Flajnik, M F

    1999-05-01

    The pattern of somatic mutations of shark and frog Ig is distinct from somatic hypermutation of Ig in mammals in that there is a bias to mutate GC base pairs and a low frequency of mutations. Previous analysis of the new antigen receptor gene in nurse sharks (NAR), however, revealed no bias to mutate GC base pairs and the frequency of mutation was comparable to that of mammalian IgG. Here, we analyzed 1023 mutations in NAR and found no targeting of the mechanism to any particular nucleotide but did obtain strong evidence for a transition bias and for strand polarity. As seen for all species studied to date, the serine codon AGC/T in NAR was a mutational hotspot. The NAR mutational pattern is most similar to that of mammalian IgG and furthermore both are strikingly akin to mutations acquired during the neutral evolution of nuclear pseudogenes, suggesting that a similar mechanism is at work for both processes. In yeast, most spontaneous mutations are introduced by the translesion synthesis DNA polymerase zeta (REV3) and in various DNA repair-deficient backgrounds transitions were more often REV3-dependent than were transversions. Therefore, we propose a model of somatic hypermutation where DNA polymerase zeta is recruited to the Ig locus. An excess of DNA glycosylases in germinal center reactions may further enhance the mutation frequency by a REV3-dependent mutagenic process known as imbalanced base excision repair.

  17. Evaluation of Anti-HIV-1 Mutagenic Nucleoside Analogues*

    PubMed Central

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P.; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-01

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of “lethal mutagenesis” that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. PMID:25398876

  18. Evaluation of anti-HIV-1 mutagenic nucleoside analogues.

    PubMed

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-02

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of "lethal mutagenesis" that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Genome Editing Tools in Plants

    PubMed Central

    Mohanta, Tapan Kumar; Bashir, Tufail; Hashem, Abeer; Bae, Hanhong

    2017-01-01

    Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs. PMID:29257124

  20. Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma.

    PubMed

    Kim, Tae-Min; An, Chang Hyeok; Rhee, Je-Keun; Jung, Seung-Hyun; Lee, Sung Hak; Baek, In-Pyo; Kim, Min Sung; Lee, Sug Hyung; Chung, Yeun-Jun

    2015-09-29

    Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four-stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a 'parallel' evolution of synchronous adenoma-to-carcinoma, rather than a 'stepwise' evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent.

  1. Two novel mutations in the Norrie disease gene associated with the classical ocular phenotype.

    PubMed

    Caballero, M; Veske, A; Rodriguez, J J; Lugo, N; Schroeder, B; Hesse, L; Gal, A

    1996-12-01

    Norrie disease (ND) is a rare X-linked recessive disorder characterized by congenital blindness due to a degenerative and proliferative dysplasia of the neuroretina and, occasionally, by deafness and mental handicap. Here, we report two novel mutations detected in patients with the classical eye features of ND. Both the one-base pair insertion in exon II (544/545 insA) and the two-base pair deletion in the start codon (418delTG) of the ND gene predict a functional 'null allele', i.e. the complete absence of the corresponding gene product.

  2. Energy barriers and rates of tautomeric transitions in DNA bases: ab initio quantum chemical study.

    PubMed

    Basu, Soumalee; Majumdar, Rabi; Das, Gourab K; Bhattacharyya, Dhananjay

    2005-12-01

    Tautomeric transitions of DNA bases are proton transfer reactions, which are important in biology. These reactions are involved in spontaneous point mutations of the genetic material. In the present study, intrinsic reaction coordinates (IRC) analyses through ab initio quantum chemical calculations have been carried out for the individual DNA bases A, T, G, C and also A:T and G:C base pairs to estimate the kinetic and thermodynamic barriers using MP2/6-31G** method for tautomeric transitions. Relatively higher values of kinetic barriers (about 50-60 kcal/mol) have been observed for the single bases, indicating that tautomeric alterations of isolated single bases are quite unlikely. On the other hand, relatively lower values of the kinetic barriers (about 20-25 kcal/mol) for the DNA base pairs A:T and G:C clearly suggest that the tautomeric shifts are much more favorable in DNA base pairs than in isolated single bases. The unusual base pairing A':C, T':G, C':A or G':T in the daughter DNA molecule, resulting from a parent DNA molecule with tautomeric shifts, is found to be stable enough to result in a mutation. The transition rate constants for the single DNA bases in addition to the base pairs are also calculated by computing the free energy differences between the transition states and the reactants.

  3. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.

    PubMed

    Bhattacharyya, Dhananjay; Halder, Sukanya; Basu, Sankar; Mukherjee, Debasish; Kumar, Prasun; Bansal, Manju

    2017-02-01

    Comprehensive analyses of structural features of non-canonical base pairs within a nucleic acid double helix are limited by the availability of a small number of three dimensional structures. Therefore, a procedure for model building of double helices containing any given nucleotide sequence and base pairing information, either canonical or non-canonical, is seriously needed. Here we describe a program RNAHelix, which is an updated version of our widely used software, NUCGEN. The program can regenerate duplexes using the dinucleotide step and base pair orientation parameters for a given double helical DNA or RNA sequence with defined Watson-Crick or non-Watson-Crick base pairs. The original structure and the corresponding regenerated structure of double helices were found to be very close, as indicated by the small RMSD values between positions of the corresponding atoms. Structures of several usual and unusual double helices have been regenerated and compared with their original structures in terms of base pair RMSD, torsion angles and electrostatic potentials and very high agreements have been noted. RNAHelix can also be used to generate a structure with a sequence completely different from an experimentally determined one or to introduce single to multiple mutation, but with the same set of parameters and hence can also be an important tool in homology modeling and study of mutation induced structural changes.

  4. Analyzing Population Genetics Using the Mitochondrial Control Region and Bioinformatics

    ERIC Educational Resources Information Center

    Sato, Takumi; Phillips, Bonnie; Latourelle, Sandra M.; Elwess, Nancy L.

    2010-01-01

    The 14-base pair hypervariable region in mitochondrial DNA (mtDNA) of Asian populations, specifically Japanese and Chinese students at Plattsburgh State University, was examined. Previous research on this 14-base pair region showed it to be susceptible to mutations and as a result indicated direct correlation with specific ethnic populations.…

  5. An inversion of 25 base pairs causes feline GM2 gangliosidosis variant.

    PubMed

    Martin, Douglas R; Krum, Barbara K; Varadarajan, G S; Hathcock, Terri L; Smith, Bruce F; Baker, Henry J

    2004-05-01

    In G(M2) gangliosidosis variant 0, a defect in the beta-subunit of lysosomal beta-N-acetylhexosaminidase (EC 3.2.1.52) causes abnormal accumulation of G(M2) ganglioside and severe neurodegeneration. Distinct feline models of G(M2) gangliosidosis variant 0 have been described in both domestic shorthair and Korat cats. In this study, we determined that the causative mutation of G(M2) gangliosidosis in the domestic shorthair cat is a 25-base-pair inversion at the extreme 3' end of the beta-subunit (HEXB) coding sequence, which introduces three amino acid substitutions at the carboxyl terminus of the protein and a translational stop that is eight amino acids premature. Cats homozygous for the 25-base-pair inversion express levels of beta-subunit mRNA approximately 190% of normal and protein levels only 10-20% of normal. Because the 25-base-pair inversion is similar to mutations in the terminal exon of human HEXB, the domestic shorthair cat should serve as an appropriate model to study the molecular pathogenesis of human G(M2) gangliosidosis variant 0 (Sandhoff disease).

  6. Norrie-Warburg syndrome: two novel mutations in patients with classical clinical phenotype.

    PubMed

    Gal, A; Veske, A; Jojart, G; Grammatico, B; Huber, B; Gu, S; del Porto, G; Senyi, K

    1996-01-01

    Norrie-Warburg syndrome (NWS) is a rare X-linked disorder characterized by blindness, which is invariable, deafness and mental disturbances, which are present occasionally. We describe here two novel mutations, a missense mutation (C126S) and a 1-base pair insertion (insT466/T467), together with a recurrent mutation (M1V), found in patients presenting with the classical clinical phenotype of NWS. All three mutations are likely to result in prominent structural changes of the norrin protein.

  7. The cyc1-11 mutation in yeast reverts by recombination with a nonallelic gene: composite genes determining the iso-cytochromes c.

    PubMed Central

    Ernst, J F; Stewart, J W; Sherman, F

    1981-01-01

    DNA sequence analysis of a cloned fragment directly established that the cyc1-11 mutation of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae is a two-base-pair substitution that changes the CCA proline codon at amino acid position 76 to a UAA nonsense codon. Analysis of 11 revertant proteins and one cloned revertant gene showed that reversion of the cyc1-11 mutation can occur in three ways: a single base-pair substitution, which produces a serine replacement at position 76; recombination with the nonallelic CYC7 gene of iso-2-cytochrome c, which causes replacement of a segment in the cyc1-11 gene by the corresponding segment of the CYC7 gene; and either a two-base-pair substitution or recombination with the CYC7 gene, which causes the formation of the normal iso-1-cytochrome c sequence. These results demonstrate the occurrence of low frequencies of recombination between nonallelic genes having extensive but not complete homology. The formation of composite genes that share sequences from nonallelic genes may be an evolutionary mechanism for producing protein diversities and for maintaining identical sequences at different loci. Images PMID:6273865

  8. Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3), and comparison of the closely related E. coli B and K-12 genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studier, F.W.; Daegelen, P.; Lenski, R. E.

    2009-12-01

    Each difference between the genome sequences of Escherichia coli B strains REL606 and BL21(DE3) can be interpreted in light of known laboratory manipulations plus a gene conversion between ribosomal RNA operons. Two treatments with 1-methyl-3-nitro-1-nitrosoguanidine in the REL606 lineage produced at least 93 single-base-pair mutations ({approx} 90% GC-to-AT transitions) and 3 single-base-pair GC deletions. Two UV treatments in the BL21(DE3) lineage produced only 4 single-base-pair mutations but 16 large deletions. P1 transductions from K-12 into the two B lineages produced 317 single-base-pair differences and 9 insertions or deletions, reflecting differences between B DNA in BL21(DE3) and integrated restriction fragments ofmore » K-12 DNA inherited by REL606. Two sites showed selective enrichment of spontaneous mutations. No unselected spontaneous single-base-pair mutations were evident. The genome sequences revealed that a progenitor of REL606 had been misidentified, explaining initially perplexing differences. Limited sequencing of other B strains defined characteristic properties of B and allowed assembly of the inferred genome of the ancestral B of Delbrueck and Luria. Comparison of the B and K-12 genomes shows that more than half of the 3793 proteins of their basic genomes are predicted to be identical, although {approx} 310 appear to be functional in either B or K-12 but not in both. The ancestral basic genome appears to have had {approx} 4039 coding sequences occupying {approx} 4.0 Mbp. Repeated horizontal transfer from diverged Escherichia coli genomes and homologous recombination may explain the observed variable distribution of single-base-pair differences. Fifteen sites are occupied by phage-related elements, but only six by comparable elements at the same site. More than 50 sites are occupied by IS elements in both B and K, 16 in common, and likely founding IS elements are identified. A signature of widespread cryptic phage P4-type mobile elements was identified. Complex deletions (dense clusters of small deletions and substitutions) apparently removed nonessential genes from {approx} 30 sites in the basic genomes.« less

  9. Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations

    PubMed Central

    2009-01-01

    Background Short-term laboratory evolution of bacteria followed by genomic sequencing provides insight into the mechanism of adaptive evolution, such as the number of mutations needed for adaptation, genotype-phenotype relationships, and the reproducibility of adaptive outcomes. Results In the present study, we describe the genome sequencing of 11 endpoints of Escherichia coli that underwent 60-day laboratory adaptive evolution under growth rate selection pressure in lactate minimal media. Two to eight mutations were identified per endpoint. Generally, each endpoint acquired mutations to different genes. The most notable exception was an 82 base-pair deletion in the rph-pyrE operon that appeared in 7 of the 11 adapted strains. This mutation conferred an approximately 15% increase to the growth rate when experimentally introduced to the wild-type background and resulted in an approximately 30% increase to growth rate when introduced to a background already harboring two adaptive mutations. Additionally, most endpoints had a mutation in a regulatory gene (crp or relA, for example) or the RNA polymerase. Conclusions The 82 base-pair deletion found in the rph-pyrE operon of many endpoints may function to relieve a pyrimidine biosynthesis defect present in MG1655. In contrast, a variety of regulators acquire mutations in the different endpoints, suggesting flexibility in overcoming regulatory challenges in the adaptation. PMID:19849850

  10. Structural analysis of oligomeric and protofibrillar Aβ amyloid pair structures considering F20L mutation effects using molecular dynamics simulations.

    PubMed

    Lee, Myeongsang; Chang, Hyun Joon; Baek, Inchul; Na, Sungsoo

    2017-04-01

    Aβ amyloid proteins are involved in neuro-degenerative diseases such as Alzheimer's, Parkinson's, and so forth. Because of its structurally stable feature under physiological conditions, Aβ amyloid protein disrupts the normal cell function. Because of these concerns, understanding the structural feature of Aβ amyloid protein in detail is crucial. There have been some efforts on lowering the structural stabilities of Aβ amyloid fibrils by decreasing the aromatic residues characteristic and hydrophobic effect. Yet, there is a lack of understanding of Aβ amyloid pair structures considering those effects. In this study, we provide the structural characteristics of wildtype (WT) and phenylalanine residue mutation to leucine (F20L) Aβ amyloid pair structures using molecular dynamics simulation in detail. We also considered the polymorphic feature of F20L and WT Aβ pair amyloids based on the facing β-strand directions between the amyloid pairs. As a result, we were able to observe the varying effects of mutation, polymorphism, and protofibril lengths on the structural stability of pair amyloids. Furthermore, we have also found that opposite structural stability exists on a certain polymorphic Aβ pair amyloids depending on its oligomeric or protofibrillar state, which can be helpful for understanding the amyloid growth mechanism via repetitive fragmentation and elongation mechanism. Proteins 2017; 85:580-592. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Hotspot mutation panel testing reveals clonal evolution in a study of 265 paired primary and metastatic tumors.

    PubMed

    Goswami, Rashmi S; Patel, Keyur P; Singh, Rajesh R; Meric-Bernstam, Funda; Kopetz, E Scott; Subbiah, Vivek; Alvarez, Ricardo H; Davies, Michael A; Jabbar, Kausar J; Roy-Chowdhuri, Sinchita; Lazar, Alexander J; Medeiros, L Jeffrey; Broaddus, Russell R; Luthra, Rajyalakshmi; Routbort, Mark J

    2015-06-01

    We used a clinical next-generation sequencing (NGS) hotspot mutation panel to investigate clonal evolution in paired primary and metastatic tumors. A total of 265 primary and metastatic tumor pairs were sequenced using a 46-gene cancer mutation panel capable of detecting one or more single-nucleotide variants as well as small insertions/deletions. Mutations were tabulated together with tumor type and percentage, mutational variant frequency, time interval between onset of primary tumor and metastasis, and neoadjuvant therapy status. Of note, 227 of 265 (85.7%) tumor metastasis pairs showed identical mutation calls. Of the tumor pairs with identical mutation calls, 160 (60.4%) possessed defining somatic mutation signatures and 67 (25.3%) did not exhibit any somatic mutations. There were 38 (14.3%) cases that showed at least one novel mutation call between the primary and metastasis. Metastases were almost two times more likely to show novel mutations (n = 20, 7.5%) than primary tumors (n = 12, 4.5%). TP53 was the most common additionally mutated gene in metastatic lesions, followed by PIK3CA and SMAD4. PIK3CA mutations were more often associated with metastasis in colon carcinoma samples. Clinical NGS hotspot panels can be useful in analyzing clonal evolution within tumors as well as in determining subclonal mutations that can expand in future metastases. PIK3CA, SMAD4, and TP53 are most often involved in clonal divergence, providing potential targets that may help guide the clinical management of tumor progression or metastases. ©2015 American Association for Cancer Research.

  12. Apolipoprotein B-52 mutation associated with hypobetalipoproteinemia is compatible with a misaligned pairing deletion mechanism.

    PubMed

    Groenewegen, W A; Krul, E S; Schonfeld, G

    1993-06-01

    We have identified a new truncation of apoB in a large kindred with hypobetalipoproteinemia that arose by an ambiguous deletion of one of four different groups of base-pairs. Eleven affected members of the kindred had total cholesterols (C) of 114 +/- 28, LDL-Cs of 46 +/- 21, and apoBs of 47 +/- 25 (all in mg/dl, mean +/- SD). These levels were lower (P < 0.0001) than in 15 unaffected relatives. On Western blotting, apoB-100 and a second major band corresponding to apoB-52 were seen in the affected individuals. The majority of the plasma apoB-52 was associated with a smaller than normal low density lipoprotein (LDL) particle. The molecular basis for this apoB-52 truncation is a 5-bp deletion, converting the sequence between cDNA nucleotide 7276 and 7283 from 5'-AAGTTAAG-3' into the mutant sequence 5'-AAG-3'. This results in a frameshift starting at amino acid residue 2357 and a termination codon at amino acid residue 2362. Deletion of one of four different groups of five consecutive bases, i.e., AAGTT, AGTTA, GTTAA, and TTAAG, all result in the same mutant sequence. Thus, the precise deletion is ambiguous. We propose that a misaligned pairing mechanism involving repeat sequences is compatible with this deletion mutation. We have noted similar ambiguous deletions associated with apoB-37, apoB-40, and a number of single base deletions and some may also be explained by a misaligned pairing mechanism. Small ambiguous deletions appear to constitute a major proportion of the apoB gene mutation spectrum suggesting that it may be a suitable model for studying the mechanisms of such mutations.

  13. Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2

    PubMed Central

    Thientosapol, Eddy Sanchai; Sharbeen, George; Lau, K.K. Edwin; Bosnjak, Daniel; Durack, Timothy; Stevanovski, Igor; Weninger, Wolfgang

    2017-01-01

    Abstract AID deaminates C to U in either strand of Ig genes, exclusively producing C:G/G:C to T:A/A:T transition mutations if U is left unrepaired. Error-prone processing by UNG2 or mismatch repair diversifies mutation, predominantly at C:G or A:T base pairs, respectively. Here, we show that transversions at C:G base pairs occur by two distinct processing pathways that are dictated by sequence context. Within and near AGCT mutation hotspots, transversion mutation at C:G was driven by UNG2 without requirement for mismatch repair. Deaminations in AGCT were refractive both to processing by UNG2 and to high-fidelity base excision repair (BER) downstream of UNG2, regardless of mismatch repair activity. We propose that AGCT sequences resist faithful BER because they bind BER-inhibitory protein(s) and/or because hemi-deaminated AGCT motifs innately form a BER-resistant DNA structure. Distal to AGCT sequences, transversions at G were largely co-dependent on UNG2 and mismatch repair. We propose that AGCT-distal transversions are produced when apyrimidinic sites are exposed in mismatch excision patches, because completion of mismatch repair would require bypass of these sites. PMID:28039326

  14. Improving empirical evidence on differentiating closely related men with RM Y-STRs: A comprehensive pedigree study from Pakistan.

    PubMed

    Adnan, Atif; Ralf, Arwin; Rakha, Allah; Kousouri, Nefeli; Kayser, Manfred

    2016-11-01

    Y-chromosomal short tandem repeat (Y-STR) markers are commonly used in forensic genetics. Male-specific haplotypes provided by commercial Y-STR kits allow discriminating between many - but not all - unrelated men, while they mostly fail to separate related ones. Aiming to improve male relative and paternal lineage differentiation, a set of 13 rapidly-mutating (RM) Y-STRs was previously identified and introduced to forensic Y-chromosome analysis. Recently, their value was highlighted by separating 99% of over 12,200 unrelated men from 111 global populations, as well as 29% of over 2500 male relative pairs, the vast majority were father-sons. Here, we provide improved empirical evidence on differentiating closely related men with RM Y-STRs, most notably beyond father-sons, where previous data were limited. After careful quality control including genetic relationship testing, we used 572 Pakistani men belonging to 99 2-4 generation pedigrees covering 1568 pairs of men related by 1-6 meioses. Of those, 45% were differentiated by one or more of the 13 RM Y-STR markers. In contrast, only 14.7% of a subset of 1484 pairs from 94 pedigrees were separated by the commercial AmpFlSTR Y-filer kit. Combining previously published and new data, an overall differentiation rate of 35.3% was revealed for the RM Y-STR set based on 4096 pairs of men related by 1-20 meioses, compared to 9.6% with Y-filer based on 3645 pairs. Using father-son pair data from the present and previous studies, we provide updated RM Y-STR mutation rates. Locus-specific mutation rates ranged from 2.0×10 -3 (7.0×10 -4 -4.3×10 -3 ) to 6.9×10 -2 (6.1×10 -2 -7.9×10 -2 ) based on 2741-3143 meioses, with an average rate across all 13 RM Y-STR markers of 1.8×10 -2 (1.7×10 -2 -1.9×10 -2 ) based on 800 mutations from 44,922 meioses. The high haplotype diversity (h=0.9996) we observed among the unrelated men (N=105) underlines the value of this RM Y-STR set to differentiate paternal lineages even from endogamous populations such as from Pakistan. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Direct estimate of the spontaneous germ line mutation rate in African green monkeys.

    PubMed

    Pfeifer, Susanne P

    2017-12-01

    Here, I provide the first direct estimate of the spontaneous mutation rate in an Old World monkey, using a seven individual, three-generation pedigree of African green monkeys. Eight de novo mutations were identified within ∼1.5 Gbp of accessible genome, corresponding to an estimated point mutation rate of 0.94 × 10 -8 per site per generation, suggesting an effective population size of ∼12000 for the species. This estimation represents a significant improvement in our knowledge of the population genetics of the African green monkey, one of the most important nonhuman primate models in biomedical research. Furthermore, by comparing mutation rates in Old World monkeys with the only other direct estimates in primates to date-humans and chimpanzees-it is possible to uniquely address how mutation rates have evolved over longer time scales. While the estimated spontaneous mutation rate for African green monkeys is slightly lower than the rate of 1.2 × 10 -8 per base pair per generation reported in chimpanzees, it is similar to the lower range of rates of 0.96 × 10 -8 -1.28 × 10 -8 per base pair per generation recently estimated from whole genome pedigrees in humans. This result suggests a long-term constraint on mutation rate that is quite different from similar evidence pertaining to recombination rate evolution in primates. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  16. Growth properties associated with A-U replacement of specific G-C base pairs in 16S rRNA from Escherichia coli.

    PubMed Central

    Triman, K L

    1995-01-01

    Mutations that disrupt each of seven specific G-C base pairs in 16S rRNA from Escherichia coli confer loss of expression of a plasmid-encoded 16S rRNA selectable marker (spectinomycin resistance). However, A-U replacement of G-C base pairs at nucleotides 359/52 or 1292/1245 in 16S rRNA permits normal expression of the marker. By contrast, A-U replacements at 146/176, 153/168, 350/339, or 1293/1244 are associated with loss of expression of the marker. These genetic studies are designed to determine the importance of specific base pairs by assessment of the structural and functional impairments of 16S rRNA molecules resulting from expression of base pair substitutions at these positions. PMID:7543481

  17. Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma

    PubMed Central

    Kondrashova, Olga; Nguyen, Minh; Shield-Artin, Kristy; Tinker, Anna V.; Teng, Nelson N.H.; Harrell, Maria I.; Kuiper, Michael J.; Ho, Gwo-Yaw; Barker, Holly; Jasin, Maria; Prakash, Rohit; Kass, Elizabeth M.; Sullivan, Meghan R.; Brunette, Gregory J.; Bernstein, Kara A.; Coleman, Robert L.; Floquet, Anne; Friedlander, Michael; Kichenadasse, Ganessan; O'Malley, David M.; Oza, Amit; Sun, James; Robillard, Liliane; Maloney, Lara; Giordano, Heidi; Wakefield, Matthew J.; Kaufmann, Scott H.; Simmons, Andrew D.; Harding, Thomas C.; Raponi, Mitch; McNeish, Iain A.; Swisher, Elizabeth M.; Lin, Kevin K.; Scott, Clare L.

    2017-01-01

    High-grade epithelial ovarian carcinomas containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in BRCA1, RAD51C, or RAD51D was identified. In five of six paired postprogression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51C. In vitro complementation assays and a patient-derived xenograft, as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations. Significance Analyses of primary and secondary mutations in RAD51C and RAD51D provide evidence for these primary mutations in conferring PARPi sensitivity and secondary mutations as a mechanism of acquired PARPi resistance. PARPi resistance due to secondary mutations underpins the need for early delivery of PARPi therapy and for combination strategies. PMID:28588062

  18. Compensatory Evolution of Intrinsic Transcription Terminators in Bacillus Cereus

    PubMed Central

    Safina, Ksenia R.; Mironov, Andrey A.

    2017-01-01

    Many RNA molecules possess complicated secondary structure critical to their function. Mutations in double-helical regions of RNA may disrupt Watson–Crick (WC) interactions causing structure destabilization or even complete loss of function. Such disruption can be compensated by another mutation restoring base pairing, as has been shown for mRNA, rRNA and tRNA. Here, we investigate the evolution of intrinsic transcription terminators between closely related strains of Bacillus cereus. While the terminator structure is maintained by strong natural selection, as evidenced by the low frequency of disrupting mutations, we observe multiple instances of pairs of disrupting-compensating mutations in RNA structure stems. Such two-step switches between different WC pairs occur very fast, consistent with the low fitness conferred by the intermediate non-WC variant. Still, they are not instantaneous, and probably involve transient fixation of the intermediate variant. The GU wobble pair is the most frequent intermediate, and remains fixed longer than other intermediates, consistent with its less disruptive effect on the RNA structure. Double switches involving non-GU intermediates are more frequent at the ends of RNA stems, probably because they are associated with smaller fitness loss. Together, these results show that the fitness landscape of bacterial transcription terminators is rather rugged, but that the fitness valleys associated with unpaired stem nucleotides are rather shallow, facilitating evolution. PMID:28201729

  19. Identification of different ALK mutations in a pair of neuroblastoma cell lines established at diagnosis and relapse.

    PubMed

    Chen, Lindi; Humphreys, Angharad; Turnbull, Lisa; Bellini, Angela; Schleiermacher, Gudrun; Salwen, Helen; Cohn, Susan L; Bown, Nick; Tweddle, Deborah A

    2016-12-27

    Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor kinase that belongs to the insulin receptor superfamily and has previously been shown to play a role in cell proliferation, migration and invasion in neuroblastoma. Activating ALK mutations are reported in both hereditary and sporadic neuroblastoma tumours, and several ALK inhibitors are currently under clinical evaluation as novel treatments for neuroblastoma. Overall, mutations at codons F1174, R1275 and F1245 together account for ~85% of reported ALK mutations in neuroblastoma. NBLW and NBLW-R are paired cell lines originally derived from an infant with metastatic MYCN amplified Stage IVS (Evans Criteria) neuroblastoma, at diagnosis and relapse, respectively. Using both Sanger and targeted deep sequencing, this study describes the identification of distinct ALK mutations in these paired cell lines, including the rare R1275L mutation, which has not previously been reported in a neuroblastoma cell line. Analysis of the sensitivity of NBLW and NBLW-R cells to a panel of ALK inhibitors (TAE-684, Crizotinib, Alectinib and Lorlatinib) revealed differences between the paired cell lines, and overall NBLW-R cells with the F1174L mutation were more resistant to ALK inhibitor induced apoptosis compared with NBLW cells. This pair of cell lines represents a valuable pre-clinical model of clonal evolution of ALK mutations associated with neuroblastoma progression.

  20. Evaluation of digital PCR for detecting low-level EGFR mutations in advanced lung adenocarcinoma patients: a cross-platform comparison study

    PubMed Central

    Liu, Bing; Li, Lei; Huang, Lixia; Li, Shaoli; Rao, Guanhua; Yu, Yang; Zhou, Yanbin

    2017-01-01

    Emerging evidence has indicated that circulating tumor DNA (ctDNA) from plasma could be used to analyze EGFR mutation status for NSCLC patients; however, due to the low level of ctDNA in plasma, highly sensitive approaches are required to detect low frequency mutations. In addition, the cutoff for the mutation abundance that can be detected in tumor tissue but cannot be detected in matched ctDNA is still unknown. To assess a highly sensitive method, we evaluated the use of digital PCR in the detection of EGFR mutations in tumor tissue from 47 advanced lung adenocarcinoma patients through comparison with NGS and ARMS. We determined the degree of concordance between tumor tissue DNA and paired ctDNA and analyzed the mutation abundance relationship between them. Digital PCR and Proton had a high sensitivity (96.00% vs. 100%) compared with that of ARMS in the detection of mutations in tumor tissue. Digital PCR outperformed Proton in identifying more low abundance mutations. The ctDNA detection rate of digital PCR was 87.50% in paired tumor tissue with a mutation abundance above 5% and 7.59% in paired tumor tissue with a mutation abundance below 5%. When the DNA mutation abundance of tumor tissue was above 3.81%, it could identify mutations in paired ctDNA with a high sensitivity. Digital PCR will help identify alternative methods for detecting low abundance mutations in tumor tissue DNA and plasma ctDNA. PMID:28978074

  1. Historic, clinical, and prognostic features of epileptic encephalopathies caused by CDKL5 mutations.

    PubMed

    Moseley, Brian D; Dhamija, Radhika; Wirrell, Elaine C; Nickels, Katherine C

    2012-02-01

    Mutations within the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene are important causes of early-onset epileptic encephalopathies. We sought to determine the historic, clinical, and prognostic features of epilepsy secondary to CDKL5 mutations. We performed retrospective chart reviews of children at our institution with epilepsy and CDKL5 mutations. Six children were identified. One manifested a deletion in exons 10-15 of the CDKL5 gene, another manifested a single base-pair duplication in exon 3, and the rest manifested base-pair exchanges. The mean age of seizure onset was 1.8 months (range, 1-3 months). Although the majority (4/6, 67%) presented with partial-onset seizures, all children developed infantile spasms. All children demonstrated developmental delay and visual impairment. Although such mutations are X-linked, two children were boys. They did not present with more severe phenotypes than their female counterparts. Despite trials of antiepileptic drugs (mean, 5; range, 3-7), steroids/adrenocorticotropic hormone (4/6; 67%), and the ketogenic diet (6/6; 100%), all children manifested refractory seizures at last follow-up. Although no treatment eliminated seizures, topiramate, vigabatrin, and the ketogenic diet were most helpful at reducing seizure frequency. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Circulating tumor DNA functions as an alternative for tissue to overcome tumor heterogeneity in advanced gastric cancer.

    PubMed

    Gao, Jing; Wang, Haixing; Zang, Wanchun; Li, Beifang; Rao, Guanhua; Li, Lei; Yu, Yang; Li, Zhongwu; Dong, Bin; Lu, Zhihao; Jiang, Zhi; Shen, Lin

    2017-09-01

    Overcoming tumor heterogeneity is a major challenge for personalized treatment of gastric cancer, especially for human epidermal growth factor receptor-2 targeted therapy. Analysis of circulating tumor DNA allows a more comprehensive analysis of tumor heterogeneity than traditional biopsies in lung cancer and breast cancer, but little is known in gastric cancer. We assessed mutation profiles of ctDNA and primary tumors from 30 patients with advanced gastric cancer, then performed a comprehensive analysis of tumor mutations by multiple biopsies from five patients, and finally analyzed the concordance of HER2 amplification in ctDNA and paired tumor tissues in 70 patients. By comparing with a single tumor sample, ctDNA displayed a low concordance of mutation profile, only approximately 50% (138/275) somatic mutations were found in paired tissue samples, however, when compared with multiple biopsies, most DNA mutations in ctDNA were also shown in paired tumor tissues. ctDNA had a high concordance (91.4%, Kappa index = 0.784, P < 0.001) of HER2 amplification with tumor tissues, suggesting it might be an alternative for tissue. It implied that ctDNA-based assessment could partially overcome the tumor heterogeneity, and might serve as a potential surrogate for HER2 analysis in gastric cancer. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Co-evolution of somatic variation in primary and metastatic colorectal cancer may expand biopsy indications in the molecular era.

    PubMed

    Kim, Richard; Schell, Michael J; Teer, Jamie K; Greenawalt, Danielle M; Yang, Mingli; Yeatman, Timothy J

    2015-01-01

    Metastasis is thought to be a clonal event whereby a single cell initiates the development of a new tumor at a distant site. However the degree to which primary and metastatic tumors differ on a molecular level remains unclear. To further evaluate these concepts, we used next generation sequencing (NGS) to assess the molecular composition of paired primary and metastatic colorectal cancer tissue specimens. 468 colorectal tumor samples from a large personalized medicine initiative were assessed by targeted gene sequencing of 1,321 individual genes. Eighteen patients produced genomic profiles for 17 paired primary:metastatic (and 2 metastatic:metastatic) specimens. An average of 33.3 mutations/tumor were concordant (shared) between matched samples, including common well-known genes (APC, KRAS, TP53). An average of 2.3 mutations/tumor were discordant (unshared) among paired sites. KRAS mutational status was always concordant. The overall concordance rate for mutations was 93.5%; however, nearly all (18/19 (94.7%)) paired tumors showed at least one mutational discordance. Mutations were seen in: TTN, the largest gene (5 discordant pairs), ADAMTS20, APC, MACF1, RASA1, TP53, and WNT2 (2 discordant pairs), SMAD2, SMAD3, SMAD4, FBXW7, and 66 others (1 discordant pair). Whereas primary and metastatic tumors displayed little variance overall, co-evolution produced incremental mutations in both. These results suggest that while biopsy of the primary tumor alone is likely sufficient in the chemotherapy-naïve patient, additional biopsies of primary or metastatic disease may be necessary to precisely tailor therapy following chemotherapy resistance or insensitivity in order to adequately account for tumor evolution.

  4. Co-Evolution of Somatic Variation in Primary and Metastatic Colorectal Cancer May Expand Biopsy Indications in the Molecular Era

    PubMed Central

    Kim, Richard; Schell, Michael J.; Teer, Jamie K.; Greenawalt, Danielle M.; Yang, Mingli; Yeatman, Timothy J.

    2015-01-01

    Introduction Metastasis is thought to be a clonal event whereby a single cell initiates the development of a new tumor at a distant site. However the degree to which primary and metastatic tumors differ on a molecular level remains unclear. To further evaluate these concepts, we used next generation sequencing (NGS) to assess the molecular composition of paired primary and metastatic colorectal cancer tissue specimens. Methods 468 colorectal tumor samples from a large personalized medicine initiative were assessed by targeted gene sequencing of 1,321 individual genes. Eighteen patients produced genomic profiles for 17 paired primary:metastatic (and 2 metastatic:metastatic) specimens. Results An average of 33.3 mutations/tumor were concordant (shared) between matched samples, including common well-known genes (APC, KRAS, TP53). An average of 2.3 mutations/tumor were discordant (unshared) among paired sites. KRAS mutational status was always concordant. The overall concordance rate for mutations was 93.5%; however, nearly all (18/19 (94.7%)) paired tumors showed at least one mutational discordance. Mutations were seen in: TTN, the largest gene (5 discordant pairs), ADAMTS20, APC, MACF1, RASA1, TP53, and WNT2 (2 discordant pairs), SMAD2, SMAD3, SMAD4, FBXW7, and 66 others (1 discordant pair). Conclusions Whereas primary and metastatic tumors displayed little variance overall, co-evolution produced incremental mutations in both. These results suggest that while biopsy of the primary tumor alone is likely sufficient in the chemotherapy-naïve patient, additional biopsies of primary or metastatic disease may be necessary to precisely tailor therapy following chemotherapy resistance or insensitivity in order to adequately account for tumor evolution. PMID:25974029

  5. Basics of DNA biosensors and cancer diagnosis.

    PubMed

    Sohrabi, Nasrin; Valizadeh, Alireza; Farkhani, Samad Mussa; Akbarzadeh, Abolfazl

    2016-01-01

    The human genome is exposed to mutations during the life cycle because of many types of changes in the DNA. Viruses, radiation, transposons, mutagenic chemicals, or any errors that happen during DNA replication or the meiotic process in the cell, may cause the mutation. Many mutations have no effect on phenotype or health, while some mutations cause crucial diseases such as cancer or cardiac diseases; therefore, a better understanding of the effects of mutation on phenotype is a very important part of genetic studies. Biosensors based on DNA, RNA, and peptide nucleic acids are the most sensitive tools, due to a strong pairing of lined up nucleotide strands between bases in their complementary parts. These methods can provide information to assist clinicians in making successful treatment decisions and increase the patient survival rate. In this review, we discuss DNA biosensors based on peptide nucleic acids that have an important role in cancer diagnosis.

  6. SDM-Assist software to design site-directed mutagenesis primers introducing “silent” restriction sites

    PubMed Central

    2013-01-01

    Background Over the past decades site-directed mutagenesis (SDM) has become an indispensable tool for biological structure-function studies. In principle, SDM uses modified primer pairs in a PCR reaction to introduce a mutation in a cDNA insert. DpnI digestion of the reaction mixture is used to eliminate template copies before amplification in E. coli; however, this process is inefficient resulting in un-mutated clones which can only be distinguished from mutant clones by sequencing. Results We have developed a program – ‘SDM-Assist’ which creates SDM primers adding a specific identifier: through additional silent mutations a restriction site is included or a previous one removed which allows for highly efficient identification of ‘mutated clones’ by a simple restriction digest. Conclusions The direct identification of SDM clones will save time and money for researchers. SDM-Assist also scores the primers based on factors such as Tm, GC content and secondary structure allowing for simplified selection of optimal primer pairs. PMID:23522286

  7. Repairing the sickle cell mutation. I. Specific covalent binding of a photoreactive third strand to the mutated base pair.

    PubMed

    Broitman, S; Amosova, O; Dolinnaya, N G; Fresco, J R

    1999-07-30

    A DNA third strand with a 3'-psoralen substituent was designed to form a triplex with the sequence downstream of the T.A mutant base pair of the human sickle cell beta-globin gene. Triplex-mediated psoralen modification of the mutant T residue was sought as an approach to gene repair. The 24-nucleotide purine-rich target sequence switches from one strand to the other and has four pyrimidine interruptions. Therefore, a third strand sequence favorable to two triplex motifs was used, one parallel and the other antiparallel to it. To cope with the pyrimidine interruptions, which weaken third strand binding, 5-methylcytosine and 5-propynyluracil were used in the third strand. Further, a six residue "hook" complementary to an overhang of a linear duplex target was added to the 5'-end of the third strand via a T(4) linker. In binding to the overhang by Watson-Crick pairing, the hook facilitates triplex formation. This third strand also binds specifically to the target within a supercoiled plasmid. The psoralen moiety at the 3'-end of the third strand forms photoadducts to the targeted T with high efficiency. Such monoadducts are known to preferentially trigger reversion of the mutation by DNA repair enzymes.

  8. Association between shortage of energy supply and nuclear gene mutations leading to carcinomatous transformation.

    PubMed

    DU, Jianping

    2016-01-01

    Anaerobic bacteria use glycolysis, an oxygen-independent metabolic pathway, whereas energy metabolism in the evolved eukaryotic cell is performed via oxidative phosphorylation, with all eukaryotic cell activities depending upon high energy consumption. However, in cancer cells evolving from eukaryotic cells, the energy metabolism switches from oxidative phosphorylation to glycolysis. The shortage of energy supply induces cancer cells to acquire specific characteristics. Base pair renewal is the most energy-consuming process in the cell, and shortage of energy supply may lead to errors in this process; the more prominent the shortage in energy supply, the more errors are likely to occur in base pair renewal, resulting in gene mutations and expression of cancer cell characteristics. Thus, shortage of energy supply is associated with carcinomatous transformation.

  9. Mutation Pattern of Paired Immunoglobulin Heavy and Light Variable Domains in Chronic Lymphocytic Leukemia B Cells

    PubMed Central

    Ghiotto, Fabio; Marcatili, Paolo; Tenca, Claudya; Calevo, Maria Grazia; Yan, Xiao-Jie; Albesiano, Emilia; Bagnara, Davide; Colombo, Monica; Cutrona, Giovanna; Chu, Charles C; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Tramontano, Anna; Fais, Franco; Chiorazzi, Nicholas

    2011-01-01

    B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV–diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation. PMID:21785810

  10. Label-free and high-sensitive detection for genetic point mutation based on hyperspectral interferometry

    NASA Astrophysics Data System (ADS)

    Fu, Rongxin; Li, Qi; Zhang, Junqi; Wang, Ruliang; Lin, Xue; Xue, Ning; Su, Ya; Jiang, Kai; Huang, Guoliang

    2016-10-01

    Label free point mutation detection is particularly momentous in the area of biomedical research and clinical diagnosis since gene mutations naturally occur and bring about highly fatal diseases. In this paper, a label free and high sensitive approach is proposed for point mutation detection based on hyperspectral interferometry. A hybridization strategy is designed to discriminate a single-base substitution with sequence-specific DNA ligase. Double-strand structures will take place only if added oligonucleotides are perfectly paired to the probe sequence. The proposed approach takes full use of the inherent conformation of double-strand DNA molecules on the substrate and a spectrum analysis method is established to point out the sub-nanoscale thickness variation, which benefits to high sensitive mutation detection. The limit of detection reach 4pg/mm2 according to the experimental result. A lung cancer gene point mutation was demonstrated, proving the high selectivity and multiplex analysis capability of the proposed biosensor.

  11. Comparative reactivity of mismatched and unpaired bases in relation to their type and surroundings. Chemical cleavage of DNA mismatches in mutation detection analysis.

    PubMed

    Yakubovskaya, Marianna G; Belyakova, Anna A; Gasanova, Viktoria K; Belitsky, Gennady A; Dolinnaya, Nina G

    2010-07-01

    Systematic study of chemical reactivity of non-Watson-Crick base pairs depending on their type and microenvironment was performed on a model system that represents two sets of synthetic DNA duplexes with all types of mismatched and unmatched bases flanked by T.A or G.C pairs. Using comparative cleavage pattern analysis, we identified the main and additional target bases and performed quantitative study of the time course and efficacy of DNA modification caused by potassium permanganate or hydroxylamine. Potassium permanganate in combination with tetraethylammonium chloride was shown to induce DNA cleavage at all mismatched or bulged T residues, as well as at thymines of neighboring canonical pairs. Other mispaired (bulged) bases and thymine residues located on the second position from the mismatch site were not the targets for KMnO(4) attack. In contrast, hydroxylamine cleaved only heteroduplexes containing mismatched or unmatched C residues, and did not modify adjacent cytosines. However when G.C pairs flank bulged C residue, neighboring cytosines are also attacked by hydroxylamine due to defect migration. Chemical reactivity of target bases was shown to correlate strongly with the local disturbance of DNA double helix at mismatch or bulge site. With our model system, we were able to prove the absence of false-negative and false-positive results. Portion of heteroduplex reliably revealed in a mixture with corresponding homoduplex consists of 5% for bulge bases and "open" non-canonical pairs, and 10% for wobble base pairs giving minimal violations in DNA structure. This study provides a complete understanding of the principles of mutation detection methodology based on chemical cleavage of mismatches and clarifies the advantages and limitations of this approach in various biological and conformational studies of DNA. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  12. Mutagenesis: Interactions with a parallel universe.

    PubMed

    Miller, Jeffrey H

    Unexpected observations in mutagenesis research have led to a new perspective in this personal reflection based on years of studying mutagenesis. Many mutagens have been thought to operate via a single principal mechanism, with secondary effects usually resulting in only minor changes in the observed mutation frequencies and spectra. For example, we conceive of base analogs as resulting in direct mispairing as their main mechanism of mutagenesis. Recent studies now show that in fact even these simple mutagens can cause very large and unanticipated effects both in mutation frequencies and in the mutational spectra when used in certain pair-wise combinations. Here we characterize this leap in mutation frequencies as a transport to an alternate universe of mutagenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Comprehensive mutation analysis of 17 Y-chromosomal short tandem repeat polymorphisms included in the AmpFlSTR Yfiler PCR amplification kit.

    PubMed

    Goedbloed, Miriam; Vermeulen, Mark; Fang, Rixun N; Lembring, Maria; Wollstein, Andreas; Ballantyne, Kaye; Lao, Oscar; Brauer, Silke; Krüger, Carmen; Roewer, Lutz; Lessig, Rüdiger; Ploski, Rafal; Dobosz, Tadeusz; Henke, Lotte; Henke, Jürgen; Furtado, Manohar R; Kayser, Manfred

    2009-11-01

    The Y-chromosomal short tandem repeat (Y-STR) polymorphisms included in the AmpFlSTR Yfiler polymerase chain reaction amplification kit have become widely used for forensic and evolutionary applications where a reliable knowledge on mutation properties is necessary for correct data interpretation. Therefore, we investigated the 17 Yfiler Y-STRs in 1,730-1,764 DNA-confirmed father-son pairs per locus and found 84 sequence-confirmed mutations among the 29,792 meiotic transfers covered. Of the 84 mutations, 83 (98.8%) were single-repeat changes and one (1.2%) was a double-repeat change (ratio, 1:0.01), as well as 43 (51.2%) were repeat gains and 41 (48.8%) repeat losses (ratio, 1:0.95). Medians from Bayesian estimation of locus-specific mutation rates ranged from 0.0003 for DYS448 to 0.0074 for DYS458, with a median rate across all 17 Y-STRs of 0.0025. The mean age (at the time of son's birth) of fathers with mutations was with 34.40 (+/-11.63) years higher than that of fathers without ones at 30.32 (+/-10.22) years, a difference that is highly statistically significant (p < 0.001). A Poisson-based modeling revealed that the Y-STR mutation rate increased with increasing father's age on a statistically significant level (alpha = 0.0294, 2.5% quantile = 0.0001). From combining our data with those previously published, considering all together 135,212 meiotic events and 331 mutations, we conclude for the Yfiler Y-STRs that (1) none had a mutation rate of >1%, 12 had mutation rates of >0.1% and four of <0.1%, (2) single-repeat changes were strongly favored over multiple-repeat ones for all loci but 1 and (3) considerable variation existed among loci in the ratio of repeat gains versus losses. Our finding of three Y-STR mutations in one father-son pair (and two pairs with two mutations each) has consequences for determining the threshold of allelic differences to conclude exclusion constellations in future applications of Y-STRs in paternity testing and pedigree analyses.

  14. Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System.

    PubMed

    Koo, Ok Jae; Park, Sol Ji; Lee, Choongil; Kang, Jung Taek; Kim, Sujin; Moon, Joon Ho; Choi, Ji Yei; Kim, Hyojin; Jang, Goo; Kim, Jin-Soo; Kim, Seokjoong; Lee, Byeong-Chun

    2014-03-01

    To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP(+)/eGFP(+)) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

  15. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein–DNA interactions

    PubMed Central

    Eldar, Amir; Rozenberg, Haim; Diskin-Posner, Yael; Rohs, Remo; Shakked, Zippora

    2013-01-01

    A p53 hot-spot mutation found frequently in human cancer is the replacement of R273 by histidine or cysteine residues resulting in p53 loss of function as a tumor suppressor. These mutants can be reactivated by the incorporation of second-site suppressor mutations. Here, we present high-resolution crystal structures of the p53 core domains of the cancer-related proteins, the rescued proteins and their complexes with DNA. The structures show that inactivation of p53 results from the incapacity of the mutated residues to form stabilizing interactions with the DNA backbone, and that reactivation is achieved through alternative interactions formed by the suppressor mutations. Detailed structural and computational analysis demonstrates that the rescued p53 complexes are not fully restored in terms of DNA structure and its interface with p53. Contrary to our previously studied wild-type (wt) p53-DNA complexes showing non-canonical Hoogsteen A/T base pairs of the DNA helix that lead to local minor-groove narrowing and enhanced electrostatic interactions with p53, the current structures display Watson–Crick base pairs associated with direct or water-mediated hydrogen bonds with p53 at the minor groove. These findings highlight the pivotal role played by R273 residues in supporting the unique geometry of the DNA target and its sequence-specific complex with p53. PMID:23863845

  16. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome

    PubMed Central

    Ochiai, Hiroshi; Miyamoto, Tatsuo; Kanai, Akinori; Hosoba, Kosuke; Sakuma, Tetsushi; Kudo, Yoshiki; Asami, Keiko; Ogawa, Atsushi; Watanabe, Akihiro; Kajii, Tadashi; Yamamoto, Takashi; Matsuura, Shinya

    2014-01-01

    Cancer-prone syndrome of premature chromatid separation with mosaic variegated aneuploidy [PCS (MVA) syndrome] is a rare autosomal recessive disorder characterized by constitutional aneuploidy and a high risk of childhood cancer. We previously reported monoallelic mutations in the BUB1B gene (encoding BUBR1) in seven Japanese families with the syndrome. No second mutation was found in the opposite allele of any of the families studied, although a conserved BUB1B haplotype and a decreased transcript were identified. To clarify the molecular pathology of the second allele, we extended our mutational search to a candidate region surrounding BUB1B. A unique single nucleotide substitution, G > A at ss802470619, was identified in an intergenic region 44 kb upstream of a BUB1B transcription start site, which cosegregated with the disorder. To examine whether this is the causal mutation, we designed a transcription activator-like effector nuclease–mediated two-step single-base pair editing strategy and biallelically introduced this substitution into cultured human cells. The cell clones showed reduced BUB1B transcripts, increased PCS frequency, and MVA, which are the hallmarks of the syndrome. We also encountered a case of a Japanese infant with PCS (MVA) syndrome carrying a homozygous single nucleotide substitution at ss802470619. These results suggested that the nucleotide substitution identified was the causal mutation of PCS (MVA) syndrome. PMID:24344301

  17. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).

  18. Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs.

    PubMed

    Harrington, Jill M; Kolodner, Richard D

    2007-09-01

    DNA mismatch repair is thought to act through two subpathways involving the recognition of base-base and insertion/deletion mispairs by the Msh2-Msh6 heterodimer and the recognition of insertion/deletion mispairs by the Msh2-Msh3 heterodimer. Here, through genetic and biochemical approaches, we describe a previously unidentified role of the Msh2-Msh3 heterodimer in the recognition of base-base mispairs and the suppression of homology-mediated duplication and deletion mutations. Saccharomyces cerevisiae msh3 mutants did not show an increase in the rate of base substitution mutations by the CAN1 forward mutation assay compared to the rate for the wild type but did show an altered spectrum of base substitution mutations, including an increased accumulation of base pair changes from GC to CG and from AT to TA; msh3 mutants also accumulated homology-mediated duplication and deletion mutations. The mutation spectrum of mlh3 mutants paralleled that of msh3 mutants, suggesting that the Mlh1-Mlh3 heterodimer may also play a role in the repair of base-base mispairs and in the suppression of homology-mediated duplication and deletion mutations. Mispair binding analysis with purified Msh2-Msh3 and DNA substrates derived from CAN1 sequences found to be mutated in vivo demonstrated that Msh2-Msh3 exhibited robust binding to specific base-base mispairs that was consistent with functional mispair binding.

  19. Saccharomyces cerevisiae Msh2-Msh3 Acts in Repair of Base-Base Mispairs▿ †

    PubMed Central

    Harrington, Jill M.; Kolodner, Richard D.

    2007-01-01

    DNA mismatch repair is thought to act through two subpathways involving the recognition of base-base and insertion/deletion mispairs by the Msh2-Msh6 heterodimer and the recognition of insertion/deletion mispairs by the Msh2-Msh3 heterodimer. Here, through genetic and biochemical approaches, we describe a previously unidentified role of the Msh2-Msh3 heterodimer in the recognition of base-base mispairs and the suppression of homology-mediated duplication and deletion mutations. Saccharomyces cerevisiae msh3 mutants did not show an increase in the rate of base substitution mutations by the CAN1 forward mutation assay compared to the rate for the wild type but did show an altered spectrum of base substitution mutations, including an increased accumulation of base pair changes from GC to CG and from AT to TA; msh3 mutants also accumulated homology-mediated duplication and deletion mutations. The mutation spectrum of mlh3 mutants paralleled that of msh3 mutants, suggesting that the Mlh1-Mlh3 heterodimer may also play a role in the repair of base-base mispairs and in the suppression of homology-mediated duplication and deletion mutations. Mispair binding analysis with purified Msh2-Msh3 and DNA substrates derived from CAN1 sequences found to be mutated in vivo demonstrated that Msh2-Msh3 exhibited robust binding to specific base-base mispairs that was consistent with functional mispair binding. PMID:17636021

  20. Predicting RNA Duplex Dimerization Free-Energy Changes upon Mutations Using Molecular Dynamics Simulations.

    PubMed

    Sakuraba, Shun; Asai, Kiyoshi; Kameda, Tomoshi

    2015-11-05

    The dimerization free energies of RNA-RNA duplexes are fundamental values that represent the structural stability of RNA complexes. We report a comparative analysis of RNA-RNA duplex dimerization free-energy changes upon mutations, estimated from a molecular dynamics simulation and experiments. A linear regression for nine pairs of double-stranded RNA sequences, six base pairs each, yielded a mean absolute deviation of 0.55 kcal/mol and an R(2) value of 0.97, indicating quantitative agreement between simulations and experimental data. The observed accuracy indicates that the molecular dynamics simulation with the current molecular force field is capable of estimating the thermodynamic properties of RNA molecules.

  1. Correlation of RNA secondary structure and attenuation of Sabin vaccine strains of poliovirus in tissue culture.

    PubMed

    Macadam, A J; Ferguson, G; Burlison, J; Stone, D; Skuce, R; Almond, J W; Minor, P D

    1992-08-01

    Part of the 5' noncoding regions of all three Sabin vaccine strains of poliovirus contains determinants of attenuation that are shown here to influence the ability of these strains to grow at elevated temperatures in BGM cells. The predicted RNA secondary structure of this region (nt 464-542 in P3/Sabin) suggests that both phenotypes are due to perturbation of base-paired stems. Ts phenotypes of site-directed mutants with defined changes in this region correlated well with predicted secondary structure stabilities. Reversal of base-pair orientation had little effect whereas stem disruption led to marked increases in temperature sensitivity. Phenotypic revertants of such viruses displayed mutations on either side of the stem. Mutations destabilizing stems led to intermediate phenotypes. These results provided evidence for the biological significance of the predicted RNA secondary structure.

  2. Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA.

    PubMed

    Hughes, J M

    1996-06-21

    The U3 nucleolar RNA has a remarkably wide phyletic distribution extending from the Eukarya to the Archaea. It functions in maturation of the small subunit (SSU) rRNA through a mechanism which is as yet unknown but which involves base-pairing with pre-rRNA. The most conserved part of U3 is within 30 nucleotides of the 5' end, but as yet no function for this domain has been proposed. Elements within this domain are complementary to highly conserved sequences in the SSU rRNA which, in the mature form, fold into a universally conserved pseudoknot. The nature of the complementarity suggests a novel mechanism for U3 function whereby U3 facilitates correct folding of the pseudoknot. Wide phylogenetic comparison provides compelling evidence in support of the interaction in that significant complementary changes have taken place, particularly in the archaeon Sulfolobus, which maintain the base-pairing. Base-substitution mutations in yeast U3 designed to disrupt the base-pairing indicate that the interaction is probably essential. These include cold-sensitivity mutations which exhibit phenotypes similar to U3-depletion, but without impairment of the AO processing step, which occurs within the 5' ETS. These phenotypes are consistent with the destabilization of SSU precursors and partial impairment of the processing steps A1, at the 5' ETS/18 S boundary, and A2, within the ITS1.

  3. IDH1 R132H Mutation Is Accompanied with Malignant Progression of Paired Primary-Recurrent Astrocytic Tumours.

    PubMed

    Mu, Luyan; Xu, Wanzhen; Li, Qingla; Ge, Haitao; Bao, Hongbo; Xia, Songsong; Ji, Jingjing; Jiang, Jie; Song, Yuwen; Gao, Qiang

    2017-01-01

    IDH1 R132H mutation is an important marker of survival in patients with gliomas. Although there are many changes of genes in tumour malignant progression, IDH1 R132H mutation status in glioma progression remained unclear. Here, an in-depth characterization of IDH1 R132H mutations were assessed by immunohistochemistry in 55 paired primary-recurrent astrocytomas tissues, including 5 paired primary pilocytic astrocytoma (pPA, WHO grade I), 35 paired primary low grade astrocytoma (pLGA, WHO grade II and III) and 15 paired primary high grade astrocytoma (pHGA/ Glioblastoma, WHO grade IV). Meanwhile, the DNA was isolated from paired samples, and PCR amplification was used for IDH1 exon4 sequencing. Nonparametric test, KM and Cox models were used to examine the statistical difference and survival function. We found that the percent of IDH1 R132H mutation was 68.6% (24/35) in pLGA group, but no IDH1 mutation was found in pPA and pHGA groups. Meanwhile, the results from immunohistochemistry and DNA sequencing showed that, compared with primary astrocytoma, there was no change of IDH1 status in recurrent astrocytoma whatever tumour pathological grade raise or indolent. The pPA group has the longest recurrence-free period (RFP) and overall survival (OS) in three groups ( p<0.01 ), while the pHGA group has the shortest ones ( p<0.01 ). In pLGA group, the IDH1 R132H mutation subgroup has longer RFP than IDH1 wild type subgroup ( p<0.01 ), but the OS has no statistical difference between two subgroups ( p>0.6 ). Additionally, IDH1 R132H mutation independently predicted a long RFP in patients with pLGA (HR 1.073, 95% CI 0.151-0.775, p<0.01 ).

  4. IDH1 R132H Mutation Is Accompanied with Malignant Progression of Paired Primary-Recurrent Astrocytic Tumours

    PubMed Central

    Mu, Luyan; Xu, Wanzhen; Li, Qingla; Ge, Haitao; Bao, Hongbo; Xia, Songsong; Ji, Jingjing; Jiang, Jie; Song, Yuwen; Gao, Qiang

    2017-01-01

    IDH1 R132H mutation is an important marker of survival in patients with gliomas. Although there are many changes of genes in tumour malignant progression, IDH1 R132H mutation status in glioma progression remained unclear. Here, an in-depth characterization of IDH1 R132H mutations were assessed by immunohistochemistry in 55 paired primary-recurrent astrocytomas tissues, including 5 paired primary pilocytic astrocytoma (pPA, WHO grade I), 35 paired primary low grade astrocytoma (pLGA, WHO grade II and III) and 15 paired primary high grade astrocytoma (pHGA/ Glioblastoma, WHO grade IV). Meanwhile, the DNA was isolated from paired samples, and PCR amplification was used for IDH1 exon4 sequencing. Nonparametric test, KM and Cox models were used to examine the statistical difference and survival function. We found that the percent of IDH1 R132H mutation was 68.6% (24/35) in pLGA group, but no IDH1 mutation was found in pPA and pHGA groups. Meanwhile, the results from immunohistochemistry and DNA sequencing showed that, compared with primary astrocytoma, there was no change of IDH1 status in recurrent astrocytoma whatever tumour pathological grade raise or indolent. The pPA group has the longest recurrence-free period (RFP) and overall survival (OS) in three groups (p<0.01), while the pHGA group has the shortest ones (p<0.01). In pLGA group, the IDH1 R132H mutation subgroup has longer RFP than IDH1 wild type subgroup (p<0.01), but the OS has no statistical difference between two subgroups (p>0.6). Additionally, IDH1 R132H mutation independently predicted a long RFP in patients with pLGA (HR 1.073, 95% CI 0.151-0.775, p<0.01). PMID:28928859

  5. Mismatch cleavage by single-strand specific nucleases

    PubMed Central

    Till, Bradley J.; Burtner, Chris; Comai, Luca; Henikoff, Steven

    2004-01-01

    We have investigated the ability of single-strand specific (sss) nucleases from different sources to cleave single base pair mismatches in heteroduplex DNA templates used for mutation and single-nucleotide polymorphism analysis. The TILLING (Targeting Induced Local Lesions IN Genomes) mismatch cleavage protocol was used with the LI-COR gel detection system to assay cleavage of amplified heteroduplexes derived from a variety of induced mutations and naturally occurring polymorphisms. We found that purified nucleases derived from celery (CEL I), mung bean sprouts and Aspergillus (S1) were able to specifically cleave nearly all single base pair mismatches tested. Optimal nicking of heteroduplexes for mismatch detection was achieved using higher pH, temperature and divalent cation conditions than are routinely used for digestion of single-stranded DNA. Surprisingly, crude plant extracts performed as well as the highly purified preparations for this application. These observations suggest that diverse members of the S1 family of sss nucleases act similarly in cleaving non-specifically at bulges in heteroduplexes, and single-base mismatches are the least accessible because they present the smallest single-stranded region for enzyme binding. We conclude that a variety of sss nucleases and extracts can be effectively used for high-throughput mutation and polymorphism discovery. PMID:15141034

  6. Mutagenesis of the lac promoter region in M13 mp10 phage DNA by 4'-hydroxymethyl-4,5',8-trimethylpsoralen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piette, J.; Decuyper-Debergh, D.; Gamper, H.

    Double-stranded M13 phage DNA (M13 mp10 replicative form) was photoreacted with 4'-hydroxymethyl-4,5',8-trimethylpsoralen, using light of wavelength greater than 320 nm or greater than 390 nm to generate predominantly crosslinks or monoadducts, respectively. The damaged DNAs were scored for inactivation and mutagenesis after transfection into Escherichia coli. The appearance of light-blue or colorless plaques on indicator medium showed that mutation had occurred in the lac insert of the viral DNA. A comparison of the consequences of the two phototreatments with psoralen supports the idea that crosslinks are both more lethal and more mutagenic than monoadducts. Numerous mutant clones partially or totallymore » deficient in beta-galactosidase were plaque-purified and amplified. The viral DNA of each clone was sequenced by the dideoxy chain-terminating procedure. All of the observed base-pair changes were mapped to the lac promoter region and consisted of 3 transition, 14 transversion, and 6 single base-pair frame-shift mutations. The predominant mutation was a T.A----G.C transversion.« less

  7. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms.

    PubMed

    Jibran, Rubina; Sullivan, Kerry L; Crowhurst, Ross; Erridge, Zoe A; Chagné, David; McLachlan, Andrew R G; Brummell, David A; Dijkwel, Paul P; Hunter, Donald A

    2015-11-01

    Stresses such as energy deprivation, wounding and water-supply disruption often contribute to rapid deterioration of harvested tissues. To uncover the genetic regulation behind such stresses, a simple assessment system was used to detect senescence mutants in conjunction with two rapid mapping techniques to identify the causal mutations. To demonstrate the power of this approach, immature inflorescences of Arabidopsis plants that contained ethyl methanesulfonate-induced lesions were detached and screened for altered timing of dark-induced senescence. Numerous mutant lines displaying accelerated or delayed timing of senescence relative to wild type were discovered. The underlying mutations in three of these were identified using High Resolution Melting analysis to map to a chromosomal arm followed by a whole-genome sequencing-based mapping method, termed 'Needle in the K-Stack', to identify the causal lesions. All three mutations were single base pair changes and occurred in the same gene, NON-YELLOW COLORING1 (NYC1), a chlorophyll b reductase of the short-chain dehydrogenase/reductase (SDR) superfamily. This was consistent with the mutants preferentially retaining chlorophyll b, although substantial amounts of chlorophyll b were still lost. The single base pair mutations disrupted NYC1 function by three distinct mechanisms, one by producing a termination codon, the second by interfering with correct intron splicing and the third by replacing a highly conserved proline with a non-equivalent serine residue. This non-synonymous amino acid change, which occurred in the NADPH binding domain of NYC1, is the first example of such a mutation in an SDR protein inhibiting a physiological response in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents.

    PubMed

    Nakano, Kota; Yamada, Yoko; Takahashi, Eizo; Arimoto, Sakae; Okamoto, Keinosuke; Negishi, Kazuo; Negishi, Tomoe

    2017-03-01

    Alkylating agents are known to induce the formation of O 6 -alkylguanine (O 6 -alkG) and O 4 -alkylthymine (O 4 -alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O 6 -methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O 6 -ethylguanine. However, the manner by which O 4 -alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O 4 -alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O 4 -alkT at AT base pairs. As expected, an O 6 -alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O 6 -alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O 4 -alkylthymine. We hypothesize that the MutS protein recognizes the O 4 -alkT:A base pair more efficiently than O 4 -alkT:G. Such a distinction would result in misincorporation of G at the O 4 -alkT site, followed by higher mutation frequencies in wild-type cells, which have MutS protein, compared to MMR-deficient strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Why the tautomerization of the G·C Watson-Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis.

    PubMed

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2014-01-01

    The ground-state tautomerization of the G·C Watson-Crick base pair by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ϵ = 4), corresponding to a hydrophobic interface of protein-nucleic acid interactions, using DFT and MP2 levels of quantum-mechanical (QM) theory and quantum theory "Atoms in molecules" (QTAIM). Based on the sweeps of the electron-topological, geometric, polar, and energetic parameters, which describe the course of the G·C ↔ G*·C* tautomerization (mutagenic tautomers of the G and C bases are marked with an asterisk) through the DPT along the intrinsic reaction coordinate (IRC), it was proved that it is, strictly speaking, a concerted asynchronous process both at the DFT and MP2 levels of theory, in which protons move with a small time gap in vacuum, while this time delay noticeably increases in the continuum with ϵ = 4. It was demonstrated using the conductor-like polarizable continuum model (CPCM) that the continuum with ϵ = 4 does not qualitatively affect the course of the tautomerization reaction. The DPT in the G·C Watson-Crick base pair occurs without any intermediates both in vacuum and in the continuum with ϵ = 4 at the DFT/MP2 levels of theory. The nine key points along the IRC of the G·C base pair tautomerization, which could be considered as electron-topological "fingerprints" of a concerted asynchronous process of the tautomerization via the DPT, have been identified and fully characterized. These key points have been used to define the reactant, transition state, and product regions of the DPT reaction in the G·C base pair. Analysis of the energetic characteristics of the H-bonds allows us to arrive at a definite conclusion that the middle N1H⋯N3/N3H⋯N1 and the lower N2H⋯O2/N2H⋯O2 parallel H-bonds in the G·C/G*·C* base pairs, respectively, are anticooperative, that is, the strengthening of the middle H-bond is accompanied by the weakening of the lower H-bond. At that point, the upper N4H⋯O6 and O6H⋯N4 H-bonds in the G·C and G*·C* base pairs, respectively, remain constant at the changes of the middle and the lower H-bonds at the beginning and at the ending of the G·C ↔ G*·C* tautomerization. Aiming to answer the question posed in the title of the article, we established that the G*·C* Löwdin's base pair satisfies all the requirements necessary to cause point mutations in DNA except its lifetime, which is much less than the period of time required for the replication machinery to forcibly dissociate a base pair into the monomers (several ns) during DNA replication. So, from the physicochemical point of view, the G*·C* Löwdin's base pair cannot be considered as a source of point mutations arising during DNA replication.

  10. Seventeen {alpha}-hydroxylase deficiency with one base pair deletion of the cytochrome P450c17 (CYP17) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshiro, Chikara; Takasu, Nobuyuki; Wakugami, Tamio

    1995-08-01

    Mutation of the cytochrome P450c17 (CYP17) gene causes 17{alpha}-hydroxylase deficiency (170HD). Recently, several researchers have elucidated the molecular basis of 170HD by gene analysis. We experienced a case of 170HD and intended to reveal the abnormality of the CYP17 gene in this Japanese female with 170HD. Leukocytes were obtained from the patient, her mother and sister, and normal control subjects. We amplified the CYP17 gene using polymerase chain reaction and performed the sequence analysis using the dideoxy terminator method and restriction enzyme analysis. We found that the patient had one base-pair deletion at the position of amino acid 438. Anmore » indentical result was obtained with restriction enzyme analysis. This G deletion altered the reading frame and resulted in a premature stop codon at position 443; the ligand of heme iron (Cys: cystine 442) was absent. This small mutation may account for the patient`s clinical manifestations of 170HD. This is the first case of 170HD with only one base pair deletion of the CYP17 gene. 18 refs., 3 figs.« less

  11. Mutational analysis of BRAF and KRAS in ovarian serous borderline (atypical proliferative) tumours and associated peritoneal implants

    PubMed Central

    Ardighieri, Laura; Zeppernick, Felix; Hannibal, Charlotte G; Vang, Russell; Cope, Leslie; Junge, Jette; Kjaer, Susanne K; Kurman, Robert J; Shih, Ie-Ming

    2014-01-01

    There is debate as to whether peritoneal implants associated with serous borderline tumours/atypical proliferative serous tumours (SBT/APSTs) of the ovary are derived from the primary ovarian tumour or arise independently in the peritoneum. We analysed 57 SBT/APSTs from 45 patients with advanced-stage disease identified from a nation-wide tumour registry in Denmark. Mutational analysis for hotspots in KRAS and BRAF was successful in 55 APSTs and demonstrated KRAS mutations in 34 (61.8%) and BRAF mutations in eight (14.5%). Mutational analysis was successful in 56 peritoneal implants and revealed KRAS mutations in 34 (60.7%) and BRAF mutations in seven (12.5%). Mutational analysis could not be performed in two primary tumours and in nine implants, either because DNA amplification failed or because there was insufficient tissue for mutational analysis. For these specimens we performed VE1 immunohistochemistry, which was shown to be a specific and sensitive surrogate marker for a V600E BRAF mutation. VE1 staining was positive in one of two APSTs and seven of nine implants. Thus, among 63 implants for which mutation status was known (either by direct mutational analysis or by VE1 immunohistochemistry), 34 (53.9%) had KRAS mutations and 14 (22%) had BRAF mutations, of which identical KRAS mutations were found in 34 (91%) of 37 SBT/APST–implant pairs and identical BRAF mutations in 14 (100%) of 14 SBT/APST–implant pairs. Wild-type KRAS and BRAF (at the loci investigated) were found in 11 (100%) of 11 SBT/APST–implant pairs. Overall concordance of KRAS and BRAF mutations was 95% in 59 of 62 SBT/APST–implant (non-invasive and invasive) pairs (p < 0.00001). This study provides cogent evidence that the vast majority of peritoneal implants, non-invasive and invasive, harbour the identical KRAS or BRAF mutations that are present in the associated SBT/APST, supporting the view that peritoneal implants are derived from the primary ovarian tumour. PMID:24307542

  12. A new model for biological effects of radiation and the driven force of molecular evolution

    NASA Astrophysics Data System (ADS)

    Wada, Takahiro; Manabe, Yuichiro; Nakajima, Hiroo; Tsunoyama, Yuichi; Bando, Masako

    We proposed a new mathematical model to estimate biological effects of radiation, which we call Whack-A-Mole (WAM) model. A special feature of WAM model is that it involves the dose rate of radiation as a key ingredient. We succeeded to reproduce the experimental data of various species concerning the radiation induced mutation frequencies. From the analysis of the mega-mouse experiments, we obtained the mutation rate per base-pair per year for mice which is consistent with the so-called molecular clock in evolution genetics, 10-9 mutation/base-pair/year. Another important quantity is the equivalent dose rate for the whole spontaneous mutation, deff. The value of deff for mice is 1.1*10-3 Gy/hour which is much larger than the dose rate of natural radiation (10- (6 - 7) Gy/hour) by several orders of magnitude. We also analyzed Drosophila data and obtained essentially the same numbers. This clearly indicates that the natural radiation is not the dominant driving force of the molecular evolution, but we should look for other factors, such as miscopy of DNA in duplication process. We believe this is the first quantitative proof of the small contribution of the natural radiation in the molecular evolution.

  13. Transcriptomic analysis and mutational status of IDH1 in paired primary-recurrent intrahepatic cholangiocarcinoma.

    PubMed

    Peraldo-Neia, C; Ostano, P; Cavalloni, G; Pignochino, Y; Sangiolo, D; De Cecco, L; Marchesi, E; Ribero, D; Scarpa, A; De Rose, A M; Giuliani, A; Calise, F; Raggi, C; Invernizzi, P; Aglietta, M; Chiorino, G; Leone, F

    2018-06-05

    Effective target therapies for intrahepatic cholangiocarcinoma (ICC) have not been identified so far. One of the reasons may be the genetic evolution from primary (PR) to recurrent (REC) tumors. We aim to identify peculiar characteristics and to select potential targets specific for recurrent tumors. Eighteen ICC paired PR and REC tumors were collected from 5 Italian Centers. Eleven pairs were analyzed for gene expression profiling and 16 for mutational status of IDH1. For one pair, deep mutational analysis by Next Generation Sequencing was also carried out. An independent cohort of patients was used for validation. Two class-paired comparison yielded 315 differentially expressed genes between REC and PR tumors. Up-regulated genes in RECs are involved in RNA/DNA processing, cell cycle, epithelial to mesenchymal transition (EMT), resistance to apoptosis, and cytoskeleton remodeling. Down-regulated genes participate to epithelial cell differentiation, proteolysis, apoptotic, immune response, and inflammatory processes. A 24 gene signature is able to discriminate RECs from PRs in an independent cohort; FANCG is statistically associated with survival in the chol-TCGA dataset. IDH1 was mutated in the RECs of five patients; 4 of them displayed the mutation only in RECs. Deep sequencing performed in one patient confirmed the IDH1 mutation in REC. RECs are enriched for genes involved in EMT, resistance to apoptosis, and cytoskeleton remodeling. Key players of these pathways might be considered druggable targets in RECs. IDH1 is mutated in 30% of RECs, becoming both a marker of progression and a target for therapy.

  14. Identification of a novel mutation in the paired domain of PAX3 in an Iranian family with waardenburg syndrome type I.

    PubMed

    Sotirova, V N; Rezaie, T M; Khoshsorour, M M; Sarfarazi, M

    2000-03-01

    Waardenburg syndrome Type I (WS1) is an autosomal dominant disorder that has previously been associated with mutations in the PAX3 gene on the 2q35 region. In this study, we used an Iranian WS1 family with seven affected individuals in three generations. The phenotypic characteristics of the family include sensorineural deafness, dystopia canthorum, hypopigmented skin patches of the upper limbs, congenital white forelock, confluent white eyebrows, nonpigmented iris, poliosis, and hypopigmentation of the retina. Herein, we report a previously unidentified single-base substitution in exon II (C-->T at position 218) that results in a change of serine to leucine (S73L) in this family. This change was not observed in 100 chromosomes of healthy unrelated individuals. This mutation is within the PAX3 paired domain region, a structure that is highly conserved and implicated in DNA binding. This is the first identification of a PAX3 mutation for this phenotype in the Iranian population. This also provides additional confirmation for the involvement of this gene in the etiology of WS1.

  15. Hidden in Plain Sight: Subtle Effects of the 8-Oxoguanine Lesion on the Structure, Dynamics, and Thermodynamics of a 15-Base-Pair Oligodeoxynucleotide Duplex†

    PubMed Central

    Crenshaw, Charisse M.; Wade, Jacqueline E.; Arthanari, Haribabu; Frueh, Dominique; Lane, Benjamin F.; Núñez, Megan E.

    2011-01-01

    The base lesion 8-oxoguanine is formed readily by oxidation of DNA, potentially leading to G→T transversion mutations. Despite the apparent similarity of 8-oxoguanine-cytosine base pairs to normal guanine-cytosine base pairs, cellular base excision repair systems effectively recognize the lesion base. Here we apply several techniques to examine a single 8-oxoguanine lesion at the center of a nonpalindromic 15-mer duplex oligonucleotide in an effort to determine what, if anything, distinguishes an 8-oxoguanine-cytosine base pair from a normal base pair. The lesion duplex is globally almost indistinguishable from the unmodified parent duplex using CD spectroscopy and UV melting thermodynamics. The DNA mismatch-detecting photocleavage agent Rh(bpy)2chrysi3+ cleaves only weakly and nonspecifically, revealing that the 8oxoG-C pair is locally stable at the level of the individual base pairs. NMR spectra are also consistent with a well-conserved B-form duplex structure. In the 2D NOESY spectra, base-sugar and imino-imino crosspeaks are strikingly similar between parent and lesion duplexes. Changes in chemical shift due to the 8oxoG lesion are localized to its complementary cytosine and to the 2–3 base pairs immediately flanking the lesion on the lesion strand. Residues further removed from the lesion are shown to be unperturbed by its presence. Notably, imino exchange experiments indicate that the 8-oxoguanine-cytosine pair is strong and stable, with an apparent equilibrium constant for opening equal to that of other internal guanine-cytosine base pairs, on the order of 10−6. This collection of experiments shows that the 8-oxoguanine-cytosine base pair is incredibly stable and similar to the native pair. PMID:21902242

  16. Characterization of a Chlamydomonas Insertional Mutant that Disrupts Flagellar Central Pair Microtubule-associated Structures

    PubMed Central

    Mitchell, David R.; Sale, Winfield S.

