Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands.
Sedova, Ada; Banavali, Nilesh K
2017-03-14
Structural variation in base stacking has been analyzed frequently in isolated double helical contexts for nucleic acids, but not as often in nonhelical geometries or in complex biomolecular environments. In this study, conformations of two neighboring bases near their stacked state in any environment are comprehensively characterized for single-strand dinucleotide (SSD) nucleic acid crystal structure conformations. An ensemble clustering method is used to identify a reduced set of representative stacking geometries based on pairwise distances between select atoms in consecutive bases, with multiple separable conformational clusters obtained for categories divided by nucleic acid type (DNA/RNA), SSD sequence, stacking face orientation, and the presence or absence of a protein environment. For both DNA and RNA, SSD conformations are observed that are either close to the A-form, or close to the B-form, or intermediate between the two forms, or further away from either form, illustrating the local structural heterogeneity near the stacked state. Among this large variety of distinct conformations, several common stacking patterns are observed between DNA and RNA, and between nucleic acids in isolation or in complex with proteins, suggesting that these might be stable stacking orientations. Noncanonical face/face orientations of the two bases are also observed for neighboring bases in the same strand, but their frequency is much lower, with multiple SSD sequences across categories showing no occurrences of such unusual stacked conformations. The resulting reduced set of stacking geometries is directly useful for stacking-energy comparisons between empirical force fields, prediction of plausible localized variations in single-strand structures near their canonical states, and identification of analogous stacking patterns in newly solved nucleic acid containing structures.
Graphite-based photovoltaic cells
Lagally, Max; Liu, Feng
2010-12-28
The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.
Facial expression recognition based on improved local ternary pattern and stacked auto-encoder
NASA Astrophysics Data System (ADS)
Wu, Yao; Qiu, Weigen
2017-08-01
In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.
Novel vehicle detection system based on stacked DoG kernel and AdaBoost
Kang, Hyun Ho; Lee, Seo Won; You, Sung Hyun
2018-01-01
This paper proposes a novel vehicle detection system that can overcome some limitations of typical vehicle detection systems using AdaBoost-based methods. The performance of the AdaBoost-based vehicle detection system is dependent on its training data. Thus, its performance decreases when the shape of a target differs from its training data, or the pattern of a preceding vehicle is not visible in the image due to the light conditions. A stacked Difference of Gaussian (DoG)–based feature extraction algorithm is proposed to address this issue by recognizing common characteristics, such as the shadow and rear wheels beneath vehicles—of vehicles under various conditions. The common characteristics of vehicles are extracted by applying the stacked DoG shaped kernel obtained from the 3D plot of an image through a convolution method and investigating only certain regions that have a similar patterns. A new vehicle detection system is constructed by combining the novel stacked DoG feature extraction algorithm with the AdaBoost method. Experiments are provided to demonstrate the effectiveness of the proposed vehicle detection system under different conditions. PMID:29513727
CodonLogo: a sequence logo-based viewer for codon patterns.
Sharma, Virag; Murphy, David P; Provan, Gregory; Baranov, Pavel V
2012-07-15
Conserved patterns across a multiple sequence alignment can be visualized by generating sequence logos. Sequence logos show each column in the alignment as stacks of symbol(s) where the height of a stack is proportional to its informational content, whereas the height of each symbol within the stack is proportional to its frequency in the column. Sequence logos use symbols of either nucleotide or amino acid alphabets. However, certain regulatory signals in messenger RNA (mRNA) act as combinations of codons. Yet no tool is available for visualization of conserved codon patterns. We present the first application which allows visualization of conserved regions in a multiple sequence alignment in the context of codons. CodonLogo is based on WebLogo3 and uses the same heuristics but treats codons as inseparable units of a 64-letter alphabet. CodonLogo can discriminate patterns of codon conservation from patterns of nucleotide conservation that appear indistinguishable in standard sequence logos. The CodonLogo source code and its implementation (in a local version of the Galaxy Browser) are available at http://recode.ucc.ie/CodonLogo and through the Galaxy Tool Shed at http://toolshed.g2.bx.psu.edu/.
Improving ECG Classification Accuracy Using an Ensemble of Neural Network Modules
Javadi, Mehrdad; Ebrahimpour, Reza; Sajedin, Atena; Faridi, Soheil; Zakernejad, Shokoufeh
2011-01-01
This paper illustrates the use of a combined neural network model based on Stacked Generalization method for classification of electrocardiogram (ECG) beats. In conventional Stacked Generalization method, the combiner learns to map the base classifiers' outputs to the target data. We claim adding the input pattern to the base classifiers' outputs helps the combiner to obtain knowledge about the input space and as the result, performs better on the same task. Experimental results support our claim that the additional knowledge according to the input space, improves the performance of the proposed method which is called Modified Stacked Generalization. In particular, for classification of 14966 ECG beats that were not previously seen during training phase, the Modified Stacked Generalization method reduced the error rate for 12.41% in comparison with the best of ten popular classifier fusion methods including Max, Min, Average, Product, Majority Voting, Borda Count, Decision Templates, Weighted Averaging based on Particle Swarm Optimization and Stacked Generalization. PMID:22046232
User Driven Image Stacking for ODI Data and Beyond via a Highly Customizable Web Interface
NASA Astrophysics Data System (ADS)
Hayashi, S.; Gopu, A.; Young, M. D.; Kotulla, R.
2015-09-01
While some astronomical archives have begun serving standard calibrated data products, the process of producing stacked images remains a challenge left to the end-user. The benefits of astronomical image stacking are well established, and dither patterns are recommended for almost all observing targets. Some archives automatically produce stacks of limited scientific usefulness without any fine-grained user or operator configurability. In this paper, we present PPA Stack, a web based stacking framework within the ODI - Portal, Pipeline, and Archive system. PPA Stack offers a web user interface with built-in heuristics (based on pointing, filter, and other metadata information) to pre-sort images into a set of likely stacks while still allowing the user or operator complete control over the images and parameters for each of the stacks they wish to produce. The user interface, designed using AngularJS, provides multiple views of the input dataset and parameters, all of which are synchronized in real time. A backend consisting of a Python application optimized for ODI data, wrapped around the SWarp software, handles the execution of stacking workflow jobs on Indiana University's Big Red II supercomputer, and the subsequent ingestion of the combined images back into the PPA archive. PPA Stack is designed to enable seamless integration of other stacking applications in the future, so users can select the most appropriate option for their science.
FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking
Xu, Yilun; Wilcox, Russell; Byrd, John; ...
2017-11-20
Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less
FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yilun; Wilcox, Russell; Byrd, John
Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less
Curtiss, W C; Vournakis, J N
1984-01-01
Eukaryotic 5S rRNA sequences from 34 diverse species were compared by the following method: (1) The sequences were aligned; (2) the positions of substitutions were located by comparison of all possible pairs of sequences; (3) the substitution sites were mapped to an assumed general base pairing model; and (4) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. An analysis of the sequence and structure variability in each region of the molecule is presented. It was found that the degree of base substitution varies over a wide range, from absolute conservation to occurrence of over 90% of the possible observable substitutions. The substitutions are located primarily in stem regions of the 5S rRNA secondary structure. More than 88% of the substitutions in helical regions maintain base pairing. The disruptive substitutions are primarily located at the edges of helical regions, resulting in shortening of the helical regions and lengthening of the adjacent nonpaired regions. Base stacking patterns determined by the R-Y model are mapped onto the general secondary structure. Intrastrand and interstrand stacking could stabilize alternative coaxial structures and limit the conformational flexibility of nonpaired regions. Two short contiguous regions are 100% conserved in all species. This may reflect evolutionary constraints imposed at the DNA level by the requirement for binding of a 5S gene transcription initiation factor during gene expression.
The spatial configuration of ordered polynucleotide chains. II. The poly(rA) helix.
Olson, W K
1975-01-01
Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed. PMID:1052529
Stacking fault induced tunnel barrier in platelet graphite nanofiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng
A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.
Direct-Write Laser Grayscale Lithography for Multilayer Lead Zirconate Titanate Thin Films.
Benoit, Robert R; Jordan, Delaney M; Smith, Gabriel L; Polcawich, Ronald G; Bedair, Sarah S; Potrepka, Daniel M
2018-05-01
Direct-write laser grayscale lithography has been used to facilitate a single-step patterning technique for multilayer lead zirconate titanate (PZT) thin films. A 2.55- -thick photoresist was patterned with a direct-write laser. The intensity of the laser was varied to create both tiered and sloped structures that are subsequently transferred into multilayer PZT(52/48) stacks using a single Ar ion-mill etch. Traditional processing requires a separate photolithography step and an ion mill etch for each layer of the substrate, which can be costly and time consuming. The novel process allows access to buried electrode layers in the multilayer stack in a single photolithography step. The grayscale process was demonstrated on three 150-mm diameter Si substrates configured with a 0.5- -thick SiO 2 elastic layer, a base electrode of Pt/TiO 2 , and a stack of four PZT(52/48) thin films of either 0.25- thickness per layer or 0.50- thickness per layer, and using either Pt or IrO 2 electrodes above and below each layer. Stacked capacitor structures were patterned and results will be reported on the ferroelectric and electromechanical properties using various wiring configurations and compared to comparable single layer PZT configurations.
NASA Astrophysics Data System (ADS)
Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto
2018-04-01
Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.
Scale dependant compensational stacking of channelized sedimentary deposits
NASA Astrophysics Data System (ADS)
Wang, Y.; Straub, K. M.; Hajek, E. A.
2010-12-01
Compensational stacking, the tendency for sediment transport system to preferentially fill topographic lows, thus smoothing out topographic relief is a concept used in the interpretation of the stratigraphic record. Recently, a metric was developed to quantify the strength of compensation in sedimentary basins by comparing observed stacking patterns to what would be expected from simple, uncorrelated stacking. This method uses the rate of decay of spatial variability in sedimentation between picked depositional horizons with increasing vertical stratigraphic averaging distance. We explore how this metric varies as a function of stratigraphic scale using data from physical experiments, stratigraphy exposed in outcrops and numerical models. In an experiment conducted at Tulane University’s Sediment Dynamics Laboratory, the topography of a channelized delta formed by weakly cohesive sediment was monitored along flow-perpendicular transects at a high temporal resolution relative to channel kinematics. Over the course of this experiment a uniform relative subsidence pattern, designed to isolate autogenic processes, resulted in the construction of a stratigraphic package that is 25 times as thick as the depth of the experimental channels. We observe a scale-dependence on the compensational stacking of deposits set by the system’s avulsion time-scale. Above the avulsion time-scale deposits stack purely compensationally, but below this time-scale deposits stack somewhere between randomly and deterministically. The well-exposed Ferris Formation (Cretaceous/Paleogene, Hanna Basin, Wyoming, USA) also shows scale-dependant stratigraphic organization which appears to be set by an avulsion time-scale. Finally, we utilize simple object-based models to illustrate how channel avulsions influence compensation in alluvial basins.
Pattern recognition monitoring of PEM fuel cell
Meltser, M.A.
1999-08-31
The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.
Pattern recognition monitoring of PEM fuel cell
Meltser, Mark Alexander
1999-01-01
The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.
Driving down defect density in composite EUV patterning film stacks
NASA Astrophysics Data System (ADS)
Meli, Luciana; Petrillo, Karen; De Silva, Anuja; Arnold, John; Felix, Nelson; Johnson, Richard; Murray, Cody; Hubbard, Alex; Durrant, Danielle; Hontake, Koichi; Huli, Lior; Lemley, Corey; Hetzer, Dave; Kawakami, Shinichiro; Matsunaga, Koichi
2017-03-01
Extreme ultraviolet lithography (EUVL) technology is one of the leading candidates for enabling the next generation devices, for 7nm node and beyond. As the technology matures, further improvement is required in the area of blanket film defectivity, pattern defectivity, CD uniformity, and LWR/LER. As EUV pitch scaling approaches sub 20 nm, new techniques and methods must be developed to reduce the overall defectivity, mitigate pattern collapse and eliminate film related defect. IBM Corporation and Tokyo Electron Limited (TELTM) are continuously collaborating to develop manufacturing quality processes for EUVL. In this paper, we review key defectivity learning required to enable 7nm node and beyond technology. We will describe ongoing progress in addressing these challenges through track-based processes (coating, developer, baking), highlighting the limitations of common defect detection strategies and outlining methodologies necessary for accurate characterization and mitigation of blanket defectivity in EUV patterning stacks. We will further discuss defects related to pattern collapse and thinning of underlayer films.
Progress and process improvements for multiple electron-beam direct write
NASA Astrophysics Data System (ADS)
Servin, Isabelle; Pourteau, Marie-Line; Pradelles, Jonathan; Essomba, Philippe; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco
2017-06-01
Massively parallel electron beam direct write (MP-EBDW) lithography is a cost-effective patterning solution, complementary to optical lithography, for a variety of applications ranging from 200 to 14 nm. This paper will present last process/integration results to achieve targets for both 28 and 45 nm nodes. For 28 nm node, we mainly focus on line-width roughness (LWR) mitigation by playing with stack, new resist platform and bias design strategy. The lines roughness was reduced by using thicker spin-on-carbon (SOC) hardmask (-14%) or non-chemically amplified (non-CAR) resist with bias writing strategy implementation (-20%). Etch transfer into trilayer has been demonstrated by preserving pattern fidelity and profiles for both CAR and non-CAR resists. For 45 nm node, we demonstrate the electron-beam process integration within optical CMOS flows. Resists based on KrF platform show a full compatibility with multiple stacks to fit with conventional optical flow used for critical layers. Electron-beam resist performances have been optimized to fit the specifications in terms of resolution, energy latitude, LWR and stack compatibility. The patterning process overview showing the latest achievements is mature enough to enable starting the multi-beam technology pre-production mode.
Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas
1995-01-01
A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.
AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia)
NASA Astrophysics Data System (ADS)
Hendriyana, Andri; Bauer, Klaus; Muksin, Umar; Weber, Michael
2018-05-01
We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology.
High-frequency self-aligned graphene transistors with transferred gate stacks.
Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng
2012-07-17
Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra-high-frequency circuits.
Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.
1995-04-11
A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.
Fraiwan, Arwa; Kwan, Landen; Choi, Seokheun
2016-11-15
We report a novel paper-based biobattery which generates power from microorganism-containing liquid derived from renewable and sustainable wastewater which is readily accessible in the local environment. The device fuses the art of origami and the technology of microbial fuel cells (MFCs) and has the potential to shift the paradigm for flexible and stackable paper-based batteries by enabling exceptional electrical characteristics and functionalities. 3D, modular, and retractable battery stack is created from (i) 2D paper sheets through high degrees of folding and (ii) multifunctional layers sandwiched for MFC device configuration. The stack is based on ninja star-shaped origami design formed by eight MFC modular blades, which is retractable from sharp shuriken (closed) to round frisbee (opened). The microorganism-containing wastewater is added into an inlet of the closed battery stack and it is transported into each MFC module through patterned fluidic pathways in the paper layers. During operation, the battery stack is transformed into the round frisbee to connect eight MFC modules in series for improving the power output and simultaneously expose all air-cathodes to the air for their cathodic reactions. The device generates desired values of electrical current and potential for powering an LED for more than 20min. Copyright © 2016 Elsevier B.V. All rights reserved.
Metal stack optimization for low-power and high-density for N7-N5
NASA Astrophysics Data System (ADS)
Raghavan, P.; Firouzi, F.; Matti, L.; Debacker, P.; Baert, R.; Sherazi, S. M. Y.; Trivkovic, D.; Gerousis, V.; Dusa, M.; Ryckaert, J.; Tokei, Z.; Verkest, D.; McIntyre, G.; Ronse, K.
2016-03-01
One of the key challenges while scaling logic down to N7 and N5 is the requirement of self-aligned multiple patterning for the metal stack. This comes with a large cost of the backend cost and therefore a careful stack optimization is required. Various layers in the stack have different purposes and therefore their choice of pitch and number of layers is critical. Furthermore, when in ultra scaled dimensions of N7 or N5, the number of patterning options are also much larger ranging from multiple LE, EUV to SADP/SAQP. The right choice of these are also needed patterning techniques that use a full grating of wires like SADP/SAQP techniques introduce high level of metal dummies into the design. This implies a large capacitance penalty to the design therefore having large performance and power penalties. This is often mitigated with extra masking strategies. This paper discusses a holistic view of metal stack optimization from standard cell level all the way to routing and the corresponding trade-off that exist for this space.
High-frequency self-aligned graphene transistors with transferred gate stacks
Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng
2012-01-01
Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra–high-frequency circuits. PMID:22753503
Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI.
Zhou, Ziwu; Han, Fei; Yan, Lirong; Wang, Danny J J; Hu, Peng
2017-12-01
To develop and evaluate an improved stack-of-stars radial sampling strategy for reducing streaking artifacts. The conventional stack-of-stars sampling strategy collects the same radial angle for every partition (slice) encoding. In an undersampled acquisition, such an aligned acquisition generates coherent aliasing patterns and introduces strong streaking artifacts. We show that by rotating the radial spokes in a golden-angle manner along the partition-encoding direction, the aliasing pattern is modified, resulting in improved image quality for gridding and more advanced reconstruction methods. Computer simulations were performed and phantom as well as in vivo images for three different applications were acquired. Simulation, phantom, and in vivo experiments confirmed that the proposed method was able to generate images with less streaking artifact and sharper structures based on undersampled acquisitions in comparison with the conventional aligned approach at the same acceleration factors. By combining parallel imaging and compressed sensing in the reconstruction, streaking artifacts were mostly removed with improved delineation of fine structures using the proposed strategy. We present a simple method to reduce streaking artifacts and improve image quality in 3D stack-of-stars acquisitions by re-arranging the radial spoke angles in the 3D partition direction, which can be used for rapid volumetric imaging. Magn Reson Med 78:2290-2298, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Choudhary, Nitin; Park, Juhong; Hwang, Jun Yeon; Chung, Hee-Suk; Dumas, Kenneth H; Khondaker, Saiful I; Choi, Wonbong; Jung, Yeonwoong
2016-05-05
Two-dimensional (2D) van der Waal (vdW) heterostructures composed of vertically-stacked multiple transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are envisioned to present unprecedented materials properties unobtainable from any other material systems. Conventional fabrications of these hybrid materials have relied on the low-yield manual exfoliation and stacking of individual 2D TMD layers, which remain impractical for scaled-up applications. Attempts to chemically synthesize these materials have been recently pursued, which are presently limited to randomly and scarcely grown 2D layers with uncontrolled layer numbers on very small areas. Here, we report the chemical vapor deposition (CVD) growth of large-area (>2 cm(2)) patterned 2D vdW heterostructures composed of few layer, vertically-stacked MoS2 and WS2. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) directly evidence the structural integrity of two distinct 2D TMD layers with atomically sharp vdW heterointerfaces. Electrical transport measurements of these materials reveal diode-like behavior with clear current rectification, further confirming the formation of high-quality heterointerfaces. The intrinsic scalability and controllability of the CVD method presented in this study opens up a wide range of opportunities for emerging applications based on the unconventional functionalities of these uniquely structured materials.
Chung, Sukhoon; Rhee, Hyunsill; Suh, Yongmoo
2010-01-01
Objectives This study sought to find answers to the following questions: 1) Can we predict whether a patient will revisit a healthcare center? 2) Can we anticipate diseases of patients who revisit the center? Methods For the first question, we applied 5 classification algorithms (decision tree, artificial neural network, logistic regression, Bayesian networks, and Naïve Bayes) and the stacking-bagging method for building classification models. To solve the second question, we performed sequential pattern analysis. Results We determined: 1) In general, the most influential variables which impact whether a patient of a public healthcare center will revisit it or not are personal burden, insurance bill, period of prescription, age, systolic pressure, name of disease, and postal code. 2) The best plain classification model is dependent on the dataset. 3) Based on average of classification accuracy, the proposed stacking-bagging method outperformed all traditional classification models and our sequential pattern analysis revealed 16 sequential patterns. Conclusions Classification models and sequential patterns can help public healthcare centers plan and implement healthcare service programs and businesses that are more appropriate to local residents, encouraging them to revisit public health centers. PMID:21818426
Probing the DNA kink structure induced by the hyperthermophilic chromosomal protein Sac7d
Chen, Chin-Yu; Ko, Tzu-Ping; Lin, Ting-Wan; Chou, Chia-Cheng; Chen, Chun-Jung; Wang, Andrew H.-J.
2005-01-01
Sac7d, a small, abundant, sequence-general DNA-binding protein from the hyperthermophilic archaeon Sulfolobus acidocaldarius, causes a single-step sharp kink in DNA (∼60°) via the intercalation of both Val26 and Met29. These two amino acids were systematically changed in size to probe their effects on DNA kinking. Eight crystal structures of five Sac7d mutant–DNA complexes have been analyzed. The DNA-binding pattern of the V26A and M29A single mutants is similar to that of the wild-type, whereas the V26A/M29A protein binds DNA without side chain intercalation, resulting in a smaller overall bending (∼50°). The M29F mutant inserts the Phe29 side chain orthogonally to the C2pG3 step without stacking with base pairs, inducing a sharp kink (∼80°). In the V26F/M29F-GCGATCGC complex, Phe26 intercalates deeply into DNA bases by stacking with the G3 base, whereas Phe29 is stacked on the G15 deoxyribose, in a way similar to those used by the TATA box-binding proteins. All mutants have reduced DNA-stabilizing ability, as indicated by their lower Tm values. The DNA kink patterns caused by different combinations of hydrophobic side chains may be relevant in understanding the manner by which other minor groove-binding proteins interact with DNA. PMID:15653643
Dirac electrons in Moiré superlattice: From two to three dimensions
NASA Astrophysics Data System (ADS)
Hu, Chen; Michaud-Rioux, Vincent; Kong, Xianghua; Guo, Hong
2017-11-01
Moiré patterns in van der Waals (vdW) heterostructures bring novel physical effects to the materials. We report theoretical investigations of the Moiré pattern formed by graphene (Gr) on hexagonal boron nitride (h BN). For both the two-dimensional (2D) flat-sheet and the freestanding three-dimensional (3D) wavelike film geometries, the behaviors of Dirac electrons are strongly modulated by the local high-symmetry stacking configurations of the Moiré pattern. In the 2D flat sheet, the secondary Dirac cone (SDC) dispersion emerges due to the stacking-selected localization of SDC wave functions, while the original Dirac cone (ODC) gap is suppressed due to an overall effect of ODC wave functions. In the freestanding 3D wavelike Moiré structure, we predict that a specific local stacking in the Moiré superlattice is promoted at the expense of other local stackings, leading to an electronic structure more similar to that of the perfectly matching flat Gr/h BN than that of the flat-sheet 2D Moiré pattern. To capture the overall picture of the Moiré superlattice, supercells containing 12 322 atoms are simulated by first principles.
Schipper, Aafke M; Posthuma, Leo; de Zwart, Dick; Huijbregts, Mark A J
2014-12-16
Quantitative relationships between species richness and single environmental factors, also called species sensitivity distributions (SSDs), are helpful to understand and predict biodiversity patterns, identify environmental management options and set environmental quality standards. However, species richness is typically dependent on a variety of environmental factors, implying that it is not straightforward to quantify SSDs from field monitoring data. Here, we present a novel and flexible approach to solve this, based on the method of stacked species distribution modeling. First, a species distribution model (SDM) is established for each species, describing its probability of occurrence in relation to multiple environmental factors. Next, the predictions of the SDMs are stacked along the gradient of each environmental factor with the remaining environmental factors at fixed levels. By varying those fixed levels, our approach can be used to investigate how field-based SSDs for a given environmental factor change in relation to changing confounding influences, including for example optimal, typical, or extreme environmental conditions. This provides an asset in the evaluation of potential management measures to reach good ecological status.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp; Kwon, Eui-Pyo; Imafuku, Muneyuki
Microstructures of tensile-deformed high-manganese austenitic steels exhibiting twinning-induced plasticity were analyzed by electron backscatter diffraction pattern observation and X-ray diffraction measurement to examine the influence of differences in their stacking fault energies on twinning activity during deformation. The steel specimen with the low stacking fault energy of 15 mJ/m{sup 2} had a microstructure with a high population of mechanical twins than the steel specimen with the high stacking fault energy (25 mJ/m{sup 2}). The <111> and <100> fibers developed along the tensile axis, and mechanical twinning occurred preferentially in the <111> fiber. The Schmid factors for slip and twinning deformationsmore » can explain the origin of higher twinning activity in the <111> fiber. However, the high stacking fault energy suppresses the twinning activity even in the <111> fiber. A line profile analysis based on the X-ray diffraction data revealed the relationship between the characteristics of the deformed microstructures and the stacking fault energies of the steel specimens. Although the variation in dislocation density with the tensile deformation is not affected by the stacking fault energies, the effect of the stacking fault energies on the crystallite size refinement becomes significant with a decrease in the stacking fault energies. Moreover, the stacking fault probability, which was estimated from a peak-shift analysis of the 111 and 200 diffractions, was high for the specimen with low stacking fault energy. Regardless of the difference in the stacking fault energies of the steel specimens, the refined crystallite size has a certain correlation with the stacking fault probability, indicating that whether the deformation-induced crystallite-size refinement occurs depends directly on the stacking fault probability rather than on the stacking fault energies in the present steel specimens. - Highlights: {yields} We studied effects of stacking fault energies on deformed microstructures of steels. {yields} Correlations between texture and occurrence of mechanical twinning are discussed. {yields} Evolutions of dislocations and crystallite are analyzed by line profile analysis.« less
Stacked Fresnel Zone Plates for High Energy X-rays
NASA Astrophysics Data System (ADS)
Snigireva, Irina; Snigirev, Anatoly; Vaughan, Gavin; Di Michiel, Marco; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim
2007-01-01
A stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates (FZP) at high energies. Two identical Si chips each of which containing 9 FZPs were used for stacking. Alignment of the chips was achieved by on-line observation of the moiré pattern. The formation of moiré patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips were bonded together with slow solidification speed epoxy glue. A technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were experimentally tested to focus 15 and 50 keV x rays. The gain in the efficiency by factor 2.5 was demonstrated at 15 keV. The focal spot of 1.8 μm vertically and 14 μm horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing FZPs was discussed.
Hard X-ray focusing by stacked Fresnel zone plates
NASA Astrophysics Data System (ADS)
Snigireva, Irina; Snigirev, Anatoly; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim; Kuznetsov, Serguei; Vaughan, Gavin; Di Michiel, Marco
2007-09-01
Stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates at high energies. Two identical Si chips each of which containing Fresnel zone plates were used for stacking. Alignment of the chips was achieved by on-line observation of the moiré pattern from the two zone plates. The formation of moiré patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips with zone plates were bonded together with slow solidification speed epoxy glue. Technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were produced and experimentally tested to focus 15 and 50 keV X-rays. Gain in the efficiency by factor 2.5 was demonstrated at 15 keV. Focal spot of 1.8 μm vertically and 14 μm horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing Fresnel zone plates was discussed.
Molecular Beam Epitaxy of Layered Material Superlattices and Heterostructures
NASA Astrophysics Data System (ADS)
Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Furdyna, Jacek K.; Jena, Debdeep; Xing, Huili Grace
2014-03-01
Stacking of various layered materials is being pursued widely to realize various devices and observe novel physics. Mostly, these have been limited to exfoliation and stacking either manually or in solution, where control on rotational alignment or order of stacking is lost. We have demonstrated molecular beam epitaxy (MBE) growth of Bi2Se3/MoSe2 superlatticeand Bi2Se3/MoSe2/SnSe2 heterostructure on sapphire. We have achieved a better control on the order of stacking and number of layers as compared to the solution technique. We have characterized these structures using RHEED, Raman spectroscopy, XPS, AFM, X-ray reflectometry, cross-section (cs) and in-plane (ip) TEM. The rotational alignment is dictated by thermodynamics and is understood using ip-TEM diffraction patterns. Layered growth and long range order is evident from the streaky RHEED pattern. Abrupt change in RHEED pattern, clear demarcation of boundary between layers seen using cs-TEM and observation of Raman peaks corresponding to all the layers suggest van-der-waals epitaxy. In our knowledge this is a first demonstration of as grown superlattices and heterostuctures involving transition metal dichalcogenides and is an important step towards the goal of stacking of 2D crystals like lego blocks.
High Temporal Resolution Permafrost Monitoring Using a Multiple Stack Insar Technique
NASA Astrophysics Data System (ADS)
Eppler, J.; Kubanski, M.; Sharma, J.; Busler, J.
2015-04-01
The combined effect of climate change and accelerated economic development in Northern regions increases the threat of permafrost related surface deformation to buildings and transportation infrastructure. Satellite based InSAR provides a means for monitoring infrastructure that may be both remote and spatially extensive. However, permafrost poses challenges for InSAR monitoring due to the complex temporal deformation patterns caused by both seasonal active layer fluctuations and long-term changes in permafrost thickness. These dynamics suggest a need for increasing the temporal resolution of multi-temporal InSAR methods. To address this issue we have developed a method that combines and jointly processes two or more same side geometry InSAR stacks to provide a high-temporal resolution estimate of surface deformation. The method allows for combining stacks from more than a single SAR sensor and for a combination of frequency bands. Data for this work have been collected and analysed for an area near the community of Umiujaq, Quebec in Northern Canada and include scenes from RADARSAT-2, TerraSAR-X and COSMO-SkyMed. Multiple stack based surface deformation estimates are compared for several cases including results from the three sensors individually and for all sensors combined. The test cases show substantially similar surface deformation results which correlate well with surficial geology. The best spatial coverage of coherent targets was achieved when data from all sensors were combined. The proposed multiple stack method is demonstrated to improve the estimation of surface deformation in permafrost affected areas and shows potential for deriving InSAR based permafrost classification maps to aid in the monitoring of Northern infrastructure.
NASA Astrophysics Data System (ADS)
Zhang, Chengcheng; Muirhead, James D.; Wang, Hua; Chen, Si; Liao, Yuantao; Lu, Zongsheng; Wei, Jun
2018-01-01
Development of fan deltas alongside intrabasinal structural highs has been overlooked compared to those forming on basin margins. However, these fan deltas may provide important clues regarding the tectonic and climatic controls on deposition during rift development. This paper documents fan delta deposition alongside an intrabasinal structural high within the Early Cretaceous Xiagou Formation of the Jiuquan Basin, China, using subsurface geological and geophysical data. Deposits observed in drill core support fan delta deposition occurring almost exclusively through subaerial and subaqueous gravity flows. Subsurface mapping reveals a consistent decrease in the areal extent of fan deltas from lowstand to highstand system tracts, suggesting that deposition alongside the structural high is sensitive to lake-level changes. The temporal and spatial distribution of the fan deltas display retrogradational stacking patterns, where fan deltas exhibit a decreasing lateral extent up-sequence until fan delta deposition terminated and was replaced by deposition of fine-grained lacustrine deposits. The retrogradational stacking patterns observed alongside the intrabasinal structural high are not observed in fan deltas along the basin margin in the lower parts of the Xiagou Formation. Subsidence profiles also show differential subsidence across the basin during the earliest stages of this formation, likely resulting from border fault movements. These data suggest that non-uniform stacking patterns in the lower parts of the Xiagou Formation reflect basin-scale tectonic movements as the dominant control on synrift deposition patterns. However, later stages of Xiagou Formation deposition were characterized by uniform subsidence across the basin, and uniform retrogradational stacking patterns for fan deltas alongside the intrabasinal structural high and border fault. These observations suggest that basin-scale tectonic movements played a relatively limited role in controlling sediment deposition, and imply a potential change to regional-scale processes affecting fan delta deposition during later synrift stages. Climate change is favored here as the region-scale control on the uniform retrogradational fan delta stacking patterns. This assertion is supported by pollen assemblages, isotope signatures, and organic geochemical analyses, which collectively suggest a change from a humid to semi-arid environment during later synrift stages. We suggest that variations in stacking patterns between different fan delta systems can provide insights into the basin- and regional-scale processes that control rift basin deposition.
NASA Astrophysics Data System (ADS)
Mlakar, P.
2004-11-01
SO2 pollution is still a significant problem in Slovenia, especially around large thermal power plants (TPPs), like the one at Šoštanj. The Šoštanj TPP is the exclusive source of SO2 in the area and is therefore a perfect example for air pollution studies. In order to understand air pollution around the Šoštanj TPP in detail, some analyses of emissions and ambient concentrations of SO2 at six automated monitoring stations in the surroundings of the TPP were made. The data base from 1991 to 1993 was used when there were no desulfurisation plants in operation. Statistical analyses of the influence of the emissions from the three TPP stacks at different measuring points were made. The analyses prove that the smallest stack (100 m) mainly pollutes villages and towns near the TPP within a radius of a few kilometres. The medium stack's (150 m) influence is noticed at shorter as well as at longer distances up to more than ten kilometres. The highest stack (230 m) pollutes mainly at longer distances, where the plume reaches the higher hills. Detailed analyses of ambient SO2 concentrations were made. They show the temporal and spatial distribution of different classes of SO2 concentrations from very low to alarming values. These analyses show that pollution patterns at a particular station remain the same if observed on a yearly basis, but can vary very much if observed on a monthly basis, mainly because of different weather patterns. Therefore the winds in the basin (as the most important feature influencing air pollution dispersion) were further analysed in detail to find clusters of similar patterns. For cluster analysis of ground-level winds patterns in the basin around the Šoštanj Thermal Power Plant, the Kohonen neural network and Leaders' method were used. Furthermore, the dependence of ambient SO2 concentrations on the clusters obtained was analysed. The results proved that effective cluster analysis can be a useful tool for compressing a huge wind data base in order to find the correlation between winds and pollutant concentrations. The analyses made provide a better insight into air pollution over complex terrain.
Method to fabricate a tilted logpile photonic crystal
Williams, John D.; Sweatt, William C.
2010-10-26
A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.
Novel band structures in silicene on monolayer zinc sulfide substrate.
Li, Sheng-shi; Zhang, Chang-wen; Yan, Shi-shen; Hu, Shu-jun; Ji, Wei-xiao; Wang, Pei-ji; Li, Ping
2014-10-01
Opening a sizable band gap in the zero-gap silicene without lowering the carrier mobility is a key issue for its application in nanoelectronics. Based on first-principles calculations, we find that the interaction energies are in the range of -0.09‒0.3 eV per Si atom, indicating a weak interaction between silicene and ZnS monolayer and the ABZn stacking is the most stable pattern. The band gap of silicene can be effectively tuned ranging from 0.025 to 1.05 eV in silicene and ZnS heterobilayer (Si/ZnS HBL). An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern, interlayer spacing and external strain effects on silicene. Interestingly, the characteristics of Dirac cone with a nearly linear band dispersion relation of silicene can be preserved in the ABS pattern which is a metastable state, accompanied by a small electron effective mass and thus the carrier mobility is expected not to degrade much. These provide a possible way to design effective FETs out of silicene on a ZnS monolayer.
Method of forming a package for MEMS-based fuel cell
Morse, Jeffrey D; Jankowski, Alan F
2013-05-21
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Method of forming a package for mems-based fuel cell
Morse, Jeffrey D.; Jankowski, Alan F.
2004-11-23
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data
NASA Astrophysics Data System (ADS)
Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho
2018-05-01
We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.
Line roughness improvements on self-aligned quadruple patterning by wafer stress engineering
NASA Astrophysics Data System (ADS)
Liu, Eric; Ko, Akiteru; Biolsi, Peter; Chae, Soo Doo; Hsieh, Chia-Yun; Kagaya, Munehito; Lee, Choongman; Moriya, Tsuyoshi; Tsujikawa, Shimpei; Suzuki, Yusuke; Okubo, Kazuya; Imai, Kiyotaka
2018-04-01
In integrated circuit and memory devices, size shrinkage has been the most effective method to reduce production cost and enable the steady increment of the number of transistors per unit area over the past few decades. In order to reduce the die size and feature size, it is necessary to minimize pattern formation in the advance node development. In the node of sub-10nm, extreme ultra violet lithography (EUV) and multi-patterning solutions based on 193nm immersionlithography are the two most common options to achieve the size requirement. In such small features of line and space pattern, line width roughness (LWR) and line edge roughness (LER) contribute significant amount of process variation that impacts both physical and electrical performances. In this paper, we focus on optimizing the line roughness performance by using wafer stress engineering on 30nm pitch line and space pattern. This pattern is generated by a self-aligned quadruple patterning (SAQP) technique for the potential application of fin formation. Our investigation starts by comparing film materials and stress levels in various processing steps and material selection on SAQP integration scheme. From the cross-matrix comparison, we are able to determine the best stack of film selection and stress combination in order to achieve the lowest line roughness performance while obtaining pattern validity after fin etch. This stack is also used to study the step-by-step line roughness performance from SAQP to fin etch. Finally, we will show a successful patterning of 30nm pitch line and space pattern SAQP scheme with 1nm line roughness performance.
NASA Technical Reports Server (NTRS)
Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid
2006-01-01
The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.
Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang
2013-04-01
We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.
Sponer, Jiří; Sponer, Judit E; Mládek, Arnošt; Jurečka, Petr; Banáš, Pavel; Otyepka, Michal
2013-12-01
Base stacking is a major interaction shaping up and stabilizing nucleic acids. During the last decades, base stacking has been extensively studied by experimental and theoretical methods. Advanced quantum-chemical calculations clarified that base stacking is a common interaction, which in the first approximation can be described as combination of the three most basic contributions to molecular interactions, namely, electrostatic interaction, London dispersion attraction and short-range repulsion. There is not any specific π-π energy term associated with the delocalized π electrons of the aromatic rings that cannot be described by the mentioned contributions. The base stacking can be rather reasonably approximated by simple molecular simulation methods based on well-calibrated common force fields although the force fields do not include nonadditivity of stacking, anisotropy of dispersion interactions, and some other effects. However, description of stacking association in condensed phase and understanding of the stacking role in biomolecules remain a difficult problem, as the net base stacking forces always act in a complex and context-specific environment. Moreover, the stacking forces are balanced with many other energy contributions. Differences in definition of stacking in experimental and theoretical studies are explained. Copyright © 2013 Wiley Periodicals, Inc.
Etch challenges for DSA implementation in CMOS via patterning
NASA Astrophysics Data System (ADS)
Pimenta Barros, P.; Barnola, S.; Gharbi, A.; Argoud, M.; Servin, I.; Tiron, R.; Chevalier, X.; Navarro, C.; Nicolet, C.; Lapeyre, C.; Monget, C.; Martinez, E.
2014-03-01
This paper reports on the etch challenges to overcome for the implementation of PS-b-PMMA block copolymer's Directed Self-Assembly (DSA) in CMOS via patterning level. Our process is based on a graphoepitaxy approach, employing an industrial PS-b-PMMA block copolymer (BCP) from Arkema with a cylindrical morphology. The process consists in the following steps: a) DSA of block copolymers inside guiding patterns, b) PMMA removal, c) brush layer opening and finally d) PS pattern transfer into typical MEOL or BEOL stacks. All results presented here have been performed on the DSA Leti's 300mm pilot line. The first etch challenge to overcome for BCP transfer involves in removing all PMMA selectively to PS block. In our process baseline, an acetic acid treatment is carried out to develop PMMA domains. However, this wet development has shown some limitations in terms of resists compatibility and will not be appropriated for lamellar BCPs. That is why we also investigate the possibility to remove PMMA by only dry etching. In this work the potential of a dry PMMA removal by using CO based chemistries is shown and compared to wet development. The advantages and limitations of each approach are reported. The second crucial step is the etching of brush layer (PS-r-PMMA) through a PS mask. We have optimized this step in order to preserve the PS patterns in terms of CD, holes features and film thickness. Several integrations flow with complex stacks are explored for contact shrinking by DSA. A study of CD uniformity has been addressed to evaluate the capabilities of DSA approach after graphoepitaxy and after etching.
Liu, Guorui; Cai, Zongwei; Zheng, Minghui; Jiang, Xiaoxu; Nie, Zhiqiang; Wang, Mei
2015-01-01
Identifying marker congeners of unintentionally produced polychlorinated naphthalenes (PCNs) from industrial thermal sources might be useful for predicting total PCN (∑2-8PCN) emissions by the determination of only indicator congeners. In this study, potential indicator congeners were identified based on the PCN data in 122 stack gas samples from over 60 plants involved in more than ten industrial thermal sources reported in our previous case studies. Linear regression analyses identified that the concentrations of CN27/30, CN52/60, and CN66/67 correlated significantly with ∑2-8PCN (R(2)=0.77, 0.80, and 0.58, respectively; n=122, p<0.05), which might be good candidates for indicator congeners. Equations describing relationships between indicators and ∑2-8PCN were established. The linear regression analyses involving 122 samples showed that the relationships between the indicator congeners and ∑2-8PCN were not significantly affected by factors such as industry types, raw materials used, or operating conditions. Hierarchical cluster analysis and similarity calculations for the 122 stack gas samples were adopted to group those samples and evaluating their similarity and difference based on the PCN homolog distributions from different industrial thermal sources. Generally, the fractions of less chlorinated homologs comprised of di-, tri-, and tetra-homologs were much higher than that of more chlorinated homologs for up to 111 stack gas samples contained in group 1 and 2, which indicating the dominance of lower chlorinated homologs in stack gas from industrial thermal sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lamination cooling system formation method
Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA
2012-06-19
An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.
Lamination cooling system formation method
Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA
2009-05-12
An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.
Guanine base stacking in G-quadruplex nucleic acids
Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân
2013-01-01
G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444
AB-stacked square-like bilayer ice in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2016-08-10
Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.
Structural and electronic transformation in low-angle twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Gargiulo, Fernando; Yazyev, Oleg V.
2018-01-01
Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.
NASA Astrophysics Data System (ADS)
Ribes, C.; Gillard, M.; Epin, M. E.; Ghienne, J. F.; Manatschal, G.; Karner, G. D.; Johnson, C. A.
2016-12-01
Research on the formation and evolution of deep-water rifted margins has undergone a major paradigm shift in recent years. An increasing number of studies of present-day and fossil rifted margins allow us to identify and characterize the structural architecture of the most distal parts of rifted margins, the so-called hyperextended, magma-poor rifted margins. However, at present, little is known about the depositional environments, sedimentary facies, stacking patterns, subsidence and thermal history within these domains. In this context, characterizing the stratal stacking patterns and understanding their spatial and temporal evolution is a new challenge. The major difficulty comes from the fact that the observed stratigraphic geometries and facies relationships are a result of the complex interplay between sediment supply and available accommodation, which is controlled by not only the regional generation of accommodation, but also by local tectono-magmatic processes. These parameters are poorly constrained or even sufficiently known in these tectonic settings. Indeed, the complex structural evolution of hyperextended magma-poor rifted margins, including the development of poly-phase in-sequence and out of sequence extensional detachment faults and associated mantle exhumation and magmatic activity, can generate complex accommodation patterns over a highly structured top basement. The presentation summarizes early results concerning the controlling parameters on ultra-deep water stratigraphic stacking patterns and to provide a conceptual framework. This observation-driven approach combines fieldwork from fossil Alpine Tethys margins exposed in the Alps and the analysis of seismic reflection data from present-day deep water rifted margins such as the Australian-Antarctic, East India and Iberia-Newfoundland margins.
Multizone Paper Platform for 3D Cell Cultures
Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.
2011-01-01
In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103
NASA Astrophysics Data System (ADS)
Campetella, Marco; Martino, Delia Chillura; Scarpellini, Eleonora; Gontrani, Lorenzo
2016-09-01
In this contribution we report for the first time the X-ray patterns of choline-phenylalanine and choline-homophenylalanine ionic liquids. The presence of a low Q peak in both systems is another evidence that a long alkyl chain is not always needed to establish a nanodomain segregation in the liquid sufficient to be revealed by the diffraction experiment. These new data are compared with the diffraction patterns and the theoretical calculations of other choline-aminoacid ionic liquids recently reported. A significant role might be played by the stacking interactions between aromatic rings.
Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity
NASA Technical Reports Server (NTRS)
Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon
2009-01-01
This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.
Arbitrarily shaped dual-stacked patch antennas: A hybrid FEM simulation
NASA Technical Reports Server (NTRS)
Gong, Jian; Volakis, John L.
1995-01-01
A dual-stacked patch antenna is analyzed using a hybrid finite element - boundary integral (FE-BI) method. The metallic patches of the antenna are modeled as perfectly electric conducting (PEC) plates stacked on top of two different dielectric layers. The antenna patches may be of any shape and the lower patch is fed by a coaxial cable from underneath the ground plane or by an aperture coupled microstrip line. The ability of the hybrid FEM technique for the stacked patch antenna characterization will be stressed, and the EM coupling mechanism is also discussed with the aid of the computed near field patterns around the patches.
Metallic Thin-Film Bonding and Alloy Generation
NASA Technical Reports Server (NTRS)
Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)
2016-01-01
Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.
Self-Catalyzed Growth of Axial GaAs/GaAsSb Nanowires by Molecular Beam Epitaxy for Photodetectors
2015-06-01
blende structure with mixture of stacking faults and twins and the presence of these faults were significantly reduced in the NWs grown on chemically...a) TEM image of the core NW (b) HR-TEM image displaying the stacking faults and twinning defects. (c)SAED pattern showing the ZB crystal structure...of stacking faults and twins and the presence of these faults were significantly reduced in the NWs grown on chemically etched substrates. For
Kim, Min-Gab; Kim, Jin-Yong
2018-05-01
In this paper, we introduce a method to overcome the limitation of thickness measurement of a micro-patterned thin film. A spectroscopic imaging reflectometer system that consists of an acousto-optic tunable filter, a charge-coupled-device camera, and a high-magnitude objective lens was proposed, and a stack of multispectral images was generated. To secure improved accuracy and lateral resolution in the reconstruction of a two-dimensional thin film thickness, prior to the analysis of spectral reflectance profiles from each pixel of multispectral images, the image restoration based on an iterative deconvolution algorithm was applied to compensate for image degradation caused by blurring.
Hyperspectral image classification based on local binary patterns and PCANet
NASA Astrophysics Data System (ADS)
Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang
2018-04-01
Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.
Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ming, E-mail: ming.xu@lgep.supelec.fr; Jaffré, Alexandre, E-mail: ming.xu@lgep.supelec.fr; Alvarez, José, E-mail: ming.xu@lgep.supelec.fr
2015-02-27
We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.
NASA Astrophysics Data System (ADS)
Spychala, Y. T.; Hodgson, D. M.; Flint, S. S.; Mountney, N. P.
2015-06-01
Intraslope lobe deposits provide a process record of the infill of accommodation on submarine slopes and their recognition enables the accurate reconstruction of the stratigraphic evolution of submarine slope systems. Extensive exposures of discrete sand-prone packages in Units D/E and E, Fort Brown Formation, Karoo Basin, South Africa, permit analysis of the sedimentology and stacking patterns of three intraslope lobe complexes and their palaeogeographic reconstruction via bed-scale analysis and physical correlation of key stratal surfaces. The sand-prone packages comprise tabular, aggradationally to slightly compensationally stacked lobe deposits with constituent facies associations that can be attributed to lobe axis, lobe off-axis, lobe-fringe and distal lobe-fringe environments. Locally, intraslope lobe deposits are incised by low aspect ratio channels that mark basinward progradation of the deepwater system. The origin of accommodation on the slope for lobe deposition is interpreted to be due to differential compaction or healing of scars from mass wasting processes. The stacking patterns and sedimentary facies arrangement identified in this study are distinct from those of more commonly recognized basin-floor lobe deposits, thereby enabling the establishment of recognition criteria for intraslope lobe deposits in other less well exposed and studied fine-grained systems. Compared to basin floor lobes, intraslope lobes are smaller in volume, influenced by higher degrees of confinement, and tend to show aggradational stacking patterns.
3D Stacked Memory Final Report CRADA No. TC-0494-93
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, A.; Beene, G.
TI and LLNL demonstrated: (1) a process for the fabrication of 3-D memory using stacked DRAM chips, and (2) a fast prototyping process for 3-D stacks and MCMs. The metallization to route the chip pads to the sides of the die was carried out in a single high-speed masking step. The mask was not the usual physical one in glass and chrome, but was simply a computer file used to control the laser patterning process. Changes in either chip or customer circuit-board pad layout were easily and inexpensively accommodated, so that prototyping was a natural consequence of the laser patterningmore » process. As in the current TI process, a dielectric layer was added to the wafer, and vias to the chip I/0 pads were formed. All of the steps in Texas Instruments earlier process that were required to gold bump the pads were eliminated, significantly reducing fabrication cost and complexity. Pads were created on the sides of ·the die, which became pads on the side of the stack. In order to extend the process to accommodate non-memory devices with substantially greater I/0 than is required for DRAMs, pads were patterned on two sides of the memory stacks as a proof of principle. Stacking and bonding were done using modifications of the current TI process. After stacking and bonding, the pads on the sides of the dice were connected by application of a polyimide insulator film with laser ablation of the polyimide to form contacts to the pads. Then metallization was accomplished in the same manner as on the individual die.« less
Three-dimensionally patterned energy absorptive material and method of fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duoss, Eric; Frank, James M.; Kuntz, Joshua
A three-dimensionally patterned energy absorptive material and fabrication method having multiple layers of patterned filaments extrusion-formed from a curable pre-cursor material and stacked and cured in a three-dimensionally patterned architecture so that the energy absorptive material produced thereby has an engineered bulk property associated with the three-dimensionally patterned architecture.
Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals
Protopapadakis, Eftychios; Doulamis, Anastasios; Doulamis, Nikolaos; Dres, Dimitrios; Bimpas, Matthaios
2017-01-01
Detection of outliers in radar signals is a considerable challenge in maritime surveillance applications. High-Frequency Surface-Wave (HFSW) radars have attracted significant interest as potential tools for long-range target identification and outlier detection at over-the-horizon (OTH) distances. However, a number of disadvantages, such as their low spatial resolution and presence of clutter, have a negative impact on their accuracy. In this paper, we explore the applicability of deep learning techniques for detecting deviations from the norm in behavioral patterns of vessels (outliers) as they are tracked from an OTH radar. The proposed methodology exploits the nonlinear mapping capabilities of deep stacked autoencoders in combination with density-based clustering. A comparative experimental evaluation of the approach shows promising results in terms of the proposed methodology's performance. PMID:29312449
Tuan, Chia-Chi; James, Nathan Pataki; Lin, Ziyin; Chen, Yun; Liu, Yan; Moon, Kyoung-Sik; Li, Zhuo; Wong, C P
2017-03-15
As microelectronics are trending toward smaller packages and integrated circuit (IC) stacks nowadays, underfill, the polymer composite filled in between the IC chip and the substrate, becomes increasingly important for interconnection reliability. However, traditional underfills cannot meet the requirements for low-profile and fine pitch in high density IC stacking packages. Post-applied underfills have difficulties in flowing into the small gaps between the chip and the substrate, while pre-applied underfills face filler entrapment at bond pads. In this report, we present a self-patterning underfilling technology that uses selective wetting of underfill on Cu bond pads and Si 3 N 4 passivation via surface energy engineering. This novel process, fully compatible with the conventional underfilling process, eliminates the issue of filler entrapment in typical pre-applied underfilling process, enabling high density and fine pitch IC die bonding.
NASA Astrophysics Data System (ADS)
Das, Aniruddha
2017-11-01
5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides (N-phenyl AICA) (2a-e) and 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carbonitriles (N-phenyl AICN) (3a-e) had been synthesized. X-ray crystallographic studies of 2a-e and 3a-e had been performed to identify any distinct change in stacking patterns in their crystal lattice. Single crystal X-ray diffraction studies of 2a-e revealed π-π stack formations with both imidazole and phenyl/p-halophenyl units in anti and syn parallel-displaced (PD)-type dispositions. No π-π stacking of imidazole occurred when the halogen substituent is bromo or iodo; π-π stacking in these cases occurred involving phenyl rings only. The presence of an additional T-stacking had been observed in crystal lattices of 3a-e. Vertical π-π stacking distances in anti-parallel PD-type arrangements as well as T-stacking distances had shown stacking distances short enough to impart stabilization whereas syn-parallel stacking arrangements had got much larger π-π stacking distances to belie any syn-parallel stacking stabilization. DFT studies had been pursued for quantifying the π-π stacking and T-stacking stabilization. The plotted curves for anti-parallel and T-stacked moieties had similarities to the 'Morse potential energy curve for diatomic molecule'. The minima of the curves corresponded to the most stable stacking distances and related energy values indicated stacking stabilization. Similar DFT studies on syn-parallel systems of 2b corresponded to no π-π stacking stabilization at all. Halogen-halogen interactions had also been observed to stabilize the compounds 2d, 2e and 3d. Nano-structural behaviour of the series of compounds 2a-e and 3a-e were thoroughly investigated.
NASA Astrophysics Data System (ADS)
Pennington, Robert S.; Van den Broek, Wouter; Koch, Christoph T.
2014-05-01
We have reconstructed third-dimension specimen information from convergent-beam electron diffraction (CBED) patterns simulated using the stacked-Bloch-wave method. By reformulating the stacked-Bloch-wave formalism as an artificial neural network and optimizing with resilient back propagation, we demonstrate specimen orientation reconstructions with depth resolutions down to 5 nm. To show our algorithm's ability to analyze realistic data, we also discuss and demonstrate our algorithm reconstructing from noisy data and using a limited number of CBED disks. Applicability of this reconstruction algorithm to other specimen parameters is discussed.
Patterned helical metallic ribbon for continuous edge winding applications
Liebermann, Howard H.; Frischmann, Peter G.; Rosenberry, Jr., George M.
1983-04-19
Metallic ribbon having cutout patterns therein is provided in continuous helical form. The cutout patterns may be situated to intersect either or both of the ribbon edges or may be situated entirely within the ribbon. The helical ribbon with the cutout patterns may additionally have a nesting, or self-stacking, feature.
Fabrication Methods for Adaptive Deformable Mirrors
NASA Technical Reports Server (NTRS)
Toda, Risaku; White, Victor E.; Manohara, Harish; Patterson, Keith D.; Yamamoto, Namiko; Gdoutos, Eleftherios; Steeves, John B.; Daraio, Chiara; Pellegrino, Sergio
2013-01-01
Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon substrate, but this will require tighter DRIE process control as well as generally longer and less efficient XeF2 etch. In the second approach, the actuator film stack is first constructed on a silicon wafer. It helps to use a polyimide intermediate layer such as Kapton because the adhesion between the polyimide and silicon is generally weak. A mirror mount ring is attached by using adhesive. Then, the assembly is partially submerged in liquid water. The water tends to seep between the actuator film stack and silicon substrate. As a result, the actuator membrane can be gently released from the silicon substrate. The actuator membrane is very flat because it is fixed to the mirror mount prior to the release. Deformable mirrors require extremely good surface optical quality. In the technology described here, the deformable mirror is fabricated on pristine substrates such as prime-grade silicon wafers. The deformable mirror is released by selectively removing the substrate. Therefore, the released deformable mirror surface replicates the optical quality of the underlying pristine substrate.