    1999-01-01

    Two alleles at a new locus, central pair–associated complex 1 (CPC1), were selected in a screen for Chlamydomonas flagellar motility mutations. These mutations disrupt structures associated with central pair microtubules and reduce flagellar beat frequency, but do not prevent changes in flagellar activity associated with either photophobic responses or phototactic accumulation of live cells. Comparison of cpc1 and pf6 axonemes shows that cpc1 affects a row of projections along C1 microtubules distinct from those missing in pf6, and a row of thin fibers that form an arc between the two central pair microtubules. Electron microscopic images of the central pair in axonemes from radial spoke–defective strains reveal previously undescribed central pair structures, including projections extending laterally toward radial spoke heads, and a diagonal link between the C2 microtubule and the cpc1 projection. By SDS-PAGE, cpc1 axonemes show reductions of 350-, 265-, and 79-kD proteins. When extracted from wild-type axonemes, these three proteins cosediment on sucrose gradients with three other central pair proteins (135, 125, and 56 kD) in a 16S complex. Characterization of cpc1 provides new insights into the structure and biochemistry of the central pair apparatus, and into its function as a regulator of dynein-based motility. PMID:9922455

  17. Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903.

    PubMed Central

    Grindley, N D; Joyce, C M

    1980-01-01

    The kanamycin resistance transposon Tn903 consists of a unique region of about 1000 base pairs bounded by a pair of 1050-base-pair inverted repeat sequences. Each repeat contains two Pvu II endonuclease cleavage sites separated by 520 base pairs. We have constructed derivatives of Tn903 in which this 520-base-pair fragment is deleted from one or both repeats. Those derivatives that lack both 520-base-pair fragments cannot transpose, whereas those that lack just one remain transposition proficient. One such transposable derivative, Tn903 delta I, has been selected for further study. We have determined the sequence of the intact inverted repeat. The 18 base pairs at each end are identical and inverted relative to one another, a structure characteristic of insertion sequences. Additional experiments indicate that a single inverted repeat from Tn903 can, in fact, transpose; we propose that this element be called IS903. To correlate the DNA sequence with genetic activities, we have created mutations by inserting a 10-base-pair DNA fragment at several sites within the intact repeat of Tn903 delta 1, and we have examined the effect of such insertions on transposability. The results suggest that IS903 encodes a 307-amino-acid polypeptide (a "transposase") that is absolutely required for transposition of IS903 or Tn903. Images PMID:6261245

  18. Intronic deletions in the SLC34A3 gene: A cautionary tale for mutation analysis of hereditary hypophosphatemic rickets with hypercalciuria

    PubMed Central

    Ichikawa, Shoji; Tuchman, Shamir; Padgett, Leah R.; Gray, Amie K.; Baluarte, H. Jorge; Econs, Michael J.

    2013-01-01

    Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder, characterized by hypophosphatemia, variable degrees of rickets/osteomalacia, and hypercalciuria secondary to increased serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels. HHRH is caused by mutations in the SLC34A3 gene, which encodes sodium-phosphate co-transporter type IIc. A 6 ½-year-old female presented with a history of nephrolithiasis. Her metabolic evaluation revealed increased 24- hour urine calcium excretion with high serum calcium, low intact parathyroid hormone (PTH) levels, and elevated 1,25(OH)2D level. In addition, the patient had low to low-normal serum phosphorus with high urine phosphorus. The patient had normal stature; without rachitic or boney deformities or a history of fractures. Genetic analysis of SLC34A3 revealed the patient to be a compound heterozygote for a novel single base pair deletion in exon 12 (c.1304delG) and 30-base pair deletion in intron 6 (g.1440–1469del). The single-base pair mutation causes a frameshift, which results in premature stop codon. The intronic deletion is likely caused by misalignment of the 4-basepair homologous repeats and results in the truncation of an already small intron to 63 bp, which would impair proper RNA splicing of the intron. This is the fourth unique intronic deletion identified in patients with HHRH, suggesting the frequent occurrence of sequence misalignments in SLC34A3 and the importance of screening introns in patients with HHRH. PMID:24176905

  19. Intronic deletions in the SLC34A3 gene: a cautionary tale for mutation analysis of hereditary hypophosphatemic rickets with hypercalciuria.

    PubMed

    Ichikawa, Shoji; Tuchman, Shamir; Padgett, Leah R; Gray, Amie K; Baluarte, H Jorge; Econs, Michael J

    2014-02-01

    Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder, characterized by hypophosphatemia, variable degrees of rickets/osteomalacia, and hypercalciuria secondary to increased serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels. HHRH is caused by mutations in the SLC34A3 gene, which encodes sodium-phosphate co-transporter type IIc. A 6-1/2-year-old female presented with a history of nephrolithiasis. Her metabolic evaluation revealed increased 24-hour urine calcium excretion with high serum calcium, low intact parathyroid hormone (PTH), and elevated 1,25(OH)2D. In addition, the patient had low to low-normal serum phosphorus with high urine phosphorus. The patient had normal stature; without rachitic or boney deformities or a history of fractures. Genetic analysis of SLC34A3 revealed the patient to be a compound heterozygote for a novel single base pair deletion in exon 12 (c.1304delG) and 30-base pair deletion in intron 6 (g.1440-1469del). The single-base pair mutation causes a frameshift, which results in premature stop codon. The intronic deletion is likely caused by misalignment of the 4-basepair homologous repeats and results in the truncation of an already small intron to 63bp, which would impair proper RNA splicing of the intron. This is the fourth unique intronic deletion identified in patients with HHRH, suggesting the frequent occurrence of sequence misalignments in SLC34A3 and the importance of screening introns in patients with HHRH. © 2013.

  20. Spectrum of cisplatin-induced mutations in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnouf, D.; Duane, M.; Fuchs, R.P.

    1987-06-01

    Using a forward-mutation assay based on the inactivation of the tetracycline-resistance gene located on plasmid pBR322, we have determined the mutation spectrum induced in Escherichia coli by cisplatin (cis-diamminedichloroplatinum(II)), a widely used antitumor drug. Cisplatin is known to form mainly intrastrand diadducts at ApG and GpG sites. We found that cisplatin efficiently induces mutations in an SOS-dependent way (i.e., dependent upon UV irradiation of the host bacteria). More than 90% of the mutations are single-base-pair substitutions occurring at the potential sites of cisplatin adducts (ApG and GpG). Taking into account the relative proportions of ApG and GpG adducts, we foundmore » that the ApG adducts are at least 5 times more mutagenic than the GpG adducts. Moreover, a strong mutation specificity was seen at the 5' side of the ApG adducts (A X T----T X A transversions). The observation that most mutations occur at the 5' end of the adduct at both ApG and GpG sites is discussed in relation to recent structural data.« less

  1. [Clinical and genetic study of Wilson's disease in affected twins and siblings].

    PubMed

    Cheng, Nan; Wang, Xun; Yu, Xuen; Zhou, Zhihua; Gao, Mingwei; Rao, Rao; Hu, Jiyuan; Yang, Renmin; Han, Yongzhu

    2013-06-01

    To study the clinical and genetic characteristics of twins and siblings affected with Wilson's disease (WD). Clinical data and blood samples were collected from the subjects after informed consent was obtained. Genomic DNA was extracted and potential mutations in the exons in ATP7B gene were detected with PCR-DNA sequencing. Short tandem repeat (STR) genotyping was performed to determine the zygosity of the twins. The 5 pairs of twins have all met the diagnostic criteria for WD. STR genotyping has confirmed that 4 pairs were monozygotic twins. 3 pairs of twins had an onset with liver symptoms, the other 2 had an onset with brain symptoms. ATP7B gene mutations were detected in 4 pairs of twins, which have all located in exons 8 and 13. A heterozygous p.R778W mutation in exon 8 and homozygous p.P992L mutation in exon 13 were detected in all patients from one family, whose parents have carried a heterozygous p.R778W mutation and p.P992L heterozygous mutation, respectively, which suggested loss of heterozygosity (LOH). In one family, no mutation was detected in all exons of the ATP7B gene in the patients and their parents. For a triplet, one female was with definite WD and brain symptoms at the onset, one male had subclinical type with WD, whilst another female was completely normal. The triplets and their mother have all carried a p.P992L heterozygous mutation . Above results have confirmed an important role for genetic factors in the pathogenesis of WD. In addition to point mutations, LOH is also involved in the pathogenesis for WD.

  2. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.

    PubMed

    Millen, Andrea L; Churchill, Cassandra D M; Manderville, Richard A; Wetmore, Stacey D

    2010-10-14

    Bulky DNA addition products (adducts) formed through attack at the C8 site of guanine can adopt the syn orientation about the glycosidic bond due to changes in conformational stability or hydrogen-bonding preferences directly arising from the bulky group. Indeed, the bulky substituent may improve the stability of (non-native) Hoogsteen pairs. Therefore, such adducts often result in mutations upon DNA replication. This work examines the hydrogen-bonded pairs between the Watson-Crick and Hoogsteen faces of the ortho or para C8-phenoxyl-2'-deoxyguanosine adduct and each natural (undamaged) nucleobase with the goal to clarify the conformational preference of this type of damage, as well as provide insight into the likelihood of subsequent mutation events. B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) hydrogen-bond strengths were determined using both nucleobase and nucleoside models for adduct pairs, as well as the corresponding complexes involving natural 2'-deoxyguanosine. In addition to the magnitude of the binding strengths, the R(C1'···C1') distances and ∠(N9C1'C1') angles, as well as the degree of propeller-twist and buckle distortions, were carefully compared to the values observed in natural DNA strands. Due to structural changes in the adduct monomer upon inclusion of the sugar moiety, the monomer deformation energy significantly affects the relative hydrogen-bond strengths calculated with the nucleobase and nucleoside models. Therefore, we recommend the use of at least a nucleoside model to accurately evaluate hydrogen-bond strengths of base pairs involving flexible, bulky nucleobase adducts. Our results also emphasize the importance of considering both the magnitude of the hydrogen-bond strength and the structure of the base pair when predicting the preferential binding patterns of nucleobases. Using our best models, we conclude that the Watson-Crick face of the ortho phenoxyl adduct forms significantly more stable complexes than the Hoogsteen face, which implies that the anti orientation of the damaged base will be favored by hydrogen bonding in DNA helices. Additionally, regardless of the hydrogen-bonding face involved, cytosine forms the most stable base pair with the ortho adduct, which implies that misincorporation due to this type of damage is unlikely. Similarly, cytosine is the preferred binding partner for the Watson-Crick face of the para adduct. However, Hoogsteen interactions with the para adduct are stronger than those with natural 2'-deoxyguanosine or the ortho adduct, and this form of damage binds with nearly equal stability to both cytosine and guanine in the Hoogsteen orientation. Therefore, the para adduct may adopt multiple orientations in DNA helices and potentially cause mutations by forming pairs with different natural bases. Models of oligonucleotide duplexes must be used in future work to further evaluate other factors (stacking, major groove contacts) that may influence the conformation and binding preference of these adducts in DNA helices.

  3. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.

    PubMed

    Csaszar, K; Spacková, N; Stefl, R; Sponer, J; Leontis, N B

    2001-11-09

    Molecular dynamics simulations of the frame-shifting pseudoknot from beet western yellows virus (BWYV, NDB file UR0004) were performed with explicit inclusion of solvent and counterions. In all, 33 ns of simulation were carried out, including 10 ns of the native structure with protonation of the crucial cytosine residue, C8(N3+). The native structure exhibited stable trajectories retaining all Watson-Crick and tertiary base-pairs, except for fluctuations or transient disruptions at specific sites. The most significant fluctuations involved the change or disruption of hydrogen-bonding between C8(N3+) and bases G12, A25, and C26, as well as disruption of the water bridges linking C8(N3+) with A25 and C26. To increase sampling of rare events, the native simulation was continued at 400 K. A partial, irreversible unfolding of the molecule was initiated by slippage of C8(N3+) relative to G12 and continued by sudden concerted changes in hydrogen-bonding involving A23, A24, and A25. These events were followed by a gradual loss of stacking interactions in loop 2. Of the Watson-Crick base-pairs, only the 5'-terminal pair of stem 1 dissociated at 400 K, while the trans sugar-edge/sugar-edge A20.G4 interaction remained surprisingly stable. Four additional room-temperature simulations were carried out to obtain insights into the structural and dynamic effects of selected mutations. In two of these, C8 was left unprotonated. Considerable local rearrangements occurred that were not observed in the crystal structure, thus confirming N3-protonation of C8 in the native molecule. We also investigated the effect of mutating C8(N3+) to U8, to correlate with experimental and phylogenetic studies, and of changing the G4 x C17 base-pair to A4 x U17 to weaken the trans sugar-edge interaction between positions 4 and 20 and to test models of unfolding. The simulations indicate that the C8 x G12 x C26 base-triple at the junction is the most labile region of the frame-shifting pseudoknot. They provide insights into the roles of the other non-Watson-Crick base-pairs in the early stages of unfolding of the pseudoknot, which must occur to allow readthrough of the message by the ribosome. The simulations revealed several critical, highly ordered hydration sites with close to 100 % occupancies and residency times of individual water molecules of up to 5 ns. Sodium cation coordination sites with occupancies above 50 % were also observed. Copyright 2001 Academic Press.

  4. Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins.

    PubMed

    Gopalappa, Ramu; Song, Myungjae; Chandrasekaran, Arun Pandian; Das, Soumyadip; Haq, Saba; Koh, Hyun Chul; Ramakrishna, Suresh

    2018-05-31

    Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.

  5. Small-scale high-throughput sequencing-based identification of new therapeutic tools in cystic fibrosis.

    PubMed

    Bonini, Jennifer; Varilh, Jessica; Raynal, Caroline; Thèze, Corinne; Beyne, Emmanuelle; Audrezet, Marie-Pierre; Ferec, Claude; Bienvenu, Thierry; Girodon, Emmanuelle; Tuffery-Giraud, Sylvie; Des Georges, Marie; Claustres, Mireille; Taulan-Cadars, Magali

    2015-10-01

    Although 97-99% of CFTR mutations have been identified, great efforts must be made to detect yet-unidentified mutations. We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified. Using an in-house bioinformatics pipeline, we could rapidly identify a second disease-causing CFTR mutation for 16 of 18 samples. Of them, c.1680-883A>G was found in three unrelated CF patients. Analysis of minigenes and patients' transcripts showed that this mutation results in aberrantly spliced transcripts because of the inclusion of a pseudoexon. It is located only three base pairs from the c.1680-886A>G mutation (1811+1.6kbA>G), the fourth most frequent mutation in southwestern Europe. We next tested the effect of antisense oligonucleotides targeting splice sites on these two mutations on pseudoexon skipping. Oligonucleotide transfection resulted in the restoration of the full-length, in-frame CFTR transcript, demonstrating the effect of antisense oligonucleotide-induced pseudoexon skipping in CF. Our data confirm the importance of analyzing noncoding regions to find unidentified mutations, which is essential to designing targeted therapeutic approaches.

  6. Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture.

    PubMed

    Lacroix-Labonté, Julie; Girard, Nicolas; Lemieux, Sébastien; Legault, Pascale

    2012-03-01

    Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.

  7. Operation of the PAVE PAWS Radar System at Beale Air Force Base, California. Part 2. Public Comment & AF Response.

    DTIC Science & Technology

    1980-07-01

    trip next month to Europe , and when I come back. It’s for this reason that I was not able to have it all typed and prepared, and the Air Force was...millimeter of culture medium. A mutational event such as a change in a single base pair in the bacterial DNA, which is impossible to detect by standard...100) bacteria, a rare single mutation event with a probability of say I in 100,000,000, the probability of 10-8, will thus be amplified by a factor of

  8. Mutation spectrum of β-globin gene in thalassemia patients at Hasan Sadikin Hospital - West Java Indonesia.

    PubMed

    Maskoen, Ani Melani; Rahayu, Nurul S; Reniarti, Lelani; Susanah, Susi; Laksono, Bremmy; Fauziah, Prima Nanda; Zada, Almira; Hidayat, Dadang S

    2017-12-30

    Thalassemia is the most common hereditary haemolytic anemia in Southeast Asia, in which Indonesia is among countries that are at a high risk for thalassemia. It has been reported that mutation in the beta-globin gene is responsible in severe Thalassemia. However, the spectrum of beta-globin gene mutations in Indonesian population varies in different regions . Thus, this study aimed to identify the most prevalent mutation of Thalassemia patients from the Hasan Sadikin Hospital, Bandung, using this as a reference hospital for Thalassemia in West Java. The three most prevalent mutations of beta globin (IVS1nt5, Cd26 (HbE), and IVS1nt1), were conducted in the beginning of this study. Mutations of 291 samples were detected by PCR-RFLP in the Molecular Genetic Laboratory, Faculty of Medicine Universitas Padjadjaran, Bandung. The prevalence of the beta globin gene mutation types were 47.4% IVS1nt5 homozygote, 9.9% compound heterozygote IVS1nt5/HbE, 5.4% compound heterozygote IVS1nt5/IVS1nt1, 1.4% compound heterozygote HbE/IVS1nt1, 1% HbE homozygote, 14.4% Compound heterzygote IVS1nt5/… (no paired mutation), 2.06% compound heterozygote HbE/… (no paired mutation), 1.3% compound heterozygote IVS1nt1/… (no paired mutation), and 7 samples were unidentified. The thalassemia mutation IVS1nt5 homozygote is the most common mutation found in Thalassemia patients at Hasan Sadikin Hospital, Bandung. The samples with unidentified results might carry mutations other than the three that are observed in the present study.

  9. Mutation covariation of HIV-1 CRF07_BC reverse transcriptase during antiretroviral therapy.

    PubMed

    Li, Zhenpeng; Huang, Yang; Ouyang, Yabo; Xing, Hui; Liao, Lingjie; Jiang, Shibo; Shao, Yiming; Ma, Liying

    2013-11-01

    To understand the effect of HIV-1 drug resistance mutations in the context of antiretroviral therapy (ART), we compared the prevalence of protease (PR) and reverse transcriptase (RT) mutations in HIV-1 CRF07_BC sequences from blood samples of treatment-naive and ART-treated patients. Mutation covariation in the RT and PR of HIV-1 CRF07_BC viruses from 542 treatment-naive patients and 261 patients treated with lamivudine/zidovudine/nevirapine or lamivudine/zidovudine/efavirenz was analysed. Stratified networks were used to display the mutation covariation. Based on the comparison between treatment-naive and ART-treated patients, three types of featured mutations for RT and PR were initially identified: treatment-associated mutations, treatment-agonistic mutations and overlapping polymorphisms. Twelve significant covariation pairs were found between five treatment-associated mutations (K103N, M184V, Q197K, G190A and Y181C) and nine overlapping polymorphisms (A36E, D39N, Y121H, D123E, R135I, T200A, R277K, L283I and D291E). Meanwhile, three covariation pairs between three treatment-associated mutations (I132L and M184V for RT and I15V for PR) and three overlapping polymorphisms (L10I, L36M and A71V) for PR were also detected. Finally, the overlapping polymorphisms for RT and PR were both found to have significant correlations with treatment-associated mutations, indicating a possible association between polymorphisms and drug resistance. When compared with HIV-1 subtype B under the same regimens as CRF07_BC, the mutation covariations of CRF07_BC showed a distinct pattern of RT and PR mutation covariation. The role of polymorphisms in the development of drug resistance has been widely reported. Here, we found a significant correlation between overlapping polymorphisms for RT and PR and treatment-associated mutations, indicating that polymorphisms exert a global influence on treatment-associated mutations. Polymorphism mutations might therefore be considered before initiating ART to improve the efficacy of drug combinations.

  10. Myoclonus epilepsy, retinitis pigmentosa, leukoencephalopathy and cerebral calcifications associated with a novel m.5513G>A mutation in the MT-TW gene.

    PubMed

    Cardaioli, Elena; Mignarri, Andrea; Cantisani, Teresa Anna; Malandrini, Alessandro; Nesti, Claudia; Rubegni, Anna; Funel, Niccola; Federico, Antonio; Santorelli, Filippo Maria; Dotti, Maria Teresa

    2018-06-02

    We sequenced the mitochondrial genome from a 40-year-old woman with myoclonus epilepsy, retinitis pigmentosa, leukoencephalopathy and cerebral calcifications. Histological and biochemical features of mitochondrial respiratory chain dysfunction were present. Direct sequencing showed a novel heteroplasmic mutation at nucleotide 5513 in the MT-TW gene that encodes tRNA Trp . Restriction Fragment Length Polymorphism analysis confirmed that about 80% of muscle mtDNA harboured the mutation while it was present in minor percentages in mtDNA from other tissues. The mutation is predicted to disrupt a highly conserved base pair within the aminoacyl acceptor stem of the tRNA. This is the 17° mutation in MT-TW gene and expands the known causes of late-onset mitochondrial diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Interspecific Tests of Allelism Reveal the Evolutionary Timing and Pattern of Accumulation of Reproductive Isolation Mutations

    PubMed Central

    Sherman, Natasha A.; Victorine, Anna; Wang, Richard J.; Moyle, Leonie C.

    2014-01-01

    Despite extensive theory, little is known about the empirical accumulation and evolutionary timing of mutations that contribute to speciation. Here we combined QTL (Quantitative Trait Loci) analyses of reproductive isolation, with information on species evolutionary relationships, to reconstruct the order and timing of mutations contributing to reproductive isolation between three plant (Solanum) species. To evaluate whether reproductive isolation QTL that appear to coincide in more than one species pair are homologous, we used cross-specific tests of allelism and found evidence for both homologous and lineage-specific (non-homologous) alleles at these co-localized loci. These data, along with isolation QTL unique to single species pairs, indicate that >85% of isolation-causing mutations arose later in the history of divergence between species. Phylogenetically explicit analyses of these data support non-linear models of accumulation of hybrid incompatibility, although the specific best-fit model differs between seed (pairwise interactions) and pollen (multi-locus interactions) sterility traits. Our findings corroborate theory that predicts an acceleration (‘snowballing’) in the accumulation of isolation loci as lineages progressively diverge, and suggest different underlying genetic bases for pollen versus seed sterility. Pollen sterility in particular appears to be due to complex genetic interactions, and we show this is consistent with a snowball model where later arising mutations are more likely to be involved in pairwise or multi-locus interactions that specifically involve ancestral alleles, compared to earlier arising mutations. PMID:25211473

  12. A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination.

    PubMed

    Martomo, Stella A; Yang, William W; Gearhart, Patricia J

    2004-07-05

    Somatic hypermutation is initiated by activation-induced cytidine deaminase (AID), and occurs in several kilobases of DNA around rearranged immunoglobulin variable (V) genes and switch (S) sites before constant genes. AID deaminates cytosine to uracil, which can produce mutations of C:G nucleotide pairs, and the mismatch repair protein Msh2 participates in generating substitutions of downstream A:T pairs. Msh2 is always found as a heterodimer with either Msh3 or Msh6, so it is important to know which one is involved. Therefore, we sequenced V and S regions from Msh3- and Msh6-deficient mice and compared mutations to those from wild-type mice. Msh6-deficient mice had fewer substitutions of A and T bases in both regions and reduced heavy chain class switching, whereas Msh3-deficient mice had normal antibody responses. This establishes a role for the Msh2-Msh6 heterodimer in hypermutation and switch recombination. When the positions of mutation were mapped, several focused peaks were found in Msh6(-/-) clones, whereas mutations were dispersed in Msh3(-/-) and wild-type clones. The peaks occurred at either G or C in WGCW motifs (W = A or T), indicating that C was mutated on both DNA strands. This suggests that AID has limited entry points into V and S regions in vivo, and subsequent mutation requires Msh2-Msh6 and DNA polymerase.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xu-Qian; Liu, Xiang-Fan; Yao, Ling

    Highlights: •A novel FAK splicing mutation identified in breast tumor. •FAK-Del33 mutation promotes cell migration and invasion. •FAK-Del33 mutation regulates FAK/Src signal pathway. -- Abstract: Focal adhesion kinase (FAK) regulates cell adhesion, migration, proliferation, and survival. We identified a novel splicing mutant, FAK-Del33 (exon 33 deletion, KF437463), in both breast and thyroid cancers through colony sequencing. Considering the low proportion of mutant transcripts in samples, this mutation was detected by TaqMan-MGB probes based qPCR. In total, three in 21 paired breast tissues were identified with the FAK-Del33 mutation, and no mutations were found in the corresponding normal tissues. When introducedmore » into a breast cell line through lentivirus infection, FAK-Del33 regulated cell motility and migration based on a wound healing assay. We demonstrated that the expression of Tyr397 (main auto-phosphorylation of FAK) was strongly increased in FAK-Del33 overexpressed breast tumor cells compared to wild-type following FAK/Src RTK signaling activation. These results suggest a novel and unique role of the FAK-Del33 mutation in FAK/Src signaling in breast cancer with significant implications for metastatic potential.« less

  14. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases

    PubMed Central

    Canard, Bruno

    2018-01-01

    Viral RNA-dependent RNA polymerases (RdRps) play a central role not only in viral replication, but also in the genetic evolution of viral RNAs. After binding to an RNA template and selecting 5′-triphosphate ribonucleosides, viral RdRps synthesize an RNA copy according to Watson-Crick base-pairing rules. The copy process sometimes deviates from both the base-pairing rules specified by the template and the natural ribose selectivity and, thus, the process is error-prone due to the intrinsic (in)fidelity of viral RdRps. These enzymes share a number of conserved amino-acid sequence strings, called motifs A–G, which can be defined from a structural and functional point-of-view. A co-relation is gradually emerging between mutations in these motifs and viral genome evolution or observed mutation rates. Here, we review our current knowledge on these motifs and their role on the structural and mechanistic basis of the fidelity of nucleotide selection and RNA synthesis by Flavivirus RdRps. PMID:29385764

  15. HER2 Amplification and HER2 Mutation Are Distinct Molecular Targets in Lung Cancers.

    PubMed

    Li, Bob T; Ross, Dara S; Aisner, Dara L; Chaft, Jamie E; Hsu, Meier; Kako, Severine L; Kris, Mark G; Varella-Garcia, Marileila; Arcila, Maria E

    2016-03-01

    Human epidermal growth factor receptor 2 gene (HER2 [also known as ERBB2]) alterations have been identified as oncogenic drivers and potential therapeutic targets in lung cancers. The molecular associations of HER2 gene amplification, mutation, and HER2 protein overexpression in lung cancers have not been distinctly defined. To explore these associations, Memorial Sloan Kettering Cancer Center and the University of Colorado combined their data on HER2 alterations in lung cancers. Tumor specimens from 175 patients with lung adenocarcinomas and no prior targeted therapy were evaluated for the presence of HER2 amplification and mutation and HER2 protein overexpression. Amplification was assessed by fluorescence in situ hybridization (FISH) and defined as an HER2-to-chromosome enumeration probe 17 ratio of at least 2.0. Mutation was assessed by fragment analysis, mass spectrometry genotyping, and Sanger sequencing. Overexpression was assessed by immunohistochemical (IHC) staining. The frequencies of HER2 amplification and mutation and HER2 overexpression were calculated and their overlap examined. HER2 amplification was detected by FISH in 5 of 175 cases (3%). HER2 mutation was detected in 4 of 148 specimens (3%), including three identical 12-base pair insertions (p.A775_G776insYVMA) and a 9-base pair insertion, all in exon 20. None of the HER2-mutant cases was amplified. HER2 overexpression (2+ or 3+) on IHC staining was not detected in the 25 specimens available for testing, and negative IHC staining correlated with the negative results according to FISH. HER2 mutations are not associated with HER2 amplification, thus suggesting a distinct entity and therapeutic target. HER2-positive lung cancer may not be an adequate term, and patient cohorts for the study of HER2-targeted agents should be defined by the specific HER2 alteration present. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  16. Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome.

    PubMed

    Ding, Yu; Xia, Bo-Hou; Zhang, Cai-Juan; Zhuo, Guang-Chao

    2018-02-05

    Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNA Leu(UUR) , whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNA Gln , furthermore, the A8343G mutation occurred at the very conserved position of tRNA Lys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this family, which shaded additional light into the pathophysiology of PCOS that were manifestated by mitochondrial dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Inherited Creutzfeldt-Jakob disease in a British family associated with a novel 144 base pair insertion of the prion protein gene.

    PubMed Central

    Nicholl, D; Windl, O; de Silva, R; Sawcer, S; Dempster, M; Ironside, J W; Estibeiro, J P; Yuill, G M; Lathe, R; Will, R G

    1995-01-01

    A case of familial Creutzfeldt-Jakob disease associated with a 144 base pair insertion in the open reading frame of the prion protein gene is described. Sequencing of the mutated allele showed an arrangement of six octapeptide repeats, distinct from that of a recently described British family with an insertion of similar size. Thirteen years previously the brother of the proband had died from "Huntington's disease", but re-examination of his neuropathology revealed spongiform encephalopathy and anti-prion protein immunocytochemistry gave a positive result. The independent evolution of at least two distinct pathological 144 base pair insertions in Britain is proposed. The importance of maintaining a high index of suspicion of inherited Creutzfeldt-Jakob disease in cases of familial neurodegenerative disease is stressed. Images PMID:7823070

  18. Impact of mutational profiles on response of primary oestrogen receptor-positive breast cancers to oestrogen deprivation.

    PubMed

    Gellert, Pascal; Segal, Corrinne V; Gao, Qiong; López-Knowles, Elena; Martin, Lesley-Ann; Dodson, Andrew; Li, Tiandao; Miller, Christopher A; Lu, Charles; Mardis, Elaine R; Gillman, Alexa; Morden, James; Graf, Manuela; Sidhu, Kally; Evans, Abigail; Shere, Michael; Holcombe, Christopher; McIntosh, Stuart A; Bundred, Nigel; Skene, Anthony; Maxwell, William; Robertson, John; Bliss, Judith M; Smith, Ian; Dowsett, Mitch

    2016-11-09

    Pre-surgical studies allow study of the relationship between mutations and response of oestrogen receptor-positive (ER+) breast cancer to aromatase inhibitors (AIs) but have been limited to small biopsies. Here in phase I of this study, we perform exome sequencing on baseline, surgical core-cuts and blood from 60 patients (40 AI treated, 20 controls). In poor responders (based on Ki67 change), we find significantly more somatic mutations than good responders. Subclones exclusive to baseline or surgical cores occur in ∼30% of tumours. In phase II, we combine targeted sequencing on another 28 treated patients with phase I. We find six genes frequently mutated: PIK3CA, TP53, CDH1, MLL3, ABCA13 and FLG with 71% concordance between paired cores. TP53 mutations are associated with poor response. We conclude that multiple biopsies are essential for confident mutational profiling of ER+ breast cancer and TP53 mutations are associated with resistance to oestrogen deprivation therapy.

  19. Genetic dissection of the consensus sequence for the class 2 and class 3 flagellar promoters

    PubMed Central

    Wozniak, Christopher E.; Hughes, Kelly T.

    2008-01-01

    Summary Computational searches for DNA binding sites often utilize consensus sequences. These search models make assumptions that the frequency of a base pair in an alignment relates to the base pair’s importance in binding and presume that base pairs contribute independently to the overall interaction with the DNA binding protein. These two assumptions have generally been found to be accurate for DNA binding sites. However, these assumptions are often not satisfied for promoters, which are involved in additional steps in transcription initiation after RNA polymerase has bound to the DNA. To test these assumptions for the flagellar regulatory hierarchy, class 2 and class 3 flagellar promoters were randomly mutagenized in Salmonella. Important positions were then saturated for mutagenesis and compared to scores calculated from the consensus sequence. Double mutants were constructed to determine how mutations combined for each promoter type. Mutations in the binding site for FlhD4C2, the activator of class 2 promoters, better satisfied the assumptions for the binding model than did mutations in the class 3 promoter, which is recognized by the σ28 transcription factor. These in vivo results indicate that the activator sites within flagellar promoters can be modeled using simple assumptions but that the DNA sequences recognized by the flagellar sigma factor require more complex models. PMID:18486950

  20. Muver, a computational framework for accurately calling accumulated mutations.

    PubMed

    Burkholder, Adam B; Lujan, Scott A; Lavender, Christopher A; Grimm, Sara A; Kunkel, Thomas A; Fargo, David C

    2018-05-09

    Identification of mutations from next-generation sequencing data typically requires a balance between sensitivity and accuracy. This is particularly true of DNA insertions and deletions (indels), that can impart significant phenotypic consequences on cells but are harder to call than substitution mutations from whole genome mutation accumulation experiments. To overcome these difficulties, we present muver, a computational framework that integrates established bioinformatics tools with novel analytical methods to generate mutation calls with the extremely low false positive rates and high sensitivity required for accurate mutation rate determination and comparison. Muver uses statistical comparison of ancestral and descendant allelic frequencies to identify variant loci and assigns genotypes with models that include per-sample assessments of sequencing errors by mutation type and repeat context. Muver identifies maximally parsimonious mutation pathways that connect these genotypes, differentiating potential allelic conversion events and delineating ambiguities in mutation location, type, and size. Benchmarking with a human gold standard father-son pair demonstrates muver's sensitivity and low false positive rates. In DNA mismatch repair (MMR) deficient Saccharomyces cerevisiae, muver detects multi-base deletions in homopolymers longer than the replicative polymerase footprint at rates greater than predicted for sequential single-base deletions, implying a novel multi-repeat-unit slippage mechanism. Benchmarking results demonstrate the high accuracy and sensitivity achieved with muver, particularly for indels, relative to available tools. Applied to an MMR-deficient Saccharomyces cerevisiae system, muver mutation calls facilitate mechanistic insights into DNA replication fidelity.

  1. Sequence analysis of laci mutations obtained from lung cells of radon-exposed big blue{trademark} transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, A.D.; Cross, F.T.; Steigler, G.L.

    1994-12-31

    We have exposed Big Blue{trademark} transgenic mice by inhalation to 320, 640 and 960 Working Level Months (WLM) of radon progeny. Mice were sacrificed after 3, 6 and 9 days; the time periods required to obtain the exposures. Control mice were also sacrificed at each time interval. In each case all tissues were excised, flash frozen in liquid nitrogen, and stored at -80{degrees}C for further analysis. Twelve lacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM exposure group; the lacI genes from these mutants have been sequenced. Sequence data indicate that three of themore » mutants have a C;G deletion at BP 978 and are possibly clonal in origin. Two mutants have multiple events within the gene: one has a an A:T to C:G transversion and a C:G insertion separated by 291 BPs; the second has a G:C to A:T transition as well as an A:T deletion followed by 6 base pairs downstream by a T:A insertion. Other mutations include a single G:C to A:T transition, a two base pair deletion, and a C:G to T:A transition. Mutant plaques are being evaluated from individual mice at other dose levels. Time course experiments are also planned. These studies will help define the molecular fine structure of mutations induced by high-LET radiation exposure.« less

  2. Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome

    PubMed Central

    Consugar, Mark B.; Wong, Wai C.; Lundquist, Patrick A.; Rossetti, Sandro; Kubly, Vickie J.; Walker, Denise L.; Rangel, Laureano J.; Aspinwall, Richard; Niaudet, W. Patrick; Özen, Seza; David, Albert; Velinov, Milen; Bergstralh, Eric J.; Bae, Kyongtae T.; Chapman, Arlene B.; Guay-Woodford, Lisa M.; Grantham, Jared J.; Torres, Vicente E.; Sampson, Julian R.; Dawson, Brian D.; Harris, Peter C.

    2009-01-01

    Large DNA rearrangements account for about 8% of disease mutations and are more common in duplicated genomic regions, where they are difficult to detect. Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2. PKD1 is located in an intrachromosomally duplicated region. A tuberous sclerosis gene, TSC2, lies immediately adjacent to PKD1 and large deletions can result in the PKD1/TSC2 contiguous gene deletion syndrome. To rapidly identify large rearrangements, a multiplex ligation-dependent probe amplification assay was developed employing base-pair differences between PKD1 and the six pseudogenes to generate PKD1-specific probes. All changes in a set of 25 previously defined deletions in PKD1, PKD2 and PKD1/TSC2 were detected by this assay and we also found 14 new mutations at these loci. About 4% of the ADPKD patients in the CRISP study were found to have gross rearrangements, and these accounted for about a third of base-pair mutation negative families. Sensitivity of the assay showed that about 40% of PKD1/TSC contiguous gene deletion syndrome families contained mosaic cases. Characterization of a family found to be mosaic for a PKD1 deletion is discussed here to illustrate family risk and donor selection considerations. Our assay improves detection levels and the reliability of molecular testing of patients with ADPKD. PMID:18818683

  3. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs

    PubMed Central

    2013-01-01

    Background The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations – changes specific to a tumor and not within an individual’s germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. Results We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. Conclusion We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic. PMID:23642077

  4. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs.

    PubMed

    Christoforides, Alexis; Carpten, John D; Weiss, Glen J; Demeure, Michael J; Von Hoff, Daniel D; Craig, David W

    2013-05-04

    The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.

  5. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerem, B.; Zielenski, J.; Markiewicz, D.

    1990-11-01

    Additional mutations in the cystic fibrosis (CF) gene were identified in the regions corresponding to the two putative nucleotide (ATP)-binding folds (NBFs) of the predicted polypeptide. The patient cohort included 46 Canadian CF families with well-characterized DNA marker haplotypes spanning the disease locus and several other families from Israel. Eleven mutations were found in the first NBF, 2 were found in the second NBF, but none was found in the R-domain. Seven of the mutations were of the missense type affecting some of the highly conserved amino acid residues in the first NBF; 3 were nonsense mutations; 2 would probablymore » affect mRNA splicing; 2 corresponded to small deletions, including another 3-base-pair deletion different from the major mutation ({delta}F508), which could account for 70% of the CF chromosomes in the population. Nine of these mutations accounted for 12 of the 31 non-{delta}F508 CF chromosomes in the Canadian families. The highly heterogeneous nature of the remaining CF mutations provides important insights into the structure and function of the protein, but it also suggests that DNA-based genetic screening for CF carrier status will not be straightforward.« less

  6. Identification in a pseudoknot of a U.G motif essential for the regulation of the expression of ribosomal protein S15.

    PubMed

    Bénard, L; Mathy, N; Grunberg-Manago, M; Ehresmann, B; Ehresmann, C; Portier, C

    1998-03-03

    The ribosomal protein S15 from Escherichia coli binds to a pseudoknot in its own messenger. This interaction is an essential step in the mechanism of S15 translational autoregulation. In a previous study, a recognition determinant for S15 autoregulation, involving a U.G wobble pair, was located in the center of stem I of the pseudoknot. In this study, an extensive mutagenesis analysis has been conducted in and around this U.G pair by comparing the effects of these mutations on the expression level of S15. The results show that the U.G wobble pair cannot be substituted by A.G, C.A, A.C, G.U, or C.G without loss of the autocontrol. In addition, the base pair C.G, adjacent to the 5' side of U, cannot be flipped or changed to another complementary base pair without also inducing derepression of translation. A unique motif, made of only two adjacent base pairs, U.G/C.G, is essential for S15 autoregulation and is presumably involved in direct recognition by the S15 protein.

  7. Identification in a pseudoknot of a U⋅G motif essential for the regulation of the expression of ribosomal protein S15

    PubMed Central

    Bénard, Lionel; Mathy, Nathalie; Grunberg-Manago, Marianne; Ehresmann, Bernard; Ehresmann, Chantal; Portier, Claude

    1998-01-01

    The ribosomal protein S15 from Escherichia coli binds to a pseudoknot in its own messenger. This interaction is an essential step in the mechanism of S15 translational autoregulation. In a previous study, a recognition determinant for S15 autoregulation, involving a U⋅G wobble pair, was located in the center of stem I of the pseudoknot. In this study, an extensive mutagenesis analysis has been conducted in and around this U⋅G pair by comparing the effects of these mutations on the expression level of S15. The results show that the U⋅G wobble pair cannot be substituted by A⋅G, C⋅A, A⋅C, G⋅U, or C⋅G without loss of the autocontrol. In addition, the base pair C⋅G, adjacent to the 5′ side of U, cannot be flipped or changed to another complementary base pair without also inducing derepression of translation. A unique motif, made of only two adjacent base pairs, U⋅G/C⋅G, is essential for S15 autoregulation and is presumably involved in direct recognition by the S15 protein. PMID:9482926

  8. Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System

    ERIC Educational Resources Information Center

    Szeberényi, József

    2013-01-01

    Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…

  9. Alteration of intersubunit acid–base pair interactions at the quasi-threefold axis of symmetry of Cucumber mosaic virus disrupts aphid vector transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bricault, Christine A.; Perry, Keith L., E-mail: KLP3@cornell.edu

    2013-06-05

    In the atomic model of Cucumber mosaic virus (CMV), six amino acid residues form stabilizing salt bridges between subunits of the asymmetric unit at the quasi-threefold axis of symmetry. To evaluate the effects of these positions on virion stability and aphid vector transmissibility, six charged amino acid residues were individually mutated to alanine. All of the six engineered viruses were viable and exhibited near wild type levels of virion stability in the presence of urea. Aphid vector transmissibility was nearly or completely eliminated in the case of four of the mutants; two mutants demonstrated intermediate aphid transmissibility. For the majoritymore » of the engineered mutants, second-site mutations were observed following aphid transmission and/or mechanical passaging, and one restored transmission rates to that of the wild type. CMV capsids tolerate disruption of acid–base pairing interactions at the quasi-threefold axis of symmetry, but these interactions are essential for maintaining aphid vector transmissibility. - Highlights: ► Amino acids between structural subunits of Cucumber mosaic virus affect vector transmission. ► Mutant structural stability was retained, while aphid vector transmissibility was disrupted. ► Spontaneous, second-site mutations restored aphid vector transmissibility.« less

  10. Single-cell paired-end genome sequencing reveals structural variation per cell cycle

    PubMed Central

    Voet, Thierry; Kumar, Parveen; Van Loo, Peter; Cooke, Susanna L.; Marshall, John; Lin, Meng-Lay; Zamani Esteki, Masoud; Van der Aa, Niels; Mateiu, Ligia; McBride, David J.; Bignell, Graham R.; McLaren, Stuart; Teague, Jon; Butler, Adam; Raine, Keiran; Stebbings, Lucy A.; Quail, Michael A.; D’Hooghe, Thomas; Moreau, Yves; Futreal, P. Andrew; Stratton, Michael R.; Vermeesch, Joris R.; Campbell, Peter J.

    2013-01-01

    The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis. PMID:23630320

  11. Use of wavelet-packet transforms to develop an engineering model for multifractal characterization of mutation dynamics in pathological and nonpathological gene sequences

    NASA Astrophysics Data System (ADS)

    Walker, David Lee

    1999-12-01

    This study uses dynamical analysis to examine in a quantitative fashion the information coding mechanism in DNA sequences. This exceeds the simple dichotomy of either modeling the mechanism by comparing DNA sequence walks as Fractal Brownian Motion (fbm) processes. The 2-D mappings of the DNA sequences for this research are from Iterated Function System (IFS) (Also known as the ``Chaos Game Representation'' (CGR)) mappings of the DNA sequences. This technique converts a 1-D sequence into a 2-D representation that preserves subsequence structure and provides a visual representation. The second step of this analysis involves the application of Wavelet Packet Transforms, a recently developed technique from the field of signal processing. A multi-fractal model is built by using wavelet transforms to estimate the Hurst exponent, H. The Hurst exponent is a non-parametric measurement of the dynamism of a system. This procedure is used to evaluate gene- coding events in the DNA sequence of cystic fibrosis mutations. The H exponent is calculated for various mutation sites in this gene. The results of this study indicate the presence of anti-persistent, random walks and persistent ``sub-periods'' in the sequence. This indicates the hypothesis of a multi-fractal model of DNA information encoding warrants further consideration. This work examines the model's behavior in both pathological (mutations) and non-pathological (healthy) base pair sequences of the cystic fibrosis gene. These mutations both natural and synthetic were introduced by computer manipulation of the original base pair text files. The results show that disease severity and system ``information dynamics'' correlate. These results have implications for genetic engineering as well as in mathematical biology. They suggest that there is scope for more multi-fractal models to be developed.

  12. Entropy Beacon: A Hairpin-Free DNA Amplification Strategy for Efficient Detection of Nucleic Acids

    PubMed Central

    2015-01-01

    Here, we propose an efficient strategy for enzyme- and hairpin-free nucleic acid detection called an entropy beacon (abbreviated as Ebeacon). Different from previously reported DNA hybridization/displacement-based strategies, Ebeacon is driven forward by increases in the entropy of the system, instead of free energy released from new base-pair formation. Ebeacon shows high sensitivity, with a detection limit of 5 pM target DNA in buffer and 50 pM in cellular homogenate. Ebeacon also benefits from the hairpin-free amplification strategy and zero-background, excellent thermostability from 20 °C to 50 °C, as well as good resistance to complex environments. In particular, based on the huge difference between the breathing rate of a single base pair and two adjacent base pairs, Ebeacon also shows high selectivity toward base mutations, such as substitution, insertion, and deletion and, therefore, is an efficient nucleic acid detection method, comparable to most reported enzyme-free strategies. PMID:26505212

  13. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships.

    PubMed

    Maharjan, Ram P; Ferenci, Thomas

    2017-06-01

    Environmental stresses increase genetic variation in bacteria, plants, and human cancer cells. The linkage between various environments and mutational outcomes has not been systematically investigated, however. Here, we established the influence of nutritional stresses commonly found in the biosphere (carbon, phosphate, nitrogen, oxygen, or iron limitation) on both the rate and spectrum of mutations in Escherichia coli. We found that each limitation was associated with a remarkably distinct mutational profile. Overall mutation rates were not always elevated, and nitrogen, iron, and oxygen limitation resulted in major spectral changes but no net increase in rate. Our results thus suggest that stress-induced mutagenesis is a diverse series of stress input-mutation output linkages that is distinct in every condition. Environment-specific spectra resulted in the differential emergence of traits needing particular mutations in these settings. Mutations requiring transpositions were highest under iron and oxygen limitation, whereas base-pair substitutions and indels were highest under phosphate limitation. The unexpected diversity of input-output effects explains some important phenomena in the mutational biases of evolving genomes. The prevalence of bacterial insertion sequence transpositions in the mammalian gut or in anaerobically stored cultures is due to environmentally determined mutation availability. Likewise, the much-discussed genomic bias towards transition base substitutions in evolving genomes can now be explained as an environment-specific output. Altogether, our conclusion is that environments influence genetic variation as well as selection.

  14. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input–mutation output relationships

    PubMed Central

    Maharjan, Ram P.

    2017-01-01

    Environmental stresses increase genetic variation in bacteria, plants, and human cancer cells. The linkage between various environments and mutational outcomes has not been systematically investigated, however. Here, we established the influence of nutritional stresses commonly found in the biosphere (carbon, phosphate, nitrogen, oxygen, or iron limitation) on both the rate and spectrum of mutations in Escherichia coli. We found that each limitation was associated with a remarkably distinct mutational profile. Overall mutation rates were not always elevated, and nitrogen, iron, and oxygen limitation resulted in major spectral changes but no net increase in rate. Our results thus suggest that stress-induced mutagenesis is a diverse series of stress input–mutation output linkages that is distinct in every condition. Environment-specific spectra resulted in the differential emergence of traits needing particular mutations in these settings. Mutations requiring transpositions were highest under iron and oxygen limitation, whereas base-pair substitutions and indels were highest under phosphate limitation. The unexpected diversity of input–output effects explains some important phenomena in the mutational biases of evolving genomes. The prevalence of bacterial insertion sequence transpositions in the mammalian gut or in anaerobically stored cultures is due to environmentally determined mutation availability. Likewise, the much-discussed genomic bias towards transition base substitutions in evolving genomes can now be explained as an environment-specific output. Altogether, our conclusion is that environments influence genetic variation as well as selection. PMID:28594817

  15. Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine-cytosine and adenine-thymine base pairs: a polarizable continuum model study.

    PubMed

    Romero, Eduardo E; Hernandez, Florencio E

    2018-01-03

    Herein we present our results on the study of the double proton transfer (DPT) mechanism in the adenine-thymine (AT) and guanine-cytosine (GC) base pairs, both in gas phase and in solution. The latter was modeled using the polarizable continuum method (PCM) in different solvents. According to our DFT calculations, the DPT may occur for both complexes in a stepwise mechanism in condensate phase. In gas phase only the GC base pair exhibits a concerted DPT mechanism. Using the Wigner's tunneling corrections to the transition state theory we demonstrate that such corrections are important for the prediction of the rate constants of both systems in gas and in condensate phase. We also show that (i) as the polarity of the medium decreases the equilibrium constant of the DPT reaction increases in both complexes, and (ii) that the equilibrium constant in the GC complex is four orders of magnitude larger than in AT. This observation suggests that the spontaneous mutations in DNA base pairs are more probable in GC than in AT.

  16. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma.

    PubMed

    Colombino, Maria; Capone, Mariaelena; Lissia, Amelia; Cossu, Antonio; Rubino, Corrado; De Giorgi, Vincenzo; Massi, Daniela; Fonsatti, Ester; Staibano, Stefania; Nappi, Oscar; Pagani, Elena; Casula, Milena; Manca, Antonella; Sini, Mariacristina; Franco, Renato; Botti, Gerardo; Caracò, Corrado; Mozzillo, Nicola; Ascierto, Paolo A; Palmieri, Giuseppe

    2012-07-10

    The prevalence of BRAF, NRAS, and p16CDKN2A mutations during melanoma progression remains inconclusive. We investigated the prevalence and distribution of mutations in these genes in different melanoma tissues. In all, 291 tumor tissues from 132 patients with melanoma were screened. Paired samples of primary melanomas (n = 102) and synchronous or asynchronous metastases from the same patients (n = 165) were included. Tissue samples underwent mutation analysis (automated DNA sequencing). Secondary lesions included lymph nodes (n = 84), and skin (n = 36), visceral (n = 25), and brain (n = 44) sites. BRAF/NRAS mutations were identified in 58% of primary melanomas (43% BRAF; 15% NRAS); 62% in lymph nodes, 61% subcutaneous, 56% visceral, and 70% in brain sites. Mutations were observed in 63% of metastases (48% BRAF; 15% NRAS), a nonsignificant increase in mutation frequency after progression from primary melanoma. Of the paired samples, lymph nodes (93% consistency) and visceral metastases (96% consistency) presented a highly similar distribution of BRAF/NRAS mutations versus primary melanomas, with a significantly less consistent pattern in brain (80%) and skin metastases (75%). This suggests that independent subclones are generated in some patients. p16CDKN2A mutations were identified in 7% and 14% of primary melanomas and metastases, with a low consistency (31%) between secondary and primary tumor samples. In the era of targeted therapies, assessment of the spectrum and distribution of alterations in molecular targets among patients with melanoma is needed. Our findings about the prevalence of BRAF/NRAS/p16CDKN2A mutations in paired tumor lesions from patients with melanoma may be useful in the management of this disease.

  17. DNA polymerase catalysis in the absence of Watson-Crick hydrogen bonds

    PubMed Central

    Potapova, Olga; Chan, Chikio; DeLucia, Angela M.; Helquist, Sandra A.; Kool, Eric T.; Grindley, Nigel D. F.; Joyce, Catherine M.

    2008-01-01

    We report the first pre-steady-state kinetic studies of DNA replication in the absence of hydrogen bonds. We have used nonpolar nucleotide analogues that mimic the shape of a Watson-Crick base pair in order to investigate the kinetic consequences of a lack of hydrogen bonds in the polymerase reaction catalyzed by the Klenow fragment of DNA Polymerase I from Escherichia coli. With a thymine isostere lacking hydrogen bonding ability in the nascent pair, the efficiency (kpol/Kd) of the polymerase reaction is decreased by 30-fold, affecting ground state (Kd) and transition state (kpol) approximately equally. When both thymine and adenine analogues in the nascent pair lack hydrogen bonding ability, the efficiency of the polymerase reaction is decreased by about 1000-fold, with most the decrease attributable to the transition state. Reactions using nonpolar analogues at the primer terminal base pair demonstrated the requirement for a hydrogen bond between the polymerase and the minor groove of the primer-terminal base. The R668A mutation of Klenow fragment abolished this requirement, identifying R668 as the probable hydrogen bond donor. Detailed examination of the kinetic data suggested that Klenow fragment has an extremely low tolerance of even minor deviations of the analogue base pairs from ideal Watson-Crick geometry. Consistent with this idea, some analogue pairings were better tolerated by Klenow fragment mutants having more spacious active sites. By contrast, the Y-family polymerase Dbh was much less sensitive to changes in base pair dimensions, and more dependent on hydrogen bonding between base-paired partners. PMID:16411765

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hong; Zeng, Hong; Lam, Robert

    Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson–Crick base pairs in the genome. Pathogenic mutations in theMLH1gene are associated with a predisposition to Lynch and Turcot's syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. Lastly, the structure shares a high degree of similarity with previously determined prokaryoticMLH1homologs; however, this structure affords a more accurate platform for the classification ofMLH1variants.

  19. Finding FMR1 mosaicism in Fragile X syndrome

    PubMed Central

    Gonçalves, Thaís Fernandez; dos Santos, Jussara Mendonça; Gonçalves, Andressa Pereira; Tassone, Flora; Mendoza-Morales, Guadalupe; Ribeiro, Márcia Gonçalves; Kahn, Evelyn; Boy, Raquel; Pimentel, Márcia Mattos Gonçalves; Santos-Rebouças, Cíntia Barros

    2016-01-01

    OBJETIVE Almost all patients with Fragile X Syndrome (FXS) exhibit a CGG repeat expansion (full mutation) in the Fragile Mental Retardation 1 gene (FMR1). Here, we report five unrelated males with FXS harboring a somatic full mutation/deletion mosaicism. METHODS Mutational profiles were only elucidated by using a combination of molecular approaches (CGG-based PCR, Sanger sequencing, MS-MLPA, Southern blot and mPCR). RESULT Four patients exhibited small deletions encompassing the CGG repeats tract and flanking regions, whereas the remaining had a larger deletion comprising at least exon 1 and part of intron 1 of FMR1 gene. The presence of a 2–3 base pairs microhomology in proximal and distal non-recurrent breakpoints without scars supports the involvement of microhomology mediated induced repair (MMBIR) mechanism in three small deletions. CONCLUSION Our data highlights the importance of using different research methods to elucidate atypical FXS mutational profiles, which are clinically undistinguishable and may have been underestimated. PMID:26716517

  20. Replicative DNA polymerase mutations in cancer☆

    PubMed Central

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  1. New observations on maternal age effect on germline de novo mutations.

    PubMed

    Wong, Wendy S W; Solomon, Benjamin D; Bodian, Dale L; Kothiyal, Prachi; Eley, Greg; Huddleston, Kathi C; Baker, Robin; Thach, Dzung C; Iyer, Ramaswamy K; Vockley, Joseph G; Niederhuber, John E

    2016-01-19

    Germline mutations are the source of evolution and contribute substantially to many health-related processes. Here we use whole-genome deep sequencing data from 693 parents-offspring trios to examine the de novo point mutations (DNMs) in the offspring. Our estimate for the mutation rate per base pair per generation is 1.05 × 10(-8), well within the range of previous studies. We show that maternal age has a small but significant correlation with the total number of DNMs in the offspring after controlling for paternal age (0.51 additional mutations per year, 95% CI: 0.29, 0.73), which was not detectable in the smaller and younger parental cohorts of earlier studies. Furthermore, while the total number of DNMs increases at a constant rate for paternal age, the contribution from the mother increases at an accelerated rate with age.These observations have implications related to the incidence of de novo mutations relating to maternal age.

  2. What does the nature of the MECP2 mutation tell us about parental origin and recurrence risk in Rett syndrome?

    PubMed

    Zhang, J; Bao, X; Cao, G; Jiang, S; Zhu, X; Lu, H; Jia, L; Pan, H; Fehr, S; Davis, M; Leonard, H; Ravine, D; Wu, X

    2012-12-01

    The MECP2 mutations occurring in the severe neurological disorder Rett syndrome are predominantly de novo, with rare familial cases. The aims of this study were to provide a precise estimate of the parental origin of MECP2 mutations using a large Chinese sample and to assess whether parental origin varied by mutation type. The parental origin was paternal in 84/88 [95.5%, (95% confidence interval 88.77-98.75)] of sporadic Chinese cases. However, in a pooled sample including data from the literature the spectrum of mutations occurring on maternally and paternally derived chromosomes differed significantly. The excess we found of 'single base pair gains or losses' on maternally derived MECP2 gene alleles suggests that this mutational category is associated with an elevated risk of gonadal mosaicism, which has implications for genetic counseling. © 2011 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  3. The degree of intratumor mutational heterogeneity varies by primary tumor sub-site

    PubMed Central

    Eterovic, Agda Karina; Wick, Jo; Chen, Ken; Zhao, Hao; Tazi, Loubna; Manna, Pradip; Kerley, Spencer; Joshi, Radhika; Wang, Lin; Chiosea, Simion I.; Garnett, James David; Tsue, Terance Ted; Chien, Jeremy; Mills, Gordon B.; Grandis, Jennifer Rubin; Thomas, Sufi Mary

    2016-01-01

    In an era where mutational profiles inform treatment options, it is critical to know the extent to which tumor biopsies represent the molecular profile of the primary and metastatic tumor. Head and neck squamous cell carcinoma (HNSCC) arise primarily in the mucosal lining of oral cavity and oropharynx. Despite aggressive therapy the 5-year survival rate is at 50%. The primary objective of this study is to characterize the degree of intratumor mutational heterogeneity in HNSCC. We used multi-region sequencing of paired primary and metastatic tumor DNA of 24 spatially distinct samples from seven patients with HNSCC of larynx, floor of the mouth (FOM) or oral tongue. Full length, in-depth sequencing of 202 genes implicated in cancer was carried out. Larynx and FOM tumors had more than 69.2% unique SNVs between the paired primary and metastatic lesions. In contrast, the oral tongue HNSCC had only 33.3% unique SNVs across multiple sites. In addition, HNSCC of the oral tongue had fewer mutations than larynx and FOM tumors. These findings were validated on the Affymetrix whole genome 6.0 array platform and were consistent with data from The Cancer Genome Atlas (TCGA). This is the first report demonstrating differences in mutational heterogeneity varying by subsite in HNSCC. The heterogeneity within laryngeal tumor specimens may lead to an underestimation of the genetic abnormalities within tumors and may foster resistance to standard treatment protocols. These findings are relevant to investigators and clinicians developing personalized cancer treatments based on identification of specific mutations in tumor biopsies. PMID:27034009

  4. The degree of intratumor mutational heterogeneity varies by primary tumor sub-site.

    PubMed

    Ledgerwood, Levi G; Kumar, Dhruv; Eterovic, Agda Karina; Wick, Jo; Chen, Ken; Zhao, Hao; Tazi, Loubna; Manna, Pradip; Kerley, Spencer; Joshi, Radhika; Wang, Lin; Chiosea, Simion I; Garnett, James David; Tsue, Terance Ted; Chien, Jeremy; Mills, Gordon B; Grandis, Jennifer Rubin; Thomas, Sufi Mary

    2016-05-10

    In an era where mutational profiles inform treatment options, it is critical to know the extent to which tumor biopsies represent the molecular profile of the primary and metastatic tumor. Head and neck squamous cell carcinoma (HNSCC) arise primarily in the mucosal lining of oral cavity and oropharynx. Despite aggressive therapy the 5-year survival rate is at 50%. The primary objective of this study is to characterize the degree of intratumor mutational heterogeneity in HNSCC. We used multi-region sequencing of paired primary and metastatic tumor DNA of 24 spatially distinct samples from seven patients with HNSCC of larynx, floor of the mouth (FOM) or oral tongue. Full length, in-depth sequencing of 202 genes implicated in cancer was carried out. Larynx and FOM tumors had more than 69.2% unique SNVs between the paired primary and metastatic lesions. In contrast, the oral tongue HNSCC had only 33.3% unique SNVs across multiple sites. In addition, HNSCC of the oral tongue had fewer mutations than larynx and FOM tumors. These findings were validated on the Affymetrix whole genome 6.0 array platform and were consistent with data from The Cancer Genome Atlas (TCGA). This is the first report demonstrating differences in mutational heterogeneity varying by subsite in HNSCC. The heterogeneity within laryngeal tumor specimens may lead to an underestimation of the genetic abnormalities within tumors and may foster resistance to standard treatment protocols. These findings are relevant to investigators and clinicians developing personalized cancer treatments based on identification of specific mutations in tumor biopsies.

  5. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia

    PubMed Central

    Parkin, Brian; Ouillette, Peter; Li, Yifeng; Keller, Jennifer; Lam, Cindy; Roulston, Diane; Li, Cheng; Shedden, Kerby

    2013-01-01

    The frequent occurrence of persistent or relapsed disease after induction chemotherapy in AML necessitates a better understanding of the clonal relationship of AML in various disease phases. In this study, we used SNP 6.0 array-based genomic profiling of acquired copy number aberrations (aCNA) and copy neutral LOH (cnLOH) together with sequence analysis of recurrently mutated genes to characterize paired AML genomes. We analyzed 28 AML sample pairs from patients who achieved complete remission with chemotherapy and subsequently relapsed and 11 sample pairs from patients with persistent disease after induction chemotherapy. Through review of aCNA/cnLOH and gene mutation profiles in informative cases, we demonstrate that relapsed AML invariably represents re-emergence or evolution of a founder clone. Furthermore, all individual aCNA or cnLOH detected at presentation persisted at relapse indicating that this lesion type is proximally involved in AML evolution. Analysis of informative paired persistent AML disease samples uncovered cases with 2 coexisting dominant clones of which at least one was chemotherapy sensitive and one resistant, respectively. These data support the conclusion that incomplete eradication of AML founder clones rather than stochastic emergence of fully unrelated novel clones underlies AML relapse and persistence with direct implications for clinical AML research. PMID:23175688

  6. A screen to identify drug resistant variants to target-directed anti-cancer agents

    PubMed Central

    Azam, Mohammad; Raz, Tal; Nardi, Valentina; Opitz, Sarah L.

    2003-01-01

    The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec), a specific inhibitor of the Chronic Myeloid Leukemia (CML)-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair. PMID:14615817

  7. Cytochrome b sequences in black-crowned night-herons (Nycticorax nycticorax) from heronries exposed to genotoxic contaminants

    USGS Publications Warehouse

    Dahl, Christopher R.; Bickham, John W.; Wickliffe, Jeffery K.; Custer, Thomas W.

    2001-01-01

    DNA sequence analysis of a 215 base-pair region of the mitochondrial cytochrome b gene was used to examine genetic variation and search for evidence of an increased mutation rate in black-crowned night-herons. We examined five populations exposed to environmental contamination (primarily PAHs and PCBs) and one reference population from the eastern U.S. There was no evidence of a high mutation rate even within populations previously shown to exhibit increased variation in DNA content among somatic cells as a result of petroleum exposure. Three haplotypes were observed among 99 individuals. The low level of variability could be evidence for a genetic bottleneck, or that cytochrome b is too conservative for use in population genetic studies of this species. With the exception of one population from Louisiana, pair-wise Phist estimates were very low, indicative of little population structure and potentially high rates of effective migration among populations.

  8. A splice-site mutation affecting the paired box of PAX3 in a three generation family with Waardenburg syndrome type I (WS1).

    PubMed

    Attaie, A; Kim, E; Wilcox, E R; Lalwani, A K

    1997-06-01

    Waardenburg syndrome, an autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary disturbances and other developmental defects, is the most frequent form of congenital deafness in humans. Mutations in the PAX3 gene, a transcription factor expressed during embryonic development, is associated with WS types I and III. Here we report the identification of a novel acceptor splice site mutation (86-2 A-->G) in the paired domain of the human PAX3 gene causing WS type I in a three generation family.

  9. Autosomal-dominant Leber Congenital Amaurosis Caused by a Heterozygous CRX Mutation in a Father and Son.

    PubMed

    Arcot Sadagopan, Karthikeyan; Battista, Robert; Keep, Rosanne B; Capasso, Jenina E; Levin, Alex V

    2015-06-01

    Leber congenital amaurosis (LCA) is most often an autosomal recessive disorder. We report a father and son with autosomal dominant LCA due to a mutation in the CRX gene. DNA screening using an allele specific assay of 90 of the most common LCA-causing variations in the coding sequences of AIPL1, CEP290, CRB1, CRX, GUCY2D, RDH12 and RPE65 was performed on the father. Automated DNA sequencing of his son examining exon 3 of the CRX gene was subsequently performed. Both father and son have a heterozygous single base pair deletion of an adenine at codon 153 in the coding sequence of the CRX gene resulting in a frameshift mutation. Mutations involving the CRX gene may demonstrate an autosomal dominant inheritance pattern for LCA.

  10. Maintenance of Dimer Conformation by the Dengue Virus Core Protein α4-α4′ Helix Pair Is Critical for Nucleocapsid Formation and Virus Production

    PubMed Central

    Teoh, Pak-Guan; Huang, Zhi-Shun; Pong, Wen-Li; Chen, Po-Chiang

    2014-01-01

    ABSTRACT The virion of dengue virus (DENV) is composed of a viral envelope covering a nucleocapsid formed by a complex of viral genomic RNA and core protein (CP). DENV CP forms a dimer via the internal α2 and α4 helices of each monomer. Pairing of α2-α2′ creates a continuous hydrophobic surface, while the α4-α4′ helix pair joins the homodimer via side-chain interactions of the inner-edge residues. However, the importance of dimer conformation and the α4 helix of DENV CP in relation to its function are poorly understood. Loss of association between CP and lipid droplets (LDs) due to mutation suggests that the CP hydrophobic surface was not exposed, offering a possible explanation for the absence of dimers. Further assays suggest the connection between CP folding and protein stability. Attenuation of full-length RNA-derived virus production is associated with CP mutation, since no significant defects were detected in virus translation and replication. The in vitro characterization assays further highlighted that the α4-α4′ helix pair conformation is critical in preserving the overall α-helical content, thermostability, and dimer formation ability of CP, features correlated with the efficiency of nucleocapsid formation. Addition of Tween 20 improves in vitro nucleocapsid-like particle formation, suggesting the role of the LD in nucleocapsid formation in vivo. This study provides the first direct link between the α4-α4′ helix pair interaction and the CP dimer conformation that is the basis of CP function, particularly in nucleocapsid formation during virion production. IMPORTANCE Structure-based mutagenesis study of the dengue virus core protein (CP) reveals that the α4-α4′ helix pair is the key to maintaining its dimer conformation, which is the basis of CP function in nucleocapsid formation and virus production. Attenuation of full-length RNA-derived virus production is associated with CP mutation, since no significant defects in virus translation and replication were detected. In vitro inefficiency and size of nucleocapsid-like particle (NLP) formation offer a possible explanation for in vivo virus production inefficiency upon CP mutation. Further, the transition of NLP morphology from an incomplete state to an intact particle shown by α4-α4′ helix pair mutants in the presence of a nonionic detergent suggests the regulatory role of the intracellular lipid droplet (LD) in CP-LD interaction and in promoting nucleocapsid formation. This study provides the first direct link between the α4-α4′ helix pair interaction and CP dimer conformation that is the fundamental requirement of CP function, particularly in nucleocapsid formation during virion production. PMID:24807709

  11. Mutations That Improve the pRE Promoter of Coliphage Lambda

    PubMed Central

    Mahoney, Michael E.; Wulff, Daniel L.

    1987-01-01

    The dya5 mutation, a C→T change at position -43 of the λ pRE promoter, results in a twofold increase in pRE activity in vivo. Smaller increases in pRE activity are found for the dya2 mutation, a T→C change at position -1 of pRE, and the dya3 mutation, an A→G change at +5 of pRE. The mutant p RE promoters retain complete dependence on cII protein for activity. These observations argue, at least for pRE-like promoters, that promoter activities are influenced by nucleotide sequences at least eight nucleotides to the 5'-side of the conventional -35 region consensus sequence, and by nucleotide sequences near the start-site of transcription. Although Hawley and McClure (1983) found A·T pairs more frequently than G·TC pairs in the region of -40 to -45 of prokaryotic promoters, other mutations that change a G·TC pair to an A·T pair at positions -41, -44 and -45 of pRE do not result in increased promoter activity. We also found that a T→C change at position -42 results in a mild decrease in promoter activity. These observations argue that Ts at positions -42 and -43 of pRE are required for maximum promoter activity, but do not support the hypothesis that As and Ts in the -40 to -45 region generally lead to higher promoter activities. PMID:2953648

  12. Population-Scale Sequencing Data Enable Precise Estimates of Y-STR Mutation Rates

    PubMed Central

    Willems, Thomas; Gymrek, Melissa; Poznik, G. David; Tyler-Smith, Chris; Erlich, Yaniv

    2016-01-01

    Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2–6 bp repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes. PMID:27126583

  13. EGFR mutation status of paired cerebrospinal fluid and plasma samples in EGFR mutant non-small cell lung cancer with leptomeningeal metastases.

    PubMed

    Zhao, Jing; Ye, Xin; Xu, Yan; Chen, Minjiang; Zhong, Wei; Sun, Yun; Yang, Zhenfan; Zhu, Guanshan; Gu, Yi; Wang, Mengzhao

    2016-12-01

    Central nervous system (CNS) is the prevalent site for metastases in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-relapsed NSCLC patients. To understand the EGFR mutation status in paired cerebrospinal fluid (CSF) and plasma samples after EGFR-TKI treatment failure might be useful to guide the treatment of intra- and extracranial tumors in those patients. Paired CSF and plasma samples were collected from seven NSCLC patients with CNS metastases after EGFR-TKI failure. EGFR mutations were tested by amplification refractory mutation system (ARMS) and droplet digital PCR (ddPCR) methods. Gefitinib concentrations were evaluated by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). EGFR mutations were detected in all seven CSF samples, including three of E19-Del, three of L858R and one of E19-Del&T790M by both methods. On the other hand, majority of the matched plasma samples (5/7) were negative for EGFR mutations by both methods. The other two plasma samples were positive for E19-Del&T790M by ddPCR, and one of them had undetectable T790M by ARMS. Gefitinib concentration in CSF was much lower than that in plasma (mean CSF/plasma ratio: 1.8 %). After EGFR-TKI failure, majority of the NSCLC patients with CNS metastases remained positive detection of EGFR sensitive mutations in CSF, but much less detection in the matched plasma. Significantly low exposure of gefitinib in CSF might explain the intracranial protection of the EGFR sensitive mutation positive tumor cells.

  14. Matched-pair analysis of a multi-institutional cohort reveals that epidermal growth factor receptor mutation is not a risk factor for postoperative recurrence of lung adenocarcinoma.

    PubMed

    Matsumura, Yuki; Suzuki, Hiroyuki; Ohira, Tetsuya; Shiono, Satoshi; Abe, Jiro; Sagawa, Motoyasu; Sakurada, Akira; Katahira, Masato; Machida, Yuichiro; Takahashi, Satomi; Okada, Yoshinori

    2017-12-01

    It is unclear whether epidermal growth factor receptor (EGFR) mutation status is a risk factor for postoperative recurrence of surgically resected lung adenocarcinoma (ADC). Therefore, we conducted a multi-institutional study employing matched-pair analysis to compare recurrence-free survival (RFS) and overall survival (OS) of patients with lung ADC according to EGFR mutation status. We collected the records of 909 patients who underwent surgical resection for lung ADC between 2005 and 2012 at five participating institutions and were also examined their EGFR mutation status. For each patient with an EGFR mutation, we selected one with the wild-type EGFR sequence and matched them according to institution, age, gender, smoking history, pathological stage (pStage), and adjuvant treatment. We compared RFS and OS of the matched cohort. The patients were allocated into groups (n=181 each) with mutated or wild-type EGFR sequences. Both cohorts had identical characteristics as follows: institution, median age (68 years), men (85, 47%), ever smokers (77, 43%), and pStage (IA, 108, 60%; IB, 48, 27%; II, 14, 8%; III, 11, 6%). The 3- and 5-year RFS rates of patients with mutated or wild-type EGFR sequence were 79%, 68% and 77%, 68%, respectively (p=0.557). The respective OS rates were 92%, 81%, and 89%, 79% (p=0.574). Matched-pair and multi-institutional analysis reveals that an EGFR mutation was not a significant risk factor for recurrence of patients with surgically resected lung adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. On the Sequence-Directed Nature of Human Gene Mutation: The Role of Genomic Architecture and the Local DNA Sequence Environment in Mediating Gene Mutations Underlying Human Inherited Disease

    PubMed Central

    Cooper, David N.; Bacolla, Albino; Férec, Claude; Vasquez, Karen M.; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min

    2011-01-01

    Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher-order features of the genomic architecture. The human genome is now recognized to contain ‘pervasive architectural flaws’ in that certain DNA sequences are inherently mutation-prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of non-canonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair, and may serve to increase mutation frequencies in generalized fashion (i.e. both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. PMID:21853507

  16. Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes

    PubMed Central

    Taylor, Benjamin JM; Wu, Yee Ling; Rada, Cristina

    2014-01-01

    Cytidine deaminases are single stranded DNA mutators diversifying antibodies and restricting viral infection. Improper access to the genome leads to translocations and mutations in B cells and contributes to the mutation landscape in cancer, such as kataegis. It remains unclear how deaminases access double stranded genomes and whether off-target mutations favor certain loci, although transcription and opportunistic access during DNA repair are thought to play a role. In yeast, AID and the catalytic domain of APOBEC3G preferentially mutate transcriptionally active genes within narrow regions, 110 base pairs in width, fixed at RNA polymerase initiation sites. Unlike APOBEC3G, AID shows enhanced mutational preference for small RNA genes (tRNAs, snoRNAs and snRNAs) suggesting a putative role for RNA in its recruitment. We uncover the high affinity of the deaminases for the single stranded DNA exposed by initiating RNA polymerases (a DNA configuration reproduced at stalled polymerases) without a requirement for specific cofactors. DOI: http://dx.doi.org/10.7554/eLife.03553.001 PMID:25237741

  17. A light-sensitive mutation in Arabidopsis LEW3 reveals the important role of N-glycosylation in root growth and development.

    PubMed

    Manzano, Concepción; Pallero-Baena, Mercedes; Silva-Navas, J; Navarro Neila, Sara; Casimiro, Ilda; Casero, Pedro; Garcia-Mina, Jose M; Baigorri, Roberto; Rubio, Lourdes; Fernandez, Jose A; Norris, Matthew; Ding, Yiliang; Moreno-Risueno, Miguel A; Del Pozo, Juan C

    2017-11-02

    Plant roots have the potential capacity to grow almost indefinitely if meristematic and lateral branching is sustained. In a genetic screen we identified an Arabidopsis mutant showing limited root growth (lrg1) due to defects in cell division and elongation in the root meristem. Positional cloning determined that lrg1 affects an alpha-1,2-mannosyltransferase gene, LEW3, involved in protein N-glycosylation. The lrg1 mutation causes a synonymous substitution that alters the correct splicing of the fourth intron in LEW3, causing a mix of wild-type and truncated protein. LRG1 RNA missplicing in roots and short root phenotypes in lrg1 are light-intensity dependent. This mutation disrupts a GC-base pair in a three-base-pair stem with a four-nucleotide loop, which seems to be necessary for correct LEW3 RNA splicing. We found that the lrg1 short root phenotype correlates with high levels of reactive oxygen species and low pH in the apoplast. Proteomic analyses of N-glycosylated proteins identified GLU23/PYK10 and PRX34 as N-glycosylation targets of LRG1 activity. The lrg1 mutation reduces the positive interaction between Arabidopsis and Serendipita indica. A prx34 mutant showed a significant reduction in root growth, which is additive to lrg1. Taken together our work highlights the important role of N-glycosylation in root growth and development. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Clonal evolution in paired endometrial intraepithelial neoplasia/atypical hyperplasia and endometrioid adenocarcinoma.