ERIC Educational Resources Information Center
de Mestre, Neville
2017-01-01
Earlier "Discovery" articles (de Mestre, 1999, 2003, 2006, 2010, 2011) considered patterns from many mathematical situations. This article presents a group of patterns used in 19th century mathematical textbooks. In the days of earlier warfare, cannon balls were stacked in various arrangements depending on the shape of the pile base…
Sequence-Dependent Elasticity and Electrostatics of Single-Stranded DNA: Signatures of Base-Stacking
McIntosh, Dustin B.; Duggan, Gina; Gouil, Quentin; Saleh, Omar A.
2014-01-01
Base-stacking is a key factor in the energetics that determines nucleic acid structure. We measure the tensile response of single-stranded DNA as a function of sequence and monovalent salt concentration to examine the effects of base-stacking on the mechanical and thermodynamic properties of single-stranded DNA. By comparing the elastic response of highly stacked poly(dA) and that of a polypyrimidine sequence with minimal stacking, we find that base-stacking in poly(dA) significantly enhances the polymer’s rigidity. The unstacking transition of poly(dA) at high force reveals that the intrinsic electrostatic tension on the molecule varies significantly more weakly on salt concentration than mean-field predictions. Further, we provide a model-independent estimate of the free energy difference between stacked poly(dA) and unstacked polypyrimidine, finding it to be ∼−0.25 kBT/base and nearly constant over three orders of magnitude in salt concentration. PMID:24507606
Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós
2014-01-01
Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813
A stackable, two-chambered, paper-based microbial fuel cell.
Fraiwan, Arwa; Choi, Seokheun
2016-09-15
We developed a stackable and integrable paper-based microbial fuel cell (MFC) for potentially powering on-chip paper-based devices. Four MFCs were prepared on a T-shaped filter paper which was eventually folded three times to connect these MFCs in series. Each MFC was fabricated by sandwiching multifunctional paper layers for two-chambered fuel cell configuration. One drop of bacteria-containing anolyte into the anodic inlet and another drop of potassium ferricyanide for cathodic reaction flowed through patterned fluidic pathways within the paper matrix, both vertically and horizontally, reaching each of the four MFCs and filling the reservoir of each device. Bacterial respiration then transferred electrons to the anode, which traveled across an external load to the cathode where they combined with protons. The MFC stack connected in series generated a high power density (1.2μW/cm(2)), which is two orders of magnitude higher than the previous report on the paper-based MFC stack. This work will represent the fusion of the art of origami and paper-based MFC technology, which could provide a paradigm shift for the architecture and design of paper-based batteries. Copyright © 2016 Elsevier B.V. All rights reserved.
Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.
Liu, Min; Wang, Xueping; Zhang, Hongzhong
2018-03-01
In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question. We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier. The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work. The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks. Copyright © 2018 Elsevier B.V. All rights reserved.
Nadzirin, Nurul; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd
2013-01-01
We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/. PMID:23716645
RNA nanopatterning on graphene
NASA Astrophysics Data System (ADS)
Li, Q.; Froning, J. P.; Pykal, M.; Zhang, S.; Wang, Z.; Vondrák, M.; Banáš, P.; Čépe, K.; Jurečka, P.; Šponer, J.; Zbořil, R.; Dong, M.; Otyepka, M.
2018-07-01
Graphene-based materials enable the sensing of diverse biomolecules using experimental approaches based on electrochemistry, spectroscopy, or other methods. Although basic sensing was achieved, it had until now not been possible to understand and control biomolecules’ structural and morphological organization on graphene surfaces (i.e. their stacking, folding/unfolding, self-assembly, and nano-patterning). Here we present the insight into structural and morphological organization of biomolecules on graphene in water, using an RNA hairpin as a model system. We show that the key parameters governing the RNA’s behavior on the graphene surface are the number of graphene layers, RNA concentration, and temperature. At high concentrations, the RNA forms a film on the graphene surface with entrapped nanobubbles. The density and the size of the bubbles depend on the number of graphene layers. At lower concentrations, unfolded RNA stacks on the graphene and forms molecular clusters on the surface. Such a control over the conformational behavior of interacting biomolecules at graphene/water interfaces would facilitate new applications of graphene derivatives in biotechnology and biomedicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, C.; Eichenseer, H.; Calatayud, P.
The poster illustrates how the recent developments in genetic stratigraphy have contributed to constrain reservoir layering and to improve prediction of reservoir quality in the oil-bearing reservoir of N`KOSSA. The mixed lithology deposits formed during Albian times. Thanks to the excellent core coverage of the reservoir (4 cored wells over the entire reservoir interval), continuous sedimentological examination and interpretation of the facies succession have been carried out. The reservoir can be subdivided into composite sequences (50 to 150 in thick) which are made up of stacked metre-scale genetic units. Three different stacking patterns of genetic units have been identified; retrogradation,more » aggradation and progradation. These patterns reflect a gradual change of depositional regimes through time. Facies variations (texture, bio-association, geometry, spatial distribution) and early diagenetic overprints can be related to each type of stacking pattern. One additional model illustrates the depositional regime corresponding to low accomodation periods which mainly record siliciclastic input and extensive carbonate diagenesis by meteoric waters The resulting four models show the overall distribution of the main depositional units, the diagenetic zonations and the resulting overall reservoir qualities. This above approach have contributed to a more detailed reservoir architecture and a better delineation of reservoir heterogeneity due to both depositional and diagenetic regimes.« less
Dynamics of self-assembled cytosine nucleobases on graphene
NASA Astrophysics Data System (ADS)
Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra
2018-05-01
Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin
The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along themore » b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.« less
Variable density randomized stack of spirals (VDR-SoS) for compressive sensing MRI.
Valvano, Giuseppe; Martini, Nicola; Landini, Luigi; Santarelli, Maria Filomena
2016-07-01
To develop a 3D sampling strategy based on a stack of variable density spirals for compressive sensing MRI. A random sampling pattern was obtained by rotating each spiral by a random angle and by delaying for few time steps the gradient waveforms of the different interleaves. A three-dimensional (3D) variable sampling density was obtained by designing different variable density spirals for each slice encoding. The proposed approach was tested with phantom simulations up to a five-fold undersampling factor. Fully sampled 3D dataset of a human knee, and of a human brain, were obtained from a healthy volunteer. The proposed approach was tested with off-line reconstructions of the knee dataset up to a four-fold acceleration and compared with other noncoherent trajectories. The proposed approach outperformed the standard stack of spirals for various undersampling factors. The level of coherence and the reconstruction quality of the proposed approach were similar to those of other trajectories that, however, require 3D gridding for the reconstruction. The variable density randomized stack of spirals (VDR-SoS) is an easily implementable trajectory that could represent a valid sampling strategy for 3D compressive sensing MRI. It guarantees low levels of coherence without requiring 3D gridding. Magn Reson Med 76:59-69, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Practical Considerations of Moisture in Baled Biomass Feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Smith; Ian J. Bonner; Kevin L. Kenney
2013-01-01
Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover andmore » energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlin, H.S.; Dutton, S.P.; Tyler, N.
The Tirrawarra Sandstone contains 146 million bbl of oil in Tirrawarra field in the Cooper basin of South Australia. We used core, well logs, and petro-physical data to construct a depositional-facies-based flow-unit model of the reservoir, which describes rock properties and hydrocarbon saturations in three dimensions. Using the model to calculate volumes and residency of original and remaining oil in place, we identified an additional 36 million bbl of oil in place and improved understanding of past production patterns. The Tirrawarra Sandstone reservoir was deposited in a Carboniferous-Permian proglacial intracratonic setting and is composed of lacustrine and fluvial facies assemblages.more » The stratigraphic framework of these nonmarine facies is defined by distinctive stacking patterns and erosional unconformities. Mudstone dominated zones that are analogous to marine maximum flooding surfaces bound the reservoir. At its base a progradational lacustrine-delta system, composed of lenticular mud-clast-rich sandstones enclosed in mudstone, is truncated by an unconformity. Sandstones in these lower deltaic facies lost most of their porosity by mechanical compaction of ductile grains. Sediment reworking by channel migration and locally shore-zone processes created by quartz-rich, multilateral sandstones, which retained the highest porosity and permeability of all the reservoir facies and contained most of the original oil in place. Braided-channel sandstones, however, are overlain by lenticular meandering-channel sandstones, which in turn grade upward into widespread mudstones and coals. Thus, this uppermost part of the reservoir displays a retrogradational stacking pattern and upward-decreasing reservoir quality. Our results demonstrate that depositional variables are the primary controls on reservoir quality and productivity in the Tirrawarra Sandstone.« less
Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation
NASA Astrophysics Data System (ADS)
Leconte, Nicolas; Jung, Jeil; Lebègue, Sébastien; Gould, Tim
2017-11-01
Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two-dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. Here we study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) homo- and heterostructures using high-level random-phase approximation (RPA) ab initio calculations. Our results show that although total binding energies within LDA and RPA differ substantially by a factor of 200%-400%, the energy differences as a function of stacking configuration yield nearly constant values with variations smaller than 20%, meaning that LDA estimates are quite reliable. We produce phenomenological fits to these energy differences, which allows us to calculate various properties of interest including interlayer spacing, sliding energetics, pressure gradients, and elastic coefficients to high accuracy. The importance of long-range interactions (captured by RPA but not LDA) on various properties is also discussed. Parametrizations for all fits are provided.
NASA Technical Reports Server (NTRS)
Valdez, T. I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.
2005-01-01
This viewgraph presentation gives a detailed review of the Direct Methanol Based Fuel Cell (DMFC) stack and investigates the Ruthenium that was found at the exit of the stack. The topics include: 1) Motivation; 2) Pathways for Cell Degradation; 3) Cell Duration Testing; 4) Duration Testing, MEA Analysis; and 5) Stack Degradation Analysis.
NASA Technical Reports Server (NTRS)
Pujar, Vijay V.; Cawley, James D.; Levine, S. (Technical Monitor)
2000-01-01
Earlier results from computer simulation studies suggest a correlation between the spatial distribution of stacking errors in the Beta-SiC structure and features observed in X-ray diffraction patterns of the material. Reported here are experimental results obtained from two types of nominally Beta-SiC specimens, which yield distinct XRD data. These samples were analyzed using high resolution transmission electron microscopy (HRTEM) and the stacking error distribution was directly determined. The HRTEM results compare well to those deduced by matching the XRD data with simulated spectra, confirming the hypothesis that the XRD data is indicative not only of the presence and density of stacking errors, but also that it can yield information regarding their distribution. In addition, the stacking error population in both specimens is related to their synthesis conditions and it appears that it is similar to the relation developed by others to explain the formation of the corresponding polytypes.
Layer Number and Stacking Order Imaging of Few-layer Graphenes by Transmission Electron Microscopy
NASA Astrophysics Data System (ADS)
Ping, Jinglei; Fuhrer, Michael
2012-02-01
A method using transmission electron microscopy (TEM) selected area electron diffraction (SAED) patterns and dark field (DF) images is developed to identify graphene layer number and stacking order by comparing intensity ratios of SAED spots with theory. Graphene samples are synthesized by ambient pressure chemical vapor depostion and then etched by hydrogen in high temperature to produce samples with crystalline stacking but varying layer number on the nanometer scale. Combined DF images from first- and second-order diffraction spots are used to produce images with layer-number and stacking-order contrast with few-nanometer resolution. This method is proved to be accurate enough for quantative stacking-order-identification of graphenes up to at least four layers. This work was partially supported by Science of Precision Multifunctional Nanostructures for Elecrical Energy Storage, an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160.
NASA Astrophysics Data System (ADS)
Pourteau, Marie-Line; Servin, Isabelle; Lepinay, Kévin; Essomba, Cyrille; Dal'Zotto, Bernard; Pradelles, Jonathan; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco
2016-03-01
The emerging Massively Parallel-Electron Beam Direct Write (MP-EBDW) is an attractive high resolution high throughput lithography technology. As previously shown, Chemically Amplified Resists (CARs) meet process/integration specifications in terms of dose-to-size, resolution, contrast, and energy latitude. However, they are still limited by their line width roughness. To overcome this issue, we tested an alternative advanced non-CAR and showed it brings a substantial gain in sensitivity compared to CAR. We also implemented and assessed in-line post-lithographic treatments for roughness mitigation. For outgassing-reduction purpose, a top-coat layer is added to the total process stack. A new generation top-coat was tested and showed improved printing performances compared to the previous product, especially avoiding dark erosion: SEM cross-section showed a straight pattern profile. A spin-coatable charge dissipation layer based on conductive polyaniline has also been tested for conductivity and lithographic performances, and compatibility experiments revealed that the underlying resist type has to be carefully chosen when using this product. Finally, the Process Of Reference (POR) trilayer stack defined for 5 kV multi-e-beam lithography was successfully etched with well opened and straight patterns, and no lithography-etch bias.
NASA Technical Reports Server (NTRS)
Staehelin, L. A.; Giddings, T. H. Jr; Kiss, J. Z.; Sack, F. D.
1990-01-01
The plant root tip represents a fascinating model system for studying changes in Golgi stack architecture associated with the developmental progression of meristematic cells to gravity sensing columella cells, and finally to "young" and "old", polysaccharide-slime secreting peripheral cells. To this end we have used high pressure freezing in conjunction with freeze-substitution techniques to follow developmental changes in the macromolecular organization of Golgi stacks in root tips of Arabidopsis and Nicotiana. Due to the much improved structural preservation of all cells under investigation, our electron micrographs reveal both several novel structural features common to all Golgi stacks, as well as characteristic differences in morphology between Golgi stacks of different cell types. Common to all Golgi stacks are clear and discrete differences in staining patterns and width of cis, medial and trans cisternae. Cis cisternae have the widest lumina (approximately 30 nm) and are the least stained. Medial cisternae are narrower (approximately 20 nm) and filled with more darkly staining products. Most trans cisternae possess a completely collapsed lumen in their central domain, giving rise to a 4-6 nm wide dark line in cross-sectional views. Numerous vesicles associated with the cisternal margins carry a non-clathrin type of coat. A trans Golgi network with clathrin coated vesicles is associated with all Golgi stacks except those of old peripheral cells. It is easily distinguished from trans cisternae by its blebbing morphology and staining pattern. The zone of ribosome exclusion includes both the Golgi stack and the trans Golgi network. Intercisternal elements are located exclusively between trans cisternae of columella and peripheral cells, but not meristematic cells. In older peripheral cells only trans cisternae exhibit slime-related staining. Golgi stacks possessing intercisternal elements also contain parallel rows of freeze-fracture particles in their trans cisternal membranes. We propose that intercisternal elements serve as anchors of enzyme complexes involved in the synthesis of polysaccharide slime molecules to prevent the complexes from being dragged into the forming secretory vesicles by the very large slime molecules. In addition, we draw attention to the similarities in composition and apparent site of synthesis of xyloglucans and slime molecules.
NASA Astrophysics Data System (ADS)
Van Daele, Maarten; Meyer, Inka; Moernaut, Jasper; De Decker, Steven; Verschuren, Dirk; De Batist, Marc
2017-07-01
Stacked or amalgamated turbidites provide an opportunity to infer the synchronous triggering of multiple slope failures, which is a criterion often used to attribute these slope failures to earthquake shaking; and such turbidites are thus a proxy for reconstructing long-term earthquake recurrence. However, other processes, such as erosion, reflecting turbidity currents and seiching, may produce similar amalgamated/stacked deposits. Here we study two turbidites from Lake Challa, a crater lake on the lower slopes of Kilimanjaro (Kenya/Tanzania). The occurrence in Lake Challa of both single slope failures and basin-wide landslide events, all accompanied by distal turbidites, provides an excellent opportunity to assess the characteristics and significance of amalgamated/stacked turbidites in an enclosed lake basin with diatomaceous sediments, reflecting hemipelagic sedimentation in offshore areas. We also compare the characteristics of amalgamated/stacked turbidites in basins other than Lake Challa to discuss potential causes of different amalgamation patterns (stacked or multi-pulsed character). The low density and elongated shape of diatom frustules increases grain-to-grain interaction and thereby damps turbulence, resulting in faster bed aggradation and a stacked character of the amalgamated turbidites. Finally, as currently both synchronously and non-synchronously triggered turbidites are in literature referred to as ;stacked turbidite;, we propose a revised terminology that differentiates an ;amalgamated turbidite; from a ;turbidite stack;. In sedimentary environments that are dominated by (hemi)pelagic sedimentation, and where turbidity currents are anomalous events, an ;amalgamated turbidite; can often be shown to be the result of synchronous triggering, while a ;turbidite stack; must always result from a succession of discrete events.
NASA Astrophysics Data System (ADS)
Mehta, Sohan S.; Ganta, Lakshmi K.; Chauhan, Vikrant; Wu, Yixu; Singh, Sunil; Ann, Chia; Subramany, Lokesh; Higgins, Craig; Erenturk, Burcin; Srivastava, Ravi; Singh, Paramjit; Koh, Hui Peng; Cho, David
2015-03-01
Immersion based 20nm technology node and below becoming very challenging to chip designers, process and integration due to multiple patterning to integrate one design layer . Negative tone development (NTD) processes have been well accepted by industry experts for enabling technologies 20 nm and below. 193i double patterning is the technology solution for pitch down to 80 nm. This imposes tight control in critical dimension(CD) variation in double patterning where design patterns are decomposed in two different masks such as in litho-etch-litho etch (LELE). CD bimodality has been widely studied in LELE double patterning. A portion of CD tolerance budget is significantly consumed by variations in CD in double patterning. The objective of this work is to study the process variation challenges and resolution in the Negative Tone Develop Process for 20 nm and Below Technology Node. This paper describes the effect of dose slope on CD variation in negative tone develop LELE process. This effect becomes even more challenging with standalone NTD developer process due to q-time driven CD variation. We studied impact of different stacks with combination of binary and attenuated phase shift mask and estimated dose slope contribution individually from stack and mask type. Mask 3D simulation was carried out to understand theoretical aspect. In order to meet the minimum insulator requirement for the worst case on wafer the overlay and critical dimension uniformity (CDU) budget margins have slimmed. Besides the litho process and tool control using enhanced metrology feedback, the variation control has other dependencies too. Color balancing between the two masks in LELE is helpful in countering effects such as iso-dense bias, and pattern shifting. Dummy insertion and the improved decomposition techniques [2] using multiple lower priority constraints can help to a great extent. Innovative color aware routing techniques [3] can also help with achieving more uniform density and color balanced layouts.
WebLogo: A Sequence Logo Generator
Crooks, Gavin E.; Hon, Gary; Chandonia, John-Marc; Brenner, Steven E.
2004-01-01
WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment. Sequence logos provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive. Each logo consists of stacks of letters, one stack for each position in the sequence. The overall height of each stack indicates the sequence conservation at that position (measured in bits), whereas the height of symbols within the stack reflects the relative frequency of the corresponding amino or nucleic acid at that position. WebLogo has been enhanced recently with additional features and options, to provide a convenient and highly configurable sequence logo generator. A command line interface and the complete, open WebLogo source code are available for local installation and customization. PMID:15173120
Comparative analysis for various redox flow batteries chemistries using a cost performance model
NASA Astrophysics Data System (ADS)
Crawford, Alasdair; Viswanathan, Vilayanur; Stephenson, David; Wang, Wei; Thomsen, Edwin; Reed, David; Li, Bin; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent
2015-10-01
The total energy storage system cost is determined by means of a robust performance-based cost model for multiple flow battery chemistries. Systems aspects such as shunt current losses, pumping losses and various flow patterns through electrodes are accounted for. The system cost minimizing objective function determines stack design by optimizing the state of charge operating range, along with current density and current-normalized flow. The model cost estimates are validated using 2-kW stack performance data for the same size electrodes and operating conditions. Using our validated tool, it has been demonstrated that an optimized all-vanadium system has an estimated system cost of < 350 kWh-1 for 4-h application. With an anticipated decrease in component costs facilitated by economies of scale from larger production volumes, coupled with performance improvements enabled by technology development, the system cost is expected to decrease to 160 kWh-1 for a 4-h application, and to 100 kWh-1 for a 10-h application. This tool has been shared with the redox flow battery community to enable cost estimation using their stack data and guide future direction.
Lucas, Ricardo; Peñalver, Pablo; Gómez-Pinto, Irene; Vengut-Climent, Empar; Mtashobya, Lewis; Cousin, Jonathan; Maldonado, Olivia S; Perez, Violaine; Reynes, Virginie; Aviñó, Anna; Eritja, Ramón; González, Carlos; Linclau, Bruno; Morales, Juan C
2014-03-21
Carbohydrate-aromatic interactions are highly relevant for many biological processes. Nevertheless, experimental data in aqueous solution relating structure and energetics for sugar-arene stacking interactions are very scarce. Here, we evaluate how structural variations in a monosaccharide including carboxyl, N-acetyl, fluorine, and methyl groups affect stacking interactions with aromatic DNA bases. We find small differences on stacking interaction among the natural carbohydrates examined. The presence of fluorine atoms within the pyranose ring slightly increases the interaction with the C-G DNA base pair. Carbohydrate hydrophobicity is the most determinant factor. However, gradual increase in hydrophobicity of the carbohydrate does not translate directly into a steady growth in stacking interaction. The energetics correlates better with the amount of apolar surface buried upon sugar stacking on top of the aromatic DNA base pair.
Wei, Yang; Liu, Peng; Zhu, Feng; Jiang, Kaili; Li, Qunqing; Fan, Shoushan
2012-04-11
Carbon nanotube (CNT) micro tip arrays with hairpin structures on patterned silicon wafers were efficiently fabricated by tailoring the cross-stacked CNT sheet with laser. A blade-like structure was formed at the laser-cut edges of the CNT sheet. CNT field emitters, pulled out from the end of the hairpin by an adhesive tape, can provide 150 μA intrinsic emission currents with low beam noise. The nice field emission is ascribed to the Joule-heating-induced desorption of the emitter surface by the hairpin structure, the high temperature annealing effect, and the surface morphology. The CNT emitters with hairpin structures will greatly promote the applications of CNTs in vacuum electronic devices and hold the promises to be used as the hot tips for thermochemical nanolithography. More CNT-based structures and devices can be fabricated on a large scale by this versatile method. © 2012 American Chemical Society
Electronic, Mechanical, and Dielectric Properties of Two-Dimensional Atomic Layers of Noble Metals
NASA Astrophysics Data System (ADS)
Kapoor, Pooja; Kumar, Jagdish; Kumar, Arun; Kumar, Ashok; Ahluwalia, P. K.
2017-01-01
We present density functional theory-based electronic, mechanical, and dielectric properties of monolayers and bilayers of noble metals (Au, Ag, Cu, and Pt) taken with graphene-like hexagonal structure. The Au, Ag, and Pt bilayers stabilize in AA-stacked configuration, while the Cu bilayer favors the AB stacking pattern. The quantum ballistic conductance of the noble-metal mono- and bilayers is remarkably increased compared with their bulk counterparts. Among the studied systems, the tensile strength is found to be highest for the Pt monolayer and bilayer. The noble metals in mono- and bilayer form show distinctly different electron energy loss spectra and reflectance spectra due to the quantum confinement effect on going from bulk to the monolayer limit. Such tunability of the electronic and dielectric properties of noble metals by reducing the degrees of freedom of electrons offers promise for their use in nanoelectronics and optoelectronics applications.
π-π stacking tackled with density functional theory
Swart, Marcel; van der Wijst, Tushar; Fonseca Guerra, Célia
2007-01-01
Through comparison with ab initio reference data, we have evaluated the performance of various density functionals for describing π-π interactions as a function of the geometry between two stacked benzenes or benzene analogs, between two stacked DNA bases, and between two stacked Watson–Crick pairs. Our main purpose is to find a robust and computationally efficient density functional to be used specifically and only for describing π-π stacking interactions in DNA and other biological molecules in the framework of our recently developed QM/QM approach "QUILD". In line with previous studies, most standard density functionals recover, at best, only part of the favorable stacking interactions. An exception is the new KT1 functional, which correctly yields bound π-stacked structures. Surprisingly, a similarly good performance is achieved with the computationally very robust and efficient local density approximation (LDA). Furthermore, we show that classical electrostatic interactions determine the shape and depth of the π-π stacking potential energy surface. Figure Additivity approximation for the π-π interaction between two stacked Watson–Crick base pairs in terms of pairwise interactions between individual bases Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0239-y) contains supplementary material, which is available to authorized users. PMID:17874150
Bragg reflector based gate stack architecture for process integration of excimer laser annealing
NASA Astrophysics Data System (ADS)
Fortunato, G.; Mariucci, L.; Cuscunà, M.; Privitera, V.; La Magna, A.; Spinella, C.; Magrı, A.; Camalleri, M.; Salinas, D.; Simon, F.; Svensson, B.; Monakhov, E.
2006-12-01
An advanced gate stack structure, which incorporates a Bragg reflector, has been developed for the integration of excimer laser annealing into the power metal-oxide semiconductor (MOS) transistor fabrication process. This advanced gate structure effectively protects the gate stack from melting, thus solving the problem related to protrusion formation. By using this gate stack configuration, power MOS transistors were fabricated with improved electrical characteristics. The Bragg reflector based gate stack architecture can be applied to other device structures, such as scaled MOS transistors, thus extending the possibilities of process integration of excimer laser annealing.
NASA Astrophysics Data System (ADS)
Zheng, C. H.; Xu, G. Q.; Park, Y. I.; Lim, W. S.; Cha, S. W.
2014-02-01
The lifetime of fuel cell stacks is a major issue currently, especially for automotive applications. In order to take into account the lifetime of fuel cell stacks while considering the fuel consumption minimization in fuel cell hybrid vehicles (FCHVs), a Pontryagin's Minimum Principle (PMP)-based power management strategy is proposed in this research. This strategy has the effect of prolonging the lifetime of fuel cell stacks. However, there is a tradeoff between the fuel cell stack lifetime and the fuel consumption when this strategy is applied to an FCHV. Verifying the positive economic influence of this strategy is necessary in order to demonstrate its superiority. In this research, the economic influence of the proposed strategy is assessed according to an evaluating cost which is dependent on the fuel cell stack cost, the hydrogen cost, the fuel cell stack lifetime, and the lifetime prolonging impact on the fuel cell stack. Simulation results derived from the proposed power management strategy are also used to evaluate the economic influence. As a result, the positive economic influence of the proposed PMP-based power management strategy is proved for both current and future FCHVs.
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
2015-11-04
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
From 1D to 3D: Tunable Sub-10 nm Gaps in Large Area Devices.
Zhou, Ziwei; Zhao, Zhiyuan; Yu, Ye; Ai, Bin; Möhwald, Helmuth; Chiechi, Ryan C; Yang, Joel K W; Zhang, Gang
2016-04-20
Tunable sub-10 nm 1D nanogaps are fabricated based on nanoskiving. The electric field in different sized nanogaps is investigated theoretically and experimentally, yielding nonmonotonic dependence and an optimized gap-width (5 nm). 2D nanogap arrays are fabricated to pack denser gaps combining surface patterning techniques. Innovatively, 3D multistory nanogaps are built via a stacking procedure, processing higher integration, and much improved electric field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Perforated-Layer Implementation Of Radio-Frequency Lenses
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin P.