    PubMed

    Russo, Mariano; Broach, James; Sheldon, Kathryn; Houser, Kenneth R; Liu, Dajiang J; Kesterson, Joshua; Phaeton, Rebecca; Hossler, Carrie; Hempel, Nadine; Baker, Maria; Newell, Jordan M; Zaino, Richard; Warrick, Joshua I

    2017-09-01

    Endometrial intraepithelial neoplasia (EIN) and atypical endometrial hyperplasia (AH) are histomorphologically defined precursors to endometrioid adenocarcinoma, which are unified as EIN/AH by the World Health Organization. EIN/AH harbors a constellation of molecular alterations similar to those found in endometrioid adenocarcinoma. However, the process of clonal evolution from EIN/AH to carcinoma is poorly characterized. To investigate, we performed next-generation sequencing, copy number alteration (CNA) analysis, and immunohistochemistry for mismatch repair protein expression on EIN/AH and endometrioid adenocarcinoma samples from 6 hysterectomy cases with spatially distinct EIN/AH and carcinoma. In evaluating all samples, EIN/AH and carcinoma did not differ in mutational burden, CNA burden, or specific genes mutated (all P>.1). All paired EIN/AH and carcinoma samples shared at least one identical somatic mutation, frequently in PI(3)K pathway members. Large CNAs (>10 genes in length) were identified in 83% of cases; paired EIN/AH and carcinoma samples shared at least one identical CNA in these cases. Mismatch repair protein expression matched in all paired EIN/AH and carcinoma samples. All paired EIN/AH and carcinoma samples had identical The Cancer Genome Atlas subtype, with 3 classified as "copy number low endometrioid" and 3 classified as "microsatellite instability hypermutated." Although paired EIN/AH and carcinoma samples were clonal, private mutations (ie, present in only one sample) were identified in EIN/AH and carcinoma in all cases, frequently in established cancer-driving genes. These findings indicate that EIN/AH gives rise to endometrioid adenocarcinoma by a complex process of subclone evolution, not a linear accumulation of molecular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Copy Number Variants and Exome Sequencing Analysis in Six Pairs of Chinese Monozygotic Twins Discordant for Congenital Heart Disease.

    PubMed

    Xu, Yuejuan; Li, Tingting; Pu, Tian; Cao, Ruixue; Long, Fei; Chen, Sun; Sun, Kun; Xu, Rang

    2017-12-01

    Congenital heart disease (CHD) is one of the most common birth defects. More than 200 susceptibility loci have been identified for CHDs, yet a large part of the genetic risk factors remain unexplained. Monozygotic (MZ) twins are thought to be completely genetically identical; however, discordant phenotypes have been found in MZ twins. Recent studies have demonstrated genetic differences between MZ twins. We aimed to test whether copy number variants (CNVs) and/or genetic mutation differences play a role in the etiology of CHDs by using single nucleotide polymorphism (SNP) genotyping arrays and whole exome sequencing of twin pairs discordant for CHDs. Our goal was to identify mutations present only in the affected twins, which could identify novel candidates for CHD susceptibility loci. We present a comprehensive analysis for the CNVs and genetic mutation results of the selected individuals but detected no consistent differences within the twin pairs. Our study confirms that chromosomal structure or genetic mutation differences do not seem to play a role in the MZ twins discordant for CHD.

  20. Novel Single-Base Deletional Mutation in Major Intrinsic Protein (MIP) in Autosomal Dominant Cataract

    PubMed Central

    Geyer, David D.; Spence, M. Anne; Johannes, Meriam; Flodman, Pamela; Clancy, Kevin P.; Berry, Rebecca; Sparkes, Robert S.; Jonsen, Matthew D.; Isenberg, Sherwin J.; Bateman, J. Bronwyn

    2006-01-01

    PURPOSE To further elucidate the cataract phenotype, and identify the gene and mutation for autosomal dominant cataract (ADC) in an American family of European descent (ADC2) by sequencing the major intrinsic protein gene (MIP), a candidate based on linkage to chromosome 12q13. DESIGN Observational case series and laboratory experimental study. METHODS We examined two at-risk individuals in ADC2. We PCR-amplified and sequenced all four exons and all intron-exon boundaries of the MIP gene from genomic and cloned DNA in affected members to confirm one variant as the putative mutation. RESULTS We found a novel single deletion of nucleotide (nt) 3223 (within codon 235) in exon four, causing a frameshift that alters 41 of 45 subsequent amino acids and creates a premature stop codon. CONCLUSIONS We identified a novel single base pair deletion in the MIP gene and conclude that it is a pathogenic sequence alteration. PMID:16564824

  1. [Analysis of gene mutation in a Chinese family with Norrie disease].

    PubMed

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  2. Description of polymerase chain reaction and sequencing DNA Mycobacterium tuberculosis from specimen sputum of tuberculosis patients in Medan

    NASA Astrophysics Data System (ADS)

    Lily; Siregar, Y.; Ilyas, S.

    2018-03-01

    This study purposed to describe the product Polymerase Chain Reaction (PCR) and sequencing of DNA Mycobacterium (M.) tuberculosis from sputum of tuberculosis (TB) patients in Medan. Sputum was collected from patients that diagnosed with pulmonary TB by a physician. Specimen processed by PCR method of Li et al. and sequencing at Macrogen Laboratory. All of 12 product PCR were showed brightness bands at 126 base pair (bp). These results indicated similarity to the study of Li et al. Sequencing analysis showed the presence of a mutation and non-mutation groups of M. tuberculosis. The reference and outcome berange of the mutation and non-mutation of M. tuberculosis were 56-107, 59-85, 60-120 and 63-94, respectively. The percentage bp difference between the outcome and references for mutation and non-mutation were 3.448-6.569and 3.278-7.428%, respectively. In conclusion, the successful amplification of PCR products in a 1.5% agarose gel electrophoresis where all 12 sputa contained rpoB-positive M. tuberculosis and 0.644% difference was found between the outcome with reference bp of the mutation and non-mutation M. tuberculosis groups.

  3. New mutations affecting induced mutagenesis in yeast.

    PubMed

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.

  4. Mutagen Synergy: Hypermutability Generated by Specific Pairs of Base Analogs

    PubMed Central

    Ang, Jocelyn; Song, Lisa Yun; D'Souza, Sara; Hong, Irene L.; Luhar, Rohan; Yung, Madeline

    2016-01-01

    ABSTRACT We tested pairwise combinations of classical base analog mutagens in Escherichia coli to study possible mutagen synergies. We examined the cytidine analogs zebularine (ZEB) and 5-azacytidine (5AZ), the adenine analog 2-aminopurine (2AP), and the uridine/thymidine analog 5-bromodeoxyuridine (5BrdU). We detected a striking synergy with the 2AP plus ZEB combination, resulting in hypermutability, a 35-fold increase in mutation frequency (to 53,000 × 10−8) in the rpoB gene over that with either mutagen alone. A weak synergy was also detected with 2AP plus 5AZ and with 5BrdU plus ZEB. The pairing of 2AP and 5BrdU resulted in suppression, lowering the mutation frequency of 5BrdU alone by 6.5-fold. Sequencing the mutations from the 2AP plus ZEB combination showed the predominance of two new hot spots for A·T→G·C transitions that are not well represented in either single mutagen spectrum, and one of which is not found even in the spectrum of a mismatch repair-deficient strain. The strong synergy between 2AP and ZEB could be explained by changes in the dinucleoside triphosphate (dNTP) pools. IMPORTANCE Although mutagens have been widely studied, the mutagenic effects of combinations of mutagens have not been fully researched. Here, we show that certain pairwise combinations of base analog mutagens display synergy or suppression. In particular, the combination of 2-aminopurine and zebularine, analogs of adenine and cytidine, respectively, shows a 35-fold increased mutation frequency compared with that of either mutagen alone. Understanding the mechanism of synergy can lead to increased understanding of mutagenic processes. As combinations of base analogs are used in certain chemotherapy regimens, including those involving ZEB and 5AZ, these results indicate that testing the mutagenicity of all drug combinations is prudent. PMID:27457718

  5. Holes influence the mutation spectrum of human mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Villagran, Martha; Miller, John

    Mutations drive evolution and disease, showing highly non-random patterns of variant frequency vs. nucleotide position. We use computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)] to reveal sites of enhanced hole probability in selected regions of human mitochondrial DNA. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. The hole spectra are quantum mechanically computed using a two-stranded tight binding model of DNA. We observe significant correlation between spectra of hole probabilities and of genetic variation frequencies from the MITOMAP database. These results suggest that hole-enhanced mutation mechanisms exert a substantial, perhaps dominant, influence on mutation patterns in DNA. One example is where a trapped hole induces a hydrogen bond shift, known as tautomerization, which then triggers a base-pair mismatch during replication. Our results deepen overall understanding of sequence specific mutation rates, encompassing both hotspots and cold spots, which drive molecular evolution.

  6. An Ethyl-Nitrosourea-Induced Point Mutation in Phex Causes Exon Skipping, X-Linked Hypophosphatemia, and Rickets

    PubMed Central

    Carpinelli, Marina R.; Wicks, Ian P.; Sims, Natalie A.; O’Donnell, Kristy; Hanzinikolas, Katherine; Burt, Rachel; Foote, Simon J.; Bahlo, Melanie; Alexander, Warren S.; Hilton, Douglas J.

    2002-01-01

    We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G1) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease. PMID:12414538

  7. An ethyl-nitrosourea-induced point mutation in phex causes exon skipping, x-linked hypophosphatemia, and rickets.

    PubMed

    Carpinelli, Marina R; Wicks, Ian P; Sims, Natalie A; O'Donnell, Kristy; Hanzinikolas, Katherine; Burt, Rachel; Foote, Simon J; Bahlo, Melanie; Alexander, Warren S; Hilton, Douglas J

    2002-11-01

    We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G(1)) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease.

  8. A Digital PCR-Based Method for Efficient and Highly Specific Screening of Genome Edited Cells

    PubMed Central

    Berman, Jennifer R.; Postovit, Lynne-Marie

    2016-01-01

    The rapid adoption of gene editing tools such as CRISPRs and TALENs for research and eventually therapeutics necessitates assays that can rapidly detect and quantitate the desired alterations. Currently, the most commonly used assay employs “mismatch nucleases” T7E1 or “Surveyor” that recognize and cleave heteroduplexed DNA amplicons containing mismatched base-pairs. However, this assay is prone to false positives due to cancer-associated mutations and/or SNPs and requires large amounts of starting material. Here we describe a powerful alternative wherein droplet digital PCR (ddPCR) can be used to decipher homozygous from heterozygous mutations with superior levels of both precision and sensitivity. We use this assay to detect knockout inducing alterations to stem cell associated proteins, NODAL and SFRP1, generated using either TALENs or an “all-in-one” CRISPR/Cas plasmid that we have modified for one-step cloning and blue/white screening of transformants. Moreover, we highlight how ddPCR can be used to assess the efficiency of varying TALEN-based strategies. Collectively, this work highlights how ddPCR-based screening can be paired with CRISPR and TALEN technologies to enable sensitive, specific, and streamlined approaches to gene editing and validation. PMID:27089539

  9. Rates of Spontaneous Mutation in Bacteriophage T4 Are Independent of Host Fidelity Determinants

    PubMed Central

    Santos, M. E.; Drake, J. W.

    1994-01-01

    Bacteriophage T4 encodes most of the genes whose products are required for its DNA metabolism, and host (Escherichia coli) genes can only infrequently complement mutationally inactivated T4 genes. We screened the following host mutator mutations for effects on spontaneous mutation rates in T4: mutT (destruction of aberrant dGTPs), polA, polB and polC (DNA polymerases), dnaQ (exonucleolytic proofreading), mutH, mutS, mutL and uvrD (methyl-directed DNA mismatch repair), mutM and mutY (excision repair of oxygen-damaged DNA), mutA (function unknown), and topB and osmZ (affecting DNA topology). None increased T4 spontaneous mutation rates within a resolving power of about twofold (nor did optA, which is not a mutator but overexpresses a host dGTPase). Previous screens in T4 have revealed strong mutator mutations only in the gene encoding the viral DNA polymerase and proofreading 3'-exonuclease, plus weak mutators in several polymerase accessory proteins or determinants of dNTP pool sizes. T4 maintains a spontaneous mutation rate per base pair about 30-fold greater than that of its host. Thus, the joint high fidelity of insertion by T4 DNA polymerase and proofreading by its associated 3'-exonuclease appear to determine the T4 spontaneous mutation rate, whereas the host requires numerous additional systems to achieve high replication fidelity. PMID:7851754

  10. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones

    PubMed Central

    Tohya, Mari; Watanabe, Takayasu; Maruyama, Fumito; Arai, Sakura; Ota, Atsushi; Athey, Taryn B. T.; Fittipaldi, Nahuel; Nakagawa, Ichiro; Sekizaki, Tsutomu

    2016-01-01

    Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes. PMID:27433935

  11. Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements

    PubMed Central

    Bridgewater, Laura C.; Walker, Marlan D.; Miller, Gwen C.; Ellison, Trevor A.; Holsinger, L. Daniel; Potter, Jennifer L.; Jackson, Todd L.; Chen, Reuben K.; Winkel, Vicki L.; Zhang, Zhaoping; McKinney, Sandra; de Crombrugghe, Benoit

    2003-01-01

    Expression of the type XI collagen gene Col11a2 is directed to cartilage by at least three chondrocyte-specific enhancer elements, two in the 5′ region and one in the first intron of the gene. The three enhancers each contain two heptameric sites with homology to the Sox protein-binding consensus sequence. The two sites are separated by 3 or 4 bp and arranged in opposite orientation to each other. Targeted mutational analyses of these three enhancers showed that in the intronic enhancer, as in the other two enhancers, both Sox sites in a pair are essential for enhancer activity. The transcription factor Sox9 binds as a dimer at the paired sites, and the introduction of insertion mutations between the sites demonstrated that physical interactions between the adjacently bound proteins are essential for enhancer activity. Additional mutational analyses demonstrated that although Sox9 binding at the paired Sox sites is necessary for enhancer activity, it alone is not sufficient. Adjacent DNA sequences in each enhancer are also required, and mutation of those sequences can eliminate enhancer activity without preventing Sox9 binding. The data suggest a new model in which adjacently bound proteins affect the DNA bend angle produced by Sox9, which in turn determines whether an active transcriptional enhancer complex is assembled. PMID:12595563

  12. Adaptation of Escherichia coli traversing from the faecal environment to the urinary tract.

    PubMed

    Nielsen, Karen L; Stegger, Marc; Godfrey, Paul A; Feldgarden, Michael; Andersen, Paal S; Frimodt-Møller, Niels

    2016-12-01

    The majority of extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTI) are found in the patient's own gut flora, but only limited knowledge is available on the potential adaptation that may occur in the bacteria in order to traverse the perineum and successfully infect the urinary tract. Here, matching pairs of faecal and UTI isolates from 42 patients were compared pairwise using in-depth whole-genome sequencing to investigate whether genetic changes were evident for successful colonization in these two different environments. The identified non-synonymous mutations (0-12 substitutions in each pair) were primarily associated to genes encoding virulence factors and nutrient metabolism; and indications of parallel evolution were observed in genes encoding the major phase-variable protein antigen 43, a toxin/antitoxin locus and haemolysin B. No differences in virulence potential were observed in a mouse UTI model for five matching faecal and UTI isolates with or without mutations in antigen 43 and haemolysin B. Variations in plasmid content were observed in only four of the 42 pairs. Although, we observed mutations in known UTI virulence genes for a few pairs, the majority showed no detectable differences with respect to mutations or mobilome when compared to their faecal counterpart. The results show that UPECs are successful in colonizing both the bladder and gut without adaptation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment.

    PubMed

    Burns, Michael B; Montassier, Emmanuel; Abrahante, Juan; Priya, Sambhawa; Niccum, David E; Khoruts, Alexander; Starr, Timothy K; Knights, Dan; Blekhman, Ran

    2018-06-20

    Variation in the gut microbiome has been linked to colorectal cancer (CRC), as well as to host genetic variation. However, we do not know whether, in addition to baseline host genetics, somatic mutational profiles in CRC tumors interact with the surrounding tumor microbiome, and if so, whether these changes can be used to understand microbe-host interactions with potential functional biological relevance. Here, we characterized the association between CRC microbial communities and tumor mutations using microbiome profiling and whole-exome sequencing in 44 pairs of tumors and matched normal tissues. We found statistically significant associations between loss-of-function mutations in tumor genes and shifts in the abundances of specific sets of bacterial taxa, suggestive of potential functional interaction. This correlation allows us to statistically predict interactions between loss-of-function tumor mutations in cancer-related genes and pathways, including MAPK and Wnt signaling, solely based on the composition of the microbiome. In conclusion, our study shows that CRC microbiomes are correlated with tumor mutational profiles, pointing towards possible mechanisms of molecular interaction.

  14. The Spectrum of Replication Errors in the Absence of Error Correction Assayed Across the Whole Genome of Escherichia coli.

    PubMed

    Niccum, Brittany A; Lee, Heewook; MohammedIsmail, Wazim; Tang, Haixu; Foster, Patricia L

    2018-06-15

    When the DNA polymerase that replicates the Escherichia coli chromosome, DNA Pol III, makes an error, there are two primary defenses against mutation: proofreading by the epsilon subunit of the holoenzyme and mismatch repair. In proofreading deficient strains, mismatch repair is partially saturated and the cell's response to DNA damage, the SOS response, may be partially induced. To investigate the nature of replication errors, we used mutation accumulation experiments and whole genome sequencing to determine mutation rates and mutational spectra across the entire chromosome of strains deficient in proofreading, mismatch repair, and the SOS response. We report that a proofreading-deficient strain has a mutation rate 4,000-fold greater than wild-type strains. While the SOS response may be induced in these cells, it does not contribute to the mutational load. Inactivating mismatch repair in a proofreading-deficient strain increases the mutation rate another 1.5-fold. DNA polymerase has a bias for converting G:C to A:T base pairs, but proofreading reduces the impact of these mutations, helping to maintain the genomic G:C content. These findings give an unprecedented view of how polymerase and error-correction pathways work together to maintain E. coli' s low mutation rate of 1 per thousand generations. Copyright © 2018, Genetics.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hong; Zeng, Hong; Lam, Robert

    The crystal structure of the human MLH1 N-terminus is reported at 2.30 Å resolution. The overall structure is described along with an analysis of two clinically important mutations. Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson–Crick base pairs in the genome. Pathogenic mutations in the MLH1 gene are associated with a predisposition to Lynch and Turcot’s syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. The structure shares a high degree ofmore » similarity with previously determined prokaryotic MLH1 homologs; however, this structure affords a more accurate platform for the classification of MLH1 variants.« less

  16. Single substitution in bacteriophage T4 RNase H alters the ratio between its exo- and endonuclease activities.

    PubMed

    Kholod, Natalia; Sivogrivov, Dmitry; Latypov, Oleg; Mayorov, Sergey; Kuznitsyn, Rafail; Kajava, Andrey V; Shlyapnikov, Mikhail; Granovsky, Igor

    2015-11-01

    The article describes substitutions in bacteriophage T4 RNase H which provide so called das-effect. Phage T4 DNA arrest suppression (das) mutations have been described to be capable of partially suppressing the phage DNA arrest phenotype caused by a dysfunction in genes 46 and/or 47 (also known as Mre11/Rad50 complex). Genetic mapping of das13 (one of the das mutations) has shown it to be in the region of the rnh gene encoding RNase H. Here we report that Das13 mutant of RNase H has substitutions of valine 43 and leucine 242 with isoleucines. To investigate the influence of these mutations on RNase H nuclease properties we have designed a novel in vitro assay that allows us to separate and quantify exo- or endonuclease activities of flap endonuclease. The nuclease assay in vitro showed that V43I substitution increased the ratio between exonuclease/endonuclease activities of RNase H whereas L242I substitution did not affect the nuclease activity of RNase H in vitro. However, both mutations were necessary for the full das effect in vivo. Molecular modelling of the nuclease structure suggests that V43I substitution may lead to disposition of H4 helix, responsible for the interaction with the first base pairs of 5'end of branched DNA. These structural changes may affect unwinding of the first base pairs of gapped or nicked DNA generating a short flap and therefore may stabilize the DNA-enzyme complex. L242I substitution did not affect the structure of RNase H and its role in providing das-effect remains unclear. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. [Mutation screening of MITF gene in patients with Waardenburg syndrome type 2].

    PubMed

    Chen, Jing; Yang, Shu-Zhi; Liu, Jun; Han, Bing; Wang, Guo-Jian; Zhang, Xin; Kang, Dong-Yang; Dai, Pu; Young, Wie-Yen; Yuan, Hui-Jun

    2008-04-01

    Warrgenburg syndrome type 2 (WS2) is the most common autosomal dominantly-inherited syndrome with hearing loss. MITF (microphthalmia associated transcription factor)is a basic-helix-loop-helix-luecine zipper (bHLHZip) factor which regulates expression of tyrosinase, and is involved in melanocyte differentiation. Mutations in MITF associated with WS2 have been identified in some but not all affected families. Here, we report a three-generation Chinese family with a point mutation in the MITF gene causing WS2. The proband exhibits congenital severe sensorineural hearing loss, heterochromia iridis and facial freckles. One of family members manifests sensorineural deafness, and the other patients show premature greying or/and freckles. This mutation, heterozygous deletion c.639delA, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking normal interaction with its target DNA motif. This mutation is a novel mutation and the third case identified in exon 7 of MITF in WS2. Though there is only one base pair distance between this novel mutation and the other two documented cases and similar amino acids change, significant difference is seen in clinical phenotype, which suggests genetic background may play an important role.

  18. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae

    PubMed Central

    McDonald, Michael J.; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-01-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G13+) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. PMID:27386516

  19. Molecular Diagnostics in Autosomal Dominant Polycystic Kidney Disease: Utility and Limitations

    PubMed Central

    Zhao, Xiao; Paterson, Andrew D.; Zahirieh, Alireza; He, Ning; Wang, Kairong; Pei, York

    2008-01-01

    Background and objectives: Gene-based mutation screening is now available and has the potential to provide diagnostic confirmation or exclusion of autosomal dominant polycystic kidney disease. This study illustrates its utility and limitations in the clinical setting. Design, setting, participants, & measurements: Using a molecular diagnostic service, genomic DNA of one affected individual from each study family was screened for pathologic PKD1 and PKD2 mutations. Bidirectional sequencing was performed to identify sequence variants in all exons and splice junctions of both genes and to confirm the specific mutations in other family members. In two multiplex families, microsatellite markers were genotyped at both PDK1 and PKD2 loci, and pair-wise and multipoint linkage analysis was performed. Results: Three of five probands studied were referred for assessment of renal cystic disease without a family history of autosomal dominant polycystic kidney disease, and two others were younger at-risk members of families with autosomal dominant polycystic kidney disease being evaluated as living-related kidney donors. Gene-based mutation screening identified pathogenic mutations that provided confirmation or exclusion of disease in three probands, but in the other two, only unclassified variants were identified. In one proband in which mutation screening was indeterminate, DNA linkage studies provided strong evidence for disease exclusion. Conclusions: Gene-based mutation screening or DNA linkage analysis should be considered in individuals in whom the diagnosis of autosomal dominant polycystic kidney disease is uncertain because of a lack of family history or equivocal imaging results and in younger at-risk individuals who are being evaluated as living-related kidney donors. PMID:18077784

  20. Correlation between Waardenburg syndrome phenotype and genotype in a population of individuals with identified PAX3 mutations.

    PubMed

    DeStefano, A L; Cupples, L A; Arnos, K S; Asher, J H; Baldwin, C T; Blanton, S; Carey, M L; da Silva, E O; Friedman, T B; Greenberg, J; Lalwani, A K; Milunsky, A; Nance, W E; Pandya, A; Ramesar, R S; Read, A P; Tassabejhi, M; Wilcox, E R; Farrer, L A

    1998-05-01

    Waardenburg syndrome (WS) type 1 is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary abnormalities of the eye, hair, and skin, and dystopia canthorum. The phenotype is variable and affected individuals may exhibit only one or a combination of several of the associated features. To assess the relationship between phenotype and gene defect, clinical and genotype data on 48 families (271 WS individuals) collected by members of the Waardenburg Consortium were pooled. Forty-two unique mutations in the PAX3 gene, previously identified in these families, were grouped in five mutation categories: amino acid (AA) substitution in the paired domain, AA substitution in the homeodomain, deletion of the Ser-Thr-Pro-rich region, deletion of the homeodomain and the Ser-Thr-Pro-rich region, and deletion of the entire gene. These mutation classes are based on the structure of the PAX3 gene and were chosen to group mutations predicted to have similar defects in the gene product. Association between mutation class and the presence of hearing loss, eye pigment abnormality, skin hypopigmentation, or white forelock was evaluated using generalized estimating equations, which allowed for incorporation of a correlation structure that accounts for potential similarity among members of the same family. Odds for the presence of eye pigment abnormality, white forelock, and skin hypopigmentation were 2, 8, and 5 times greater, respectively, for individuals with deletions of the homeodomain and the Pro-Ser-Thr-rich region compared to individuals with an AA substitution in the homeodomain. Odds ratios that differ significantly from 1.0 for these traits may indicate that the gene products resulting from different classes of mutations act differently in the expression of WS. Although a suggestive association was detected for hearing loss with an odds ratio of 2.6 for AA substitution in the paired domain compared with AA substitution in the homeodomain, this odds ratio did not differ significantly from 1.0.

  1. Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA.

    PubMed

    Guza, Rebecca; Kotandeniya, Delshanee; Murphy, Kristopher; Dissanayake, Thakshila; Lin, Chen; Giambasu, George Madalin; Lad, Rahul R; Wojciechowski, Filip; Amin, Shantu; Sturla, Shana J; Hudson, Robert H E; York, Darrin M; Jankowiak, Ryszard; Jones, Roger; Tretyakova, Natalia Y

    2011-05-01

    Endogenous 5-methylcytosine ((Me)C) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational 'hotspots' for smoking induced lung cancer. (Me)C enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5'-CCCGGCACCC GC[(15)N(3),(13)C(1)-G]TCCGCG-3', + strand) were prepared containing [(15)N(3), (13)C(1)]-guanine opposite unsubstituted cytosine, (Me)C, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2'-deoxynucleosides, N(2)-BPDE-dG adducts formed at the [(15)N(3), (13)C(1)]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N(2)-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE-DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N(2) position of guanine. © The Author(s) 2011. Published by Oxford University Press.

  2. Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA

    PubMed Central

    Guza, Rebecca; Kotandeniya, Delshanee; Murphy, Kristopher; Dissanayake, Thakshila; Lin, Chen; Giambasu, George Madalin; Lad, Rahul R.; Wojciechowski, Filip; Amin, Shantu; Sturla, Shana J.; Hudson, Robert H.E.; York, Darrin M.; Jankowiak, Ryszard; Jones, Roger; Tretyakova, Natalia Y.

    2011-01-01

    Endogenous 5-methylcytosine (MeC) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational ‘hotspots’ for smoking induced lung cancer. MeC enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5′-CCCGGCACCC GC[15N3,13C1-G]TCCGCG-3′, + strand) were prepared containing [15N3, 13C1]-guanine opposite unsubstituted cytosine, MeC, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2′-deoxynucleosides, N2-BPDE-dG adducts formed at the [15N3, 13C1]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N2-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE–DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N2 position of guanine. PMID:21245046

  3. HIV drug resistance testing among patients failing second line antiretroviral therapy. Comparison of in-house and commercial sequencing.

    PubMed

    Chimukangara, Benjamin; Varyani, Bhavini; Shamu, Tinei; Mutsvangwa, Junior; Manasa, Justen; White, Elizabeth; Chimbetete, Cleophas; Luethy, Ruedi; Katzenstein, David

    2017-05-01

    HIV genotyping is often unavailable in low and middle-income countries due to infrastructure requirements and cost. We compared genotype resistance testing in patients with virologic failure, by amplification of HIV pol gene, followed by "in-house" sequencing and commercial sequencing. Remnant plasma samples from adults and children failing second-line ART were amplified and sequenced using in-house and commercial di-deoxysequencing, and analyzed in Harare, Zimbabwe and at Stanford, U.S.A, respectively. HIV drug resistance mutations were determined using the Stanford HIV drug resistance database. Twenty-six of 28 samples were amplified and 25 were successfully genotyped. Comparison of average percent nucleotide and amino acid identities between 23 pairs sequenced in both laboratories were 99.51 (±0.56) and 99.11 (±0.95), respectively. All pairs clustered together in phylogenetic analysis. Sequencing analysis identified 6/23 pairs with mutation discordances resulting in differences in phenotype, but these did not impact future regimens. The results demonstrate our ability to produce good quality drug resistance data in-house. Despite discordant mutations in some sequence pairs, the phenotypic predictions were not clinically significant. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Coalescent-Based Estimator of Admixture From DNA Sequences

    PubMed Central

    Wang, Jinliang

    2006-01-01

    A variety of estimators have been developed to use genetic marker information in inferring the admixture proportions (parental contributions) of a hybrid population. The majority of these estimators used allele frequency data, ignored molecular information that is available in markers such as microsatellites and DNA sequences, and assumed that mutations are absent since the admixture event. As a result, these estimators may fail to deliver an estimate or give rather poor estimates when admixture is ancient and thus mutations are not negligible. A previous molecular estimator based its inference of admixture proportions on the average coalescent times between pairs of genes taken from within and between populations. In this article I propose an estimator that considers the entire genealogy of all of the sampled genes and infers admixture proportions from the numbers of segregating sites in DNA sequence samples. By considering the genealogy of all sequences rather than pairs of sequences, this new estimator also allows the joint estimation of other interesting parameters in the admixture model, such as admixture time, divergence time, population size, and mutation rate. Comparative analyses of simulated data indicate that the new coalescent estimator generally yields better estimates of admixture proportions than the previous molecular estimator, especially when the parental populations are not highly differentiated. It also gives reasonably accurate estimates of other admixture parameters. A human mtDNA sequence data set was analyzed to demonstrate the method, and the analysis results are discussed and compared with those from previous studies. PMID:16624918

  5. Mapping Structurally Defined Guanine Oxidation Products along DNA Duplexes: Influence of Local Sequence Context and Endogenous Cytosine Methylation

    PubMed Central

    2015-01-01

    DNA oxidation by reactive oxygen species is nonrandom, potentially leading to accumulation of nucleobase damage and mutations at specific sites within the genome. We now present the first quantitative data for sequence-dependent formation of structurally defined oxidative nucleobase adducts along p53 gene-derived DNA duplexes using a novel isotope labeling-based approach. Our results reveal that local nucleobase sequence context differentially alters the yields of 2,2,4-triamino-2H-oxal-5-one (Z) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (OG) in double stranded DNA. While both lesions are overproduced within endogenously methylated MeCG dinucleotides and at 5′ Gs in runs of several guanines, the formation of Z (but not OG) is strongly preferred at solvent-exposed guanine nucleobases at duplex ends. Targeted oxidation of MeCG sequences may be caused by a lowered ionization potential of guanine bases paired with MeC and the preferential intercalation of riboflavin photosensitizer adjacent to MeC:G base pairs. Importantly, some of the most frequently oxidized positions coincide with the known p53 lung cancer mutational “hotspots” at codons 245 (GGC), 248 (CGG), and 158 (CGC) respectively, supporting a possible role of oxidative degradation of DNA in the initiation of lung cancer. PMID:24571128

  6. Structure-based approach to the prediction of disulfide bonds in proteins.

    PubMed

    Salam, Noeris K; Adzhigirey, Matvey; Sherman, Woody; Pearlman, David A

    2014-10-01

    Protein engineering remains an area of growing importance in pharmaceutical and biotechnology research. Stabilization of a folded protein conformation is a frequent goal in projects that deal with affinity optimization, enzyme design, protein construct design, and reducing the size of functional proteins. Indeed, it can be desirable to assess and improve protein stability in order to avoid liabilities such as aggregation, degradation, and immunogenic response that may arise during development. One way to stabilize a protein is through the introduction of disulfide bonds. Here, we describe a method to predict pairs of protein residues that can be mutated to form a disulfide bond. We combine a physics-based approach that incorporates implicit solvent molecular mechanics with a knowledge-based approach. We first assign relative weights to the terms that comprise our scoring function using a genetic algorithm applied to a set of 75 wild-type structures that each contains a disulfide bond. The method is then tested on a separate set of 13 engineered proteins comprising 15 artificial stabilizing disulfides introduced via site-directed mutagenesis. We find that the native disulfide in the wild-type proteins is scored well, on average (within the top 6% of the reasonable pairs of residues that could form a disulfide bond) while 6 out of the 15 artificial stabilizing disulfides scored within the top 13% of ranked predictions. Overall, this suggests that the physics-based approach presented here can be useful for triaging possible pairs of mutations for disulfide bond formation to improve protein stability. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center

    PubMed Central

    Gerth-Kahlert, Christina; Williamson, Kathleen; Ansari, Morad; Rainger, Jacqueline K; Hingst, Volker; Zimmermann, Theodor; Tech, Stefani; Guthoff, Rudolf F; van Heyningen, Veronica; FitzPatrick, David R

    2013-01-01

    Clinical evaluation and mutation analysis was performed in 51 consecutive probands with severe eye malformations – anophthalmia and/or severe microphthalmia – seen in a single specialist ophthalmology center. The mutation analysis consisted of bidirectional sequencing of the coding regions of SOX2, OTX2, PAX6 (paired domain), STRA6, BMP4, SMOC1, FOXE3, and RAX, and genome-wide array-based copy number assessment. Fifteen (29.4%) of the 51 probands had likely causative mutations affecting SOX2 (9/51), OTX2 (5/51), and STRA6 (1/51). Of the cases with bilateral anophthalmia, 9/12 (75%) were found to be mutation positive. Three of these mutations were large genomic deletions encompassing SOX2 (one case) or OTX2 (two cases). Familial inheritance of three intragenic, plausibly pathogenic, and heterozygous mutations was observed. An unaffected carrier parent of an affected child with an identified OTX2 mutation confirmed the previously reported nonpenetrance for this disorder. Two families with SOX2 mutations demonstrated a parent and child both with significant but highly variable eye malformations. Heterozygous loss-of-function mutations in SOX2 and OTX2 are the most common genetic pathology associated with severe eye malformations and bi-allelic loss-of-function in STRA6 is confirmed as an emerging cause of nonsyndromal eye malformations. PMID:24498598

  8. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis

    PubMed Central

    Garin, Intza; Edghill, Emma L.; Akerman, Ildem; Rubio-Cabezas, Oscar; Rica, Itxaso; Locke, Jonathan M.; Maestro, Miguel Angel; Alshaikh, Adnan; Bundak, Ruveyde; del Castillo, Gabriel; Deeb, Asma; Deiss, Dorothee; Fernandez, Juan M.; Godbole, Koumudi; Hussain, Khalid; O’Connell, Michele; Klupa, Thomasz; Kolouskova, Stanislava; Mohsin, Fauzia; Perlman, Kusiel; Sumnik, Zdenek; Rial, Jose M.; Ugarte, Estibaliz; Vasanthi, Thiruvengadam; Johnstone, Karen; Flanagan, Sarah E.; Martínez, Rosa; Castaño, Carlos; Patch, Ann-Marie; Fernández-Rebollo, Eduardo; Raile, Klemens; Morgan, Noel; Harries, Lorna W.; Castaño, Luis; Ellard, Sian; Ferrer, Jorge; de Nanclares, Guiomar Perez; Hattersley, Andrew T.

    2010-01-01

    Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (−3.2 SD score vs. −2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man. PMID:20133622

  9. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    PubMed

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  10. Structure of the human MLH1 N-terminus: implications for predisposition to Lynch syndrome

    DOE PAGES

    Wu, Hong; Zeng, Hong; Lam, Robert; ...

    2015-08-01

    Mismatch repair prevents the accumulation of erroneous insertions/deletions and non-Watson–Crick base pairs in the genome. Pathogenic mutations in theMLH1gene are associated with a predisposition to Lynch and Turcot's syndromes. Although genetic testing for these mutations is available, robust classification of variants requires strong clinical and functional support. Here, the first structure of the N-terminus of human MLH1, determined by X-ray crystallography, is described. Lastly, the structure shares a high degree of similarity with previously determined prokaryoticMLH1homologs; however, this structure affords a more accurate platform for the classification ofMLH1variants.

  11. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis.

    PubMed

    Phillips, Carolyn M; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M; Weiser, Pinky; Meneely, Philip M; Dernburg, Abby F

    2005-12-16

    The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient.

  12. Effect of BrU on the transition between wobble Gua-Thy and tautomeric Gua-Thy base-pairs: ab initio molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Hoshino, Ryota; Hoshiba, Yasuhiro; Danilov, Victor I.; Kurita, Noriyuki

    2013-04-01

    We investigated transition states (TS) between wobble Guanine-Thymine (wG-T) and tautomeric G-T base-pair as well as Br-containing base-pairs by MP2 and density functional theory (DFT) calculations. The obtained TS between wG-T and G*-T (asterisk is an enol-form of base) is different from TS got by the previous DFT calculation. The activation energy (17.9 kcal/mol) evaluated by our calculation is significantly smaller than that (39.21 kcal/mol) obtained by the previous calculation, indicating that our TS is more preferable. In contrast, the obtained TS and activation energy between wG-T and G-T* are similar to those obtained by the previous DFT calculation. We furthermore found that the activation energy between wG-BrU and tautomeric G-BrU is smaller than that between wG-T and tautomeric G-T. This result elucidates that the replacement of CH3 group of T by Br increases the probability of the transition reaction producing the enol-form G* and T* bases. Because G* prefers to bind to T rather than to C, and T* to G not A, our calculated results reveal that the spontaneous mutation from C to T or from A to G base is accelerated by the introduction of wG-BrU base-pair.

  13. Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics.

    PubMed

    Sripathi, Kamali N; Banáš, Pavel; Réblová, Kamila; Šponer, Jiří; Otyepka, Michal; Walter, Nils G

    2015-02-28

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5') hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5') general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5') hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs.

  14. Wobble Pairs of the HDV Ribozyme Play Specific Roles in Stabilization of Active Site Dynamics

    PubMed Central

    Sripathi, Kamali N.; Banáš, Pavel; Reblova, Kamila; Šponer, Jiři; Otyepka, Michal

    2015-01-01

    The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5′) hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5′) general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5′) hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs. PMID:25631765

  15. Single d(ApG)/cis-diamminedichloroplatinum(II) adduct-induced mutagenesis in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnouf, D.; Fuchs, R.P.P.; Gauthier, C.

    1990-08-01

    The mutation spectrum induced by the widely used antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) showed that cisDDP(d(ApG)) adducts, although they account for only 25% of the lesions formed are {approx}5 times more mutagenic than the major GG adduct. The authors report the construction of vectors bearing a single cisDDP(d(ApG)) lesion and their use in mutagenesis experiments in Escherichia coli. The mutagenic processing of the lesion is found to depend strictly on induction of the SOS system of the bacterial host cells. In SOS-induced cells, mutation frequencies of 1-2% were detected. All these mutations are targeted to the 5{prime} base of the adduct.more » Single A {yields} T transversions are mainly observed (80%), whereas A {yields} G transitions account for 10% of the total mutations. Tandem base-pair substitutions involving the adenine residue and the thymine residue immediately 5{prime} to the adduct occur at a comparable frequency (10%). No selective loss of the strand bearing the platinum adduct was seen, suggesting that, in vivo, cisDDP(d(ApG)) adducts are not blocking lesions. The high mutation specificity of cisDDP-(d(ApG))-induced mutagenesis is discussed in relation to structural data.« less

  16. Single-Molecule Counting of Point Mutations by Transient DNA Binding

    NASA Astrophysics Data System (ADS)

    Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan

    2017-03-01

    High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.

  17. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    PubMed

    Feitsma, Harma; de Bruijn, Ewart; van de Belt, Jose; Nijman, Isaac J; Cuppen, Edwin

    2008-07-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

  18. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix.

    PubMed

    Ambrosi, Cinzia; Walker, Amy E; Depriest, Adam D; Cone, Angela C; Lu, Connie; Badger, John; Skerrett, I Martha; Sosinsky, Gina E

    2013-01-01

    Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins) can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons) by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26) that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P). Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S) only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels displayed an increased tendency to aggregate. Thus, mutations in TM4 cause a range of phenotypes of dysfunctional gap junction channels that are discussed within the context of the X-ray crystallographic structure.

  19. Replication of a carcinogenic nitropyrene DNA lesion by human Y-family DNA polymerase

    PubMed Central

    Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong

    2013-01-01

    Nitrated polycyclic aromatic hydrocarbons are common environmental pollutants, of which many are mutagenic and carcinogenic. 1-Nitropyrene is the most abundant nitrated polycyclic aromatic hydrocarbon, which causes DNA damage and is carcinogenic in experimental animals. Error-prone translesion synthesis of 1-nitropyrene–derived DNA lesions generates mutations that likely play a role in the etiology of cancer. Here, we report two crystal structures of the human Y-family DNA polymerase iota complexed with the major 1-nitropyrene DNA lesion at the insertion stage, incorporating either dCTP or dATP nucleotide opposite the lesion. Polι maintains the adduct in its active site in two distinct conformations. dCTP forms a Watson–Crick base pair with the adducted guanine and excludes the pyrene ring from the helical DNA, which inhibits replication beyond the lesion. By contrast, the mismatched dATP stacks above the pyrene ring that is intercalated in the helix and achieves a productive conformation for misincorporation. The intra-helical bulky pyrene mimics a base pair in the active site and facilitates adenine misincorporation. By structure-based mutagenesis, we show that the restrictive active site of human polη prevents the intra-helical conformation and A-base misinsertions. This work provides one of the molecular mechanisms for G to T transversions, a signature mutation in human lung cancer. PMID:23268450

  20. Short template switch events explain mutation clusters in the human genome.

    PubMed

    Löytynoja, Ari; Goldman, Nick

    2017-06-01

    Resequencing efforts are uncovering the extent of genetic variation in humans and provide data to study the evolutionary processes shaping our genome. One recurring puzzle in both intra- and inter-species studies is the high frequency of complex mutations comprising multiple nearby base substitutions or insertion-deletions. We devised a generalized mutation model of template switching during replication that extends existing models of genome rearrangement and used this to study the role of template switch events in the origin of short mutation clusters. Applied to the human genome, our model detects thousands of template switch events during the evolution of human and chimp from their common ancestor and hundreds of events between two independently sequenced human genomes. Although many of these are consistent with a template switch mechanism previously proposed for bacteria, our model also identifies new types of mutations that create short inversions, some flanked by paired inverted repeats. The local template switch process can create numerous complex mutation patterns, including hairpin loop structures, and explains multinucleotide mutations and compensatory substitutions without invoking positive selection, speculative mechanisms, or implausible coincidence. Clustered sequence differences are challenging for current mapping and variant calling methods, and we show that many erroneous variant annotations exist in human reference data. Local template switch events may have been neglected as an explanation for complex mutations because of biases in commonly used analyses. Incorporation of our model into reference-based analysis pipelines and comparisons of de novo assembled genomes will lead to improved understanding of genome variation and evolution. © 2017 Löytynoja and Goldman; Published by Cold Spring Harbor Laboratory Press.

  1. Exome sequencing identifies complex I NDUFV2 mutations as a novel cause of Leigh syndrome.

    PubMed

    Cameron, Jessie M; MacKay, Nevena; Feigenbaum, Annette; Tarnopolsky, Mark; Blaser, Susan; Robinson, Brian H; Schulze, Andreas

    2015-09-01

    Two siblings with hypertrophic cardiomyopathy and brain atrophy were diagnosed with Complex I deficiency based on low enzyme activity in muscle and high lactate/pyruvate ratio in fibroblasts. Whole exome sequencing results of fibroblast gDNA from one sibling was narrowed down to 190 SNPs or In/Dels in 185 candidate genes by selecting non-synonymous coding sequence base pair changes that were not present in the SNP database. Two compound heterozygous mutations were identified in both siblings in NDUFV2, encoding the 24 kDa subunit of Complex I. The intronic mutation (c.IVS2 + 1delGTAA) is disease causing and has been reported before. The other mutation is novel (c.669_670insG, p.Ser224Valfs*3) and predicted to cause a pathogenic frameshift in the protein. Subsequent investigation of 10 probands with complex I deficiency from different families revealed homozygosity for the intronic c.IVS2 + 1delGTAA mutation in a second, consanguineous family. In this family three of five siblings were affected. Interestingly, they presented with Leigh syndrome but no cardiac involvement. The same genotype had been reported previously in a two families but presenting with hypertrophic cardiomyopathy, trunk hypotonia and encephalopathy. We have identified NDUFV2 mutations in two families with Complex I deficiency, including a novel mutation. The diagnosis of Leigh syndrome expands the clinical phenotypes associated with the c.IVS2 + 1delGTAA mutation in this gene. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms

    PubMed Central

    Oh, Stephen T.; Simonds, Erin F.; Jones, Carol; Hale, Matthew B.; Goltsev, Yury; Gibbs, Kenneth D.; Merker, Jason D.; Zehnder, James L.; Nolan, Garry P.

    2010-01-01

    Dysregulated Janus kinase–signal transducer and activator of transcription (JAK-STAT) signaling due to activation of tyrosine kinases is a common feature of myeloid malignancies. Here we report the first human disease-related mutations in the adaptor protein LNK, a negative regulator of JAK-STAT signaling, in 2 patients with JAK2 V617F–negative myeloproliferative neoplasms (MPNs). One patient exhibited a 5 base-pair deletion and missense mutation leading to a premature stop codon and loss of the pleckstrin homology (PH) and Src homology 2 (SH2) domains. A second patient had a missense mutation (E208Q) in the PH domain. BaF3-MPL cells transduced with these LNK mutants displayed augmented and sustained thrombopoietin-dependent growth and signaling. Primary samples from MPN patients bearing LNK mutations exhibited aberrant JAK-STAT activation, and cytokine-responsive CD34+ early progenitors were abnormally abundant in both patients. These findings indicate that JAK-STAT activation due to loss of LNK negative feedback regulation is a novel mechanism of MPN pathogenesis. PMID:20404132

  3. Effect of the Molecular Nature of Mutation on the Efficiency of Intrachromosomal Gene Conversion in Mouse Cells

    PubMed Central

    Letsou, Anthea; Liskay, R. Michael

    1987-01-01

    With the intent of further exploring the nature of gene conversion in mammalian cells, we systematically addressed the effects of the molecular nature of mutation on the efficiency of intrachromosomal gene conversion in cultured mouse cells. Comparison of conversion rates revealed that all mutations studied were suitable substrates for gene conversion; however, we observed that the rates at which different mutations converted to wild-type could differ by two orders of magnitude. Differences in conversion rates were correlated with the molecular nature of the mutations. In general, rates of conversion decreased with increasing size of the molecular lesions. In comparisons of conversion rates for single base pair insertions and deletions we detected a genotype-directed path for conversion, by which an insertion was converted to wild-type three to four times more efficiently than was a deletion which maps to the same site. The data are discussed in relation to current theories of gene conversion, and are consistent with the idea that gene conversion in mammalian cells can result from repair of heteroduplex DNA (hDNA) intermediates. PMID:2828159

  4. Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation.

    PubMed Central

    Garcia, J A; Harrich, D; Soultanakis, E; Wu, F; Mitsuyasu, R; Gaynor, R B

    1989-01-01

    The human immunodeficiency virus (HIV) type 1 LTR is regulated at the transcriptional level by both cellular and viral proteins. Using HeLa cell extracts, multiple regions of the HIV LTR were found to serve as binding sites for cellular proteins. An untranslated region binding protein UBP-1 has been purified and fractions containing this protein bind to both the TAR and TATA regions. To investigate the role of cellular proteins binding to both the TATA and TAR regions and their potential interaction with other HIV DNA binding proteins, oligonucleotide-directed mutagenesis of both these regions was performed followed by DNase I footprinting and transient expression assays. In the TATA region, two direct repeats TC/AAGC/AT/AGCTGC surround the TATA sequence. Mutagenesis of both of these direct repeats or of the TATA sequence interrupted binding over the TATA region on the coding strand, but only a mutation of the TATA sequence affected in vivo assays for tat-activation. In addition to TAR serving as the site of binding of cellular proteins, RNA transcribed from TAR is capable of forming a stable stem-loop structure. To determine the relative importance of DNA binding proteins as compared to secondary structure, oligonucleotide-directed mutations in the TAR region were studied. Local mutations that disrupted either the stem or loop structure were defective in gene expression. However, compensatory mutations which restored base pairing in the stem resulted in complete tat-activation. This indicated a significant role for the stem-loop structure in HIV gene expression. To determine the role of TAR binding proteins, mutations were constructed which extensively changed the primary structure of the TAR region, yet left stem base pairing, stem energy and the loop sequence intact. These mutations resulted in decreased protein binding to TAR DNA and defects in tat-activation, and revealed factor binding specifically to the loop DNA sequence. Further mutagenesis which inverted this stem and loop mutation relative to the HIV LTR mRNA start site resulted in even larger decreases in tat-activation. This suggests that multiple determinants, including protein binding, the loop sequence, and RNA or DNA secondary structure, are important in tat-activation and suggests that tat may interact with cellular proteins binding to DNA to increase HIV gene expression. Images PMID:2721501

  5. A comparison of somatic mutational spectra in healthy study populations from Russia, Sweden and USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noori, P; Hou, S; Jones, I M

    Comparison of mutation spectra at the hypoxanthine-phosphoribosyl transferase (HPRT) gene of peripheral blood T lymphocytes may provide insight into the aetiology of somatic mutation contributing to carcinogenesis and other diseases. To increase knowledge of mutation spectra in healthy people, we have analyzed HPRT mutant T-cells of 50 healthy Russians originally recruited as controls for a study of Chernobyl clean-up workers (Jones et al. Radiation Res. 158, 2002, 424). Reverse transcriptase polymerase chain reactions and DNA sequencing identified 161 independent mutations among 176 thioguanine resistant mutants. Forty (40) mutations affected splicing mechanisms and 27 deletions or insertions of 1 to 60more » nucleotides were identified. Ninety four (94) single base substitutions were identified, including 62 different mutations at 55 different nucleotide positions, of which 19 had not previously been reported in human T-cells. Comparison of this base substitution spectrum with mutation spectra in a USA (Burkhart-Schultz et al. Carcinogenesis 17, 1996, 1871) and two Swedish populations (Podlutsky et al, Carcinogenesis 19, 1998, 557, Podlutsky et al. Mutation Res. 431, 1999, 325) revealed similarity in the type, frequency and distribution of mutations in the four spectra, consistent with aetiologies inherent in human metabolism. There were 15-19 identical mutations in the three pair-wise comparisons of Russian with USA and Swedish spectra. Intriguingly, there were 21 mutations unique to the Russian spectrum, and comparison by the Monte Carlo method of Adams and Skopek (J. Mol. Biol. 194, 1987, 391) indicated that the Russian spectrum was different from both Swedish spectra (P=0.007, 0.002) but not different from the USA spectrum (P=0.07), when Bonferroni correction for multiple comparisons was made (p < 0.008 required for significance). Age and smoking did not account for these differences. Other factors causing mutational differences need to be explored.« less

  6. Short communication: novel truncating mutations in the CFTR gene causing a severe form of cystic fibrosis in Italian patients.

    PubMed

    Lenarduzzi, S; Morgutti, M; Crovella, S; Coiana, A; Rosatelli, M C

    2014-11-14

    Cystic fibrosis (CF) is a common recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. More than 1800 different mutations have been described to date. Here, we report 3 novel mutations in CFTR in 3 Italian CF patients. To detect and identify 36 frequent mutations in Caucasians, we used the INNO-LiPA CFTR19 and INNO-LiPA CFTR17+Tn Update kits (Innogenetics; Ghent, Belgium). Our first analysis did not reveal both of the responsible mutations; thus, direct sequencing of the CFTR gene coding region was performed. The 3 patients were compound heterozygous. In one allele, the F508del (c.1521_1523delCTT, p.PHE508del) mutation in exon 11 was observed in each case. For the second allele, in patient No.1, direct sequencing revealed an 11-base pair deletion (GAGGCGATACT) in exon 14 (c.2236_2246del; pGlu746Alafs*29). In patient No. 2, direct sequencing revealed a nonsense mutation at nucleotide 3892 (c.3892G>T) in exon 24. In patient No. 3, direct sequencing revealed a deletion of cytosine in exon 27 (c.4296delC; p.Asn1432Lysfs*16). These 3 novel mutations indicate the production of a truncated protein, which consequently results in a non-functional polypeptide.

  7. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie.

    PubMed

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-12-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance.

  8. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie

    PubMed Central

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol

    2010-01-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance. PMID:21113104

  9. Familial recurrence of SOX2 anophthalmia syndrome: phenotypically normal mother with two affected daughters.

    PubMed

    Schneider, Adele; Bardakjian, Tanya M; Zhou, Jie; Hughes, Nkecha; Keep, Rosanne; Dorsainville, Darnelle; Kherani, Femida; Katowitz, James; Schimmenti, Lisa A; Hummel, Marybeth; Fitzpatrick, David R; Young, Terri L

    2008-11-01

    The SOX2 anophthalmia syndrome is emerging as a clinically recognizable disorder that has been identified in 10-15% of individuals with bilateral anophthalmia. Extra-ocular anomalies are common. The majority of SOX2 mutations identified appear to arise de novo in probands ascertained through the presence of anophthalmia or microphthalmia. In this report, we describe two sisters with bilateral anophthalmia/microphthalmia, brain anomalies and a novel heterozygous SOX2 gene single-base pair nucleotide deletion, c.551delC, which predicts p.Pro184ArgfsX19. The hypothetical protein product is predicted to lead to haploinsufficient SOX2 function. Mosaicism for this mutation in the SOX2 gene was also identified in their clinically unaffected mother in peripheral blood DNA. Thus it cannot be assumed that all SOX2 mutations in individuals with anophthalmia/microphthalmia are de novo. Testing of parents is indicated when a SOX2 mutation is identified in a proband. Copyright 2008 Wiley-Liss, Inc.

  10. Familial Recurrence of SOX2 Anophthalmia Syndrome: Phenotypically Normal Mother with Two Affected Daughters

    PubMed Central

    Schneider, Adele; Bardakjian, Tanya M.; Zhou, Jie; Hughes, Nkecha; Keep, Rosanne; Dorsainville, Darnelle; Kherani, Femida; Katowitz, James; Schimmenti, Lisa A.; Hummel, Marybeth; FitzPatrick, David R; Young, Terri L.

    2013-01-01

    The SOX2 anophthalmia syndrome is emerging as a clinically recognizable disorder that has been identified in 10–15% of individuals with bilateral anophthalmia. Extra-ocular anomalies are common. The majority of SOX2 mutations identified appear to arise de novo in probands ascertained through the presence of anophthalmia or microphthalmia. In this report, we describe two sisters with bilateral anophthalmia/microphthalmia, brain anomalies and a novel heterozygous SOX2 gene single-base pair nucleotide deletion, c.551delC, which predicts p.Pro184ArgfsX19. The hypothetical protein product is predicted to lead to haploinsufficient SOX2 function. Mosaicism for this mutation in the SOX2 gene was also identified in their clinically unaffected mother in peripheral blood DNA. Thus it cannot be assumed that all SOX2 mutations in individuals with anophthalmia /microphthalmia are de novo. Testing of parents is indicated when a SOX2 mutation is identified in a proband. PMID:18831064

  11. A new mtDNA mutation in the tRNA[sup Lys] gene associated with myoclonic epilepsy and ragged-red fibers (MERRF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvestri, G.; Moraes, C.T.; Shanske, S.

    1992-12-01

    Myoclonic epilepsy with ragged-red fibers (MERRF) has been associated with an A[r arrow]G transition at mtDNA nt 8344, within a conserved region of the tRNA[sup Lys] gene. Although the 8344 mutation is highly prevalent in patients with MERRF, it is not observed in 10%-20% of the cases, suggesting genetic heterogeneity. The authors have sequenced the tRNA[sup Lys] gene of five MERRF patients lacking the common 8344 mutation. One of these showed a novel T[r arrow]C transition at nucleotide position 8356, disrupting a highly conserved base pair in the T[Psi]C stem. The mutant mtDNA population was essentially homoplasmic in muscle butmore » was heteroplasmic in blood (47%). Neither 20 patients with other mitochondrial diseases nor 25 controls carried this mutation. These findings suggest that tRNA[sup Lys] alterations may play a specific role in the pathogenesis of MERRF syndrome. 21 refs., 4 figs.« less

  12. Novel mutations in the STK11 gene in Thai patients with Peutz-Jeghers syndrome

    PubMed Central

    Ausavarat, Surasawadee; Leoyklang, Petcharat; Vejchapipat, Paisarn; Chongsrisawat, Voranush; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2009-01-01

    Peutz-Jeghers syndrome (PJS), a rare autosomal dominant inherited disorder, is characterized by hamartomatous gastrointestinal polyps and mucocutaneous pigmentation. Patients with this syndrome have a predisposition to a variety of cancers in multiple organs. Mutations in the serine/threonine kinase 11 (STK11) gene have been identified as a major cause of PJS. Here we present the clinical and molecular findings of two unrelated Thai individuals with PJS. Mutation analysis by Polymerase Chain Reaction-sequencing of the entire coding region of STK11 revealed two potentially pathogenic mutations. One harbored a single nucleotide deletion (c.182delG) in exon 1 resulting in a frameshift leading to premature termination at codon 63 (p.Gly61AlafsX63). The other carried an in-frame 9-base-pair (bp) deletion in exon 7, c.907_915del9 (p.Ile303_Gln305del). Both deletions were de novo and have never been previously described. This study has expanded the genotypic spectrum of the STK11 gene. PMID:19908348

  13. Norrie disease gene sequence variants in an ethnically diverse population with retinopathy of prematurity.

    PubMed

    Hutcheson, Kelly A; Paluru, Prasuna C; Bernstein, Steven L; Koh, Jamie; Rappaport, Eric F; Leach, Richard A; Young, Terri L

    2005-07-14

    Retinopathy of prematurity (ROP) is a leading cause of visual loss in the pediatric population. Mutations in the Norrie disease gene (NDP) are associated with heritable retinal vascular disorders, and have been found in a small subset of patients with severe retinopathy of prematurity. Varying rates of progression to threshold disease in different races may have a genetic basis, as recent studies suggest that the incidence of NDP mutations may vary in different groups. African Americans, for example, are less likely to develop severe degrees of ROP. We screened a large cohort of ethnically diverse patients for mutations in the entire NDP. A total of 143 subjects of different ethnic backgrounds were enrolled in the study. Fifty-four patients had severe ROP (Stage 3 or worse). Of these, 38 were threshold in at least one eye (with a mean gestational age of 26.1 weeks and mean birth weight of 788.4 g). There were 36 patients with mild or no ROP, 31 parents with no history of retinal disease or prematurity, and 22 wild type (normal) controls. There were 70 African American subjects, 55 Caucasians, and 18 of other races. Severe ROP was noted in 29 African American subjects, 17 Caucasians, and 8 of other races. Seven polymerase chain reaction primer pairs spanning the NDP were optimized for denaturing high performance liquid chromatography and direct sequencing. Three primer pairs covered the coding region, and the remaining four spanned the 3' and 5' untranslated regions (UTR). Six of 54 (11%) infants with severe ROP had polymorphisms in the NDP. Five of the infants were African American, and one was Caucasian. Two parents were heterozygous for the same polymorphism as their child. One parent-child pair had a single base pair (bp) insertion in the 3' UTR region. Another parent-child pair had two mutations: a 14 bp deletion in the 5' UTR region of exon 1 and a single nucleotide polymorphism in the 5' UTR region of exon 2. No coding region sequence changes were found. No polymorphisms were observed in infants with mild or no ROP, or in the wild type controls. Of the six sequence alterations found, five were novel nucleotide changes: One in the 5' UTR region of exon 2, and four in the 3' UTR region of exon 3. The extent of NDP polymorphisms in this large, racially diverse group of infants is moderate. NDP polymorphisms may play a role in the pathogenesis of ROP, but do not appear to be a major causative factor.

  14. Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers

    PubMed Central

    Briggs, Sarah; Tomlinson, Ian

    2013-01-01

    Polymerases ϵ and δ are the main enzymes that replicate eukaryotic DNA. Accurate replication occurs through Watson–Crick base pairing and also through the action of the polymerases' exonuclease (proofreading) domains. We have recently shown that germline exonuclease domain mutations (EDMs) of POLE and POLD1 confer a high risk of multiple colorectal adenomas and carcinoma (CRC). POLD1 mutations also predispose to endometrial cancer (EC). These mutations are associated with high penetrance and dominant inheritance, although the phenotype can be variable. We have named the condition polymerase proofreading-associated polyposis (PPAP). Somatic POLE EDMs have also been found in sporadic CRCs and ECs, although very few somatic POLD1 EDMs have been detected. Both the germline and the somatic DNA polymerase EDMs cause an ‘ultramutated’, apparently microsatellite-stable, type of cancer, sometimes leading to over a million base substitutions per tumour. Here, we present the evidence for POLE and POLD1 as important contributors to the pathogenesis of CRC and EC, and highlight some of the key questions in this emerging field. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd PMID:23447401

  15. Tissue or blood: which is more suitable for detection of EGFR mutations in non-small cell lung cancer?

    PubMed

    Biaoxue, Rong; Shuanying, Yang

    2018-01-01

    Many studies have evaluated the accuracy of EGFR mutation status in blood against that in tumor tissues as the reference. We conducted this systematic review and meta-analysis to assess whether blood can be used as a substitute for tumor tissue in detecting EGFR mutations. Investigations that provided data on EGFR mutation status in blood were searched in the databases of Medline, Embase, Ovid Technologies and Web of Science. The detect efficiency of EGFR mutations in paired blood and tissues was compared using a random-effects model of meta-analysis. Pooled sensitivity and specificity and diagnostic accuracy were calculated by receiver operating characteristic curve. A total of 19 studies with 2,922 individuals were involved in this meta-analysis. The pooled results showed the positive detection rate of EGFR mutations in lung cancer tissues was remarkably higher than that of paired blood samples (odds ratio [OR] = 1.47, p<0.001). The pooled sensitivity and specificity of blood were 0.65 and 0.91, respectively, and the area under the receiver operating characteristic curve was 0.89. Although blood had a better specificity for detecting EGFR mutations, the absence of blood positivity should not necessarily be construed as confirmed negativity. Patients with negative results for blood should decidedly undergo further biopsies to ascertain EGFR mutations.

  16. Structural Requirement in Clostridium perfringens Collagenase mRNA 5′ Leader Sequence for Translational Induction through Small RNA-mRNA Base Pairing

    PubMed Central

    Nomura, Nobuhiko; Nakamura, Kouji

    2013-01-01

    The Gram-positive anaerobic bacterium Clostridium perfringens is pathogenic to humans and animals, and the production of its toxins is strictly regulated during the exponential phase. We recently found that the 5′ leader sequence of the colA transcript encoding collagenase, which is a major toxin of this organism, is processed and stabilized in the presence of the small RNA VR-RNA. The primary colA 5′-untranslated region (5′UTR) forms a long stem-loop structure containing an internal bulge and masks its own ribosomal binding site. Here we found that VR-RNA directly regulates colA expression through base pairing with colA mRNA in vivo. However, when the internal bulge structure was closed by point mutations in colA mRNA, translation ceased despite the presence of VR-RNA. In addition, a mutation disrupting the colA stem-loop structure induced mRNA processing and ColA-FLAG translational activation in the absence of VR-RNA, indicating that the stem-loop and internal bulge structure of the colA 5′ leader sequence is important for regulation by VR-RNA. On the other hand, processing was required for maximal ColA expression but was not essential for VR-RNA-dependent colA regulation. Finally, colA processing and translational activation were induced at a high temperature without VR-RNA. These results suggest that inhibition of the colA 5′ leader structure through base pairing is the primary role of VR-RNA in colA regulation and that the colA 5′ leader structure is a possible thermosensor. PMID:23585542

  17. Development of Pineapple Microsatellite Markers and Germplasm Genetic Diversity Analysis

    PubMed Central

    Tong, Helin; Chen, You; Wang, Jingyi; Chen, Yeyuan; Sun, Guangming; He, Junhu; Wu, Yaoting

    2013-01-01

    Two methods were used to develop pineapple microsatellite markers. Genomic library-based SSR development: using selectively amplified microsatellite assay, 86 sequences were generated from pineapple genomic library. 91 (96.8%) of the 94 Simple Sequence Repeat (SSR) loci were dinucleotide repeats (39 AC/GT repeats and 52 GA/TC repeats, accounting for 42.9% and 57.1%, resp.), and the other three were mononucleotide repeats. Thirty-six pairs of SSR primers were designed; 24 of them generated clear bands of expected sizes, and 13 of them showed polymorphism. EST-based SSR development: 5659 pineapple EST sequences obtained from NCBI were analyzed; among 1397 nonredundant EST sequences, 843 were found containing 1110 SSR loci (217 of them contained more than one SSR locus). Frequency of SSRs in pineapple EST sequences is 1SSR/3.73 kb, and 44 types were found. Mononucleotide, dinucleotide, and trinucleotide repeats dominate, accounting for 95.6% in total. AG/CT and AGC/GCT were the dominant type of dinucleotide and trinucleotide repeats, accounting for 83.5% and 24.1%, respectively. Thirty pairs of primers were designed for each of randomly selected 30 sequences; 26 of them generated clear and reproducible bands, and 22 of them showed polymorphism. Eighteen pairs of primers obtained by the one or the other of the two methods above that showed polymorphism were selected to carry out germplasm genetic diversity analysis for 48 breeds of pineapple; similarity coefficients of these breeds were between 0.59 and 1.00, and they can be divided into four groups accordingly. Amplification products of five SSR markers were extracted and sequenced, corresponding repeat loci were found and locus mutations are mainly in copy number of repeats and base mutations in the flanking region. PMID:24024187

  18. Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori.

    PubMed

    Hanafi, Aimi; Lee, Woon Ching; Loke, Mun Fai; Teh, Xinsheng; Shaari, Ain; Dinarvand, Mojdeh; Lehours, Philippe; Mégraud, Francis; Leow, Alex Hwong Ruey; Vadivelu, Jamuna; Goh, Khean Lee

    2016-01-01

    Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori . Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA . This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains.

  19. Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori

    PubMed Central

    Hanafi, Aimi; Lee, Woon Ching; Loke, Mun Fai; Teh, Xinsheng; Shaari, Ain; Dinarvand, Mojdeh; Lehours, Philippe; Mégraud, Francis; Leow, Alex Hwong Ruey; Vadivelu, Jamuna; Goh, Khean Lee

    2016-01-01

    Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori. Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA. This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains. PMID:28018334

  20. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing

    PubMed Central

    Walsh, Tom; Lee, Ming K.; Casadei, Silvia; Thornton, Anne M.; Stray, Sunday M.; Pennil, Christopher; Nord, Alex S.; Mandell, Jessica B.; Swisher, Elizabeth M.; King, Mary-Claire

    2010-01-01

    Inherited loss-of-function mutations in the tumor suppressor genes BRCA1, BRCA2, and multiple other genes predispose to high risks of breast and/or ovarian cancer. Cancer-associated inherited mutations in these genes are collectively quite common, but individually rare or even private. Genetic testing for BRCA1 and BRCA2 mutations has become an integral part of clinical practice, but testing is generally limited to these two genes and to women with severe family histories of breast or ovarian cancer. To determine whether massively parallel, “next-generation” sequencing would enable accurate, thorough, and cost-effective identification of inherited mutations for breast and ovarian cancer, we developed a genomic assay to capture, sequence, and detect all mutations in 21 genes, including BRCA1 and BRCA2, with inherited mutations that predispose to breast or ovarian cancer. Constitutional genomic DNA from subjects with known inherited mutations, ranging in size from 1 to >100,000 bp, was hybridized to custom oligonucleotides and then sequenced using a genome analyzer. Analysis was carried out blind to the mutation in each sample. Average coverage was >1200 reads per base pair. After filtering sequences for quality and number of reads, all single-nucleotide substitutions, small insertion and deletion mutations, and large genomic duplications and deletions were detected. There were zero false-positive calls of nonsense mutations, frameshift mutations, or genomic rearrangements for any gene in any of the test samples. This approach enables widespread genetic testing and personalized risk assessment for breast and ovarian cancer. PMID:20616022

  1. Effects of HBV Genetic Variability on RNAi Strategies

    PubMed Central

    Panjaworayan, Nattanan; Brown, Chris M.

    2011-01-01

    RNAi strategies present promising antiviral strategies against HBV. RNAi strategies require base pairing between short RNAi effectors and targets in the HBV pregenome or other RNAs. Natural variation in HBV genotypes, quasispecies variation, or mutations selected by the RNAi strategy could potentially make these strategies less effective. However, current and proposed antiviral strategies against HBV are being, or could be, designed to avoid this. This would involve simultaneous targeting of multiple regions of the genome, or regions in which variation or mutation is not tolerated. RNAi strategies against single genotypes or against variable regions of the genome would need to have significant other advantages to be part of robust therapies. PMID:21760994

  2. Accounting for epistatic interactions improves the functional analysis of protein structures.

    PubMed

    Wilkins, Angela D; Venner, Eric; Marciano, David C; Erdin, Serkan; Atri, Benu; Lua, Rhonald C; Lichtarge, Olivier

    2013-11-01

    The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. lichtarge@bcm.edu. Supplementary data are available at Bioinformatics online.

  3. Accounting for epistatic interactions improves the functional analysis of protein structures

    PubMed Central

    Wilkins, Angela D.; Venner, Eric; Marciano, David C.; Erdin, Serkan; Atri, Benu; Lua, Rhonald C.; Lichtarge, Olivier

    2013-01-01

    Motivation: The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. Methods and Results: We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Conclusions: Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. Contact: lichtarge@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24021383

  4. Mutation of the PAX6 gene in a sporadic patient with atypical aniridia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, D.; Li, Y.; Traboulsi, E.I.

    1994-09-01

    A 28 year-old man presented with poor vision since childhood and gradual further decline of several years duration. His visual acuity measures 20/200 OD with -11.50 + 0.50 x 150 and 20/100 OS with -12.25 + 0.25 x 35. He had a fine nystagmus. His visual fields were full. There was a circumferential pannus with areas of corneal stromal opacification. The iris was hypoplastic with atypical colobomatous defects. The lenses had scattered cortical opacities. The intraocular pressures were normal. The optic nerves had cup disk ratios of 0.6 OU. The family history was negative for similar defects. A diagnosis ofmore » aniridia was made and blood was drawn for analysis of the PAX6 gene. PCR amplification of exon 5 showed heterozygous fragments with one allele being larger than normal. Direct DNA sequencing of the individual heterozygous allele showed a 41 base pair insertion at nucleotide 483 in exon 5 of the paired domain. This frameshift mutation changed codon 71 to a stop codon. The diagnosis of aniridia was confirmed in this atypical patient, who will need to be monitored for his high risk of glaucoma. The risk of developing Wilms` tumor in patients with mutations within the aniridia gene is presumably negligible since the neighboring Wilms` tumor gene is unaffected. The identification of intragenic mutations of the PAX6 gene in patients with sporadic aniridia modifies the management of such patients because of recognition of the increased risk of glaucoma and by reducing the necessity for frequent monitoring for the presence of Wilms` tumor.« less

  5. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy.

    PubMed

    Findlay, John M; Castro-Giner, Francesc; Makino, Seiko; Rayner, Emily; Kartsonaki, Christiana; Cross, William; Kovac, Michal; Ulahannan, Danny; Palles, Claire; Gillies, Richard S; MacGregor, Thomas P; Church, David; Maynard, Nicholas D; Buffa, Francesca; Cazier, Jean-Baptiste; Graham, Trevor A; Wang, Lai-Mun; Sharma, Ricky A; Middleton, Mark; Tomlinson, Ian

    2016-04-05

    How chemotherapy affects carcinoma genomes is largely unknown. Here we report whole-exome and deep sequencing of 30 paired oesophageal adenocarcinomas sampled before and after neo-adjuvant chemotherapy. Most, but not all, good responders pass through genetic bottlenecks, a feature associated with higher mutation burden pre-treatment. Some poor responders pass through bottlenecks, but re-grow by the time of surgical resection, suggesting a missed therapeutic opportunity. Cancers often show major changes in driver mutation presence or frequency after treatment, owing to outgrowth persistence or loss of sub-clones, copy number changes, polyclonality and/or spatial genetic heterogeneity. Post-therapy mutation spectrum shifts are also common, particularly C>A and TT>CT changes in good responders or bottleneckers. Post-treatment samples may also acquire mutations in known cancer driver genes (for example, SF3B1, TAF1 and CCND2) that are absent from the paired pre-treatment sample. Neo-adjuvant chemotherapy can rapidly and profoundly affect the oesophageal adenocarcinoma genome. Monitoring molecular changes during treatment may be clinically useful.

  6. Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs.

    PubMed

    Chen-Harris, Haiyin; Borucki, Monica K; Torres, Clinton; Slezak, Tom R; Allen, Jonathan E

    2013-02-12

    High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.

  7. Homozygous single base deletion in TUSC3 causes intellectual disability with developmental delay in an Omani family.

    PubMed

    Al-Amri, Ahmed; Saegh, Abeer Al; Al-Mamari, Watfa; El-Asrag, Mohammed E; Ivorra, Jose L; Cardno, Alastair G; Inglehearn, Chris F; Clapcote, Steven J; Ali, Manir

    2016-07-01

    Intellectual disability (ID) is the term used to describe a diverse group of neurological conditions with congenital or juvenile onset, characterized by an IQ score of less than 70 and difficulties associated with limitations in cognitive function and adaptive behavior. The condition can be inherited or caused by environmental factors. The genetic forms are heterogeneous, with mutations in over 500 known genes shown to cause the disorder. We report a consanguineous Omani family in which multiple individuals have ID and developmental delay together with some variably present features including short stature, microcephaly, moderate facial dysmorphism, and congenital malformations of the toes or hands. Homozygosity mapping combined with whole exome next generation sequencing identified a novel homozygous single base pair deletion in TUSC3, c.222delA, p.R74 fs. The mutation segregates with the disease phenotype in a recessive manner and is absent in 60,706 unrelated individuals from various disease-specific and population genetic studies. TUSC3 mutations have been previously identified as causing either syndromic or non-syndromic ID in patients from France, Italy, Iran and Pakistan. This paper supports the previous clinical descriptions of the condition caused by TUSC3 mutations and describes the seventh family with mutations in this gene, thus contributing to the genetic spectrum of mutations. This is the first report of a family from the Arabian peninsula with this form of ID. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. The genetic landscape of a physical interaction

    PubMed Central

    Diss, Guillaume

    2018-01-01

    A key question in human genetics and evolutionary biology is how mutations in different genes combine to alter phenotypes. Efforts to systematically map genetic interactions have mostly made use of gene deletions. However, most genetic variation consists of point mutations of diverse and difficult to predict effects. Here, by developing a new sequencing-based protein interaction assay – deepPCA – we quantified the effects of >120,000 pairs of point mutations on the formation of the AP-1 transcription factor complex between the products of the FOS and JUN proto-oncogenes. Genetic interactions are abundant both in cis (within one protein) and trans (between the two molecules) and consist of two classes – interactions driven by thermodynamics that can be predicted using a three-parameter global model, and structural interactions between proximally located residues. These results reveal how physical interactions generate quantitatively predictable genetic interactions. PMID:29638215

  9. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2016-01-01

    Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability. PMID:26931811

  10. Novel methods to enhance single strand conformation polymorphism (SSCP) senstivity and efficiency: Application to mutation detection in cystic fibrosis (CF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagstrom, D.J.; Snow, K.; Yuan, Z.