1996-01-01
Luneberg-type radio-frequency dielectric lenses made of stacked perforated circular dielectric sheets, according to proposal. Perforation pattern designed to achieve required spatial variation of permittivity. Consists of round holes distributed across face of each sheet in "Swiss-cheese" pattern, plus straight or curved slots that break up outer parts into petals in "daisy-wheel" pattern. Holes and slots made by numerically controlled machining.
Parker, Trent M; Hohenstein, Edward G; Parrish, Robert M; Hud, Nicholas V; Sherrill, C David
2013-01-30
Symmetry-adapted perturbation theory (SAPT) is applied to pairs of hydrogen-bonded nucleobases to obtain the energetic components of base stacking (electrostatic, exchange-repulsion, induction/polarization, and London dispersion interactions) and how they vary as a function of the helical parameters Rise, Twist, and Slide. Computed average values of Rise and Twist agree well with experimental data for B-form DNA from the Nucleic Acids Database, even though the model computations omitted the backbone atoms (suggesting that the backbone in B-form DNA is compatible with having the bases adopt their ideal stacking geometries). London dispersion forces are the most important attractive component in base stacking, followed by electrostatic interactions. At values of Rise typical of those in DNA (3.36 Å), the electrostatic contribution is nearly always attractive, providing further evidence for the importance of charge-penetration effects in π-π interactions (a term neglected in classical force fields). Comparison of the computed stacking energies with those from model complexes made of the "parent" nucleobases purine and 2-pyrimidone indicates that chemical substituents in DNA and RNA account for 20-40% of the base-stacking energy. A lack of correspondence between the SAPT results and experiment for Slide in RNA base-pair steps suggests that the backbone plays a larger role in determining stacking geometries in RNA than in B-form DNA. In comparisons of base-pair steps with thymine versus uracil, the thymine methyl group tends to enhance the strength of the stacking interaction through a combination of dispersion and electrosatic interactions.
Formation of bulk refractive index structures
Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.
2003-07-15
A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.
OLED emission zone measurement with high accuracy
NASA Astrophysics Data System (ADS)
Danz, N.; MacCiarnain, R.; Michaelis, D.; Wehlus, T.; Rausch, A. F.; Wächter, C. A.; Reusch, T. C. G.
2013-09-01
Highly efficient state of the art organic light-emitting diodes (OLED) comprise thin emitting layers with thicknesses in the order of 10 nm. The spatial distribution of the photon generation rate, i.e. the profile of the emission zone, inside these layers is of interest for both device efficiency analysis and characterization of charge recombination processes. It can be accessed experimentally by reverse simulation of far-field emission pattern measurements. Such a far-field pattern is the sum of individual emission patterns associated with the corresponding positions inside the active layer. Based on rigorous electromagnetic theory the relation between far-field pattern and emission zone is modeled as a linear problem. This enables a mathematical analysis to be applied to the cases of single and double emitting layers in the OLED stack as well as to pattern measurements in air or inside the substrate. From the results, guidelines for optimum emitter - cathode separation and for selecting the best experimental approach are obtained. Limits for the maximum spatial resolution can be derived.
Wang, Yixuan
2008-01-01
Self-stacking of four DNA bases, adenine (A), cytosine (C), guanine (G) and thymine (T), and their cross-stacking with (5,5) as well as (10,0) single walled carbon nanotubes (SWCNTs) were extensively investigated with a novel hybrid DFT method, MPWB1K/cc-pVDZ. The binding energies were further corrected with MP2/6-311++G(d,p) method in both gas phase and aqueous solution, where the solvent effects were included with conductor-like polarized continuum model (CPCM) model and UAHF radii. The strongest self-stacking of G and A takes displaced anti-parallel configuration, but un-displaced or “eclipsed” anti-parallel configuration is the most stable for C and T. In gas phase the self-stacking of nucleobases decreases in the sequence G>A>C>T, while because of quite different solvent effects their self-stacking in aqueous solution exhibits a distinct sequence A>G>T>C. For a given base, cross-stacking is stronger than self-stacking in both gas phase and aqueous solution. Binding energy for cross-stacking in gas phase varies as G>A>T>C for both (10,0) and (5,5) SWCNTs, and the binding of four nucleobases to (10,0) is slightly stronger than to (5,5) SWCNT by a range of 0.1–0.5 kcal/mol. The cross-stacking in aqueous solution varies differently from that gas phase: A>G>T>C for (10,0) SWCNT and G>A>T>C for (5,5) SWCNT. It is suggested that the ability of nucleobases to disperse SWCNT depends on relative strength (ΔΔEbinsol) of self-stacking and cross-stacking with SWCNT in aqueous solution. Of the four investigated nucleobases thymine (T) exhibits the highest (ΔΔEbinsol) which can well explain the experimental finding that T more efficiently functionalizes SWCNT than C and A. PMID:18946514
NASA Astrophysics Data System (ADS)
Liu, T.; Deptuch, G.; Hoff, J.; Jindariani, S.; Joshi, S.; Olsen, J.; Tran, N.; Trimpl, M.
2015-02-01
An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the short latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking; in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T.; Deptuch, G.; Hoff, J.
An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the shortmore » latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking, in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.« less
Huan, Zhijie; Chu, Henry K; Yang, Jie; Sun, Dong
2017-04-01
Seeding and patterning of cells with an engineered scaffold is a critical process in artificial tissue construction and regeneration. To date, many engineered scaffolds exhibit simple intrinsic designs, which fail to mimic the geometrical complexity of native tissues. In this study, a novel scaffold that can automatically seed cells into multilayer honeycomb patterns for bone tissue engineering application was designed and examined. The scaffold incorporated dielectrophoresis for noncontact manipulation of cells and intrinsic honeycomb architectures were integrated in each scaffold layer. When a voltage was supplied to the stacked scaffold layers, three-dimensional electric fields were generated, thereby manipulating cells to form into honeycomb-like cellular patterns for subsequent culture. The biocompatibility of the scaffold material was confirmed through the cell viability test. Experiments were conducted to evaluate the cell viability during DEP patterning at different voltage amplitudes, frequencies, and manipulating time. Three different mammalian cells were examined and the effects of the cell size and the cell concentration on the resultant cellular patterns were evaluated. Results showed that the proposed scaffold structure was able to construct multilayer honeycomb cellular patterns in a manner similar to the natural tissue. This honeycomb-like scaffold and the dielectrophoresis-based patterning technique examined in this study could provide the field with a promising tool to enhance seeding and patterning of a wide range of cells for the development of high-quality artificial tissues.
Zhang, Wei; Fan, Liuyin; Shao, Jing; Li, Si; Li, Shan; Cao, Chengxi
2011-04-15
To demonstrate the theoretic method on the stacking of zwitterion with moving reaction boundary (MRB) in the accompanying paper, the relevant experiments were performed. The experimental results quantitatively show that (1) MRB velocity, including the comparisons between MRB and zwitterionic velocities, possesses key importance to the design of MRB stacking; (2) a much long front alkaline plug without sample should be injected before the sample injection for a complete stacking of zwitterion if sample buffer is prepared with strong base, conversely no such plug is needed if using a weak base as the sample buffer with proper concentration and pH value; (3) the presence of salt in MRB system holds dramatic effect on the MRB stacking if sample solution is a strong base, but has no effect if a weak alkali is used as sample solution; (4) all of the experiments of this paper, including the previous work, quantitatively manifest the theory and predictions shown in the accompanying paper. In addition, the so-called derivative MRB-induced re-stacking and transient FASI-induced re-stacking were also observed during the experiments, and the relevant mechanisms were briefly demonstrated with the results. The theory and its calculation procedures developed in the accompanying paper can be well used for the predictions to the MRB stacking of zwitterion in CE. Copyright © 2011 Elsevier B.V. All rights reserved.
Stacking metal nano-patterns and fabrication of moth-eye structure
NASA Astrophysics Data System (ADS)
Taniguchi, Jun
2018-01-01
Nanoimprint lithography (NIL) can be used as a tool for three-dimensional nanoscale fabrication. In particular, complex metal pattern structures in polymer material are demanded as plasmonic effect devices and metamaterials. To fabricate of metallic color filter, we used silver ink and NIL techniques. Metallic color filter was composed of stacking of nanoscale silver disc patterns and polymer layers, thus, controlling of polymer layer thickness is necessary. To control of thickness of polymer layer, we used spin-coating of UV-curable polymer and NIL. As a result, ten stacking layers with 1000 nm layer thickness was obtained and red color was observed. Ultraviolet nanoimprint lithography (UV-NIL) is the most effective technique for mass fabrication of antireflection structure (ARS) films. For the use of ARS films in mobile phones and tablet PCs, which are touch-screen devices, it is important to protect the films from fingerprints and dust. In addition, as the nanoscale ARS that is touched by the hand is fragile, it is very important to obtain a high abrasion resistance. To solve these problems, a UV-curable epoxy resin has been developed that exhibits antifouling properties and high hardness. The high abrasion resistance ARS films are shown to withstand a load of 250 g/cm2 in the steel wool scratch test, and the reflectance is less than 0.4%.
Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.
Fernandes, Syrena C; Wilson, Daniel J; Mace, Charles R
2017-03-09
Paper wicks fluids autonomously due to capillary action. By patterning paper with hydrophobic barriers, the transport of fluids can be controlled and directed within a layer of paper. Moreover, stacking multiple layers of patterned paper creates sophisticated three-dimensional microfluidic networks that can support the development of analytical and bioanalytical assays. Paper-based microfluidic devices are inexpensive, portable, easy to use, and require no external equipment to operate. As a result, they hold great promise as a platform for point-of-care diagnostics. In order to properly evaluate the utility and analytical performance of paper-based devices, suitable methods must be developed to ensure their manufacture is reproducible and at a scale that is appropriate for laboratory settings. In this manuscript, a method to fabricate a general device architecture that can be used for paper-based immunoassays is described. We use a form of additive manufacturing (multi-layer lamination) to prepare devices that comprise multiple layers of patterned paper and patterned adhesive. In addition to demonstrating the proper use of these three-dimensional paper-based microfluidic devices with an immunoassay for human chorionic gonadotropin (hCG), errors in the manufacturing process that may result in device failures are discussed. We expect this approach to manufacturing paper-based devices will find broad utility in the development of analytical applications designed specifically for limited-resource settings.
Deformation induced microtwins and stacking faults in aluminum single crystal.
Han, W Z; Cheng, G M; Li, S X; Wu, S D; Zhang, Z F
2008-09-12
Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.
EUVL mask patterning with blanks from commercial suppliers
NASA Astrophysics Data System (ADS)
Yan, Pei-Yang; Zhang, Guojing; Nagpal, Rajesh; Shu, Emily Y.; Li, Chaoyang; Qu, Ping; Chen, Frederick T.
2004-12-01
Extreme Ultraviolet Lithography (EUVL) reflective mask blank development includes low thermal expansion material fabrication, mask substrate finishing, reflective multi-layer (ML) and capping layer deposition, buffer (optional)/absorber stack deposition, EUV specific metrology, and ML defect inspection. In the past, we have obtained blanks deposited with various layer stacks from several vendors. Some of them are not commercial suppliers. As a result, the blank and patterned mask qualities are difficult to maintain and improve. In this paper we will present the evaluation results of the EUVL mask pattering processes with the complete EUVL mask blanks supplied by the commercial blank supplier. The EUVL mask blanks used in this study consist of either quartz or ULE substrates which is a type of low thermal expansion material (LTEM), 40 pairs of molybdenum/silicon (Mo/Si) ML layer, thin ruthenium (Ru) capping layer, tantalum boron nitride (TaBN) absorber, and chrome (Cr) backside coating. No buffer layer is used. Our study includes the EUVL mask blank characterization, patterned EUVL mask characterization, and the final patterned EUVL mask flatness evaluation.
Stacking interactions and DNA intercalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dr. Shen; Cooper, Valentino R; Thonhauser, Prof. Timo
2009-01-01
The relationship between stacking interactions and the intercalation of proflavine and ellipticine within DNA is investigated using a nonempirical van der Waals density functional for the correlation energy. Our results, employing a binary stack model, highlight fundamental, qualitative differences between base-pair base-pair interactions and that of the stacked intercalator base pair system. Most notable result is the paucity of torque which so distinctively defines the Twist of DNA. Surprisingly, this model, when combined with a constraint on the twist of the surrounding base-pair steps to match the observed unwinding of the sugar-phosphate backbone, was sufficient for explaining the experimentally observedmore » proflavine intercalator configuration. Our extensive mapping of the potential energy surface of base-pair intercalator interactions can provide valuable information for future nonempirical studies of DNA intercalation dynamics.« less
One-electron oxidation of individual DNA bases and DNA base stacks.
Close, David M
2010-02-04
In calculations performed with DFT there is a tendency of the purine cation to be delocalized over several bases in the stack. Attempts have been made to see if methods other than DFT can be used to calculate localized cations in stacks of purines, and to relate the calculated hyperfine couplings with known experimental results. To calculate reliable hyperfine couplings it is necessary to have an adequate description of spin polarization which means that electron correlation must be treated properly. UMP2 theory has been shown to be unreliable in estimating spin densities due to overestimates of the doubles correction. Therefore attempts have been made to use quadratic configuration interaction (UQCISD) methods to treat electron correlation. Calculations on the individual DNA bases are presented to show that with UQCISD methods it is possible to calculate hyperfine couplings in good agreement with the experimental results. However these UQCISD calculations are far more time-consuming than DFT calculations. Calculations are then extended to two stacked guanine bases. Preliminary calculations with UMP2 or UQCISD theory on two stacked guanines lead to a cation localized on a single guanine base.
40 CFR 51.118 - Stack height provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... exceeds good engineering practice or by any other dispersion technique, except as provided in § 51.118(b... based on a good engineering practice stack height that exceeds the height allowed by § 51.100(ii) (1) or... actual stack height of any source. (b) The provisions of § 51.118(a) shall not apply to (1) stack heights...
NASA Astrophysics Data System (ADS)
Ohnishi, Inori; Hashimoto, Kazuhito; Tajima, Keisuke
2018-03-01
Linear polydimethylsiloxane (PDMS) was investigated as a solubilizing group for π-conjugated polymers with the aim of combining high solubility in organic solvents with the molecular packing in solid films that is advantageous for charge transport. Diketopyrrolopyrrole-based copolymers with different contents and substitution patterns of the PDMS side chains were synthesized and evaluated for application in organic field-effect transistors. The PDMS side chains greatly increased the solubility of the polymers and led to shorter d-spacings of the π-stacking in the thin films compared with polymers containing conventional branched alkyl side chains.
Use of continuous/contiguous stacking hybridization as a diagnostic tool
Mirzabekov, Andrei Darievich; Yershov, Gennadiy Moseyevich; Kirillov, Eugene Vladislavovich; Parinov, Sergei Valeryevich; Barski, Victor Evgenievich; Lysov, Yuri Petrovich
1999-01-01
A method for detecting disease-associated alleles in patient genetic material is provided whereby a first group of oligonucleotide molecules, synthesized to compliment base sequences of the disease associated alleles is immobilized on a predetermined position on a substrate, and then contacted with patient genetic material to form duplexes. The duplexes are then contacted with a second group of oligonucleotide molecules which are synthesized to extend the predetermined length of the oligonucleotide molecules of the first group, and where each of the oligonucleotide molecules of the second group are tagged and either incorporate universal bases or a mixture of guanine, cytosine, thymine, and adenine, or complementary nucleotide strands that are tagged with a different fluorochrome which radiates light at a predetermined wavelength. The treated substrate is then washed and the light patterns radiating therefrom are compared with predetermined light patterns of various diseases that were prepared on identical substrates.
Use of continuous/contiguous stacking hybridization as a diagnostic tool
Mirzabekov, A.D.; Yershov, G.M.; Kirillov, E.V.; Parinov, S.V.; Barski, V.E.; Lysov, Y.P.
1999-06-01
A method for detecting disease-associated alleles in patient genetic material is provided whereby a first group of oligonucleotide molecules, synthesized to compliment base sequences of the disease associated alleles is immobilized on a predetermined position on a substrate, and then contacted with patient genetic material to form duplexes. The duplexes are then contacted with a second group of oligonucleotide molecules which are synthesized to extend the predetermined length of the oligonucleotide molecules of the first group, and where each of the oligonucleotide molecules of the second group are tagged and either incorporate universal bases or a mixture of guanine, cytosine, thymine, and adenine, or complementary nucleotide strands that are tagged with a different fluorochrome which radiates light at a predetermined wavelength. The treated substrate is then washed and the light patterns radiating therefrom are compared with predetermined light patterns of various diseases that were prepared on identical substrates. 5 figs.
Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Costecalde, Jean; Rèmiens, Denis; Soyer, Caroline; Nicu, Liviu
2012-09-01
The advantage of using lead zirconate titanate (PbZr(0.54)Ti(0.46)O(3)) ceramics as an active material in nanoelectromechanical systems (NEMS) comes from its relatively high piezoelectric coefficients. However, its integration within a technological process is limited by the difficulty of structuring this material with submicrometer resolution at the wafer scale. In this work, we develop a specific patterning method based on optical lithography coupled with a dual-layer resist process. The main objective is to obtain sub-micrometer features by lifting off a 100-nm-thick PZT layer while preserving the material's piezoelectric properties. A subsequent result of the developed method is the ability to stack several layers with a lateral resolution of few tens of nanometers, which is mandatory for the fabrication of NEMS with integrated actuation and read-out capabilities.
Rippel, Wally E.; Kobayashi, Daryl M.
2005-10-11
An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.
Scappucci, G; Klesse, W M; Hamilton, A R; Capellini, G; Jaeger, D L; Bischof, M R; Reidy, R F; Gorman, B P; Simmons, M Y
2012-09-12
Stacking of two-dimensional electron gases (2DEGs) obtained by δ-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked δ-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (∼220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (∼1000 × ) than the scattering time within the dopant plane.
NASA Astrophysics Data System (ADS)
Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol
2016-09-01
The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.
A stacking method and its applications to Lanzarote tide gauge records
NASA Astrophysics Data System (ADS)
Zhu, Ping; van Ruymbeke, Michel; Cadicheanu, Nicoleta
2009-12-01
A time-period analysis tool based on stacking is introduced in this paper. The original idea comes from the classical tidal analysis method. It is assumed that the period of each major tidal component is precisely determined based on the astronomical constants and it is unchangeable with time at a given point in the Earth. We sum the tidal records at a fixed tidal component center period T then take the mean of it. The stacking could significantly increase the signal-to-noise ratio (SNR) if a certain number of stacking circles is reached. The stacking results were fitted using a sinusoidal function, the amplitude and phase of the fitting curve is computed by the least squares methods. The advantage of the method is that: (1) an individual periodical signal could be isolated by stacking; (2) one can construct a linear Stacking-Spectrum (SSP) by changing the stacking period Ts; (3) the time-period distribution of the singularity component could be approximated by a Sliding-Stacking approach. The shortcoming of the method is that in order to isolate a low energy frequency or separate the nearby frequencies, we need a long enough series with high sampling rate. The method was tested with a numeric series and then it was applied to 1788 days Lanzarote tide gauge records as an example.
Multiscale modeling for SiO2 atomic layer deposition for high-aspect-ratio hole patterns
NASA Astrophysics Data System (ADS)
Miyano, Yumiko; Narasaki, Ryota; Ichikawa, Takashi; Fukumoto, Atsushi; Aiso, Fumiki; Tamaoki, Naoki
2018-06-01
A multiscale simulation model is developed for optimizing the parameters of SiO2 plasma-enhanced atomic layer deposition of high-aspect-ratio hole patterns in three-dimensional (3D) stacked memory. This model takes into account the diffusion of a precursor in a reactor, that in holes, and the adsorption onto the wafer. It is found that the change in the aperture ratio of the holes on the wafer affects the concentration of the precursor near the top of the wafer surface, hence the deposition profile in the hole. The simulation results reproduced well the experimental results of the deposition thickness for the various hole aperture ratios. By this multiscale simulation, we can predict the deposition profile in a high-aspect-ratio hole pattern in 3D stacked memory. The atomic layer deposition parameters for conformal deposition such as precursor feeding time and partial pressure of precursor for wafers with various hole aperture ratios can be estimated.
A paper-based microbial fuel cell: instant battery for disposable diagnostic devices.
Fraiwan, Arwa; Mukherjee, Sayantika; Sundermier, Steven; Lee, Hyung-Sool; Choi, Seokheun
2013-11-15
We present a microfabricated paper-based microbial fuel cell (MFC) generating a maximum power of 5.5 μW/cm(2). The MFC features (1) a paper-based proton exchange membrane by infiltrating sulfonated sodium polystyrene sulfonate and (2) micro-fabricated paper chambers by patterning hydrophobic barriers of photoresist. Once inoculum and catholyte were added to the MFC, a current of 74 μA was generated immediately. This paper-based MFC has the advantages of ease of use, low production cost, and high portability. The voltage produced was increased by 1.9 × when two MFC devices were stacked in series, while operating lifetime was significantly enhanced in parallel. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Y M; Chrambach, A
2001-11-01
Recombinant urchin syntaxin [Xa cut], electrophoresed at pH 9.0 (25 degrees C) or 10.2 (0 degrees C) in a discontinuous Tris-chloride-glycinate buffer system in the presence of 0.03% SDS in the catholyte, exhibits a multicomponent pattern in gels of a polyacrylamide concentration of 12% and 3% crosslinking. The position in the pattern of the syntaxin band was identified by reference to electropherograms of a previous study (P. Backlund, pers. comm.). The complexity of the protein composition of the preparation was reduced by selective stacking of proteins with mobilities greater than that of syntaxin. This provides a gel pattern consisting of two bands with mobilities close to that identified as syntaxin, as well as a minor, more slowly migrating, contaminant. The two major components are designated as S1 and S2, the latter being the larger species. In the absence of SDS, the preparation exhibits two pairs of protein components. Three of the proteins are charge isomers, i.e., of equal size, differing only in net charge, assumed to be forms of S1, while the fourth component is larger and is assumed to be S2. Aliquots of the preparation, containing 150 microg of protein were loaded on a cylindrical polyacrylamide gel of 18 mm diameter, and separated S1 and S2 were excised in a position defined by their characteristic values of relative mobility (Rf). Two or three gel slices, corresponding in Rf to S1 or S2, were pooled and loaded onto a Stacking Gel (5% polyacrylamide, 20% cross-linked) of 18 mm diameter, equipped with a collection chamber of 200 microL volume. The protein was electroeluted from the gel slices and concentrated into a stack by electrophoresis. The stack, marked by bromphenolblue, was allowed to migrate into the collection chamber, was collected and analyzed by protein assay and re-electrophoresis. Re-electrophoresis of S1 shows that it consists of at least three components. Recovered S1 constitutes 47% of the preparation, based on protein assay, S2 4%. S1, isolated from SDS-PAGE, exhibits an apparent Mr of 22.7 kDa, S2 one of 34.5 kDa, similar to the value of 32.6 kDa expected from the structure of syntaxin. The absence of S2 from the electroeluate re-electrophoresed at 0 degrees C and their molecular weight relationship suggest a proteolytic transformation of S2 to S1.
Multilevel-3D Bit Patterned Magnetic Media with 8 Signal Levels Per Nanocolumn
Amos, Nissim; Butler, John; Lee, Beomseop; Shachar, Meir H.; Hu, Bing; Tian, Yuan; Hong, Jeongmin; Garcia, Davil; Ikkawi, Rabee M.; Haddon, Robert C.; Litvinov, Dmitri; Khizroev, Sakhrat
2012-01-01
This letter presents an experimental study that shows that a 3rd physical dimension may be used to further increase information packing density in magnetic storage devices. We demonstrate the feasibility of at least quadrupling the magnetic states of magnetic-based data storage devices by recording and reading information from nanopillars with three magnetically-decoupled layers. Magneto-optical Kerr effect microscopy and magnetic force microscopy analysis show that both continuous (thin film) and patterned triple-stack magnetic media can generate eight magnetically-stable states. This is in comparison to only two states in conventional magnetic recording. Our work further reveals that ferromagnetic interaction between magnetic layers can be reduced by combining Co/Pt and Co/Pd multilayers media. Finally, we are showing for the first time an MFM image of multilevel-3D bit patterned media with 8 discrete signal levels. PMID:22808105
Multilevel-3D bit patterned magnetic media with 8 signal levels per nanocolumn.
Amos, Nissim; Butler, John; Lee, Beomseop; Shachar, Meir H; Hu, Bing; Tian, Yuan; Hong, Jeongmin; Garcia, Davil; Ikkawi, Rabee M; Haddon, Robert C; Litvinov, Dmitri; Khizroev, Sakhrat
2012-01-01
This letter presents an experimental study that shows that a 3(rd) physical dimension may be used to further increase information packing density in magnetic storage devices. We demonstrate the feasibility of at least quadrupling the magnetic states of magnetic-based data storage devices by recording and reading information from nanopillars with three magnetically-decoupled layers. Magneto-optical Kerr effect microscopy and magnetic force microscopy analysis show that both continuous (thin film) and patterned triple-stack magnetic media can generate eight magnetically-stable states. This is in comparison to only two states in conventional magnetic recording. Our work further reveals that ferromagnetic interaction between magnetic layers can be reduced by combining Co/Pt and Co/Pd multilayers media. Finally, we are showing for the first time an MFM image of multilevel-3D bit patterned media with 8 discrete signal levels.
Battaglia, Corsin; Söderström, Karin; Escarré, Jordi; Haug, Franz-Josef; Despeisse, Matthieu; Ballif, Christophe
2013-01-01
We describe a nanomoulding technique which allows low-cost nanoscale patterning of functional materials, materials stacks and full devices. Nanomoulding combined with layer transfer enables the replication of arbitrary surface patterns from a master structure onto the functional material. Nanomoulding can be performed on any nanoimprinting setup and can be applied to a wide range of materials and deposition processes. In particular we demonstrate the fabrication of patterned transparent zinc oxide electrodes for light trapping applications in solar cells. PMID:23380874
Three-dimensional integrated circuits for lab-on-chip dielectrophoresis of nanometer scale particles
NASA Astrophysics Data System (ADS)
Dickerson, Samuel J.; Noyola, Arnaldo J.; Levitan, Steven P.; Chiarulli, Donald M.
2007-01-01
In this paper, we present a mixed-technology micro-system for electronically manipulating and optically detecting virusscale particles in fluids that is designed using 3D integrated circuit technology. During the 3D fabrication process, the top-most chip tier is assembled upside down and the substrate material is removed. This places the polysilicon layer, which is used to create geometries with the process' minimum feature size, in close proximity to a fluid channel etched into the top of the stack. By taking advantage of these processing features inherent to "3D chip-stacking" technology, we create electrode arrays that have a gap spacing of 270 nm. Using 3D CMOS technology also provides the ability to densely integrate analog and digital control circuitry for the electrodes by using the additional levels of the chip stack. We show simulations of the system with a physical model of a Kaposi's sarcoma-associated herpes virus, which has a radius of approximately 125 nm, being dielectrophoretically arranged into striped patterns. We also discuss how these striped patterns of trapped nanometer scale particles create an effective diffraction grating which can then be sensed with macro-scale optical techniques.
NASA Astrophysics Data System (ADS)
Jemberie, A.; Dugda, M. T.; Reusch, D.; Nyblade, A.
2006-12-01
Neural networks are decision making mathematical/engineering tools, which if trained properly, can do jobs automatically (and objectively) that normally require particular expertise and/or tedious repetition. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of quality control (QC) and Event Identification (EI) on seismic datasets. We explore to apply the multiplayer Feed Forward (FF) Artificial Neural Networks (ANN) and Self- Organizing Maps (SOM) in combination with Hk stacking of receiver functions in an attempt to test the extent of the usefulness of automatic classification of receiver functions for crustal parameter determination. Feed- forward ANNs (FFNNs) are a supervised classification tool while self-organizing maps (SOMs) are able to provide unsupervised classification of large, complex geophysical data sets into a fixed number of distinct generalized patterns or modes. Hk stacking is a methodology that is used to stack receiver functions based on the relative arrival times of P-to-S converted phase and next two reverberations to determine crustal thickness H and Vp-to-Vs ratio (k). We use receiver functions from teleseismic events recorded by the 2000- 2002 Ethiopia Broadband Seismic Experiment. Preliminary results of applying FFNN neural network and Hk stacking of receiver functions for automatic receiver functions classification as a step towards an effort of automatic crustal parameter determination look encouraging. After training a FFNN neural network, the network could classify the best receiver functions from bad ones with a success rate of about 75 to 95%. Applying H? stacking on the receiver functions classified by this FFNN as the best receiver functions, we could obtain crustal thickness and Vp/Vs ratio of 31±4 km and 1.75±0.05, respectively, for the crust beneath station ARBA in the Main Ethiopian Rift. To make comparison, we applied Hk stacking on the receiver functions which we ourselves classified as the best set and found that the crustal thickness and Vp/Vs ratio are 31±2 km and 1.75±0.02, respectively.
Unbiased roughness measurements: the key to better etch performance
NASA Astrophysics Data System (ADS)
Liang, Andrew; Mack, Chris; Sirard, Stephen; Liang, Chen-wei; Yang, Liu; Jiang, Justin; Shamma, Nader; Wise, Rich; Yu, Jengyi; Hymes, Diane
2018-03-01
Edge placement error (EPE) has become an increasingly critical metric to enable Moore's Law scaling. Stochastic variations, as characterized for lines by line width roughness (LWR) and line edge roughness (LER), are dominant factors in EPE and known to increase with the introduction of EUV lithography. However, despite recommendations from ITRS, NIST, and SEMI standards, the industry has not agreed upon a methodology to quantify these properties. Thus, differing methodologies applied to the same image often result in different roughness measurements and conclusions. To standardize LWR and LER measurements, Fractilia has developed an unbiased measurement that uses a raw unfiltered line scan to subtract out image noise and distortions. By using Fractilia's inverse linescan model (FILM) to guide development, we will highlight the key influences of roughness metrology on plasma-based resist smoothing processes. Test wafers were deposited to represent a 5 nm node EUV logic stack. The patterning stack consists of a core Si target layer with spin-on carbon (SOC) as the hardmask and spin-on glass (SOG) as the cap. Next, these wafers were exposed through an ASML NXE 3350B EUV scanner with an advanced chemically amplified resist (CAR). Afterwards, these wafers were etched through a variety of plasma-based resist smoothing techniques using a Lam Kiyo conductor etch system. Dense line and space patterns on the etched samples were imaged through advanced Hitachi CDSEMs and the LER and LWR were measured through both Fractilia and an industry standard roughness measurement software. By employing Fractilia to guide plasma-based etch development, we demonstrate that Fractilia produces accurate roughness measurements on resist in contrast to an industry standard measurement software. These results highlight the importance of subtracting out SEM image noise to obtain quicker developmental cycle times and lower target layer roughness.
Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator
2012-09-01
The cooler substrate is a laminated multilayer FR-4 substrate. Individual layers are patterned to support the active element, form a resonant...prepreg epoxy. Individual FR-4 lamina were mechanically machined to pattern each layer. The layers were aligned, stacked, and laminated to form the... laminated with 70/30 copper-nickel alloy or 80/20 nickel-chrome alloy and patterned by means of photolithographic techniques and wet etching in a ferric
Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; X. Zhang; G. K. Housley
2012-06-01
A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation upmore » to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.« less
Theoretical determination of one-electron redox potentials for DNA bases, base pairs, and stacks.
Paukku, Y; Hill, G
2011-05-12
Electron affinities, ionization potentials, and redox potentials for DNA bases, base pairs, and N-methylated derivatives are computed at the DFT/M06-2X/6-31++G(d,p) level of theory. Redox properties of a guanine-guanine stack model are explored as well. Reduction and oxidation potentials are in good agreement with the experimental ones. Electron affinities of base pairs were found to be negative. Methylation of canonical bases affects the ionization potentials the most. Base pair formation and base stacking lower ionization potentials by 0.3 eV. Pairing of guanine with the 5-methylcytosine does not seem to influence the redox properties of this base pair much.
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal
2012-06-01
Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.
NASA Astrophysics Data System (ADS)
Fujisawa, Y.; Iwasaki, T.; Fujii, D.; Ohta, S.; Iwashita, J.; Fujita, T.; Nakata, M.; Kishimoto, K.; Demura, S.; Sakata, H.
2018-03-01
We report on a scanning tunnelling microscopy study of TaS2 at 4.2 K. A surface prepared by cleavage showed a superimposed pattern of two types of charge density waves with 3a 0 × 3a 0 and \\sqrt{13}{a}0× \\sqrt{13}{a}0 periodicity, which had never been observed previously. We attribute the superposition to regular stacking of 4H b polytypes or irregular stacking of 2H and 4H b layers.
Wafer-scale aluminum nano-plasmonics
NASA Astrophysics Data System (ADS)
George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric
2014-09-01
The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.
NASA Astrophysics Data System (ADS)
Bae, Joongmyeon; Lim, Sungkwang; Jee, Hyunjin; Kim, Jung Hyun; Yoo, Young-Sung; Lee, Taehee
We are developing 1 kW class solid oxide fuel cell (SOFC) system for residential power generation (RPG) application supported by Korean Government. Anode-supported single cells with thin electrolyte layer of YSZ (yttria-stabilized zirconia) or ScSZ (scandia-stabilized zirconia) for intermediate temperature operation (650-750 °C), respectively, were fabricated and small stacks were built and evaluated. The LSCF/ScSZ/Ni-YSZ single cell showed performance of 543 mW cm -2 at 650 °C and 1680 mW cm -2 at 750 °C. The voltage of 15-cell stack based on 5 cm × 5 cm single cell (LSM/YSZ/Ni-YSZ) at 150 mW was 12.5 V in hydrogen as fuel of 120 sccm per cell at 750 °C and decreased to about 10.9 V at 500 h operation time. A 5-cell stack based on the LSCF/YSZ/FL/Ni-YSZ showed the maximum power density of 30 W, 25 W and 20 W at 750 °C, 700 °C and 650 °C, respectively. LSCF/ScSZ/Ni-YSZ-based stack showed better performance than LSCF/YSZ/Ni-YSZ stack from the experiment temperature range. I- V characteristics by using hydrogen gas and reformate gas of methane as fuel were investigated at 750 °C in LSCF/ScSZ/FL/Ni-YSZ-based 5-cell stack.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Olson, B.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1986-01-01
A 25-cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 8300 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests have been carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. A 25kW stack containing 175 cells of the same size and utilizing a technology base representative of the 25-cell stacks has been constructed and is undergoing initial testing. A third 4kW stack is being prepared, and this stack will incorporate several new technology features.
Stacked-unstacked equilibrium at the nick site of DNA.
Protozanova, Ekaterina; Yakovchuk, Peter; Frank-Kamenetskii, Maxim D
2004-09-17
Stability of duplex DNA with respect to separation of complementary strands is crucial for DNA executing its major functions in the cell and it also plays a central role in major biotechnology applications of DNA: DNA sequencing, polymerase chain reaction, and DNA microarrays. Two types of interaction are well known to contribute to DNA stability: stacking between adjacent base-pairs and pairing between complementary bases. However, their contribution into the duplex stability is yet to be determined. Now we fill this fundamental gap in our knowledge of the DNA double helix. We have prepared a series of 32, 300 bp-long DNA fragments with solitary nicks in the same position differing only in base-pairs flanking the nick. Electrophoretic mobility of these fragments in the gel has been studied. Assuming the equilibrium between stacked and unstacked conformations at the nick site, all 32 stacking free energy parameters have been obtained. Only ten of them are essential and they govern the stacking interactions between adjacent base-pairs in intact DNA double helix. A full set of DNA stacking parameters has been determined for the first time. From these data and from a well-known dependence of DNA melting temperature on G.C content, the contribution of base-pairing into duplex stability has been estimated. The obtained energy parameters of the DNA double helix are of paramount importance for understanding sequence-dependent DNA flexibility and for numerous biotechnology applications.
The Direct FuelCell™ stack engineering
NASA Astrophysics Data System (ADS)
Doyon, J.; Farooque, M.; Maru, H.
FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, A. V.; Gupta, A.; Althammer, M.
We investigate the switching characteristics in BaTiO{sub 3}-based ferroelectric tunnel junctions patterned in a capacitive geometry with circular Ru top electrode with diameters ranging from ∼430 to 2300 nm. Two different patterning schemes, viz., lift-off and ion-milling, have been employed to examine the variations in the ferroelectric polarization, switching, and tunnel electro-resistance resulting from differences in the pattering processes. The values of polarization switching field are measured and compared for junctions of different diameter in the samples fabricated using both patterning schemes. We do not find any specific dependence of polarization switching bias on the size of junctions in both samplemore » stacks. The junctions in the ion-milled sample show up to three orders of resistance change by polarization switching and the polarization retention is found to improve with increasing junction diameter. However, similar switching is absent in the lift-off sample, highlighting the effect of patterning scheme on the polarization retention.« less
Light-Induced Buckles Localized by Polymeric Inks Printed on Bilayer Films.
Park, Sungjune; Nallainathan, Umaash; Mondal, Kunal; Sen, Pratik; Dickey, Michael D
2018-04-16
Buckling instabilities generate microscale features in thin films in a facile manner. Buckles can form, for example, by heating a metal/polymer film stack on a rigid substrate. Thermal expansion differences of the individual layers generate compressive stress that causes the metal to buckle over the entire surface. The ability to dictate and confine the location of buckle formation can enable patterns with more than one length scale, including hierarchical patterns. Here, sacrificial "ink" patterned on top of the film stack localizes the buckles via two mechanisms. First, stiff inks suppress buckles such that only the non-inked regions buckle in response to infrared light. The metal in the non-inked regions absorbs the infrared light and thus gets sufficiently hot to induce buckles. Second, soft inks that absorb light get hot faster than the non-inked regions and promote buckling when exposed to visible light. The exposed metal in the non-inked regions reflects the light and thus never get sufficiently hot to induce buckles. This second method works on glass substrates, but not silicon substrates, due to the superior thermal insulation of glass. The patterned ink can be removed, leaving behind hierarchical patterns consisting of regions of buckles among non-buckled regions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rethinking the NTCIP Design and Protocols - Analyzing the Issues
DOT National Transportation Integrated Search
1998-03-03
This working paper discusses the issues involved in changing the current draft NTCIP standard from an X.25-based protocol stack to an Internet-based protocol stack. It contains a methodology which could be used to change NTCIP's base protocols. This ...
40 CFR 51.164 - Stack height procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 51.164 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... source's stack height that exceeds good engineering practice or by any other dispersion technique, except... source based on a good engineering practice stack height that exceeds the height allowed by § 51.100(ii...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Gara, Alana; Heidelberger, Philip
Implementation primitives for concurrent array-based stacks, queues, double-ended queues (deques) and wrapped deques are provided. In one aspect, each element of the stack, queue, deque or wrapped deque data structure has its own ticket lock, allowing multiple threads to concurrently use multiple elements of the data structure and thus achieving high performance. In another aspect, new synchronization primitives FetchAndIncrementBounded (Counter, Bound) and FetchAndDecrementBounded (Counter, Bound) are implemented. These primitives can be implemented in hardware and thus promise a very fast throughput for queues, stacks and double-ended queues.
Nitride-based stacked laser diodes with a tunnel junction
NASA Astrophysics Data System (ADS)
Okawara, Satoru; Aoki, Yuta; Kuwabara, Masakazu; Takagi, Yasufumi; Maeda, Junya; Yoshida, Harumasa
2018-01-01
We report on nitride-based two-stack laser diodes with a tunnel junction for the first time. The stacked laser diode was monolithically grown by metalorganic vapor phase epitaxy. It was confirmed that the two-stack InGaN/GaN multiple-quantum-well laser diode with an emission wavelength of 394 nm exhibited laser oscillation up to a peak output power of over 10 W in the pulsed current mode. The upper and lower emitters of the device were capable of lasing at different threshold currents of 2.4 and 5.2 A with different slope efficiencies of 0.8 and 0.3 W/A, respectively.
NASA Astrophysics Data System (ADS)
Jang, Kyungmin; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-02-01
We have investigated the gate stack scalability and energy efficiency of double-gate negative-capacitance FET (DGNCFET) with a CMOS-compatible ferroelectric HfO2 (FE:HfO2). Analytic model-based simulation is conducted to investigate the impacts of ferroelectric characteristic of FE:HfO2 and gate stack thickness on the I on/I off ratio of DGNCFET. DGNCFET has wider design window for the gate stack where higher I on/I off ratio can be achieved than DG classical MOSFET. Under a process-induced constraint with sub-10 nm gate length (L g), FE:HfO2-based DGNCFET still has a design point for high I on/I off ratio. With an optimized gate stack thickness for sub-10 nm L g, FE:HfO2-based DGNCFET has 2.5× higher energy efficiency than DG classical MOSFET even at ultralow operation voltage of sub-0.2 V.
NASA Astrophysics Data System (ADS)
Jang, Il-Yong; Huh, Sung-Min; Moon, Seong-Yong; Woo, Sang-Gyun; Lee, Jin-Kwan; Moon, Sang Heup; Cho, HanKu
2008-10-01
A patterned TaN substrate, which is candidate for a mask absorber in extreme ultra-violet lithography (EUVL), was etched to have inclined sidewalls by using a Faraday cage system under the condition of a 2-step process that allowed the high etch selectivity of TaN over the resist. The sidewall angle (SWA) of the patterned substrate, which was in the shape of a parallelogram after etching, could be controlled by changing the slope of a substrate holder that was placed in the Faraday cage. The performance of an EUV mask, which contained the TaN absorber of an oblique pattern over the molybdenum/silicon multi-layer, was simulated for different cases of SWA. The results indicated that the optical properties, such as the critical dimension (CD), an offset in the CD bias between horizontal and vertical patterns (H-V bias), and a shift in the image position on the wafer, could be controlled by changing the SWA of the absorber stack. The simulation result showed that the effect of the SWA on the optical properties became more significant at larger thicknesses of the absorber and smaller sizes of the target CD. Nevertheless, the contrast of the aerial images was not significantly decreased because the shadow effect caused by either sidewall of the patterned substrate cancelled with each other.
NASA Astrophysics Data System (ADS)
Hättestrand, Clas; Kleman, Johan
Ribbed (Rogen) moraines are conspicuous landforms found in interior parts of formerly glaciated areas. Two major theories for ribbed moraine formation have been suggested in recent years: (i) the shear and stack theory, which explains ribbed moraine formation by shearing and stacking of till slabs or englacially entrained material during compressive flow, followed by basal melt-out of transverse moraine ridges, and (ii) the fracturing theory, according to which ribbed moraines form by fracturing of frozen pre-existing till sheets, at the transition from cold- to warm-based conditions under deglaciating ice sheets. In this paper, we present new data on the distribution of ribbed moraines and their close association with areas of frozen-bed conditions under ice sheets. In addition, we show examples of ribbed moraine ridges that fit together like a jig-saw puzzle. These observations indicate that fracturing and extension of a pre-existing till sheet may be a predominant process in ribbed moraine formation. In summary, we conclude that all described characteristics of ribbed moraines are compatible with the fracturing theory, while the shear and stack theory is hampered by an inability to explain many conspicuous features in the distribution pattern and detailed morphology of ribbed moraines. One implication of the fracturing theory is that the distribution of ribbed moraines can be used to reconstruct the extent of areas that underwent a change from frozen-bed to thawed-bed conditions under former ice sheets.
2014-01-01
Background Logos are commonly used in molecular biology to provide a compact graphical representation of the conservation pattern of a set of sequences. They render the information contained in sequence alignments or profile hidden Markov models by drawing a stack of letters for each position, where the height of the stack corresponds to the conservation at that position, and the height of each letter within a stack depends on the frequency of that letter at that position. Results We present a new tool and web server, called Skylign, which provides a unified framework for creating logos for both sequence alignments and profile hidden Markov models. In addition to static image files, Skylign creates a novel interactive logo plot for inclusion in web pages. These interactive logos enable scrolling, zooming, and inspection of underlying values. Skylign can avoid sampling bias in sequence alignments by down-weighting redundant sequences and by combining observed counts with informed priors. It also simplifies the representation of gap parameters, and can optionally scale letter heights based on alternate calculations of the conservation of a position. Conclusion Skylign is available as a website, a scriptable web service with a RESTful interface, and as a software package for download. Skylign’s interactive logos are easily incorporated into a web page with just a few lines of HTML markup. Skylign may be found at http://skylign.org. PMID:24410852
Lei, Shuangying; Wang, Han; Huang, Lan; Sun, Yi-Yang; Zhang, Shengbai
2016-02-10
Interface engineering is critical for enriching the electronic and transport properties of two-dimensional materials. Here, we identify a new stacking, named Aδ, in few-layer phosphorenes (FLPs) and black phosphorus (BP) based on first-principles calculation. With its low formation energy, the Aδ stacking could exist in FLPs and BP as a stacking fault. The presence of the Aδ stacking fault induces a direct to indirect transition of the band gap in FLPs. It also affects the carrier mobilities by significantly increasing the carrier effective masses. More importantly, the Aδ stacking enables the fabrication of a whole spectrum of lateral junctions with all the type-I, II, and III alignments simply through the manipulation of the van der Waals stacking without resorting to any chemical modification. This is achieved by the widely tunable electron affinity and ionization potential of FLPs and BP with the Aδ stacking.
Method of Fabricating a Composite Apparatus
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor)
2007-01-01
A method for fabricating a piezoelectric macro-fiber composite actuator comprises making a piezoelectric fiber sheet by providing a plurality of wafers of piezoelectric material, bonding the wafers together with an adhesive material to from a stack of alternating layers of piezoelectric material and adhesive material, and cutting through the stack in a direction substantially parallel to the thickness of the stack and across the alternating layers of piezoelectric material and adhesive material to provide at least one piezoelectric fiber sheet having two sides comprising a plurality of piezoelectric fibers in juxtaposition to the adhesive material. The method further comprises bonding two electrically conductive films to the two sides of the piezoelectric fiber sheet. At least one conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric fiber sheet.
Interferometer design and controls for pulse stacking in high power fiber lasers
NASA Astrophysics Data System (ADS)
Wilcox, Russell; Yang, Yawei; Dahlen, Dar; Xu, Yilun; Huang, Gang; Qiang, Du; Doolittle, Lawrence; Byrd, John; Leemans, Wim; Ruppe, John; Zhou, Tong; Sheikhsofla, Morteza; Nees, John; Galvanauskas, Almantas; Dawson, Jay; Chen, Diana; Pax, Paul
2017-03-01
In order to develop a design for a laser-plasma accelerator (LPA) driver, we demonstrate key technologies that enable fiber lasers to produce high energy, ultrafast pulses. These technologies must be scalable, and operate in the presence of thermal drift, acoustic noise, and other perturbations typical of an operating system. We show that coherent pulse stacking (CPS), which requires optical interferometers, can be made robust by image-relaying, multipass optical cavities, and by optical phase control schemes that sense pulse train amplitudes from each cavity. A four-stage pulse stacking system using image-relaying cavities is controlled for 14 hours using a pulse-pattern sensing algorithm. For coherent addition of simultaneous ultrafast pulses, we introduce a new scheme using diffractive optics, and show experimentally that four pulses can be added while a preserving pulse width of 128 fs.
2. RICE THRESHING MILL WITH CHIMNEY STACK. Fire burned on ...
2. RICE THRESHING MILL WITH CHIMNEY STACK. Fire burned on top of water pipe at base of chimney stack and steam went thru pipes to boiler on south side of wall. - Mansfield Plantation, Rice Threshing Mill, U.S. Route 701 vicinity, Georgetown, Georgetown County, SC
NASA Astrophysics Data System (ADS)
Grüebler, Martin U.; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat
2014-07-01
The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.
Álvarez, Aitor; Sierra, Basilio; Arruti, Andoni; López-Gil, Juan-Miguel; Garay-Vitoria, Nestor
2015-01-01
In this paper, a new supervised classification paradigm, called classifier subset selection for stacked generalization (CSS stacking), is presented to deal with speech emotion recognition. The new approach consists of an improvement of a bi-level multi-classifier system known as stacking generalization by means of an integration of an estimation of distribution algorithm (EDA) in the first layer to select the optimal subset from the standard base classifiers. The good performance of the proposed new paradigm was demonstrated over different configurations and datasets. First, several CSS stacking classifiers were constructed on the RekEmozio dataset, using some specific standard base classifiers and a total of 123 spectral, quality and prosodic features computed using in-house feature extraction algorithms. These initial CSS stacking classifiers were compared to other multi-classifier systems and the employed standard classifiers built on the same set of speech features. Then, new CSS stacking classifiers were built on RekEmozio using a different set of both acoustic parameters (extended version of the Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)) and standard classifiers and employing the best meta-classifier of the initial experiments. The performance of these two CSS stacking classifiers was evaluated and compared. Finally, the new paradigm was tested on the well-known Berlin Emotional Speech database. We compared the performance of single, standard stacking and CSS stacking systems using the same parametrization of the second phase. All of the classifications were performed at the categorical level, including the six primary emotions plus the neutral one. PMID:26712757
Laser direct-write for fabrication of three-dimensional paper-based devices.
He, P J W; Katis, I N; Eason, R W; Sones, C L
2016-08-16
We report the use of a laser-based direct-write (LDW) technique that allows the design and fabrication of three-dimensional (3D) structures within a paper substrate that enables implementation of multi-step analytical assays via a 3D protocol. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depths of hydrophobic barriers that are formed within a substrate which, when carefully designed and integrated, produce 3D flow paths. So far, we have successfully used this depth-variable patterning protocol for stacking and sealing of multi-layer substrates, for assembly of backing layers for two-dimensional (2D) lateral flow devices and finally for fabrication of 3D devices. Since the 3D flow paths can also be formed via a single laser-writing process by controlling the patterning parameters, this is a distinct improvement over other methods that require multiple complicated and repetitive assembly procedures. This technique is therefore suitable for cheap, rapid and large-scale fabrication of 3D paper-based microfluidic devices.
6. VIEW NORTHWEST OF SOUTHEAST FACADE AND STACK BASE; LOCKER ...
6. VIEW NORTHWEST OF SOUTHEAST FACADE AND STACK BASE; LOCKER ROOM AT LEFT, COAL CONVEYOR REMAINS AT UPPER RIGHT - Turners Falls Power & Electric Company, Hampden Station, East bank of Connecticut River, Chicopee, Hampden County, MA
NASA Astrophysics Data System (ADS)
Zhang, Xiaoli; Zou, Jie; Le, Daniel X.; Thoma, George
2010-01-01
"Investigator Names" is a newly required field in MEDLINE citations. It consists of personal names listed as members of corporate organizations in an article. Extracting investigator names automatically is necessary because of the increasing volume of articles reporting collaborative biomedical research in which a large number of investigators participate. In this paper, we present an SVM-based stacked sequential learning method in a novel application - recognizing named entities such as the first and last names of investigators from online medical journal articles. Stacked sequential learning is a meta-learning algorithm which can boost any base learner. It exploits contextual information by adding the predicted labels of the surrounding tokens as features. We apply this method to tag words in text paragraphs containing investigator names, and demonstrate that stacked sequential learning improves the performance of a nonsequential base learner such as an SVM classifier.
Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko
2012-01-01
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration. PMID:22740633
Ito, Yoko; Uemura, Tomohiro; Shoda, Keiko; Fujimoto, Masaru; Ueda, Takashi; Nakano, Akihiko
2012-08-01
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.
Environmentally-assisted technique for transferring devices onto non-conventional substrates
Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin
2014-08-26
A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.
The Stack of Yang-Mills Fields on Lorentzian Manifolds
NASA Astrophysics Data System (ADS)
Benini, Marco; Schenkel, Alexander; Schreiber, Urs
2018-03-01
We provide an abstract definition and an explicit construction of the stack of non-Abelian Yang-Mills fields on globally hyperbolic Lorentzian manifolds. We also formulate a stacky version of the Yang-Mills Cauchy problem and show that its well-posedness is equivalent to a whole family of parametrized PDE problems. Our work is based on the homotopy theoretical approach to stacks proposed in Hollander (Isr. J. Math. 163:93-124, 2008), which we shall extend by further constructions that are relevant for our purposes. In particular, we will clarify the concretification of mapping stacks to classifying stacks such as BG con.
Observation of van Hove Singularities in Twisted Silicene Multilayers.
Li, Zhi; Zhuang, Jincheng; Chen, Lan; Ni, Zhenyi; Liu, Chen; Wang, Li; Xu, Xun; Wang, Jiaou; Pi, Xiaodong; Wang, Xiaolin; Du, Yi; Wu, Kehui; Dou, Shi Xue
2016-08-24
Interlayer interactions perturb the electronic structure of two-dimensional materials and lead to new physical phenomena, such as van Hove singularities and Hofstadter's butterfly pattern. Silicene, the recently discovered two-dimensional form of silicon, is quite unique, in that silicon atoms adopt competing sp(2) and sp(3) hybridization states leading to a low-buckled structure promising relatively strong interlayer interaction. In multilayer silicene, the stacking order provides an important yet rarely explored degree of freedom for tuning its electronic structures through manipulating interlayer coupling. Here, we report the emergence of van Hove singularities in the multilayer silicene created by an interlayer rotation. We demonstrate that even a large-angle rotation (>20°) between stacked silicene layers can generate a Moiré pattern and van Hove singularities due to the strong interlayer coupling in multilayer silicene. Our study suggests an intriguing method for expanding the tunability of the electronic structure for electronic applications in this two-dimensional material.
Air-Sea Interaction in the Gulf of Tehuantepec
NASA Astrophysics Data System (ADS)
Khelif, D.; Friehe, C. A.; Melville, W. K.
2007-05-01
Measurements of meteorological fields and turbulence were made during gap wind events in the Gulf of Tehuantepec using the NSF C-130 aircraft. The flight patterns started at the shore and progressed to approximately 300km offshore with low-level (30m) tracks, stacks and soundings. Parameterizations of the wind stress, sensible and latent heat fluxes were obtained from approximately 700 5 km low-level tracks. Structure of the marine boundary layer as it evolved off-shore was obtained with stack patterns, aircraft soundings and deployment of dropsondes. The air-sea fluxes approximately follow previous parameterizations with some evidence of the drag coefficient leveling out at about 20 meters/sec with the latent heat flux slightly increasing. The boundary layer starts at shore as a gap wind low-level jet, thins as the jet expands out over the gulf, exhibits a hydraulic jump, and then increases due to turbulent mixing.