    1994-09-01

    For single gene defects in which there are a variety of mutations with significant frequencies, it is a challenge to find an efficient and sensitive method for mutation detection. For example, although 70% to 75% of CF chromosomes in a North American Caucasian population have the mutation {delta}F508, more than 400 mutations (mostly single base pair substitutions) are represented on the remaining chromosomes. SSCP analysis is a relatively straightforward procedure and therefore suitable for routine use in a clinical laboratory. However, previous reports have demonstrated suboptimal sensitivity rates in screening for mutations. We have developed a novel set of conditionsmore » which greatly enhances sensitivity and efficiency of SSCP. Our protocol incorporates multiplex PCR, stepping of wattages during electrophoresis and increased salt concentration at the anode relative to the gel. To screen for mutations in the CFTR gene, three multiplex PCR reactions are performed using identical thermocycler parameters. Sizes of PCR products range from 441 bp to 196 bp: size differences of > 30 bp are necessary to ensure separation during electrophoresis. All PCR products are separated by electrophoresis at room temperature on a single gel containing 8% (37.5:1) polyacrylamide, 5% glycerol and 1x TBE. Using an anode buffer with increased salt (2x TBE) sharpens smaller sized bands, and stepping watts from 5W to 20W during electrophoresis enhances sensitivity. Positive controls were used to demonstrate that mutations could be detected. Other mutations or polymorphisms were verified by cycle sequencing of PCR products or by alternative PCR-based assays for the more common mutations. Thus, using 3 PCR reactions per patient and one gel condition, we are able to achieve a CF mutation detection rate of approximately 90% in a North American Caucasian population.« less

  11. Architecture of a Diels-Alderase ribozyme with a preformed catalytic pocket.

    PubMed

    Keiper, Sonja; Bebenroth, Dirk; Seelig, Burckhard; Westhof, Eric; Jäschke, Andres

    2004-09-01

    Artificial ribozymes catalyze a variety of chemical reactions. Their structures and reaction mechanisms are largely unknown. We have analyzed a ribozyme catalyzing Diels-Alder cycloaddition reactions by comprehensive mutation analysis and a variety of probing techniques. New tertiary interactions involving base pairs between nucleotides of the 5' terminus and a large internal loop forming a pseudoknot fold were identified. The probing data indicate a preformed tertiary structure that shows no major changes on substrate or product binding. Based on these observations, a molecular architecture featuring a Y-shaped arrangement is proposed. The tertiary structure is formed in a rather unusual way; that is, the opposite sides of the asymmetric internal loop are clamped by the four 5'-terminal nucleotides, forming two adjacent two base-pair helices. It is proposed that the catalytic pocket is formed by a wedge within one of these helices.

  12. Mutation of HIV-1 genomes in a clinical population treated with the mutagenic nucleoside KP1461.

    PubMed

    Mullins, James I; Heath, Laura; Hughes, James P; Kicha, Jessica; Styrchak, Sheila; Wong, Kim G; Rao, Ushnal; Hansen, Alexis; Harris, Kevin S; Laurent, Jean-Pierre; Li, Deyu; Simpson, Jeffrey H; Essigmann, John M; Loeb, Lawrence A; Parkins, Jeffrey

    2011-01-14

    The deoxycytidine analog KP1212, and its prodrug KP1461, are prototypes of a new class of antiretroviral drugs designed to increase viral mutation rates, with the goal of eventually causing the collapse of the viral population. Here we present an extensive analysis of viral sequences from HIV-1 infected volunteers from the first "mechanism validation" phase II clinical trial of a mutagenic base analog in which individuals previously treated with antiviral drugs received 1600 mg of KP1461 twice per day for 124 days. Plasma viral loads were not reduced, and overall levels of viral mutation were not increased during this short-term study, however, the mutation spectrum of HIV was altered. A large number (N = 105 per sample) of sequences were analyzed, each derived from individual HIV-1 RNA templates, after 0, 56 and 124 days of therapy from 10 treated and 10 untreated control individuals (>7.1 million base pairs of unique viral templates were sequenced). We found that private mutations, those not found in more than one viral sequence and likely to have occurred in the most recent rounds of replication, increased in treated individuals relative to controls after 56 (p = 0.038) and 124 (p = 0.002) days of drug treatment. The spectrum of mutations observed in the treated group showed an excess of A to G and G to A mutations (p = 0.01), and to a lesser extent T to C and C to T mutations (p = 0.09), as predicted by the mechanism of action of the drug. These results validate the proposed mechanism of action in humans and should spur development of this novel antiretroviral approach.

  13. Mutation of HIV-1 Genomes in a Clinical Population Treated with the Mutagenic Nucleoside KP1461

    PubMed Central

    Mullins, James I.; Heath, Laura; Hughes, James P.; Kicha, Jessica; Styrchak, Sheila; Wong, Kim G.; Rao, Ushnal; Hansen, Alexis; Harris, Kevin S.; Laurent, Jean-Pierre; Li, Deyu; Simpson, Jeffrey H.; Essigmann, John M.; Loeb, Lawrence A.; Parkins, Jeffrey

    2011-01-01

    The deoxycytidine analog KP1212, and its prodrug KP1461, are prototypes of a new class of antiretroviral drugs designed to increase viral mutation rates, with the goal of eventually causing the collapse of the viral population. Here we present an extensive analysis of viral sequences from HIV-1 infected volunteers from the first “mechanism validation” phase II clinical trial of a mutagenic base analog in which individuals previously treated with antiviral drugs received 1600 mg of KP1461 twice per day for 124 days. Plasma viral loads were not reduced, and overall levels of viral mutation were not increased during this short-term study, however, the mutation spectrum of HIV was altered. A large number (N = 105 per sample) of sequences were analyzed, each derived from individual HIV-1 RNA templates, after 0, 56 and 124 days of therapy from 10 treated and 10 untreated control individuals (>7.1 million base pairs of unique viral templates were sequenced). We found that private mutations, those not found in more than one viral sequence and likely to have occurred in the most recent rounds of replication, increased in treated individuals relative to controls after 56 (p = 0.038) and 124 (p = 0.002) days of drug treatment. The spectrum of mutations observed in the treated group showed an excess of A to G and G to A mutations (p = 0.01), and to a lesser extent T to C and C to T mutations (p = 0.09), as predicted by the mechanism of action of the drug. These results validate the proposed mechanism of action in humans and should spur development of this novel antiretroviral approach. PMID:21264288

  14. Clonal Architecture of Secondary Acute Myeloid Leukemia

    PubMed Central

    Walter, Matthew J.; Shen, Dong; Ding, Li; Shao, Jin; Koboldt, Daniel C.; Chen, Ken; Larson, David E.; McLellan, Michael D.; Dooling, David; Abbott, Rachel; Fulton, Robert; Magrini, Vincent; Schmidt, Heather; Kalicki-Veizer, Joelle; O’Laughlin, Michelle; Fan, Xian; Grillot, Marcus; Witowski, Sarah; Heath, Sharon; Frater, John L.; Eades, William; Tomasson, Michael; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Mardis, Elaine R.; Ley, Timothy J.; Wilson, Richard K.; Graubert, Timothy A.

    2012-01-01

    BACKGROUND The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.) PMID:22417201

  15. Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma

    PubMed Central

    Hedberg, Matthew L.; Goh, Gerald; Chiosea, Simion I.; Bauman, Julie E.; Freilino, Maria L.; Zeng, Yan; Wang, Lin; Diergaarde, Brenda B.; Gooding, William E.; Lui, Vivian W.Y.; Herbst, Roy S.; Lifton, Richard P.; Grandis, Jennifer R.

    2015-01-01

    BACKGROUND. Recurrence and/or metastasis occurs in more than half of patients with head and neck squamous cell carcinoma (HNSCC), and these events pose the greatest threats to long-term survival. We set out to identify genetic alterations that underlie recurrent/metastatic HNSCC. METHODS. Whole-exome sequencing (WES) was performed on genomic DNA extracted from fresh-frozen whole blood and patient-matched tumor pairs from 13 HNSCC patients with synchronous lymph node metastases and 10 patients with metachronous recurrent tumors. Mutational concordance within and between tumor pairs was used to analyze the spatiotemporal evolution of HNSCC in individual patients and to identify potential therapeutic targets for functional evaluation. RESULTS. Approximately 86% and 60% of single somatic nucleotide variants (SSNVs) identified in synchronous nodal metastases and metachronous recurrent tumors, respectively, were transmitted from the primary index tumor. Genes that were mutated in more than one metastatic or recurrent tumor, but not in the respective primary tumors, include C17orf104, inositol 1,4,5-trisphosphate receptor, type 3 (ITPR3), and discoidin domain receptor tyrosine kinase 2 (DDR2). Select DDR2 mutations have been shown to confer enhanced sensitivity to SRC-family kinase (SFK) inhibitors in other malignancies. Similarly, HNSCC cell lines harboring endogenous and engineered DDR2 mutations were more sensitive to the SFK inhibitor dasatinib than those with WT DDR2. CONCLUSION. In this WES study of patient-matched tumor pairs in HNSCC, we found synchronous lymph node metastases to be genetically more similar to their paired index primary tumors than metachronous recurrent tumors. This study outlines a compendium of somatic mutations in primary, metastatic, and/or recurrent HNSCC cancers, with potential implications for precision medicine approaches. FUNDING. National Cancer Institute, American Cancer Society, Agency for Science, Technology and Research of Singapore, and Gilead Sciences Inc. PMID:26619122

  16. Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, T.; Tatsumi-Miyajima, J.; Sato, M.

    1991-06-15

    To assess the contribution to mutagenesis by human DNA repair defects, a UV-treated shuttle vector plasmid, pZ189, was passed through fibroblasts derived from Japanese xeroderma pigmentosum (XP) patients in two different DNA repair complementation groups (A and F). Patients with XP have clinical and cellular UV hypersensitivity, increased frequency of skin cancer, and defects in DNA repair. The XP DNA repair defects represented by complementation groups A (XP-A) and F (XP-F) are more common in Japan than in Europe or the United States. In comparison to results with DNA repair-proficient human cells (W138-VA13), UV-treated pZ189 passed through the XP-A (XP2OS(SV))more » or XP-F (XP2YO(SV)) cells showed fewer surviving plasmids (XP-A less than XP-F) and a higher frequency of mutated plasmids (XP-A greater than XP-F). Base sequence analysis of more than 200 mutated plasmids showed the major type of base substitution mutation to be the G:C----A:T transition with all three cell lines. The XP-A and XP-F cells revealed a higher frequency of G:C----A:T transitions and a lower frequency of transversions among plasmids with single or tandem mutations and a lower frequency of plasmids with multiple point mutations compared to the normal line. The spectrum of mutations in pZ189 with the XP-A cells was similar to that with the XP-F cells. Seventy-six to 91% of the single base substitution mutations occurred at G:C base pairs in which the 5{prime}-neighboring base of the cytosine was thymine or cytosine. These studies indicate that the DNA repair defects in Japanese XP patients in complementation groups A and F result in different frequencies of plasmid survival and mutagenesis but in similar types of mutagenic abnormalities despite marked differences in clinical features.« less

  17. [A study of PDE6B gene mutation and phenotype in Chinese cases with retinitis pigmentosa].

    PubMed

    Cui, Yun; Zhao, Kan-xing; Wang, Li; Wang, Qing; Zhang, Wei; Chen, Wei-ying; Wang, Li-ming

    2003-01-01

    To identify the mutation spectrum of phosphodiesterase beta subunit (PDE6B) gene, the incidence in Chinese patients with retinitis pigmentosa (RP) and their clinical phenotypic characteristics. Screening of mutations within PDE6B gene was performed using polymerase chain reaction-heteroduplex-single strand conformation polymorphism (PCR-SSCP) and DNA sequence in 35 autosomal recessive (AR) RP and 55 sporadic RP cases. The phenotypes of the patients with the gene mutation were examined and analyzed. Novel complex heterozygous variants of PDE6B gene in a sporadic case, a T to C transversion in codon 323 resulting in the substitution of Gly by Ser and 2 base pairs (bp: G and T) insert between the 27th-28th bp upstream of the 5'-end of exon 10 were both present in a same isolate RP. But they are not found in 100 unrelated healthy individuals. Ocular findings showed diffuse pigmentary retinal degeneration in the midperipheral and peripheral fundi, optic atrophy and vessel attenuation. Multi-focal ERG indicated that the rod function was more severely deteriorated. A mutation was found in a case with RP in a ARRP family, a G to A transversion at 19th base upstream 5'-end of exon 11 (within intron 10) of PDE6B gene. A sporadic RP carried a sequence variant of PDE6B gene, a G to C transition, at the 15th base adjacent to the 3'-end of exon l8. In another isolate case with RP was found 2 bp (GT) insert between 31st and 32nd base upstream 5'-end of exon 4 (in intron 3) of PDE6B gene. There are novel complex heterozygous mutations of PDE6B gene responsible for a sporadic RP patient in China. This gene mutation associated with rod deterioration and RP. Several DNA variants were found in introns of PDE6B gene in national population.

  18. Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations.

    PubMed

    Tian, Kai; Chen, Xiaowei; Luan, Binquan; Singh, Prashant; Yang, Zhiyu; Gates, Kent S; Lin, Mengshi; Mustapha, Azlin; Gu, Li-Qun

    2018-05-22

    Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.

  19. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    PubMed

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  20. Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato.

    PubMed

    Shirasawa, Kenta; Hirakawa, Hideki; Nunome, Tsukasa; Tabata, Satoshi; Isobe, Sachiko

    2016-01-01

    Genome-wide mutations induced by ethyl methanesulfonate (EMS) and gamma irradiation in the tomato Micro-Tom genome were identified by a whole-genome shotgun sequencing analysis to estimate the spectrum and distribution of whole-genome DNA mutations and the frequency of deleterious mutations. A total of ~370 Gb of paired-end reads for four EMS-induced mutants and three gamma-ray-irradiated lines as well as a wild-type line were obtained by next-generation sequencing technology. Using bioinformatics analyses, we identified 5920 induced single nucleotide variations and insertion/deletion (indel) mutations. The predominant mutations in the EMS mutants were C/G to T/A transitions, while in the gamma-ray mutants, C/G to T/A transitions, A/T to T/A transversions, A/T to G/C transitions and deletion mutations were equally common. Biases in the base composition flanking mutations differed between the mutagenesis types. Regarding the effects of the mutations on gene function, >90% of the mutations were located in intergenic regions, and only 0.2% were deleterious. In addition, we detected 1,140,687 spontaneous single nucleotide polymorphisms and indel polymorphisms in wild-type Micro-Tom lines. We also found copy number variation, deletions and insertions of chromosomal segments in both the mutant and wild-type lines. The results provide helpful information not only for mutation research, but also for mutant screening methodology with reverse-genetic approaches. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Longitudinal whole genome analysis of pre and post drug treatment Mycobacterium tuberculosis isolates reveals progressive steps to drug resistance.

    PubMed

    Datta, Gargi; Nieto, Luisa M; Davidson, Rebecca M; Mehaffy, Carolina; Pederson, Caroline; Dobos, Karen M; Strong, Michael

    2016-05-01

    Tuberculosis (TB) is one of the leading causes of death due to an infectious disease in the world. Understanding the mechanisms of drug resistance has become pivotal in the detection and treatment of newly emerging resistant TB cases. We have analyzed three pairs of Mycobacterium tuberculosis strains pre- and post-drug treatment to identify mutations involved in the progression of resistance to the drugs rifampicin and isoniazid. In the rifampicin resistant strain, we confirmed a mutation in rpoB (S450L) that is known to confer resistance to rifampicin. We discovered a novel L101R mutation in the katG gene of an isoniazid resistant strain, which may directly contribute to isoniazid resistance due to the proximity of the mutation to the katG isoniazid-activating site. Another isoniazid resistant strain had a rare mutation in the start codon of katG. We also identified a number of mutations in each longitudinal pair, such as toxin-antitoxin mutations that may influence the progression towards resistance or may play a role in compensatory fitness. These findings improve our knowledge of drug resistance progression during therapy and provide a methodology to monitor longitudinal strains using whole genome sequencing, polymorphism comparison, and functional annotation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. DIMA 3.0: Domain Interaction Map.

    PubMed

    Luo, Qibin; Pagel, Philipp; Vilne, Baiba; Frishman, Dmitrij

    2011-01-01

    Domain Interaction MAp (DIMA, available at http://webclu.bio.wzw.tum.de/dima) is a database of predicted and known interactions between protein domains. It integrates 5807 structurally known interactions imported from the iPfam and 3did databases and 46,900 domain interactions predicted by four computational methods: domain phylogenetic profiling, domain pair exclusion algorithm correlated mutations and domain interaction prediction in a discriminative way. Additionally predictions are filtered to exclude those domain pairs that are reported as non-interacting by the Negatome database. The DIMA Web site allows to calculate domain interaction networks either for a domain of interest or for entire organisms, and to explore them interactively using the Flash-based Cytoscape Web software.

  3. Next-Generation Sequencing of Matched Primary and Metastatic Rectal Adenocarcinomas Demonstrates Minimal Mutation Gain and Concordance to Colonic Adenocarcinomas.

    PubMed

    Crumley, Suzanne M; Pepper, Kristi L; Phan, Alexandria T; Olsen, Randall J; Schwartz, Mary R; Portier, Bryce P

    2016-06-01

    -Colorectal carcinoma is the third most common cause of cancer death in males and females in the United States. Rectal adenocarcinoma can have distinct therapeutic and surgical management from colonic adenocarcinoma owing to its location and anatomic considerations. -To determine the oncologic driver mutations and better understand the molecular pathogenesis of rectal adenocarcinoma in relation to colon adenocarcinoma. -Next-generation sequencing was performed on 20 cases of primary rectal adenocarcinoma with a paired lymph node or solid organ metastasis by using an amplicon-based assay of more than 2800 Catalogue of Somatic Mutations in Cancer (COSMIC)-identified somatic mutations. -Next-generation sequencing data were obtained on both the primary tumor and metastasis from 16 patients. Most rectal adenocarcinoma cases demonstrated identical mutations in the primary tumor and metastasis (13 of 16, 81%). The mutations identified, listed in order of frequency, included TP53, KRAS, APC, FBXW7, GNAS, FGFR3, BRAF, NRAS, PIK3CA, and SMAD4. -The somatic mutations identified in our rectal adenocarcinoma cohort showed a strong correlation to those previously characterized in colonic adenocarcinoma. In addition, most rectal adenocarcinomas harbored identical somatic mutations in both the primary tumor and metastasis. These findings demonstrate evidence that rectal adenocarcinoma follows a similar molecular pathogenesis as colonic adenocarcinoma and that sampling either the primary or metastatic lesion is valid for initial evaluation of somatic mutations and selection of possible targeted therapy.

  4. From Gene Mutation to Protein Characterization

    ERIC Educational Resources Information Center

    Moffet, David A.

    2009-01-01

    A seven-week "gene to protein" laboratory sequence is described for an undergraduate biochemistry laboratory course. Student pairs were given the task of introducing a point mutation of their choosing into the well studied protein, enhanced green fluorescent protein (EGFP). After conducting literature searches, each student group chose the…

  5. Heterogeneous distribution of BRAF/NRAS mutations among Italian patients with advanced melanoma.

    PubMed

    Colombino, Maria; Lissia, Amelia; Capone, Mariaelena; De Giorgi, Vincenzo; Massi, Daniela; Stanganelli, Ignazio; Fonsatti, Ester; Maio, Michele; Botti, Gerardo; Caracò, Corrado; Mozzillo, Nicola; Ascierto, Paolo A; Cossu, Antonio; Palmieri, Giuseppe

    2013-08-29

    Prevalence and distribution of pathogenetic mutations in BRAF and NRAS genes were evaluated in multiple melanoma lesions from patients with different geographical origin within the same Italian population. Genomic DNA from a total of 749 tumor samples (451 primary tumors and 298 metastases) in 513 consecutively-collected patients with advanced melanoma (AJCC stages III and IV) was screened for mutations in exon 15 of BRAF gene and, at lower extension (354/513; 69%), in the entire coding DNA of NRAS gene by automated direct sequencing. Among tissues, 236 paired samples of primary melanomas and synchronous or asynchronous metastases were included into the screening. Overall, mutations were detected in 49% primary melanomas and 51% metastases, for BRAF gene, and 15% primary tumors and 16% secondaries, for NRAS gene. A heterogeneous distribution of mutations in both genes was observed among the 451 primary melanomas according to patients' geographical origin: 61% vs. 42% (p = 0.0372) BRAF-mutated patients and 2% vs. 21% (p < 0.0001) NRAS-mutated cases were observed in Sardinian and non-Sardinian populations, respectively. Consistency in BRAF/NRAS mutations among paired samples was high for lymph node (91%) and visceral metastases (92.5%), but significantly lower for brain (79%; p = 0.0227) and skin (71%; p = 0.0009) metastases. Our findings about the two main alterations occurring in the different tumor tissues from patients with advanced melanoma may be helpful in improving the management of such a disease.

  6. Heterogeneous distribution of BRAF/NRAS mutations among Italian patients with advanced melanoma

    PubMed Central

    2013-01-01

    Background Prevalence and distribution of pathogenetic mutations in BRAF and NRAS genes were evaluated in multiple melanoma lesions from patients with different geographical origin within the same Italian population. Methods Genomic DNA from a total of 749 tumor samples (451 primary tumors and 298 metastases) in 513 consecutively-collected patients with advanced melanoma (AJCC stages III and IV) was screened for mutations in exon 15 of BRAF gene and, at lower extension (354/513; 69%), in the entire coding DNA of NRAS gene by automated direct sequencing. Among tissues, 236 paired samples of primary melanomas and synchronous or asynchronous metastases were included into the screening. Results Overall, mutations were detected in 49% primary melanomas and 51% metastases, for BRAF gene, and 15% primary tumors and 16% secondaries, for NRAS gene. A heterogeneous distribution of mutations in both genes was observed among the 451 primary melanomas according to patients’ geographical origin: 61% vs. 42% (p = 0.0372) BRAF-mutated patients and 2% vs. 21% (p < 0.0001) NRAS-mutated cases were observed in Sardinian and non-Sardinian populations, respectively. Consistency in BRAF/NRAS mutations among paired samples was high for lymph node (91%) and visceral metastases (92.5%), but significantly lower for brain (79%; p = 0.0227) and skin (71%; p = 0.0009) metastases. Conclusions Our findings about the two main alterations occurring in the different tumor tissues from patients with advanced melanoma may be helpful in improving the management of such a disease. PMID:23987572

  7. Space environment induced mutations prefer to occur at polymorphic sites of rice genomes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, M.; Cheng, Z.; Sun, Y.

    To explore the genomic characteristics of rice mutants induced by space environment, space-induced mutants 971-5, 972-4, and R955, which acquired new traits after space flight such as increased yield, reduced resistance to rice blast, and semi-dwarfism compared with their on-ground controls, 971ck, 972ck, and Bing95-503, respectively, together with other 8 japonica and 3 indica rice varieties, 17 in total, were analyzed by amplified fragment length polymorphism (AFLP) method. We chose 16 AFLP primer-pairs which generated a total of 1251 sites, of which 745 (59.6%) were polymorphic over all the genotypes. With the 16 pairs of primer combinations, 54 space-induced mutation sites were observed in 971-5, 86 in 972-4, and 5 in R955 compared to their controls, and the mutation rates were 4.3%, 6.9% and 0.4%, respectively. Interestingly, 75.9%, 84.9% and 100% of the mutation sites identified in 971-5, 972-4, and R955 occurred in polymorphic sites. This result suggests that the space environment preferentially induced mutations at polymorphic sites in rice genomes and might share a common mechanism with other types of mutagens. It also implies that polymorphic sites in genomes are potential "hotspots" for mutations induced by the space environment.

  8. Adaptation of Escherichia coli Traversing From the Faecal Environment to the Urinary Tract

    PubMed Central

    Nielsen, Karen L.; Stegger, Marc; Godfrey, Paul A.; Feldgarden, Michael; Andersen, Paal S.; Frimodt-Møller, Niels

    2016-01-01

    The majority of extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTI) are found in the patient's own gut flora, but only limited knowledge is available on the potential adaptation that may occur in the bacteria for them to traverse the perineum and successfully infect the urinary tract. Here, matching faecal and UTI isolates from 42 patients were compared pairwise using in-depth whole-genome sequencing to investigate whether genetic changes were evident for successful colonization in these two different environments. The identified non-synonymous mutations (0-12 substitutions in each pair) were primarily associated to genes encoding virulence factors and nutrient metabolism; and indications of parallel evolution were observed in genes encoding the major phase-variable protein antigen 43, a toxin/antitoxin locus and haemolysin B. No differences in virulence potential were observed in a mouse UTI model for five matching faecal and UTI isolates with or without mutations in antigen 43 and haemolysin B. Variations in plasmid content were observed in only four of the 42 pairs. Although, we observed mutations in known UTI virulence genes for a few pairs, the majority showed no detectable differences in mutations or mobilome changes when compared to their faecal counterpart. The results show that UPECs are successful in colonizing both the bladder and gut without adaptation. PMID:27825516

  9. Retinal vascular abnormalities and dragged maculae in a carrier with a new NDP mutation (c.268delC) that caused severe Norrie disease in the proband.

    PubMed

    Lin, Phoebe; Shankar, Suma P; Duncan, Jacque; Slavotinek, Anne; Stone, Edwin M; Rutar, Tina

    2010-02-01

    Norrie disease (ND) is caused by mutations in the ND pseudoglioma (NDP) gene (MIM 300658) located at chromosome Xp11.4-p11.3. ND is characterized by abnormal retinal vascular development and vitreoretinal disorganization presenting at birth. Systemic manifestations include sensorineural deafness, progressive mental disorder, behavioral and psychological problems, growth failure, and seizures. Other vitreoretinopathies that are associated with NDP gene mutations include X-linked familial exudative vitreoretinopathy, Coats disease, persistent fetal vasculature, and retinopathy of prematurity. Phenotypic variability associated with NDP gene mutations has been well documented in affected male patients. However, there are limited data on signs in female carriers, with mild peripheral retinal abnormalities reported in both carrier and noncarrier females of families with NDP gene mutations. Here, we report a family harboring a single base-pair deletion, c.268delC, in the NDP gene causing a severe ND phenotype in the male proband and peripheral retinal vascular abnormalities with dragged maculae similar to those observed in familial exudative vitreoretinopathy in his carrier mother. Copyright (c) 2010 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  10. A new rapid methodological strategy to assess BRCA mutational status.

    PubMed

    Vuttariello, Emilia; Borra, Marco; Calise, Celeste; Mauriello, Elvira; Greggi, Stefano; Vecchione, Aldo; Biffali, Elio; Chiappetta, Gennaro

    2013-07-01

    Hereditary cancers account for approximately 10 % of breast and ovarian cancers. Mutations of the BRCA1 and BRCA2 genes, encoding two proteins involved in DNA repair, underlie most cases of such hereditary cancers. Women with BRCA mutations develop breast cancer in 50-80 % of cases and ovarian cancer in 10-40 % of cases. Assessing BRCA mutational status is needed to direct the clinical management of women with predisposition to these hereditary cancers. However, BRCA screening constitutes a bottleneck in terms of costs and time to deliver results. We developed a PCR-based assay using 73 primer pairs covering the entire coding regions of BRCA1 and BRCA2. PCR primers, containing at the 5' end the universal M13 primer sequences, were pre-spotted in 96-well plates. Following PCR, direct sequencing was performed using M13 primers, allowing to standardize the conditions. PCR amplification and sequencing were successful for each amplicon. We tested and validated the assay on 10 known gDNAs from patients with Hereditary breast and ovarian cancer (HBOC). Our strategy is a promising time and cost-effective method to detect BRCA mutations in the clinical setting, which is essential to formulate a personalized therapy for patients with HBOC.

  11. Severe epilepsy as the major symptom of new mutations in the mitochondrial tRNA(Phe) gene.

    PubMed

    Zsurka, G; Hampel, K G; Nelson, I; Jardel, C; Mirandola, S R; Sassen, R; Kornblum, C; Marcorelles, P; Lavoué, S; Lombès, A; Kunz, W S

    2010-02-09

    To present 2 families with maternally inherited severe epilepsy as the main symptom of mitochondrial disease due to point mutations at position 616 in the mitochondrial tRNA(Phe) (MT-TF) gene. Histologic stainings were performed on skeletal muscle slices from the 2 index patients. Oxidative phosphorylation activity was measured by oxygraphic and spectrophotometric methods. The patients' complete mitochondrial DNA (mtDNA) and the relevant mtDNA region in maternal relatives were sequenced. Muscle histology showed only decreased overall COX staining, while a combined respiratory chain defect, most severely affecting complex IV, was noted in both patients' skeletal muscle. Sequencing of the mtDNA revealed in both patients a mutation at position 616 in the MT-TF gene (T>C or T>G). These mutations disrupt a base pair in the anticodon stem at a highly conserved position. They were apparently homoplasmic in both patients, and had different heteroplasmy levels in the investigated maternal relatives. Deleterious mutations in the mitochondrial tRNA(Phe) may solely manifest with epilepsy when segregating to homoplasmy. They may be overlooked in the absence of lactate accumulation and typical mosaic mitochondrial defects in muscle.

  12. Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants

    PubMed Central

    Houlleberghs, Hellen; Dekker, Marleen; Lantermans, Hildo; Kleinendorst, Roos; Dubbink, Hendrikus Jan; Hofstra, Robert M. W.; Verhoef, Senno; te Riele, Hein

    2016-01-01

    Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that “oligo targeting” can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors. PMID:26951660

  13. Comprehensive mutation profiling of mucinous gastric carcinoma.

    PubMed

    Rokutan, Hirofumi; Hosoda, Fumie; Hama, Natsuko; Nakamura, Hiromi; Totoki, Yasushi; Furukawa, Eisaku; Arakawa, Erika; Ohashi, Shoko; Urushidate, Tomoko; Satoh, Hironori; Shimizu, Hiroko; Igarashi, Keiko; Yachida, Shinichi; Katai, Hitoshi; Taniguchi, Hirokazu; Fukayama, Masashi; Shibata, Tatsuhiro

    2016-10-01

    Mucinous gastric carcinoma (MGC) is a unique subtype of gastric cancer with a poor survival outcome. Comprehensive molecular profiles and putative therapeutic targets of MGC remain undetermined. We subjected 16 tumour-normal tissue pairs to whole-exome sequencing (WES) and an expanded set of 52 tumour-normal tissue pairs to subsequent targeted sequencing. The latter focused on 114 genes identified by WES. Twenty-two histologically differentiated MGCs (D-MGCs) and 46 undifferentiated MGCs (U-MGCs) were analysed. Chromatin modifier genes, including ARID1A (21%), MLL2 (19%), MLL3 (15%), and KDM6A (7%), were frequently mutated (47%) in MGC. We also identified mutations in potential therapeutic target genes, including MTOR (9%), BRCA2 (9%), BRCA1 (7%), and ERBB3 (6%). RHOA mutation was detected only in 4% of U-MGCs and in no D-MGCs. MYH9 was recurrently (13%) mutated in MGC, with all these being of the U-MGC subtype (p = 0.023). Three U-MGCs harboured MYH9 nonsense mutations. MYH9 knockdown enhanced cell migration and induced intracytoplasmic mucin and cellular elongation. BCOR mutation was associated with improved survival. In U-MGCs, the MLH1 expression status and combined mutation status (TP53/BCL11B or TP53/MLL2) were prognostic factors. A comparative analysis of driver genes revealed that the mutation profile of D-MGC was similar to that of intestinal-type gastric cancer, whereas U-MGC was a distinct entity, harbouring a different mutational profile to intestinal- and diffuse-type gastric cancers. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Arrestin gene mutations in autosomal recessive retinitis pigmentosa.

    PubMed

    Nakazawa, M; Wada, Y; Tamai, M

    1998-04-01

    To assess the clinical and molecular genetic studies of patients with autosomal recessive retinitis pigmentosa associated with a mutation in the arrestin gene. Results of molecular genetic screening and case reports with DNA analysis and clinical features. University medical center. One hundred twenty anamnestically unrelated patients with autosomal recessive retinitis pigmentosa. DNA analysis was performed by single strand conformation polymorphism followed by nucleotide sequencing to search for a mutation in exon 11 of the arrestin gene. Clinical features were characterized by visual acuity slitlamp biomicroscopy, fundus examinations, fluorescein angiography, kinetic visual field testing, and electroretinography. We identified 3 unrelated patients with retinitis pigmentosa associated with a homozygous 1-base-pair deletion mutation in codon 309 of the arrestin gene designated as 1147delA. All 3 patients showed pigmentary retinal degeneration in the midperipheral area with or without macular involvement. Patient 1 had a sibling with Oguchi disease associated with the same mutation. Patient 2 demonstrated pigmentary retinal degeneration associated with a golden-yellow reflex in the peripheral fundus. Patients 1 and 3 showed features of retinitis pigmentosa without the golden-yellow fundus reflex. Although the arrestin 1147delA has been known as a frequent cause of Oguchi disease, this mutation also may be related to the pathogenesis of autosomal recessive retinitis pigmentosa. This phenomenon may provide evidence of variable expressivity of the mutation in the arrestin gene.

  15. Normal and impaired charge transport in biological systems

    NASA Astrophysics Data System (ADS)

    Miller, John H.; Villagrán, Martha Y. Suárez; Maric, Sladjana; Briggs, James M.

    2015-03-01

    We examine the physics behind some of the causes (e.g., hole migration and localization that cause incorrect base pairing in DNA) and effects (due to amino acid replacements affecting mitochondrial charge transport) of disease-implicated point mutations, with emphasis on mutations affecting mitochondrial DNA (mtDNA). First we discuss hole transport and localization in DNA, including some of our quantum mechanical modeling results, as they relate to certain mutations in cancer. Next, we give an overview of electron and proton transport in the mitochondrial electron transport chain, and how such transport can become impaired by mutations implicated in neurodegenerative diseases, cancer, and other major illnesses. In particular, we report on our molecular dynamics (MD) studies of a leucine→arginine amino acid replacement in ATP synthase, encoded by the T→G point mutation at locus 8993 of mtDNA. This mutation causes Leigh syndrome, a devastating maternally inherited neuromuscular disorder, and has been found to trigger rapid tumor growth in prostate cancer cell lines. Our MD results suggest, for the first time, that this mutation adversely affects water channels that transport protons to and from the c-ring of the rotary motor ATP synthase, thus impairing the ability of the motor to produce ATP. Finally, we discuss possible future research topics for biological physics, such as mitochondrial complex I, a large proton-pumping machine whose physics remains poorly understood.

  16. NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population.

    PubMed

    Gauthier, Julie; Bonnel, Anna; St-Onge, Judith; Karemera, Liliane; Laurent, Sandra; Mottron, Laurent; Fombonne, Eric; Joober, Ridha; Rouleau, Guy A

    2005-01-05

    Jamain [2003: Nat Genet 34:27-29] recently reported mutations in two neuroligin genes in sib-pairs affected with autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 96 individuals affected with autism. We found no mutations in these X-linked genes. These results indicate that mutations in NLGN3 and NLGN4 genes are responsible for at most a small fraction of autism cases and additional screenings in other autistic populations are needed to better determine the frequency with which mutations in NLGN3 and NLGN4 occur in autism. Copyright 2004 Wiley-Liss, Inc.

  17. The prevalence of ABCB1:c.227_230delATAG mutation in affected dog breeds from European countries.

    PubMed

    Firdova, Zuzana; Turnova, Evelina; Bielikova, Marcela; Turna, Jan; Dudas, Andrej

    2016-06-01

    Deletion of 4-base pairs in the canine ABCB1 (MDR1) gene, responsible for encoding P-glycoprotein, leads to nonsense frame-shift mutation, which causes hypersensitivity to macrocyclic lactones drugs (e.g. ivermectin). To date, at least 12 purebred dog breeds have been found to be affected by this mutation. The aim of this study was to update information about the prevalence of ABCB1 mutation (c.227_230delATAG) in predisposed breeds in multiple European countries. This large scale survey also includes countries which were not involved in previous studies. The samples were collected in the period from 2012 to 2014. The overview is based on genotyping data of 4729 individuals. The observed mutant allele frequencies were 58.5% (Smooth Collie), 48.3% (Rough Collie), 35% (Australian Shepherd), 30.3% (Shetland Sheepdog), 28.1% (Silken Windhound), 26.1% (Miniature Australian Shepherd), 24.3% (Longhaired Whippet), 16.2% (White Swiss Shepherd) and 0% (Border Collie). The possible presence of an ABCB1 mutant allele in Akita-Inu breed has been investigated with negative results. This information could be helpful for breeders in optimization of their breeding strategy and for veterinarians when prescribing drug therapy for dogs of predisposed breeds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Prediction of probable mutations in influenza virus hemagglutinin protein based on large-scale ab initio fragment molecular orbital calculations.

    PubMed

    Yoshioka, Akio; Fukuzawa, Kaori; Mochizuki, Yuji; Yamashita, Katsumi; Nakano, Tatsuya; Okiyama, Yoshio; Nobusawa, Eri; Nakajima, Katsuhisa; Tanaka, Shigenori

    2011-09-01

    Ab initio electronic-state calculations for influenza virus hemagglutinin (HA) trimer complexed with Fab antibody were performed on the basis of the fragment molecular orbital (FMO) method at the second and third-order Møller-Plesset (MP2 and MP3) perturbation levels. For the protein complex containing 2351 residues and 36,160 atoms, the inter-fragment interaction energies (IFIEs) were evaluated to illustrate the effective interactions between all the pairs of amino acid residues. By analyzing the calculated data on the IFIEs, we first discussed the interactions and their fluctuations between multiple domains contained in the trimer complex. Next, by combining the IFIE data between the Fab antibody and each residue in the HA antigen with experimental data on the hemadsorption activity of HA mutants, we proposed a protocol to predict probable mutations in HA. The proposed protocol based on the FMO-MP2.5 calculation can explain the historical facts concerning the actual mutations after the emergence of A/Hong Kong/1/68 influenza virus with subtype H3N2, and thus provides a useful methodology to enumerate those residue sites likely to mutate in the future. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Structural Determinants for Naturally Evolving H5N1 Hemagglutinin to Switch its Receptor Specificity

    PubMed Central

    Tharakaraman, Kannan; Raman, Rahul; Viswanathan, Karthik; Stebbins, Nathan W.; Jayaraman, Akila; Krishnan, Arvind; Sasisekharan, V.; Sasisekharan, Ram

    2013-01-01

    SUMMARY Of the factors governing human-to-human transmission of the highly pathogenic avian-adapted H5N1 virus, the most critical is the acquisition of mutations on the viral hemagglutinin (HA) to “quantitatively switch” its binding from avian to human glycan receptors. Herein, we describe a structural framework that outlines a necessary set of H5 HA receptor binding site (RBS) features required for the H5 HA to quantitatively switch its preference to human receptors. We show here that the same RBS HA mutations that lead to aerosol transmission of A/Vietnam/1203/04 and A/Indonesia/5/05 viruses, when introduced in currently circulating H5N1, do not lead to quantitative switch in receptor preference. We demonstrate that HAs from circulating clades require as few as a single base-pair mutation to quantitatively switch their binding to human receptors. The mutations identified by this study can be used to monitor the emergence of strains having human-to-human transmission potential. PMID:23746829

  20. Juvenile-onset Sporadic Amyotrophic Lateral Sclerosis with a Frameshift FUS Gene Mutation Presenting Unique Neuroradiological Findings and Cognitive Impairment.

    PubMed

    Hirayanagi, Kimitoshi; Sato, Masayuki; Furuta, Natsumi; Makioka, Kouki; Ikeda, Yoshio

    2016-01-01

    A 24-year-old Japanese woman developed anterocollis, weakness of the proximal arms, and subsequent cognitive impairment. A neurological examination revealed amyotrophic lateral sclerosis (ALS) without a family history. Systemic muscle atrophy progressed rapidly. Cerebral MRI clearly exhibited high signal intensities along the bilateral pyramidal tracts. An analysis of the FUS gene revealed a heterozygous two-base pair deletion, c.1507-1508delAG (p.G504WfsX515). A subset of juvenile-onset familial/sporadic ALS cases with FUS gene mutations reportedly demonstrates mental retardation or learning difficulty. Our study emphasizes the importance of conducting a FUS gene analysis in juvenile-onset ALS cases, even when no family occurrence is confirmed.

  1. Genetic and Dynamic Analysis of Murine Peak Bone Density

    DTIC Science & Technology

    1998-10-01

    number of diseases including Waardenburg syndrome (18, 19) and retinitis pigmentosa (20). Substantial computerized genetic data bases maintained at...411, 1992. 14. Foy, C., Newton, V., Wellesley, D., Harris, R., and Read, A. P. Assignment of the locus for Waardenburg syndrome type 1 to human...Balling, R., Gruss, P., and Strachan, T. Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene, Nature

  2. Quantifying stickiness: thermodynamic characterization of intramolecular domain interactions to guide the design of förster resonance energy transfer sensors.

    PubMed

    Lindenburg, Laurens H; Malisauskas, Mantas; Sips, Tari; van Oppen, Lisanne; Wijnands, Sjors P W; van de Graaf, Stan F J; Merkx, Maarten

    2014-10-14

    The introduction of weak, hydrophobic interactions between fluorescent protein domains (FPs) can substantially increase the dynamic range (DR) of Förster resonance energy transfer (FRET)-based sensor systems. Here we report a comprehensive thermodynamic characterization of the stability of a range of self-associating FRET pairs. A new method is introduced that allows direct quantification of the stability of weak FP interactions by monitoring intramolecular complex formation as a function of urea concentration. The commonly used S208F mutation stabilized intramolecular FP complex formation by 2.0 kCal/mol when studied in an enhanced cyan FP (ECFP)-linker-enhanced yellow FP (EYFP) fusion protein, whereas a significantly weaker interaction was observed for the homologous Cerulean/Citrine FRET pair (ΔG0(o-c) = 0.62 kCal/mol). The latter effect could be attributed to two mutations in Cerulean (Y145A and H148D) that destabilize complex formation with Citrine. Systematic analysis of the contribution of residues 125 and 127 at the dimerization interface in mOrange.linker.mCherry fusion proteins yielded a toolbox of new mOrange-mCherry combinations that allowed tuning of their intramolecular interaction from very weak (ΔG0(o-c) = .0.39 kCal/mol) to relatively stable (ΔG0(o-c) = 2.2 kCal/mol). The effects of these mutations were also studied by monitoring homodimerization of mCherry variants using fluorescence anisotropy. These mutations affected intramolecular and intermolecular domain interactions similarly, although FP interactions were found to be stronger in the latter. The knowledge thus obtained allowed successful construction of a red-shifted variant of the bile acid FRET sensor BAS-1 by replacement of the self-associating Cerulean-Citrine pair by mOrange.mCherry variants with a similar intramolecular affinity. Our findings thus allow a better understanding of the subtle but important role of intramolecular domain interactions in current FRET sensors and help guide the construction of new sensors using modular design strategies.

  3. Mutation Detection in Patients With Advanced Cancer by Universal Sequencing of Cancer-Related Genes in Tumor and Normal DNA vs Guideline-Based Germline Testing.

    PubMed

    Mandelker, Diana; Zhang, Liying; Kemel, Yelena; Stadler, Zsofia K; Joseph, Vijai; Zehir, Ahmet; Pradhan, Nisha; Arnold, Angela; Walsh, Michael F; Li, Yirong; Balakrishnan, Anoop R; Syed, Aijazuddin; Prasad, Meera; Nafa, Khedoudja; Carlo, Maria I; Cadoo, Karen A; Sheehan, Meg; Fleischut, Megan H; Salo-Mullen, Erin; Trottier, Magan; Lipkin, Steven M; Lincoln, Anne; Mukherjee, Semanti; Ravichandran, Vignesh; Cambria, Roy; Galle, Jesse; Abida, Wassim; Arcila, Marcia E; Benayed, Ryma; Shah, Ronak; Yu, Kenneth; Bajorin, Dean F; Coleman, Jonathan A; Leach, Steven D; Lowery, Maeve A; Garcia-Aguilar, Julio; Kantoff, Philip W; Sawyers, Charles L; Dickler, Maura N; Saltz, Leonard; Motzer, Robert J; O'Reilly, Eileen M; Scher, Howard I; Baselga, Jose; Klimstra, David S; Solit, David B; Hyman, David M; Berger, Michael F; Ladanyi, Marc; Robson, Mark E; Offit, Kenneth

    2017-09-05

    Guidelines for cancer genetic testing based on family history may miss clinically actionable genetic changes with established implications for cancer screening or prevention. To determine the proportion and potential clinical implications of inherited variants detected using simultaneous sequencing of the tumor and normal tissue ("tumor-normal sequencing") compared with genetic test results based on current guidelines. From January 2014 until May 2016 at Memorial Sloan Kettering Cancer Center, 10 336 patients consented to tumor DNA sequencing. Since May 2015, 1040 of these patients with advanced cancer were referred by their oncologists for germline analysis of 76 cancer predisposition genes. Patients with clinically actionable inherited mutations whose genetic test results would not have been predicted by published decision rules were identified. Follow-up for potential clinical implications of mutation detection was through May 2017. Tumor and germline sequencing compared with the predicted yield of targeted germline sequencing based on clinical guidelines. Proportion of clinically actionable germline mutations detected by universal tumor-normal sequencing that would not have been detected by guideline-directed testing. Of 1040 patients, the median age was 58 years (interquartile range, 50.5-66 years), 65.3% were male, and 81.3% had stage IV disease at the time of genomic analysis, with prostate, renal, pancreatic, breast, and colon cancer as the most common diagnoses. Of the 1040 patients, 182 (17.5%; 95% CI, 15.3%-19.9%) had clinically actionable mutations conferring cancer susceptibility, including 149 with moderate- to high-penetrance mutations; 101 patients tested (9.7%; 95% CI, 8.1%-11.7%) would not have had these mutations detected using clinical guidelines, including 65 with moderate- to high-penetrance mutations. Frequency of inherited mutations was related to case mix, stage, and founder mutations. Germline findings led to discussion or initiation of change to targeted therapy in 38 patients tested (3.7%) and predictive testing in the families of 13 individuals (1.3%), including 6 for whom genetic evaluation would not have been initiated by guideline-based testing. In this referral population with selected advanced cancers, universal sequencing of a broad panel of cancer-related genes in paired germline and tumor DNA samples was associated with increased detection of individuals with potentially clinically significant heritable mutations over the predicted yield of targeted germline testing based on current clinical guidelines. Knowledge of these additional mutations can help guide therapeutic and preventive interventions, but whether all of these interventions would improve outcomes for patients with cancer or their family members requires further study. clinicaltrials.gov Identifier: NCT01775072.

  4. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells

    DOEpatents

    Zhang, Zhiwen; Alfonta, Lital; Schultz, Peter G

    2014-02-25

    This invention provides methods and compositions for incorporation of an unnatural amino acid into a peptide using an orthogonal aminoacyl tRNA synthetase/tRNA pair. In particular, an orthogonal pair is provided to incorporate 5-hydroxy-L-tryptophan in a position encoded by an opal mutation.

  5. Genetic testing for oculocutaneous albinism type 1 and 2 and Hermansky-Pudlak syndrome type 1 and 3 mutations in Puerto Rico.

    PubMed

    Santiago Borrero, Pedro J; Rodríguez-Pérez, Yolanda; Renta, Jessicca Y; Izquierdo, Natalio J; Del Fierro, Laura; Muñoz, Daniel; Molina, Norma López; Ramírez, Sonia; Pagán-Mercado, Glorivee; Ortíz, Idith; Rivera-Caragol, Enid; Spritz, Richard A; Cadilla, Carmen L

    2006-01-01

    Hermansky-Pudlak syndrome (HPS) (MIM #203300) is a heterogeneous group of autosomal recessive disorders characterized by oculocutaneous albinism (OCA), bleeding tendency, and lysosomal dysfunction. HPS is very common in Puerto Rico (PR), particularly in the northwest part of the island, with a frequency of approximately 1:1,800. Two HPS genes and mutations have been identified in PR, a 16-base pair (bp) duplication in HPS1 and a 3,904-bp deletion in HPS3. In Puerto Ricans with more typical OCA, the most common mutation of the tyrosinase (TYR) (human tyrosinase (OCA1) gene) gene was G47D. We describe screening 229 Puerto Rican OCA patients for these mutations, and for mutations in the OCA2 gene. We found the HPS1 mutation in 42.8% of cases, the HPS3 deletion in 17%, the TYR G47D mutation in 3.0%, and a 2.4-kb deletion of the OCA2 gene in 1.3%. Among Puerto Rican newborns, the frequency of the HPS1 mutation is highest in northwest PR (1:21; 4.8%) and lower in central PR (1:64; 1.6%). The HPS3 gene deletion is most frequent in central PR (1:32; 3.1%). Our findings provide insights into the genetics of albinism and HPS in PR, and provide the basis for genetic screening for these disorders in this minority population.

  6. Genetic Testing for Oculocutaneous Albinism Type 1 and 2 and Hermansky–Pudlak Syndrome Type 1 and 3 Mutations in Puerto Rico

    PubMed Central

    Santiago Borrero, Pedro J.; Rodríguez-Pérez, Yolanda; Renta, Jessicca Y.; Izquierdo, Natalio J.; del Fierro, Laura; Muñoz, Daniel; Molina, Norma López; Ramírez, Sonia; Pagán-Mercado, Glorivee; Ortíz, Idith; Rivera-Caragol, Enid; Spritz, Richard A.; Cadilla, Carmen L.

    2013-01-01

    Hermansky–Pudlak syndrome (HPS) (MIM #203300) is a heterogeneous group of autosomal recessive disorders characterized by oculocutaneous albinism (OCA), bleeding tendency, and lysosomal dysfunction. HPS is very common in Puerto Rico (PR), particularly in the northwest part of the island, with a frequency of ~1:1,800. Two HPS genes and mutations have been identified in PR, a 16-base pair (bp) duplication in HPS1 and a 3,904-bp deletion in HPS3. In Puerto Ricans with more typical OCA, the most common mutation of the tyrosinase (TYR) (human tyrosinase (OCA1) gene) gene was G47D. We describe screening 229 Puerto Rican OCA patients for these mutations, and for mutations in the OCA2 gene. We found the HPS1 mutation in 42.8% of cases, the HPS3 deletion in 17%, the TYR G47D mutation in 3.0%, and a 2.4-kb deletion of the OCA2 gene in 1.3%. Among Puerto Rican newborns, the frequency of the HPS1 mutation is highest in northwest PR (1:21; 4.8%) and lower in central PR (1:64; 1.6%). The HPS3 gene deletion is most frequent in central PR (1:32; 3.1%). Our findings provide insights into the genetics of albinism and HPS in PR, and provide the basis for genetic screening for these disorders in this minority population. PMID:16417222

  7. Colistin-Resistant Acinetobacter baumannii Clinical Strains with Deficient Biofilm Formation

    PubMed Central

    Dafopoulou, Konstantina; Xavier, Basil Britto; Hotterbeekx, An; Janssens, Lore; Lammens, Christine; Dé, Emmanuelle; Goossens, Herman; Tsakris, Athanasios; Malhotra-Kumar, Surbhi

    2015-01-01

    In two pairs of clinical colistin-susceptible/colistin-resistant (Csts/Cstr) Acinetobacter baumannii strains, the Cstr strains showed significantly decreased biofilm formation in static and dynamic assays (P < 0.001) and lower relative fitness (P < 0.05) compared with those of the Csts counterparts. The whole-genome sequencing comparison of strain pairs identified a mutation converting a stop codon to lysine (*241K) in LpsB (involved in lipopolysaccharide [LPS] synthesis) in one Cstr strain and a frameshift mutation in CarO and the loss of a 47,969-bp element containing multiple genes associated with biofilm production in the other. PMID:26666921

  8. Waardenburg syndrome type 3 (Klein-Waardenburg syndrome) segregating with a heterozygous deletion in the paired box domain of PAX3: a simple variant or a true syndrome?

    PubMed

    Tekin, M; Bodurtha, J N; Nance, W E; Pandya, A

    2001-10-01

    Klein-Waardenburg syndrome or Waardenburg syndrome type 3 (WS-III; MIM 148820) is characterized by the presence of musculoskeletal abnormalities in association with clinical features of Waardenburg syndrome type 1 (WS-I). Since the description of the first patient in 1947 (D. Klein, Arch Klaus Stift Vererb Forsch 1947: 22: 336-342), a few cases have been reported. Only occasional families have demonstrated autosomal-dominant inheritance of WS-III. In a previous report, a missense mutation in the paired domain of the PAX3 gene has been described in a family with dominant segregation of WS-III. In this report, we present a second family (mother and son) with typical clinical findings of WS-III segregating with a heterozygous 13-bp deletion in the paired domain of the PAX3 gene. Although homozygosity or compound heterozygosity has also been documented in patients with severe limb involvement, a consistent genotype-phenotype correlation for limb abnormalities associated with heterozygous PAX3 mutations has not previously been apparent. Heterozygous mutations could either reflect a unique dominant-negative effect or possibly the contribution of other unlinked genetic modifiers in determining the phenotype.

  9. Neurofilament L gene is not a genetic factor of sporadic and familial Parkinson's disease.

    PubMed

    Rahner, Nils; Holzmann, Carsten; Krüger, Rejko; Schöls, Ludger; Berger, Klaus; Riess, Olaf

    2002-09-27

    Mutations in two genes, alpha-synuclein and parkin, have been identified as some rare causes for familial Parkinson's disease (PD). alpha-Synuclein and parkin protein have subsequently been identified in Lewy bodies (LB). To gain further insight into the pathogenesis of PD we investigated the role of neurofilament light (NF-L), another component of LB aggregation. A detailed mutation search of the NF-L gene in 328 sporadic and familial PD patients of German ancestry revealed three silent DNA changes (G163A, C224T, C487T) in three unrelated patients. Analysis of the promoter region of the NF-L gene identified a total of three base pair substitutions defining five haplotypes. Association studies based on these haplotypes revealed no significant differences between PD patients and 344 control individuals. Therefore, NF-L is unlikely to play a major role in the pathogenesis of PD.

  10. Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs).

    PubMed

    Sargent, R Geoffrey; Suzuki, Shingo; Gruenert, Dieter C

    2014-01-01

    Recent developments in methods to specifically modify genomic DNA using sequence-specific endonucleases and donor DNA have opened the door to a new therapeutic paradigm for cell and gene therapy of inherited diseases. Sequence-specific endonucleases, in particular transcription activator-like (TAL) effector nucleases (TALENs), have been coupled with polynucleotide small/short DNA fragments (SDFs) to correct the most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, a 3-base-pair deletion at codon 508 (delF508), in induced pluripotent stem (iPS) cells. The studies presented here describe the generation of candidate TALENs and their co-transfection with wild-type (wt) CFTR-SDFs into CF-iPS cells homozygous for the delF508 mutation. Using an allele-specific PCR (AS-PCR)-based cyclic enrichment protocol, clonal populations of corrected CF-iPS cells were isolated and expanded.

  11. Similar clinical and neuroimaging features in monozygotic twin pair with mutation in progranulin

    PubMed Central

    McDade, E.; Burrus, T.M.; Boot, B.P.; Kantarci, K.; Fields, J.; Lowe, V.J.; Peller, P.; Knopman, D.; Baker, M.; Finch, N.; Rademakers, R.; Petersen, R.

    2012-01-01

    Objective: To report the phenotypic characterization of monozygotic twins with mutations encoding progranulin (PGRN). Methods: We studied a twin pair with an exon 4 gene deletion in the PGRN gene. Both twins had clinical and neuropsychological examinations as well as structural MRI and fluorodeoxyglucose PET (FDG-PET) scans. PGRN gene sequencing was performed followed by progranulin ELISA in plasma. Results: Both twins manifested symptoms within 3 years of each other, with early behavioral, language, dysexecutive, and memory problems. MRI and FDG-PET imaging demonstrated a strikingly similar topography of findings with clear left hemisphere predominance. Serum progranulin levels in both were well below those from a normal population sample. Conclusions: Compared with the heterogeneity seen in many families with PGRN mutations, these monozygotic twins demonstrated strong clinical, neuroimaging, and serum progranulin level similarities, demonstrating the importance of shared genetic profiles beyond environmental influences in the symptomatic expression of the disease. PMID:22491866

  12. Sequence-Based Mapping and Genome Editing Reveal Mutations in Stickleback Hps5 Cause Oculocutaneous Albinism and the casper Phenotype.

    PubMed

    Hart, James C; Miller, Craig T

    2017-09-07

    Here, we present and characterize the spontaneous X-linked recessive mutation casper , which causes oculocutaneous albinism in threespine sticklebacks ( Gasterosteus aculeatus ). In humans, Hermansky-Pudlak syndrome results in pigmentation defects due to disrupted formation of the melanin-containing lysosomal-related organelle (LRO), the melanosome. casper mutants display not only reduced pigmentation of melanosomes in melanophores, but also reductions in the iridescent silver color from iridophores, while the yellow pigmentation from xanthophores appears unaffected. We mapped casper using high-throughput sequencing of genomic DNA from bulked casper mutants to a region of the stickleback X chromosome (chromosome 19) near the stickleback ortholog of Hermansky-Pudlak syndrome 5 ( Hps5 ). casper mutants have an insertion of a single nucleotide in the sixth exon of Hps5 , predicted to generate an early frameshift. Genome editing using CRISPR/Cas9 induced lesions in Hps5 and phenocopied the casper mutation. Injecting single or paired Hps5 guide RNAs revealed higher incidences of genomic deletions from paired guide RNAs compared to single gRNAs. Stickleback Hps5 provides a genetic system where a hemizygous locus in XY males and a diploid locus in XX females can be used to generate an easily scored visible phenotype, facilitating quantitative studies of different genome editing approaches. Lastly, we show the ability to better visualize patterns of fluorescent transgenic reporters in Hps5 mutant fish. Thus, Hps5 mutations present an opportunity to study pigmented LROs in the emerging stickleback model system, as well as a tool to aid in assaying genome editing and visualizing enhancer activity in transgenic fish. Copyright © 2017 Hart and Milller.

  13. Breast cancer brain metastases show increased levels of genomic aberration based homologous recombination deficiency scores relative to their corresponding primary tumors.

    PubMed

    Diossy, M; Reiniger, L; Sztupinszki, Z; Krzystanek, M; Timms, K M; Neff, C; Solimeno, C; Pruss, D; Eklund, A C; Tóth, E; Kiss, O; Rusz, O; Cserni, G; Zombori, T; Székely, B; Tímár, J; Csabai, I; Szallasi, Z

    2018-06-18

    Based on its mechanism of action, PARP inhibitor therapy is expected to benefit mainly tumor cases with homologous recombination deficiency (HRD). Therefore, identification of tumor types with increased HRD is important for the optimal use of this class of therapeutic agents. HRD levels can be estimated using various mutational signatures from next generation sequencing data and we used this approach to determine whether breast cancer brain metastases show altered levels of HRD scores relative to their corresponding primary tumor. We used a previously published next generation sequencing dataset of twenty-one matched primary breast cancer/brain metastasis pairs to derive the various mutational signatures/HRD scores strongly associated with HRD. We also performed the myChoice HRD analysis on an independent cohort of seventeen breast cancer patients with matched primary/brain metastasis pairs. All of the mutational signatures indicative of HRD showed a significant increase in the brain metastases relative to their matched primary tumor in the previously published whole exome sequencing dataset. In the independent validation cohort the myChoice HRD assay showed an increased level in 87.5% of the brain metastases relative to the primary tumor, with 56% of brain metastases being HRD positive according to the myChoice criteria. The consistent observation that brain metastases of breast cancer tend to have higher HRD measures may raise the possibility that brain metastases may be more sensitive to PARP inhibitor treatment. This observation warrants further investigation to assess whether this increase is common to other metastatic sites as well, and whether clinical trials should adjust their strategy in the application of HRD measures for the prioritization of patients for PARP inhibitor therapy.

  14. Restricted ultraviolet mutational spectrum in a shuttle vector propagated in xeroderma pigmentosum cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredberg, A.; Kraemer, K.H.; Seidman, M.M.

    1986-11-01

    A shuttle vector plasmid, pZ189, carrying a bacterial suppressor tRNA marker gene, was treated with ultraviolet radiation and propagated in cultured skin cells from a patient with the skin-cancer-prone, DNA repair-deficient disease xeroderma pigmentosum and in repair-proficient cells. After replication in the human cells, progeny plasmids were purified. Plasmid survival and mutations inactivating the marker gene were scored by transforming an indicator strain of Escherichia coli carrying a suppressible amber mutation in the beta-galactosidase gene. Plasmid survival in the xeroderma pigmentosum cells was less than that of pZ189 harvested from repair-proficient human cells. The point-mutation frequency in the 150-base-pair tRNAmore » marker gene increased up to 100-fold with ultraviolet dose. Sequence analysis of 150 mutant plasmids revealed that mutations were infrequent at potential thymine-thymine dimer sites. Ninety-three percent of the mutant plasmids from the xeroderma pigmentosum cells showed G X C----A X T transitions, compared to 73% in the normal cells (P less than 0.002). There were significantly fewer transversions (P less than 0.002) (especially G X C----T X A) and multiple base substitutions (P less than 0.00001) than when pZ189 was passaged in repair-proficient cells. The subset of mutational changes that are common to ultraviolet-treated plasmids propagated in both repair-proficient and xeroderma pigmentosum skin cells may be associated with the development of ultraviolet-induced skin cancer in humans.« less

  15. Epidermal growth factor receptor gene mutation as risk factor for recurrence in patients with surgically resected lung adenocarcinoma: a matched-pair analysis.

    PubMed

    Matsumura, Yuki; Owada, Yuki; Yamaura, Takumi; Muto, Satoshi; Osugi, Jun; Hoshino, Mika; Higuchi, Mitsunori; Ohira, Tetsuya; Suzuki, Hiroyuki; Gotoh, Mitsukazu

    2016-08-01

    Epidermal growth factor receptor (EGFR) mutation is a robust prognostic factor in patients with lung adenocarcinoma (ADC). However, the role of EGFR mutation status as a recurrence-risk factor remains unknown because the presence of such mutations is associated with other background characteristics. We therefore conducted a matched-pair analysis to compare recurrence-free survival (RFS) in matched cohorts of patients with lung ADC. We enrolled 379 patients who underwent surgical resection for lung ADC between 2005 and 2012. We determined the EGFR mutation status of each tumour. Matching their age, gender, smoking history and pathological stage (pStage), we compared RFS between matched cohorts with and without EGFR mutation (n = 86 each). The median age was 67 years, there were 39 (45%) men, 39 (45%) ex- or current smokers and pStage I: 71 (83%), II: 5 (6%), III: 8 (9%), IV: 2 (2%) in each group. The 3- and 5-year RFS rates in patients with mutant and wild-type EGFR were 85 and 78%, and 74 and 60%, respectively, with significant differences between the groups (P = 0.040). Multivariate analysis identified vascular invasion and lymphatic permeation, but not EGFR mutation status, as independent risk factors for recurrence. EGFR-gene mutation might be a favourable recurrence-risk factor in patients with surgically resected lung ADC, but further studies in larger cohorts are needed to verify this hypothesis. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Intracistronic complementation in the simian virus 40 A gene.

    PubMed Central

    Tornow, J; Cole, C N

    1983-01-01

    A set of eight simian virus 40 mutants was constructed with lesions in the A gene, which encodes the large tumor (T) antigen. These mutants have small deletions (3-20 base pairs) at either 0.497, 0.288, or 0.243 map units. Mutants having both in-phase and frameshift mutations at each site were isolated. Neither plaque formation nor replication of the mutant DNAs could be detected after transfection of monkey kidney cells. Another nonviable mutant, dlA2459, had a 14-base-pair deletion at 0.193 map unit and was positive for viral DNA replication. Each of the eight mutants were tested for ability to form plaques after cotransfection with dlA2459 DNA. The four mutants that had in-phase deletions were able to complement dlA2459. The other four, which had frameshift deletions, did not. No plaques were formed after cotransfection of cells with any other pair of group A mutants. This suggests that the defect in dlA2459 defines a distinct functional domain of simian virus 40 T antigen. Images PMID:6312452

  17. A single base pair in the right terminal domain of tomato planta macho viroid is a virulence determinant factor on tomato.

    PubMed

    Li, Rugang; Padmanabhan, Chellappan; Ling, Kai-Shu

    2017-01-01

    Tomato planta macho viroid (TPMVd), including isolates previously designated as Mexican papita viroid (MPVd), causes serious disease on tomatoes in North America. Two predominant variants, sharing 93.8% sequence identity, incited distinct severe (MPVd-S) or mild (MPVd-M) symptoms on tomato. To identify virulence determinant factor, a series of chimeric infectious clones were generated using synthetic DNA approach to progressively replace each structural domain between the two variants. In bioassays on tomato 'Rutgers', three chimeras containing Terminal Left and Pathogenicity (MPVd-H1), Central (MPVd-H2), or Variable (MPVd-H3) of MPVd-S, incited mild to intermediate symptoms. However, a chimera containing Terminal Right (T R ) of MPVd-S (MPVd-H4) incited severe symptoms. Only one base-pair mutation in the T R domain between MPVd-M ( 176 U:A 185 ) and MPVd-S ( 174 G:C 183 ) was identified. A reciprocal mutant (MPVd-H5) rendered the chimeric viroid mild on tomato. This single base-pair in the T R domain was determined as the virulence determinant factor for TPMVd. Published by Elsevier Inc.

  18. Base Pairing between U3 Small Nucleolar RNA and the 5′ End of 18S rRNA Is Required for Pre-rRNA Processing

    PubMed Central

    Sharma, Kishor; Tollervey, David

    1999-01-01

    The loop of a stem structure close to the 5′ end of the 18S rRNA is complementary to the box A region of the U3 small nucleolar RNA (snoRNA). Substitution of the 18S loop nucleotides inhibited pre-rRNA cleavage at site A1, the 5′ end of the 18S rRNA, and at site A2, located 1.9 kb away in internal transcribed spacer 1. This inhibition was largely suppressed by a compensatory mutation in U3, demonstrating functional base pairing. The U3–pre-rRNA base pairing is incompatible with the structure that forms in the mature 18S rRNA and may prevent premature folding of the pre-rRNA. In the Escherichia coli pre-rRNA the homologous region of the 16S rRNA is also sequestered, in that case by base pairing to the 5′ external transcribed spacer (5′ ETS). Cleavage at site A0 in the yeast 5′ ETS strictly requires base pairing between U3 and a sequence within the 5′ ETS. In contrast, the U3-18S interaction is not required for A0 cleavage. U3 therefore carries out at least two functionally distinct base pair interactions with the pre-rRNA. The nucleotide at the site of A1 cleavage was shown to be specified by two distinct signals; one of these is the stem-loop structure within the 18S rRNA. However, in contrast to the efficiency of cleavage, the position of A1 cleavage is not dependent on the U3-loop interaction. We conclude that the 18S stem-loop structure is recognized at least twice during pre-rRNA processing. PMID:10454548

  19. Identification of rare paired box 3 variant in strabismus by whole exome sequencing

    PubMed Central

    Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang

    2017-01-01

    AIM To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. METHODS A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. RESULTS Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. CONCLUSION Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder. PMID:28861346

  20. Identification of rare paired box 3 variant in strabismus by whole exome sequencing.

    PubMed

    Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang

    2017-01-01

    To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder.

  1. Interaction of influenza virus polymerase with viral RNA in the 'corkscrew' conformation.

    PubMed

    Flick, R; Hobom, G

    1999-10-01

    The influenza virus RNA (vRNA) promoter structure is known to consist of the 5'- and 3'-terminal sequences of the RNA, within very narrow boundaries of 16 and 15 nucleotides, respectively. A complete set of single nucleotide substitutions led to the previously proposed model of a binary hooked or 'corkscrew' conformation for the vRNA promoter when it interacts with the viral polymerase. This functional structure is confirmed here with a complete set of complementary double substitutions, of both the regular A:U and G:C type and also the G:U type of base-pair exchanges. The proposed structure consists of a six base-pair RNA rod in the distal element in conjunction with two stem-loop structures of two short-range base-pairs (positions 2-9; 3-8). These support an exposed tetranucleotide loop within each branch of the proximal element, in an overall oblique organization due to a central unpaired A residue at position 10 in the 5' sequence. Long-range base-pairing between the entire 5' and 3' branches, as required for an unmodified 'panhandle' model, has been excluded for the proximal element, while it is known to represent the mode of interaction within the distal element. A large number of short-range base-pair exchanges in the proximal element constitute promoter-up mutations, which show activities several times above that of the wild-type in reporter gene assays. The unique overall conformation and rather few invariant nucleotides appear to be the core elements in vRNA recognition by polymerase and also in viral ribonucleoprotein packaging, to allow discrimination against the background of other RNA molecules in the cell.

  2. Smoking status and self-reported race affect the frequency of clinically relevant oncogenic alterations in non-small-cell lung cancers at a United States-based academic medical practice.

    PubMed

    Yamaguchi, Norihiro; Vanderlaan, Paul A; Folch, Erik; Boucher, David H; Canepa, Hannah M; Kent, Michael S; Gangadharan, Sidharta P; Majid, Adnan; Kocher, Olivier N; Goldstein, Michael A; Huberman, Mark S; Costa, Daniel B

    2013-10-01

    The identification of somatic genomic aberrations in non-small-cell lung cancer (NSCLC) is part of evidence-based practice guidelines for care of patients with NSCLC. We sought to establish the frequency and correlates with these changes in routine patient-tumor sample pairs. Clinicopathologic data and tumor genotype were retrospectively compiled and analyzed from an overall cohort of 381 patient-tumor samples. Of these patients, 75.9% self-reported White race, 13.1% Asian, 6.5% Black, 27.8% were never-smokers, 54.9% former-smokers and 17.3% current-smokers. The frequency of EGFR mutations was 23.9% (86/359), KRAS mutations 34.2% (71/207) and ALK FISH positivity 9.1% (23/252) in tumor samples, and almost all had mutually exclusive results for these oncogenes. In tumors from White, Black and Asian patients, the frequencies of EGFR mutations were 18.4%, 18.2% and 62%, respectively; of ALK FISH positivity 7.81%, 0% and 14.8%, respectively; and of KRAS mutations 41.6%, 20% and 0%. These patterns changed significant with increasing pack-year history of smoking. In White patients, the frequencies of EGFR mutations and ALK FISH positivity decreased with increasing pack-year cohorts; while the frequencies of KRAS mutations increased. Interestingly, in Asian patients the frequencies of EGFR mutations were similar in never smokers and in the cohorts with less than 45pack-year histories of smoking and only decreased in the 45pack-year plus cohort. The frequencies of somatic EGFR, KRAS, and ALK gene abnormalities using routine lung cancer tissue samples from our United States-based academic medical practice reflect the diverse ethnicity (with a higher frequency of EGFR mutations in Asian patients) and smoking patterns (with an inverse correlation between EGFR mutation and ALK rearrangement) of our tested population. These results may help other medical practices appreciate the expected results from introduction of routine tumor genotyping techniques into their day-to-day care of NSCLC. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. The role of tandem duplicator phenotype in tumour evolution in high-grade serous ovarian cancer.

    PubMed

    Ng, Charlotte K Y; Cooke, Susanna L; Howe, Kevin; Newman, Scott; Xian, Jian; Temple, Jillian; Batty, Elizabeth M; Pole, Jessica C M; Langdon, Simon P; Edwards, Paul A W; Brenton, James D

    2012-04-01

    High-grade serous ovarian carcinoma (HGSOC) is characterized by genomic instability, ubiquitous TP53 loss, and frequent development of platinum resistance. Loss of homologous recombination (HR) is a mutator phenotype present in 50% of HGSOCs and confers hypersensitivity to platinum treatment. We asked which other mutator phenotypes are present in HGSOC and how they drive the emergence of platinum resistance. We performed whole-genome paired-end sequencing on a model of two HGSOC cases, each consisting of a pair of cell lines established before and after clinical resistance emerged, to describe their structural variants (SVs) and to infer their ancestral genomes as the SVs present within each pair. The first case (PEO1/PEO4), with HR deficiency, acquired translocations and small deletions through its early evolution, but a revertant BRCA2 mutation restoring HR function in the resistant lineage re-stabilized its genome and reduced platinum sensitivity. The second case (PEO14/PEO23) had 216 tandem duplications and did not show evidence of HR or mismatch repair deficiency. By comparing the cell lines to the tissues from which they originated, we showed that the tandem duplicator mutator phenotype arose early in progression in vivo and persisted throughout evolution in vivo and in vitro, which may have enabled continual evolution. From the analysis of SNP array data from 454 HGSOC cases in The Cancer Genome Atlas series, we estimate that 12.8% of cases show patterns of aberrations similar to the tandem duplicator, and this phenotype is mutually exclusive with BRCA1/2 carrier mutations. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. DNM1 encephalopathy

    PubMed Central

    von Spiczak, Sarah; Helbig, Katherine L.; Shinde, Deepali N.; Huether, Robert; Pendziwiat, Manuela; Lourenço, Charles; Nunes, Mark E.; Sarco, Dean P.; Kaplan, Richard A.; Dlugos, Dennis J.; Kirsch, Heidi; Slavotinek, Anne; Cilio, Maria R.; Cervenka, Mackenzie C.; Cohen, Julie S.; McClellan, Rebecca; Fatemi, Ali; Yuen, Amy; Sagawa, Yoshimi; Littlejohn, Rebecca; McLean, Scott D.; Hernandez-Hernandez, Laura; Maher, Bridget; Møller, Rikke S.; Palmer, Elizabeth; Lawson, John A.; Campbell, Colleen A.; Joshi, Charuta N.; Kolbe, Diana L.; Hollingsworth, Georgie; Neubauer, Bernd A.; Muhle, Hiltrud; Stephani, Ulrich; Scheffer, Ingrid E.; Pena, Sérgio D.J.; Sisodiya, Sanjay M.

    2017-01-01

    Objective: To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling. Methods: We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function. Results: We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function. Conclusions: The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention. PMID:28667181

  5. A Redox Basis for Metronidazole Resistance in Helicobacter pylori▿

    PubMed Central

    Kaakoush, N. O.; Asencio, C.; Mégraud, F.; Mendz, G. L.

    2009-01-01

    Metronidazole resistance in Helicobacter pylori has been attributed to mutations in rdxA or frxA. Insufficient data correlating RdxA and/or FrxA with the resistant phenotype, and the emergence of resistant strains with no mutations in either rdxA or frxA, indicated that the molecular basis of H. pylori resistance to metronidazole required further characterization. The rdxA and frxA genes of four matched pairs of metronidazole-susceptible and -resistant strains were sequenced. The resistant strains had mutations in either rdxA, frxA, neither gene, or both genes. The reduction rates of five substrates suggested that metabolic differences between susceptible and resistant strains cannot be explained only by mutations in rdxA and/or frxA. A more global approach to understanding the resistance phenotype was taken by employing two-dimensional gel electrophoresis combined with tandem mass spectrometry analyses to identify proteins differentially expressed by the matched pair of strains with no mutations in rdxA or frxA. Proteins involved in the oxireduction of ferredoxin were downregulated in the resistant strain. Other redox enzymes, such as thioredoxin reductase, alkyl hydroperoxide reductase, and superoxide dismutase, showed a pI change in the resistant strain. The data suggested that metronidazole resistance involved more complex metabolic changes than specific gene mutations, and they provided evidence of a role for the intracellular redox potential in the development of resistance. PMID:19223619

  6. Evolutionary dynamics of adult stem cells: comparison of random and immortal-strand segregation mechanisms.

    PubMed

    Tannenbaum, Emmanuel; Sherley, James L; Shakhnovich, Eugene I

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) "immortal DNA strand" co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  7. Evolutionary dynamics of adult stem cells: Comparison of random and immortal-strand segregation mechanisms

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) “immortal DNA strand” co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  8. Highly sensitive detection of mutations in CHO cell recombinant DNA using multi-parallel single molecule real-time DNA sequencing.

    PubMed

    Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C

    2018-06-01

    High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.

  9. Quantum coupled mutation finder: predicting functionally or structurally important sites in proteins using quantum Jensen-Shannon divergence and CUDA programming.

    PubMed

    Gültas, Mehmet; Düzgün, Güncel; Herzog, Sebastian; Jäger, Sven Joachim; Meckbach, Cornelia; Wingender, Edgar; Waack, Stephan

    2014-04-03

    The identification of functionally or structurally important non-conserved residue sites in protein MSAs is an important challenge for understanding the structural basis and molecular mechanism of protein functions. Despite the rich literature on compensatory mutations as well as sequence conservation analysis for the detection of those important residues, previous methods often rely on classical information-theoretic measures. However, these measures usually do not take into account dis/similarities of amino acids which are likely to be crucial for those residues. In this study, we present a new method, the Quantum Coupled Mutation Finder (QCMF) that incorporates significant dis/similar amino acid pair signals in the prediction of functionally or structurally important sites. The result of this study is twofold. First, using the essential sites of two human proteins, namely epidermal growth factor receptor (EGFR) and glucokinase (GCK), we tested the QCMF-method. The QCMF includes two metrics based on quantum Jensen-Shannon divergence to measure both sequence conservation and compensatory mutations. We found that the QCMF reaches an improved performance in identifying essential sites from MSAs of both proteins with a significantly higher Matthews correlation coefficient (MCC) value in comparison to previous methods. Second, using a data set of 153 proteins, we made a pairwise comparison between QCMF and three conventional methods. This comparison study strongly suggests that QCMF complements the conventional methods for the identification of correlated mutations in MSAs. QCMF utilizes the notion of entanglement, which is a major resource of quantum information, to model significant dissimilar and similar amino acid pair signals in the detection of functionally or structurally important sites. Our results suggest that on the one hand QCMF significantly outperforms the previous method, which mainly focuses on dissimilar amino acid signals, to detect essential sites in proteins. On the other hand, it is complementary to the existing methods for the identification of correlated mutations. The method of QCMF is computationally intensive. To ensure a feasible computation time of the QCMF's algorithm, we leveraged Compute Unified Device Architecture (CUDA).The QCMF server is freely accessible at http://qcmf.informatik.uni-goettingen.de/.

  10. Secondary structure of the 3'-noncoding region of flavivirus genomes: comparative analysis of base pairing probabilities.

    PubMed

    Rauscher, S; Flamm, C; Mandl, C W; Heinz, F X; Stadler, P F

    1997-07-01

    The prediction of the complete matrix of base pairing probabilities was applied to the 3' noncoding region (NCR) of flavivirus genomes. This approach identifies not only well-defined secondary structure elements, but also regions of high structural flexibility. Flaviviruses, many of which are important human pathogens, have a common genomic organization, but exhibit a significant degree of RNA sequence diversity in the functionally important 3'-NCR. We demonstrate the presence of secondary structures shared by all flaviviruses, as well as structural features that are characteristic for groups of viruses within the genus reflecting the established classification scheme. The significance of most of the predicted structures is corroborated by compensatory mutations. The availability of infectious clones for several flaviviruses will allow the assessment of these structural elements in processes of the viral life cycle, such as replication and assembly.

  11. The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer.

    PubMed Central

    Fink, J S; Verhave, M; Kasper, S; Tsukada, T; Mandel, G; Goodman, R H

    1988-01-01

    cAMP-regulated transcription of the human vasoactive intestinal peptide gene is dependent upon a 17-base-pair DNA element located 70 base pairs upstream from the transcriptional initiation site. This element is similar to sequences in other genes known to be regulated by cAMP and to sequences in several viral enhancers. We have demonstrated that the vasoactive intestinal peptide regulatory element is an enhancer that depends upon the integrity of two CGTCA sequence motifs for biological activity. Mutations in either of the CGTCA motifs diminish the ability of the element to respond to cAMP. Enhancers containing the CGTCA motif from the somatostatin and adenovirus genes compete for binding of nuclear proteins from C6 glioma and PC12 cells to the vasoactive intestinal peptide enhancer, suggesting that CGTCA-containing enhancers interact with similar transacting factors. Images PMID:2842787

  12. GE-17ALTERATION OF THE p53 PATHWAY AND ANCESTRAL PROGENITORS ARE ASSOCIATED WITH TUMOR RECURRENCE IN GLIOBLASTOMA

    PubMed Central

    Kim, Hoon; Zheng, Siyuan; Amini, Seyed; Virk, Selene; Mikkelsen, Tom; Brat, Daniel; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew; Cohen, Mark; Van Meir, Erwin; Scarpace, Lisa; Lander, Eric; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill; Verhaak, Roel

    2014-01-01

    To evaluate evolutionary patterns of GBM recurrence, we analyzed whole genome sequencing (WGS) and multi-sector exome sequencing data from pairs of primary and posttreatment GBM. WGS on ten primary-recurrent pairs detected a median number of 12,214 mutations which we utilized to uncover clonal structures, by analyzing the distribution of mutation cellular frequencies (the fraction of tumor cells harboring a mutation). On average, 41 % of the mutations were shared by primary and recurrence. The majority of shared mutations were clonal in both primary and recurrence, but we also observed many clonal mutations that were uniquely detected in either the primary or the recurrence. This raises the intriguing possibility that major tumor clones in the primary tumor and disease relapse both evolved from a shared ancestral tumor cell population. At least one subclone was identified in the majority of WGS samples, and we observed groups of mutations that were at low cancer cell fractions in both primary and recurrence, suggesting that both subclones evolved from the same ancestral tumor cells separate from the major clone ancestral cells. To address the possibility that the lack of overlap between subsequent tumors was due to intratumoral heterogeneity, we analyzed exome sequencing from a second tumor sector of seven primary and six recurrent tumors. We found that the majority of "second biopsy" mutations were not conserved between time points, suggesting that intratumoral heterogeneity did not explain the large number of mutations uniquely detected in primary and recurrence. The limited overlap of mutations in primary and recurrence provides evidence for ancestral tumor cell populations that could not be eradicated by therapy, while offspring cell populations contained unique mutations, were selectively killed by treatment and could therefore no longer be detected after disease relapse. This study has provided new insights into patterns and dynamics of tumor evolution.

  13. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma

    PubMed Central

    Lee, Li-Yu; Lin, Gigin; Chen, Shu-Jen; Lu, Yen-Jung; Huang, Huei-Jean; Yen, Chi-Feng; Han, Chien Min; Lee, Yun-Shien; Wang, Tzu-Hao; Chao, Angel

    2017-01-01

    Benign metastasizing leiomyoma (BML) is a rare disease entity typically presenting as multiple extrauterine leiomyomas associated with a uterine leiomyoma. It has been hypothesized that the extrauterine leiomyomata represent distant metastasis of the uterine leiomyoma. To date, the only molecular evidence supporting this hypothesis was derived from clonality analyses based on X-chromosome inactivation assays. Here, we sought to address this issue by examining paired specimens of synchronous pulmonary and uterine leiomyomata from three patients using targeted massively parallel sequencing and molecular inversion probe array analysis for detecting somatic mutations and copy number aberrations. We detected identical non-hot-spot somatic mutations and similar patterns of copy number aberrations (CNAs) in paired pulmonary and uterine leiomyomata from two patients, indicating the clonal relationship between pulmonary and uterine leiomyomata. In addition to loss of chromosome 22q found in the literature, we identified additional recurrent CNAs including losses of chromosome 3q and 11q. In conclusion, our findings of the clonal relationship between synchronous pulmonary and uterine leiomyomas support the hypothesis that BML represents a condition wherein a uterine leiomyoma disseminates to distant extrauterine locations. PMID:28533481

  14. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma.

    PubMed

    Wu, Ren-Chin; Chao, An-Shine; Lee, Li-Yu; Lin, Gigin; Chen, Shu-Jen; Lu, Yen-Jung; Huang, Huei-Jean; Yen, Chi-Feng; Han, Chien Min; Lee, Yun-Shien; Wang, Tzu-Hao; Chao, Angel

    2017-07-18

    Benign metastasizing leiomyoma (BML) is a rare disease entity typically presenting as multiple extrauterine leiomyomas associated with a uterine leiomyoma. It has been hypothesized that the extrauterine leiomyomata represent distant metastasis of the uterine leiomyoma. To date, the only molecular evidence supporting this hypothesis was derived from clonality analyses based on X-chromosome inactivation assays. Here, we sought to address this issue by examining paired specimens of synchronous pulmonary and uterine leiomyomata from three patients using targeted massively parallel sequencing and molecular inversion probe array analysis for detecting somatic mutations and copy number aberrations. We detected identical non-hot-spot somatic mutations and similar patterns of copy number aberrations (CNAs) in paired pulmonary and uterine leiomyomata from two patients, indicating the clonal relationship between pulmonary and uterine leiomyomata. In addition to loss of chromosome 22q found in the literature, we identified additional recurrent CNAs including losses of chromosome 3q and 11q. In conclusion, our findings of the clonal relationship between synchronous pulmonary and uterine leiomyomas support the hypothesis that BML represents a condition wherein a uterine leiomyoma disseminates to distant extrauterine locations.

  15. Functional characteristics of the calcium modulated proteins seen from an evolutionary perspective

    NASA Technical Reports Server (NTRS)

    Kretsinger, R. H.; Nakayama, S.; Moncrief, N. D.

    1991-01-01

    We have constructed dendrograms relating 173 EF-hand proteins of known amino acid sequence. We aligned all of these proteins by their EF-hand domains, omitting interdomain regions. Initial dendrograms were computed by minimum mutation distance methods. Using these as starting points, we determined the best dendrogram by the method of maximum parsimony, scored by minimum mutation distance. We identified 14 distinct subfamilies as well as 6 unique proteins that are perhaps the sole representatives of other subfamilies. This information is given in tabular form. Within subfamilies one can easily align interdomain regions. The resulting dendrograms are very similar to those computed using domains only. Dendrograms constructed using pairs of domains show general congruence. However, there are enough exceptions to caution against an overly simple scheme in which one pair of gene duplications leads from one domain precurser to a four domain prototype from which all other forms evolved. The ability to bind calcium was lost and acquired several times during evolution. The distribution of introns does not conform to the dendrogram based on amino acid sequences. The rates of evolution appear to be much slower within subfamilies, especially within calmodulin, than those prior to the definition of subfamily.

  16. Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA.

    PubMed

    Ling, Feng; Shibata, Takehiko

    2002-09-02

    Yeast mhr1-1 was isolated as a defective mutation in mitochondrial DNA (mtDNA) recombination. About half of mhr1-1 cells lose mtDNA during growth at a higher temperature. Here, we show that mhr1-1 exhibits a defect in the partitioning of nascent mtDNA into buds and is a base-substitution mutation in MHR1 encoding a mitochondrial matrix protein. We found that the Mhr1 protein (Mhr1p) has activity to pair single-stranded DNA and homologous double-stranded DNA to form heteroduplex joints in vitro, and that mhr1-1 causes the loss of this activity, indicating its role in homologous mtDNA recombination. While the majority of the mtDNA in the mother cells consists of head-to-tail concatemers, more than half of the mtDNA in the buds exists as genome-sized monomers. The mhr1-1 deltacce1 double mutant cells do not maintain any mtDNA, indicating the strict dependence of mtDNA maintenance on recombination functions. These results suggest a mechanism for mtDNA inheritance similar to that operating in the replication and packaging of phage DNA.

  17. A contact photo-cross-linking investigation of the active site of the 8-17 deoxyribozyme.

    PubMed

    Liu, Yong; Sen, Dipankar

    2008-09-12

    The small RNA-cleaving 8-17 deoxyribozyme (DNAzyme) has been the subject of extensive mechanistic and structural investigation, including a number of recent single-molecule studies of its global folding. Little detailed insight exists, however, into this DNAzyme's active site; for instance, the identity of specific nucleotides that are proximal to or in contact with the scissile site in the substrate. Here, we report a systematic replacement of a number of bases within the magnesium-folded DNAzyme-substrate complex with thio- and halogen-substituted base analogues, which were then photochemically activated to generate contact cross-links within the complex. Mapping of the cross-links revealed a striking pattern of DNAzyme-substrate cross-links but an absence of significant intra-DNAzyme cross-links. Notably, the two nucleotides directly flanking the scissile phosphodiester cross-linked strongly with functionally important elements within the DNAzyme, the thymine of a G.T wobble base pair, a WCGR bulge loop, and a terminal AGC loop. Mutation of the wobble base pair to a G-C pair led to a significant folding instability of the DNAzyme-substrate complex. The cross-linking patterns obtained were used to generate a model for the DNAzyme's active site that had the substrate's scissile phosphodiester sandwiched between the DNAzyme's wobble thymine and its AGC and WCGR loops.

  18. Two-dimensional IR spectroscopy of the anti-HIV agent KP1212 reveals protonated and neutral tautomers that influence pH-dependent mutagenicity.

    PubMed

    Peng, Chunte Sam; Fedeles, Bogdan I; Singh, Vipender; Li, Deyu; Amariuta, Tiffany; Essigmann, John M; Tokmakoff, Andrei

    2015-03-17

    Antiviral drugs designed to accelerate viral mutation rates can drive a viral population to extinction in a process called lethal mutagenesis. One such molecule is 5,6-dihydro-5-aza-2'-deoxycytidine (KP1212), a selective mutagen that induces A-to-G and G-to-A mutations in the genome of replicating HIV. The mutagenic property of KP1212 was hypothesized to originate from its amino-imino tautomerism, which would explain its ability to base pair with either G or A. To test the multiple tautomer hypothesis, we used 2D IR spectroscopy, which offers subpicosecond time resolution and structural sensitivity to distinguish among rapidly interconverting tautomers. We identified several KP1212 tautomers and found that >60% of neutral KP1212 is present in the enol-imino form. The abundant proportion of this traditionally rare tautomer offers a compelling structure-based mechanism for pairing with adenine. Additionally, the pKa of KP1212 was measured to be 7.0, meaning a substantial population of KP1212 is protonated at physiological pH. Furthermore, the mutagenicity of KP1212 was found to increase dramatically at pH <7, suggesting a significant biological role for the protonated KP1212 molecules. Overall, our data reveal that the bimodal mutagenic properties of KP1212 result from its unique shape shifting ability that utilizes both tautomerization and protonation.

  19. Evidence for a founder effect for the IVS4 +4 A{r_arrow}T mutation in the Fanconi anemia gene FACC in a Jewish population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verlander, P.C.; Kaporis, A.G.; Qian, L.

    1994-09-01

    Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder defined by hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C(FACC) has been cloned. Two common mutations, IVS4 +4 A{r_arrow}T and 322delG, and several rare mutations have recently been reported in affected individuals. We now report the development of amplification refractory mutation system (ARMS) assays for rapid, non-radioactive detection of these known mutations in FACC. Primer pairs specific for variant sequences were designed, with the 3{prime} terminal base of one primer matching the variant base. PCR products are separated by electrophoresis on 2.5% agarose gels; mutationsmore » are indicated by the presence of a band of a specific size. These ARMS assays can be multiplexed to allow screening for all known mutations in two PCR reactions. We have used these assays for detection of FACC mutations in affected individuals in the International Fanconi Anemia Registry (IFAR), and for carrier detection FACC families. IVS4 +4 A{r_arrow}T is the only FACC mutation found in Jewish FA patients and their families, of both Ashkenazi and Sephardic ancestry. This mutation was not found in any affected individual of non-Jewish origin. In addition, DNA samples from 1596 healthy Jewish individuals primarily of Ashkenazi ancestry were supplied to us by Dor Yeshorim. These samples, ascertained for carrier screening for Tay Sachs, cystic fibrosis, and other genetic diseases with a high frequency in the religious Jewish community served by this organization, were tested for both IVS4 +4 A{r_arrow}T and 322delG mutations; seventeen IVS4 +4 A{r_arrow}T are of Sephardic Jewish ancestry. We hypothesize that IVS4 +4 A{r_arrow}T is a very old mutation, predating the divergence of the Ashkenazi and Sephardic populations. Haplotype analysis with microsatellite markers is in progress.« less

  20. The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia

    PubMed Central

    Hamasaki-Katagiri, Nobuko; Lin, Brian C.; Simon, Jonathan; Hunt, Ryan C.; Schiller, Tal; Russek-Cohen, Estelle; Komar, Anton A.; Bar, Haim; Kimchi-Sarfaty, Chava

    2016-01-01

    Introduction Mutational analysis is commonly used to support the diagnosis and management of haemophilia. This has allowed for the generation of large mutation databases which provide unparalleled insight into genotype-phenotype relationships. Haemophilia is associated with inversions, deletions, insertions, nonsense and missense mutations. Both synonymous and non-synonymous mutations influence the base pairing of messenger RNA (mRNA), which can alter mRNA structure, cellular half-life and ribosome processivity/elongation. However, the role of mRNA structure in determining the pathogenicity of point mutations in haemophilia has not been evaluated. Aim To evaluate mRNA thermodynamic stability and associated RNA prediction software as a means to distinguish between neutral and disease-associated mutations in haemophilia. Methods Five mRNA structure prediction software programs were used to assess the thermodynamic stability of mRNA fragments carrying neutral vs. disease-associated and synonymous vs. non-synonymous point mutations in F8, F9 and a third X-linked gene, DMD (dystrophin). Results In F8 and DMD, disease-associated mutations tend to occur in more structurally stable mRNA regions, represented by lower MFE (minimum free energy) levels. In comparing multiple software packages for mRNA structure prediction, a 101–151 nucleotide fragment length appears to be a feasible range for structuring future studies. Conclusion mRNA thermodynamic stability is one predictive characteristic, which when combined with other RNA and protein features, may offer significant insight when screening sequencing data for novel disease-associated mutations. Our results also suggest potential utility in evaluating the mRNA thermodynamic stability profile of a gene when determining the viability of interchanging codons for biological and therapeutic applications. PMID:27933712

  1. The novel mitochondrial 16S rRNA 2336T>C mutation is associated with hypertrophic cardiomyopathy

    PubMed Central

    Liu, Zhong; Song, Yanrui; Li, Dan; He, Xiangyu; Li, Shishi; Wu, Bifeng; Wang, Wei; Gu, Shulian; Zhu, Xiaoyu; Wang, Xuexiang; Zhou, Qiyin; Dai, Yu; Yan, Qingfeng

    2014-01-01

    Background Hypertrophic cardiomyopathy (HCM) is a primary disorder characterised by asymmetric thickening of septum and left ventricular wall, with a prevalence of 0.2% in the general population. Objective To describe a novel mitochondrial DNA mutation and its association with the pathogenesis of HCM. Methods and results All maternal members of a Chinese family with maternally transmitted HCM exhibited variable severity and age at onset, and were implanted permanent pacemakers due to complete atrioventricular block (AVB). Nuclear gene screening (MYH7, MYBPC3, TNNT2 and TNNI3) was performed, and no potential pathogenic mutation was identified. Mitochondrial DNA sequencing analysis identified a novel homoplasmic 16S rRNA 2336T>C mutation. This mutation was exclusively present in maternal members and absent in non-maternal members. Conservation index by comparison to 16 other vertebrates was 94.1%. This mutation disturbs the 2336U-A2438 base pair in the stem–loop structure of 16S rRNA domain III, which is involved in the assembly of mitochondrial ribosome. Oxygen consumption rate of the lymphoblastoid cells carrying 2336T>C mutation had decreased by 37% compared with controls. A reduction in mitochondrial ATP synthesis and an increase in reactive oxidative species production were also observed. Electron microscopic analysis indicated elongated mitochondria and abnormal mitochondrial cristae shape in mutant cells. Conclusions It is suggested that the 2336T>C mutation is one of pathogenic mutations of HCM. This is the first report of mitochondrial 16S rRNA 2336T>C mutation and an association with maternally inherited HCM combined with AVB. Our findings provide a new insight into the pathogenesis of HCM. PMID:24367055

  2. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2

    PubMed Central

    Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; Aziz, A.; Godfrey, A.L.; Hinton, J.; Martincorena, I.; Van Loo, P.; Jones, A.V.; Guglielmelli, P.; Tarpey, P.; Harding, H.P.; Fitzpatrick, J.D.; Goudie, C.T.; Ortmann, C.A.; Loughran, S.J.; Raine, K.; Jones, D.R.; Butler, A.P.; Teague, J.W.; O’Meara, S.; McLaren, S.; Bianchi, M.; Silber, Y.; Dimitropoulou, D.; Bloxham, D.; Mudie, L.; Maddison, M.; Robinson, B.; Keohane, C.; Maclean, C.; Hill, K.; Orchard, K.; Tauro, S.; Du, M.-Q.; Greaves, M.; Bowen, D.; Huntly, B.J.P.; Harrison, C.N.; Cross, N.C.P.; Ron, D.; Vannucchi, A.M.; Papaemmanuil, E.; Campbell, P.J.; Green, A.R.

    2014-01-01

    BACKGROUND Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. RESULTS Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients. CONCLUSIONS Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with nonmutated JAK2. (Funded by the Kay Kendall Leukaemia Fund and others.) PMID:24325359

  3. Paired Exome Analysis Reveals Clonal Evolution and Potential Therapeutic Targets in Urothelial Carcinoma.

    PubMed

    Lamy, Philippe; Nordentoft, Iver; Birkenkamp-Demtröder, Karin; Thomsen, Mathilde Borg Houlberg; Villesen, Palle; Vang, Søren; Hedegaard, Jakob; Borre, Michael; Jensen, Jørgen Bjerggaard; Høyer, Søren; Pedersen, Jakob Skou; Ørntoft, Torben F; Dyrskjøt, Lars

    2016-10-01

    Greater knowledge concerning tumor heterogeneity and clonality is needed to determine the impact of targeted treatment in the setting of bladder cancer. In this study, we performed whole-exome, transcriptome, and deep-focused sequencing of metachronous tumors from 29 patients initially diagnosed with early-stage bladder tumors (14 with nonprogressive disease and 15 with progressive disease). Tumors from patients with progressive disease showed a higher variance of the intrapatient mutational spectrum and a higher frequency of APOBEC-related mutations. Allele-specific expression was also higher in these patients, particularly in tumor suppressor genes. Phylogenetic analysis revealed a common origin of the metachronous tumors, with a higher proportion of clonal mutations in the ancestral branch; however, 19 potential therapeutic targets were identified as both ancestral and tumor-specific alterations. Few subclones were present based on PyClone analysis. Our results illuminate tumor evolution and identify candidate therapeutic targets in bladder cancer. Cancer Res; 76(19); 5894-906. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Mutational spectrum of CDKL5 in early-onset encephalopathies: a study of a large collection of French patients and review of the literature.

    PubMed

    Nemos, C; Lambert, L; Giuliano, F; Doray, B; Roubertie, A; Goldenberg, A; Delobel, B; Layet, V; N'guyen, M A; Saunier, A; Verneau, F; Jonveaux, P; Philippe, C

    2009-10-01

    The CDKL5 gene has been implicated in the molecular etiology of early-onset intractable seizures with infantile spasms (IS), severe hypotonia and atypical Rett syndrome (RTT) features. So far, 48 deleterious alleles have been reported in the literature. We screened the CDKL5 gene in a cohort of 177 patients with early-onset seizures, including 30 men and 10 girls with Aicardi syndrome. The screening was negative for all men as well as for women with Aicardi syndrome, excluding the CDKL5 gene as a candidate for this neurodevelopmental disorder. We report 11 additional de novo mutations in CDKL5 in female patients. For the first time, the MLPA approach allowed the identification of a partial deletion encompassing the promoter and the first two exons of CDKL5. The 10-point mutations consist of five missenses (with recurrent amino acid changes at p.Ala40 and p.Arg178), four splicing variants and a 1-base pair duplication. We present a review of all mutated alleles published in the literature. In our study, the overall frequency of mutations in CDKL5 in women with early-onset seizures is around 8.6%, a result comparable with previous reports. Noteworthy, the CDKL5 mutation rate is high (28%) in women with early-onset seizures and IS.

  5. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations | Office of Cancer Genomics

    Cancer.gov

    The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway.

  6. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1.

    PubMed

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism.

  7. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1

    PubMed Central

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism. PMID:27081571

  8. A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function

    PubMed Central

    Jiang, Pingping; Wang, Meng; Xue, Ling; Xiao, Yun; Yu, Jialing; Wang, Hui; Yao, Juan; Liu, Hao; Peng, Yanyan; Liu, Hanqing; Li, Haiying; Chen, Ye

    2016-01-01

    In this report, we investigated the pathophysiology of a novel hypertension-associated mitochondrial tRNAAla 5655A → G (m.5655A → G) mutation. The destabilization of a highly conserved base pairing (A1-U72) at the aminoacyl acceptor stem by an m.5655A → G mutation altered the tRNAAla function. An in vitro processing analysis showed that the m.5655A → G mutation reduced the efficiency of tRNAAla precursor 5′ end cleavage catalyzed by RNase P. By using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA (mtDNA)-less (ρo) cells, we showed a 41% reduction in the steady-state level of tRNAAla in mutant cybrids. The mutation caused an improperly aminoacylated tRNAAla, as suggested by aberrantly aminoacylated tRNAAla and slower electrophoretic mobility of mutated tRNA. A failure in tRNAAla metabolism contributed to variable reductions in six mtDNA-encoded polypeptides in mutant cells, ranging from 21% to 37.5%, with an average of a 29.1% reduction, compared to levels of the controls. The impaired translation caused reduced activities of mitochondrial respiration chains. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These caused increases in the production of reactive oxygen species in the mutant cybrids. The data provide evidence for the association of the tRNAAla 5655A → G mutation with hypertension. PMID:27161322

  9. COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome.

    PubMed

    Storey, Helen; Savige, Judy; Sivakumar, Vanessa; Abbs, Stephen; Flinter, Frances A

    2013-12-01

    Alport syndrome is an inherited disease characterized by hematuria, progressive renal failure, hearing loss, and ocular abnormalities. Autosomal recessive Alport syndrome is suspected in consanguineous families and when female patients develop renal failure. Fifteen percent of patients with Alport syndrome have autosomal recessive inheritance caused by two pathogenic mutations in either COL4A3 or COL4A4. Here, we describe the mutations and clinical features in 40 individuals including 9 children and 21 female individuals (53%) with autosomal recessive inheritance indicated by the detection of two mutations. The median age was 31 years (range, 6-54 years). The median age at end stage renal failure was 22.5 years (range, 10-38 years), but renal function was normal in nine adults (29%). Hearing loss and ocular abnormalities were common (23 of 35 patients [66%] and 10 of 18 patients [56%], respectively). Twenty mutation pairs (50%) affected COL4A3 and 20 pairs affected COL4A4. Of the 68 variants identified, 39 were novel, 12 were homozygous changes, and 9 were present in multiple individuals, including c.2906C>G (p.(Ser969*)) in COL4A4, which was found in 23% of the patients. Thirty-six variants (53%) resulted directly or indirectly in a stop codon, and all 17 individuals with early onset renal failure had at least one such mutation, whereas these mutations were less common in patients with normal renal function or late-onset renal failure. In conclusion, patient phenotypes may vary depending on the underlying mutations, and genetic testing should be considered for the routine diagnosis of autosomal recessive Alport syndrome.

  10. COL4A3/COL4A4 Mutations and Features in Individuals with Autosomal Recessive Alport Syndrome

    PubMed Central

    Savige, Judy; Sivakumar, Vanessa; Abbs, Stephen; Flinter, Frances A.

    2013-01-01

    Alport syndrome is an inherited disease characterized by hematuria, progressive renal failure, hearing loss, and ocular abnormalities. Autosomal recessive Alport syndrome is suspected in consanguineous families and when female patients develop renal failure. Fifteen percent of patients with Alport syndrome have autosomal recessive inheritance caused by two pathogenic mutations in either COL4A3 or COL4A4. Here, we describe the mutations and clinical features in 40 individuals including 9 children and 21 female individuals (53%) with autosomal recessive inheritance indicated by the detection of two mutations. The median age was 31 years (range, 6–54 years). The median age at end stage renal failure was 22.5 years (range, 10–38 years), but renal function was normal in nine adults (29%). Hearing loss and ocular abnormalities were common (23 of 35 patients [66%] and 10 of 18 patients [56%], respectively). Twenty mutation pairs (50%) affected COL4A3 and 20 pairs affected COL4A4. Of the 68 variants identified, 39 were novel, 12 were homozygous changes, and 9 were present in multiple individuals, including c.2906C>G (p.(Ser969*)) in COL4A4, which was found in 23% of the patients. Thirty-six variants (53%) resulted directly or indirectly in a stop codon, and all 17 individuals with early onset renal failure had at least one such mutation, whereas these mutations were less common in patients with normal renal function or late-onset renal failure. In conclusion, patient phenotypes may vary depending on the underlying mutations, and genetic testing should be considered for the routine diagnosis of autosomal recessive Alport syndrome. PMID:24052634

  11. A novel mutation in SOX3 polyalanine tract: a case of Kabuki syndrome with combined pituitary hormone deficiency harboring double mutations in MLL2 and SOX3.

    PubMed

    Takagi, Masaki; Ishii, Tomohiro; Torii, Chiharu; Kosaki, Kenjiro; Hasegawa, Tomonobu

    2014-12-01

    Both duplications encompassing SOX3 and loss-of function mutations in SOX3 have been reported in a minor portion of X-linked isolated growth hormone deficiency (GHD) or combined pituitary hormone deficiency (CPHD) patients with or without mental retardation. We report a Japanese male patient with molecularly confirmed Kabuki syndrome who was found to have CPHD. We analyzed all coding exons and flanking introns of currently known nine genes responsible for CPHD by PCR-based sequencing. In this CPHD patient, we identified a novel hemizygous 21-base pair deletion, resulting in the loss of 7 alanine residues from polyalanine (PA) tracts of SOX3. The clinically and endocrinologically normal mother of the patient carried the same deletion in a heterozygous manner. In vitro experiments showed that the del 7A SOX3 had increased transactivation of the HESX1 promoter. Our study provides additional evidence that deletion in PA tracts of SOX3 is associated with hypopituitarism. Female carriers of SOX3 PA tract deletions will show a broad phenotypic spectrum, ranging from clinically normal to CPHD.

  12. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    DOE PAGES

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; ...

    2014-10-13

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less

  13. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian

    Re-engineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test thismore » strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. The context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.« less

  14. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype.

    PubMed

    Knowles, Michael R; Ostrowski, Lawrence E; Leigh, Margaret W; Sears, Patrick R; Davis, Stephanie D; Wolf, Whitney E; Hazucha, Milan J; Carson, Johnny L; Olivier, Kenneth N; Sagel, Scott D; Rosenfeld, Margaret; Ferkol, Thomas W; Dell, Sharon D; Milla, Carlos E; Randell, Scott H; Yin, Weining; Sannuti, Aruna; Metjian, Hilda M; Noone, Peadar G; Noone, Peter J; Olson, Christina A; Patrone, Michael V; Dang, Hong; Lee, Hye-Seung; Hurd, Toby W; Gee, Heon Yung; Otto, Edgar A; Halbritter, Jan; Kohl, Stefan; Kircher, Martin; Krischer, Jeffrey; Bamshad, Michael J; Nickerson, Deborah A; Hildebrandt, Friedhelm; Shendure, Jay; Zariwala, Maimoona A

    2014-03-15

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia, but the genetic cause is not defined for all patients with PCD. To identify disease-causing mutations in novel genes, we performed exome sequencing, follow-up characterization, mutation scanning, and genotype-phenotype studies in patients with PCD. Whole-exome sequencing was performed using NimbleGen capture and Illumina HiSeq sequencing. Sanger-based sequencing was used for mutation scanning, validation, and segregation analysis. We performed exome sequencing on an affected sib-pair with normal ultrastructure in more than 85% of cilia. A homozygous splice-site mutation was detected in RSPH1 in both siblings; parents were carriers. Screening RSPH1 in 413 unrelated probands, including 325 with PCD and 88 with idiopathic bronchiectasis, revealed biallelic loss-of-function mutations in nine additional probands. Five affected siblings of probands in RSPH1 families harbored the familial mutations. The 16 individuals with RSPH1 mutations had some features of PCD; however, nasal nitric oxide levels were higher than in patients with PCD with other gene mutations (98.3 vs. 20.7 nl/min; P < 0.0003). Additionally, individuals with RSPH1 mutations had a lower prevalence (8 of 16) of neonatal respiratory distress, and later onset of daily wet cough than typical for PCD, and better lung function (FEV1), compared with 75 age- and sex-matched PCD cases (73.0 vs. 61.8, FEV1 % predicted; P = 0.043). Cilia from individuals with RSPH1 mutations had normal beat frequency (6.1 ± Hz at 25°C), but an abnormal, circular beat pattern. The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.

  15. Sanger sequencing as a first-line approach for molecular diagnosis of Andersen-Tawil syndrome.

    PubMed

    Totomoch-Serra, Armando; Marquez, Manlio F; Cervantes-Barragán, David E

    2017-01-01

    In 1977, Frederick Sanger developed a new method for DNA sequencing based on the chain termination method, now known as the Sanger sequencing method (SSM).  Recently, massive parallel sequencing, better known as next-generation sequencing (NGS),  is replacing the SSM for detecting mutations in cardiovascular diseases with a genetic background. The present opinion article wants to remark that "targeted" SSM is still effective as a first-line approach for the molecular diagnosis of some specific conditions, as is the case for Andersen-Tawil syndrome (ATS). ATS is described as a rare multisystemic autosomal dominant channelopathy syndrome caused mainly by a heterozygous mutation in the KCNJ2 gene . KCJN2 has particular characteristics that make it attractive for "directed" SSM. KCNJ2 has a sequence of 17,510 base pairs (bp), and a short coding region with two exons (exon 1=166 bp and exon 2=5220 bp), half of the mutations are located in the C-terminal cytosolic domain, a mutational hotspot has been described in residue Arg218, and this gene explains the phenotype in 60% of ATS cases that fulfill all the clinical criteria of the disease. In order to increase the diagnosis of ATS we urge cardiologists to search for facial and muscular abnormalities in subjects with frequent ventricular arrhythmias (especially bigeminy) and prominent U waves on the electrocardiogram.

  16. Sanger sequencing as a first-line approach for molecular diagnosis of Andersen-Tawil syndrome

    PubMed Central

    Totomoch-Serra, Armando; Marquez, Manlio F.; Cervantes-Barragán, David E.

    2017-01-01

    In 1977, Frederick Sanger developed a new method for DNA sequencing based on the chain termination method, now known as the Sanger sequencing method (SSM).  Recently, massive parallel sequencing, better known as next-generation sequencing (NGS),  is replacing the SSM for detecting mutations in cardiovascular diseases with a genetic background. The present opinion article wants to remark that “targeted” SSM is still effective as a first-line approach for the molecular diagnosis of some specific conditions, as is the case for Andersen-Tawil syndrome (ATS). ATS is described as a rare multisystemic autosomal dominant channelopathy syndrome caused mainly by a heterozygous mutation in the KCNJ2 gene . KCJN2 has particular characteristics that make it attractive for “directed” SSM. KCNJ2 has a sequence of 17,510 base pairs (bp), and a short coding region with two exons (exon 1=166 bp and exon 2=5220 bp), half of the mutations are located in the C-terminal cytosolic domain, a mutational hotspot has been described in residue Arg218, and this gene explains the phenotype in 60% of ATS cases that fulfill all the clinical criteria of the disease. In order to increase the diagnosis of ATS we urge cardiologists to search for facial and muscular abnormalities in subjects with frequent ventricular arrhythmias (especially bigeminy) and prominent U waves on the electrocardiogram. PMID:29093808

  17. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy

    PubMed Central

    Lohr, Jens G.; Stojanov, Petar; Carter, Scott L.; Cruz-Gordillo, Peter; Lawrence, Michael S.; Auclair, Daniel; Sougnez, Carrie; Knoechel, Birgit; Gould, Joshua; Saksena, Gordon; Cibulskis, Kristian; McKenna, Aaron; Chapman, Michael A.; Straussman, Ravid; Levy, Joan; Perkins, Louise M.; Keats, Jonathan J.; Schumacher, Steven E.; Rosenberg, Mara; Getz, Gad

    2014-01-01

    SUMMARY We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma (MM) patients and identified significantly mutated genes and copy number alterations, and discovered putative tumor suppressor genes by determining homozygous deletions and loss-of-heterozygosity. We observed frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53 and DIS3 (particularly in non-hyperdiploid MM). Mutations were often present in subclonal populations, and multiple mutations within the same pathway (e.g. KRAS, NRAS and BRAF) were observed in the same patient. In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth promotion of non-mutated subclones in some cases. These results emphasize the importance of heterogeneity analysis for treatment decisions. PMID:24434212

  18. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis.

    PubMed

    Esteller, M; Toyota, M; Sanchez-Cespedes, M; Capella, G; Peinado, M A; Watkins, D N; Issa, J P; Sidransky, D; Baylin, S B; Herman, J G

    2000-05-01

    O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that removes mutagenic and cytotoxic adducts from the O6 position of guanine. O6-methylguanine mispairs with thymine during replication, and if the adduct is not removed, this results in conversion from a guanine-cytosine pair to an adenine-thymine pair. In vitro assays show that MGMT expression avoids G to A mutations and MGMT transgenic mice are protected against G to A transitions at ras genes. We have recently demonstrated that the MGMT gene is silenced by promoter methylation in many human tumors, including colorectal carcinomas. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of K-ras mutations, we studied 244 colorectal tumor samples for MGMT promoter hypermethylation and K-ras mutational status. Our results show a clear association between the inactivation of MGMT by promoter hypermethylation and the appearance of G to A mutations at K-ras: 71% (36 of 51) of the tumors displaying this particular type of mutation had abnormal MGMT methylation, whereas only 32% (12 of 37) of those with other K-ras mutations not involving G to A transitions and 35% (55 of 156) of the tumors without K-ras mutations demonstrated MGMT methylation (P = 0.002). In addition, MGMT loss associated with hypermethylation was observed in the small adenomas, including those that do not yet contain K-ras mutations. Hypermethylation of other genes such as p16INK4a and p14ARF was not associated with either MGMT hypermethylation or K-ras mutation. Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to a particular genetic change in human cancer, specifically G to A transitions in the K-ras oncogene.

  19. RNA2DMut: a web tool for the design and analysis of RNA structure mutations.

    PubMed

    Moss, Walter N

    2018-03-01

    With the widespread application of high-throughput sequencing, novel RNA sequences are being discovered at an astonishing rate. The analysis of function, however, lags behind. In both the cis - and trans -regulatory functions of RNA, secondary structure (2D base-pairing) plays essential regulatory roles. In order to test RNA function, it is essential to be able to design and analyze mutations that can affect structure. This was the motivation for the creation of the RNA2DMut web tool. With RNA2DMut, users can enter in RNA sequences to analyze, constrain mutations to specific residues, or limit changes to purines/pyrimidines. The sequence is analyzed at each base to determine the effect of every possible point mutation on 2D structure. The metrics used in RNA2DMut rely on the calculation of the Boltzmann structure ensemble and do not require a robust 2D model of RNA structure for designing mutations. This tool can facilitate a wide array of uses involving RNA: for example, in designing and evaluating mutants for biological assays, interrogating RNA-protein interactions, identifying key regions to alter in SELEX experiments, and improving RNA folding and crystallization properties for structural biology. Additional tools are available to help users introduce other mutations (e.g., indels and substitutions) and evaluate their effects on RNA structure. Example calculations are shown for five RNAs that require 2D structure for their function: the MALAT1 mascRNA, an influenza virus splicing regulatory motif, the EBER2 viral noncoding RNA, the Xist lncRNA repA region, and human Y RNA 5. RNA2DMut can be accessed at https://rna2dmut.bb.iastate.edu/. © 2018 Moss; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Mutation-Independent Activation of the Anaplastic Lymphoma Kinase in Neuroblastoma.

    PubMed

    Regairaz, Marie; Munier, Fabienne; Sartelet, Hervé; Castaing, Marine; Marty, Virginie; Renauleaud, Céline; Doux, Camille; Delbé, Jean; Courty, José; Fabre, Monique; Ohta, Shigeru; Vielh, Philippe; Michiels, Stefan; Valteau-Couanet, Dominique; Vassal, Gilles

    2016-02-01

    Activating mutations of anaplastic lymphoma kinase (ALK) have been identified as important players in neuroblastoma development. Our goal was to evaluate the significance of overall ALK activation in neuroblastoma. Expression of phosphorylated ALK, ALK, and its putative ligands, pleiotrophin and midkine, was screened in 289 neuroblastomas and 56 paired normal tissues. ALK was expressed in 99% of tumors and phosphorylated in 48% of cases. Pleiotrophin and midkine were expressed in 58% and 79% of tumors, respectively. ALK activation was significantly higher in tumors than in paired normal tissues, together with ALK and midkine expression. ALK activation was largely independent of mutations and correlated with midkine expression in tumors. ALK activation in tumors was associated with favorable features, including a younger age at diagnosis, hyperdiploidy, and detection by mass screening. Antitumor activity of the ALK inhibitor TAE684 was evaluated in wild-type or mutated ALK neuroblastoma cell lines and xenografts. TAE684 was cytotoxic in vitro in all cell lines, especially those harboring an ALK mutation. TAE684 efficiently inhibited ALK phosphorylation in vivo in both F1174I and R1275Q xenografts but demonstrated antitumor activity only against the R1275Q xenograft. In conclusion, ALK activation occurs frequently during neuroblastoma oncogenesis, mainly through mutation-independent mechanisms. However, ALK activation is not associated with a poor outcome and is not always a driver of cell proliferation and/or survival in neuroblastoma. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Somatic mutation profiles of clear cell endometrial tumors revealed by whole exome and targeted gene sequencing.

    PubMed

    Le Gallo, Matthieu; Rudd, Meghan L; Urick, Mary Ellen; Hansen, Nancy F; Zhang, Suiyuan; Lozy, Fred; Sgroi, Dennis C; Vidal Bel, August; Matias-Guiu, Xavier; Broaddus, Russell R; Lu, Karen H; Levine, Douglas A; Mutch, David G; Goodfellow, Paul J; Salvesen, Helga B; Mullikin, James C; Bell, Daphne W

    2017-09-01

    The molecular pathogenesis of clear cell endometrial cancer (CCEC), a tumor type with a relatively unfavorable prognosis, is not well defined. We searched exome-wide for novel somatically mutated genes in CCEC and assessed the mutational spectrum of known and candidate driver genes in a large cohort of cases. We conducted whole exome sequencing of paired tumor-normal DNAs from 16 cases of CCEC (12 CCECs and the CCEC components of 4 mixed histology tumors). Twenty-two genes-of-interest were Sanger-sequenced from another 47 cases of CCEC. Microsatellite instability (MSI) and microsatellite stability (MSS) were determined by genotyping 5 mononucleotide repeats. Two tumor exomes had relatively high mutational loads and MSI. The other 14 tumor exomes were MSS and had 236 validated nonsynonymous or splice junction somatic mutations among 222 protein-encoding genes. Among the 63 cases of CCEC in this study, we identified frequent somatic mutations in TP53 (39.7%), PIK3CA (23.8%), PIK3R1 (15.9%), ARID1A (15.9%), PPP2R1A (15.9%), SPOP (14.3%), and TAF1 (9.5%), as well as MSI (11.3%). Five of 8 mutations in TAF1, a gene with no known role in CCEC, localized to the putative histone acetyltransferase domain and included 2 recurrently mutated residues. Based on patterns of MSI and mutations in 7 genes, CCEC subsets molecularly resembled serous endometrial cancer (SEC) or endometrioid endometrial cancer (EEC). Our findings demonstrate molecular similarities between CCEC and SEC and EEC and implicate TAF1 as a novel candidate CCEC driver gene. Cancer 2017;123:3261-8. © 2017 American Cancer Society. © 2017 American Cancer Society.

  2. [Diabetes mellitus associated with the mitochondrial mutation A3243G: frequency and clinical presentation].

    PubMed

    Salles, João Eduardo N; Kalinin, Larissa Bresgunov; Ferreira, Sandra Roberta G; Kasamatsu, Teresa; Moisés, Regina S

    2007-06-01

    Maternal inherited diabetes and deafness (MIDD) has been related to an A to G transition in the mitochondrial RNA Leu (UUR) at base pair 3243. The prevalence of MIDD in the diabetes population ranges between 0.5-3.0% depending on the ethnic background. To examine the frequency and clinical features of diabetes associated with this mutation in Brazilian patients with glucose intolerance. The study population comprised: 78 type 1 diabetic subjects (group I), 148 patients with type 2 diabetes (group II), 15 patients with either type 1 or type 2 diabetes and hearing loss (group III) and 492 Japanese Brazilians with varying degrees of glucose intolerance. DNA was extracted from peripheral blood leucocytes and the A3243G mutation was determined by PCR amplification and Apa 1 digestion. In some individuals DNA was also extracted from buccal mucosa and hair follicles. The 3243 bp mutation was found in three individuals, all from group III, resulting in a prevalence of 0.4%. These subjects had an early age of diagnosis of diabetes, low or normal body mass index and requirement of insulin therapy. In conclusion MIDD is rare in our population and should be investigate in patients with diabetes and deafness.

  3. The mechanism of untargeted mutagenesis in UV-irradiated yeast.

    PubMed

    Lawrence, C W; Christensen, R B

    1982-01-01

    The SOS error-prone repair hypothesis proposes that untargeted and targeted mutations in E. coli both result from the inhibition of polymerase functions that normally maintain fidelity, and that this is a necessary precondition for translesion synthesis. Using mating experiments with excision deficient strains of Bakers' yeast, Saccharomyces cerevisiae, we find that up to 40% of cycl-91 revertants induced by UV are untargeted, showing that a reduction in fidelity is also found in irradiated cells of this organism. We are, however, unable to detect the induction or activation of any diffusible factor capable of inhibiting fidelity, and therefore suggest that untargeted and targeted mutations are the consequence of largely different processes. We propose that these observations are best explained in terms of a limited fidelity model. Untargeted mutations are thought to result from the limited capacity of processes which normally maintain fidelity, which are active during replication on both irradiated and unirradiated templates. Even moderate UV fluences saturate this capacity, leading to competition for the limited resource. Targeted mutations are believed to result from the limited, though far from negligible, capacity of lesions like pyrimidine dimers to form Watson-Crick base pairs.

  4. Molecular interactions involved in proton-dependent gating in KcsA potassium channels

    PubMed Central

    Posson, David J.; Thompson, Ameer N.; McCoy, Jason G.

    2013-01-01

    The bacterial potassium channel KcsA is gated open by the binding of protons to amino acids on the intracellular side of the channel. We have identified, via channel mutagenesis and x-ray crystallography, two pH-sensing amino acids and a set of nearby residues involved in molecular interactions that influence gating. We found that the minimal mutation of one histidine (H25) and one glutamate (E118) near the cytoplasmic gate completely abolished pH-dependent gating. Mutation of nearby residues either alone or in pairs altered the channel’s response to pH. In addition, mutations of certain pairs of residues dramatically increased the energy barriers between the closed and open states. We proposed a Monod–Wyman–Changeux model for proton binding and pH-dependent gating in KcsA, where H25 is a “strong” sensor displaying a large shift in pKa between closed and open states, and E118 is a “weak” pH sensor. Modifying model parameters that are involved in either the intrinsic gating equilibrium or the pKa values of the pH-sensing residues was sufficient to capture the effects of all mutations. PMID:24218397

  5. Linkage disequilibrium between STRPs and SNPs across the human genome.

    PubMed

    Payseur, Bret A; Place, Michael; Weber, James L

    2008-05-01

    Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.

  6. Adiposity is associated with p53 gene mutations in breast cancer.

    PubMed

    Ochs-Balcom, Heather M; Marian, Catalin; Nie, Jing; Brasky, Theodore M; Goerlitz, David S; Trevisan, Maurizio; Edge, Stephen B; Winston, Janet; Berry, Deborah L; Kallakury, Bhaskar V; Freudenheim, Jo L; Shields, Peter G

    2015-10-01

    Mutations in the p53 gene are among the most frequent genetic events in human cancer and may be triggered by environmental and occupational exposures. We examined the association of clinical and pathological characteristics of breast tumors and breast cancer risk factors according to the prevalence and type of p53 mutations. Using tumor blocks from incident cases from a case-control study in western New York, we screened for p53 mutations in exons 2-11 using the Affymetrix p53 Gene Chip array and analyzed case-case comparisons using logistic regression. The p53 mutation frequency among cases was 28.1 %; 95 % were point mutations (13 % of which were silent) and the remainder were single base pair deletions. Sixty seven percent of all point mutations were transitions; 24 % of them are G:C>A:T at CpG sites. Positive p53 mutation status was associated with poorer differentiation (OR, 95 % CI 2.29, 1.21-4.32), higher nuclear grade (OR, 95 % CI 1.99, 1.22-3.25), and increased Ki-67 status (OR, 95 % CI 1.81, 1.10-2.98). Cases with P53 mutations were more likely to have a combined ER-positive and PR-negative status (OR, 95 % CI 1.65, 1.01-2.71), and a combined ER-negative and PR-negative status (OR, 95 % CI 2.18, 1.47-3.23). Body mass index >30 kg/m(2), waist circumference >79 cm, and waist-to-hip ratio >0.86 were also associated with p53 status; obese breast cancer cases are more likely to have p53 mutations (OR, 95 % CI 1.78, 1.19-2.68). We confirmed that p53 mutations are associated with less favorable tumor characteristics and identified an association of p53 mutation status and adiposity.

  7. [Influence of Different Therapies on EGFR Mutants by Circulating Cell-free DNA of Lung Adenocarcinoma and Prognosis].

    PubMed

    Su, Fei; Zheng, Ke; Fu, Yiyun; Wu, Qian; Tang, Yuan; Wang, Weiya; Jiang, Lili

    2018-05-20

    Epidermal growth factor receptor (EGFR) gene mutation is closely related to the EGFR-TKI target treatment and prognosis of lung adenocarcinoma patients. The mutation status of EGFR is limited by tissue detection. The purpose of this study was to investigate the difference of EGFR mutants in plasmacirculating cell-free DNA (cfDNA) obtained from patients with non-small cell lung cancer (NSCLC) in three groups: pre-therapy, after traditional chemotherapy and targeted therapy. The aim of this study was to analyze whether the plasma cfDNA could effectively determine the EGFR mutations and monitor the drug resistant gene T790M, as well as its prognostic prediction value in patients with targeted therapy. ARMS (amplification refractory mutation system)-PCR was used to detect EGFR mutations in 107 (50 of pre-therapy, 29 after traditional chemotherapy and 28 after targeted therapy) cases of paired plasma and tumor tissue specimens, followed by comparing their concordance. The sensitivity, specificity and the prognostic value of plasma cfDNA detection were also observed. The total rate of EGFR mutation was 56% (60/107) in all plasma samples and 77.6% (83/107) in corresponding tumor tissues. Completely the same mutants and wild-type EGFR were found in 68.2% cases of paired specimens. The sensitivity of plasma cfDNA detection was 72.3% and the specificity was up to 100%. Patients were sub-categorized according to therapy. The results showed that the highest consistent rate of cfDNA and tumor tissues was found in the group of pre-therapy (74%, 37/50). Whereas, the lowest consistent rate was observed in the targeted therapy group (57.1%, 16/28). It indicated that the targeted treatment could change the EGFR status in plasma cfDNA. Further analyses on inconsistent cases in this group revealed that 50% of them were compound EGFR mutations with T790M. Thereby, it suggested that targeted therapy might induce the emergence of drug resistance gene T790M. This speculation was confirmed by survival analyses. Based on plasma cfDNA results, patients with T790M mutant had significantly worse progression-free survival (PFS) and overall survival (OS). For EGFR testing, ARMS-PCR on plasma cfDNA is a promising methodology with the highest specificity and effective sensitivity. It is useful for EGFR testing in patients before treatment, especially the late-stage patients. Simultaneously, plasma cfDNA could be used to monitor the drug resistant mutation, T790M status and predict prognosis after targeted therapy.

  8. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters' anomaly.

    PubMed

    Hanson, I M; Fletcher, J M; Jordan, T; Brown, A; Taylor, D; Adams, R J; Punnett, H H; van Heyningen, V

    1994-02-01

    Mutation or deletion of the PAX6 gene underlies many cases of aniridia. Three lines of evidence now converge to implicate PAX6 more widely in anterior segment malformations including Peters' anomaly. First, a child with Peters' anomaly is deleted for one copy of PAX6. Second, affected members of a family with dominantly inherited anterior segment malformations, including Peters' anomaly are heterozygous for an R26G mutation in the PAX6 paired box. Third, a proportion of Sey/+ Smalleye mice, heterozygous for a nonsense mutation in murine Pax-6, have an ocular phenotype resembling Peters' anomaly. We therefore propose that a variety of anterior segment anomalies may be associated with PAX6 mutations.

  9. A Frameshift Mutation in the Cubilin Gene (CUBN) in Border Collies with Imerslund-Gräsbeck Syndrome (Selective Cobalamin Malabsorption)

    PubMed Central

    Owczarek-Lipska, Marta; Jagannathan, Vidhya; Drögemüller, Cord; Lutz, Sabina; Glanemann, Barbara

    2013-01-01

    Imerslund-Gräsbeck syndrome (IGS) or selective cobalamin malabsorption has been described in humans and dogs. IGS occurs in Border Collies and is inherited as a monogenic autosomal recessive trait in this breed. Using 7 IGS cases and 7 non-affected controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 3.53 Mb interval on chromosome 2. We re-sequenced the genome of one affected dog at ∼10× coverage and detected 17 non-synonymous variants in the critical interval. Two of these non-synonymous variants were in the cubilin gene (CUBN), which is known to play an essential role in cobalamin uptake from the ileum. We tested these two CUBN variants for association with IGS in larger cohorts of dogs and found that only one of them was perfectly associated with the phenotype. This variant, a single base pair deletion (c.8392delC), is predicted to cause a frameshift and premature stop codon in the CUBN gene. The resulting mutant open reading frame is 821 codons shorter than the wildtype open reading frame (p.Q2798Rfs*3). Interestingly, we observed an additional nonsense mutation in the MRC1 gene encoding the mannose receptor, C type 1, which was in perfect linkage disequilibrium with the CUBN frameshift mutation. Based on our genetic data and the known role of CUBN for cobalamin uptake we conclude that the identified CUBN frameshift mutation is most likely causative for IGS in Border Collies. PMID:23613799

  10. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1

    PubMed Central

    Ozturk, A.Taylan; Adibelli, Hamit; Unal, Nurettin; Tukun, Ajlan

    2013-01-01

    Purpose Screening of mutations in the paired box 3 (PAX3) gene in three generations of a Turkish family with Waardenburg syndrome type 1 (WS1). Methods WS1 was diagnosed in a 13-month-old girl according to the WS Consortium criteria. Detailed family history of the proband revealed eight affected members in three generations. Routine clinical and audiological examination and ophthalmologic evaluation were performed on eight affected and five healthy members of the study family. Dystopia canthorum was detected in all affected patients; however, a brilliant blue iris was present in five patients who also had mild retinal hypopigmentation. Genomic DNA was extracted from the peripheral blood of affected and unaffected individuals in the family as well as 50 unrelated healthy volunteers. All coding exons and adjacent intronic regions of PAX3 were sequenced directly. Results A novel missense heterozygous c.788T>G mutation was identified in eight patients. This nucleotide alteration was not found in unaffected members of the study family or in the 50 unrelated control subjects. The mutation causes V263G amino-acid substitution in the homeodomain of the PAX3 protein, which represents the 45th residue of helix 3. Conclusions We identified a novel missense c.788T>G mutation in PAX3 in a family with Waardenburg syndrome with intrafamilial phenotypic heterogeneity. PMID:23378733

  11. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1.

    PubMed

    Hazan, Filiz; Ozturk, A Taylan; Adibelli, Hamit; Unal, Nurettin; Tukun, Ajlan

    2013-01-01

    Screening of mutations in the paired box 3 (PAX3) gene in three generations of a Turkish family with Waardenburg syndrome type 1 (WS1). WS1 was diagnosed in a 13-month-old girl according to the WS Consortium criteria. Detailed family history of the proband revealed eight affected members in three generations. Routine clinical and audiological examination and ophthalmologic evaluation were performed on eight affected and five healthy members of the study family. Dystopia canthorum was detected in all affected patients; however, a brilliant blue iris was present in five patients who also had mild retinal hypopigmentation. Genomic DNA was extracted from the peripheral blood of affected and unaffected individuals in the family as well as 50 unrelated healthy volunteers. All coding exons and adjacent intronic regions of PAX3 were sequenced directly. A novel missense heterozygous c.788T>G mutation was identified in eight patients. This nucleotide alteration was not found in unaffected members of the study family or in the 50 unrelated control subjects. The mutation causes V263G amino-acid substitution in the homeodomain of the PAX3 protein, which represents the 45(th) residue of helix 3. We identified a novel missense c.788T>G mutation in PAX3 in a family with Waardenburg syndrome with intrafamilial phenotypic heterogeneity.

  12. The yeast retrotransposon Ty5 uses the anticodon stem-loop of the initiator methionine tRNA as a primer for reverse transcription.

    PubMed Central

    Ke, N; Gao, X; Keeney, J B; Boeke, J D; Voytas, D F

    1999-01-01

    Retrotransposons and retroviruses replicate by reverse transcription of an mRNA intermediate. Most retroelements initiate reverse transcription from a host-encoded tRNA primer. DNA synthesis typically extends from the 3'-OH of the acceptor stem, which is complementary to sequences on the retroelement mRNA (the primer binding site, PBS). However, for some retrotransposons, including the yeast Ty5 elements, sequences in the anticodon stem-loop of the initiator methionine tRNA (IMT) are complementary to the PBS. We took advantage of the genetic tractability of the yeast system to investigate the mechanism of Ty5 priming. We found that transposition frequencies decreased at least 800-fold for mutations in the Ty5 PBS that disrupt complementarity with the IMT. Similarly, transposition was reduced at least 200-fold for IMT mutations in the anticodon stem-loop. Base pairing between the Ty5 PBS and IMT is essential for transposition, as compensatory changes that restored base pairing between the two mutant RNAs restored transposition significantly. An analysis of 12 imt mutants with base changes outside of the region of complementarity failed to identify other tRNA residues important for transposition. In addition, assays carried out with heterologous IMTs from Schizosaccharomyces pombe and Arabidopsis thaliana indicated that residues outside of the anticodon stem-loop have at most a fivefold effect on transposition. Our genetic system should make it possible to further define the components required for priming and to understand the mechanism by which Ty5's novel primer is generated. PMID:10411136

  13. Schizophrenia and the androgen receptor gene: Report of a sibship showing co-segregation with Reifenstein Syndrome but no evidence for linkage in 23 multiply affected families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arranz, M.; Sharma, T.; Sham, P.

    Crow et al. have reported excess sharing of alleles by male sibling pairs with schizophrenia, at a triplet repeat marker within the androgen receptor gene, indicating that mutations at or near this gene may be a risk factor for males. In this report, we describe a pair of male siblings concordant for both schizophrenia and Reifenstein syndrome, which is caused by a mutation in this gene. This provides support for the hypothesis that the androgen receptor may contribute to liability to develop schizophrenia. Because of this, we have examined a collection of 23 pedigrees multiply affected by schizophrenia for linkagemore » to the androgen receptor. We have found no evidence for linkage by both the LOD score and affected sibling-pair methods, under a range of genetic models with a broad and narrow definition of phenotype, and when families with male-to-male transmission are excluded. However, because of the small number of informative male-male pairs in our sample, we cannot confirm or refute the excess allele sharing for males reported by Crow. 35 refs., 1 fig., 2 tabs.« less

  14. The estimation of genetic divergence

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Conroy, T.

    1981-01-01

    Consideration is given to the criticism of Nei and Tateno (1978) of the REH (random evolutionary hits) theory of genetic divergence in nucleic acids and proteins, and to their proposed alternative estimator of total fixed mutations designated X2. It is argued that the assumption of nonuniform amino acid or nucleotide substitution will necessarily increase REH estimates relative to those made for a model where each locus has an equal likelihood of fixing mutations, thus the resulting value will not be an overestimation. The relative values of X2 and measures calculated on the basis of the PAM and REH theories for the number of nucleotide substitutions necessary to explain a given number of observed amino acid differences between two homologous proteins are compared, and the smaller values of X2 are attributed to (1) a mathematical model based on the incorrect assumption that an entire structural gene is free to fix mutations and (2) the assumptions of different numbers of variable codons for the X2 and REH calculations. Results of a repeat of the computer simulations of Nei and Tateno are presented which, in contrast to the original results, confirm the REH theory. It is pointed out that while a negative correlation is observed between estimations of the fixation intensity per varion and the number of varions for a given pair of sequences, the correlation between the two fixation intensities and varion numbers of two different pairs of sequences need not be negative. Finally, REH theory is used to resolve a paradox concerning the high rate of covarion turnover and the nature of general function sites as permanent covarions.

  15. Prevalence of nine mutations among Jewish and non-Jewish Gaucher disease patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, M.; Tzuri, G.; Eyal, N.

    1993-10-01

    The frequency of nine different mutated alleles known to occur in the glucocerebrosidase gene was determined in 247 Gaucher patients, of whom 176 were of Jewish extraction, 2 were Jewish with one converted parent, and 69 were of non-Jewish origin. DNA was prepared from peripheral blood, active glucocerebrosidase sequences were amplified by using the PCR technique, and the mutations were identified by using the allele-specific oligonucleotide hybridization method. The N37OS mutation appeared in 69.77% of the mutated alleles in Jewis patients and in 22.86% of the mutated alleles in non-Jews. The 84GG mutation, which has not been found so farmore » among non-Jewish patients, existed in 10.17% of the disease alleles among Jewish patients. The IVS2+1 mutation constituted 2.26% of the disease alleles among Jewish Patients and 1.43% among the non-Jewish patients. RecTL, a complex allele containing four single-base-pair changes, occurred in 2.26% of the alleles in Jewish patients and was found in two (1.43%) of the patients of non-Jewish extraction. Another complex allele, designated [open quotes]RecNcil[close quotes] and containing three single-point mutations, appeared in 7.8% of alleles of non-Jewish patients and in only two (0.56%) of the Jewish families. The prevalence of the L444P mutation among non-Jewish Gaucher patients was 31.43%, while its prevalence among Jewish patients was only 4.24%. The prevalence of two other point mutations-D409H and R463C- was 5.00% and 3.57%, respectively, among non-Jewish patients and was not found among the Jewish Gaucher patient population. The prevalence of the R496H mutation, found so far only among Jewish patients, is 1.13%. The results presented demonstrate that seven mutations identify 90.40% of the mutations among Jewish patients and that these seven mutations allow diagnosis of only 73.52% of the non-Jewish patients. Identification of additional mutant alleles will enhance the accuracy of carrier detection. 33 refs, 3 figs., 4 tabs.« less

  16. Efficient algorithms for probing the RNA mutation landscape.

    PubMed

    Waldispühl, Jérôme; Devadas, Srinivas; Berger, Bonnie; Clote, Peter

    2008-08-08

    The diversity and importance of the role played by RNAs in the regulation and development of the cell are now well-known and well-documented. This broad range of functions is achieved through specific structures that have been (presumably) optimized through evolution. State-of-the-art methods, such as McCaskill's algorithm, use a statistical mechanics framework based on the computation of the partition function over the canonical ensemble of all possible secondary structures on a given sequence. Although secondary structure predictions from thermodynamics-based algorithms are not as accurate as methods employing comparative genomics, the former methods are the only available tools to investigate novel RNAs, such as the many RNAs of unknown function recently reported by the ENCODE consortium. In this paper, we generalize the McCaskill partition function algorithm to sum over the grand canonical ensemble of all secondary structures of all mutants of the given sequence. Specifically, our new program, RNAmutants, simultaneously computes for each integer k the minimum free energy structure MFE(k) and the partition function Z(k) over all secondary structures of all k-point mutants, even allowing the user to specify certain positions required not to mutate and certain positions required to base-pair or remain unpaired. This technically important extension allows us to study the resilience of an RNA molecule to pointwise mutations. By computing the mutation profile of a sequence, a novel graphical representation of the mutational tendency of nucleotide positions, we analyze the deleterious nature of mutating specific nucleotide positions or groups of positions. We have successfully applied RNAmutants to investigate deleterious mutations (mutations that radically modify the secondary structure) in the Hepatitis C virus cis-acting replication element and to evaluate the evolutionary pressure applied on different regions of the HIV trans-activation response element. In particular, we show qualitative agreement between published Hepatitis C and HIV experimental mutagenesis studies and our analysis of deleterious mutations using RNAmutants. Our work also predicts other deleterious mutations, which could be verified experimentally. Finally, we provide evidence that the 3' UTR of the GB RNA virus C has been optimized to preserve evolutionarily conserved stem regions from a deleterious effect of pointwise mutations. We hope that there will be long-term potential applications of RNAmutants in de novo RNA design and drug design against RNA viruses. This work also suggests potential applications for large-scale exploration of the RNA sequence-structure network. Binary distributions are available at http://RNAmutants.csail.mit.edu/.

  17. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function.

    PubMed

    Choi, M; Kadara, H; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Kim, K; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Herbst, R S; Wistuba, I I

    2017-01-01

    Lung squamous cell carcinoma (LUSC) accounts for 20–30% of non-small cell lung cancers (NSCLCs). There are limited treatment strategies for LUSC in part due to our inadequate understanding of the molecular underpinnings of the disease. We performed whole-exome sequencing (WES) and comprehensive immune profiling of a unique set of clinically annotated early-stage LUSCs to increase our understanding of the pathobiology of this malignancy. Matched pairs of surgically resected stage I-III LUSCs and normal lung tissues (n = 108) were analyzed by WES. Immunohistochemistry and image analysis-based profiling of 10 immune markers were done on a subset of LUSCs (n = 91). Associations among mutations, immune markers and clinicopathological variables were statistically examined using analysis of variance and Fisher’s exact test. Cox proportional hazards regression models were used for statistical analysis of clinical outcome. This early-stage LUSC cohort displayed an average of 209 exonic mutations per tumor. Fourteen genes exhibited significant enrichment for somatic mutation: TP53, MLL2, PIK3CA, NFE2L2, CDH8, KEAP1, PTEN, ADCY8, PTPRT, CALCR, GRM8, FBXW7, RB1 and CDKN2A. Among mutated genes associated with poor recurrence-free survival, MLL2 mutations predicted poor prognosis in both TP53 mutant and wild-type LUSCs. We also found that in treated patients, FBXW7 and KEAP1 mutations were associated with poor response to adjuvant therapy, particularly in TP53-mutant tumors. Analysis of mutations with immune markers revealed that ADCY8 and PIK3CA mutations were associated with markedly decreased tumoral PD-L1 expression, LUSCs with PIK3CA mutations exhibited elevated CD45ro levels and CDKN2A-mutant tumors displayed an up-regulated immune response. Our findings pinpoint mutated genes that may impact clinical outcome as well as personalized strategies for targeted immunotherapies in early-stage LUSC.

  18. Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer

    PubMed Central

    Hrebien, Sarah; O’Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Turner, Nicholas

    2016-01-01

    Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48–72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77–0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; p<0.0001). There was elevation of total cell free plasma DNA concentrations in 10.3% of delayed processed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research. PMID:27760227

  19. Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer.

    PubMed

    Hrebien, Sarah; O'Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Garcia-Murillas, Isaac; Turner, Nicholas

    2016-01-01

    Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48-72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77-0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; p<0.0001). There was elevation of total cell free plasma DNA concentrations in 10.3% of delayed processed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research.

  20. Fine-mapping, mutation analyses, and structural mapping of cerebrotendinous xanthomatosis in U.S. pedigrees.

    PubMed

    Lee, M H; Hazard, S; Carpten, J D; Yi, S; Cohen, J; Gerhardt, G T; Salen, G; Patel, S B

    2001-02-01

    Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive disorder of bile acid biosynthesis. Clinically, CTX patients present with tendon xanthomas, juvenile cataracts, and progressive neurological dysfunction and can be diagnosed by the detection of elevated plasma cholestanol levels. CTX is caused by mutations affecting the sterol 27-hydroxylase gene (CYP27 ). CTX has been identified in a number of populations, but seems to have a higher prevalence in the Japanese, Sephardic Jewish, and Italian populations. We have assembled 12 previously unreported pedigrees from the United States. The CYP27 locus had been previously mapped to chromosome 2q33-qter. We performed linkage analyses and found no evidence of genetic heterogeneity. All CTX patients showed segregation with the CYP27 locus, and haplotype analysis and recombinant events allowed us to precisely map CYP27 to chromosome 2q35, between markers D2S1371 and D2S424. Twenty-three mutations were identified from 13 probands analyzed thus far; 11 were compound heterozygotes and 2 had homozygous mutations. Of these, five are novel mutations [Trp100Stop, Pro408Ser, Gln428Stop, a 10-base pair (bp) deletion in exon 1, and a 2-bp deletion in exon 6 of the CYP27 gene]. Three-dimensional structural modeling of sterol 27-hydroxylase showed that, while the majority of the missense mutations disrupt the heme-binding and adrenodoxin-binding domains critical for enzyme activity, two missense mutations (Arg94Trp/Gln and Lys226Arg) are clearly located outside these sites and may identify a potential substrate-binding or other protein contact site.

  1. VaDiR: an integrated approach to Variant Detection in RNA.

    PubMed

    Neums, Lisa; Suenaga, Seiji; Beyerlein, Peter; Anders, Sara; Koestler, Devin; Mariani, Andrea; Chien, Jeremy

    2018-02-01

    Advances in next-generation DNA sequencing technologies are now enabling detailed characterization of sequence variations in cancer genomes. With whole-genome sequencing, variations in coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its general use in research. Whole-exome sequencing is used to characterize sequence variations in coding regions, but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional limitations include uncertainty in assigning the functional significance of the mutations when these mutations are observed in the non-coding region or in genes that are not expressed in cancer tissue. We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing datasets with a method called Variant Detection in RNA(VaDiR) that integrates 3 variant callers, namely: SNPiR, RVBoost, and MuTect2. The combination of all 3 methods, which we called Tier 1 variants, produced the highest precision with true positive mutations from RNA-seq that could be validated at the DNA level. We also found that the integration of Tier 1 variants with those called by MuTect2 and SNPiR produced the highest recall with acceptable precision. Finally, we observed a higher rate of mutation discovery in genes that are expressed at higher levels. Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal validation of DNA-based mutation discovery by providing complementary sequence variation analysis from paired RNA/DNA sequencing datasets.

  2. The lavender plumage colour in Japanese quail is associated with a complex mutation in the region of MLPH that is related to differences in growth, feed consumption and body temperature

    PubMed Central

    2012-01-01

    Background The lavender phenotype in quail is a dilution of both eumelanin and phaeomelanin in feathers that produces a blue-grey colour on a wild-type feather pattern background. It has been previously demonstrated by intergeneric hybridization that the lavender mutation in quail is homologous to the same phenotype in chicken, which is caused by a single base-pair change in exon 1 of MLPH. Results In this study, we have shown that a mutation of MLPH is also associated with feather colour dilution in quail, but that the mutational event is extremely different. In this species, the lavender phenotype is associated with a non-lethal complex mutation involving three consecutive overlapping chromosomal changes (two inversions and one deletion) that have consequences on the genomic organization of four genes (MLPH and the neighbouring PRLH, RAB17 and LRRFIP1). The deletion of PRLH has no effect on the level of circulating prolactin. Lavender birds have lighter body weight, lower body temperature and increased feed consumption and residual feed intake than wild-type plumage quail, indicating that this complex mutation is affecting the metabolism and the regulation of homeothermy. Conclusions An extensive overlapping chromosome rearrangement was associated with a non-pathological Mendelian trait and minor, non deleterious effects in the lavender Japanese quail which is a natural knockout for PRLH. PMID:22937744

  3. Slowly progressive retinitis pigmentosa caused by two novel mutations in the MAK gene.

    PubMed

    Gray, Joanna Monika; Orlans, Harry Otway; Shanks, Morag; Clouston, Penny; MacLaren, Robert Elvis

    2018-05-21

    The growing number of clinical trials currently underway for inherited retinal diseases has highlighted the importance of achieving a molecular diagnosis for all new cases presenting to hospital eye services. The male germ cell-associated kinase (MAK) gene encodes a cilium-associated protein selectively expressed in the retina and testis, and has recently been implicated in autosomal recessive retinitis pigmentosa (RP). Whole exome sequencing has previously identified a homozygous Alu insertion in probands with recessive RP and nonsense and missense mutations have also been reported. Here we describe two novel mutations in different alleles of the MAK gene in a 75-year-old British female, who had a clinical diagnosis of RP () with onset in the fourth decade and no relevant family history. The mutations were established through next generation sequencing of a panel of 111 genes associated with RP and RP-like phenotypes. Two novel null mutations were identified within the MAK gene. The first c.1195_1196delAC p.(Thr399fs), was a two base-pair deletion creating a frame-shift in exon 9 predicted to result in nonsense-mediated decay. The second, c.279-2A>G, involved the splice acceptor consensus site upstream of exon 4, predicted to lead to aberrant splicing. The natural history of this individual's RP is consistent with previously described MAK mutations, being significantly milder than that associated with other photoreceptor ciliopathies. We suggest inclusion of MAK as part of wider genetic testing in all individuals presenting with RP.

  4. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up

    PubMed Central

    Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S

    2017-01-01

    Abstract Background Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. Methods We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher’s exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. Results LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Conclusion(s) Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune-based therapy of LUAD. PMID:27687306

  5. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up.

    PubMed

    Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S

    2017-01-01

    Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher's exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune-based therapy of LUAD. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.

    PubMed

    Várnai, Csilla; Burkoff, Nikolas S; Wild, David L

    2017-01-01

    Evolutionary information stored in multiple sequence alignments (MSAs) has been used to identify the interaction interface of protein complexes, by measuring either co-conservation or co-mutation of amino acid residues across the interface. Recently, maximum entropy related correlated mutation measures (CMMs) such as direct information, decoupling direct from indirect interactions, have been developed to identify residue pairs interacting across the protein complex interface. These studies have focussed on carefully selected protein complexes with large, good-quality MSAs. In this work, we study protein complexes with a more typical MSA consisting of fewer than 400 sequences, using a set of 79 intramolecular protein complexes. Using a maximum entropy based CMM at the residue level, we develop an interface level CMM score to be used in re-ranking docking decoys. We demonstrate that our interface level CMM score compares favourably to the complementarity trace score, an evolutionary information-based score measuring co-conservation, when combined with the number of interface residues, a knowledge-based potential and the variability score of individual amino acid sites. We also demonstrate, that, since co-mutation and co-complementarity in the MSA contain orthogonal information, the best prediction performance using evolutionary information can be achieved by combining the co-mutation information of the CMM with co-conservation information of a complementarity trace score, predicting a near-native structure as the top prediction for 41% of the dataset. The method presented is not restricted to small MSAs, and will likely improve interface prediction also for complexes with large and good-quality MSAs.

  7. Amplification of the Gp41 gene for detection of mutations conferring resistance to HIV-1 fusion inhibitors on genotypic assay

    NASA Astrophysics Data System (ADS)

    Tanumihardja, J.; Bela, B.

    2017-08-01

    Fusion inhibitors have potential for future use in HIV control programs in Indonesia, so the capacity to test resistance to such drugs needs to be developed. Resistance-detection with a genotypic assay began with amplification of the target gene, gp41. Based on the sequence of the two most common HIV subtypes in Indonesia, AE and B, a primer pair was designed. Plasma samples containing both subtypes were extracted to obtain HIV RNA. Using PCR, the primer pair was used to produce the amplification product, the identity of which was checked based on length under electrophoresis. Eleven plasma samples were included in this study. One-step PCR using the primer pair was able to amplify gp41 from 54.5% of the samples, and an unspecific amplification product was seen in 1.1% of the samples. Amplification failed in 36.4% of the samples, which may be due to an inappropriate primer sequence. It was also found that the optimal annealing temperature for producing the single expected band was 57.2 °C. With one-step PCR, the designed primer pair amplified the HIV-1 gp41 gene from subtypes AE and B. However, further research should be done to determine the conditions that will increase the sensitivity and specificity of the amplification process.

  8. Targeted 'next-generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations.

    PubMed

    Jimenez, Nelson Lopez; Flannick, Jason; Yahyavi, Mani; Li, Jiang; Bardakjian, Tanya; Tonkin, Leath; Schneider, Adele; Sherr, Elliott H; Slavotinek, Anne M

    2011-12-28

    Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.

  9. Targeted 'Next-Generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations

    PubMed Central

    2011-01-01

    Background Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. Methods We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. Results We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Conclusions Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M. PMID:22204637

  10. Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis.

    PubMed

    Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K

    2017-03-01

    In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An Unbiased Genome-Wide View of the Mutation Rate and Spectrum of the Endosymbiotic Bacterium Teredinibacter turnerae.