NASA Astrophysics Data System (ADS)
Ray, Sibdas; Das, Aniruddha
2015-06-01
Reaction of 2-ethoxymethyleneamino-2-cyanoacetamide with primary alkyl amines in acetonitrile solvent affords 1-substituted-5-aminoimidazole-4-carboxamides. Single crystal X-ray diffraction studies of these imidazole compounds show that there are both anti-parallel and syn-parallel π-π stackings between two imidazole units in parallel-displaced (PD) conformations and the distance between two π-π stacked imidazole units depends mainly on the anti/ syn-parallel nature and to some extent on the alkyl group attached to N-1 of imidazole; molecules with anti-parallel PD-stacking arrangements of the imidazole units have got vertical π-π stacking distance short enough to impart stabilization whereas the imidazole unit having syn-parallel stacking arrangement have got much larger π-π stacking distances. DFT studies on a pair of anti-parallel imidazole units of such an AICA lead to curves for 'π-π stacking stabilization energy vs. π-π stacking distance' which have got similarity with the 'Morse potential energy diagram for a diatomic molecule' and this affords to find out a minimum π-π stacking distance corresponding to the maximum stacking stabilization energy between the pair of imidazole units. On the other hand, a DFT calculation based curve for 'π-π stacking stabilization energy vs. π-π stacking distance' of a pair of syn-parallel imidazole units is shown to have an exponential nature.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-06-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-01-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755
Fabrication of complex nanoscale structures on various substrates
NASA Astrophysics Data System (ADS)
Han, Kang-Soo; Hong, Sung-Hoon; Lee, Heon
2007-09-01
Polymer based complex nanoscale structures were fabricated and transferred to various substrates using reverse nanoimprint lithography. To facilitate the fabrication and transference of the large area of the nanostructured layer to the substrates, a water-soluble polyvinyl alcohol mold was used. After generation and transference of the nanostructured layer, the polyvinyl alcohol mold was removed by dissolving in water. A residue-free, UV-curable, glue layer was formulated and used to bond the nanostructured layer onto the substrates. As a result, nanometer scale patterned polymer layers were bonded to various substrates and three-dimensional nanostructures were also fabricated by stacking of the layers.
Light source comprising a common substrate, a first led device and a second led device
Choong, Vi-En
2010-02-23
At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.
Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Ndiaye, C.; Zerrad, M.; Lereu, A. L.; Roche, R.; Dumas, Ph.; Lemarchand, F.; Amra, C.
2013-09-01
Dielectric optical thin films, as opposed to metallic, have been very sparsely explored as good candidates for absorption-based optical field enhancement. In such materials, the low imaginary part of the refractive index implies that absorption processes are usually not predominant. This leads to dielectric-based optical resonances mainly via waveguiding modes. We show here that when properly designed, a multi-layered dielectric thin films stack can give rise to optical resonances linked to total absorption. We report here, on such dielectric stack designed to possess a theoretical optical field enhancement above 1000. Using photon scanning tunneling microscopy, we experimentally evaluate the resulting field enhancement of the stack as well as the associated penetration depth. We thus demonstrate the capability of multi-dielectric stacks in generating giant optical field with tunable penetration depth (down to few dozens of nm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leszczynski, Jerzy; Sponer, Judit; Sponer, Jiri
Recent experimental studies on the Watson Crick type base pairing of triazine and aminopyrimidine derivatives suggest that acid/base properties of the constituent bases might be related to the duplex stabilities measured in solution. Herein we use high-level quantum chemical calculations and molecular dynamics simulations to evaluate the base pairing and stacking interactions of seven selected base pairs, which are common in that they are stabilized by two NH O hydrogen bonds separated by one NH N hydrogen bond. We show that neither the base pairing nor the base stacking interaction energies correlate with the reported pKa data of the basesmore » and the melting points of the duplexes. This suggests that the experimentally observed correlation between the melting point data of the duplexes and the pKa values of the constituent bases is not rooted in the intrinsic base pairing and stacking properties. The physical chemistry origin of the observed experimental correlation thus remains unexplained and requires further investigations. In addition, since our calculations are carried out with extrapolation to the complete basis set of atomic orbitals and with inclusion of higher electron correlation effects, they provide reference data for stacking and base pairing energies of non-natural bases.« less
NASA Technical Reports Server (NTRS)
Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1985-01-01
Two 25 cell stacks of the 13 inch x 23 inch cell size (about 4kW) remain on test after 4000 hours and 2900 hours, respectively, using simulated reformate fuel. These tests are focusing on the durability of fuel cell stack components developed through the end of 1983. Also, these stacks are serving as forerunners of a 25kW stack that will contain 175 cells of the same size and will employ the same technology base. The stack technology development program has focused on a new, low cost bipolar plate edge seal technique and evaluation of advanced cathode catalysts, an electrolyte replenishment system, and nonmetallic cooling plates in small stacks.
40 CFR Appendix Vi to Part 266 - Stack Plume Rise
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise [Estimated Plume Rise (in Meters) Based...
40 CFR Appendix Vi to Part 266 - Stack Plume Rise
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise [Estimated Plume Rise (in Meters) Based...
Stacking interactions in PUF-RNA complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yiling Koh, Yvonne; Wang, Yeming; Qiu, Chen
2012-07-02
Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stackingmore » amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to 'target' versus 'off-target' interactions, and thus be an important consideration in the design of proteins with new specificities.« less
Correlative weighted stacking for seismic data in the wavelet domain
Zhang, S.; Xu, Y.; Xia, J.; ,
2004-01-01
Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.
NASA Astrophysics Data System (ADS)
Das, Ritwika; Chowdhury, Suman; Jana, Debnarayan
2015-07-01
The dependence of the stability of single-layer graphene (SLG) sandwiched between hexagonal boron nitride bilayers (h-BN) has been described and investigated for different types of stacking in order to provide the fingerprint of the stacking order which affects the optical properties of such trilayer systems. Considering the four stacking models AAA-, AAB-, ABA-, and ABC-type stacking, the static dielectric functions (in case of parallel polarizations) for AAB-type stacking possesses maximum values, and minimum values are noticed for AAA. However, AAA-type stacking structures contribute the maximum magnetic moment while vanishing magnetic moments are observed for ABA and ABC stacking. The observed optical anisotropy and magnetic properties of these trilayer heterostructures (h-BN/SLG/h-BN) can be understood from the crystallographic stacking order and inherent crystal lattice symmetry. These optical and magnetic results suggest that the h-BN/SLG/h-BN could provide a viable route to graphene-based opto-electronic and spintronic devices.
Malba, V.
1998-11-10
A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: (1) holding individual chips for batch processing, (2) depositing a dielectric passivation layer on the top and sidewalls of the chips, (3) opening vias in the dielectric, (4) forming the interconnects by laser pantography, and (5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume. 3 figs.
Malba, Vincent
1998-01-01
A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.
van der Waals Heterostructures with High Accuracy Rotational Alignment.
Kim, Kyounghwan; Yankowitz, Matthew; Fallahazad, Babak; Kang, Sangwoo; Movva, Hema C P; Huang, Shengqiang; Larentis, Stefano; Corbet, Chris M; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; LeRoy, Brian J; Tutuc, Emanuel
2016-03-09
We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.
High power density capacitor and method of fabrication
Tuncer, Enis
2012-11-20
A ductile preform for making a drawn capacitor includes a plurality of electrically insulating, ductile insulator plates and a plurality of electrically conductive, ductile capacitor plates. Each insulator plate is stacked vertically on a respective capacitor plate and each capacitor plate is stacked on a corresponding insulator plate in alignment with only one edge so that other edges are not in alignment and so that each insulator plate extends beyond the other edges. One or more electrically insulating, ductile spacers are disposed in horizontal alignment with each capacitor plate along the other edges and the pattern is repeated so that alternating capacitor plates are stacked on alternating opposite edges of the insulator plates. A final insulator plate is positioned at an extremity of the preform. The preform may then be drawn to fuse the components and decrease the dimensions of the preform that are perpendicular to the direction of the draw.
Modeling of mechanical properties of stack actuators based on electroactive polymers
NASA Astrophysics Data System (ADS)
Tepel, Dominik; Graf, Christian; Maas, Jürgen
2013-04-01
Dielectric elastomers are thin polymer films belonging to the class of electroactive polymers, which are coated with compliant and conductive electrodes on each side. Under the influence of an electrical field, dielectric elastomers perform a large amount of deformation. Depending on the mechanical setup, stack and roll actuators can be realized. In this contribution the mechanical properties of stack actuators are modeled by a holistic electromechanical approach of a single actuator film, by which the model of a stack actuator without constraints can be derived. Due to the mechanical connection between the stack actuator and the application, bulges occur at the free surfaces of the EAP material, which are calculated, experimentally validated and considered in the model of the stack actuator. Finally, the analytic actuator film model as well as the stack actuator model are validated by comparison to numerical FEM-models in ANSYS.
Modeling of profilometry with laser focus sensors
NASA Astrophysics Data System (ADS)
Bischoff, Jörg; Manske, Eberhard; Baitinger, Henner
2011-05-01
Metrology is of paramount importance in submicron patterning. Particularly, line width and overlay have to be measured very accurately. Appropriated metrology techniques are scanning electron microscopy and optical scatterometry. The latter is non-invasive, highly accurate and enables optical cross sections of layer stacks but it requires periodic patterns. Scanning laser focus sensors are a viable alternative enabling the measurement of non-periodic features. Severe limitations are imposed by the diffraction limit determining the edge location accuracy. It will be shown that the accuracy can be greatly improved by means of rigorous modeling. To this end, a fully vectorial 2.5-dimensional model has been developed based on rigorous Maxwell solvers and combined with models for the scanning and various autofocus principles. The simulations are compared with experimental results. Moreover, the simulations are directly utilized to improve the edge location accuracy.
Gao, Teng; Song, Xiuju; Du, Huiwen; Nie, Yufeng; Chen, Yubin; Ji, Qingqing; Sun, Jingyu; Yang, Yanlian; Zhang, Yanfeng; Liu, Zhongfan
2015-01-01
In-plane and vertically stacked heterostructures of graphene and hexagonal boron nitride (h-BN-G and G/h-BN, respectively) are both recent focuses of graphene research. However, targeted synthesis of either heterostructure remains a challenge. Here, via chemical vapour deposition and using benzoic acid precursor, we have achieved the selective growth of h-BN-G and G/h-BN through a temperature-triggered switching reaction. The perfect in-plane h-BN-G is characterized by scanning tunnelling microscopy (STM), showing atomically patched graphene and h-BN with typical zigzag edges. In contrast, the vertical alignment of G/h-BN is confirmed by unique lattice-mismatch-induced moiré patterns in high-resolution STM images, and two sets of aligned selected area electron diffraction spots, both suggesting a van der Waals epitaxial mechanism. The present work demonstrates the chemical designability of growth process for controlled synthesis of graphene and h-BN heterostructures. With practical scalability, high uniformity and quality, our approach will promote the development of graphene-based electronics and optoelectronics. PMID:25869236
High Power High Efficiency Diode Laser Stack for Processing
NASA Astrophysics Data System (ADS)
Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan
2018-03-01
High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.
High-Si content BARC for dual-BARC systems such as trilayer patterning
NASA Astrophysics Data System (ADS)
Kennedy, Joseph; Xie, Song-Yuan; Wu, Ze-Yu; Katsanes, Ron; Flanigan, Kyle; Lee, Kevin; Slezak, Mark; Liu, Zhi; Lin, Shang-Ho
2009-03-01
This work discusses the requirements and performance of Honeywell's middle layer material, UVAS, for tri-layer patterning. UVAS is a high Si content polymer synthesized directly from Si containing starting monomer components. The monomers are selected to produce a film that meets the requirements as a middle layer for tri-layer patterning (TLP) and gives us a level of flexibility to adjust the properties of the film to meet the customer's specific photoresist and patterning requirements. Results of simulations of the substrate reflectance versus numerical aperture, UVAS thickness, and under layer film are presented. ArF photoresist line profiles and process latitude versus UVAS bake at temperatures as low as 150ºC are presented and discussed. Immersion lithographic patterning of ArF photoresist line space and contact hole features will be presented. A sequence of SEM images detailing the plasma etch transfer of line space photoresist features through the middle and under layer films comprising the TLP film stack will be presented. Excellent etch selectivity between the UVAS and the organic under layer film exists as no edge erosion or faceting is observed as a result of the etch process. A detailed study of the impact of a PGMEA solvent photoresist rework process on the lithographic process window of a TLP film stack was performed with the results indicating that no degradation to the UVAS film occurs.
Fan, Yinping; Li, Shan; Fan, Liuyin; Cao, Chengxi
2012-06-15
In this paper, a moving neutralization boundary (MNB) electrophoresis is developed as a novel model of visual offline sample stacking for the trace analysis of heavy metal ions (HMIs). In the stacking system, the cathodic-direction motion MNB is designed with 1.95-2.8mM HCl+98 mM KCl in phase alfa and 4.0mM NaOH+96 mM KCl in phase beta. If a little of HMI is present in phase alfa, the metal ion electrically migrates towards the MNB and react with hydroxyl ion, producing precipitation and moving precipitation boundary (MPB). The alkaline precipitation is neutralized by hydrogen ion, leading to a moving eluting boundary (MEB), release of HMI from its precipitation, circle of HMI from the MEB to the MPB, and highly efficient visual stacking. As a proof of concept, a set of metal ions (Cu(II), Co(II), Mn(II), Pb(II) and Cr(III)) were chosen as the model HMIs and capillary electrophoresis (CE) was selected as an analytical tool for the experiments demonstrating the feasibility of MNB-based stacking. As shown in this paper, (i) the visual stacking model was manifested by the experiments; (ii) there was a controllable stacking of HMI in the MNB system; (iii) the offline stacking could achieve higher than 123 fold preconcentration; and (iv) the five HMIs were simultaneously stacked via the developed stacking technique for the trace analyses with the limits of detection (LOD): 3.67×10(-3) (Cu(II)), 1.67×10(-3) (Co(II), 4.17×10(-3) (Mn(II)), 4.6×10(-4) (Pb(II)) and 8.40×10(-4)mM (Cr(III)). Even the off-line stacking was demonstrated for the use of CE-based HMI analysis, it has potential applications in atomic absorption spectroscopy (AAS), inductively coupled plasma-mass spectrometry (ICP-MS) and ion chromatography (IC) etc. Copyright © 2012 Elsevier B.V. All rights reserved.
Use of continuous/contiguous stacking hybridization as a diagnostic tool
Mirzabekov, Andrei Darievich; Kirillov, Eugene Vladislavovich; Parinov, Sergei Valeryevich; Barski, Victor Evgenievich; Dubiley, Svetlana Alekseevna
2002-01-01
A method for detecting disease-associated alleles in patient genetic material is provided whereby a first group of oligonucleotide molecules, synthesized to compliment base sequences of the disease associated alleles is immobilized on a predetermined position on a substrate, and then contacted with patient genetic material to form duplexes. The duplexes are then contacted with a second group of oligonucleotide molecules which are synthesized to extend the predetermined length of the oligonucleotide molecules of the first group, and where each of the oligonucleotide molecules of the second group are tagged and either incorporate universal bases or a mixture of guanine, cytosine, thymine, and adenine, or complementary nucleotide strands that are tagged with a different fluorochrome which radiates light at a predetermined wavelength. The treated substrate is then washed and the light patterns radiating therefrom are compared with predetermined light patterns of various diseases that were prepared on identical substrates. A method is also provided for determining the length of a repeat sequence in DNA or RNA, and also for determining the base sequence of unknown DNA or RNA.
Use of continuous/contiguous stacking hybridization as a diagnostic tool
Mirzabekov, Andrei Darievich; Kirillov, Eugene Vladislavovich; Parinov, Sergei Valeryevich; Barski, Victor Evgenievich; Dubiley, Svetlana Alekseevna
2000-01-01
A method for detecting disease-associated alleles in patient genetic material is provided whereby a first group of oligonucleotide molecules, synthesized to compliment base sequences of the disease associated alleles is immobilized on a predetermined position on a substrate, and then contacted with patient genetic material to form duplexes. The duplexes are then contacted with a second group of oligonucleotide molecules which are synthesized to extend the predetermined length of the oligonucleotide molecules of the first group, and where each of the oligonucleotide molecules of the second group are tagged and either incorporate universal bases or a mixture of guanine, cytosine, thymine, and adenine, or complementary nucleotide strands that are tagged with a different fluorochrome which radiates light at a predetermined wavelength. The treated substrate is then washed and the light patterns radiating therefrom are compared with predetermined light patterns of various diseases that were prepared on identical substrates. A method is also provided for determining the length of a repeat sequence in DNA or RNA, and also for determining the base sequence of unknown DNA or RNA.
PCDD/F TEQ INDICATORS AND THEIR MECHANISTIC IMPLICATIONS
Stack gas samples from two incinerator facilities with different operating conditions were investigated to find polychlorinated dibenzo-p-dioxin/furan (PCDD/F) toxic equivalent quantity (TEQ) indicators from amongst the 210 PCDD/F isomers. Similarities in isomer patterns were als...
Contourograph display system for monitoring electrocardiograms
NASA Technical Reports Server (NTRS)
Golden, D. P., Jr.; Maudlin, D. G.; Wolthuis, R. A.
1970-01-01
Electrocardiogram is displayed as a contourogram on the cathode ray tube of a variable-persistence oscilloscope. Each cycle is stacked below its predecessors giving a three dimensional effect. A major change in the signal is apparent as a change in the contourogram pattern.
Soto, Ana Maria; Marky, Luis A
2002-10-15
Nucleic acid triple helices may be used in the control of gene expression. One limitation of using triplex-forming oligonucleotides as therapeutic agents is that their target sequences are limited to homopurine tracts. To increase the repertoire of sequences that can be targeted, it has been postulated that a guanine can target a thymidine forming a stable GTA mismatch triplet. In this work, we have used a combination of optical and calorimetric techniques to determine thermodynamic unfolding profiles of two triplexes containing a single GTA triplet, d(A(3)TA(3)C(5)T(3)AT(3)C(5)T(3)GT(3)) (ATA) and d(AGTGAC(5)TCACTC(5)TCGCT) (GTG), and their control triplexes, d(A(7)C(5)T(7)C(5)T(7)) (TAT7) and d(AGAGAC(5)TCTCTC(5)TCTCT) (AG5T). In general, the presence of a GTA mismatch in DNA triplexes is destabilizing; however, this destabilization is greater when placed in a C(+)GC/C(+)GC base-triplet stack than between a TAT/TAT stack. These destabilizations are accompanied by a reduced unfolding enthalpy of approximately 10 kcal/mol, suggesting a decrease in the base stacking contributions surrounding the mismatch. Relative to their corresponding control triplexes, the folding of ATA is accompanied by a lower counterion uptake and a similar proton uptake, while GTG folding is accompanied by an increase in the counterion and proton uptakes. These effects are consistent with the observed decrease in stacking interactions. The overall results indicate that the main difficulty of targeting pyrimidine interruptions is that the decrease in stacking contributions, due to the incorporation of a GTA mismatch, affects the stability of the neighboring base triplets. This suggests that nucleotide analogues that increase the strength of these base-triplet stacks will result in a more effective targeting of pyrimidine interruptions.
Lee, Yoon Ho; Lee, Tae Kyung; Kim, Hongki; Song, Inho; Lee, Jiwon; Kang, Saewon; Ko, Hyunhyub; Kwak, Sang Kyu; Oh, Joon Hak
2018-03-01
In insect eyes, ommatidia with hierarchical structured cornea play a critical role in amplifying and transferring visual signals to the brain through optic nerves, enabling the perception of various visual signals. Here, inspired by the structure and functions of insect ommatidia, a flexible photoimaging device is reported that can simultaneously detect and record incoming photonic signals by vertically stacking an organic photodiode and resistive memory device. A single-layered, hierarchical multiple-patterned back reflector that can exhibit various plasmonic effects is incorporated into the organic photodiode. The multiple-patterned flexible organic photodiodes exhibit greatly enhanced photoresponsivity due to the increased light absorption in comparison with the flat systems. Moreover, the flexible photoimaging device shows a well-resolved spatiotemporal mapping of optical signals with excellent operational and mechanical stabilities at low driving voltages below half of the flat systems. Theoretical calculation and scanning near-field optical microscopy analyses clearly reveal that multiple-patterned electrodes have much stronger surface plasmon coupling than flat and single-patterned systems. The developed methodology provides a versatile and effective route for realizing high-performance optoelectronic and photonic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)
2015-01-01
Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.
Resilience Design Patterns - A Structured Approach to Resilience at Extreme Scale (version 1.0)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hukerikar, Saurabh; Engelmann, Christian
Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest that very high fault rates in future systems. The errors resulting from these faults will propagate and generate various kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application crashes. Practical limits on power consumption in HPC systems will require future systems to embrace innovative architectures, increasing the levels of hardware and software complexities. The resilience challenge for extreme-scale HPC systems requires management of various hardware and software technologies thatmore » are capable of handling a broad set of fault models at accelerated fault rates. These techniques must seek to improve resilience at reasonable overheads to power consumption and performance. While the HPC community has developed various solutions, application-level as well as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope, handling coverage, and performance & power eciency across the system stack. Additionally, few of the current approaches are portable to newer architectures and software ecosystems, which are expected to be deployed on future systems. In this document, we develop a structured approach to the management of HPC resilience based on the concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, errors and failures in HPC systems. The catalog of resilience design patterns provides designers with reusable design elements. We define a design framework that enhances our understanding of the important constraints and opportunities for solutions deployed at various layers of the system stack. The framework may be used to establish mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The framework also enables optimization of the cost-benefit trade-os among performance, resilience, and power consumption. The overall goal of this work is to enable a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-ecient manner in spite of frequent faults, errors, and failures of various types.« less
Resilience Design Patterns - A Structured Approach to Resilience at Extreme Scale (version 1.1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hukerikar, Saurabh; Engelmann, Christian
Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest the prevalence of very high fault rates in future systems. The errors resulting from these faults will propagate and generate various kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application crashes. Therefore the resilience challenge for extreme-scale HPC systems requires management of various hardware and software technologies that are capable of handling a broad set of fault models at accelerated fault rates. Also, due to practical limits on powermore » consumption in HPC systems future systems are likely to embrace innovative architectures, increasing the levels of hardware and software complexities. As a result the techniques that seek to improve resilience must navigate the complex trade-off space between resilience and the overheads to power consumption and performance. While the HPC community has developed various resilience solutions, application-level techniques as well as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope, handling coverage, and performance & power efficiency across the system stack. Additionally, few of the current approaches are portable to newer architectures and software environments that will be deployed on future systems. In this document, we develop a structured approach to the management of HPC resilience using the concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, errors and failures in HPC systems. Each established solution is described in the form of a pattern that addresses concrete problems in the design of resilient systems. The complete catalog of resilience design patterns provides designers with reusable design elements. We also define a framework that enhances a designer's understanding of the important constraints and opportunities for the design patterns to be implemented and deployed at various layers of the system stack. This design framework may be used to establish mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The framework also supports optimization of the cost-benefit trade-offs among performance, resilience, and power consumption. The overall goal of this work is to enable a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-efficient manner in spite of frequent faults, errors, and failures of various types.« less
Liu, Guorui; Yang, Lili; Zhan, Jiayu; Zheng, Minghui; Li, Li; Jin, Rong; Zhao, Yuyang; Wang, Mei
2016-12-01
Cement kilns can be used to co-process fly ash from municipal solid waste incinerators. However, this might increase emission of organic pollutants like polychlorinated biphenyls (PCBs). Knowledge of PCB concentrations and homolog and congener patterns at different stages in this process could be used to assess the possibility of simultaneously controlling emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and "dioxin-like" compounds. To date, emissions from cement kilns co-processing fly ash from municipal solid waste incinerators have not been analyzed for PCBs. In this study, stack gas and particulate samples from two cement kilns co-processing waste incinerator fly ash were analyzed for PCBs. The average total tri- to deca-chlorinated biphenyl (∑ 3-10 PCB) concentration in the stack gas samples was 10.15ngm -3 . The ∑ 3-10 PCB concentration ranges in particulate samples from different stages were 0.83-41.79ngg -1 for cement kiln 1and0.13-1.69ngg -1 for cement kiln 2. The ∑ 3-10 PCB concentrations were much higher in particulate samples from the suspension pre-heater boiler, humidifier tower, and kiln back-end bag filters than in particulate samples from other stages. For these three stages, PCBs contributed to 15-18% of the total PCB, PCDD/F, and polychlorinated naphthalene toxic equivalents in stack gases and particulate matter. The PCB distributions were similar to those found in other studies for PCDD/Fs and polychlorinated naphthalenes, which suggest that it may be possible to simultaneously control emissions of multiple organic pollutants from cement kilns. Homolog patterns in the particulate samples were dominated by the pentachlorobiphenyls. CB-105, CB-118, and CB-123 were the dominant dioxin-like PCB congeners that formed at the back-end of the cement kiln. A mass balance of PCBs in the cement kilns indicated that the total mass of PCBs in the stack gases and clinker was about half the mass of PCBs in the raw materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yu; Guo, Jianqiu; Goue, Ouloide
Recently, we reported on the formation of overlapping rhombus-shaped stacking faults from scratches left over by the chemical mechanical polishing during high temperature annealing of PVT-grown 4H–SiC wafer. These stacking faults are restricted to regions with high N-doped areas of the wafer. The type of these stacking faults were determined to be Shockley stacking faults by analyzing the behavior of their area contrast using synchrotron white beam X-ray topography studies. A model was proposed to explain the formation mechanism of the rhombus shaped stacking faults based on double Shockley fault nucleation and propagation. In this paper, we have experimentally verifiedmore » this model by characterizing the configuration of the bounding partials of the stacking faults on both surfaces using synchrotron topography in back reflection geometry. As predicted by the model, on both the Si and C faces, the leading partials bounding the rhombus-shaped stacking faults are 30° Si-core and the trailing partials are 30° C-core. Finally, using high resolution transmission electron microscopy, we have verified that the enclosed stacking fault is a double Shockley type.« less
Solving the Container Stowage Problem (CSP) using Particle Swarm Optimization (PSO)
NASA Astrophysics Data System (ADS)
Matsaini; Santosa, Budi
2018-04-01
Container Stowage Problem (CSP) is a problem of containers arrangement into ships by considering rules such as: total weight, weight of one stack, destination, equilibrium, and placement of containers on vessel. Container stowage problem is combinatorial problem and hard to solve with enumeration technique. It is an NP-Hard Problem. Therefore, to find a solution, metaheuristics is preferred. The objective of solving the problem is to minimize the amount of shifting such that the unloading time is minimized. Particle Swarm Optimization (PSO) is proposed to solve the problem. The implementation of PSO is combined with some steps which are stack position change rules, stack changes based on destination, and stack changes based on the weight type of the stacks (light, medium, and heavy). The proposed method was applied on five different cases. The results were compared to Bee Swarm Optimization (BSO) and heuristics method. PSO provided mean of 0.87% gap and time gap of 60 second. While BSO provided mean of 2,98% gap and 459,6 second to the heuristcs.
Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo
2012-07-01
Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction. Copyright © 2012 Wiley Periodicals, Inc.