    PubMed

    Senra, Marcus V X; Sung, Way; Ackerman, Matthew; Miller, Samuel F; Lynch, Michael; Soares, Carlos Augusto G

    2018-03-01

    Mutations contribute to genetic variation in all living systems. Thus, precise estimates of mutation rates and spectra across a diversity of organisms are required for a full comprehension of evolution. Here, a mutation-accumulation (MA) assay was carried out on the endosymbiotic bacterium Teredinibacter turnerae. After ∼3,025 generations, base-pair substitutions (BPSs) and insertion-deletion (indel) events were characterized by whole-genome sequencing analysis of 47 independent MA lines, yielding a BPS rate of 1.14 × 10-9 per site per generation and indel rate of 1.55 × 10-10 events per site per generation, which are among the highest within free-living and facultative intracellular bacteria. As in other endosymbionts, a significant bias of BPSs toward A/T and an excess of deletion mutations over insertion mutations are observed for these MA lines. However, even with a deletion bias, the genome remains relatively large (∼5.2 Mb) for an endosymbiotic bacterium. The estimate of the effective population size (Ne) in T. turnerae is quite high and comparable to free-living bacteria (∼4.5 × 107), suggesting that the heavy bottlenecking associated with many endosymbiotic relationships is not prevalent during the life of this endosymbiont. The efficiency of selection scales with increasing Ne and such strong selection may have been operating against the deletion bias, preventing genome erosion. The observed mutation rate in this endosymbiont is of the same order of magnitude of those with similar Ne, consistent with the idea that population size is a primary determinant of mutation-rate evolution within endosymbionts, and that not all endosymbionts have low Ne.

  12. The Mutational Landscape of Adenoid Cystic Carcinoma

    PubMed Central

    Ho, Allen S.; Kannan, Kasthuri; Roy, David M.; Morris, Luc G.T.; Ganly, Ian; Katabi, Nora; Ramaswami, Deepa; Walsh, Logan A.; Eng, Stephanie; Huse, Jason T.; Zhang, Jianan; Dolgalev, Igor; Huberman, Kety; Heguy, Adriana; Viale, Agnes; Drobnjak, Marija; Leversha, Margaret A.; Rice, Christine E.; Singh, Bhuvanesh; Iyer, N. Gopalakrishna; Leemans, C. Rene; Bloemena, Elisabeth; Ferris, Robert L.; Seethala, Raja R.; Gross, Benjamin E.; Liang, Yupu; Sinha, Rileen; Peng, Luke; Raphael, Benjamin J.; Turcan, Sevin; Gong, Yongxing; Schultz, Nikolaus; Kim, Seungwon; Chiosea, Simion; Shah, Jatin P.; Sander, Chris; Lee, William; Chan, Timothy A.

    2013-01-01

    Adenoid cystic carcinomas (ACCs) are among the most enigmatic of human malignancies. These aggressive salivary cancers frequently recur and metastasize despite definitive treatment, with no known effective chemotherapy regimen. Here, we determined the ACC mutational landscape and report the exome or whole genome sequences of 60 ACC tumor/normal pairs. These analyses revealed a low exonic somatic mutation rate (0.31 non-silent events/megabase) and wide mutational diversity. Interestingly, mutations selectively involved chromatin state regulators, such as SMARCA2, CREBBP, and KDM6A, suggesting aberrant epigenetic regulation in ACC oncogenesis. Mutations in genes central to DNA damage and protein kinase A signaling also implicate these processes. We observed MYB-NFIB translocations and somatic mutations in MYB-associated genes, solidifying these aberrations as critical events. Lastly, we identified recurrent mutations in the FGF/IGF/PI3K pathway that may potentially offer new avenues for therapy (30%). Collectively, our observations establish a molecular foundation for understanding and exploring new treatments for ACC. PMID:23685749

  13. Two-dimensional IR spectroscopy of the anti-HIV agent KP1212 reveals protonated and neutral tautomers that influence pH-dependent mutagenicity

    PubMed Central

    Peng, Chunte Sam; Fedeles, Bogdan I.; Singh, Vipender; Li, Deyu; Amariuta, Tiffany; Essigmann, John M.; Tokmakoff, Andrei

    2015-01-01

    Antiviral drugs designed to accelerate viral mutation rates can drive a viral population to extinction in a process called lethal mutagenesis. One such molecule is 5,6-dihydro-5-aza-2′-deoxycytidine (KP1212), a selective mutagen that induces A-to-G and G-to-A mutations in the genome of replicating HIV. The mutagenic property of KP1212 was hypothesized to originate from its amino–imino tautomerism, which would explain its ability to base pair with either G or A. To test the multiple tautomer hypothesis, we used 2D IR spectroscopy, which offers subpicosecond time resolution and structural sensitivity to distinguish among rapidly interconverting tautomers. We identified several KP1212 tautomers and found that >60% of neutral KP1212 is present in the enol–imino form. The abundant proportion of this traditionally rare tautomer offers a compelling structure-based mechanism for pairing with adenine. Additionally, the pKa of KP1212 was measured to be 7.0, meaning a substantial population of KP1212 is protonated at physiological pH. Furthermore, the mutagenicity of KP1212 was found to increase dramatically at pH <7, suggesting a significant biological role for the protonated KP1212 molecules. Overall, our data reveal that the bimodal mutagenic properties of KP1212 result from its unique shape shifting ability that utilizes both tautomerization and protonation. PMID:25733867

  14. A Single Base Pair Mutation Encoding a Premature Stop Codon in the MIS type II receptor is Responsible for Canine Persistent Müllerian Duct Syndrome

    PubMed Central

    Wu, Xiufeng; Wan, Shengqin; Pujar, Shashikant; Haskins, Mark E.; Schlafer, Donald H.; Lee, Mary M.; Meyers-Wallen, Vicki N.

    2008-01-01

    Müllerian Inhibiting Substance (MIS), a secreted glycoprotein in the Transforming Growth Factor-beta (TGF-beta) family of growth factors, mediates regression of the Müllerian ducts during embryonic sex differentiation in males. In Persistent Müllerian Duct Syndrome (PMDS), rather than undergoing involution, the Müllerian ducts persist in males, giving rise to the uterus, Fallopian tubes, and upper vagina. Genetic defects in MIS or its receptor (MISRII) have been identified in patients with PMDS. The phenotype in the canine model of PMDS derived from the miniature schnauzer breed is strikingly similar to that of human patients. In this model, PMDS is inherited as a sex-limited autosomal recessive trait. Previous studies indicated that a defect in the MIS receptor or its downstream signaling pathway was likely to be causative of the canine syndrome. In this study the canine PMDS phenotype and clinical sequelae are described in detail. Affected and unaffected members of this pedigree are genotyped, identifying a single base pair substitution in MISRII that introduces a stop codon in exon 3. The homozygous mutation terminates translation at 80 amino acids, eliminating much of the extracellular domain and the entire transmembrane and intracellular signaling domains. Findings in this model may enable insights to be garnered from correlation of detailed clinical descriptions with molecular defects, which are not otherwise possible in the human syndrome. PMID:18723470

  15. Global and disease-associated genetic variation in the human Fanconi anemia gene family

    PubMed Central

    Rogers, Kai J.; Fu, Wenqing; Akey, Joshua M.; Monnat, Raymond J.

    2014-01-01

    Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57 240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations. PMID:25104853

  16. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    NASA Astrophysics Data System (ADS)

    Ngaojampa, C.; Nimmanpipug, P.; Yu, L. D.; Anuntalabhochai, S.; Lee, V. S.

    2011-02-01

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  17. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    PubMed Central

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  18. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOEpatents

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  19. Evolution of the Pseudomonas aeruginosa Aminoglycoside Mutational Resistome In Vitro and in the Cystic Fibrosis Setting.

    PubMed

    López-Causapé, Carla; Rubio, Rosa; Cabot, Gabriel; Oliver, Antonio

    2018-04-01

    Inhaled administration of high doses of aminoglycosides is a key maintenance treatment of Pseudomonas aeruginosa chronic respiratory infections in cystic fibrosis (CF). We analyzed the dynamics and mechanisms of stepwise high-level tobramycin resistance development in vitro and compared the results with those of isogenic pairs of susceptible and resistant clinical isolates. Resistance development correlated with fusA1 mutations in vitro and in vivo. pmrB mutations, conferring polymyxin resistance, were also frequently selected in vitro In contrast, mutational overexpression of MexXY, a hallmark of aminoglycoside resistance in CF, was not observed in in vitro evolution experiments. Copyright © 2018 American Society for Microbiology.

  20. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy.

    PubMed

    Lohr, Jens G; Stojanov, Petar; Carter, Scott L; Cruz-Gordillo, Peter; Lawrence, Michael S; Auclair, Daniel; Sougnez, Carrie; Knoechel, Birgit; Gould, Joshua; Saksena, Gordon; Cibulskis, Kristian; McKenna, Aaron; Chapman, Michael A; Straussman, Ravid; Levy, Joan; Perkins, Louise M; Keats, Jonathan J; Schumacher, Steven E; Rosenberg, Mara; Getz, Gad; Golub, Todd R

    2014-01-13

    We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma (MM) patients and identified significantly mutated genes and copy number alterations and discovered putative tumor suppressor genes by determining homozygous deletions and loss of heterozygosity. We observed frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53, and DIS3 (particularly in nonhyperdiploid MM). Mutations were often present in subclonal populations, and multiple mutations within the same pathway (e.g., KRAS, NRAS, and BRAF) were observed in the same patient. In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth promotion of nonmutated subclones in some cases. These results emphasize the importance of heterogeneity analysis for treatment decisions. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.

    PubMed

    Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C

    2015-01-01

    Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  2. Fitness-Balanced Escape Determines Resolution of Dynamic Founder Virus Escape Processes in HIV-1 Infection

    PubMed Central

    Sunshine, Justine E.; Larsen, Brendan B.; Maust, Brandon; Casey, Ellie; Deng, Wenje; Chen, Lennie; Westfall, Dylan H.; Kim, Moon; Zhao, Hong; Ghorai, Suvankar; Lanxon-Cookson, Erinn; Rolland, Morgane; Collier, Ann C.; Maenza, Janine; Mullins, James I.

    2015-01-01

    ABSTRACT To understand the interplay between host cytotoxic T-lymphocyte (CTL) responses and the mechanisms by which HIV-1 evades them, we studied viral evolutionary patterns associated with host CTL responses in six linked transmission pairs. HIV-1 sequences corresponding to full-length p17 and p24 gag were generated by 454 pyrosequencing for all pairs near the time of transmission, and seroconverting partners were followed for a median of 847 days postinfection. T-cell responses were screened by gamma interferon/interleukin-2 (IFN-γ/IL-2) FluoroSpot using autologous peptide sets reflecting any Gag variant present in at least 5% of sequence reads in the individual's viral population. While we found little evidence for the occurrence of CTL reversions, CTL escape processes were found to be highly dynamic, with multiple epitope variants emerging simultaneously. We found a correlation between epitope entropy and the number of epitope variants per response (r = 0.43; P = 0.05). In cases in which multiple escape mutations developed within a targeted epitope, a variant with no fitness cost became fixed in the viral population. When multiple mutations within an epitope achieved fitness-balanced escape, these escape mutants were each maintained in the viral population. Additional mutations found to confer escape but undetected in viral populations incurred high fitness costs, suggesting that functional constraints limit the available sites tolerable to escape mutations. These results further our understanding of the impact of CTL escape and reversion from the founder virus in HIV infection and contribute to the identification of immunogenic Gag regions most vulnerable to a targeted T-cell attack. IMPORTANCE Rapid diversification of the viral population is a hallmark of HIV-1 infection, and understanding the selective forces driving the emergence of viral variants can provide critical insight into the interplay between host immune responses and viral evolution. We used deep sequencing to comprehensively follow viral evolution over time in six linked HIV transmission pairs. We then mapped T-cell responses to explore if mutations arose due to adaption to the host and found that escape processes were often highly dynamic, with multiple mutations arising within targeted epitopes. When we explored the impact of these mutations on replicative capacity, we found that dynamic escape processes only resolve with the selection of mutations that conferred escape with no fitness cost to the virus. These results provide further understanding of the complicated viral-host interactions that occur during early HIV-1 infection and may help inform the design of future vaccine immunogens. PMID:26223634

  3. Trans-activation of the Tetrahymena group I intron ribozyme via a non-native RNA-RNA interaction.

    PubMed Central

    Ikawa, Y; Shiraishi, H; Inoue, T

    1999-01-01

    The peripheral P2.1 domain of the Tetrahymena group I intron ribozyme has been shown to be non-essential for splicing. We found, however, that separately prepared P2.1 RNA efficiently accelerates the 3' splice-site-specific hydrolysis reaction of a mutant ribozyme lacking both P2.1 and its upstream region in trans. We report here the unusual properties of this trans-activation. Compensatory mutational analysis revealed that non-native long-range base-pairings between the loop region of P2.1 RNA and L5c region of the mutant ribozyme are needed for the activation in spite of the fact that P2.1 forms base-pairings with P9.1 in the Tetrahymena ribozyme. The trans -activation depends on the non-native RNA-RNA interaction together with the higher order structure of P2.1 RNA. This activation is unique among the known trans-activations that utilize native tertiary interactions or RNA chaperons. PMID:10075996

  4. Can tautomerization of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis.

    PubMed

    Brovarets, Ol'ha O; Hovorun, Dmytro M

    2014-01-01

    Trying to answer the question posed in the title, we have carried out a detailed theoretical investigation of the biologically important mechanism of the tautomerization of the A·T Watson-Crick DNA base pair, information that is hard to establish experimentally. By combining theoretical investigations at the MP2 and density functional theory levels of QM theory with quantum theory of atoms in molecules analysis, the tautomerization of the A·T Watson-Crick base pair by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ϵ = 4) corresponding to a hydrophobic interfaces of protein-nucleic acid interactions. Based on the sweeps of the electron-topological, geometric, and energetic parameters, which describe the course of the tautomerization along its intrinsic reaction coordinate (IRC), it was proved that the A·T → A(∗)·T(∗) tautomerization through the DPT is a concerted (i.e. the pathway without an intermediate) and asynchronous (i.e. protons move with a time gap) process. The limiting stage of this phenomenon is the final PT along the N6H⋯O4 hydrogen bond (H-bond). The continuum with ϵ = 4 does not affect qualitatively the course of the tautomerization reaction: similar to that observed in vacuo, it proceeds via a concerted asynchronous process with the same structure of the transition state (TS). For the first time, the nine key points along the IRC of the A·T base pair tautomerization, which could be considered as electron-topological "fingerprints" of a concerted asynchronous process of the tautomerization via the DPT, have been identified and fully characterized. These nine key points have been used to define the reactant, TS, and product regions of the DPT in the A·T base pair. Considering the energy dependence of each of the three H-bonds, which stabilize the Watson-Crick and Löwdin's base pairs, along the IRC of the tautomerization, it was found that all these H-bonds in the А·Т base pair are cooperative, reinforcing each other, whereas the C2H⋯O2 H-bond in the А(∗)·Т(∗) base pair behaves anticooperatively, in other words it gets weakened while two others get strengthened. From a quantum-mechanical point of view, the A(∗)·T(∗) Löwdin's base pair appeared to be dynamically unstable because the electronic energy of the back-reaction barrier of the A·T → A(∗)·T(∗) tautomerization does not exceed zero-point vibrational energy associated with the mode for which vibrational frequency becomes imaginary in the TS of tautomerization. Additionally, it was demonstrated using the conductor-like polarizable continuum model that the effects of biomolecular environment (ϵ = 4) cannot ensure dynamic stabilization of the A(∗)·T(∗) Löwdin's base pair. These findings, together with data available from the literature, indicate that the tautomerization of the A·T Watson-Crick base pair to the A(∗)·T(∗) Löwdin's base pair through the DPT cannot be a source of spontaneous point errors that occur during DNA replication.

  5. A Case of Birt-Hogg-Dubé (BHD) Syndrome Harboring a Novel Folliculin (FLCN) Gene Mutation.

    PubMed

    Yukawa, Takuro; Fukazawa, Takuya; Yoshida, Masakazu; Morita, Ichiro; Kato, Katsuya; Monobe, Yasumasa; Furuya, Mitsuko; Naomoto, Yoshio

    2016-10-26

    BACKGROUND Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder clinically characterized by pulmonary cysts, spontaneous pneumothorax, renal cell cancer, and skin fibrofolliculomas. The disorder is caused by germline mutations in the FLCN gene. CASE REPORT A 56-year-old female was admitted to our hospital with a diagnosis of bilateral spontaneous pneumothorax. A computed tomography (CT) scan of the chest revealed bilateral multiple bullae predominantly located in the subpleural and mediastinal areas in the bilateral upper and lower lobes. Although she was cured by thoracic cavity drainage, she underwent resection of bilateral lung bullae because she had a prior history of right pneumothorax at 37- and 45-years of age. She had no signs of renal tumor but had fibrofolliculoma in her face and a family history of pneumothorax, we therefore suspected BHD syndrome. DNA sequence analyses determined that there was a two base pair deletion in exon 4 of the FLCN gene, confirming the diagnosis of BHD syndrome. CONCLUSIONS Here we report a case of BHD syndrome with a previously unreported FLCN mutation.

  6. Core promoter mutations 3 years after anti-hepatitis B e seroconversion in patients with chronic hepatitis B or hepatitis B and C infection and cancer remission.

    PubMed

    Zampino, Rosa; Marrone, Aldo; Karayiannis, Peter; Cirillo, Grazia; del Giudice, Emanuele Miraglia; Rania, Giovanni; Utili, Riccardo; Ruggiero, Giuseppe

    2002-09-01

    In this study, we aimed to evaluate the persistence of hepatitis B virus (HBV) DNA and the role of HBV core promoter and precore region mutations in 28 young cancer survivor patients with HBV or HBV and hepatitis C virus (HCV) infections, and persistently normal ALT levels, after spontaneous or interferon (IFN)-induced anti-hepatitis B e (HBe) seroconversion. Sera from 15 patients with HBV and 13 with dual HBV-HCV infection were analyzed for the presence of HBV-DNA and HCV-RNA by polymerase chain reaction 3 yr after anti-HBe seroconversion. A total of 21 patients had seroconverted spontaneously and seven did so after IFN treatment. The core promoter and the precore regions were amplified sequenced directly. Among patients with HBV infection, HBV-DNA was detected in five of nine (55%) with spontaneous anti-HBe and in all six treated patients (p = 0.092). In the coinfected patients, four had cleared both HBV-DNA and HCV-RNA, five were HBV-DNA negative/HCV-RNA positive and four had the reverse viral pattern. Among the 15 patients with persistence of HBV-DNA, a 7-base pair nucleotide deletion in the core promoter (1757-1763) was present in seven of 10 patients with spontaneous and in one of five patients with IFN-induced seroconversion (p = 0.033). The G1896A precore stop codon mutation was never observed. HBV-DNA levels were significantly lower in patients with the core promoter deletion (p = 0.011). The 7-base pair deletion generated a truncated X protein at amino-acid position 132. A core promoter deletion after anti-HBe seroconversion was associated with low HBV-DNA levels, probably because of downregulation of pregenomic RNA production and truncation of the X protein. HBV-DNA persistence was a frequent event, even in the absence of active liver disease.

  7. Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families

    PubMed Central

    Bopp, Selina E. R.; Manary, Micah J.; Bright, A. Taylor; Johnston, Geoffrey L.; Dharia, Neekesh V.; Luna, Fabio L.; McCormack, Susan; Plouffe, David; McNamara, Case W.; Walker, John R.; Fidock, David A.; Denchi, Eros Lazzerini; Winzeler, Elizabeth A.

    2013-01-01

    Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases) revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone). In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1) on chromosome 1. We observed 18 large-scale (>1 kb on average) deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10−6 structural variants per base pair per generation). Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0–9.7×10−9 mutations per base pair per generation), we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum evolves to evade control efforts within both the individual hosts and large populations. PMID:23408914

  8. Confirmation of Pig-a mutation in flow cytometry-identified CD48-deficient T-lymphocytes from F344 rats.

    PubMed

    Revollo, Javier; Pearce, Mason G; Petibone, Dayton M; Mittelstaedt, Roberta A; Dobrovolsky, Vasily N

    2015-05-01

    The Pig-a assay is used for monitoring somatic cell mutation in laboratory animals and humans. The assay detects haematopoietic cells deficient in glycosylphosphatidylinositol (GPI)-anchored protein surface markers using flow cytometry. However, given that synthesis of the protein markers (and the expression of their genes) is independent of the expression of the X-linked Pig-a gene and the function of its enzyme product, the deficiency of markers at the surface of the cells may be caused by a number of events (e.g. by mutation or epigenetic silencing in the marker gene itself or in any of about two dozen autosomal genes involved in the synthesis of GPI). Here we provide direct evidence that the deficiency of the GPI-anchored surface marker CD48 in rat T-cells is accompanied by mutation in the endogenous X-linked Pig-a gene. We treated male F344 rats with N-ethyl-N-nitrosourea (ENU), and established colonies from flow cytometry-identified and sorted CD48-deficient spleen T-lymphocytes. Molecular analysis confirmed that the expanded sorted cells have mutations in the Pig-a gene. The spectrum of Pig-a mutation in our model was consistent with the spectrum of ENU-induced mutation determined in other in vivo models, mostly base-pair substitutions at A:T with the mutated T on the non-transcribed strand of Pig-a genomic DNA. We also used next generation sequencing to derive a similar mutational spectrum from a pool of 64 clones developed from flow-sorted CD48-deficient lymphocytes. Our findings confirm that Pig-a assays detect what they are designed to detect-gene mutation in the Pig-a gene. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Novel mutations in the cellular retinaldehyde-binding protein gene (RLBP1) associated with retinitis punctata albescens: evidence of interfamilial genetic heterogeneity and fundus changes in heterozygotes.

    PubMed

    Fishman, Gerald A; Roberts, Mary Flynn; Derlacki, Deborah J; Grimsby, Jonna L; Yamamoto, Hiroyuki; Sharon, Dror; Nishiguchi, Koji M; Dryja, Thaddeus P

    2004-01-01

    To evaluate the molecular genetic defects associated with retinitis punctata albescens (RPA) in 5 patients from 3 families with this disease. We examined 3 probands and 2 clinically affected relatives with RPA. Clinical examinations included best-corrected visual acuity, visual field testing, electroretinography, dilated fundus examination, and fundus photography. Leukocyte DNA was analyzed for mutations in the exons of the genes encoding cellular retinaldehyde-binding protein 1 (RLBP1), 11-cis-retinol dehydrogenase (RDH5), interphotoreceptor retinoid-binding protein (RBP3), and photoreceptor all-trans-retinol dehydrogenase (RDH8). Not all patients were evaluated for mutations in each gene. The exons were individually amplified and screened for mutations by single-stranded conformational polymorphism analysis or direct genomic sequencing. The 3 probands had similar clinical findings, including a history of poor night vision, the presence of punctate white deposits in the retina, and substantially reduced or absent rod responses on electroretinogram testing. One of the probands (patient 2:III:2) had 2 novel mutations in the RLBP1 gene (Arg151Trp and Gly31[2-base pair deletion], [GGA-->G-]). Segregation analysis showed that the 2 mutations were allelic and that the patient was a compound heterozygote. Both parents of the proband manifested round white deposits in the retina. The other 2 probands had no detected pathogenic mutations in RLBP1 or in the other 3 genes evaluated. The identification of novel RLBP1 mutations in 1 of our 3 probands, all with RPA, is further evidence of genetic (nonallelic) heterogeneity in this disease. The presence of round white deposits in the retina may be observed in those heterozygous for RLBP1. Clinical Relevance Patients with a clinical presentation of RPA can have genetically different mutations. Drusen-like lesions may be observed in heterozygotes in families with this disease and a mutation in RLBP1.

  10. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα(2-3)Gal: a study by in silico mutations and molecular dynamics simulations.

    PubMed

    Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar

    2014-08-01

    Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating

    NASA Astrophysics Data System (ADS)

    Candiani, Alessandro; Bertucci, Alessandro; Giannetti, Sara; Konstantaki, Maria; Manicardi, Alex; Pissadakis, Stavros; Cucinotta, Annamaria; Corradini, Roberto; Selleri, Stefano

    2013-05-01

    We describe a novel sensing approach based on a functionalized microstructured optical fiber-Bragg grating for specific DNA target sequences detection. The inner surface of a microstructured fiber, where a Bragg grating was previously inscribed, has been functionalized by covalent linking of a peptide nucleic acid probe targeting a DNA sequence bearing a single point mutation implicated in cystic fibrosis (CF) disease. A solution of an oligonucleotide (ON) corresponding to a tract of the CF gene containing the mutated DNA has been infiltrated inside the fiber capillaries and allowed to hybridize to the fiber surface according to the Watson-Crick pairing. In order to achieve signal amplification, ON-functionalized gold nanoparticles were then infiltrated and used in a sandwich-like assay. Experimental measurements show a clear shift of the reflected high order mode of a Bragg grating for a 100 nM DNA solution, and fluorescence measurements have confirmed the successful hybridization. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation trend, suggesting the possibility of the reuse of the sensor. Measurements have also been made using a 100 nM mismatched DNA solution, containing a single nucleotide mutation and corresponding to the wild-type gene, and the results demonstrate the high selectivity of the sensor.

  12. Ultraviolet mutagenesis in a plasmid vector replicated in lymphoid cells from patient with the melanoma-prone disorder dysplastic nevus syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seetharam, S.; Waters, H.L.; Seidman, M.M.

    The hereditary dysplastic nevus syndrome (DNS) is an autosomal dominant disorder in which affected individuals have increased numbers of dysplastic (premalignant) nevi and a greater than 100-fold increased risk of developing cutaneous melanoma. Epstein-Barr virus-transformed lymphoblastoid cell lines from patients with hereditary DNS have been shown to be hypermutable to UV radiation. To examine the mechanism involved in this UV hypermutability, we used a shuttle vector plasmid, pZ189, which carries a 160-base pair marker gene, supF, and can replicate in human cells. pZ189 was treated with UV radiation and transfected into DNS6BE, a lymphoblastoid cell line from a patient withmore » hereditary DNS. Plasmid survival after UV was similar with the DNS6BE line and with a lymphoblastoid cell line from a normal donor. Plasmid mutation frequency was greater with the DNS line in accord with the DNS cellular hypermutability. Base sequence analysis was performed on 69 mutated plasmids recovered from the DNS line. There were significantly more plasmids with single base substitution mutations (P less than 0.01) in comparison to UV-treated plasmids passed through normal fibroblasts. pZ189 hypermutability and an increased frequency of single base substitutions was previously found with a cell line from a melanoma-prone xeroderma pigmentosum patient. These differences may be related to the increased melanoma susceptibility in both DNS and xeroderma pigmentosum.« less

  13. Structures of (5′S)-8,5′-Cyclo-2′-deoxyguanosine Mismatched with dA or dT

    PubMed Central

    2012-01-01

    Diastereomeric 8,5′-cyclopurine 2′-deoxynucleosides, containing a covalent bond between the deoxyribose and the purine base, are induced in DNA by ionizing radiation. They are suspected to play a role in the etiology of neurodegeneration in xeroderma pigmentosum patients. If not repaired, the S-8,5′-cyclo-2′-deoxyguanosine lesion (S-cdG) induces Pol V-dependent mutations at a frequency of 34% in Escherichia coli. Most are S-cdG → A transitions, suggesting mis-incorporation of dTTP opposite the lesion during replication bypass, although low levels of S-cdG → T transversions, arising from mis-incorporation of dATP, are also observed. We report the structures of 5′-d(GTGCXTGTTTGT)-3′·5′-d(ACAAACAYGCAC)-3′, where X denotes S-cdG and Y denotes either dA or dT, corresponding to the situation following mis-insertion of either dTTP or dATP opposite the S-cdG lesion. The S-cdG·dT mismatch pair adopts a wobble base pairing. This provides a plausible rationale for the S-cdG → A transitions. The S-cdG·dA mismatch pair differs in conformation from the dG·dA mismatch pair. For the S-cdG·dA mismatch pair, both S-cdG and dA intercalate, but no hydrogen bonding is observed between S-cdG and dA. This is consistent with the lower levels of S-cdG → T transitions in E. coli. PMID:22309170

  14. [Maple syrup urine disease and gene mutations in twin neonates].

    PubMed

    Li, Tao; Wang, Yu; Li, Cui; Xu, Wei-Wei; Niu, Feng-Hai; Zhang, Di

    2016-12-01

    To investigate the clinical features of one pair of twin neonates with maple syrup urine disease (MSUD) in the Chinese Han population and pathogenic mutations in related genes, and to provide guidance for the early diagnosis and treatment of MSUD. The clinical and imaging data of the twin neonates were collected. The peripheral blood samples were collected from the twin neonates and their parents to detect the genes related to MSUD (BCKDHA, BCKDHB, DBT, and DLD). The loci with gene mutations were identified, and a bioinformatic analysis was performed. Two mutations were detected in the BCKDHB gene, missense mutation c.304G>A (p.Gly102Arg) and nonsense mutation c.331C>T (p.Arg111*), and both of them were heterozygotes. The mutation c.304G>A (p.Gly102Arg) had not been reported in the world. Their father carried the missense mutation c.304G>A (p.Gly102Arg), and their mother carried the nonsense mutation c.331C>T (p.Arg111*). The c.331C>T (p.Arg111*) heterozygous mutation in BCKDHB gene is the pathogenic mutation in these twin neonates and provides a genetic and molecular basis for the clinical features of children with MSUD.

  15. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    PubMed

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  16. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    PubMed Central

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637

  17. Genetic data and de novo mutation rates in father-son pairs of 23 Y-STR loci in Southern Brazil population.

    PubMed

    Da Fré, Nicole Nascimento; Rodenbusch, Rodrigo; Gastaldo, André Zoratto; Hanson, Erin; Ballantyne, Jack; Alho, Clarice Sampaio

    2015-11-01

    We evaluated haplotype and allele frequencies, as well as statistical forensic parameters, for 23 Y-chromosome short tandem repeats (STRs) loci of the PowerPlex®Y23 system (DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, Y-GATA-H4, DYS481, DYS533, DYS549, DYS570, DYS576, DYS643) in a sample of 150 apparently healthy males, resident in South Brazil. A total of 150 different haplotypes were identified. The highest gene diversity (GD) was observed for the single locus marker DYS570 (GD = 0.7888) and for a two-locus system DYS385 (GD = 0.9009). We also examined 150 father-son pairs by the same system, and a total of 13 mutations were identified in the 3450 father-son allelic transfers, with an overall mutation rate across the 23 loci of 3.768 × 10(-3) (95% CI: 3.542 × 10(-3) to 3.944 × 10(-3)). In all cases there was only one locus mutated with gain/loss of repeats in the son (5 one-repeat gains, and 7 one-repeat and 1 two-repeat losses); we observed no instances of mutations involving a non-integral number of repeats.

  18. A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811 + 1.6kbA {yields} G, produces a new exon: High frequency in spanish cystic fibrosis chromosomes and association with severe phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chillon, M.; Casals, T.; Gimenez, J.

    1995-03-01

    mRNA analysis of the cystic fibrosis transmembrane regulator (CFTR) gene in tissues of cystic fibrosis (CF) patients has allowed us to detect a cryptic exon. The new exon involves 49 base pairs between exons 11 and 12 and is due to a point mutation (1811+1.6bA{yields}G) that creates a new donor splice site in intron 11. Semiquantitative mRNA analysis showed that 1811+1.6kbA{r_arrow}G-mRNA was 5-10-fold less abundant than {triangle}F508 mRNA. Mutations 1811+1.6kbA{yields}G was found in 21 Spanish and 1 German CF chromosome(s), making it the fourth-most-frequent mutation (2%) in the Spanish population. Individuals with genotype {triangle}F508/1811+1.6kbA{yields}G have only 1%-3% of normal CFTRmore » mRNA. This loss of 97% of normal CFTR mRNA must be responsible for the pancreatic insufficiency and for the severe CF phenotype in these patients. 30 refs., 3 figs., 2 tabs.« less

  19. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer

    PubMed Central

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-01-01

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients. PMID:26691761

  20. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer.

    PubMed

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-12-22

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan-Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients.

  1. Evidence for a founder effect for pseudoxanthoma elasticum in the Afrikaner population of South Africa.

    PubMed

    Le Saux, Olivier; Beck, Konstanze; Sachsinger, Christine; Treiber, Carina; Göring, Harald H H; Curry, Katie; Johnson, Eric W; Bercovitch, Lionel; Marais, Anna-Susan; Terry, Sharon F; Viljoen, Denis L; Boyd, Charles D

    2002-10-01

    Pseudoxanthoma elasticum (PXE) is a heritable elastic tissue disorder recently shown to be attributable to mutations in the ABCC6 ( MRP6) gene. Whereas PXE has been identified in all ethnic groups studied to date, the prevalence of this disease in various populations is uncertain, although often assumed to be similar. A notable exception however is the prevalence of PXE among South African Afrikaners. A previous report has suggested that a founder effect may explain the higher prevalence of PXE in Afrikaners, a European-derived population that first settled in South Africa in the 17th century. To investigate this hypothesis, we performed haplotype and mutational analysis of DNA from 24 South African families of Afrikaner, British and Indian descent. Among the 17 Afrikaner families studied, three common haplotypes and six different disease-causing variants were identified. Three of these mutant alleles were missense variants, two were nonsense mutations and one was a single base-pair insertion. The most common variant accounted for 53% of the PXE alleles, whereas other mutant alleles appeared at lower frequencies ranging from 3% to 12%. Haplotype analysis of the Afrikaner families showed that the three most frequent mutations were identical-by-descent, indicating a founder origin of PXE in this population.

  2. Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27.

    PubMed

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O; Marks, Harold; Flanigan, Kevin M; Moore, Steven A

    2015-03-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11 years; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAinsGG), in which seven base pairs are deleted and two are inserted. Although this predicts an amino-acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both the siblings developed progressive HF secondary to early-onset DCM. In addition, their 7-year-old nephew with delayed gross motor development, mild proximal muscle weakness and markedly elevated serum creatine kinase level (>13 000 IU l(-1)) at 16 months was recently demonstrated to have the familial DMD mutation. Here, we report a novel genotype of BMD with early-onset DCM and progressive lethal HF during early adolescence.

  3. Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.

    PubMed

    Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario

    2011-04-01

    Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szovenyi, Peter; Shaw, Jon; Yang, Xiaohan

    In diploid organisms, selfing reduces the efficiency of selection in removing deleterious mutations from a population. This need not be the case for all organisms. Some plants, for example, undergo an extreme form of selfing known as intragametophytic selfing, which immediately exposes all recessive deleterious mutations in a parental genome to selective purging. Here we ask how effectively deleterious mutations are removed from such plants. Specifically, we study the extent to which deleterious mutations accumulate in a predominantly selfing and a predominantly outcrossing pair of moss species, using genome-wide transcriptome data. We find that the selfing species purge significantly moremore » non-synonymous mutations, as well as a greater proportion of radical amino acid changes which alter physicochemical properties of amino acids. Moreover, their purging of deleterious mutation is especially strong in conserved regions of protein-coding genes. Our observations show that selfing need not impede but can even accelerate the removal of deleterious mutations, and do so on a genome-wide scale.« less

  5. Bending patterns of chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant.

    PubMed

    Brokaw, C J; Luck, D J

    1985-01-01

    Flash photomicrography at frequencies up to 300 Hz and computer-assisted image analysis have been used to obtain parameters describing the flagellar bending patterns of mutants of Chlamydomonas reinhardtii. All strains contained the uni1 mutation, to facilitate photography. The radial spoke head deficient mutant pf17, and the central pair deficient mutant, pf15, in combination with suppressor mutations that restore motility without restoring the ultrastructural or biochemical deficiencies, both generate forward mode bending patterns with increased shear amplitude and decreased asymmetry relative to the "wild-type" uni1 flagella described previously. In the reverse beating mode, the suppressed pf17 mutants generate reverse bending patterns with large shear amplitudes. Reverse beating of the suppressed pf15 mutants is rare. There is a reciprocal relationship between increased shear amplitude and decreased beat frequency, so that the velocity of sliding between flagellar microtubules is not increased by an increase in shear amplitude. The suppressor mutations alone cause decreased frequency and sliding velocity in both forward and reverse mode beating, with little change in shear amplitude or symmetry.

  6. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome.

    PubMed

    Amiel, Jeanne; Laudier, Béatrice; Attié-Bitach, Tania; Trang, Ha; de Pontual, Loïc; Gener, Blanca; Trochet, Delphine; Etchevers, Heather; Ray, Pierre; Simonneau, Michel; Vekemans, Michel; Munnich, Arnold; Gaultier, Claude; Lyonnet, Stanislas

    2003-04-01

    Congenital central hypoventilation syndrome (CCHS or Ondine's curse; OMIM 209880) is a life-threatening disorder involving an impaired ventilatory response to hypercarbia and hypoxemia. This core phenotype is associated with lower-penetrance anomalies of the autonomic nervous system (ANS) including Hirschsprung disease and tumors of neural-crest derivatives such as ganglioneuromas and neuroblastomas. In mice, the development of ANS reflex circuits is dependent on the paired-like homeobox gene Phox2b. Thus, we regarded its human ortholog, PHOX2B, as a candidate gene in CCHS. We found heterozygous de novo mutations in PHOX2B in 18 of 29 individuals with CCHS. Most mutations consisted of 5-9 alanine expansions within a 20-residue polyalanine tract probably resulting from non-homologous recombination. We show that PHOX2B is expressed in both the central and the peripheral ANS during human embryonic development. Our data support an essential role of PHOX2B in the normal patterning of the autonomous ventilation system and, more generally, of the ANS in humans.

  7. Parkinsonism in a pair of monozygotic CADASIL twins sharing the R1006C mutation: a transcranial sonography study.

    PubMed

    Ragno, Michele; Sanguigni, Sandro; Manca, Antonio; Pianese, Luigi; Paci, Cristina; Berbellini, Alfonso; Cozzolino, Valeria; Gobbato, Roberto; Peluso, Silvio; De Michele, Giuseppe

    2016-06-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common hereditary cerebral small vessel disease, is caused by mutations in the NOTCH3 gene on chromosome 19. Clinical manifestations of CADASIL include recurrent transient ischemic attacks, strokes, cognitive defects, epilepsy, migraine and psychiatric symptoms. Parkinsonian features have variably been reported in CADASIL patients, but only a few patients showed a clear parkinsonian syndrome. We studied two patients, a pair of monozygotic twins, carrying the R1006C mutation of the NOTCH3 gene and affected by a parkinsonian syndrome. For the first time in CADASIL patients, we used transcranial sonography (TCS) to assess basal ganglia abnormalities. TCS showed a bilateral hyperechogenic pattern of substantia nigra in one twin, and a right hyperechogenic pattern in the other. In both patients, lenticular nuclei showed a bilateral hyperechogenic pattern, and the width of the third ventricle was slightly increased. The TCS pattern found in our CADASIL patients is characteristic neither for Parkinson's disease, nor for vascular parkinsonism and seems to be specific and related to the disease-specific pathological features.

  8. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution

    PubMed Central

    Covert, Arthur W.; Lenski, Richard E.; Wilke, Claus O.; Ofria, Charles

    2013-01-01

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358

  9. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution.

    PubMed

    Covert, Arthur W; Lenski, Richard E; Wilke, Claus O; Ofria, Charles

    2013-08-20

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions.

  10. Identification of a TAAT-containing motif required for high level expression of the COL1A1 promoter in differentiated osteoblasts of transgenic mice

    NASA Technical Reports Server (NTRS)

    Dodig, M.; Kronenberg, M. S.; Bedalov, A.; Kream, B. E.; Gronowicz, G.; Clark, S. H.; Mack, K.; Liu, Y. H.; Maxon, R.; Pan, Z. Z.; hide

    1996-01-01

    Our previous studies have shown that the 49-base pair region of promoter DNA between -1719 and -1670 base pairs is necessary for transcription of the rat COL1A1 gene in transgenic mouse calvariae. In this study, we further define this element to the 13-base pair region between -1683 and -1670. This element contains a TAAT motif that binds homeodomain-containing proteins. Site-directed mutagenesis of this element in the context of a COL1A1-chloramphenicol acetyltransferase construct extending to -3518 base pairs decreased the ratio of reporter gene activity in calvariae to tendon from 3:1 to 1:1, suggesting a preferential effect on activity in calvariae. Moreover, chloramphenicol acetyltransferase-specific immunofluorescence microscopy of transgenic calvariae showed that the mutation preferentially reduced levels of chloramphenicol acetyltransferase protein in differentiated osteoblasts. Gel mobility shift assays demonstrate that differentiated osteoblasts contain a nuclear factor that binds to this site. This binding activity is not present in undifferentiated osteoblasts. We show that Msx2, a homeodomain protein, binds to this motif; however, Northern blot analysis revealed that Msx2 mRNA is present in undifferentiated bone cells but not in fully differentiated osteoblasts. In addition, cotransfection studies in ROS 17/2.8 osteosarcoma cells using an Msx2 expression vector showed that Msx2 inhibits a COL1A1 promoter-chloramphenicol acetyltransferase construct. Our results suggest that high COL1A1 expression in bone is mediated by a protein that is induced during osteoblast differentiation. This protein may contain a homeodomain; however, it is distinct from homeodomain proteins reported previously to be present in bone.

  11. Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun.

    PubMed

    Leonard, D A; Rajaram, N; Kerppola, T K

    1997-05-13

    Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos-Jun-AP-1 complex may contribute to its functional versatility at different promoters.

  12. Nucleotide sequencing analysis of a LEU gene of Candida maltosa which complements leuB mutation of Escherichia coli and leu2 mutation of Saccharomyces cerevisiae.

    PubMed

    Takagi, M; Kobayashi, N; Sugimoto, M; Fujii, T; Watari, J; Yano, K

    1987-01-01

    The expression of a LEU gene from Candida maltosa (designated as C-LEU2) isolated previously (Kawamura et al. 1983) was shown to be regulated, when transferred into Saccharomyces cerevisiae, by leucine and threonine in the medium, as in the case of LEU2 gene of S. cerevisiae. The coding region together with the regulatory region was subcloned and the nucleotide sequence was determined. When the sequence of the coding region was compared with that of LEU2, the homology was 72% for base pairs and 76% for deduced amino acids. Comparison of the regulatory region of C-LEU2 with those of LEU1 and LEU2 suggested a few short consensus sequences which are involved in regulation of gene expression by leucine and threonine in the medium.

  13. Role of a GAG Hinge in the Nucleotide-induced Conformational Change Governing Nucleotide Specificity by T7 DNA Polymerase*

    PubMed Central

    Jin, Zhinan; Johnson, Kenneth A.

    2011-01-01

    A nucleotide-induced change in DNA polymerase structure governs the kinetics of polymerization by high fidelity DNA polymerases. Mutation of a GAG hinge (G542A/G544A) in T7 DNA polymerase resulted in a 1000-fold slower rate of conformational change, which then limited the rate of correct nucleotide incorporation. Rates of misincorporation were comparable to that seen for wild-type enzyme so that the net effect of the mutation was a large decrease in fidelity. We demonstrate that a presumably modest change from glycine to alanine 20 Å from the active site can severely restrict the flexibility of the enzyme structure needed to recognize and incorporate correct substrates with high specificity. These results emphasize the importance of the substrate-induced conformational change in governing nucleotide selectivity by accelerating the incorporation of correct base pairs but not mismatches. PMID:20978284

  14. A Deafness- and Diabetes-associated tRNA Mutation Causes Deficient Pseudouridinylation at Position 55 in tRNAGlu and Mitochondrial Dysfunction*

    PubMed Central

    Wang, Meng; Liu, Hao; Zheng, Jing; Chen, Bobei; Zhou, Mi; Fan, Wenlu; Wang, Hen; Liang, Xiaoyang; Zhou, Xiaolong; Eriani, Gilbert; Jiang, Pingping; Guan, Min-Xin

    2016-01-01

    Several mitochondrial tRNA mutations have been associated with maternally inherited diabetes and deafness. However, the pathophysiology of these tRNA mutations remains poorly understood. In this report, we identified the novel homoplasmic 14692A→G mutation in the mitochondrial tRNAGlu gene among three Han Chinese families with maternally inherited diabetes and deafness. The m.14692A→G mutation affected a highly conserved uridine at position 55 of the TΨC loop of tRNAGlu. The uridine is modified to pseudouridine (Ψ55), which plays an important role in the structure and function of this tRNA. Using lymphoblastoid cell lines derived from a Chinese family, we demonstrated that the m.14692A→G mutation caused loss of Ψ55 modification and increased angiogenin-mediated endonucleolytic cleavage in mutant tRNAGlu. The destabilization of base-pairing (18A-Ψ55) caused by the m.14692A→G mutation perturbed the conformation and stability of tRNAGlu. An approximately 65% decrease in the steady-state level of tRNAGlu was observed in mutant cells compared with control cells. A failure in tRNAGlu metabolism impaired mitochondrial translation, especially for polypeptides with a high proportion of glutamic acid codons such as ND1, ND6, and CO2 in mutant cells. An impairment of mitochondrial translation caused defective respiratory capacity, especially reducing the activities of complexes I and IV. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increasing production of reactive oxygen species in the mutant cells. Our findings may provide new insights into the pathophysiology of maternally inherited diabetes and deafness, which is primarily manifested by the deficient nucleotide modification of mitochondrial tRNAGlu. PMID:27519417

  15. Genetic diagnosis of Duchenne and Becker muscular dystrophy using next-generation sequencing technology: comprehensive mutational search in a single platform.

    PubMed

    Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee

    2011-11-01

    Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.

  16. Population data and mutation rate of nine Y-STRs in a mestizo Mexican population from Guadalajara, Jalisco, México.

    PubMed

    Padilla-Gutiérrez, Jorge Ramón; Valle, Yeminia; Quintero-Ramos, Antonio; Hernández, Guillermo; Rodarte, Katya; Ortiz, Rocío; Olivares, Norma; Rivas, Fernando

    2008-11-01

    Nine Y-STR (DYS19, DYS390, DYS391, DYS392, DYS446, DYS447, DYS448, DYS456 and DYS458) were analyzed in a male sample of 285 unrelated individuals from Guadalajara, Jalisco, México. The haplotype diversity (0.996) and discrimination capacity (0.986) were calculated. A family study of around 200 father/son pairs and among 1828 meiosis showed five mutational events. All mutations were single step. The overall mutation rate estimated across the nine Y-STRs was 2.7 x 10(-3) (95% CI 1.2-6.4 x 10(-3))/locus/meiosis. The results indicate that these nine loci are useful Y-linked markers for forensic applications.

  17. Rapid Consolidation to a radish and Protein Synthesis-Dependent Long-Term Memory after Single-Session Appetitive Olfactory Conditioning in Drosophila

    PubMed Central

    Krashes, Michael J.; Waddell, Scott

    2008-01-01

    In Drosophila, formation of aversive olfactory long-term memory (LTM) requires multiple training sessions pairing odor and electric shock punishment with rest intervals. In contrast, here we show that a single 2 min training session pairing odor with a more ethologically relevant sugar reinforcement forms long-term appetitive memory that lasts for days. Appetitive LTM has some mechanistic similarity to aversive LTM in that it can be disrupted by cycloheximide, the dCreb2-b transcriptional repressor, and the crammer and tequila LTM-specific mutations. However, appetitive LTM is completely disrupted by the radish mutation that apparently represents a distinct mechanistic phase of consolidated aversive memory. Furthermore, appetitive LTM requires activity in the dorsal paired medial neuron and mushroom body α′ β′ neuron circuit during the first hour after training and mushroom body αβ neuron output during retrieval, suggesting that appetitive middle-term memory and LTM are mechanistically linked. Last, experiments feeding and/or starving flies after training reveals a critical motivational drive that enables appetitive LTM retrieval. PMID:18354013

  18. The Dewar photoproduct of thymidylyl(3′→5′)- thymidine (Dewar product) exhibits mutagenic behavior in accordance with the “A rule”

    PubMed Central

    Lee, Joon-Hwa; Bae, Sung-Hun; Choi, Byong-Seok

    2000-01-01

    In contrast to the highly mutagenic pyrimidine(6–4)pyrimidone photoproduct, its Dewar valence isomer (Dewar product) has low mutagenic potential and produces a broad range of mutations [LeClerc, J. E., Borden, A. & Lawrence, C. W. (1991) Proc. Natl. Acad. Sci. USA 88, 9685–9689]. To determine the origin of the mutagenic property of the Dewar product, we used experimental NMR restraints and molecular dynamics to determine the solution structure of a Dewar-lesion DNA decamer duplex. This DNA decamer duplex (DW/GA duplex) contains a mismatched base pair between the 3′ T residue of the Dewar lesion (T6) and an opposed G residue (G15). The 3′ T (T6) of the Dewar lesion formed stable hydrogen bonds with the opposing G15 residue. However, the helical bending and unwinding angles of the DW/GA duplex were much larger than those of a second duplex that contains the Dewar lesion and opposing A15 and A16 residues (DW/AA duplex). The DW/GA duplex showed poorer stacking interactions at the two bases of the Dewar product and at the adjacent A7⋅T14 base pair than did the DW/AA duplex. These structural features imply that no thermal stability or conformational benefit is obtained by incorporating a G instead of an A opposite the 3′ T of the Dewar lesion. These properties may thus facilitate the preferential incorporation of an A in accordance with the A rule during translesion replication and lead to the low frequency of 3′ T→C mutations observed at this site. PMID:10758155

  19. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    PubMed

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Dync1h1 Mutation Causes Proprioceptive Sensory Neuron Loss and Impaired Retrograde Axonal Transport of Dorsal Root Ganglion Neurons.

    PubMed

    Zhao, Jing; Wang, Yi; Xu, Huan; Fu, Yuan; Qian, Ting; Bo, Deng; Lu, Yan-Xin; Xiong, Yi; Wan, Jun; Zhang, Xiang; Dong, Qiang; Chen, Xiang-Jun

    2016-07-01

    Sprawling (Swl) is a radiation-induced mutation which has been identified to have a nine base pair deletion in dynein heavy chain 1 (DYNC1H1: encoded by a single gene Dync1h1). This study is to investigate the phenotype and the underlying mechanism of the Dync1h1 mutant. To display the phenotype of Swl mutant mice, we examined the embryos of homozygous (Swl/Swl) and heterozygous (Swl/+) mice and their postnatal dorsal root ganglion (DRG) of surviving Swl/+ mice. The Swl/+ mice could survive for a normal life span, while Swl/Swl could only survive till embryonic (E) 8.5 days. Excessive apoptosis of Swl/+ DRG neurons was revealed during E11.5-E15.5 days, and the peak rate was at E13.5 days. In vitro study of mutated DRG neurons showed impaired retrograde transport of dynein-driven nerve growth factor (NGF). Mitochondria, another dynein-driven cargo, demonstrated much slower retrograde transport velocity in Swl/+ neurons than in wild-type (WT) neurons. Nevertheless, the Swl, Loa, and Cra mutations did not affect homodimerization of DYNC1H1. The Swl/Swl mutation of Dync1h1 gene led to embryonic mal-development and lethality, whereas the Swl/+ DRG neurons demonstrated deficient retrograde transport in dynein-driven cargos and excessive apoptosis during mid- to late-developmental stages. The underlying mechanism of the mutation may not be due to impaired homodimerization of DYNC1H1. © 2016 John Wiley & Sons Ltd.

  1. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing.

    PubMed

    Pritchard, Colin C; Smith, Christina; Salipante, Stephen J; Lee, Ming K; Thornton, Anne M; Nord, Alex S; Gulden, Cassandra; Kupfer, Sonia S; Swisher, Elizabeth M; Bennett, Robin L; Novetsky, Akiva P; Jarvik, Gail P; Olopade, Olufunmilayo I; Goodfellow, Paul J; King, Mary-Claire; Tait, Jonathan F; Walsh, Tom

    2012-07-01

    Lynch syndrome (hereditary nonpolyposis colon cancer) and adenomatous polyposis syndromes frequently have overlapping clinical features. Current approaches for molecular genetic testing are often stepwise, taking a best-candidate gene approach with testing of additional genes if initial results are negative. We report a comprehensive assay called ColoSeq that detects all classes of mutations in Lynch and polyposis syndrome genes using targeted capture and massively parallel next-generation sequencing on the Illumina HiSeq2000 instrument. In blinded specimens and colon cancer cell lines with defined mutations, ColoSeq correctly identified 28/28 (100%) pathogenic mutations in MLH1, MSH2, MSH6, PMS2, EPCAM, APC, and MUTYH, including single nucleotide variants (SNVs), small insertions and deletions, and large copy number variants. There was 100% reproducibility of detection mutation between independent runs. The assay correctly identified 222 of 224 heterozygous SNVs (99.4%) in HapMap samples, demonstrating high sensitivity of calling all variants across each captured gene. Average coverage was greater than 320 reads per base pair when the maximum of 96 index samples with barcodes were pooled. In a specificity study of 19 control patients without cancer from different ethnic backgrounds, we did not find any pathogenic mutations but detected two variants of uncertain significance. ColoSeq offers a powerful, cost-effective means of genetic testing for Lynch and polyposis syndromes that eliminates the need for stepwise testing and multiple follow-up clinical visits. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck.

    PubMed

    Wilson, Ian J; Carling, Phillipa J; Alston, Charlotte L; Floros, Vasileios I; Pyle, Angela; Hudson, Gavin; Sallevelt, Suzanne C E H; Lamperti, Costanza; Carelli, Valerio; Bindoff, Laurence A; Samuels, David C; Wonnapinij, Passorn; Zeviani, Massimo; Taylor, Robert W; Smeets, Hubert J M; Horvath, Rita; Chinnery, Patrick F

    2016-03-01

    With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother-child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations. © The Author 2016. Published by Oxford University Press.

  3. Diagnosis of Xeroderma Pigmentosum Groups A and C by Detection of Two Prevalent Mutations in West Algerian Population: A Rapid Genotyping Tool for the Frequent XPC Mutation c.1643_1644delTG.

    PubMed

    Bensenouci, Salima; Louhibi, Lotfi; De Verneuil, Hubert; Mahmoudi, Khadidja; Saidi-Mehtar, Nadhira

    2016-01-01

    Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder. Considering that XP patients have a defect of the nucleotide excision repair (NER) pathway which enables them to repair DNA damage caused by UV light, they have an increased risk of developing skin and eyes cancers. In the present study, we investigated the involvement of the prevalent XPA and XPC genes mutations-nonsense mutation (c.682C>T, p.Arg228X) and a two-base-pair (2 bp) deletion (c.1643_1644delTG or p.Val548Ala fsX25), respectively-in 19 index cases from 19 unrelated families in the West of Algeria. For the genetic diagnosis of XPA gene, we proceeded to PCR-RFLP. For the XPC gene, we validated a routine analysis which includes a specific amplification of a short region surrounding the 2 bp deletion using a fluorescent primer and fragment sizing (GeneScan size) on a sequencing gel. Among the 19 index cases, there were 17 homozygous patients for the 2 bp deletion in the XPC gene and 2 homozygous patients carrying the nonsense XPA mutation. Finally, XPC appears to be the major disease-causing gene concerning xeroderma pigmentosum in North Africa. The use of fragment sizing is the simplest method to analyze this 2 bp deletion for the DNA samples coming from countries where the mutation c.1643_1644delTG of XPC gene is prevalent.

  4. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability.

    PubMed

    Twigg, Stephen R F; Forecki, Jennifer; Goos, Jacqueline A C; Richardson, Ivy C A; Hoogeboom, A Jeannette M; van den Ouweland, Ans M W; Swagemakers, Sigrid M A; Lequin, Maarten H; Van Antwerp, Daniel; McGowan, Simon J; Westbury, Isabelle; Miller, Kerry A; Wall, Steven A; van der Spek, Peter J; Mathijssen, Irene M J; Pauws, Erwin; Merzdorf, Christa S; Wilkie, Andrew O M

    2015-09-03

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability

    PubMed Central

    Twigg, Stephen R.F.; Forecki, Jennifer; Goos, Jacqueline A.C.; Richardson, Ivy C.A.; Hoogeboom, A. Jeannette M.; van den Ouweland, Ans M.W.; Swagemakers, Sigrid M.A.; Lequin, Maarten H.; Van Antwerp, Daniel; McGowan, Simon J.; Westbury, Isabelle; Miller, Kerry A.; Wall, Steven A.; van der Spek, Peter J.; Mathijssen, Irene M.J.; Pauws, Erwin; Merzdorf, Christa S.; Wilkie, Andrew O.M.

    2015-01-01

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5–12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. PMID:26340333

  6. Rapid Assembly of Customized TALENs into Multiple Delivery Systems

    PubMed Central

    Zhang, Zhengxing; Zhang, Siliang; Huang, Xin; Orwig, Kyle E.; Sheng, Yi

    2013-01-01

    Transcriptional activator-like effector nucleases (TALENs) have become a powerful tool for genome editing. Here we present an efficient TALEN assembly approach in which TALENs are assembled by direct Golden Gate ligation into Gateway® Entry vectors from a repeat variable di-residue (RVD) plasmid array. We constructed TALEN pairs targeted to mouse Ddx3 subfamily genes, and demonstrated that our modified TALEN assembly approach efficiently generates accurate TALEN moieties that effectively introduce mutations into target genes. We generated “user friendly” TALEN Entry vectors containing TALEN expression cassettes with fluorescent reporter genes that can be efficiently transferred via Gateway (LR) recombination into different delivery systems. We demonstrated that the TALEN Entry vectors can be easily transferred to an adenoviral delivery system to expand application to cells that are difficult to transfect. Since TALENs work in pairs, we also generated a TALEN Entry vector set that combines a TALEN pair into one PiggyBac transposon-based destination vector. The approach described here can also be modified for construction of TALE transcriptional activators, repressors or other functional domains. PMID:24244669

  7. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics.

    PubMed

    Leeman-Neill, Rebecca J; Brenner, Alina V; Little, Mark P; Bogdanova, Tetiana I; Hatch, Maureen; Zurnadzy, Liudmyla Y; Mabuchi, Kiyohiko; Tronko, Mykola D; Nikiforov, Yuri E

    2013-05-15

    Childhood exposure to iodine-131 from the 1986 nuclear accident in Chernobyl, Ukraine, led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Mutational analysis was performed on 62 PTCs diagnosed in a Ukrainian cohort of patients who were < 18 years old in 1986 and received 0.008 to 8.6 Gy of (131) I to the thyroid. Associations between mutation types and (131) I dose and other characteristics were explored. RET/PTC (ret proto-oncogene/papillary thyroid carcinoma) rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ (paired box 8/peroxisome proliferator-activated receptor gamma) rearrangement were identified. A significant negative association with (131) I dose for BRAF and RAS point mutations and a significant concave association with (131) I dose, with an inflection point at 1.6 Gy and odds ratio of 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements were found. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared with point mutations, rearrangements were associated with residence in the relatively iodine-deficient Zhytomyr region, younger age at exposure or surgery, and male sex. These results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with (131) I dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and (131) I exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. Copyright © 2013 American Cancer Society.

  8. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms

    PubMed Central

    Milosevic Feenstra, Jelena D.; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N.; Cazzola, Mario

    2016-01-01

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed “triple negative.” We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. PMID:26423830

  9. Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease.

    PubMed

    Sieving, P A; Yashar, B M; Ayyagari, R

    1999-01-01

    X-linked juvenile retinoschisis (RS) provides a starting point to define clinical paradigms and understand the limitations of diagnostic molecular testing. The RS phenotype is specific, but the broad severity range is clinically confusing. Molecular diagnostic testing obviates unnecessary examinations for boys at-risk and identifies carrier females who otherwise show no clinical signs. The XLRS1 gene has 6 exons of 26-196 base-pair size. Each exon is amplified by a single polymerase chain reaction and then sequenced, starting with exons 4 through 6, which contain mutation "hot spots." The 6 XLRS1 exons are sequenced serially. If alterations are found, they are compared with mutations in our > 120 XLRS families and with the > 300 mutations reported worldwide. Point mutations, small deletions, or rearrangements are identified in nearly 90% of males with a clinical diagnosis of RS. XLRS1 has very few sequence polymorphisms. Carrier-state testing produces 1 of 3 results: (1) positive, in which the woman has the same mutation as an affected male relative or known in other RS families; (2) negative, in which she lacks the mutation of her affected male relative; and (3) uninformative, in which no known mutation is identified or no information exists about the familial mutation. Molecular RS screening is an effective diagnostic tool that complements the clinician's skills for early detection of at-risk males. Useful outcomes of carrier testing depend on several factors: (1) a male relative with a clear clinical diagnosis; (2) a well-defined inheritance pattern; (3) high disease penetrance; (4) size and organization of the gene; and (5) the types of disease-associated mutations. Ethical questions include molecular diagnostic testing of young at-risk females before the age of consent, the impact of this information on the emotional health of the patient and family, and issues of employability and insurance coverage.

  10. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    PubMed

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  11. Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease.

    PubMed Central

    Sieving, P A; Yashar, B M; Ayyagari, R

    1999-01-01

    BACKGROUND AND PURPOSE: X-linked juvenile retinoschisis (RS) provides a starting point to define clinical paradigms and understand the limitations of diagnostic molecular testing. The RS phenotype is specific, but the broad severity range is clinically confusing. Molecular diagnostic testing obviates unnecessary examinations for boys at-risk and identifies carrier females who otherwise show no clinical signs. METHODS: The XLRS1 gene has 6 exons of 26-196 base-pair size. Each exon is amplified by a single polymerase chain reaction and then sequenced, starting with exons 4 through 6, which contain mutation "hot spots." RESULTS: The 6 XLRS1 exons are sequenced serially. If alterations are found, they are compared with mutations in our > 120 XLRS families and with the > 300 mutations reported worldwide. Point mutations, small deletions, or rearrangements are identified in nearly 90% of males with a clinical diagnosis of RS. XLRS1 has very few sequence polymorphisms. Carrier-state testing produces 1 of 3 results: (1) positive, in which the woman has the same mutation as an affected male relative or known in other RS families; (2) negative, in which she lacks the mutation of her affected male relative; and (3) uninformative, in which no known mutation is identified or no information exists about the familial mutation. CONCLUSIONS: Molecular RS screening is an effective diagnostic tool that complements the clinician's skills for early detection of at-risk males. Useful outcomes of carrier testing depend on several factors: (1) a male relative with a clear clinical diagnosis; (2) a well-defined inheritance pattern; (3) high disease penetrance; (4) size and organization of the gene; and (5) the types of disease-associated mutations. Ethical questions include molecular diagnostic testing of young at-risk females before the age of consent, the impact of this information on the emotional health of the patient and family, and issues of employability and insurance coverage. Images FIGURE 2A FIGURE 2B PMID:10703138

  12. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Zhou, Yanqing; Han, Yue; Xu, Mingyan; Gu, Jia

    2017-03-14

    Some applications, especially those clinical applications requiring high accuracy of sequencing data, usually have to face the troubles caused by unavoidable sequencing errors. Several tools have been proposed to profile the sequencing quality, but few of them can quantify or correct the sequencing errors. This unmet requirement motivated us to develop AfterQC, a tool with functions to profile sequencing errors and correct most of them, plus highly automated quality control and data filtering features. Different from most tools, AfterQC analyses the overlapping of paired sequences for pair-end sequencing data. Based on overlapping analysis, AfterQC can detect and cut adapters, and furthermore it gives a novel function to correct wrong bases in the overlapping regions. Another new feature is to detect and visualise sequencing bubbles, which can be commonly found on the flowcell lanes and may raise sequencing errors. Besides normal per cycle quality and base content plotting, AfterQC also provides features like polyX (a long sub-sequence of a same base X) filtering, automatic trimming and K-MER based strand bias profiling. For each single or pair of FastQ files, AfterQC filters out bad reads, detects and eliminates sequencer's bubble effects, trims reads at front and tail, detects the sequencing errors and corrects part of them, and finally outputs clean data and generates HTML reports with interactive figures. AfterQC can run in batch mode with multiprocess support, it can run with a single FastQ file, a single pair of FastQ files (for pair-end sequencing), or a folder for all included FastQ files to be processed automatically. Based on overlapping analysis, AfterQC can estimate the sequencing error rate and profile the error transform distribution. The results of our error profiling tests show that the error distribution is highly platform dependent. Much more than just another new quality control (QC) tool, AfterQC is able to perform quality control, data filtering, error profiling and base correction automatically. Experimental results show that AfterQC can help to eliminate the sequencing errors for pair-end sequencing data to provide much cleaner outputs, and consequently help to reduce the false-positive variants, especially for the low-frequency somatic mutations. While providing rich configurable options, AfterQC can detect and set all the options automatically and require no argument in most cases.

  13. Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases

    PubMed Central

    Ullah, Inayat; Kabir, Firoz; Iqbal, Muhammad; Gottsch, Clare Brooks S.; Naeem, Muhammad Asif; Assir, Muhammad Zaman; Khan, Shaheen N.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2016-01-01

    Purpose To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases. Methods Seven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon–intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect. Results The ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10−6) that affected individuals inherited the causal mutation from a common ancestor. Conclusions Pathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families. PMID:27440997

  14. OncoBinder facilitates interpretation of proteomic interaction data by capturing coactivation pairs in cancer.

    PubMed

    Van Coillie, Samya; Liang, Lunxi; Zhang, Yao; Wang, Huanbin; Fang, Jing-Yuan; Xu, Jie

    2016-04-05

    High-throughput methods such as co-immunoprecipitationmass spectrometry (coIP-MS) and yeast 2 hybridization (Y2H) have suggested a broad range of unannotated protein-protein interactions (PPIs), and interpretation of these PPIs remains a challenging task. The advancements in cancer genomic researches allow for the inference of "coactivation pairs" in cancer, which may facilitate the identification of PPIs involved in cancer. Here we present OncoBinder as a tool for the assessment of proteomic interaction data based on the functional synergy of oncoproteins in cancer. This decision tree-based method combines gene mutation, copy number and mRNA expression information to infer the functional status of protein-coding genes. We applied OncoBinder to evaluate the potential binders of EGFR and ERK2 proteins based on the gastric cancer dataset of The Cancer Genome Atlas (TCGA). As a result, OncoBinder identified high confidence interactions (annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) or validated by low-throughput assays) more efficiently than co-expression based method. Taken together, our results suggest that evaluation of gene functional synergy in cancer may facilitate the interpretation of proteomic interaction data. The OncoBinder toolbox for Matlab is freely accessible online.

  15. Molecular analysis of the PAX6 gene in Mexican patients with congenital aniridia: report of four novel mutations

    PubMed Central

    Villarroel, Camilo E.; Villanueva-Mendoza, Cristina; Orozco, Lorena; Alcántara-Ortigoza, Miguel Angel; Jiménez, Diana F.; Ordaz, Juan C.

    2008-01-01

    Purpose Paired box gene 6 (PAX6) heterozygous mutations are well known to cause congenital non-syndromic aniridia. These mutations produce primarily protein truncations and have been identified in approximately 40%–80% of all aniridia cases worldwide. In Mexico, there is only one previous report describing three intragenic deletions in five cases. In this study, we further analyze PAX6 variants in a group of Mexican aniridia patients and describe associated ocular findings. Methods We evaluated 30 nonrelated probands from two referral hospitals. Mutations were detected by single-strand conformation polymorphism (SSCP) and direct sequencing, and novel missense mutations and intronic changes were analyzed by in silico analysis. One intronic variation (IVS2+9G>A), which in silico analysis suggested had no pathological effects, was searched in 103 unaffected controls. Results Almost all cases exhibited phenotypes that were at the severe end of the aniridia spectrum with associated ocular alterations such as nystagmus, macular hypoplasia, and congenital cataracts. The mutation detection rate was 30%. Eight different mutations were identified: four (c.184_188dupGAGAC, c.361T>C, c.879dupC, and c.277G>A) were novel, and four (c.969C>T, IVS6+1G>C, c.853delC, and IVS7–2A>G) have been previously reported. The substitution at position 969 was observed in two patients. None of the intragenic deletions previously reported in Mexican patients were found. Most of the mutations detected predict either truncation of the PAX6 protein or conservative amino acid changes in the paired domain. We also detected two intronic non-pathogenic variations, IVS9–12C>T and IVS2+9G>A, that had been previously reported. Because the latter variation was considered potentially pathogenic, it was analyzed in 103 healthy Mexican newborns where we found an allelic frequency of 0.1116 for the A allele. Conclusions This study adds four novel mutations to the worldwide PAX6 mutational spectrum, and reaffirms the finding that c.969C>T is one of the three more frequent causal mutations in aniridia cases. It also provides evidence that IVS2+9G>A is an intronic change without pathogenic effect. PMID:18776953

  16. QM and QM/MM Studies on Excited-State Relaxation Mechanisms of Unnatural Bases in Vacuo and Base Pairs in DNA.

    PubMed

    Wang, Qian; Xie, Xiao-Ying; Han, Juan; Cui, Ganglong

    2017-11-22

    Semisynthetic alphabet can potentially increase the genetic information stored in DNA through the formation of unusual base pairs such as d5SICS:dNaM. However, recent experiments show that near-visible-light irradiation on the d5SICS and dNaM chromophores could lead to genetic mutations and damages. Until now, their photophysical mechanisms remain elusive. Herein, we have employed MS-CASPT2//CASSCF and QM(MS-CASPT2//CASSCF)/MM methods to explore the spectroscopic properties and excited-state relaxation mechanisms of d5SICS, dNaM, and d5SICS:dNaM in DNA. We have found that (1) the S 2 state of d5SICS, the S 1 state of dNaM, and the S 2 state of d5SICS:dNaM are initially populated upon near-visible-light irradiation and (2) for d5SICS and d5SICS:dNaM, there are several parallel relaxation pathways to populate the lowest triplet state, but for dNaM, a main relaxation pathway is uncovered. Moreover, we have found that the excited-state relaxation mechanism of d5SICS:dNaM in DNA is similar to that of the isolated d5SICS chromophore. These mechanistic insights contribute to the understanding of photophysics and photochemistry of unusual base pairs and to the design of better semisynthetic genetic alphabet.

  17. Identification and characterization of single nucleotide polymorphisms in 6 growth-correlated genes in porcine by denaturing high performance liquid chromatography.

    PubMed

    Liu, Dewu; Zhang, Yushan; Du, Yinjun; Yang, Guanfu; Zhang, Xiquan

    2007-06-01

    The growth-correlated genes that are part of the neuroendocrine growth axis play crucial roles in the regulation of growth and development of pig. The identification of genetic polymorphisms in these genes will enable the scientist to evaluate the biological relevance of such polymorphisms and to gain a better understanding of quantitative traits like growth. In the present study, seven pairs of primers were designed to obtain unknown sequences of growth-correlated genes, and other 25 pairs of primers were designed to identify single nucleotide polymorphisms (SNP) using the denaturing high-performance liquid chromatography (DHPLC) technology in four pig breeds (Duroc, Landrace, Lantang and Wuzhishan), significantly differing in growth and development characteristics. A total of 101 polymorphisms were discovered in 10,707 base pairs (bp) from six genes of the ghrelin (GHRL), leptin (LEP), insulin-like growth factor II (IGF-II), insulin-like growth factor binding protein 2 (IGFBP-2), insulin-like growth factor binding protein 3 (IGFBP-3), and somatostatin (SS). The observed average distances between the SNP in the 5'UTR, coding regions, introns and 3'UTR were 134, 521, 81 and 92 bp, respectively. Four SNPs were found in the coding regions of IGF-II, IGFBP-2 and LEP, respectively. Two synonymous mutations were obtained in IGF-II and LEP genes respectively, and two non-synonymous were found in IGFBP-2 and LEP genes, respectively. Seven other mutations were also observed. Thirty-two PCR-RFLP markers were found among 101 polymorphisms of the six genes. The SNP discovered in this study would provide suitable markers for association studies of candidate genes with growth related traits in pig.

  18. Evaluation of non-coding variation in GLUT1 deficiency.

    PubMed

    Liu, Yu-Chi; Lee, Jia Wei Audrey; Bellows, Susannah T; Damiano, John A; Mullen, Saul A; Berkovic, Samuel F; Bahlo, Melanie; Scheffer, Ingrid E; Hildebrand, Michael S

    2016-12-01

    Loss-of-function mutations in SLC2A1, encoding glucose transporter-1 (GLUT-1), lead to dysfunction of glucose transport across the blood-brain barrier. Ten percent of cases with hypoglycorrhachia (fasting cerebrospinal fluid [CSF] glucose <2.2mmol/L) do not have mutations. We hypothesized that GLUT1 deficiency could be due to non-coding SLC2A1 variants. We performed whole exome sequencing of one proband with a GLUT1 phenotype and hypoglycorrhachia negative for SLC2A1 sequencing and copy number variants. We studied a further 55 patients with different epilepsies and low CSF glucose who did not have exonic mutations or copy number variants. We sequenced non-coding promoter and intronic regions. We performed mRNA studies for the recurrent intronic variant. The proband had a de novo splice site mutation five base pairs from the intron-exon boundary. Three of 55 patients had deep intronic SLC2A1 variants, including a recurrent variant in two. The recurrent variant produced less SLC2A1 mRNA transcript. Fasting CSF glucose levels show an age-dependent correlation, which makes the definition of hypoglycorrhachia challenging. Low CSF glucose levels may be associated with pathogenic SLC2A1 mutations including deep intronic SLC2A1 variants. Extending genetic screening to non-coding regions will enable diagnosis of more patients with GLUT1 deficiency, allowing implementation of the ketogenic diet to improve outcomes. © 2016 Mac Keith Press.

  19. Ultrasensitive Detection of Multiplexed Somatic Mutations Using MALDI-TOF Mass Spectrometry.

    PubMed

    Mosko, Michael J; Nakorchevsky, Aleksey A; Flores, Eunice; Metzler, Heath; Ehrich, Mathias; van den Boom, Dirk J; Sherwood, James L; Nygren, Anders O H

    2016-01-01

    Multiplex detection of low-frequency mutations is becoming a necessary diagnostic tool for clinical laboratories interested in noninvasive prognosis and prediction. Challenges include the detection of minor alleles among abundant wild-type alleles, the heterogeneous nature of tumors, and the limited amount of available tissue. A method that can reliably detect minor variants <1% in a multiplexed reaction using a platform amenable to a variety of throughputs would meet these requirements. We developed a novel approach, UltraSEEK, for high-throughput, multiplexed, ultrasensitive mutation detection and used it for detection of mutant sequence mixtures as low as 0.1% minor allele frequency. The process consisted of multiplex PCR, followed by mutation-specific, single-base extension using chain terminators labeled with a moiety for solid phase capture. The captured and enriched products were then identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. For verification, we successfully analyzed ultralow fractions of mutations in a set of characterized cell lines, and included a direct comparison to droplet digital PCR. Finally, we verified the specificity in a set of 122 paired tumor and circulating cell-free DNA samples from melanoma patients. Our results show that the UltraSEEK chemistry is a particularly powerful approach for the detection of somatic variants, with the potential to be an invaluable resource to investigators in saving time and material without compromising analytical sensitivity and accuracy. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Detecting short spatial scale local adaptation and epistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations.

    PubMed

    Csilléry, Katalin; Lalagüe, Hadrien; Vendramin, Giovanni G; González-Martínez, Santiago C; Fady, Bruno; Oddou-Muratorio, Sylvie

    2014-10-01

    Detecting signatures of selection in tree populations threatened by climate change is currently a major research priority. Here, we investigated the signature of local adaptation over a short spatial scale using 96 European beech (Fagus sylvatica L.) individuals originating from two pairs of populations on the northern and southern slopes of Mont Ventoux (south-eastern France). We performed both single and multilocus analysis of selection based on 53 climate-related candidate genes containing 546 SNPs. FST outlier methods at the SNP level revealed a weak signal of selection, with three marginally significant outliers in the northern populations. At the gene level, considering haplotypes as alleles, two additional marginally significant outliers were detected, one on each slope. To account for the uncertainty of haplotype inference, we averaged the Bayes factors over many possible phase reconstructions. Epistatic selection offers a realistic multilocus model of selection in natural populations. Here, we used a test suggested by Ohta based on the decomposition of the variance of linkage disequilibrium. Overall populations, 0.23% of the SNP pairs (haplotypes) showed evidence of epistatic selection, with nearly 80% of them being within genes. One of the between gene epistatic selection signals arose between an FST outlier and a nonsynonymous mutation in a drought response gene. Additionally, we identified haplotypes containing selectively advantageous allele combinations which were unique to high or low elevations and northern or southern populations. Several haplotypes contained nonsynonymous mutations situated in genes with known functional importance for adaptation to climatic factors. © 2014 John Wiley & Sons Ltd.

  1. Structural and Biochemical Determinants of Ligand Binding by the c-di-GMP Riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Lipchock, S; Livingston,

    2010-01-01

    The bacterial second messenger c-di-GMP is used in many species to control essential processes that allow the organism to adapt to its environment. The c-di-GMP riboswitch (GEMM) is an important downstream target in this signaling pathway and alters gene expression in response to changing concentrations of c-di-GMP. The riboswitch selectively recognizes its second messenger ligand primarily through contacts with two critical nucleotides. However, these two nucleotides are not the most highly conserved residues within the riboswitch sequence. Instead, nucleotides that stack with c-di-GMP and that form tertiary RNA contacts are the most invariant. Biochemical and structural evidence reveals that themore » most common natural variants are able to make alternative pairing interactions with both guanine bases of the ligand. Additionally, a high-resolution (2.3 {angstrom}) crystal structure of the native complex reveals that a single metal coordinates the c-di-GMP backbone. Evidence is also provided that after transcription of the first nucleotide on the 3{prime}-side of the P1 helix, which is predicted to be the molecular switch, the aptamer is functional for ligand binding. Although large energetic effects occur when several residues in the RNA are altered, mutations at the most conserved positions, rather than at positions that base pair with c-di-GMP, have the most detrimental effects on binding. Many mutants retain sufficient c-di-GMP affinity for the RNA to remain biologically relevant, which suggests that this motif is quite resilient to mutation.« less

  2. Structure-Based Mutational Analysis of the Hepatitis C Virus NS3 Helicase

    PubMed Central

    Tai, Chun-Ling; Pan, Wen-Ching; Liaw, Shwu-Huey; Yang, Ueng-Cheng; Hwang, Lih-Hwa; Chen, Ding-Shinn

    2001-01-01

    The carboxyl terminus of the hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses ATP-dependent RNA helicase activity. Based on the conserved sequence motifs and the crystal structures of the helicase domain, 17 mutants of the HCV NS3 helicase were generated. The ATP hydrolysis, RNA binding, and RNA unwinding activities of the mutant proteins were examined in vitro to determine the functional role of the mutated residues. The data revealed that Lys-210 in the Walker A motif and Asp-290, Glu-291, and His-293 in the Walker B motif were crucial to ATPase activity and that Thr-322 and Thr-324 in motif III and Arg-461 in motif VI significantly influenced ATPase activity. When the pairing between His-293 and Gln-460, referred to as gatekeepers, was replaced with the Asp-293/His-460 pair, which makes the NS3 helicase more like the DEAD helicase subgroup, ATPase activity was not restored. It thus indicated that the whole microenvironment surrounding the gatekeepers, rather than the residues per se, was important to the enzymatic activities. Arg-461 and Trp-501 are important residues for RNA binding, while Val-432 may only play a coadjutant role. The data demonstrated that RNA helicase activity was possibly abolished by the loss of ATPase activity or by reduced RNA binding activity. Nevertheless, a low threshold level of ATPase activity was found sufficient for helicase activity. Results in this study provide a valuable reference for efforts under way to develop anti-HCV therapeutic drugs targeting NS3. PMID:11483774

  3. The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot.

    PubMed

    Sardana, Richa; Liu, Xin; Granneman, Sander; Zhu, Jieyi; Gill, Michael; Papoulas, Ophelia; Marcotte, Edward M; Tollervey, David; Correll, Carl C; Johnson, Arlen W

    2015-02-01

    In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins.

  4. The DEAH-box Helicase Dhr1 Dissociates U3 from the Pre-rRNA to Promote Formation of the Central Pseudoknot

    PubMed Central

    Granneman, Sander; Zhu, Jieyi; Gill, Michael; Papoulas, Ophelia; Marcotte, Edward M.; Tollervey, David; Correll, Carl C.; Johnson, Arlen W.

    2015-01-01

    In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins. PMID:25710520

  5. Integrated microfluidic card with TaqMan probes and high-resolution melt analysis to detect tuberculosis drug resistance mutations across 10 genes.

    PubMed

    Pholwat, Suporn; Liu, Jie; Stroup, Suzanne; Gratz, Jean; Banu, Sayera; Rahman, S M Mazidur; Ferdous, Sara Sabrina; Foongladda, Suporn; Boonlert, Duangjai; Ogarkov, Oleg; Zhdanova, Svetlana; Kibiki, Gibson; Heysell, Scott; Houpt, Eric

    2015-02-24

    Genotypic methods for drug susceptibility testing of Mycobacterium tuberculosis are desirable to speed the diagnosis and proper therapy of tuberculosis (TB). However, the numbers of genes and polymorphisms implicated in resistance have proliferated, challenging diagnostic design. We developed a microfluidic TaqMan array card (TAC) that utilizes both sequence-specific probes and high-resolution melt analysis (HRM), providing two layers of detection of mutations. Twenty-seven primer pairs and 40 probes were designed to interrogate 3,200 base pairs of critical regions of the inhA, katG, rpoB, embB, rpsL, rrs, eis, gyrA, gyrB, and pncA genes. The method was evaluated on 230 clinical M. tuberculosis isolates from around the world, and it yielded 96.1% accuracy (2,431/2,530) in comparison to that of Sanger sequencing and 87% accuracy in comparison to that of the slow culture-based susceptibility testing. This TAC-HRM method integrates assays for 10 genes to yield fast, comprehensive, and accurate drug susceptibility results for the 9 major antibiotics used to treat TB and could be deployed to improve treatment outcomes. Multidrug-resistant tuberculosis threatens global tuberculosis control efforts. Optimal therapy utilizes susceptibility test results to guide individualized treatment regimens; however, the susceptibility testing methods in use are technically difficult and slow. We developed an integrated TaqMan array card method with high-resolution melt analysis that interrogates 10 genes to yield a fast, comprehensive, and accurate drug susceptibility result for the 9 major antituberculosis antibiotics. Copyright © 2015 Pholwat et al.

  6. Global and disease-associated genetic variation in the human Fanconi anemia gene family.

    PubMed

    Rogers, Kai J; Fu, Wenqing; Akey, Joshua M; Monnat, Raymond J

    2014-12-20

    Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57,240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Synaptonemal Complex Components Are Required for Meiotic Checkpoint Function in Caenorhabditis elegans

    PubMed Central

    Bohr, Tisha; Ashley, Guinevere; Eggleston, Evan; Firestone, Kyra; Bhalla, Needhi

    2016-01-01

    Synapsis involves the assembly of a proteinaceous structure, the synaptonemal complex (SC), between paired homologous chromosomes, and is essential for proper meiotic chromosome segregation. In Caenorhabditis elegans, the synapsis checkpoint selectively removes nuclei with unsynapsed chromosomes by inducing apoptosis. This checkpoint depends on pairing centers (PCs), cis-acting sites that promote pairing and synapsis. We have hypothesized that the stability of homolog pairing at PCs is monitored by this checkpoint. Here, we report that SC components SYP-3, HTP-3, HIM-3, and HTP-1 are required for a functional synapsis checkpoint. Mutation of these components does not abolish PC function, demonstrating they are bona fide checkpoint components. Further, we identify mutant backgrounds in which the instability of homolog pairing at PCs does not correlate with the synapsis checkpoint response. Altogether, these data suggest that, in addition to homolog pairing, SC assembly may be monitored by the synapsis checkpoint. PMID:27605049

  8. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations.

    PubMed

    Mallick, Swapan; Li, Heng; Lipson, Mark; Mathieson, Iain; Gymrek, Melissa; Racimo, Fernando; Zhao, Mengyao; Chennagiri, Niru; Nordenfelt, Susanne; Tandon, Arti; Skoglund, Pontus; Lazaridis, Iosif; Sankararaman, Sriram; Fu, Qiaomei; Rohland, Nadin; Renaud, Gabriel; Erlich, Yaniv; Willems, Thomas; Gallo, Carla; Spence, Jeffrey P; Song, Yun S; Poletti, Giovanni; Balloux, Francois; van Driem, George; de Knijff, Peter; Romero, Irene Gallego; Jha, Aashish R; Behar, Doron M; Bravi, Claudio M; Capelli, Cristian; Hervig, Tor; Moreno-Estrada, Andres; Posukh, Olga L; Balanovska, Elena; Balanovsky, Oleg; Karachanak-Yankova, Sena; Sahakyan, Hovhannes; Toncheva, Draga; Yepiskoposyan, Levon; Tyler-Smith, Chris; Xue, Yali; Abdullah, M Syafiq; Ruiz-Linares, Andres; Beall, Cynthia M; Di Rienzo, Anna; Jeong, Choongwon; Starikovskaya, Elena B; Metspalu, Ene; Parik, Jüri; Villems, Richard; Henn, Brenna M; Hodoglugil, Ugur; Mahley, Robert; Sajantila, Antti; Stamatoyannopoulos, George; Wee, Joseph T S; Khusainova, Rita; Khusnutdinova, Elza; Litvinov, Sergey; Ayodo, George; Comas, David; Hammer, Michael F; Kivisild, Toomas; Klitz, William; Winkler, Cheryl A; Labuda, Damian; Bamshad, Michael; Jorde, Lynn B; Tishkoff, Sarah A; Watkins, W Scott; Metspalu, Mait; Dryomov, Stanislav; Sukernik, Rem; Singh, Lalji; Thangaraj, Kumarasamy; Pääbo, Svante; Kelso, Janet; Patterson, Nick; Reich, David

    2016-10-13

    Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.

  9. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations

    PubMed Central

    Mallick, Swapan; Li, Heng; Lipson, Mark; Mathieson, Iain; Gymrek, Melissa; Racimo, Fernando; Zhao, Mengyao; Chennagiri, Niru; Nordenfelt, Susanne; Tandon, Arti; Skoglund, Pontus; Lazaridis, Iosif; Sankararaman, Sriram; Fu, Qiaomei; Rohland, Nadin; Renaud, Gabriel; Erlich, Yaniv; Willems, Thomas; Gallo, Carla; Spence, Jeffrey P.; Song, Yun S.; Poletti, Giovanni; Balloux, Francois; van Driem, George; de Knijff, Peter; Romero, Irene Gallego; Jha, Aashish R.; Behar, Doron M.; Bravi, Claudio M.; Capelli, Cristian; Hervig, Tor; Moreno-Estrada, Andres; Posukh, Olga L.; Balanovska, Elena; Balanovsky, Oleg; Karachanak-Yankova, Sena; Sahakyan, Hovhannes; Toncheva, Draga; Yepiskoposyan, Levon; Tyler-Smith, Chris; Xue, Yali; Abdullah, M. Syafiq; Ruiz-Linares, Andres; Beall, Cynthia M.; Di Rienzo, Anna; Jeong, Choongwon; Starikovskaya, Elena B.; Metspalu, Ene; Parik, Jüri; Villems, Richard; Henn, Brenna M.; Hodoglugil, Ugur; Mahley, Robert; Sajantila, Antti; Stamatoyannopoulos, George; Wee, Joseph T. S.; Khusainova, Rita; Khusnutdinova, Elza; Litvinov, Sergey; Ayodo, George; Comas, David; Hammer, Michael; Kivisild, Toomas; Klitz, William; Winkler, Cheryl; Labuda, Damian; Bamshad, Michael; Jorde, Lynn B.; Tishkoff, Sarah A.; Watkins, W. Scott; Metspalu, Mait; Dryomov, Stanislav; Sukernik, Rem; Singh, Lalji; Thangaraj, Kumarasamy; Pääbo, Svante; Kelso, Janet; Patterson, Nick; Reich, David

    2016-01-01

    We report the Simons Genome Diversity Project (SGDP) dataset: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioral modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that in other non-Africans. PMID:27654912

  10. The Contribution of Mosaic Variants to Autism Spectrum Disorder.

    PubMed

    Freed, Donald; Pevsner, Jonathan

    2016-09-01

    De novo mutation is highly implicated in autism spectrum disorder (ASD). However, the contribution of post-zygotic mutation to ASD is poorly characterized. We performed both exome sequencing of paired samples and analysis of de novo variants from whole-exome sequencing of 2,388 families. While we find little evidence for tissue-specific mosaic mutation, multi-tissue post-zygotic mutation (i.e. mosaicism) is frequent, with detectable mosaic variation comprising 5.4% of all de novo mutations. We identify three mosaic missense and likely-gene disrupting mutations in genes previously implicated in ASD (KMT2C, NCKAP1, and MYH10) in probands but none in siblings. We find a strong ascertainment bias for mosaic mutations in probands relative to their unaffected siblings (p = 0.003). We build a model of de novo variation incorporating mosaic variants and errors in classification of mosaic status and from this model we estimate that 33% of mosaic mutations in probands contribute to 5.1% of simplex ASD diagnoses (95% credible interval 1.3% to 8.9%). Our results indicate a contributory role for multi-tissue mosaic mutation in some individuals with an ASD diagnosis.

  11. Alterations of leaf cell ultrastructures and AFLP DNA profiles in Earth-grown tomato plants propagated from long-term six years Mir-flown seeds

    NASA Astrophysics Data System (ADS)

    Liu, Min; Xue, Huai; Pan, Yi; Zhang, Chunhua; Lu, Jinying

    Leaf cell ultrastructures and DNA variations in the firstand the second-generation of Earthgrown tomato (Lycopersicon esculentun Mill) plants that had been endured a long-term six years spaceflight in the Mir were compared to their ground-based control plants, under observations with a Transmission Electron Microscope and the Amplification Fragment Length Polymorphism (AFLP) analysis. For alterations in the morphological ultrastructures, one plant among the 11 first-generation plants generated from 30 Mir-flown seeds had a three-layered palisade cell structure, while other 10 first-generation plants and all ground-based controls had one-layered palisade cell structure in leaves. Starch grains were larger and in clusters, numbers of starch grains increased in the chloroplasts in the Mir-flown plants. Leaf cells became contracted and deformed, and cell shape patterns were different in the Mir-flown plants. For the leaf genomic DNA alterations, 34 DNA bands were polymorphic with a 1.32% polymorphism among 2582 DNA bands in the first-generation Mir-flown plants. Band types in the spaceflight treated plants were also different from those in the ground-based control. Of 11 survived first-generation plants, 7 spaceflight treated plants (Plant Nos. 1-6 and No. 9) had a same 7 polymorphic bands and a same 0.27%DNA mutation. The DNA mutation rate was greatest in Plants No.10 and No.7 (0.90% and 0.94%), less in Plant No.11 (0.31%) and least in Plant No.8 (0.20%). For the 38 send-generation plants propagated from the No. 5 Mir-flown seed, 6 DNA bands were polymorphic with a 0.23% polymorphism among 2564 amplified DNA bands. Among those 38 second-generation plants amplified by primer pair (E4: ACC, M8: CTT), one DNA band disappeared in 29 second-generation plants and in the original Mir-flown No. 5 plant, compared to the ground-base controls. Among the 38 second-generation plants generated from the Mir-flown No. 5 seed, the DNA band types of 29 second-generation plants were different from that of the ground-base controls and had a same 6 polymorphic bands and a same 0.23% DNA mutation. For the 49 second-generation plants derived from the Mir-flown No. 6 seed, 7 DNA bands were polymorphic with 0.27% polymorphism among 2564 amplified DNA bands. With only one exception among those 49 second-generation plants amplified by primer pair (E3: ACA, M3: CAG), one DNA band disappeared in 48 second-generation plants and in the original Mir-flown No. 6 plant, compared to the ground-based controls. Among the 49 second-generation plants generated from the Mir-flown No. 6 seed, the DNA band types of 48 second-generation plants were different from that of the ground-base controls and had a same 7 polymorphic bands and a same 0.27% DNA mutation. Our results indicated that leaf cell ultrastructures had been altered and heredity variations had been induced by seeds being exposed to a long-term outer-space environment. Further research is needed to elucidate the dynamics and mechanisms resulting in such variations. Plant biology studies in the space environment may open potential approaches to induce mutations and to screen new plant varieties by ground-based selections among spaceflight treated seeds or seedlings.

  12. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    PubMed Central

    Michaud, Edward J; Culiat, Cymbeline T; Klebig, Mitchell L; Barker, Paul E; Cain, KT; Carpenter, Debra J; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn W; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert E; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann M; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations. PMID:16300676

  13. Detection of sdhB Gene Mutations in SDHI-Resistant Isolates of Botrytis cinerea Using High Resolution Melting (HRM) Analysis.

    PubMed

    Samaras, Anastasios; Madesis, Panagiotis; Karaoglanidis, George S

    2016-01-01

    Botrytis cinerea , is a high risk pathogen for fungicide resistance development. Pathogen' resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM) analysis for the identification of P225H/F/L//T, N230I, and H272L/R/Y mutations. Based on the sequence of sdh B subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant's DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the four mutations located at codon 225, the N230I mutation, the three mutations located in codon 272, and the non-mutated isolates (isolates of wild-type sensitivity). Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdh B mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping-off symptoms. HRM analysis data were compared with a standard PIRA-PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I, and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate, and rapid identification of several sdh B mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of anti-resistance strategies implemented in crops heavily treated with botryticides.

  14. Detection of sdhB Gene Mutations in SDHI-Resistant Isolates of Botrytis cinerea Using High Resolution Melting (HRM) Analysis

    PubMed Central

    Samaras, Anastasios; Madesis, Panagiotis; Karaoglanidis, George S.

    2016-01-01

    Botrytis cinerea, is a high risk pathogen for fungicide resistance development. Pathogen’ resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM) analysis for the identification of P225H/F/L//T, N230I, and H272L/R/Y mutations. Based on the sequence of sdhB subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant’s DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the four mutations located at codon 225, the N230I mutation, the three mutations located in codon 272, and the non-mutated isolates (isolates of wild-type sensitivity). Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdhB mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping-off symptoms. HRM analysis data were compared with a standard PIRA–PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I, and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate, and rapid identification of several sdhB mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of anti-resistance strategies implemented in crops heavily treated with botryticides. PMID:27895633

  15. Phenotypic Variation in 46,XX Disorders of Sex Development due to the NR5A1 p.R92W Variant: A Sibling Case Report and Literature Review.

    PubMed

    Takasawa, Kei; Igarashi, Maki; Ono, Makoto; Takemoto, Akira; Takada, Shuji; Yamataka, Atsuyuki; Ogata, Tsutomu; Morio, Tomohiro; Fukami, Maki; Kashimada, Kenichi

    2017-01-01

    Recently, a heterozygous missense mutation in NR5A1, p.R92W, was identified as a cause of 46,XX testicular/ovo-testicular disorders of sexual development (DSD). We report a sibling pair with 46,XX DSD due to an NR5A1 mutation with distinct phenotypes, including external and internal genitalia and gonads, for whom different rearing sexes were selected. Thus, the phenotypes of p.R92W vary, even within a family. The father of the patients showed oligozoospermia with the p.R92W mutation, suggesting that in 46,XY individuals, the mutation would cause various gonadal phenotypes. We review and discuss the general role of the R92W mutation in sexual development. © 2018 S. Karger AG, Basel.

  16. Virulence of Mycobacterium tuberculosis after Acquisition of Isoniazid Resistance: Individual Nature of katG Mutants and the Possible Role of AhpC.

    PubMed

    Nieto R, Luisa Maria; Mehaffy, Carolina; Creissen, Elizabeth; Troudt, JoLynn; Troy, Amber; Bielefeldt-Ohmann, Helle; Burgos, Marcos; Izzo, Angelo; Dobos, Karen M

    2016-01-01

    In the last decade, there were 10 million new tuberculosis cases per year globally. Around 9.5% of these cases were caused by isoniazid resistant (INHr) Mycobacterium tuberculosis (Mtb) strains. Although isoniazid resistance in Mtb is multigenic, mutations in the catalase-peroxidase (katG) gene predominate among the INHr strains. The effect of these drug-resistance-conferring mutations on Mtb fitness and virulence is variable. Here, we assessed differences in bacterial growth, immune response and pathology induced by Mtb strains harboring mutations at the N-terminus of the katG gene. We studied one laboratory and one clinically isolated Mtb clonal pair from different genetic lineages. The INHr strain in each pair had one and two katG mutations with significantly reduced levels of the enzyme and peroxidase activity. Both strains share the V1A mutation, while the double mutant clinical INHr had also the novel E3V katG mutation. Four groups of C57BL/6 mice were infected with one of the Mtb strains previously described. We observed a strong reduction in virulence (reduced bacterial growth), lower induction of proinflammatory cytokines and significantly reduced pathology scores in mice infected with the clinical INHr strain compared to the infection caused by its INHs progenitor strain. On the other hand, there was a subtle reduction of bacteria growth without differences in the pathology scores in mice infected with the laboratory INHr strain. Our results also showed distinct alkyl-hydroperoxidase C (AhpC) levels in the katG mutant strains, which could explain the difference in the virulence profile observed. The difference in the AhpC levels between clonal strains was not related to a genetic defect in the gene or its promoter. Cumulatively, our results indicate that the virulence, pathology and fitness of INHr strains could be negatively affected by multiple mutations in katG, lack of the peroxidase activity and reduced AhpC levels.

  17. Synergistic interactions between the NS3(hel) and E proteins contribute to the virulence of dengue virus type 1.

    PubMed

    de Borba, Luana; Strottmann, Daisy M; de Noronha, Lucia; Mason, Peter W; Dos Santos, Claudia N Duarte

    2012-01-01

    Dengue includes a broad range of symptoms, ranging from fever to hemorrhagic fever and may occasionally have alternative clinical presentations. Many possible viral genetic determinants of the intrinsic virulence of dengue virus (DENV) in the host have been identified, but no conclusive evidence of a correlation between viral genotype and virus transmissibility and pathogenicity has been obtained. We used reverse genetics techniques to engineer DENV-1 viruses with subsets of mutations found in two different neuroadapted derivatives. The mutations were inserted into an infectious clone of DENV-1 not adapted to mice. The replication and viral production capacity of the recombinant viruses were assessed in vitro and in vivo. The results demonstrated that paired mutations in the envelope protein (E) and in the helicase domain of the NS3 (NS3(hel)) protein had a synergistic effect enhancing viral fitness in human and mosquito derived cell lines. E mutations alone generated no detectable virulence in the mouse model; however, the combination of these mutations with NS3(hel) mutations, which were mildly virulent on their own, resulted in a highly neurovirulent phenotype. The generation of recombinant viruses carrying specific E and NS3(hel) proteins mutations increased viral fitness both in vitro and in vivo by increasing RNA synthesis and viral load (these changes being positively correlated with central nervous system damage), the strength of the immune response and animal mortality. The introduction of only pairs of amino acid substitutions into the genome of a non-mouse adapted DENV-1 strain was sufficient to alter viral fitness substantially. Given current limitations to our understanding of the molecular basis of dengue neuropathogenesis, these results could contribute to the development of attenuated strains for use in vaccinations and provide insights into virus/host interactions and new information about the mechanisms of basic dengue biology.

  18. Paternal age of schizophrenia probands and endophenotypic differences from unaffected siblings.

    PubMed

    Schmeidler, James; Lazzeroni, Laura C; Swerdlow, Neal R; Ferreira, Rui P; Braff, David L; Calkins, Monica E; Cadenhead, Kristin S; Freedman, Robert; Green, Michael F; Greenwood, Tiffany A; Gur, Raquel E; Gur, Ruben C; Light, Gregory A; Olincy, Ann; Nuechterlein, Keith H; Radant, Allen D; Seidman, Larry J; Siever, Larry J; Stone, William S; Sprock, Joyce; Sugar, Catherine A; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Silverman, Jeremy M

    2014-09-30

    We evaluated the discrepancy of endophenotypic performance between probands with schizophrenia and unaffected siblings by paternal age at proband birth, a possible marker for de novo mutations. Pairs of schizophrenia probands and unaffected siblings (N=220 pairs) were evaluated on 11 neuropsychological or neurophysiological endophenotypes previously identified as heritable. For each endophenotype, the sibling-minus-proband differences were transformed to standardized scores. Then for each pair, the average discrepancy was calculated from its standardized scores. We tested the hypothesis that the discrepancy is associated with paternal age, controlling for the number of endophenotypes shared between proband and his or her sibling, and proband age, which were both associated with paternal age. The non-significant association between the discrepancy and paternal age was in the opposite direction from the hypothesis. Of the 11 endophenotypes only sensori-motor dexterity was significant, but in the opposite direction. Eight other endophenotypes were also in the opposite direction, but not significant. The results did not support the hypothesized association of increased differences between sibling/proband pairs with greater paternal age. A possible explanation is that the identification of heritable endophenotypes was based on samples for which schizophrenia was attributable to inherited rather than de novo/non-inherited causes. Published by Elsevier Ireland Ltd.

  19. Liquid biopsy in pancreatic cancer: the beginning of a new era

    PubMed Central

    Yadav, Dipesh Kumar; Bai, Xueli; Yadav, Rajesh Kumar; Singh, Alina; Li, Guogang; Ma, Tao; Chen, Wei; Liang, Tingbo

    2018-01-01

    With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.

  20. Pyviko: an automated Python tool to design gene knockouts in complex viruses with overlapping genes.

    PubMed

    Taylor, Louis J; Strebel, Klaus

    2017-01-07

    Gene knockouts are a common tool used to study gene function in various organisms. However, designing gene knockouts is complicated in viruses, which frequently contain sequences that code for multiple overlapping genes. Designing mutants that can be traced by the creation of new or elimination of existing restriction sites further compounds the difficulty in experimental design of knockouts of overlapping genes. While software is available to rapidly identify restriction sites in a given nucleotide sequence, no existing software addresses experimental design of mutations involving multiple overlapping amino acid sequences in generating gene knockouts. Pyviko performed well on a test set of over 240,000 gene pairs collected from viral genomes deposited in the National Center for Biotechnology Information Nucleotide database, identifying a point mutation which added a premature stop codon within the first 20 codons of the target gene in 93.2% of all tested gene-overprinted gene pairs. This shows that Pyviko can be used successfully in a wide variety of contexts to facilitate the molecular cloning and study of viral overprinted genes. Pyviko is an extensible and intuitive Python tool for designing knockouts of overlapping genes. Freely available as both a Python package and a web-based interface ( http://louiejtaylor.github.io/pyViKO/ ), Pyviko simplifies the experimental design of gene knockouts in complex viruses with overlapping genes.

  1. Functional dissection of the paired domain of Pax6 reveals molecular mechanisms of coordinating neurogenesis and proliferation

    PubMed Central

    Walcher, Tessa; Xie, Qing; Sun, Jian; Irmler, Martin; Beckers, Johannes; Öztürk, Timucin; Niessing, Dierk; Stoykova, Anastassia; Cvekl, Ales; Ninkovic, Jovica; Götz, Magdalena

    2013-01-01

    To achieve adequate organ development and size, cell proliferation and differentiation have to be tightly regulated and coordinated. The transcription factor Pax6 regulates patterning, neurogenesis and proliferation in forebrain development. The molecular basis of this regulation is not well understood. As the bipartite DNA-binding paired domain of Pax6 regulates forebrain development, we examined mice with point mutations in its individual DNA-binding subdomains PAI (Pax6Leca4, N50K) and RED (Pax6Leca2, R128C). This revealed distinct roles in regulating proliferation in the developing cerebral cortex, with the PAI and RED subdomain mutations reducing and increasing, respectively, the number of mitoses. Conversely, neurogenesis was affected only by the PAI subdomain mutation, phenocopying the neurogenic defects observed in full Pax6 mutants. Genome-wide expression profiling identified molecularly discrete signatures of Pax6Leca4 and Pax6Leca2 mutations. Comparison to Pax6 targets identified by chromatin immunoprecipitation led to the identification and functional characterization of distinct DNA motifs in the promoters of target genes dysregulated in the Pax6Leca2 or Pax6Leca4 mutants, further supporting the distinct regulatory functions of the DNA-binding subdomains. Thus, Pax6 achieves its key roles in the developing forebrain by utilizing particular subdomains to coordinate patterning, neurogenesis and proliferation simultaneously. PMID:23404109

  2. The neuraminidases of MDCK grown human influenza A(H3N2) viruses isolated since 1994 can demonstrate receptor binding.

    PubMed

    Mohr, Peter G; Deng, Yi-Mo; McKimm-Breschkin, Jennifer L

    2015-04-22

    The neuraminidases (NAs) of MDCK passaged human influenza A(H3N2) strains isolated since 2005 are reported to have dual functions of cleavage of sialic acid and receptor binding. NA agglutination of red blood cells (RBCs) can be inhibited by neuraminidase inhibitors (NAIs), thus distinguishing it from haemagglutinin (HA) binding. We wanted to know if viruses prior to 2005 can demonstrate this property. Pairs of influenza A(H3N2) isolates ranging from 1993-2008 passaged in parallel only in eggs or in MDCK cells were tested for inhibition of haemagglutination by various NAIs. Only viruses isolated since 1994 and cultured in MDCK cells bound chicken RBCs solely through their NA. NAI inhibition of agglutination of turkey RBCs was seen for some, but not all of these same MDCK grown viruses. Efficacy of inhibition of enzyme activity and haemagglutination differed between NAIs. For many viruses lower concentrations of oseltamivir could inhibit agglutination compared to zanamivir, although they could both inhibit enzyme activity at comparable concentrations. An E119V mutation reduced sensitivity to oseltamivir and 4-aminoDANA for both the enzyme assay and inhibition of agglutination. Sequence analysis of the NAs and HAs of some paired viruses revealed mutations in the haemagglutinin of all egg passaged viruses. For many of the paired egg and MDCK cultured viruses we found no differences in their NA sequences by Sanger sequencing. However, deep sequencing of MDCK grown isolates revealed low levels of variant populations with mutations at either D151 or T148 in the NA, suggesting mutations at either site may be able to confer this property. The NA active site of MDCK cultured human influenza A(H3N2) viruses isolated since 1994 can express dual enzyme and receptor binding functions. Binding correlated with either D151 or T148 mutations. The catalytic and receptor binding sites do not appear to be structurally identical since relative concentrations of the NAIs to inhibit enzyme activity and agglutination differ.

  3. Novel mutations of the carbohydrate sulfotransferase-6 (CHST6) gene causing macular corneal dystrophy in India.

    PubMed

    Sultana, Afia; Sridhar, Mittanamalli S; Jagannathan, Aparna; Balasubramanian, Dorairajan; Kannabiran, Chitra; Klintworth, Gordon K

    2003-12-22

    Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by progressive central haze, confluent punctate opacities and abnormal deposits in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, encoding corneal N-acetyl glucosamine-6-O-sulfotransferase (C-GlcNAc-6-ST). We screened the CHST6 gene for mutations in Indian families with MCD, in order to determine the range of pathogenic mutations. Genomic DNA was isolated from peripheral blood leukocytes of patients with MCD and normal controls. The coding regions of the CHST6 gene were amplified using three pairs of primers and amplified products were directly sequenced. We identified 22 (5 nonsense, 5 frameshift, 2 insertion, and 10 missense) mutations in 36 patients from 31 families with MCD, supporting the conclusion that loss of function of this gene is responsible for this corneal disease. Seventeen of these mutations are novel. These data highlight the allelic heterogeneity of macular corneal dystrophy in Indian patients.

  4. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    PubMed Central

    Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137

  5. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.

    PubMed

    Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A

    2014-11-20

    The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface. Role of the dimer structure in signalling.

    PubMed

    Qiu, Yue; Ogawa, Haruo; Miyagi, Masaru; Misono, Kunio S

    2004-02-13

    The crystal packing of the extracellular hormone binding domain of the atrial natriuretic peptide (ANP) receptor contains two possible dimer pairs, the head-to-head (hh) and tail-to-tail (tt) dimer pairs associated through the membrane-distal and membrane-proximal subdomains, respectively. The tt-dimer structure has been proposed previously (van den Akker, F., Zhang, X., Miyagi, M., Huo, X., Misono, K. S., and Yee, V. C. (2000) Nature 406, 101-104). However, no direct evidence is available to identify the physiological dimer form. Here we report site-directed mutagenesis studies of residues at the two alternative dimer interfaces in the full-length receptor expressed on COS cells. The Trp74 to Arg mutation (W74R) or D71R at the hh-dimer interface caused partial constitutive guanylate cyclase activation, whereas mutation F96D or H99D caused receptor uncoupling. In contrast, mutation Y196D or L225D at the tt-interface had no such effect. His99 modification at the hh-dimer interface by ethoxyformic anhydride abolished ANP binding. These results suggest that the hh-dimer represents the physiological structure. Recently, we determined the crystal structure of ANPR complexed with ANP and proposed a hormone-induced rotation mechanism mediating transmembrane signaling (H. Ogawa, Y. Qiu, C. M. Ogata, and K. S. Misono, submitted for publication). The observed effects of mutations are consistent with the ANP-induced structural change identified from the crystal structures with and without ANP and support the proposed rotation mechanism for ANP receptor signaling.

  7. Evolution of Multidrug Resistance during Staphylococcus aureus Infection Involves Mutation of the Essential Two Component Regulator WalKR

    PubMed Central

    Howden, Benjamin P.; McEvoy, Christopher R. E.; Allen, David L.; Chua, Kyra; Gao, Wei; Harrison, Paul F.; Bell, Jan; Coombs, Geoffrey; Bennett-Wood, Vicki; Porter, Jessica L.; Robins-Browne, Roy; Davies, John K.; Seemann, Torsten; Stinear, Timothy P.

    2011-01-01

    Antimicrobial resistance in Staphylococcus aureus is a major public health threat, compounded by emergence of strains with resistance to vancomycin and daptomycin, both last line antimicrobials. Here we have performed high throughput DNA sequencing and comparative genomics for five clinical pairs of vancomycin-susceptible (VSSA) and vancomycin-intermediate ST239 S. aureus (VISA); each pair isolated before and after vancomycin treatment failure. These comparisons revealed a frequent pattern of mutation among the VISA strains within the essential walKR two-component regulatory locus involved in control of cell wall metabolism. We then conducted bi-directional allelic exchange experiments in our clinical VSSA and VISA strains and showed that single nucleotide substitutions within either walK or walR lead to co-resistance to vancomycin and daptomycin, and caused the typical cell wall thickening observed in resistant clinical isolates. Ion Torrent genome sequencing confirmed no additional regulatory mutations had been introduced into either the walR or walK VISA mutants during the allelic exchange process. However, two potential compensatory mutations were detected within putative transport genes for the walK mutant. The minimal genetic changes in either walK or walR also attenuated virulence, reduced biofilm formation, and led to consistent transcriptional changes that suggest an important role for this regulator in control of central metabolism. This study highlights the dramatic impacts of single mutations that arise during persistent S. aureus infections and demonstrates the role played by walKR to increase drug resistance, control metabolism and alter the virulence potential of this pathogen. PMID:22102812

  8. Digital PCR analysis of plasma cell-free DNA for non-invasive detection of drug resistance mechanisms in EGFR mutant NSCLC: Correlation with paired tumor samples

    PubMed Central

    Ishii, Hidenobu; Azuma, Koichi; Sakai, Kazuko; Kawahara, Akihiko; Yamada, Kazuhiko; Tokito, Takaaki; Okamoto, Isamu; Nishio, Kazuto; Hoshino, Tomoaki

    2015-01-01

    As the development of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has become an issue of concern, identification of the mechanisms responsible has become an urgent priority. However, for research purposes, it is not easy to obtain tumor samples from patients with EGFR mutation-positive non-small-cell lung cancer (NSCLC) that has relapsed after treatment with EGFR-TKIs. Here, using digital PCR assay as an alternative and noninvasive method, we examined plasma and tumor samples from patients with relapsed NSCLC to establish the inter-relationships existing among T790M mutation, activating EGFR mutations, HER2 amplification, and MET amplification. Paired samples of tumor and blood were obtained from a total of 18 patients with NSCLC after they had developed resistance to EGFR-TKI treatment, and the mechanisms of resistance were analyzed by digital PCR. Digital PCR analysis of T790M mutation in plasma had a sensitivity of 81.8% and specificity of 85.7%, the overall concordance between plasma and tissue samples being 83.3%. MET gene copy number gain in tumor DNA was observed by digital PCR in three patients, of whom one exhibited positivity for MET amplification by FISH, whereas no patient demonstrated MET and HER2 copy number gain in plasma DNA. Digital PCR analysis of plasma is feasible and accurate for detection of T790M mutation in NSCLC that becomes resistant to treatment with EGFR-TKIs. PMID:26334838

  9. GATA2 mutations in patients with acute myeloid leukemia-paired samples analyses show that the mutation is unstable during disease evolution.

    PubMed

    Hou, Hsin-An; Lin, Yun-Chu; Kuo, Yuan-Yeh; Chou, Wen-Chien; Lin, Chien-Chin; Liu, Chieh-Yu; Chen, Chien-Yuan; Lin, Liang-In; Tseng, Mei-Hsuan; Huang, Chi-Fei; Chiang, Ying-Chieh; Liu, Ming-Chih; Liu, Chia-Wen; Tang, Jih-Luh; Yao, Ming; Huang, Shang-Yi; Ko, Bor-Sheng; Hsu, Szu-Chun; Wu, Shang-Ju; Tsay, Woei; Chen, Yao-Chang; Tien, Hwei-Fang

    2015-02-01

    Recently, mutations of the GATA binding protein 2 (GATA2) gene were identified in acute myeloid leukemia (AML) patients with CEBPA double mutations (CEBPA (double-mut)), but the interaction of this mutation with other genetic alterations and its dynamic changes during disease progression remain to be determined. In this study, 14 different missense GATA2 mutations, which were all clustered in the highly conserved N-terminal zinc finger 1 domain, were identified in 27.4, 6.7, and 1 % of patients with CEBPA (double-mut), CEBPA (single-mut), and CEBPA wild type, respectively. All but one patient with GATA2 mutation had concurrent CEBPA mutation. GATA2 mutations were closely associated with younger age, FAB M1 subtype, intermediate-risk cytogenetics, expression of HLA-DR, CD7, CD15, or CD34 on leukemic cells, and CEBPA mutation, but negatively associated with FAB M4 subtype, favorable-risk cytogenetics, and NPM1 mutation. Patients with GATA2 mutation had significantly better overall survival and relapse-free survival than those without GATA2 mutation. Sequential analysis showed that the original GATA2 mutations might be lost during disease progression in GATA2-mutated patients, while novel GATA2 mutations might be acquired at relapse in GATA2-wild patients. In conclusion, AML patients with GATA2 mutations had distinct clinic-biological features and a favorable prognosis. GATA2 mutations might be lost or acquired at disease progression, implying that it was a second hit in the leukemogenesis of AML, especially those with CEBPA mutation.

  10. Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer's disease

    PubMed Central

    Brickell, Kiri L; Leverenz, James B; Steinbart, Ellen J; Rumbaugh, Malia; Schellenberg, Gerard D; Nochlin, David; Lampe, Thomas H; Holm, Ida E; Van Deerlin, Vivianna; Yuan, Wuxing; Bird, Thomas D

    2007-01-01

    Aim Neuropathological examination of both individuals in a monozygotic (MZ) twin pair with Alzheimer's disease (AD) is rare, especially in the molecular genetic era. We had the opportunity to assess the concordance and discordance of clinical presentation and neuropathology in three MZ twin pairs with AD. Methods The MZ twins were identified and characterised by the University of Washington Alzheimer's Disease Research Center. We reviewed the available clinical and neuropathological records for all six cases looking specifically for concordance and discordance of clinical phenotype, neuritic amyloid plaques (NP), neurofibrillary tangles (NFT) and Lewy related pathology (LRP). Results Discordance in age of onset for developing AD in the MZ twins varied from 4 to 18 years. Clinical presentations also differed between twins. One twin presented with a dementia with Lewy Body clinical syndrome while the other presented with typical clinical AD. Neuropathology within the MZ twin pairs was concordant for NP and NFT, regardless of duration of disease, and was discordant for LRP. This difference was most marked in the late onset AD twin pair. One pair was found to have a mutation in presenilin‐1 (PS1) (A79V) with remarkably late onset in a family member. Conclusions MZ twins with AD can vary considerably in age of onset, presentation and disease duration. The concordance of NP and NFT pathological change and the discordance of LRP support the concept that, in AD, the former are primarily under genetic control whereas the latter (LRP) is more influenced by disease duration and environmental factors. The A79V mutation in PS1 can be associated with very late onset of dementia. PMID:17615170

  11. Autosomal Genes of Autosomal/X-Linked Duplicated Gene Pairs and Germ-Line Proliferation in Caenorhabditis elegans

    PubMed Central

    Maciejowski, John; Ahn, James Hyungsoo; Cipriani, Patricia Giselle; Killian, Darrell J.; Chaudhary, Aisha L.; Lee, Ji Inn; Voutev, Roumen; Johnsen, Robert C.; Baillie, David L.; Gunsalus, Kristin C.; Fitch, David H. A.; Hubbard, E. Jane Albert

    2005-01-01

    We report molecular genetic studies of three genes involved in early germ-line proliferation in Caenorhabditis elegans that lend unexpected insight into a germ-line/soma functional separation of autosomal/X-linked duplicated gene pairs. In a genetic screen for germ-line proliferation-defective mutants, we identified mutations in rpl-11.1 (L11 protein of the large ribosomal subunit), pab-1 [a poly(A)-binding protein], and glp-3/eft-3 (an elongation factor 1-α homolog). All three are members of autosome/X gene pairs. Consistent with a germ-line-restricted function of rpl-11.1 and pab-1, mutations in these genes extend life span and cause gigantism. We further examined the RNAi phenotypes of the three sets of rpl genes (rpl-11, rpl-24, and rpl-25) and found that for the two rpl genes with autosomal/X-linked pairs (rpl-11 and rpl-25), zygotic germ-line function is carried by the autosomal copy. Available RNAi results for highly conserved autosomal/X-linked gene pairs suggest that other duplicated genes may follow a similar trend. The three rpl and the pab-1/2 duplications predate the divergence between C. elegans and C. briggsae, while the eft-3/4 duplication appears to have occurred in the lineage to C. elegans after it diverged from C. briggsae. The duplicated C. briggsae orthologs of the three C. elegans autosomal/X-linked gene pairs also display functional differences between paralogs. We present hypotheses for evolutionary mechanisms that may underlie germ-line/soma subfunctionalization of duplicated genes, taking into account the role of X chromosome silencing in the germ line and analogous mammalian phenomena. PMID:15687263

  12. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    PubMed Central

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-Yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations. Results Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266). Conclusion Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients. PMID:25906372

  13. Melorheostosis: Exome sequencing of an associated dermatosis implicates postzygotic mosaicism of mutated KRAS.

    PubMed

    Whyte, Michael P; Griffith, Malachi; Trani, Lee; Mumm, Steven; Gottesman, Gary S; McAlister, William H; Krysiak, Kilannin; Lesurf, Robert; Skidmore, Zachary L; Campbell, Katie M; Rosman, Ilana S; Bayliss, Susan; Bijanki, Vinieth N; Nenninger, Angela; Van Tine, Brian A; Griffith, Obi L; Mardis, Elaine R

    2017-08-01

    Melorheostosis (MEL) is the rare sporadic dysostosis characterized by monostotic or polyostotic osteosclerosis and hyperostosis often distributed in a sclerotomal pattern. The prevailing hypothesis for MEL invokes postzygotic mosaicism. Sometimes scleroderma-like skin changes, considered a representation of the pathogenetic process of MEL, overlie the bony changes, and sometimes MEL becomes malignant. Osteopoikilosis (OPK) is the autosomal dominant skeletal dysplasia that features symmetrically distributed punctate osteosclerosis due to heterozygous loss-of-function mutation within LEMD3. Rarely, radiographic findings of MEL occur in OPK. However, germline mutation of LEMD3 does not explain sporadic MEL. To explore if mosaicism underlies MEL, we studied a boy with polyostotic MEL and characteristic overlying scleroderma-like skin, a few bony lesions consistent with OPK, and a large epidermal nevus known to usually harbor a HRAS, FGFR3, or PIK3CA gene mutation. Exome sequencing was performed to ~100× average read depth for his two dermatoses, two areas of normal skin, and peripheral blood leukocytes. As expected for non-malignant tissues, the patient's mutation burden in his normal skin and leukocytes was low. He, his mother, and his maternal grandfather carried a heterozygous, germline, in-frame, 24-base-pair deletion in LEMD3. Radiographs of the patient and his mother revealed bony foci consistent with OPK, but she showed no MEL. For the patient, somatic variant analysis, using four algorithms to compare all 20 possible pairwise combinations of his five DNA samples, identified only one high-confidence mutation, heterozygous KRAS Q61H (NM_033360.3:c.183A>C, NP_203524.1:p.Gln61His), in both his dermatoses but absent in his normal skin and blood. Thus, sparing our patient biopsy of his MEL bone, we identified a heterozygous somatic KRAS mutation in his scleroderma-like dermatosis considered a surrogate for MEL. This implicates postzygotic mosaicism of mutated KRAS, perhaps facilitated by germline LEMD3 haploinsufficiency, causing his MEL. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Prenatal diagnosis and genetic counseling for Waardenburg syndrome type I and II in Chinese families.

    PubMed

    Wang, Li; Qin, Litao; Li, Tao; Liu, Hongjian; Ma, Lingcao; Li, Wan; Wu, Dong; Wang, Hongdan; Guo, Qiannan; Guo, Liangjie; Liao, Shixiu

    2018-01-01

    Waardenburg syndrome (WS) is an auditory‑pigmentary disorder with varying combinations of sensorineural hearing loss and abnormal pigmentation. The present study aimed to investigate the underlying molecular pathology and provide a method of prenatal diagnosis of WS in Chinese families. A total of 11 patients with WS from five unrelated Chinese families were enrolled. A thorough clinical examination was performed on all participants. Furthermore, patients with WS underwent screening for mutations in the following genes: Paired box 3 (PAX3), melanogenesis associated transcription factor (MITF), SRY‑box 10, snail family transcriptional repressor 2 and endothelin receptor type B using polymerase chain reaction sequencing. Array‑based comparative genomic hybridization was used for specific patients whose sequence results were normal. Following identification of the genotype of the probands and their parents, prenatal genetic diagnosis was performed for family 01 and 05. According to the diagnostic criteria for WS, five cases were diagnosed as WS1, while the other six cases were WS2. Genetic analysis revealed three mutations, including a nonsense mutation PAX3 c.583C>T in family 01, a splice‑site mutation MITF c.909G>A in family 03 and an in‑frame deletion MITF c.649_651delGAA in family 05. To the best of the authors' knowledge the mutations (c.583C>T in PAX3 and c.909G>A in MITF) were reported for the first time in Chinese people. Mutations in the gene of interest were not identified in family 02 and 04. The prenatal genetic testing of the two fetuses was carried out and demonstrated that the two babies were normal. The results of the present study expanded the range of known genetic mutations in China. Identification of genetic mutations in these families provided an efficient way to understand the causes of WS and improved genetic counseling.

  15. Prenatal diagnosis and genetic counseling for Waardenburg syndrome type I and II in Chinese families

    PubMed Central

    Wang, Li; Qin, Litao; Li, Tao; Liu, Hongjian; Ma, Lingcao; Li, Wan; Wu, Dong; Wang, Hongdan; Guo, Qiannan; Guo, Liangjie; Liao, Shixiu

    2018-01-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder with varying combinations of sensorineural hearing loss and abnormal pigmentation. The present study aimed to investigate the underlying molecular pathology and provide a method of prenatal diagnosis of WS in Chinese families. A total of 11 patients with WS from five unrelated Chinese families were enrolled. A thorough clinical examination was performed on all participants. Furthermore, patients with WS underwent screening for mutations in the following genes: Paired box 3 (PAX3), melanogenesis associated transcription factor (MITF), SRY-box 10, snail family transcriptional repressor 2 and endothelin receptor type B using polymerase chain reaction sequencing. Array-based comparative genomic hybridization was used for specific patients whose sequence results were normal. Following identification of the genotype of the probands and their parents, prenatal genetic diagnosis was performed for family 01 and 05. According to the diagnostic criteria for WS, five cases were diagnosed as WS1, while the other six cases were WS2. Genetic analysis revealed three mutations, including a nonsense mutation PAX3 c.583C>T in family 01, a splice-site mutation MITF c.909G>A in family 03 and an in-frame deletion MITF c.649_651delGAA in family 05. To the best of the authors' knowledge the mutations (c.583C>T in PAX3 and c.909G>A in MITF) were reported for the first time in Chinese people. Mutations in the gene of interest were not identified in family 02 and 04. The prenatal genetic testing of the two fetuses was carried out and demonstrated that the two babies were normal. The results of the present study expanded the range of known genetic mutations in China. Identification of genetic mutations in these families provided an efficient way to understand the causes of WS and improved genetic counseling. PMID:29115496

  16. RANKL/RANK: from bone loss to the prevention of breast cancer.

    PubMed

    Sigl, Verena; Jones, Laundette P; Penninger, Josef M

    2016-11-01

    RANK and RANKL, a receptor ligand pair belonging to the tumour necrosis factor family, are the critical regulators of osteoclast development and bone metabolism. Besides their essential function in bone, RANK and RANKL have also been identified as the key factors for the formation of a lactating mammary gland in pregnancy. Mechanistically, RANK and RANKL link the sex hormone progesterone with stem cell expansion and proliferation of mammary epithelial cells. Based on their normal physiology, RANKL/RANK control the onset of hormone-induced breast cancer through the expansion of mammary progenitor cells. Recently, we and others were able to show that RANK and RANKL are also critical regulators of BRCA1-mutation-driven breast cancer. Currently, the preventive strategy for BRCA1-mutation carriers includes preventive mastectomy, associated with wide-ranging risks and psychosocial effects. The search for an alternative non-invasive prevention strategy is therefore of paramount importance. As our work strongly implicates RANK and RANKL as key molecules involved in the initiation of BRCA1-associated breast cancer, we propose that anti-RANKL therapy could be a feasible preventive strategy for women carrying BRCA1 mutations, and by extension to other women with high risk of breast cancer. © 2016 The Authors.

  17. Mitochondrial DNA sequence variation in human evolution and disease.

    PubMed

    Wallace, D C

    1994-09-13

    Germ-line and somatic mtDNA mutations are hypothesized to act together to shape our history and our health. Germ-line mtDNA mutations, both ancient and recent, have been associated with a variety of degenerative diseases. Mildly to moderately deleterious germ-line mutations, like neutral polymorphisms, have become established in the distant past through genetic drift but now may predispose certain individuals to late-onset degenerative diseases. As an example, a homoplasmic, Caucasian, tRNA(Gln) mutation at nucleotide pair (np) 4336 has been observed in 5% of Alzheimer disease and Parkinson disease patients and may contribute to the multifactorial etiology of these diseases. Moderately to severely deleterious germ-line mutations, on the other hand, appear repeatedly but are eliminated by selection. Hence, all extant mutations of this class are recent and associated with more devastating diseases of young adults and children. Representative of these mutations is a heteroplasmic mutation in MTND6 at np 14459 whose clinical presentations range from adult-onset blindness to pediatric dystonia and basal ganglial degeneration. To the inherited mutations are added somatic mtDNA mutations which accumulate in random arrays within stable tissues. These mutations provide a molecular clock that measures our age and may cause a progressive decline in tissue energy output that could precipitate the onset of degenerative diseases in individuals harboring inherited deleterious mutations.

  18. How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.

    PubMed

    Wu, Wen-Jin; Su, Mei-I; Wu, Jian-Li; Kumar, Sandeep; Lim, Liang-Hin; Wang, Chun-Wei Eric; Nelissen, Frank H T; Chen, Ming-Chuan Chad; Doreleijers, Jurgen F; Wijmenga, Sybren S; Tsai, Ming-Daw

    2014-04-02

    A dogma for DNA polymerase catalysis is that the enzyme binds DNA first, followed by MgdNTP. This mechanism contributes to the selection of correct dNTP by Watson-Crick base pairing, but it cannot explain how low-fidelity DNA polymerases overcome Watson-Crick base pairing to catalyze non-Watson-Crick dNTP incorporation. DNA polymerase X from the deadly African swine fever virus (Pol X) is a half-sized repair polymerase that catalyzes efficient dG:dGTP incorporation in addition to correct repair. Here we report the use of solution structures of Pol X in the free, binary (Pol X:MgdGTP), and ternary (Pol X:DNA:MgdGTP with dG:dGTP non-Watson-Crick pairing) forms, along with functional analyses, to show that Pol X uses multiple unprecedented strategies to achieve the mutagenic dG:dGTP incorporation. Unlike high fidelity polymerases, Pol X can prebind purine MgdNTP tightly and undergo a specific conformational change in the absence of DNA. The prebound MgdGTP assumes an unusual syn conformation stabilized by partial ring stacking with His115. Upon binding of a gapped DNA, also with a unique mechanism involving primarily helix αE, the prebound syn-dGTP forms a Hoogsteen base pair with the template anti-dG. Interestingly, while Pol X prebinds MgdCTP weakly, the correct dG:dCTP ternary complex is readily formed in the presence of DNA. H115A mutation disrupted MgdGTP binding and dG:dGTP ternary complex formation but not dG:dCTP ternary complex formation. The results demonstrate the first solution structural view of DNA polymerase catalysis, a unique DNA binding mode, and a novel mechanism for non-Watson-Crick incorporation by a low-fidelity DNA polymerase.

  19. Aberrant signature methylome by DNMT1 hot spot mutation in hereditary sensory and autonomic neuropathy 1E.

    PubMed

    Sun, Zhifu; Wu, Yanhong; Ordog, Tamas; Baheti, Saurabh; Nie, Jinfu; Duan, Xiaohui; Hojo, Kaori; Kocher, Jean-Pierre; Dyck, Peter J; Klein, Christopher J

    2014-08-01

    DNA methyltransferase 1 (DNMT1) is essential for DNA methylation, gene regulation and chromatin stability. We previously discovered DNMT1 mutations cause hereditary sensory and autonomic neuropathy type 1 with dementia and hearing loss (HSAN1E; OMIM 614116). HSAN1E is the first adult-onset neurodegenerative disorder caused by a defect in a methyltransferase gene. HSAN1E patients appear clinically normal until young adulthood, then begin developing the characteristic symptoms involving central and peripheral nervous systems. Some HSAN1E patients also develop narcolepsy and it has recently been suggested that HSAN1E is allelic to autosomal dominant cerebellar ataxia, deafness, with narcolepsy (ADCA-DN; OMIM 604121), which is also caused by mutations in DNMT1. A hotspot mutation Y495C within the targeting sequence domain of DNMT1 has been identified among HSAN1E patients. The mutant DNMT1 protein shows premature degradation and reduced DNA methyltransferase activity. Herein, we investigate genome-wide DNA methylation at single-base resolution through whole-genome bisulfite sequencing of germline DNA in 3 pairs of HSAN1E patients and their gender- and age-matched siblings. Over 1 billion 75-bp single-end reads were generated for each sample. In the 3 affected siblings, overall methylation loss was consistently found in all chromosomes with X and 18 being most affected. Paired sample analysis identified 564,218 differentially methylated CpG sites (DMCs; P<0.05), of which 300 134 were intergenic and 264 084 genic CpGs. Hypomethylation was predominant in both genic and intergenic regions, including promoters, exons, most CpG islands, L1, L2, Alu, and satellite repeats and simple repeat sequences. In some CpG islands, hypermethylated CpGs outnumbered hypomethylated CpGs. In 201 imprinted genes, there were more DMCs than in non-imprinted genes and most were hypomethylated. Differentially methylated region (DMR) analysis identified 5649 hypomethylated and 1872 hypermethylated regions. Importantly, pathway analysis revealed 1693 genes associated with the identified DMRs were highly associated in diverse neurological disorders and NAD+/NADH metabolism pathways is implicated in the pathogenesis. Our results provide novel insights into the epigenetic mechanism of neurodegeneration arising from a hotspot DNMT1 mutation and reveal pathways potentially important in a broad category of neurological and psychological disorders.

  20. Aberrant signature methylome by DNMT1 hot spot mutation in hereditary sensory and autonomic neuropathy 1E

    PubMed Central

    Sun, Zhifu; Wu, Yanhong; Ordog, Tamas; Baheti, Saurabh; Nie, Jinfu; Duan, Xiaohui; Hojo, Kaori; Kocher, Jean-Pierre; Dyck, Peter J; Klein, Christopher J

    2014-01-01

    DNA methyltransferase 1 (DNMT1) is essential for DNA methylation, gene regulation and chromatin stability. We previously discovered DNMT1 mutations cause hereditary sensory and autonomic neuropathy type 1 with dementia and hearing loss (HSAN1E; OMIM 614116). HSAN1E is the first adult-onset neurodegenerative disorder caused by a defect in a methyltransferase gene. HSAN1E patients appear clinically normal until young adulthood, then begin developing the characteristic symptoms involving central and peripheral nervous systems. Some HSAN1E patients also develop narcolepsy and it has recently been suggested that HSAN1E is allelic to autosomal dominant cerebellar ataxia, deafness, with narcolepsy (ADCA-DN; OMIM 604121), which is also caused by mutations in DNMT1. A hotspot mutation Y495C within the targeting sequence domain of DNMT1 has been identified among HSAN1E patients. The mutant DNMT1 protein shows premature degradation and reduced DNA methyltransferase activity. Herein, we investigate genome-wide DNA methylation at single-base resolution through whole-genome bisulfite sequencing of germline DNA in 3 pairs of HSAN1E patients and their gender- and age-matched siblings. Over 1 billion 75-bp single-end reads were generated for each sample. In the 3 affected siblings, overall methylation loss was consistently found in all chromosomes with X and 18 being most affected. Paired sample analysis identified 564,218 differentially methylated CpG sites (DMCs; P < 0.05), of which 300 134 were intergenic and 264 084 genic CpGs. Hypomethylation was predominant in both genic and intergenic regions, including promoters, exons, most CpG islands, L1, L2, Alu, and satellite repeats and simple repeat sequences. In some CpG islands, hypermethylated CpGs outnumbered hypomethylated CpGs. In 201 imprinted genes, there were more DMCs than in non-imprinted genes and most were hypomethylated. Differentially methylated region (DMR) analysis identified 5649 hypomethylated and 1872 hypermethylated regions. Importantly, pathway analysis revealed 1693 genes associated with the identified DMRs were highly associated in diverse neurological disorders and NAD+/NADH metabolism pathways is implicated in the pathogenesis. Our results provide novel insights into the epigenetic mechanism of neurodegeneration arising from a hotspot DNMT1 mutation and reveal pathways potentially important in a broad category of neurological and psychological disorders. PMID:25033457

  1. Simultaneous detection of Hb constant spring (α142, TAA>CAA, α2) and the α2 IVS-I donor site (-TGAGG) deletion by a simple polymerase chain reaction-based method in Iran.

    PubMed

    Akhavan-Niaki, Haleh; Banihashemi, Ali; Mostafazadeh, Amrollah; Kholghi Oskooei, Vahid; Azizi, Mandana; Youssefi Kamangar, Reza; Elmi, Maryam Mitra

    2012-01-01

    Hb Constant Spring (Hb CS, codon 142, TAA>CAA, α2) (HBA2:c.427T>C) and α2 IVS-I donor site (GAGGTGAGG>GAGG - - - - -) (HBA2:c.95+2_95+6delTGAGG) are nondeletional α-thalassemia (α-thal) mutations found all over the world. Identification of α-thal genotypes in at-risk couples for severe anemia or in highly heterogeneous populations requires rapid, accurate and cost-effective genotyping methods. In this study, a pair of primers were used to specifically amplify an 883 bp fragment from the α2-globin gene in order to simultaneously identify these two mutations by a PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) method. We determined the genotypic frequencies of Hb CS and the α2 IVS-I donor site mutations after amplification and enzymatic digestion with Tru9I in 238 northern Iranian samples referred for α-thal testing. Hb CS and the α2 IVS-I donor site mutations accounted for 21 (8.8%) and 29 (12.2%) of the nondeletional cases. This genotyping assay has proven to be a rapid, reliable and useful diagnostic tool for simultaneous detection of these two anomalies for genetic counseling or further prenatal diagnosis.

  2. Genetic characteristics of eighty-seven patients with the Wiskott-Aldrich syndrome.

    PubMed

    Gulácsy, Vera; Freiberger, Tomas; Shcherbina, Anna; Pac, Malgorzata; Chernyshova, Liudmyla; Avcin, Tadej; Kondratenko, Irina; Kostyuchenko, Larysa; Prokofjeva, Tatjana; Pasic, Srdjan; Bernatowska, Ewa; Kutukculer, Necil; Rascon, Jelena; Iagaru, Nicolae; Mazza, Cinzia; Tóth, Beáta; Erdos, Melinda; van der Burg, Mirjam; Maródi, László

    2011-02-01

    The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immune deficiency disorder characterized by thrombocytopenia, small platelet size, eczema, recurrent infections, and increased risk of autoimmune disorders and malignancies. WAS is caused by mutations in the WASP gene which encodes WASP, a 502-amino acid protein. WASP plays a critical role in actin cytoskeleton organization and signalling, and functions of immune cells. We present here the results of genetic analysis of patients with WAS from eleven Eastern and Central European (ECE) countries and Turkey. Clinical and haematological information of 87 affected males and 48 carrier females from 77 WAS families were collected. The WASP gene was sequenced from genomic DNA of patients with WAS, as well as their family members to identify carriers. In this large cohort, we identified 62 unique mutations including 17 novel sequence variants. The mutations were scattered throughout the WASP gene and included single base pair changes (17 missense and 11 nonsense mutations), 7 small insertions, 18 deletions, and 9 splice site defects. Genetic counselling and prenatal diagnosis were applied in four affected families. This study was part of the J Project aimed at identifying genetic basis of primary immunodeficiency disease in ECE countries. This report provides the first comprehensive overview of the molecular genetic and demographic features of WAS in ECE. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Mutation update and uncommon phenotypes in a French cohort of 96 patients with WFS1-related disorders.

    PubMed

    Chaussenot, A; Rouzier, C; Quere, M; Plutino, M; Ait-El-Mkadem, S; Bannwarth, S; Barth, M; Dollfus, H; Charles, P; Nicolino, M; Chabrol, B; Vialettes, B; Paquis-Flucklinger, V

    2015-05-01

    WFS1 mutations are responsible for Wolfram syndrome (WS) characterized by juvenile-onset diabetes mellitus and optic atrophy, and for low-frequency sensorineural hearing loss (LFSNHL). Our aim was to analyze the French cohort of 96 patients with WFS1-related disorders in order (i) to update clinical and molecular data with 37 novel affected individuals, (ii) to describe uncommon phenotypes and, (iii) to precise the frequency of large-scale rearrangements in WFS1. We performed quantitative polymerase chain reaction (PCR) in 13 patients, carrying only one heterozygous variant, to identify large-scale rearrangements in WFS1. Among the 37 novel patients, 15 carried 15 novel deleterious putative mutations, including one large deletion of 17,444 base pairs. The analysis of the cohort revealed unexpected phenotypes including (i) late-onset symptoms in 13.8% of patients with a probable autosomal recessive transmission; (ii) two siblings with recessive optic atrophy without diabetes mellitus and, (iii) six patients from four families with dominantly-inherited deafness and optic atrophy. We highlight the expanding spectrum of WFS1-related disorders and we show that, even if large deletions are rare events, they have to be searched in patients with classical WS carrying only one WFS1 mutation after sequencing. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Mutant quantity and quality in mammalian cells (AL) exposed to cesium-137 gamma radiation: effect of caffeine

    NASA Technical Reports Server (NTRS)

    McGuinness, S. M.; Shibuya, M. L.; Ueno, A. M.; Vannais, D. B.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian AL human-hamster hybrid cells exposed to 137Cs gamma radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1- mutants by 137Cs gamma radiation. Molecular analysis of 235 S1- mutants using a series of DNA probes mapped to the human chromosome 11 in the AL hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, 137Cs gamma rays alone or 137Cs gamma rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These "complex" mutations were rare for 137Cs gamma irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by 137Cs gamma irradiation.

  5. Evaluation of amplification refractory mutation system (ARMS) technique for quick and accurate prenatal gene diagnosis of CHM variant in choroideremia.

    PubMed

    Yang, Lisha; Ijaz, Iqra; Cheng, Jingliang; Wei, Chunli; Tan, Xiaojun; Khan, Md Asaduzzaman; Fu, Xiaodong; Fu, Junjiang

    2018-01-01

    Choroideremia is a rare X-linked recessive inherited disorder that causes chorioretinal dystrophy leading to visual impairment in its early stages which finally causes total blindness in the affected person. It is caused due to mutations in the CHM gene. In this study, we have recruited a pedigree with choroideremia and detected a nonsense variant (c.C799T:p.R267X) in CHM of the proband (I:1). Different primer sets for amplification refractory mutation system (ARMS) were designed and PCR conditions were optimized. Then, we evaluated the sequence variant in the patient, carrier, and a fetus by using ARMS technique to identify if they inherited the pathogenic gene from parental generation; we used amniotic fluid DNA for the diagnosis of the gene in the fetus. The primer pairs, WT2+C and MT+C, amplified high specific products in different DNAs which were verified by Sanger sequencing. Based on our results, ARMS technique is fast, accurate, and reliable prenatal gene diagnostic tool to assess CHM variants. Taken together, our study indicates that ARMS technique can be used as a potential molecular tool in the diagnosis of prenatal mutation for choroideremia as well as other genetic diseases in undeveloped and developing countries, where there might be shortage of medical resources and supplies.

  6. CRISPR Correction of a Homozygous Low-Density Lipoprotein Receptor Mutation in Familial Hypercholesterolemia Induced Pluripotent Stem Cells.

    PubMed

    Omer, Linda; Hudson, Elizabeth A; Zheng, Shirong; Hoying, James B; Shan, Yuan; Boyd, Nolan L

    2017-11-01

    Familial hypercholesterolemia (FH) is a hereditary disease primarily due to mutations in the low-density lipoprotein receptor (LDLR) that lead to elevated cholesterol and premature development of cardiovascular disease. Homozygous FH patients (HoFH) with two dysfunctional LDLR alleles are not as successfully treated with standard hypercholesterol therapies, and more aggressive therapeutic approaches to control cholesterol levels must be considered. Liver transplant can resolve HoFH, and hepatocyte transplantation has shown promising results in animals and humans. However, demand for donated livers and high-quality hepatocytes overwhelm the supply. Human pluripotent stem cells can differentiate to hepatocyte-like cells (HLCs) with the potential for experimental and clinical use. To be of future clinical use as autologous cells, LDLR genetic mutations in derived FH-HLCs need to be corrected. Genome editing technology clustered-regularly-interspaced-short-palindromic-repeats/CRISPR-associated 9 (CRISPR/Cas9) can repair pathologic genetic mutations in human induced pluripotent stem cells. We used CRISPR/Cas9 genome editing to permanently correct a 3-base pair homozygous deletion in LDLR exon 4 of patient-derived HoFH induced pluripotent stem cells. The genetic correction restored LDLR-mediated endocytosis in FH-HLCs and demonstrates the proof-of-principle that CRISPR-mediated genetic modification can be successfully used to normalize HoFH cholesterol metabolism deficiency at the cellular level.

  7. Mutation rates at 42 Y chromosomal short tandem repeats in Chinese Han population in Eastern China.

    PubMed

    Wu, Weiwei; Ren, Wenyan; Hao, Honglei; Nan, Hailun; He, Xin; Liu, Qiuling; Lu, Dejian

    2018-01-31

    Mutation analysis of 42 Y chromosomal short tandem repeats (Y-STRs) loci was performed using a sample of 1160 father-son pairs from the Chinese Han population in Eastern China. The results showed that the average mutation rate across the 42 Y-STR loci was 0.0041 (95% CI 0.0036-0.0047) per locus per generation. The locus-specific mutation rates varied from 0.000 to 0.0190. No mutation was found at DYS388, DYS437, DYS448, DYS531, and GATA_H4. DYS627, DYS570, DYS576, and DYS449 could be classified as rapidly mutating Y-STRs, with mutation rates higher than 1.0 × 10 -2 . DYS458, DYS630, and DYS518 were moderately mutating Y-STRs, with mutation rates ranging from 8 × 10 -3 to 1 × 10 -2 . Although the characteristics of the Y-STR mutations were consistent with those in previous studies, mutation rate differences between our data and previous published data were found at some rapidly mutating Y-STRs. The single-copy loci located on the short arm of the Y chromosome (Yp) showed relatively higher mutation rates more frequently than the multi-copy loci. These results will not only extend the data for Y-STR mutations but also be important for kinship analysis, paternal lineage identification, and family relationship reconstruction in forensic Y-STR analysis.

  8. Autosomal-dominant nystagmus, foveal hypoplasia and presenile cataract associated with a novel PAX6 mutation.

    PubMed

    Thomas, Shery; Thomas, Mervyn G; Andrews, Caroline; Chan, Wai-Man; Proudlock, Frank A; McLean, Rebecca J; Pradeep, Archana; Engle, Elizabeth C; Gottlob, Irene

    2014-03-01

    Autosomal-dominant idiopathic infantile nystagmus has been linked to 6p12 (OMIM 164100), 7p11.2 (OMIM 608345) and 13q31-q33 (OMIM 193003). PAX6 (11p13, OMIM 607108) mutations can also cause autosomal-dominant nystagmus, typically in association with aniridia or iris hypoplasia. We studied a large multigenerational white British family with autosomal-dominant nystagmus, normal irides and presenile cataracts. An SNP-based genome-wide analysis revealed a linkage to a 13.4-MB region on chromosome 11p13 with a maximum lod score of 2.93. A mutation analysis of the entire coding region and splice junctions of the PAX6 gene revealed a novel heterozygous missense mutation (c.227C>G) that segregated with the phenotype and is predicted to result in the amino-acid substitution of proline by arginine at codon 76 p.(P76R). The amino-acid variation p.(P76R) within the paired box domain is likely to destabilise the protein due to steric hindrance as a result of the introduction of a polar and larger amino acid. Eye movement recordings showed a significant intrafamilial variability of horizontal, vertical and torsional nystagmus. High-resolution in vivo imaging of the retina using optical coherence tomography (OCT) revealed features of foveal hypoplasia, including rudimentary foveal pit, incursion of inner retinal layers, short photoreceptor outer segments and optic nerve hypoplasia. Thus, this study presents a family that segregates a PAX6 mutation with nystagmus and foveal hypoplasia in the absence of iris abnormalities. Moreover, it is the first study showing detailed characteristics using eye movement recordings of autosomal-dominant nystagmus in a multigenerational family with a novel PAX6 mutation.

  9. Detection of IDH1 mutation in the plasma of patients with glioma.

    PubMed

    Boisselier, Blandine; Gállego Pérez-Larraya, Jaime; Rossetto, Marta; Labussière, Marianne; Ciccarino, Pietro; Marie, Yannick; Delattre, Jean-Yves; Sanson, Marc

    2012-10-16

    The IDH1(R132H) mutation is both a strong prognostic predictor and a diagnostic hallmark of gliomas and therefore has major clinical relevance. Here, we developed a new technique to detect the IDH1(R132H) mutation in the plasma of patients with glioma. Small-size DNA (150-250 base pairs) was extracted from the plasma of 31 controls and 80 patients with glioma with known IDH1(R132H) status and correlated with MRI data. The IDH1(R132H) mutation was detected by a combination of coamplification at lower denaturation temperature and digital PCR. The small size DNA concentration was 1.2 ng/mL (range 0.1-6.6) in controls vs 1.2 ng/mL (range 0.1-50.3) in patients with glioma (p = not significant) and 0.9 ng/mL (0.0-3.0) in low-grade gliomas vs 1.5 ng/mL in high-grade gliomas (p < 0.01). The small size DNA concentration correlated with enhancing tumor volume (1.6 ng/mL [0.4-24.9] when <10 cm(3) and 14.0 ng/mL [0.6-50.3] when ≥10 cm(3)). The IDH1(R132H) mutation was detected in 15 out of 25 plasma DNA mixtures (60%) from patients with mutated tumors and in none of the 14 patients with a nonmutated tumor. The sensitivity increased with enhancing tumor volume (3/9 in nonenhancing tumors, 6/10 for enhancing volume <10 cm(3), and 6/6 for enhancing volume ≥10 cm(3)). With a specificity of 100% and a sensitivity related to the tumor volume and contrast enhancement, IDH1(R132H) identification has a valuable diagnostic accuracy in patients not amenable to biopsy.

  10. Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis.

    PubMed

    Trentin, Luca; Bresolin, Silvia; Giarin, Emanuela; Bardini, Michela; Serafin, Valentina; Accordi, Benedetta; Fais, Franco; Tenca, Claudya; De Lorenzo, Paola; Valsecchi, Maria Grazia; Cazzaniga, Giovanni; Kronnie, Geertruy Te; Basso, Giuseppe

    2016-10-04

    To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.

  11. Specificity and Catalytic Mechanism in Family 5 Uracil DNA Glycosylase*

    PubMed Central

    Xia, Bo; Liu, Yinling; Li, Wei; Brice, Allyn R.; Dominy, Brian N.; Cao, Weiguo

    2014-01-01

    UDGb belongs to family 5 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that family 5 UDGb from Thermus thermophilus HB8 is not only a uracil DNA glycosyase acting on G/U, T/U, C/U, and A/U base pairs, but also a hypoxanthine DNA glycosylase acting on G/I, T/I, and A/I base pairs and a xanthine DNA glycosylase acting on all double-stranded and single-stranded xanthine-containing DNA. Analysis of potentials of mean force indicates that the tendency of hypoxanthine base flipping follows the order of G/I > T/I, A/I > C/I, matching the trend of hypoxanthine DNA glycosylase activity observed in vitro. Genetic analysis indicates that family 5 UDGb can also act as an enzyme to remove uracil incorporated into DNA through the existence of dUTP in the nucleotide pool. Mutational analysis coupled with molecular modeling and molecular dynamics analysis reveals that although hydrogen bonding to O2 of uracil underlies the UDG activity in a dissociative fashion, Tth UDGb relies on multiple catalytic residues to facilitate its excision of hypoxanthine and xanthine. This study underscores the structural and functional diversity in the UDG superfamily. PMID:24838246

  12. A unified description of the electrochemical, charge distribution, and spectroscopic properties of the special-pair radical cation in bacterial photosynthesis.

    PubMed

    Reimers, Jeffrey R; Hush, Noel S

    2004-04-07

    We apply our four-state 70-vibration vibronic-coupling model for the properties of the photosynthetic special-pair radical cation to: (1) interpret the observed correlations between the midpoint potential and the distribution of spin density between the two bacteriochlorophylls for 30 mutants of Rhodobacter sphaeroides, (2) interpret the observed average intervalence hole-transfer absorption energies as a function of spin density for six mutants, and (3) simulate the recently obtained intervalence electroabsorption Stark spectrum of the wild-type reaction center. While three new parameters describing the location of the sites of mutation with respect to the special pair are required to describe the midpoint-potential data, a priori predictions are made for the transition energies and the Stark spectrum. In general, excellent predictions are made of the observed quantities, with deviations being typically of the order of twice the experimental uncertainties. A unified description of many chemical and spectroscopic properties of the bacterial reaction center is thus provided. Central to the analysis is the assumption that the perturbations made to the reaction center, either via mutations of protein residues or by application of an external electric field, act only to independently modify the oxidation potentials of the two halves of the special pair and hence the redox asymmetry E0. While this appears to be a good approximation, clear evidence is presented that effects of mutation can be more extensive than what is allowed for. A thorough set of analytical equations describing the observed properties is obtained using the Born-Oppenheimer adiabatic approximation. These equations are generally appropriate for intervalence charge-transfer problems and include, for the first time, full treatment of both symmetric and antisymmetric vibrational motions. The limits of validity of the adiabatic approach to the full nonadiabatic problem are obtained.

  13. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action.