Cerný, Jirí; Hobza, Pavel
2005-04-21
The performance of the recently introduced X3LYP density functional which was claimed to significantly improve the accuracy for H-bonded and van der Waals complexes was tested for extended H-bonded and stacked complexes (nucleic acid base pairs and amino acid pairs). In the case of planar H-bonded complexes (guanine...cytosine, adenine...thymine) the DFT results nicely agree with accurate correlated ab initio results. For the stacked pairs (uracil dimer, cytosine dimer, adenine...thymine and guanine...cytosine) the DFT fails completely and it was even not able to localize any minimum at the stacked subspace of the potential energy surface. The geometry optimization of all these stacked clusters leads systematically to the planar H-bonded pairs. The amino acid pairs were investigated in the crystal geometry. DFT again strongly underestimates the accurate correlated ab initio stabilization energies and usually it was not able to describe the stabilization of a pair. The X3LYP functional thus behaves similarly to other current functionals. Stacking of nucleic acid bases as well as interaction of amino acids was described satisfactorily by using the tight-binding DFT method, which explicitly covers the London dispersion energy.
Pixa, Nils H.; Steinberg, Fabian; Doppelmayr, Michael
2017-01-01
Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS) has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in persons with bilateral impairment of hand function. We therefore examined the impact of high-definition anodal tDCS (HD-atDCS) on the performance of a bimanual sequential sensorimotor task. Thirty-two volunteers (age M = 24.25; SD = 2.75; 14 females) participated in this double-blind study and performed sport stacking in six experimental sessions. In sport stacking, 12 specially designed cups must be stacked (stacked up) and dismantled (stacked down) in predefined patterns as fast as possible. During a pretest, posttest and follow-up test, two sport stacking formations (3-6-3 stack and 1-10-1 stack) were performed. Between the pretest and posttest, all participants were trained in sport stacking with concurrent brain stimulation for three consecutive days. The experimental group (STIM-M1) received HD-atDCS over both primary motor cortices (M1), while the control group received a sham stimulation (SHAM). Three-way analysis of variance (ANOVA) revealed a significant main effect of TIME and a significant interaction of TIME × GROUP. No significant effects were found for GROUP, nor for the three-way interaction of TIME × GROUP × FORMATION. Further two-way ANOVAs showed a significant main effect of TIME and a non-significant main effect for GROUP in both sport stacking formations. A significant interaction between TIME × GROUP was found only for the 3-6-3 formation, indicating superior performance gains for the experimental group (STIM-M1). To account and control for baseline influences on the outcome measurements, ANCOVAs treating pretest scores as covariates revealed a significant effect of the stimulation. From this, we conclude that bilateral HD-atDCS over both M1 improves motor performance in a bimanual sequential sensorimotor task. These results may indicate a beneficial use of tDCS for learning and recovery of bimanual motor skills. PMID:28747875
High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.E. O'Brien; X. Zhang; G.K. Housley
2012-09-01
A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells.more » The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.« less
1988-12-01
on openStack global mode -- mode may be any of the following types: -- navigate - traverse through the graphical hierarchy -- order - for...ordering an item via graphics put "NAVIGATE" into MODE hide message box hide menubar set userlevel to 5 end openStack on closestack -- this handler will... openStack hide menuBAR hide message box end openStack * BKGND #1, BUTTON #1: Next * * * * ** ** * on mouseUp visual effect wipe left go to next card of
The electrostatic characteristics of G·U wobble base pairs
Xu, Darui; Landon, Theresa; Greenbaum, Nancy L.; Fenley, Marcia O.
2007-01-01
G·U wobble base pairs are the most common and highly conserved non-Watson–Crick base pairs in RNA. Previous surface maps imply uniformly negative electrostatic potential at the major groove of G·U wobble base pairs embedded in RNA helices, suitable for entrapment of cationic ligands. In this work, we have used a Poisson–Boltzmann approach to gain a more detailed and accurate characterization of the electrostatic profile. We found that the major groove edge of an isolated G·U wobble displays distinctly enhanced negativity compared with standard GC or AU base pairs; however, in the context of different helical motifs, the electrostatic pattern varies. G·U wobbles with distinct widening have similar major groove electrostatic potentials to their canonical counterparts, whereas those with minimal widening exhibit significantly enhanced electronegativity, ranging from 0.8 to 2.5 kT/e, depending upon structural features. We propose that the negativity at the major groove of G·U wobble base pairs is determined by the combined effect of the base atoms and the sugar-phosphate backbone, which is impacted by stacking pattern and groove width as a result of base sequence. These findings are significant in that they provide predictive power with respect to which G·U sites in RNA are most likely to bind cationic ligands. PMID:17526525
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es; Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg; Gutmann, Johannes
In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data ofmore » the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.« less
NASA Astrophysics Data System (ADS)
Berk, Yuri; Karni, Yoram; Klumel, Genady; Openhaim, Yaakov; Cohen, Shalom; Yanson, Dan
2011-03-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scaleable pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
NASA Astrophysics Data System (ADS)
Pérez-López, Rafael; Nieto, José M.; de la Rosa, Jesús D.; Bolívar, Juan P.
2015-10-01
This study provides geochemical data with the aim of identifying and tracing the weathering of phosphogypsum wastes stack-piled directly on salt-marshes of the Tinto River (Estuary of Huelva, SW Spain). With that purpose, different types of highly-polluted acid solutions were collected in the stack. Connection between these solutions and the estuarine environment was studied by geochemical tracers, such as rare earth elements (REE) and their North American Shale Composite (NASC)-normalized patterns and Cl/Br ratios. Phosphogypsum-related wastewaters include process water stored on the surface, pore-water contained in the phosphogypsum profile and edge outflow water emerging from inside the stack. Edge outflow waters are produced by waterlogging at the contact between phosphogypsum and the nearly impermeable marsh surface and discharge directly into the estuary. Process water shows geochemical characteristics typical of phosphate fertilizers, i.e. REE patterns with an evident enrichment of heavy-REE (HREE) with respect to middle-REE (MREE) and light-REE (LREE). By contrast, REE patterns of deeper pore-water and edge outflows are identical to those of Tinto River estuary waters, with a clear enrichment of MREE relative to LREE and HREE denoting influence of acid mine drainage. Cl/Br ratios of these solutions are very close to that of seawater, which also supports its estuarine origin. These findings clearly show that process water is not chemically connected with edge outflows through pore-waters, as was previously believed. Phosphogypsum weathering likely occurs by an upward flow of seawater from the marsh because of overpressure and permeability differences. Several recommendations are put forward in this study to route restoration actions, such as developing treatment systems to improve the quality of the edge outflow waters before discharging to the receiving environment.
NASA Astrophysics Data System (ADS)
Nelson, C. H.; Goldfinger, C.; Gutierrez Pastor, J.; Polonia, A.; Van Daele, M. E.
2014-12-01
Earthquakes generate mass transport deposits (MTDs); megaturbidites (MTD overlain by coeval turbidite); multi-pulsed, stacked, and mud homogenite seismo-turbidites; tsunamites; and seiche deposits. The strongest (Mw 9) earthquake shaking signatures appear to create multi-pulsed individual turbidites, where the number and character of multiple coarse-grained pulses for correlative turbidites generally remain constant both upstream and downstream in different channel systems. Multiple turbidite pulses, that correlate with multiple ruptures shown in seismograms of historic earthquakes (e.g. Chile 1960, Sumatra 2004 and Japan 2011), support this hypothesis. The weaker (Mw = or < 8) (e.g. northern California San Andreas) earthquakes generate dominantly upstream simple fining-up (uni-pulsed) turbidites in single tributary canyons and channels; however, downstream stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Proven tsunamites, which result from tsunami waves sweeping onshore and shallow water debris into deeper water, are a fine-grained turbidite cap over other seismo-turbidites. In contrast, MTDs and seismo-turbidites result from slope failures. Multiple great earthquakes cause seismic strengthening of slope sediment, which results in minor MTDs in basin floor turbidite system deposits (e.g. maximum run-out distances of MTDs across basin floors along active margins are up to an order of magnitude less than on passive margins). In contrast, the MTDs and turbidites are equally intermixed in turbidite systems of passive margins (e.g. Gulf of Mexico). In confined basin settings, earthquake triggering results in a common facies pattern of coeval megaturbidites in proximal settings, thick stacked turbidites downstream, and ponded muddy homogenite turbidites in basin or sub-basin centers, sometimes with a cap of seiche deposits showing bi-directional flow patterns.
Phosphoric and electric utility fuel cell technology development
NASA Astrophysics Data System (ADS)
Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Demarche, T. E.; Gelting, R. L.; Goller, G. J.; Luoma, W. I.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.
1984-01-01
The advancement of electric utility cell stack technology and reduction of cell stack cost was initiated. The cell stack has a nominal 10 ft (2) active area and operates at 120 psia/405(0)F. The program comprises six parallel phases, which culminate in a full height, 10-ft(2) stack verification test: (1) provides the information and services needed to manage the effort, including definition of the prototype commercial power plant; (2) develops the technical base for long term improvements to the cell stack; (3) develops materials and processing techniques for cell stack components incorporating the best available technology; (4) provides the design of hardware and conceptual processing layouts, and updates the power plant definition of Phase 1 to reflect the results of Phases 2 and 3; Phase 5 manufactures the hardware to verify the achievements of Phases 2 and 3, and analyzes the cost of this hardware; and Phase 6 tests the cell stacks assembled from the hardware of Phase 5 to assess the state of development.
Vibration mode analysis of the proton exchange membrane fuel cell stack
NASA Astrophysics Data System (ADS)
Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.
2016-11-01
Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.
Wang, Jia; Chen, Jingfei; Li, Jingwen; An, Liaoyuan; Wang, Yefei; Huang, Qingshan; Yao, Lishan
2018-06-01
A combined experimental and computational study is performed for arginine side chain stacking with the protein α-helix. Theremostability measurements of Aristaless homeodomain, a helical protein, suggest that mutating the arginine residue R106, R137 or R141, which has the guanidino side chain stacking with the peptide plane, to alanine, destabilizes the protein. The R-PP stacking has an energy of ∼0.2-0.4 kcal/mol. This stacking interaction mainly comes from dispersion and electrostatics, based on MP2 calculations with the energy decomposition analysis. The calculations also suggest that the stacking stabilizes 2 backbone-backbone h-bonds (i→i-4 and i-3→i-7) in a cooperative way. Desolvation and electrostatic polarization are responsible for cooperativity with the i→i-4 and i-3→i-7 h-bonds, respectively. This cooperativity is supported by a protein α-helices h-bond survey in the pdb databank where stacking shortens the corresponding h-bond distances. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sahu, Harikrishna; Shukla, Rishabh; Goswami, Juri; Gaur, Priyank; Panda, Aditya N.
2018-01-01
Structural and optoelectronic properties of phenylene-furan, phenylene-pyrrole and phenylene-thiophene oligomers are reported using density functional theory methods. Studies reveal that stabilities of conformers change with increasing chain length, and helical conformers are energetically feasible for large oligomers of the studied systems, due to stacking interactions between adjacent helical turns. Absorption spectra of helices are dominated by multiple number of electronic transitions other than the S0 →S1 , involving orbitals other than the HOMO/LUMO. All studied helices are optically active having similar pattern of negative and positive peaks in the CD spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gregory L.; Arnold, Dorian; LeGendre, Matthew
STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallel application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to form a similar function call patterns and to delineate a small set of equivalence classes. A representative task from each of these classes can then be fed into a full featuremore » debugger like TolalView for root cause analysis.« less
NASA Astrophysics Data System (ADS)
Emoto, Akira; Kamei, Tadayoshi; Shioda, Tatsutoshi; Kawatsuki, Nobuhiro; Ono, Hiroshi
2009-06-01
We report the experimental results of two-dimensional patterning of colloidal crystals using edge-patterned cells. Solvent evaporation of a colloidal suspension from the edge of the cell induces self-organized crystallization of spherical colloidal particles. From a reservoir of colloidal suspension in the cell, different colloidal suspensions are injected repetitively. An edge-patterned substrate is introduced into the cell as an upper substrate. As a result, different colloidal crystals are alternately stacked in the lateral direction according to the edge pattern. The characteristics of cloning formation are specifically showed including deformations from the original pattern. This two-dimensional patterning of three-dimensional colloidal crystals by means of lateral autocloning is promising for the development of photonic crystal arrays for use in optic and photonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, Gregory; Hoff, James; Jindariani, Sergo
Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less
Observation of van Hove Singularities in Twisted Silicene Multilayers
2016-01-01
Interlayer interactions perturb the electronic structure of two-dimensional materials and lead to new physical phenomena, such as van Hove singularities and Hofstadter’s butterfly pattern. Silicene, the recently discovered two-dimensional form of silicon, is quite unique, in that silicon atoms adopt competing sp2 and sp3 hybridization states leading to a low-buckled structure promising relatively strong interlayer interaction. In multilayer silicene, the stacking order provides an important yet rarely explored degree of freedom for tuning its electronic structures through manipulating interlayer coupling. Here, we report the emergence of van Hove singularities in the multilayer silicene created by an interlayer rotation. We demonstrate that even a large-angle rotation (>20°) between stacked silicene layers can generate a Moiré pattern and van Hove singularities due to the strong interlayer coupling in multilayer silicene. Our study suggests an intriguing method for expanding the tunability of the electronic structure for electronic applications in this two-dimensional material. PMID:27610412
Second Harmonic Generation Imaging Analysis of Collagen Arrangement in Human Cornea.
Park, Choul Yong; Lee, Jimmy K; Chuck, Roy S
2015-08-01
To describe the horizontal arrangement of human corneal collagen bundles by using second harmonic generation (SHG) imaging. Human corneas were imaged with an inverted two photon excitation fluorescence microscope. The excitation laser (Ti:Sapphire) was tuned to 850 nm. Backscatter signals of SHG were collected through a 425/30-nm bandpass emission filter. Multiple, consecutive, and overlapping image stacks (z-stacks) were acquired to generate three dimensional data sets. ImageJ software was used to analyze the arrangement pattern (irregularity) of collagen bundles at each image plane. Collagen bundles in the corneal lamellae demonstrated a complex layout merging and splitting within a single lamellar plane. The patterns were significantly different in the superficial and limbal cornea when compared with deep and central regions. Collagen bundles were smaller in the superficial layer and larger in deep lamellae. By using SHG imaging, the horizontal arrangement of corneal collagen bundles was elucidated at different depths and focal regions of the human cornea.
Strain, stabilities and electronic properties of hexagonal BN bilayers
NASA Astrophysics Data System (ADS)
Fujimoto, Yoshitaka; Saito, Susumu
Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.
Building generic anatomical models using virtual model cutting and iterative registration.
Xiao, Mei; Soh, Jung; Meruvia-Pastor, Oscar; Schmidt, Eric; Hallgrímsson, Benedikt; Sensen, Christoph W
2010-02-08
Using 3D generic models to statistically analyze trends in biological structure changes is an important tool in morphometrics research. Therefore, 3D generic models built for a range of populations are in high demand. However, due to the complexity of biological structures and the limited views of them that medical images can offer, it is still an exceptionally difficult task to quickly and accurately create 3D generic models (a model is a 3D graphical representation of a biological structure) based on medical image stacks (a stack is an ordered collection of 2D images). We show that the creation of a generic model that captures spatial information exploitable in statistical analyses is facilitated by coupling our generalized segmentation method to existing automatic image registration algorithms. The method of creating generic 3D models consists of the following processing steps: (i) scanning subjects to obtain image stacks; (ii) creating individual 3D models from the stacks; (iii) interactively extracting sub-volume by cutting each model to generate the sub-model of interest; (iv) creating image stacks that contain only the information pertaining to the sub-models; (v) iteratively registering the corresponding new 2D image stacks; (vi) averaging the newly created sub-models based on intensity to produce the generic model from all the individual sub-models. After several registration procedures are applied to the image stacks, we can create averaged image stacks with sharp boundaries. The averaged 3D model created from those image stacks is very close to the average representation of the population. The image registration time varies depending on the image size and the desired accuracy of the registration. Both volumetric data and surface model for the generic 3D model are created at the final step. Our method is very flexible and easy to use such that anyone can use image stacks to create models and retrieve a sub-region from it at their ease. Java-based implementation allows our method to be used on various visualization systems including personal computers, workstations, computers equipped with stereo displays, and even virtual reality rooms such as the CAVE Automated Virtual Environment. The technique allows biologists to build generic 3D models of their interest quickly and accurately.
Fast principal component analysis for stacking seismic data
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-04-01
Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.
NASA Astrophysics Data System (ADS)
Stelter, Michael; Reinert, Andreas; Mai, Björn Erik; Kuznecov, Mihail
A solid oxide fuel cell (SOFC) stack module is presented that is designed for operation on diesel reformate in an auxiliary power unit (APU). The stack was designed using a top-down approach, based on a specification of an APU system that is installed on board of vehicles. The stack design is planar, modular and scalable with stamped sheet metal interconnectors. It features thin membrane electrode assemblies (MEAs), such as electrolyte supported cells (ESC) and operates at elevated temperatures around 800 °C. The stack has a low pressure drop in both the anode and the cathode to facilitate a simple system layout. An overview of the technical targets met so far is given. A stack power density of 0.2 kW l -1 has been demonstrated in a fully integrated, thermally self-sustaining APU prototype running with diesel and without an external water supply.
Method for making devices having intermetallic structures and intermetallic devices made thereby
Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli
2004-01-06
A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.
NASA Astrophysics Data System (ADS)
Wu, C. W.; Liu, B.; Wei, M. Y.; Liu, L. F.
2017-05-01
Proton exchange membrane fuel cell (PEMFC) stack usually undergoes various vibrations during packing, transportation and serving time, in particular for those used in the automobiles and portable equipment. Based on the Miner fatigue damage theory, the fatigue lives of the fuel cell components are first assessed. Then the component fatigue life contours of the stack are obtained under four working conditions, i.e. the three single-axial (in X-, Y- and Z-axis separately) and multi-axial random vibrations. Accordingly, the component damage under various vibrations is evaluated. The stress distribution on the gasket and PEM will greatly affect their fatigue lives. Finally, we compare the fatigue lives of 4-bolt- and 6-bolt-clamping stacks under the same total clamping force, and find that increasing the bolt number could improve the bolt fatigue lives.
MSuPDA: A Memory Efficient Algorithm for Sequence Alignment.
Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon
2016-03-01
Space complexity is a million dollar question in DNA sequence alignments. In this regard, memory saving under pushdown automata can help to reduce the occupied spaces in computer memory. Our proposed process is that anchor seed (AS) will be selected from given data set of nucleotide base pairs for local sequence alignment. Quick splitting techniques will separate the AS from all the DNA genome segments. Selected AS will be placed to pushdown automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. AS from input unit will be matched with the DNA genome segments from stack of PDA. Match, mismatch and indel of nucleotides will be popped from the stack under the control unit of pushdown automata. During the POP operation on stack, it will free the memory cell occupied by the nucleotide base pair.
NASA Astrophysics Data System (ADS)
Liu, Entao; Wang, Hua; Li, Yuan; Huang, Chuanyan
2015-04-01
In sedimentary basins, a transfer zone can be defined as a coordinated system of deformational features which has good prospects for hydrocarbon exploration. Although the term 'transfer zone' has been widely applied to the study of extensional basins, little attention has been paid to its controlling effect on sequence tracking pattern and depositional facies distribution. Fushan Depression is a half-graben rift sub-basin, located in the southeast of the Beibuwan Basin, South China Sea. In this study, comparative analysis of seismic reflection, palaeogeomorphology, fault activity and depositional facies distribution in the southern slope indicates that three different types of sequence stacking patterns (i.e. multi-level step-fault belt in the western area, flexure slope belt in the central area, gentle slope belt in the eastern area) were developed along the southern slope, together with a large-scale transfer zone in the central area, at the intersection of the western and eastern fault systems. Further analysis shows that the transfer zone played an important role in the diversity of sequence stacking patterns in the southern slope by dividing the Fushan Depression into two non-interfering tectonic systems forming different sequence patterns, and leading to the formation of the flexure slope belt in the central area. The transfer zone had an important controlling effect on not only the diversity of sequence tracking patterns, but also the facies distribution on the relay ramp. During the high-stand stage, under the controlling effect of the transfer zone, the sediments contain a significant proportion of coarser material accumulated and distributed along the ramp axis. By contrast, during the low-stand stage, the transfer zone did not seem to contribute significantly to the low-stand fan distribution which was mainly controlled by the slope gradient (palaeogeomorphology). Therefore, analysis of the transfer zone can provide a new perspective for basin analysis. In addition, the transfer zone area demonstrated unique hydrocarbon accumulation models different from the western and eastern areas. It was not only a structural high combined with sufficient coarse-grained reservoir quality sands, but was also associated with large-scale sublacustrine fan deposits with high quality reservoirs, indicating that the recognition of transfer zones can improve the prediction of hydrocarbon occurrences in similar settings.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Hoover, D. Q., Jr.
1981-01-01
The design features and plans for fabrication of Stacks 564 and 800 are described. The results of the OS/IES loop testing of Stack 562, endurance testing of Stack 560 and the post test analysis of Stack 561 are reported. Progress on construction and modification of the fuel cell test facilities and the 10 kW reformer test station is described. Efforts to develop the technical data base for the fuel conditioning system included vendor contacts, packed bed heat transfer tests, development of the BOLTAR computer program, and work on the detailed design of the 10 kW reformer are described.
A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.
Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan
2016-01-21
We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.
Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS 2
Huang, Shengxi; Liang, Liangbo; Ling, Xi; ...
2016-02-21
A variety of van der Waals homo- and hetero- structures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. Twisted bilayer transition metal dichalcogenides offer a great platform for developing a precise understanding of the structure/property relationship. Here, we study the low-frequency interlayer shear and breathing Raman modes (<50 cm-1) in twisted bilayer MoS 2 by Raman spectroscopy and first-principles modeling. Twisting introduces both rotational and translational shifts and significantly alters the interlayer stacking and coupling, leading to notable frequency andmore » intensity changes of low-frequency modes. The frequency variation can be up to 8 cm-1 and the intensity can vary by a factor of ~5 for twisting near 0 and 60 , where the stacking is a mixture of multiple high-symmetry stacking patterns and is thus especially sensitive to twisting. Moreover, for twisting angles between 20 and 40 , the interlayer coupling is nearly constant since the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Interestingly, unlike the breathing mode, the shear mode is extremely sensitive to twisting: it disappears between 20 and 40 as its frequency drops to almost zero due to the stacking-induced mismatch. Note that for some samples, multiple breathing mode peaks appear, indicating non-uniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling, showing negligible changes upon twisting. Our research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2, and potentially other two-dimensional materials and heterostructures.« less
Design and Fabrication of Full Wheatstone-Bridge-Based Angular GMR Sensors.
Yan, Shaohua; Cao, Zhiqiang; Guo, Zongxia; Zheng, Zhenyi; Cao, Anni; Qi, Yue; Leng, Qunwen; Zhao, Weisheng
2018-06-05
Since the discovery of the giant magnetoresistive (GMR) effect, GMR sensors have gained much attention in last decades due to their high sensitivity, small size, and low cost. The full Wheatstone-bridge-based GMR sensor is most useful in terms of the application point of view. However, its manufacturing process is usually complex. In this paper, we present an efficient and concise approach to fabricate a full Wheatstone-bridge-based angular GMR sensor by depositing one GMR film stack, utilizing simple patterned processes, and a concise post-annealing procedure based on a special layout. The angular GMR sensor is of good linear performance and achieves a sensitivity of 0.112 mV/V/Oe at the annealing temperature of 260 °C in the magnetic field range from -50 to +50 Oe. This work provides a design and method for GMR-sensor manufacturing that is easy for implementation and suitable for mass production.
Mukherjee, Sanchita; Kailasam, Senthilkumar; Bansal, Manju; Bhattacharyya, Dhananjay
2014-01-01
Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3'-endo sugars and this demands C1'-C1' distance of about 5.4 Å along the chains. Consideration of an energy penalty term for deviation of C1'-C1' distance from the mean value, to the recent DFT-D functionals, specifically ωB97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014. Copyright © 2013 Wiley Periodicals, Inc.
On the base-stacking in the 5'-terminal cap structure of mRNA: a fluorescence study.
Nishimura, Y; Takahashi, S; Yamamoto, T; Tsuboi, M; Hattori, M; Miura, K; Yamaguchi, K; Ohtani, S; Hata, T
1980-01-01
The fluorescence at 370 nm of the 7-methylguanosine residue (m7G) is found to be quenched when the base residue is involved in a stacking interaction with the adenosine residue in the cap structure m7G5' pppA of an eukaryotic mRNA. On the basis of the observed degree of quenching, the amounts of the stacked and unstacked forms in the cap structure have been determined at various temperatures and pH's. It has been found that at pH 6.2 effective enthalpy and entropy in the unstacked leads to stacked change are delta H degrees = 4.4 +/- 0.1 kcal/mole and delta S degrees = - 14.3 +/- 0.2 e.u., respectively. The pka value for the m7G residue is found to be 7.7 at 10 degrees C and 7.3 at 30 degrees C. The stacked structure seems to be less favourable in the deprotonated form that occurs in the higher pH solution. A similar analysis of some other cap structures indicates that the stacked form in m7G5' pppN structure is favourable if N is a purine nucleoside or a 2'-O-methylpyrimidine nucleoside but not for an unmethylated pyrimidine nucleoside. PMID:7443542
A novel application of dielectric stack actuators: a pumping micromixer
NASA Astrophysics Data System (ADS)
Solano-Arana, Susana; Klug, Florian; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.
2018-07-01
The fabrication of pumping micromixers as a novel application of dielectric stack actuators is proposed in this work. DEA micromixers can be valuable for medical and pharmaceutical applications, due to: firstly, the biocompatibility of the used materials (PDMS and graphite); secondly, the pumping is done with peristaltic movements, allowing only the walls of the channel to be in contact with the liquid, avoiding possible contamination from external parts; and thirdly, the low flow velocity in the micromixers required in many applications. The micromixer based on peristasltic movements will not only mix, but also pump the fluids in and out the device. The developed device is a hybrid micromixer: active, because it needs a voltage source to enhance the quality and speed of the mixing; and passive, with a similar shape to the well-known Y-type micromixers. The proposed micromixer is based on twelve stack actuators distributed in: two pumping chambers, consisting of four stack actuators in series; and a mixing chamber, made of four consecutive stack actuators with 30 layers per stack. The DEA micromixer is able to mix two solutions with a flow rate of 21.5 μl min–1 at the outlet, applying 1500 V at 10 Hz and actuating two actuators at a time.
Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre
1990-01-01
An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.
Boosting Contextual Information for Deep Neural Network Based Voice Activity Detection
2015-02-01
multi-resolution stacking (MRS), which is a stack of ensemble classifiers. Each classifier in a building block inputs the concatenation of the predictions ...a base classifier in MRS, named boosted deep neural network (bDNN). bDNN first generates multiple base predictions from different contexts of a single...frame by only one DNN and then aggregates the base predictions for a better prediction of the frame, and it is different from computationally
Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E.; Kohler, Bern
2008-01-01
Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)4, and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution. PMID:18647840
Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E; Kohler, Bern
2008-07-29
Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)(4), and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution.
NASA Astrophysics Data System (ADS)
Di Domenico, Giovanni; Zavattini, Guido; Cesca, Nicola; Auricchio, Natalia; Andritschke, Robert; Schopper, Florian; Kanbach, Gottfried
2007-02-01
We investigated with Monte Carlo simulations, using the EGSNrcMP code, the capabilities of a small animal PET scanner based on four stacks of double-sided silicon strip detectors. Each stack consists of 40 silicon detectors with dimension of 60×60×1 mm 3 and 128 orthogonal strips on each side. Two coordinates of the interaction are given by the strips, whereas the third coordinate is given by the detector number in the stack. The stacks are arranged to form a box of 5×5×6 cm 3 with minor sides opened; the box represents the minimal FOV of the scanner. The performance parameters of the SiliPET scanner have been estimated giving a (positron range limited) spatial resolution of 0.52 mm FWHM, and an absolute sensitivity of 5.1% at the center of system. Preliminary results of a proof of principle measurement done with the MEGA advanced Compton imager using a ≈1 mm diameter 22Na source, showed a focal ray tracing FWHM of 1 mm.