    PubMed

    Otaka, Hironori; Ishikawa, Hirokazu; Morita, Teppei; Aiba, Hiroji

    2011-08-09

    Major bacterial small RNAs (sRNAs) regulate the translation and stability of target mRNAs through base pairing with the help of the RNA chaperone Hfq. The Hfq-dependent sRNAs consist of three basic elements, mRNA base-pairing region, Hfq-binding site, and rho-independent terminator. Although the base-pairing region and the terminator are well documented in many sRNAs, the Hfq-binding site is less well-defined except that Hfq binds RNA with a preference for AU-rich sequences. Here, we performed mutational and biochemical studies to define the sRNA site required for Hfq action using SgrS as a model sRNA. We found that shortening terminator polyU tail eliminates the ability of SgrS to bind to Hfq and to silence ptsG mRNA. We also demonstrate that the SgrS terminator can be replaced with any foreign rho-independent terminators possessing a polyU tail longer than 8 without losing the ability to silence ptsG mRNA in an Hfq-dependent manner. Moreover, we found that shortening the terminator polyU tail of several other sRNAs also eliminates the ability to bind to Hfq and to regulate target mRNAs. We conclude that the polyU tail of sRNAs is essential for Hfq action in general. The data also indicate that the terminator polyU tail plays a role in Hfq-dependent stabilization of sRNAs.

  14. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action

    PubMed Central

    Otaka, Hironori; Ishikawa, Hirokazu; Morita, Teppei; Aiba, Hiroji

    2011-01-01

    Major bacterial small RNAs (sRNAs) regulate the translation and stability of target mRNAs through base pairing with the help of the RNA chaperone Hfq. The Hfq-dependent sRNAs consist of three basic elements, mRNA base-pairing region, Hfq-binding site, and rho-independent terminator. Although the base-pairing region and the terminator are well documented in many sRNAs, the Hfq-binding site is less well-defined except that Hfq binds RNA with a preference for AU-rich sequences. Here, we performed mutational and biochemical studies to define the sRNA site required for Hfq action using SgrS as a model sRNA. We found that shortening terminator polyU tail eliminates the ability of SgrS to bind to Hfq and to silence ptsG mRNA. We also demonstrate that the SgrS terminator can be replaced with any foreign rho-independent terminators possessing a polyU tail longer than 8 without losing the ability to silence ptsG mRNA in an Hfq-dependent manner. Moreover, we found that shortening the terminator polyU tail of several other sRNAs also eliminates the ability to bind to Hfq and to regulate target mRNAs. We conclude that the polyU tail of sRNAs is essential for Hfq action in general. The data also indicate that the terminator polyU tail plays a role in Hfq-dependent stabilization of sRNAs. PMID:21788484

  15. Is there a genetic anticipation in breast and/or ovarian cancer families with the germline c.3481_3491del11 mutation?

    PubMed

    El Tannouri, R; Albuisson, E; Jonveaux, P; Luporsi, E

    2018-01-01

    The aim of the current analysis is to evaluate any differences of breast or ovarian cancer age at diagnosis between mothers and daughters carrying the c.3481_3491del11 mutation in the BRCA1 gene. A study cohort of 38 women carrying the c.3481_3491del11 mutation and affected by first breast or ovarian cancer who reported a first breast or ovarian cancer in their mother carrying the c.3481_3491del11 mutation, was identified in 37 different families including members with breast and/or ovarian cancer at the Oncology Institute of Lorraine. Twelve mothers underwent genetic testing. Twenty-five pairs of the 38 mothers-daughters pairs with c.3481_3491del11 mutation were affected by breast cancer and 13 pairs by ovarian cancer. Clinical and genetic data were collected from medical files and family pedigrees. Analyses were conducted for each cancer type. We investigated an early breast cancer detection effect due to early screening programs and also an increased breast tumor aggression. Since major improvements in breast cancer clinical management and imaging techniques appeared after 1980, we compared the age at breast cancer diagnosis and the age at death in mothers and daughters before and after 1980, first, in the group of women including mothers and daughters taken together and then in mothers and daughters separately. The mean age at breast cancer diagnosis was 45.28 ± 10.27 years in mothers and 39.80 ± 7.79 years in daughters (p = 0.026). The difference of age at ovarian cancer diagnosis in mother-daughter pairs was 8.62 ± 12.76 years (p = 0.032). When considering the group of women including mothers and daughters taken together, no significant difference of age at breast cancer diagnosis was found between women affected before 1980 and those affected after 1980 (p = 0.577). However, the age at death increased in these women after 1980 (p = 0.026). Comparison of age at breast cancer diagnosis in mothers and daughters separately, showed that daughters were affected at an earlier age after 1980 (p = 0.002). Daughters had a poor prognosis and died earlier than mothers after 1980. Our results may have reflected genetic anticipation in c.3481_3491del11 mutation breast and ovarian cancer families. In order to confirm our findings, a larger cohort would provide more precision to the difference of ages at breast or ovarian cancer diagnosis between mothers and daughters and more powerful statistical analyses. Increased aggression in daughters' tumors compared to those of mothers could be also considered as a parameter of genetic anticipation. Complete information on tumor profile and proliferation would allow us to study genetic anticipation by comparing the tumor phenotypes between mothers and daughters in the future.

  16. Transmitted HIV drug resistance in antiretroviral-treatment-naive patients from Poland differs by transmission category and subtype.

    PubMed

    Parczewski, Miłosz; Leszczyszyn-Pynka, Magdalena; Witak-Jędra, Magdalena; Maciejewska, Katarzyna; Rymer, Weronika; Szymczak, Aleksandra; Szetela, Bartosz; Gąsiorowski, Jacek; Bociąga-Jasik, Monika; Skwara, Paweł; Garlicki, Aleksander; Grzeszczuk, Anna; Rogalska, Magdalena; Jankowska, Maria; Lemańska, Małgorzata; Hlebowicz, Maria; Barałkiewicz, Grażyna; Mozer-Lisewska, Iwona; Mazurek, Renata; Lojewski, Władyslaw; Grąbczewska, Edyta; Olczak, Anita; Jabłonowska, Elżbieta; Clark, Jeremy; Urbańska, Anna

    2015-01-01

    The surveillance of HIV-transmitted drug resistance mutations (t-DRMs), including temporal trends across subtypes and exposure groups, remains a priority in the current management of the epidemic worldwide. A cross-sectional analysis of 833 treatment-naive patients from 9 of 17 Polish HIV treatment centres. Partial pol sequences were used to analyse drug resistance with a general time reversible (GTR)-based maximum likelihood algorithm used for cluster/pair identification. Mutation frequencies and temporal trends were investigated. t-DRMs were observed in 9% of cases (5.8% for NRTI, 1.2% NNRTI and 2.0% PI mutations) and were more common among heterosexually infected (HET) individuals (13.4%) compared with MSM (8.3%, P = 0.03) or injection drug users (IDUs; 2.9%, P = 0.001) and in MSM compared with IDUs (P = 0.046). t-DRMs were more frequent in cases infected with the non-B variant (21.6%) compared with subtype B (6.6%, P < 0.001). With subtype B a higher mutation frequency was found in MSM compared with non-MSM cases (8.3% versus 1.8% for IDU + HET, P = 0.038), while non-B variants were associated with heterosexual exposure (30.4% for HET versus 4.8% for MSM, P = 0.019; versus 0 for IDU, P = 0.016). Trends in t-DRM frequencies were stable over time except for a decrease in NNRTI t-DRMs among MSM (P = 0.0662) and an NRTI t-DRM decrease in HET individuals (P = 0.077). With subtype B a higher frequency of sequence pairs/clusters in MSM (50.4%) was found compared with HET (P < 0.001) and IDUs (P = 0.015). Despite stable trends over time, patterns of t-DRMs differed notably between transmission categories and subtypes: subtype B was associated with MSM transmission and clustering while in non-B clades t-DRMs were more common and were associated with heterosexual infections. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Emergence of CTNNB1 mutation at acquired resistance to KIT inhibitor in metastatic melanoma.

    PubMed

    Cho, J; Kim, S Y; Kim, Y J; Sim, M H; Kim, S T; Kim, N K D; Kim, K; Park, W; Kim, J H; Jang, K-T; Lee, J

    2017-10-01

    The KIT inhibitor, imatinib, has shown promising efficacy in patients with KIT-mutated melanoma; however, acquisition of resistance to imatinib occurs rapidly in the majority of patients. The mechanisms of acquired resistance to imatinib in melanoma remain unclear. We analyzed biopsy samples from paired baseline and post-treatment tumor lesions in one patient with KIT-mutated melanoma who had had an initial objective tumor regression in response to imatinib treatment followed by disease progression 8 months later. Targeted deep sequencing from post-treatment biopsy samples detected an additional mutation in CTNNB1 (S33C) with original KIT L576P mutation. We examined the functional role of the additional CTNNB1 S33C mutation in resistance to imatinib indirectly using the Ba/F3 cell model. Ba/F3 cell lines transfected with both the L576P KIT mutation and the CTNNB1 S33C mutation demonstrated no growth inhibition despite imatinib treatment, whereas growth inhibition was observed in the Ba/F3 cell line transfected with the L576 KIT mutation alone. We report the first identification of the emergence of a CTNNB1 mutation that can confer acquired resistance to imatinib. Further investigation into the causes of acquired resistance to imatinib will be essential to improve the prognosis for patients with KIT-mutated melanoma.

  18. How do the effects of mutations add up?

    NASA Astrophysics Data System (ADS)

    Velenich, Andrea; Dai, Mingjie; Gore, Jeff

    2011-03-01

    Genetic mutations affect the fitness of any organism and provide the variability necessary for natural selection to occur. Given the fitness of a wild type organism and the fitness of mutants A and B which differ from the wild type by a single mutation, predicting the fitness of the double mutant AB is a fundamental problem with broad implications in many fields, from evolutionary theory to medicine. Analysis of millions of double gene knockouts in yeast reveals that, on average, the fitness of AB is the product of the fitness of A and the fitness of B. However, most pairs of mutations deviate from this mean behavior in a way that challenges existing theoretical models. We propose a natural generalization of the geometric Fisher's model which accommodates the experimentally observed features and allows us to characterize the fitness landscape of yeast.

  19. [Identification of novel pathogenic gene mutations in pediatric acute myeloid leukemia by whole-exome resequencing].

    PubMed

    Shiba, Norio

    2015-12-01

    A new class of gene mutations, identified in the pathogenesis of adult acute myeloid leukemia (AML), includes DNMT3A, IDH1/2, TET2 and EZH2. However, these mutations are rare in pediatric AML cases, indicating that pathogeneses differ between adult and pediatric forms of AML. Meanwhile, the recent development of massively parallel sequencing technologies has provided a new opportunity to discover genetic changes across entire genomes or proteincoding sequences. In order to reveal a complete registry of gene mutations, we performed whole exome resequencing of paired tumor-normal specimens from 19 pediatric AML cases using Illumina HiSeq 2000. In total, 80 somatic mutations or 4.2 mutations per sample were identified. Many of the recurrent mutations identified in this study involved previously reported targets in AML, such as FLT3, CEBPA, KIT, CBL, NRAS, WT1 and EZH2. On the other hand, several genes were newly identified in the current study, including BCORL1 and major cohesin components such as SMC3 and RAD21. Whole exome resequencing revealed a complex array of gene mutations in pediatric AML genomes. Our results indicate that a subset of pediatric AML represents a discrete entity that could be discriminated from its adult counterpart, in terms of the spectrum of gene mutations.

  20. Single-Color Digital PCR Provides High-Performance Detection of Cancer Mutations from Circulating DNA.

    PubMed

    Wood-Bouwens, Christina; Lau, Billy T; Handy, Christine M; Lee, HoJoon; Ji, Hanlee P

    2017-09-01

    We describe a single-color digital PCR assay that detects and quantifies cancer mutations directly from circulating DNA collected from the plasma of cancer patients. This approach relies on a double-stranded DNA intercalator dye and paired allele-specific DNA primer sets to determine an absolute count of both the mutation and wild-type-bearing DNA molecules present in the sample. The cell-free DNA assay uses an input of 1 ng of nonamplified DNA, approximately 300 genome equivalents, and has a molecular limit of detection of three mutation DNA genome-equivalent molecules per assay reaction. When using more genome equivalents as input, we demonstrated a sensitivity of 0.10% for detecting the BRAF V600E and KRAS G12D mutations. We developed several mutation assays specific to the cancer driver mutations of patients' tumors and detected these same mutations directly from the nonamplified, circulating cell-free DNA. This rapid and high-performance digital PCR assay can be configured to detect specific cancer mutations unique to an individual cancer, making it a potentially valuable method for patient-specific longitudinal monitoring. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2.

    PubMed

    Johnson, Kenneth R; Marden, Coleen C; Ward-Bailey, Patricia; Gagnon, Leona H; Bronson, Roderick T; Donahue, Leah Rae

    2007-07-01

    Dual oxidases generate the hydrogen peroxide needed by thyroid peroxidase for the incorporation of iodine into thyroglobulin, an essential step in thyroid hormone synthesis. Mutations in the human dual oxidase 2 gene, DUOX2, have been shown to underlie several cases of congenital hypothyroidism. We report here the first mouse Duox2 mutation, which provides a new genetic model for studying the specific function of DUOX2 in the thyroid gland and in other organ systems where it is hypothesized to play a role. We mapped the new spontaneous mouse mutation to chromosome 2 and identified it as a T>G base pair change in exon 16 of Duox2. The mutation changes a highly conserved valine to glycine at amino acid position 674 (V674G) and was named "thyroid dyshormonogenesis" (symbol thyd) to signify a defect in thyroid hormone synthesis. Thyroid glands of mutant mice are goitrous and contain few normal follicles, and anterior pituitaries are dysplastic. Serum T(4) in homozygotes is about one-tenth the level of controls and is accompanied by a more than 100-fold increase in TSH. The weight of adult mutant mice is approximately half that of littermate controls, and serum IGF-I is reduced. The cochleae of mutant mice exhibit abnormalities characteristic of hypothyroidism, including a delayed formation of the inner sulcus and tunnel of Corti and an abnormally thickened tectorial membrane. Hearing thresholds of adult mutant mice are on average 50-60 decibels (dB) above those of controls.

  2. Diagnosis of Xeroderma Pigmentosum Groups A and C by Detection of Two Prevalent Mutations in West Algerian Population: A Rapid Genotyping Tool for the Frequent XPC Mutation c.1643_1644delTG

    PubMed Central

    Bensenouci, Salima; Louhibi, Lotfi; De Verneuil, Hubert; Mahmoudi, Khadidja; Saidi-Mehtar, Nadhira

    2016-01-01

    Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder. Considering that XP patients have a defect of the nucleotide excision repair (NER) pathway which enables them to repair DNA damage caused by UV light, they have an increased risk of developing skin and eyes cancers. In the present study, we investigated the involvement of the prevalent XPA and XPC genes mutations—nonsense mutation (c.682C>T, p.Arg228X) and a two-base-pair (2 bp) deletion (c.1643_1644delTG or p.Val548Ala fsX25), respectively—in 19 index cases from 19 unrelated families in the West of Algeria. For the genetic diagnosis of XPA gene, we proceeded to PCR-RFLP. For the XPC gene, we validated a routine analysis which includes a specific amplification of a short region surrounding the 2 bp deletion using a fluorescent primer and fragment sizing (GeneScan size) on a sequencing gel. Among the 19 index cases, there were 17 homozygous patients for the 2 bp deletion in the XPC gene and 2 homozygous patients carrying the nonsense XPA mutation. Finally, XPC appears to be the major disease-causing gene concerning xeroderma pigmentosum in North Africa. The use of fragment sizing is the simplest method to analyze this 2 bp deletion for the DNA samples coming from countries where the mutation c.1643_1644delTG of XPC gene is prevalent. PMID:27413738

  3. A SIGMAR1 splice-site mutation causes distal hereditary motor neuropathy.

    PubMed

    Li, Xiaobo; Hu, Zhengmao; Liu, Lei; Xie, Yongzhi; Zhan, Yajing; Zi, Xiaohong; Wang, Junling; Wu, Lixiang; Xia, Kun; Tang, Beisha; Zhang, Ruxu

    2015-06-16

    To identify the underlying genetic cause in a consanguineous Chinese family segregating distal hereditary motor neuropathy (dHMN) in an autosomal recessive pattern. We used whole-exome sequencing and homozygosity mapping to detect the genetic variant in 2 affected individuals of the consanguineous Chinese family with dHMN. RNA analysis of peripheral blood leukocytes and immunofluorescence and immunoblotting of stable cell lines were performed to support the pathogenicity of the identified mutation. We identified 3 shared novel homozygous variants in 3 shared homozygous regions of the affected individuals. Sequencing of these 3 variants in family members revealed the c.151+1G>T mutation in SIGMAR1 gene, which located in homozygous region spanning approximately 5.3 Mb at chromosome 9p13.1-p13.3, segregated with the dHMN phenotype. The mutation causes an alternative splicing event and generates a transcript variant with an in-frame deletion of 60 base pairs in exon 1 (c.92_151del), and results in an internally shortened protein σ1R(31_50del). The proteasomal inhibitor treatment increased the intracellular amount of σ1R(31_50del) and led to the formation of nuclear aggregates. Stable expressing σ1R(31_50del) induced endoplasmic reticulum stress and enhanced apoptosis. The homozygous c.151+1G>T mutation in SIGMAR1 caused a novel form of autosomal recessive dHMN in a Chinese consanguineous family. Endoplasmic reticulum stress may have a role in the pathogenesis of dHMN. © 2015 American Academy of Neurology.

  4. Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in Saccharomyces cerevisiae.

    PubMed

    Reavey, Caitlin T; Hickman, Mark J; Dobi, Krista C; Botstein, David; Winston, Fred

    2015-10-01

    Studies of natural populations of many organisms have shown that traits are often complex, caused by contributions of mutations in multiple genes. In contrast, genetic studies in the laboratory primarily focus on studying the phenotypes caused by mutations in a single gene. However, the single mutation approach may be limited with respect to the breadth and degree of new phenotypes that can be found. We have taken the approach of isolating complex, or polygenic mutants in the lab to study the regulation of transcriptional activation distance in yeast. While most aspects of eukaryotic transcription are conserved from yeast to human, transcriptional activation distance is not. In Saccharomyces cerevisiae, the upstream activating sequence (UAS) is generally found within 450 base pairs of the transcription start site (TSS) and when the UAS is moved too far away, activation no longer occurs. In contrast, metazoan enhancers can activate from as far as several hundred kilobases from the TSS. Previously, we identified single mutations that allow transcription activation to occur at a greater-than-normal distance from the GAL1 UAS. As the single mutant phenotypes were weak, we have now isolated polygenic mutants that possess strong long-distance phenotypes. By identification of the causative mutations we have accounted for most of the heritability of the phenotype in each strain and have provided evidence that the Mediator coactivator complex plays both positive and negative roles in the regulation of transcription activation distance. Copyright © 2015 by the Genetics Society of America.

  5. Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study

    PubMed Central

    Camacho, Sandra Catalina; Schumacher, Cassie A.; Irish, Jonathan C.; Harkins, Timothy T.; Belfer, Rachel; Kalir, Tamara; Reva, Boris; Dottino, Peter; Martignetti, John A.

    2016-01-01

    Background Endometrial cancer is the most common gynecologic malignancy, and its incidence and associated mortality are increasing. Despite the immediate need to detect these cancers at an earlier stage, there is no effective screening methodology or protocol for endometrial cancer. The comprehensive, genomics-based analysis of endometrial cancer by The Cancer Genome Atlas (TCGA) revealed many of the molecular defects that define this cancer. Based on these cancer genome results, and in a prospective study, we hypothesized that the use of ultra-deep, targeted gene sequencing could detect somatic mutations in uterine lavage fluid obtained from women undergoing hysteroscopy as a means of molecular screening and diagnosis. Methods and Findings Uterine lavage and paired blood samples were collected and analyzed from 107 consecutive patients who were undergoing hysteroscopy and curettage for diagnostic evaluation from this single-institution study. The lavage fluid was separated into cellular and acellular fractions by centrifugation. Cellular and cell-free DNA (cfDNA) were isolated from each lavage. Two targeted next-generation sequencing (NGS) gene panels, one composed of 56 genes and the other of 12 genes, were used for ultra-deep sequencing. To rule out potential NGS-based errors, orthogonal mutation validation was performed using digital PCR and Sanger sequencing. Seven patients were diagnosed with endometrial cancer based on classic histopathologic analysis. Six of these patients had stage IA cancer, and one of these cancers was only detectable as a microscopic focus within a polyp. All seven patients were found to have significant cancer-associated gene mutations in both cell pellet and cfDNA fractions. In the four patients in whom adequate tumor sample was available, all tumor mutations above a specific allele fraction were present in the uterine lavage DNA samples. Mutations originally only detected in lavage fluid fractions were later confirmed to be present in tumor but at allele fractions significantly less than 1%. Of the remaining 95 patients diagnosed with benign or non-cancer pathology, 44 had no significant cancer mutations detected. Intriguingly, 51 patients without histopathologic evidence of cancer had relatively high allele fraction (1.0%–30.4%), cancer-associated mutations. Participants with detected driver and potential driver mutations were significantly older (mean age mutated = 57.96, 95% confidence interval [CI]: 3.30–∞, mean age no mutations = 50.35; p-value = 0.002; Benjamini-Hochberg [BH] adjusted p-value = 0.015) and more likely to be post-menopausal (p-value = 0.004; BH-adjusted p-value = 0.015) than those without these mutations. No associations were detected between mutation status and race/ethnicity, body mass index, diabetes, parity, and smoking status. Long-term follow-up was not presently available in this prospective study for those women without histopathologic evidence of cancer. Conclusions Using ultra-deep NGS, we identified somatic mutations in DNA extracted both from cell pellets and a never previously reported cfDNA fraction from the uterine lavage. Using our targeted sequencing approach, endometrial driver mutations were identified in all seven women who received a cancer diagnosis based on classic histopathology of tissue curettage obtained at the time of hysteroscopy. In addition, relatively high allele fraction driver mutations were identified in the lavage fluid of approximately half of the women without a cancer diagnosis. Increasing age and post-menopausal status were associated with the presence of these cancer-associated mutations, suggesting the prevalent existence of a premalignant landscape in women without clinical evidence of cancer. Given that a uterine lavage can be easily and quickly performed even outside of the operating room and in a physician’s office-based setting, our findings suggest the future possibility of this approach for screening women for the earliest stages of endometrial cancer. However, our findings suggest that further insight into development of cancer or its interruption are needed before translation to the clinic. PMID:28027320

  6. Identification of the cAMP response element that controls transcriptional activation of the insulin-like growth factor-I gene by prostaglandin E2 in osteoblasts

    NASA Technical Reports Server (NTRS)

    Thomas, M. J.; Umayahara, Y.; Shu, H.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1996-01-01

    Insulin-like growth factor-I (IGF-I), a multifunctional growth factor, plays a key role in skeletal growth and can enhance bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other agents that increase cAMP activated IGF-I gene transcription in primary rat osteoblast cultures through promoter 1 (P1), the major IGF-I promoter, and found that transcriptional induction was mediated by protein kinase A. We now have identified a short segment of P1 that is essential for full hormonal regulation and have characterized inducible DNA-protein interactions involving this site. Transient transfections of IGF-I P1 reporter genes into primary rat osteoblasts showed that the 328-base pair untranslated region of exon 1 was required for a full 5.3-fold response to PGE2; mutation in a previously footprinted site, HS3D (base pairs +193 to +215), reduced induction by 65%. PGE2 stimulated nuclear protein binding to HS3D. Binding, as determined by gel mobility shift assay, was not seen in nuclear extracts from untreated osteoblast cultures, was detected within 2 h of PGE2 treatment, and was maximal by 4 h. This DNA-protein interaction was not observed in cytoplasmic extracts from PGE2-treated cultures, indicating nuclear localization of the protein kinase A-activated factor(s). Activation of this factor was not blocked by cycloheximide (Chx), and Chx did not impair stimulation of IGF-I gene expression by PGE2. In contrast, binding to a consensus cAMP response element (CRE; 5'-TGACGTCA-3') from the rat somatostatin gene was not modulated by PGE2 or Chx. Competition gel mobility shift analysis using mutated DNA probes identified 5'-CGCAATCG-3' as the minimal sequence needed for inducible binding. All modified IGF-I P1 promoterreporter genes with mutations within this CRE sequence also showed a diminished functional response to PGE2. These results identify the CRE within the 5'-untranslated region of IGF-I exon 1 that is required for hormonal activation of IGF-I gene transcription by cAMP in osteoblasts.

  7. Role for cis-acting RNA sequences in the temperature-dependent expression of the multiadhesive lig proteins in Leptospira interrogans.

    PubMed

    Matsunaga, James; Schlax, Paula J; Haake, David A

    2013-11-01

    The spirochete Leptospira interrogans causes a systemic infection that provokes a febrile illness. The putative lipoproteins LigA and LigB promote adhesion of Leptospira to host proteins, interfere with coagulation, and capture complement regulators. In this study, we demonstrate that the expression level of the LigA and LigB proteins was substantially higher when L. interrogans proliferated at 37°C instead of the standard culture temperature of 30°C. The RNA comprising the 175-nucleotide 5' untranslated region (UTR) and first six lig codons, whose sequence is identical in ligA and ligB, is predicted to fold into two distinct stem-loop structures separated by a single-stranded region. The ribosome-binding site is partially sequestered in double-stranded RNA within the second structure. Toeprint analysis revealed that in vitro formation of a 30S-tRNA(fMet)-mRNA ternary complex was inhibited unless a 5' deletion mutation disrupted the second stem-loop structure. To determine whether the lig sequence could mediate temperature-regulated gene expression in vivo, the 5' UTR and the first six codons were inserted between the Escherichia coli l-arabinose promoter and bgaB (β-galactosidase from Bacillus stearothermophilus) to create a translational fusion. The lig fragment successfully conferred thermoregulation upon the β-galactosidase reporter in E. coli. The second stem-loop structure was sufficient to confer thermoregulation on the reporter, while sequences further upstream in the 5' UTR slightly diminished expression at each temperature tested. Finally, the expression level of β-galactosidase was significantly higher when point mutations predicted to disrupt base pairs in the second structure were introduced into the stem. Compensatory mutations that maintained base pairing of the stem without restoring the wild-type sequence reinstated the inhibitory effect of the 5' UTR on expression. These results indicate that ligA and ligB expression is limited by double-stranded RNA that occludes the ribosome-binding site. At elevated temperatures, the ribosome-binding site is exposed to promote translation initiation.

  8. Optimal packaging of FIV genomic RNA depends upon a conserved long-range interaction and a palindromic sequence within gag.

    PubMed

    Rizvi, Tahir A; Kenyon, Julia C; Ali, Jahabar; Aktar, Suriya J; Phillip, Pretty S; Ghazawi, Akela; Mustafa, Farah; Lever, Andrew M L

    2010-10-15

    The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5' 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5' and 3' sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV ψ. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Genomic structures of dysplastic nodule and concurrent hepatocellular carcinoma.

    PubMed

    Lee, Minho; Kim, Kyung; Kim, Shinn Young; Jung, Seung-Hyun; Yoon, Jonghwan; Kim, Min Sung; Park, Hyeon-Chun; Jung, Eun Sun; Chung, Yeun-Jun; Lee, Sug Hyung

    2018-06-24

    Although high-grade dysplastic nodule (HGDN) is a preneoplastic lesion that precedes hepatocellular carcinoma (HCC), the genomic structures of HGDN in conjunction with HCC remain elusive. The objective of this study was to identify genomic alterations of HGDN and its difference from HCC that may drive HGDN progression to HCC. We analyzed 16 regions of paired HGDN and HCC from 6 patients using whole-exome sequencing to find somatic mutation and copy number alteration (CNA) profiles of HGDN and HCC. The number of mutations, driver mutations, and CNAs of HGDNs were not significantly different from those of HCCs. We identified that the CNA gain of 1q25.3-1q42.13 was predominant in the HCCs compared to that in the HGDNs. Two cases (one nodule-in-nodule case and another case with closely attached HCC and HGDN) showed several overlapped driver mutations (CTNNB1 and CEBPA) and CNAs (losses of CDKN2A, RB1 and TP53) between HGDNs and HCCs, suggesting their roles in the early HCC development. The other 4 cases with spatially separated HCCs and HGDNs showed few overlapped alterations between the paired HCCs and HGDNs. Mutations in ERBB2 and CCND1, and CNAs (gains of CTNNB1, MET and SMO and losses of PTEN, TP53 and SETD2) were identified as 'HCC-predominant', suggesting their roles in the progression of HGDN to HCC. Our data show that HCCs are direct descendants of HGDNs in some cases, but there is no direct evidence of such relationship in spatially separated cases. Genomic features of HGDN identified in this study provide a useful resource for dissecting clues for the genetic diagnosis of HGDN and HCC. Copyright © 2018. Published by Elsevier Inc.

  10. Compound Heterozygous Inheritance of Mutations in Coenzyme Q8A Results in Autosomal Recessive Cerebellar Ataxia and Coenzyme Q10 Deficiency in a Female Sib-Pair.

    PubMed

    Jacobsen, Jessie C; Whitford, Whitney; Swan, Brendan; Taylor, Juliet; Love, Donald R; Hill, Rosamund; Molyneux, Sarah; George, Peter M; Mackay, Richard; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2017-11-21

    Autosomal recessive ataxias are characterised by a fundamental loss in coordination of gait with associated atrophy of the cerebellum. There is significant clinical and genetic heterogeneity amongst inherited ataxias; however, an early molecular diagnosis is essential with low-risk treatments available for some of these conditions. We describe two female siblings who presented early in life with unsteady gait and cerebellar atrophy. Whole exome sequencing revealed compound heterozygous inheritance of two pathogenic mutations (p.Leu277Pro, c.1506+1G>A) in the coenzyme Q8A gene (COQ8A), a gene central to biosynthesis of coenzyme Q (CoQ). The paternally derived p.Leu277Pro mutation is predicted to disrupt a conserved motif in the substrate-binding pocket of the protein, resulting in inhibition of CoQ 10 production. The maternal c.1506+1G>A mutation destroys a canonical splice donor site in exon 12 affecting transcript processing and subsequent protein translation. Mutations in this gene can result in primary coenzyme Q 10 deficiency type 4, which is characterized by childhood onset of cerebellar ataxia and exercise intolerance, both of which were observed in this sib-pair. Muscle biopsies revealed unequivocally low levels of CoQ 10, and the siblings were subsequently established on a therapeutic dose of CoQ 10 with distinct clinical evidence of improvement after 1 year of treatment. This case emphasises the importance of an early and accurate molecular diagnosis for suspected inherited ataxias, particularly given the availability of approved treatments for some subtypes.

  11. BRCA1 Mutations Associated With Increased Risk of Brain Metastases in Breast Cancer: A 1: 2 Matched-pair Analysis.

    PubMed

    Zavitsanos, Peter J; Wazer, David E; Hepel, Jaroslaw T; Wang, Yihong; Singh, Kamaljeet; Leonard, Kara L

    2018-05-18

    Brain metastases (BM) occur in ∼5% of breast cancer patients. BRCA1-associated cancers are often basal-like and basal-like cancers are known to have a predilection for central nervous system metastases. We performed a matched-pair analysis of breast cancer patients with and without BRCA mutations and compared the frequency of BM in both groups. From a database of 1935 patients treated for localized breast cancer at our institution from 2009 to 2014 we identified 20 patients with BRCA1 or BRCA2 mutations and manually matched 40 patients without BRCA mutations accounting for age, stage, estrogen receptor expression, and human epidermal growth factor receptor 2 (HER2) expression. Comparisons of freedom from brain metastasis, brain metastasis-free survival, and overall survival were made using the log rank test. Testing for a basal-type phenotype using the immunohistochemistry definition (ER/PR/HER2 and either CK 5/6 or EGFR) was performed for BRCA patients who developed BM and their matched controls. We analyzed 60 patients: 20 BRCA and 40 were matched controls. Median follow-up was 37 and 49 months, respectively. Three years freedom from brain metastasis was 84% for BRCA patients and 97% for BRCA controls (P=0.049). Three years brain metastasis-free survival was 84% and 97% for the BRCA+ and controls, respectively (P=0.176). Mean time to brain failure was 11 months from diagnosis for the BRCA patients. All 3 BRCA1 patients who developed BM were of a basal-type triple negative phenotype. Breast cancer patients with germline BRCA1 mutations appear to have a shorter interval to brain progression while accounting for confounding factors.

  12. The Impact of Mutation and Gene Conversion on the Local Diversification of Antigen Genes in African Trypanosomes

    PubMed Central

    Gjini, Erida; Haydon, Daniel T.; Barry, J. David; Cobbold, Christina A.

    2012-01-01

    Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair. PMID:22735079

  13. Genetic Progression of High Grade Prostatic Intraepithelial Neoplasia to Prostate Cancer.

    PubMed

    Jung, Seung-Hyun; Shin, Sun; Kim, Min Sung; Baek, In-Pyo; Lee, Ji Youl; Lee, Sung Hak; Kim, Tae-Min; Lee, Sug Hyung; Chung, Yeun-Jun

    2016-05-01

    Although high grade prostatic intraepithelial neoplasia (HGPIN) is considered a neoplastic lesion that precedes prostate cancer (PCA), the genomic structures of HGPIN remain unknown. Identification of the genomic landscape of HGPIN and the genomic differences between HGPIN and PCA that may drive the progression to PCA. We analyzed 20 regions of paired HGPIN and PCA from six patients using whole-exome sequencing and array-comparative genomic hybridization. Somatic mutation and copy number alteration (CNA) profiles of paired HGPIN and PCA were measured and compared. The number of total mutations and CNAs of HGPINs were significantly fewer than those of PCAs. Mutations in FOXA1 and CNAs (1q and 8q gains) were detected in both HGPIN and PCA ('common'), suggesting their roles in early PCA development. Mutations in SPOP, KDM6A, and KMT2D were 'PCA-specific', suggesting their roles in HGPIN progression to PCA. The 8p loss was either 'common' or 'PCA-specific'. In-silico estimation of evolutionary ages predicted that HGPIN genomes were much younger than PCA genomes. Our data show that PCAs are direct descendants of HGPINs in most cases that require more genomic alterations to progress to PCA. The nature of heterogeneous HGPIN population that might attenuate genomic signals should further be studied. HGPIN genomes harbor relatively fewer mutations and CNAs than PCA but require additional hits for the progression. In this study, we suggest a systemic diagram from high grade prostatic intraepithelial neoplasia (HGPIN) to prostate cancer (PCA). Our results provide a clue to explain the long latency from HGPIN to PCA and provide useful information for the genetic diagnosis of HGPIN and PCA. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  14. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections

    PubMed Central

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T. G.; Hendriks, Wiljan J. A. J.; Cortés, Jesús M.; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  15. Field-based insights to the evolution of specialization: plasticity and fitness across habitats in a specialist/generalist species pair.

    PubMed

    Griffith, Timothy; Sultan, Sonia E

    2012-04-01

    Factors promoting the evolution of specialists versus generalists have been little studied in ecological context. In a large-scale comparative field experiment, we studied genotypes from naturally evolved populations of a closely related generalist/specialist species pair (Polygonum persicaria and P. hydropiper), reciprocally transplanting replicates of multiple lines into open and partially shaded sites where the species naturally co-occur. We measured relative fitness, individual plasticity, herbivory, and genetic variance expressed in the contrasting light habitats at both low and high densities. Fitness data confirmed that the putative specialist out-performed the generalist in only one environment, the favorable full sun/low-density environment to which it is largely restricted in nature, while the generalist had higher lifetime reproduction in both canopy and dense neighbor shade. The generalist, P. persicaria, also expressed greater adaptive plasticity for biomass allocation and leaf size in shaded conditions than the specialist. We found no evidence that the ecological specialization of P. hydropiper reflects either genetically based fitness trade-offs or maintenance costs of plasticity, two types of genetic constraint often invoked to prevent the evolution of broadly adaptive genotypes. However, the patterns of fitness variance and herbivore damage revealed how release from herbivory in a new range can cause an introduced species to evolve as a specialist in that range, a surprising finding with important implications for invasion biology. Patterns of fitness variance between and within sites are also consistent with a possible role for the process of mutation accumulation (in this case, mutations affecting shade-expressed phenotypes) in the evolution and/or maintenance of specialization in P. hydropiper.

  16. Field-based insights to the evolution of specialization: plasticity and fitness across habitats in a specialist/generalist species pair

    PubMed Central

    Griffith, Timothy; Sultan, Sonia E

    2012-01-01

    Factors promoting the evolution of specialists versus generalists have been little studied in ecological context. In a large-scale comparative field experiment, we studied genotypes from naturally evolved populations of a closely related generalist/specialist species pair (Polygonum persicaria and P. hydropiper), reciprocally transplanting replicates of multiple lines into open and partially shaded sites where the species naturally co-occur. We measured relative fitness, individual plasticity, herbivory, and genetic variance expressed in the contrasting light habitats at both low and high densities. Fitness data confirmed that the putative specialist out-performed the generalist in only one environment, the favorable full sun/low-density environment to which it is largely restricted in nature, while the generalist had higher lifetime reproduction in both canopy and dense neighbor shade. The generalist, P. persicaria, also expressed greater adaptive plasticity for biomass allocation and leaf size in shaded conditions than the specialist. We found no evidence that the ecological specialization of P. hydropiper reflects either genetically based fitness trade-offs or maintenance costs of plasticity, two types of genetic constraint often invoked to prevent the evolution of broadly adaptive genotypes. However, the patterns of fitness variance and herbivore damage revealed how release from herbivory in a new range can cause an introduced species to evolve as a specialist in that range, a surprising finding with important implications for invasion biology. Patterns of fitness variance between and within sites are also consistent with a possible role for the process of mutation accumulation (in this case, mutations affecting shade-expressed phenotypes) in the evolution and/or maintenance of specialization in P. hydropiper. PMID:22837826

  17. Target and Agent Prioritization for the Children's Oncology Group-National Cancer Institute Pediatric MATCH Trial.

    PubMed

    Allen, Carl E; Laetsch, Theodore W; Mody, Rajen; Irwin, Meredith S; Lim, Megan S; Adamson, Peter C; Seibel, Nita L; Parsons, D Williams; Cho, Y Jae; Janeway, Katherine

    2017-05-01

    Over the past decades, outcomes for children with cancer have improved dramatically through serial clinical trials based in large measure on dose intensification of cytotoxic chemotherapy for children with high-risk malignancies. Progress made through such dose intensification, in general, is no longer yielding further improvements in outcome. With the revolution in sequencing technologies and rapid development of drugs that block specific proteins and pathways, there is now an opportunity to improve outcomes for pediatric cancer patients through mutation-based targeted therapeutic strategies. The Children's Oncology Group (COG), in partnership with the National Cancer Institute (NCI), is planning a trial entitled the COG-NCI Pediatric Molecular Analysis for Therapeutic Choice (Pediatric MATCH) protocol utilizing an umbrella design. This protocol will have centralized infrastructure and will consist of a biomarker profiling protocol and multiple single-arm phase II trials of targeted therapies. Pediatric patients with recurrent or refractory solid tumors, lymphomas, or histiocytoses with measurable disease will be eligible. The Pediatric MATCH Target and Agent Prioritization (TAP) committee includes membership representing COG disease committees, the Food and Drug Administration, and the NCI. The TAP Committee systematically reviewed target and agent pairs for inclusion in the Pediatric MATCH trial. Fifteen drug-target pairs were reviewed by the TAP Committee, with seven recommended for further development as initial arms of the Pediatric MATCH trial. The current evidence for availability, efficacy, and safety of targeted agents in children for each class of mutation considered for inclusion in the Pediatric MATCH trial is discussed in this review. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Anatomic & metabolic brain markers of the m.3243A>G mutation: A multi-parametric 7T MRI study.

    PubMed

    Haast, Roy A M; Ivanov, Dimo; IJsselstein, Rutger J T; Sallevelt, Suzanne C E H; Jansen, Jacobus F A; Smeets, Hubert J M; de Coo, Irenaeus F M; Formisano, Elia; Uludağ, Kâmil

    2018-01-01

    One of the most common mitochondrial DNA (mtDNA) mutations, the A to G transition at base pair 3243, has been linked to changes in the brain, in addition to commonly observed hearing problems, diabetes and myopathy. However, a detailed quantitative description of m.3243A>G patients' brains has not been provided so far. In this study, ultra-high field MRI at 7T and volume- and surface-based data analyses approaches were used to highlight morphology (i.e. atrophy)-, microstructure (i.e. myelin and iron concentration)- and metabolism (i.e. cerebral blood flow)-related differences between patients (N = 22) and healthy controls (N = 15). The use of quantitative MRI at 7T allowed us to detect subtle changes of biophysical processes in the brain with high accuracy and sensitivity, in addition to typically assessed lesions and atrophy. Furthermore, the effect of m.3243A>G mutation load in blood and urine epithelial cells on these MRI measures was assessed within the patient population and revealed that blood levels were most indicative of the brain's state and disease severity, based on MRI as well as on neuropsychological data. Morphometry MRI data showed a wide-spread reduction of cortical, subcortical and cerebellar gray matter volume, in addition to significantly enlarged ventricles. Moreover, surface-based analyses revealed brain area-specific changes in cortical thickness (e.g. of the auditory cortex), and in T 1 , T 2 * and cerebral blood flow as a function of mutation load, which can be linked to typically m.3243A>G-related clinical symptoms (e.g. hearing impairment). In addition, several regions linked to attentional control (e.g. middle frontal gyrus), the sensorimotor network (e.g. banks of central sulcus) and the default mode network (e.g. precuneus) were characterized by alterations in cortical thickness, T 1 , T 2 * and/or cerebral blood flow, which has not been described in previous MRI studies. Finally, several hypotheses, based either on vascular, metabolic or astroglial implications of the m.3243A>G mutation, are discussed that potentially explain the underlying pathobiology. To conclude, this is the first 7T and also the largest MRI study on this patient population that provides macroscopic brain correlates of the m.3243A>G mutation indicating potential MRI biomarkers of mitochondrial diseases and might guide future (longitudinal) studies to extensively track neuropathological and clinical changes.

  19. Zika Virus Attenuation by Codon Pair Deoptimization Induces Sterilizing Immunity in Mouse Models.

    PubMed

    Li, Penghui; Ke, Xianliang; Wang, Ting; Tan, Zhongyuan; Luo, Dan; Miao, Yuanjiu; Sun, Jianhong; Zhang, Yuan; Liu, Yan; Hu, Qinxue; Xu, Fuqiang; Wang, Hanzhong; Zheng, Zhenhua

    2018-06-20

    Zika virus (ZIKV) infection during the large epidemics in the Americas is related to congenital abnormities or fetal demise. To date, there is no vaccine, antiviral drug, or other modality available to prevent or treat Zika virus infection. Here we designed novel live attenuated ZIKV vaccine candidates using a codon pair deoptimization strategy. Three codon pair-deoptimized ZIKVs (Min E, Min NS1, and Min E+NS1) were de novo synthesized, and recovered by reverse genetics, containing large amounts of underrepresented codon pairs in E gene and/or NS1 gene. Amino acid sequence was 100% unchanged. The codon pair-deoptimized variants had decreased replication fitness in Vero cells (Min NS1 ≫ Min E > Min E+NS1), replicated more efficiently in insect cells than in mammalian cells, and demonstrated diminished virulence in a mouse model. In particular, Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer, and a single immunization achieved complete protection against lethal challenge and vertical ZIKV transmission during pregnancy. More importantly, due to the numerous synonymous substitutions in the codon pair-deoptimized strains, reversion to wild-type virulence through gradual nucleotide sequence mutations is unlikely. Our results collectively demonstrate that ZIKV can be effectively attenuated by codon pair deoptimization, highlighting the potential of Min E+NS1 as a safe vaccine candidate to prevent ZIKV infections. IMPORTANCE Due to unprecedented epidemics of Zika virus (ZIKV) across the Americas and the unexpected clinical symptoms including Guillain-Barré syndrome, microcephaly and other birth defects in human, there is an urgent need for ZIKV vaccine development. Here, we provided the first attenuated versions of ZIKV with two important genes (E and/or NS1) that were subjected to codon pair deoptimization. Compared to parental ZIKV, the codon pair-deoptimized ZIKVs were mammalian-attenuated, and preferred insect to mammalian Cells. Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer, and achieved complete protection against lethal challenge and vertical virus transmission during pregnancy. More importantly, the massive synonymous mutational approach made it impossible to revert to wild-type virulence. Our results have proven the feasibility of codon pair deoptimization as a strategy to develop live-attenuated vaccine candidates against flavivirues like ZIKV, Japanese encephalitis virus and West Nile virus. Copyright © 2018 American Society for Microbiology.

  20. Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity.

    PubMed

    Shastry, B S; Pendergast, S D; Hartzer, M K; Liu, X; Trese, M T

    1997-05-01

    Retinopathy of prematurity (ROP) is a retinal vascular disease occurring in infants with short gestational age and low birth weight and can lead to retinal detachment (ROP stages 4 and 5). X-linked familial exudative vitreoretinopathy is phenotypically similar to ROP and has been associated with mutations in the Norrie disease (ND) gene in some cases. To determine if similar mutations in the ND gene may play a role in the development of advanced ROP. Clinical examination and molecular genetic analysis were performed on 16 children, including 2 dizygotic and 1 monozygotic twin pairs, and their parents from 13 families. Sequencing of the amplified products revealed missense mutations (R121W and L108P) in the third exon of the ND gene in 4 patients. These mutations were not present in an unaffected premature twin, 2 children with regressed stage 3 ROP, the parents, or in 50 unrelated healthy control subjects. These findings suggest that mutations in the ND gene may play a role in the development of severe ROP in premature infants.

  1. A novel mutation of the MITF gene in a family with Waardenburg syndrome type 2: A case report

    PubMed Central

    SHI, YUNFANG; LI, XIAOZHOU; JU, DUAN; LI, YAN; ZHANG, XIULING; ZHANG, YING

    2016-01-01

    Waardenburg syndrome (WS) is an autosomal dominant disorder with varying degrees of sensorineural hearing loss, and accumulation of pigmentation in hair, skin and iris. There are four types of WS (WS1–4) with differing characteristics. Mutations in six genes [paired box gene 3 (PAX3), microphthalmia-associated transcription factor (MITF), endothelin 3 (END3), endothelin receptor type B (EDNRB), SRY (sex determining region Y)-box 10 (SOX10) and snail homolog 2 (SNAI2)] have been identified to be associated with the various types. This case report describes the investigation of genetic mutations in three patients with WS2 from a single family. Genomic DNA was extracted, and the six WS-related genes were sequenced using next-generation sequencing technology. In addition to mutations in PAX3, EDNRB and SOX10, a novel heterozygous MITF mutation, p.Δ315Arg (c.944_946delGAA) on exon 8 was identified. This is predicted to be a candidate disease-causing mutation that may affect the structure and function of the enzyme. PMID:27073475

  2. A novel mutation of the MITF gene in a family with Waardenburg syndrome type 2: A case report.

    PubMed

    Shi, Yunfang; Li, Xiaozhou; Ju, Duan; Li, Yan; Zhang, Xiuling; Zhang, Ying

    2016-04-01

    Waardenburg syndrome (WS) is an autosomal dominant disorder with varying degrees of sensorineural hearing loss, and accumulation of pigmentation in hair, skin and iris. There are four types of WS (WS1-4) with differing characteristics. Mutations in six genes [paired box gene 3 ( PAX3 ), microphthalmia-associated transcription factor ( MITF ), endothelin 3 ( END3 ), endothelin receptor type B ( EDNRB ), SRY (sex determining region Y)-box 10 ( SOX10 ) and snail homolog 2 ( SNAI2 )] have been identified to be associated with the various types. This case report describes the investigation of genetic mutations in three patients with WS2 from a single family. Genomic DNA was extracted, and the six WS-related genes were sequenced using next-generation sequencing technology. In addition to mutations in PAX3, EDNRB and SOX10, a novel heterozygous MITF mutation, p.Δ315Arg (c.944_946delGAA) on exon 8 was identified. This is predicted to be a candidate disease-causing mutation that may affect the structure and function of the enzyme.

  3. Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference

    PubMed Central

    Sierant, Malgorzata; Paduszynska, Alina; Kazmierczak-Baranska, Julia; Nacmias, Benedetta; Sorbi, Sandro; Bagnoli, Silvia; Sochacka, Elzbieta; Nawrot, Barbara

    2011-01-01

    RNA interference (RNAi) technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs) are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 C→G) alleles of human Presenilin1 gene (PSEN1). This mutation, resulting in L392V PSEN1 variant, contributes to early onset familial Alzheimer's disease. Using the dual fluorescence assay, flow cytometry and fluorescent microscopy we identified positions 8th–11th, within the central part of the antisense strand, as the most sensitive to mismatches. 2-Thiouridine chemical modification introduced at the 3′-end of the antisense strand improved the allele discrimination, but wobble base pairing adjacent to the mutation site abolished the siRNA activity. Our data indicate that siRNAs can be designed to discriminate between the wild type and mutant alleles of genes that differ by just a single nucleotide. PMID:21559198

  4. Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells.

    PubMed

    Hansen, Erik C; Ransom, Monica; Hesselberth, Jay R; Hosmane, Nina N; Capoferri, Adam A; Bruner, Katherine M; Pollack, Ross A; Zhang, Hao; Drummond, Michael Bradley; Siliciano, Janet M; Siliciano, Robert; Stivers, James T

    2016-09-20

    We report that a major subpopulation of monocyte-derived macrophages (MDMs) contains high levels of dUTP, which is incorporated into HIV-1 DNA during reverse transcription (U/A pairs), resulting in pre-integration restriction and post-integration mutagenesis. After entering the nucleus, uracilated viral DNA products are degraded by the uracil base excision repair (UBER) machinery with less than 1% of the uracilated DNA successfully integrating. Although uracilated proviral DNA showed few mutations, the viral genomic RNA was highly mutated, suggesting that errors occur during transcription. Viral DNA isolated from blood monocytes and alveolar macrophages (but not T cells) of drug-suppressed HIV-infected individuals also contained abundant uracils. The presence of viral uracils in short-lived monocytes suggests their recent infection through contact with virus producing cells in a tissue reservoir. These findings reveal new elements of a viral defense mechanism involving host UBER that may be relevant to the establishment and persistence of HIV-1 infection.

  5. Systematic screening for mutations in the human serotonin 1F receptor gene in patients with bipolar affective disorder and schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimron-Abarbanell, D.; Harms, H.; Erdmann, J.

    1996-04-09

    Using single strand conformational analysis we screened the complete coding sequence of the serotonin 1F (5-HT{sub 1F}) receptor gene for the presence of DNA sequence variation in a sample of 137 unrelated individuals including 45 schizophrenic patients, 46 bipolar patients, as well as 46 healthy controls. We detected only three rare sequence variants which are characterized by single base pair substitutions, namely a silent T{r_arrow}A transversion in the third position of codon 261 (encoding isoleucine), a silent C{r_arrow}T transition in the third position of codon 176 (encoding histidine), and a C{r_arrow}T transition in position -78 upstream from the start codon.more » The lack of significant mutations in patients suffering from schizophrenia and bipolar affective disorder indicates that the 5-HT{sub 1F} receptor is not commonly involved in the etiology of these diseases. 12 refs., 1 fig., 2 tabs.« less

  6. Polymorphism of follicle stimulating hormone beta (FSHβ) subunit gene and its association with litter traits in giant panda.

    PubMed

    Huang, Xiaoyu; Li, Desheng; Wang, Jiwen; Huang, Yan; Han, Chunchun; Zhang, Guiquan; Huang, Zhi; Wu, Honglin; Wei, Ming; Wang, Guosong; Hu, Haiping; Deng, Tao; He, Tao; Zhou, Yingming; Song, Shixian; Luo, Bo; Zhang, Heming

    2013-11-01

    The different SSCP patterns of the follicle stimulating hormone beta (FSHβ) gene amplified by three pairs of primers were sequenced. Comparisons among the three nucleotide sequences of three genotypes indicated that three base substitutions (A213T, A91G, and A89C) were detected in FSHβ gene, which A213T substitution led to one amino acids mutation (Lys > Met), and the other two substitutions were synonymous mutations. The AA, AB and BB genotypes patterns obtained by FSHβ primer1 had evident relation with the litter traits, but the SSCP genotypes patterns obtained by FSHβ primer2 and primer3 had no evident relation with the litter traits in giant panda. The giant panda with AA and AB genotype had the largest litter size and multiparity rate compared with the BB genotypes (P < 0.05). We speculated that the giant pandas with the A allele have better litter traits than those with the B allele.

  7. Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens.

    PubMed Central

    Scheeren-Groot, E P; Rodenburg, K W; den Dulk-Ras, A; Turk, S C; Hooykaas, P J

    1994-01-01

    To find VirG proteins with altered properties, the virG gene was mutagenized. Random chemical mutagenesis of single-stranded DNA containing the Agrobacterium tumefaciens virG gene led with high frequency to the inactivation of the gene. Sequence analysis showed that 29% of the mutants contained a virG gene with one single-base-pair substitution somewhere in the open reading frame. Thirty-nine different mutations that rendered the VirG protein inactive were mapped. Besides these inactive mutants, two mutants in which the vir genes were active even in the absence of acetosyringone were found on indicator plates. A VirG protein with an N54D substitution turned out to be able to induce a virB-lacZ reporter gene to a high level even in the absence of the inducer acetosyringone. A VirG protein with an I77V substitution exhibited almost no induction in the absence of acetosyringone but showed a maximum induction level already at low concentrations of acetosyringone. Images PMID:7961391

  8. Treatment with the Fusion Inhibitor Enfuvirtide Influences the Appearance of Mutations in the Human Immunodeficiency Virus Type 1 Regulatory Protein Rev▿

    PubMed Central

    Svicher, Valentina; Alteri, Claudia; D'Arrigo, Roberta; Laganà, Alessandro; Trignetti, Maria; Lo Caputo, Sergio; Callegaro, Anna Paola; Maggiolo, Franco; Mazzotta, Francesco; Ferro, Alfredo; Dimonte, Salvatore; Aquaro, Stefano; di Perri, Giovanni; Bonora, Stefano; Tommasi, Chiara; Trotta, Maria Paola; Narciso, Pasquale; Antinori, Andrea; Perno, Carlo Federico; Ceccherini-Silberstein, Francesca

    2009-01-01

    The gp41-encoding sequence of the env gene contains in two separate regions the Rev-responsive elements (RRE) and the alternative open reading frame of the second exon of the regulatory protein Rev. The binding of Rev to the RRE allows the transport of unspliced/singly spliced viral mRNAs out of the nucleus, an essential step in the life cycle of human immunodeficiency virus type 1 (HIV-1). In this study, we have investigated whether the fusion-inhibitor enfuvirtide (ENF) can induce mutations in Rev and if these mutations correlate with the classical ENF resistance gp41 mutations and with viremia and CD4 cell count. Specific Rev mutations were positively associated with ENF treatment and significantly correlated with classical ENF resistance gp41 mutations. In particular, a cluster was observed for the Rev mutations E57A (E57Arev) and N86Srev with the ENF resistance gp41 mutations Q40H (Q40Hgp41) and L45Mgp41. In addition, the presence at week 48 of the E57Arev correlates with a significant viremia increase from baseline to week 48 and with a CD4 cell count loss from baseline to week 48. By modeling the RRE structure, we found that the Q40gp41 and L45gp41 codons form complementary base pairs in a region of the RRE involved in Rev binding. The conformation of this Rev-binding site is disrupted when Q40Hgp41 and L45Mgp41 occur alone while it is restored when both mutations are present. In conclusion, our study shows that ENF pressure may also affect both Rev and RRE structures and can provide an excellent example of compensatory evolution. This highlights the multiple roles of ENF (and perhaps other entry inhibitors) in modulating the correct interplay between the different HIV-1 genes and proteins during the HIV-1 life cycle. PMID:19124665

  9. Treatment with the fusion inhibitor enfuvirtide influences the appearance of mutations in the human immunodeficiency virus type 1 regulatory protein rev.

    PubMed

    Svicher, Valentina; Alteri, Claudia; D'Arrigo, Roberta; Laganà, Alessandro; Trignetti, Maria; Lo Caputo, Sergio; Callegaro, Anna Paola; Maggiolo, Franco; Mazzotta, Francesco; Ferro, Alfredo; Dimonte, Salvatore; Aquaro, Stefano; di Perri, Giovanni; Bonora, Stefano; Tommasi, Chiara; Trotta, Maria Paola; Narciso, Pasquale; Antinori, Andrea; Perno, Carlo Federico; Ceccherini-Silberstein, Francesca

    2009-07-01

    The gp41-encoding sequence of the env gene contains in two separate regions the Rev-responsive elements (RRE) and the alternative open reading frame of the second exon of the regulatory protein Rev. The binding of Rev to the RRE allows the transport of unspliced/singly spliced viral mRNAs out of the nucleus, an essential step in the life cycle of human immunodeficiency virus type 1 (HIV-1). In this study, we have investigated whether the fusion-inhibitor enfuvirtide (ENF) can induce mutations in Rev and if these mutations correlate with the classical ENF resistance gp41 mutations and with viremia and CD4 cell count. Specific Rev mutations were positively associated with ENF treatment and significantly correlated with classical ENF resistance gp41 mutations. In particular, a cluster was observed for the Rev mutations E57A (E57A(rev)) and N86S(rev) with the ENF resistance gp41 mutations Q40H (Q40H(gp41)) and L45M(gp41). In addition, the presence at week 48 of the E57A(rev) correlates with a significant viremia increase from baseline to week 48 and with a CD4 cell count loss from baseline to week 48. By modeling the RRE structure, we found that the Q40(gp41) and L45(gp41) codons form complementary base pairs in a region of the RRE involved in Rev binding. The conformation of this Rev-binding site is disrupted when Q40H(gp41) and L45M(gp41) occur alone while it is restored when both mutations are present. In conclusion, our study shows that ENF pressure may also affect both Rev and RRE structures and can provide an excellent example of compensatory evolution. This highlights the multiple roles of ENF (and perhaps other entry inhibitors) in modulating the correct interplay between the different HIV-1 genes and proteins during the HIV-1 life cycle.

  10. Molecular basis of splotch and Waardenburg Pax-3 mutations.

    PubMed Central

    Chalepakis, G; Goulding, M; Read, A; Strachan, T; Gruss, P

    1994-01-01

    Pax genes control certain aspects of development, as mutations result in (semi)dominant defects apparent during embryogenesis. Pax-3 has been associated with the mouse mutant splotch (Sp) and the human Waardenburg syndrome type 1 (WS1). We have examined the molecular basis of splotch and WS1 by studying the effect of mutations on DNA binding, using a defined target sequence. Pax-3 contains two different types of functional DNA-binding domains, a paired domain and a homeodomain. Mutational analysis of Pax-3 reveals different modes of DNA binding depending on the presence of these domains. A segment of Pax-3 located between the two DNA-binding domains, including a conserved octapeptide, participates in protein homodimerization. Pax-3 mutations found in splotch alleles and WS1 individuals change DNA binding and, in the case of a protein product of the Sp allele, dimerization. These findings were taken as a basis to define the molecular nature of the mutants. Images PMID:7909605

  11. The Canine POMC Gene, Obesity in Labrador Retrievers and Susceptibility to Diabetes Mellitus.

    PubMed

    Davison, L J; Holder, A; Catchpole, B; O'Callaghan, C A

    2017-03-01

    Diabetes mellitus (DM) in dogs is a common endocrinopathy with a complex genetic architecture. Disease susceptibility in several breeds is associated with polymorphisms in immune response genes, but in the Labrador retriever breed, no genetic associations with DM have been identified. A deletion in the pro-opiomelanocortin (POMC) gene in Labrador retrievers is associated with increased appetite and risk of obesity. To characterize the POMC deletion in Labrador retrievers, to develop a simple genetic test for this mutation, and to test the hypothesis that the POMC gene deletion is associated with an increased risk of DM in this breed. Sixty-one non-diabetic Labrador retrievers aged >6 years and 57 Labrador retrievers with DM. Case-control genotyping study to compare the frequency of the POMC deletion in dogs with and without DM. After polymerase chain reaction (PCR) and sequencing to characterize the mutation, a PCR-based test was developed and validated using 2 different restriction fragment length polymorphism assays. A 14-base-pair deletion was confirmed and localized to exon 3 of the canine POMC gene. A PCR-based test for the deletion was successfully developed. There was no association between the presence of the POMC deletion mutation and DM in this population of Labrador retriever dogs (P = .31). This study adds to the existing scientific literature indicating that there is little evidence for a direct link between obesity and DM in dogs. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  12. Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome.

    PubMed

    Gripp, Karen W; Robbins, Katherine M; Sobreira, Nara L; Witmer, P Dane; Bird, Lynne M; Avela, Kristiina; Makitie, Outi; Alves, Daniela; Hogue, Jacob S; Zackai, Elaine H; Doheny, Kimberly F; Stabley, Deborah L; Sol-Church, Katia

    2015-02-01

    Lateral meningocele syndrome (LMS, OMIM%130720), also known as Lehman syndrome, is a very rare skeletal disorder with facial anomalies, hypotonia and meningocele-related neurologic dysfunction. The characteristic lateral meningoceles represent the severe end of the dural ectasia spectrum and are typically most severe in the lower spine. Facial features of LMS include hypertelorism and telecanthus, high arched eyebrows, ptosis, midfacial hypoplasia, micrognathia, high and narrow palate, low-set ears and a hypotonic appearance. Hyperextensibility, hernias and scoliosis reflect a connective tissue abnormality, and aortic dilation, a high-pitched nasal voice, wormian bones and osteolysis may be present. Lateral meningocele syndrome has phenotypic overlap with Hajdu-Cheney syndrome. We performed exome resequencing in five unrelated individuals with LMS and identified heterozygous truncating NOTCH3 mutations. In an additional unrelated individual Sanger sequencing revealed a deleterious variant in the same exon 33. In total, five novel de novo NOTCH3 mutations were identified in six unrelated patients. One had a 26 bp deletion (c.6461_6486del, p.G2154fsTer78), two carried the same single base pair insertion (c.6692_93insC, p.P2231fsTer11), and three individuals had a nonsense point mutation at c.6247A > T (pK2083*), c.6663C > G (p.Y2221*) or c.6732C > A, (p.Y2244*). All mutations cluster into the last coding exon, resulting in premature termination of the protein and truncation of the negative regulatory proline-glutamate-serine-threonine rich PEST domain. Our results suggest that mutant mRNA products escape nonsense mediated decay. The truncated NOTCH3 may cause gain-of-function through decreased clearance of the active intracellular product, resembling NOTCH2 mutations in the clinically related Hajdu-Cheney syndrome and contrasting the NOTCH3 missense mutations causing CADASIL. © 2014 Wiley Periodicals, Inc.

  13. The Spectrum of Mutations in Progranulin

    PubMed Central

    Yu, Chang-En; Bird, Thomas D.; Bekris, Lynn M.; Montine, Thomas J.; Leverenz, James B.; Steinbart, Ellen; Galloway, Nichole M.; Feldman, Howard; Woltjer, Randall; Miller, Carol A.; Wood, Elisabeth McCarty; Grossman, Murray; McCluskey, Leo; Clark, Christopher M.; Neumann, Manuela; Danek, Adrian; Galasko, Douglas R.; Arnold, Steven E.; Chen-Plotkin, Alice; Karydas, Anna; Miller, Bruce L.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Schellenberg, Gerard D.; Van Deerlin, Vivianna M.

    2010-01-01

    Background Mutation in the progranulin gene (GRN) can cause frontotemporal dementia (FTD). However, it is unclear whether some rare FTD-related GRN variants are pathogenic and whether neurodegenerative disorders other than FTD can also be caused by GRN mutations. Objectives To delineate the range of clinical presentations associated with GRN mutations and to define pathogenic candidacy of rare GRN variants. Design Case-control study. Setting Clinical and neuropathology dementia research studies at 8 academic centers. Participants Four hundred thirty-four patients with FTD, including primary progressive aphasia, semantic dementia, FTD/amyotrophic lateral sclerosis (ALS), FTD/motor neuron disease, corticobasal syndrome/corticobasal degeneration, progressive supranuclear palsy, Pick disease, dementia lacking distinctive histopathology, and pathologically confirmed cases of frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U); and 111 non-FTD cases (controls) in which TDP-43 deposits were a prominent neuropathological feature, including subjects with ALS, Guam ALS and/or parkinsonism dementia complex, Guam dementia, Alzheimer disease, multiple system atrophy, and argyrophilic grain disease. Main Outcome Measures Variants detected on sequencing of all 13 GRN exons and at least 80 base pairs of flanking introns, and their pathogenic candidacy determined by in silico and ex vivo splicing assays. Results We identified 58 genetic variants that included 26 previously unknown changes. Twenty-four variants appeared to be pathogenic, including 8 novel mutations. The frequency of GRN mutations was 6.9% (30 of 434) of all FTD-spectrum cases, 21.4% (9 of 42) of cases with a pathological diagnosis of FTLD-U, 16.0% (28 of 175) of FTD-spectrum cases with a family history of a similar neurodegenerative disease, and 56.2% (9 of 16) of cases of FTLD-U with a family history. Conclusions Pathogenic mutations were found only in FTD-spectrum cases and not in other related neurodegenerative diseases. Haploinsufficiency of GRN is the predominant mechanism leading to FTD. PMID:20142524

  14. Alteration of DNA binding, dimerization, and nuclear translocation of SHOX homeodomain mutations identified in idiopathic short stature and Leri-Weill dyschondrosteosis.

    PubMed

    Schneider, Katja U; Marchini, Antonio; Sabherwal, Nitin; Röth, Ralph; Niesler, Beate; Marttila, Tiina; Blaschke, Rüdiger J; Lawson, Margaret; Dumic, Miroslav; Rappold, Gudrun

    2005-07-01

    Haploinsufficiency of the short stature homeobox gene SHOX has been found in patients with idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis (LWD). In addition to complete gene deletions and nonsense mutations, several missense mutations have been identified in both patient groups, leading to amino acid substitutions in the SHOX protein. The majority of missense mutations were found to accumulate in the region encoding the highly conserved homeodomain of the paired-like type. In this report, we investigated nine different amino acid exchanges in the homeodomain of SHOX patients with ISS and LWD. We were able show that these mutations cause an alteration of the biological function of SHOX by loss of DNA binding, reduced dimerization ability, and/or impaired nuclear translocation. Additionally, one of the mutations (c.458G>T, p.R153L) is defective in transcriptional activation even though it is still able to bind to DNA, dimerize, and translocate to the nucleus. Thus, we demonstrate that single missense mutations in the homeodomain fundamentally impair SHOX key functions, thereby leading to the phenotype observed in patients with LWD and ISS.

  15. Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3′-OH base mispairs and damaged base lesions

    PubMed Central

    Chauleau, Mathieu; Shuman, Stewart

    2013-01-01

    T4 RNA ligase 2 (Rnl2) repairs 3′-OH/5′-PO4 nicks in duplex nucleic acids in which the broken 3′-OH strand is RNA. Ligation entails three chemical steps: reaction of Rnl2 with ATP to form a covalent Rnl2–(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the 5′-PO4 of the nick to form an activated AppN– intermediate (step 2); and attack by the nick 3′-OH on the AppN– strand to form a 3′–5′ phosphodiester (step 3). Here we used rapid mix-quench methods to analyze the kinetic mechanism and fidelity of single-turnover nick sealing by Rnl2–AMP. For substrates with correctly base-paired 3′-OH nick termini, kstep2 was fast (9.5 to 17.9 sec−1) and similar in magnitude to kstep3 (7.9 to 32 sec−1). Rnl2 fidelity was enforced mainly at the level of step 2 catalysis, whereby 3′-OH base mispairs and oxoguanine, oxoadenine, or abasic lesions opposite the nick 3′-OH elicited severe decrements in the rate of 5′-adenylylation and relatively modest slowing of the rate of phosphodiester synthesis. The exception was the noncanonical A:oxoG base pair, which Rnl2 accepted as a correctly paired end for rapid sealing. These results underscore (1) how Rnl2 requires proper positioning of the 3′-terminal ribonucleoside at the nick for optimal 5′-adenylylation and (2) the potential for nick-sealing ligases to embed mutations during the repair of oxidative damage. PMID:24158792

  16. Determining ERβ Binding Affinity to Singly Mutant ERE Using Dual Polarization Interferometry

    NASA Astrophysics Data System (ADS)

    Song, Hong Yan; Su, Xiaodi

    In a classic mode of estrogen action, estrogen receptors (ERs) bind to estrogen responsive element (ERE) to activate gene transcription. A perfect ERE contains a 13-base pair sequence of a palindromic repeat separated by a three-base spacer, 5‧-GGTCAnnnTGACC-3‧. In addition to the consensus or wild-type ERE (wtERE), naturally occurring EREs often have one or two base pairs’ alternation. Based on the newly constructed Thermodynamic Modeling of ChIP-seq (TherMos) model, binding energy between ERβ and a series of 34-bp mutant EREs (mutERE) was simulated to predict the binding affinity between ERs and EREs with single base pair deviation at different sites of the 13-bp inverted sequence. Experimentally, dual polarization interferometry (DPI) method was developed to measure ERβ-mutEREs binding affinity. On a biotin-NeutrAvidin (NA)-biotin treated DPI chip, wtERE is immobilized. In a direct binding assay, ERβ-wtERE binding affinity is determined. In a competition assay, ERβ was preincubated with mutant EREs before being added for competitive binding to the immobilized wtERE. This competition strategy provided a successful platform to evaluate the binding affinity variation among large number of ERE with different base mutations. The experimental result correlates well with the mathematically predicted binding energy with a Spearman correlation coefficient of 0.97.

  17. Development of a PCR-based marker utilizing a deletion mutation in the dihydroflavonol 4-reductase (DFR) gene responsible for the lack of anthocyanin production in yellow onions (Allium cepa).

    PubMed

    Kim, Sunggil; Yoo, Kil Sun; Pike, Leonard M

    2005-02-01

    Bulb color in onions (Allium cepa) is an important trait, but the mechanism of color inheritance is poorly understood at the molecular level. A previous study showed that inactivation of the dihydroflavonol 4-reductase (DFR) gene at the transcriptional level resulted in a lack of anthocyanin production in yellow onions. The objectives of the present study were the identification of the critical mutations in the DFR gene (DFR-A) and the development of a PCR-based marker for allelic selection. We report the isolation of two additional DFR homologs (DFR-B and DFR-C). No unique sequences were identified in either DFR homolog, even in the untranslated region (UTR). Both genes shared more than 95% nucleotide sequence identity with the DFR-A gene. To obtain a unique sequence from each gene, we isolated the promoter regions. Sequences of the DFR-A and DFR-B promoters differed completely from one another, except for an approximately 100-bp sequence adjacent to the 5'UTR. It was possible to specifically amplify only the DFR-A gene using primers designed to anneal to the unique promoter region. The sequences of yellow and red DFR-A alleles were the same except for a single base-pair change in the promoter and an approximately 800-bp deletion within the 3' region of the yellow DFR-A allele. This deletion was used to develop a co-dominant PCR-based marker that segregated perfectly with color phenotypes in the F2 population. These results indicate that a deletion mutation in the yellow DFR-A gene results in the lack of anthocyanin production in yellow onions.

  18. Genetic analysis of leukemic transformation of chronic myeloproliferative neoplasms

    PubMed Central

    Abdel-Wahab, Omar; Manshouri, Taghi; Patel, Jay; Harris, Kelly; Yao, JinJuan; Hedvat, Cyrus; Heguy, Adriana; Bueso-Ramos, Carlos; Kantarjian, Hagop; Levine, Ross L.; Verstovsek, Srdan

    2009-01-01

    The genetic events which contribute to transformation of myeloproliferative neoplasms (MPN) to acute myeloid leukemia (AML) are not well characterized. We investigated the role of JAK2, TET2, ASXL1, and IDH1 mutations in leukemic transformation of MPNs through mutational analysis of 63 patients with AML secondary to a preexisting MPN (sAML). We identified frequent TET2 (26.3%), ASXL1 (19.3%), IDH1 (9.5%), and JAK2 (36.8%) mutations in sAML; all possible mutational combinations of these genes were observed. Analysis of 14 patients for which paired samples from MPN and sAML were available demonstrated TET2 mutations were frequently acquired at leukemic transformation (6/14=43%). In contrast, ASXL1 mutations were almost always detected in both the MPN and AML clones from individual patients. A case was also observed where TET2 and ASXL1 mutations were found before the patient acquired a JAK2 mutation or developed clinical evidence of MPN. We conclude that mutations in TET2, ASXL1, and IDH1 are common in sAML derived from a pre-existing MPN. Although TET2/ASXL1 mutations may precede acquisition of JAK2 mutations by the MPN clone, mutations in TET2, but not ASXL1, are commonly acquired at the time of leukemic transformation. These data suggest the mutational order of events in MPN and sAML varies in different patients, and that TET2 and ASXL1 mutations have distinct roles in MPN pathogenesis and leukemic transformation. The presence of sAML with no pre-existing JAK2/TET2/ASXL1/IDH1 mutations indicates the existence of other mutations necessary for leukemic transformation. PMID:20068184

  19. Characterization of a tandemly repeated DNA sequence family originally derived by retroposition of tRNA(Glu) in the newt.

    PubMed

    Nagahashi, S; Endoh, H; Suzuki, Y; Okada, N

    1991-11-20

    A previous report from this laboratory showed that in vitro transcription of total genomic DNA of the newt Cynopus pyrrhogaster resulted in a discrete sized 8 S RNA, which represented highly repetitive and transcribable sequences with a glutamic acid tRNA-like structure in the newt genome. We isolated four independent clones from a newt genomic library and determined the complete sequences of three 2000 to 2400 base-pair PstI fragments spanning the 8 S RNA gene. The glutamic acid tRNA-related segment in the 8 S RNA gene contains the CCA sequence expected as the 3' terminus of a tRNA molecule. Further, the 11 nucleotides located 13 nucleotides upstream from one of the two transcription initiation sites of the 8 S RNA were found to be repeated in the region upstream from the termination site, suggesting that the original unit, which is shorter than the 8 S RNA, was retrotransposed via cDNA intermediates from the PolIII transcript. In the upstream region of the 8 S RNA gene, a 360 nucleotide unit containing the glutamic acid tRNA-related segment was found to be duplicated (clones NE1 and NE10) or triplicated (clone NE3). Except for the difference in the number of the 360 nucleotide unit, the three sequences of the 2000 to 2400 base-pair PstI fragment were essentially the same with only a few mutations and minor deletions. Inverse polymerase chain reaction and sequence determination of the products, together with a Southern hybridization experiment, demonstrated that the family consists of a tandemly repeated unit of 3300, 3700 or 4100 base-pairs. Thus during evolution, this family in the newt was created by retroposition via cDNA intermediates, followed by duplication or triplication of the 360 nucleotide unit and multiplication of the 3300 to 4100 base-pair region at the DNA level.

  20. Drosophila Casein Kinase I Alpha Regulates Homolog Pairing and Genome Organization by Modulating Condensin II Subunit Cap-H2 Levels

    PubMed Central

    Nguyen, Huy Q.; Nye, Jonathan; Buster, Daniel W.; Klebba, Joseph E.; Rogers, Gregory C.; Bosco, Giovanni

    2015-01-01

    The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Drosophila is an excellent model system for studying chromosomal interactions including homolog pairing. Recent work has shown that condensin II governs both interphase chromosome compaction and homolog pairing and condensin II activity is controlled by the turnover of its regulatory subunit Cap-H2. Specifically, Cap-H2 is a target of the SCFSlimb E3 ubiquitin-ligase which down-regulates Cap-H2 in order to maintain homologous chromosome pairing, chromosome length and proper nuclear organization. Here, we identify Casein Kinase I alpha (CK1α) as an additional negative-regulator of Cap-H2. CK1α-depletion stabilizes Cap-H2 protein and results in an accumulation of Cap-H2 on chromosomes. Similar to Slimb mutation, CK1α depletion in cultured cells, larval salivary gland, and nurse cells results in several condensin II-dependent phenotypes including dispersal of centromeres, interphase chromosome compaction, and chromosome unpairing. Moreover, CK1α loss-of-function mutations dominantly suppress condensin II mutant phenotypes in vivo. Thus, CK1α facilitates Cap-H2 destruction and modulates nuclear organization by attenuating chromatin localized Cap-H2 protein. PMID:25723539

Top