NASA Astrophysics Data System (ADS)
Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay
2014-12-01
Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Lee, Sung Min; Wang, James L.
Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and themore » fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong, E-mail: wangh@ornl.gov; Lee, Sung-Min; Wang, James L.
Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatiguemore » index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.« less
Wang, Hong; Lee, Sung Min; Wang, James L.; ...
2014-12-19
Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and themore » fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.« less
NASA Astrophysics Data System (ADS)
Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine; Hissel, Daniel
2016-08-01
Proton Exchange Membrane Fuel Cell (PEMFC) is considered the most versatile among available fuel cell technologies, which qualify for diverse applications. However, the large-scale industrial deployment of PEMFCs is limited due to their short life span and high exploitation costs. Therefore, ensuring fuel cell service for a long duration is of vital importance, which has led to Prognostics and Health Management of fuel cells. More precisely, prognostics of PEMFC is major area of focus nowadays, which aims at identifying degradation of PEMFC stack at early stages and estimating its Remaining Useful Life (RUL) for life cycle management. This paper presents a data-driven approach for prognostics of PEMFC stack using an ensemble of constraint based Summation Wavelet- Extreme Learning Machine (SW-ELM) models. This development aim at improving the robustness and applicability of prognostics of PEMFC for an online application, with limited learning data. The proposed approach is applied to real data from two different PEMFC stacks and compared with ensembles of well known connectionist algorithms. The results comparison on long-term prognostics of both PEMFC stacks validates our proposition.
NASA Astrophysics Data System (ADS)
Wendel, C. H.; Kazempoor, P.; Braun, R. J.
2015-02-01
Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.
NASA Astrophysics Data System (ADS)
Amouzad Mahdiraji, G.; Chow, Desmond M.; Sandoghchi, S. R.; Amirkhan, F.; Dermosesian, E.; Shien Yeo, Kwok; Kakaei, Z.; Ghomeishi, M.; Poh, Soo Yong; Gang, Shee Yu; Mahamd Adikan, F. R.
2014-01-01
The fabrication process of photonic crystal fibers based on a stack-and-draw method is presented in full detail in this article. In addition, improved techniques of photonic crystal fiber preform preparation and fabrication are highlighted. A new method of connecting a handle to a preform using only a fiber drawing tower is demonstrated, which eliminates the need for a high-temperature glass working lathe. Also, a new technique of modifying the photonic crystal fiber structural pattern by sealing air holes of the photonic crystal fiber cane is presented. Using the proposed methods, several types of photonic crystal fibers are fabricated, which suggests potential for rapid photonic crystal fibers fabrication in laboratories equipped with and limited to only a fiber drawing tower.
A deep auto-encoder model for gene expression prediction.
Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua
2017-11-17
Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.
Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang
2016-01-01
Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768
Rodríguez, Ricaurte; Nogueras, Manuel; Cobo, Justo; Glidewell, Christopher
2009-01-01
Molecules of the title compound, C16H13N5O2, have no internal symmetry despite the symmetric pattern of substitution in the pyrimidine ring. The intramolecular distances indicate polarization of the electronic structure. There are two intramolecular N—H⋯O hydrogen bonds and molecules are linked into centrosymmetric dimers by pairs of three-centre C—H⋯(O)2 hydrogen bonds. These dimers are linked into chains by means of a π–π stacking interaction. PMID:19726856
Stacked Deck: An Effective, School-Based Program for the Prevention of Problem Gambling
ERIC Educational Resources Information Center
Williams, Robert J.; Wood, Robert T.; Currie, Shawn R.
2010-01-01
School-based prevention programs are an important component of problem gambling prevention, but empirically effective programs are lacking. Stacked Deck is a set of 5-6 interactive lessons that teach about the history of gambling; the true odds and "house edge"; gambling fallacies; signs, risk factors, and causes of problem gambling; and…
Theoretical analysis of stack gas emission velocity measurement by optical scintillation
NASA Astrophysics Data System (ADS)
Yang, Yang; Dong, Feng-Zhong; Ni, Zhi-Bo; Pang, Tao; Zeng, Zong-Yong; Wu, Bian; Zhang, Zhi-Rong
2014-04-01
Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.
Maevskiĭ, A A; Sukhorukov, B I
1976-11-01
A spectrophotometric study, based on the concentration relationship of electron absorption spectra, of the effects of salts which stabilize and destabilize the water structure on the constant (K) of adenosine: stacking association has been carried out. A significant decrease of K was observed in NaClO4 which embodied strong destabilizing effect. Opposite effect was observed on other salts studied. According to K value the stacking-interaction of adenosine in the range of salt concentration 0 divided by 3M for different anions and cations are arranged in rows: SO4--greater than Cl- greater than ClO4-; Na+ greater than Li+greater than K+. The data obtained suggest that the effect of salts on thermostability of various oligo- and polynucleotides and on B leads to C DNA transition may be essentially concerned with the effect of both cations and anions of salts on the stacking-interaction of bases.
MSuPDA: A memory efficient algorithm for sequence alignment.
Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon
2015-01-16
Space complexity is a million dollar question in DNA sequence alignments. In this regards, MSuPDA (Memory Saving under Pushdown Automata) can help to reduce the occupied spaces in computer memory. Our proposed process is that Anchor Seed (AS) will be selected from given data set of Nucleotides base pairs for local sequence alignment. Quick Splitting (QS) techniques will separate the Anchor Seed from all the DNA genome segments. Selected Anchor Seed will be placed to pushdown Automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. Anchor Seed from input unit will be matched with the DNA genome segments from stack of PDA. Whatever matches, mismatches or Indel, of Nucleotides will be POP from the stack under the control of control unit of Pushdown Automata. During the POP operation on stack it will free the memory cell occupied by the Nucleotide base pair.
NASA Astrophysics Data System (ADS)
Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter
2015-03-01
Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.
Dynamics-based Nondestructive Structural Monitoring Teclrniques
2012-05-21
plate made from AS4/8552-2 carbon epoxy prepregs . The layup sequence: was [(0/45/90/-45)S]2 as illustrated in Figure 3.37. Each layer had the...at Penn State. Hexcel AS4/8552 unidirectional carbon/epoxy prepregs were used in the fabrication as raw materials. The prepregs were cut in pieces...with different fiber orientations and 132 stacked together following different stacking sequences. The stacked prepregs then went into a vacuum
Dynamics-based Nondestructive Structural Monitoring Techniques
2012-06-21
made from AS4/8552-2 carbon epoxy prepregs . The layup sequence: was [(0/45/90/-45)S]2 as illustrated in Figure 3.37. Each layer had the thickness of...using facilities available at Penn State. Hexcel AS4/8552 unidirectional carbon/epoxy prepregs were used in the fabrication as raw materials. The... prepregs were cut in pieces with different fiber orientations and 132 stacked together following different stacking sequences. The stacked prepregs
Locking mechanisms in degree-4 vertex origami structures
NASA Astrophysics Data System (ADS)
Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.
2016-04-01
Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.
Poland, Michael; Lu, Zhong; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
We analyzed hundreds of interferograms of Mount St. Helens produced from radar images acquired by the ERS-1/2, ENVISAT, and RADARSAT satellites during the 1992-2004 preeruptive and 2004-2005 coeruptive periods for signs of deformation associated with magmatic activity at depth. Individual interferograms were often contaminated by atmospheric delay anomalies; therefore, we employed stacking to amplify any deformation patterns that might exist while minimizing random noise. Preeruptive interferograms show no signs of volcanowide deformation between 1992 and the onset of eruptive activity in 2004. Several patches of subsidence in the 1980 debris-avalanche deposit were identified, however, and are thought to be caused by viscoelastic relaxation of loosely consolidated substrate, consolidation of water-saturated sediment, or melting of buried ice. Coeruptive interferometric stacks are dominated by atmospheric noise, probably because individual interferograms span only short time intervals in 2004 and 2005. Nevertheless, we are confident that at least one of the seven coeruptive stacks we constructed is reliable at about the 1-cm level. This stack suggests deflation of Mount St. Helens driven by contraction of a source beneath the volcano.
Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes
NASA Astrophysics Data System (ADS)
Roy, Sree Shankhachur; Potluri, Prasad; Soutis, Constantinos
2017-04-01
This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson's ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.
Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.
1990-08-21
Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.
NASA Astrophysics Data System (ADS)
Zhang, De-Lin; Schliep, Karl B.; Wu, Ryan J.; Quarterman, P.; Reifsnyder Hickey, Danielle; Lv, Yang; Chao, Xiaohui; Li, Hongshi; Chen, Jun-Yang; Zhao, Zhengyang; Jamali, Mahdi; Mkhoyan, K. Andre; Wang, Jian-Ping
2018-04-01
We studied the tunnel magnetoresistance (TMR) of L10-FePd perpendicular magnetic tunnel junctions (p-MTJs) with an FePd free layer and an inserted diffusion barrier. The diffusion barriers studied here (Ta and W) were shown to enhance the TMR ratio of the p-MTJs formed using high-temperature annealing, which are necessary for the formation of high quality L10-FePd films and MgO barriers. The L10-FePd p-MTJ stack was developed with an FePd free layer with a stack of FePd/X/Co20Fe60B20, where X is the diffusion barrier, and patterned into micron-sized MTJ pillars. The addition of the diffusion barrier was found to greatly enhance the magneto-transport behavior of the L10-FePd p-MTJ pillars such that those without a diffusion barrier exhibited negligible TMR ratios (<1.0%), whereas those with a Ta (W) diffusion barrier exhibited TMR ratios of 8.0% (7.0%) at room temperature and 35.0% (46.0%) at 10 K after post-annealing at 350 °C. These results indicate that diffusion barriers could play a crucial role in realizing high TMR ratios in bulk p-MTJs such as those based on FePd and Mn-based perpendicular magnetic anisotropy materials for spintronic applications.
Shankar, Akshaya; Jagota, Anand; Mittal, Jeetain
2012-10-11
Single- and double-stranded DNA are increasingly being paired with surfaces and nanoparticles for numerous applications, such as sensing, imaging, and drug delivery. Unlike the majority of DNA structures in bulk that are stabilized by canonical Watson-Crick pairing between Ade-Thy and Gua-Cyt, those adsorbed on surfaces are often stabilized by noncanonical base pairing, quartet formation, and base-surface stacking. Not much is known about these kinds of interactions. To build an understanding of the role of non-Watson-Crick pairing on DNA behavior near surfaces, one requires basic information on DNA base pair stacking and hydrogen-bonding interactions. All-atom molecular simulations of DNA bases in two cases--in bulk water and strongly adsorbed on a graphite surface--are conducted to study the relative strengths of stacking and hydrogen bond interactions for each of the 10 possible combinations of base pairs. The key information obtained from these simulations is the free energy as a function of distance between two bases in a pair. We find that stacking interactions exert the dominant influence on the stability of DNA base pairs in bulk water as expected. The strength of stability for these stacking interactions is found to decrease in the order Gua-Gua > Ade-Gua > Ade-Ade > Gua-Thy > Gua-Cyt > Ade-Thy > Ade-Cyt > Thy-Thy > Cyt-Thy > Cyt-Cyt. On the other hand, mutual interactions of surface-adsorbed base pairs are stabilized mostly by hydrogen-bonding interactions in the order Gua-Cyt > Ade-Gua > Ade-Thy > Ade-Ade > Cyt-Thy > Gua-Gua > Cyt-Cyt > Ade-Cyt > Thy-Thy > Gua-Thy. Interestingly, several non-Watson-Crick base pairings, which are commonly ignored, have similar stabilization free energies due to interbase hydrogen bonding as Watson-Crick pairs. This clearly highlights the importance of non-Watson-Crick base pairing in the development of secondary structures of oligonucleotides near surfaces.
Spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS 2
Xia, Ming; Li, Bo; Yin, Kuibo; ...
2015-11-04
We discuss prominent resonance Raman and photoluminescence spectroscopic differences between AA'and AB stacked bilayer molybdenum disulfide (MoS 2) grown by chemical vapor deposition are reported. Bilayer MoS 2 islands consisting of the two stacking orders were obtained under identical growth conditions. Also, resonance Raman and photoluminescence spectra of AA' and AB stacked bilayer MoS 2 were obtained on Au nanopyramid surfaces under strong plasmon resonance. Both resonance Raman and photoluminescence spectra show distinct features indicating clear differences in interlayer interaction between these two phases. The implication of these findings on device applications based on spin and valley degrees of freedom.
Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian
2016-12-01
Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Xianghong; Jiang, Daiming; Yang, Daichang
2015-01-01
The selection of homozygous lines is a crucial step in the characterization of newly generated transgenic plants. This is particularly time- and labor-consuming when transgenic stacking is required. Here, we report a fast and accurate method based on quantitative real-time PCR with a rice gene RBE4 as a reference gene for selection of homozygous lines when using multiple transgenic stacking in rice. Use of this method allowed can be used to determine the stacking of up to three transgenes within four generations. Selection accuracy reached 100 % for a single locus and 92.3 % for two loci. This method confers distinct advantages over current transgenic research methodologies, as it is more accurate, rapid, and reliable. Therefore, this protocol could be used to efficiently select homozygous plants and to expedite time- and labor-consuming processes normally required for multiple transgene stacking. This protocol was standardized for determination of multiple gene stacking in molecular breeding via marker-assisted selection.
Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami
2018-01-01
A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Chisato; Ichimura, Aiko; Ohtani, Noboru, E-mail: ohtani.noboru@kwansei.ac.jp
The formation of basal plane stacking faults in heavily nitrogen-doped 4H-SiC crystals was theoretically investigated. A novel theoretical model based on the so-called quantum well action mechanism was proposed; the model considers several factors, which were overlooked in a previously proposed model, and provides a detailed explanation of the annealing-induced formation of double layer Shockley-type stacking faults in heavily nitrogen-doped 4H-SiC crystals. We further revised the model to consider the carrier distribution in the depletion regions adjacent to the stacking fault and successfully explained the shrinkage of stacking faults during annealing at even higher temperatures. The model also succeeded inmore » accounting for the aluminum co-doping effect in heavily nitrogen-doped 4H-SiC crystals, in that the stacking fault formation is suppressed when aluminum acceptors are co-doped in the crystals.« less
Study on component interface evolution of a solid oxide fuel cell stack after long term operation
NASA Astrophysics Data System (ADS)
Yang, Jiajun; Huang, Wei; Wang, Xiaochun; Li, Jun; Yan, Dong; Pu, Jian; Chi, Bo; Li, Jian
2018-05-01
A 5-cell solid oxide fuel cell (SOFC) stack with external manifold structure is assembled and underwent a durability test with an output of 250 W for nearly 4400 h when current density and operating temperature are 355 mA/cm2 and 750 °C. Cells used in the stack are anode-supported cells (ASC) with yttria-stabilized zirconia (YSZ) electrolytes, Ni/YSZ hydrogen electrodes, and YSZ based composite cathode. The dimension of the cell is 150 × 150 mm (active area: 130 × 130 mm). Ceramic-glass sealant is used in the stack to keep the gas tightness between cells, interconnects and manifolds. Pure hydrogen and dry air are used as fuel and oxidant respectively. The stack has a maximum output of 340 W at 562 mA/cm2 current density at 750 °C. The stack shows a degradation of 1.5% per 1000 h during the test with 2 thermal cycles to room temperature. After the test, the stack was dissembled and examined. The relationship between microstructure changes of interfaces and degradation in the stack are discussed. The microstructure evolution of interfaces between electrode, contact material and current collector are unveiled and their relationship with the degradation is discussed.
Easy Fabrication of Thin Membranes with Through Holes. Application to Protein Patterning
Arasi, Bakya; Gauthier, Nils; Viasnoff, Virgile
2012-01-01
Since protein patterning on 2D surfaces has emerged as an important tool in cell biology, the development of easy patterning methods has gained importance in biology labs. In this paper we present a simple, rapid and reliable technique to fabricate thin layers of UV curable polymer with through holes. These membranes are as easy to fabricate as microcontact printing stamps and can be readily used for stencil patterning. We show how this microfabrication scheme allows highly reproducible and highly homogeneous protein patterning with micron sized resolution on surfaces as large as 10 cm2. Using these stencils, fragile proteins were patterned without loss of function in a fully hydrated state. We further demonstrate how intricate patterns of multiple proteins can be achieved by stacking the stencil membranes. We termed this approach microserigraphy. PMID:22952944
NASA Technical Reports Server (NTRS)
Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.
1991-01-01
The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.
Band engineering in twisted molybdenum disulfide bilayers
NASA Astrophysics Data System (ADS)
Zhao, Yipeng; Liao, Chengwei; Ouyang, Gang
2018-05-01
In order to explore the theoretical relationship between interlayer spacing, interaction and band offset at the atomic level in vertically stacked two-dimensional (2D) van der Waals (vdW) structures, we propose an analytical model to address the evolution of interlayer vdW coupling with random stacking configurations in MoS2 bilayers based on the atomic-bond-relaxation correlation mechanism. We found that interlayer spacing changes substantially with respect to the orientations, and the bandgap increases from 1.53 eV (AB stacking) to 1.68 eV (AA stacking). Our results reveal that the evolution of interlayer vdW coupling originates from the interlayer interaction, leading to interlayer separations and electronic properties changing with stacking configurations. Our predictions constitute a demonstration of twist engineering the band shift in the emergent class of 2D crystals, transition-metal dichalcogenides.
Interfacial Stacks of Polymeric Nanofilms on Soft Biological Surfaces that Release Multiple Agents.
Herron, Maggie; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J; Abbott, Nicholas L
2016-10-03
We report a general and facile method that permits the transfer (stacking) of multiple independently fabricated and nanoscopically thin polymeric films, each containing a distinct bioactive agent, onto soft biomedically relevant surfaces (e.g., collagen-based wound dressings). By using polyelectrolyte multilayer films (PEMs) formed from poly(allyl amine hydrochloride) and poly(acrylic acid) as representative polymeric nanofilms and micrometer-thick water-soluble poly(vinyl alcohol) sacrificial films to stack the PEMs, we demonstrate that it is possible to create stacked polymeric constructs containing multiple bioactive agents (e.g., antimicrobial and antibiofilm agents) on soft and chemically complex surfaces onto which PEMs cannot be routinely transferred by stamping. We illustrate the characteristics and merits of the approach by fabricating stacks of Ga 3+ (antibiofilm agent)- and Ag + (antimicrobial agent)-loaded PEMs as prototypical examples of agent-containing PEMs and demonstrate that the stacked PEMs incorporate precise loadings of the agents and provide flexibility in terms of tuning release rates. Specifically, we show that simultaneous release of Ga 3+ and Ag + from the stacked PEMs on collagen-based wound dressings can lead to synergistic effects on bacteria, killing and dispersing biofilms formed by Pseudomonas aeruginosa (two strains: ATCC 27853 and MPAO1) at sufficiently low loadings of agents such that cytotoxic effects on mammalian cells are avoided. The approach is general (a wide range of bioactive agents other than Ga 3+ and Ag + can be incorporated into PEMs), and the modular nature of the approach potentially allows end-user functionalization of soft biological surfaces for programmed release of multiple bioactive agents.
TEM study on relationship between stacking faults and non-basal dislocations in Mg
NASA Astrophysics Data System (ADS)
Zhang, Dalong; Jiang, Lin; Schoenung, Julie M.; Mahajan, Subhash; Lavernia, Enrique J.
2015-12-01
Recent interest in the study of stacking faults and non-basal slip in Mg alloys is partly based on the argument that these phenomena positively influence mechanical behaviour. Inspection of the published literature, however, reveals that there is a lack of fundamental information on the mechanisms that govern the formation of stacking faults, especially I1-type stacking faults (I1 faults). Moreover, controversial and sometimes contradictory mechanisms have been proposed concerning the interactions between stacking faults and dislocations. Therefore, we describe a fundamental transmission electron microscope investigation on Mg 2.5 at. % Y (Mg-2.5Y) processed via hot isostatic pressing (HIP) and extrusion at 623 K. In the as-HIPed Mg-2.5Y, many
NASA Astrophysics Data System (ADS)
Lutz, Yves; Poyet, Jean-Michel; Metzger, Nicolas
2013-10-01
Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is well suited for long-range image recording. Even when laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) microlenses, their beam parameter product (BPP) are not compatible with a direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long range applications. To overcome these difficulties, we conducted investigations in three different ways. A first near infrared illuminator based on the use of conductively cooled mini-bars was designed, realized and successfully tested during outdoor experimentations. This custom specified stack was then replaced in a second step by an off-the-shelf FAC + SAC micro lensed stack where the brightness was increased by polarization overlapping. The third method still based on a commercial laser diode stack uses a non imaging optical shaping principle resulting in a virtually restacked laser source with enhanced beam parameters. This low cost, efficient and low alignment sensitivity beam shaping method allows obtaining a compact and high performance laser diode illuminator for long range active imaging applications. The three methods are presented and compared in this paper.
A wavelet-based Bayesian framework for 3D object segmentation in microscopy
NASA Astrophysics Data System (ADS)
Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil
2012-03-01
In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.
Metal oxide multilayer hard mask system for 3D nanofabrication
NASA Astrophysics Data System (ADS)
Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko
2018-02-01
We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.
CD uniformity control for thick resist process
NASA Astrophysics Data System (ADS)
Huang, Chi-hao; Liu, Yu-Lin; Wang, Weihung; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.
2017-03-01
In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked flash cell array has been proposed. In constructing 3D NAND flash memories, the higher bit number per area is achieved by increasing the number of stacked layers. Thus the so-called "staircase" patterning to form electrical connection between memory cells and word lines has become one of the primarily critical processes in 3D memory manufacture. To provide controllable critical dimension (CD) with good uniformity involving thick photo-resist has also been of particular concern for staircase patterning. The CD uniformity control has been widely investigated with relatively thinner resist associated with resolution limit dimension but thick resist coupling with wider dimension. This study explores CD uniformity control associated with thick photo-resist processing. Several critical parameters including exposure focus, exposure dose, baking condition, pattern size and development recipe, were found to strongly correlate with the thick photo-resist profile accordingly affecting the CD uniformity control. To minimize the within-wafer CD variation, the slightly tapered resist profile is proposed through well tailoring the exposure focus and dose together with optimal development recipe. Great improvements on DCD (ADI CD) and ECD (AEI CD) uniformity as well as line edge roughness were achieved through the optimization of photo resist profile.
Gorodetsky, Alon A.; Buzzeo, Marisa C.
2009-01-01
The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370
NASA Astrophysics Data System (ADS)
Bhattacharjee, Subham; Maiti, Bappa; Bhattacharya, Santanu
2016-05-01
The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the resultant sol, on heating above 70 °C, transformed into a heat-set gel instantaneously with a hitherto unknown CGC value. Detailed studies revealed the smaller globular aggregates of the RT-gels fuse to form giant globules upon heating, which, in turn, resulted in heat-set gelation through further aggregation. The thermoresponsive property of Py-D alone and 1 : 1 Py-D : NDI-A CT complex was investigated in detail which revealed the hydrophobic collapse of the oxyethylene chains of the CT complex upon heating was mainly responsible for heat-set gelation. Thixotropy, injectability, as well as stimuli responsiveness of the RT-gels were also addressed. In contrast, heat-set gel did not show thixotropic behavior. The X-ray diffraction (XRD) patterns of the xerogel depicted lamellar packing of the CT stacks in the gel phase. Single crystal XRD studies further evidenced the 1 : 1 mixed CT stack formation in the lamellae and also ruled out orthogonal hydrogen bonding possibilities among the hydrazide unit in the CT gel although such interaction was observed in a single crystal of NDI-A alone. In addition, a Ag+-ion triggered metallogelation of NDI-A and nematic liquid-crystalline property of Py-D were also observed.The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the resultant sol, on heating above 70 °C, transformed into a heat-set gel instantaneously with a hitherto unknown CGC value. Detailed studies revealed the smaller globular aggregates of the RT-gels fuse to form giant globules upon heating, which, in turn, resulted in heat-set gelation through further aggregation. The thermoresponsive property of Py-D alone and 1 : 1 Py-D : NDI-A CT complex was investigated in detail which revealed the hydrophobic collapse of the oxyethylene chains of the CT complex upon heating was mainly responsible for heat-set gelation. Thixotropy, injectability, as well as stimuli responsiveness of the RT-gels were also addressed. In contrast, heat-set gel did not show thixotropic behavior. The X-ray diffraction (XRD) patterns of the xerogel depicted lamellar packing of the CT stacks in the gel phase. Single crystal XRD studies further evidenced the 1 : 1 mixed CT stack formation in the lamellae and also ruled out orthogonal hydrogen bonding possibilities among the hydrazide unit in the CT gel although such interaction was observed in a single crystal of NDI-A alone. In addition, a Ag+-ion triggered metallogelation of NDI-A and nematic liquid-crystalline property of Py-D were also observed. Electronic supplementary information (ESI) available: General experimental section, synthesis and characterization, single crystal X-ray data including CIF files and additional experimental results. See DOI: 10.1039/c6nr01128d
Sasikala, Wilbee D; Mukherjee, Arnab
2012-10-11
DNA intercalation, a biophysical process of enormous clinical significance, has surprisingly eluded molecular understanding for several decades. With appropriate configurational restraint (to prevent dissociation) in all-atom metadynamics simulations, we capture the free energy surface of direct intercalation from minor groove-bound state for the first time using an anticancer agent proflavine. Mechanism along the minimum free energy path reveals that intercalation happens through a minimum base stacking penalty pathway where nonstacking parameters (Twist→Slide/Shift) change first, followed by base stacking parameters (Buckle/Roll→Rise). This mechanism defies the natural fluctuation hypothesis and provides molecular evidence for the drug-induced cavity formation hypothesis. The thermodynamic origin of the barrier is found to be a combination of entropy and desolvation energy.
Membrane adhesion dictates Golgi stacking and cisternal morphology.
Lee, Intaek; Tiwari, Neeraj; Dunlop, Myun Hwa; Graham, Morven; Liu, Xinran; Rothman, James E
2014-02-04
Two classes of proteins that bind to each other and to Golgi membranes have been implicated in the adhesion of Golgi cisternae to each other to form their characteristic stacks: Golgi reassembly and stacking proteins 55 and 65 (GRASP55 and GRASP65) and Golgin of 45 kDa and Golgi matrix protein of 130 kDa. We report here that efficient stacking occurs in the absence of GRASP65/55 when either Golgin is overexpressed, as judged by quantitative electron microscopy. The Golgi stacks in these GRASP-deficient HeLa cells were normal both in morphology and in anterograde cargo transport. This suggests the simple hypothesis that the total amount of adhesive energy gluing cisternae dictates Golgi cisternal stacking, irrespective of which molecules mediate the adhesive process. In support of this hypothesis, we show that adding artificial adhesive energy between cisternae and mitochondria by dimerizing rapamycin-binding domain and FK506-binding protein domains that are attached to cisternal adhesive proteins allows mitochondria to invade the stack and even replace Golgi cisternae within a few hours. These results indicate that although Golgi stacking is a highly complicated process involving a large number of adhesive and regulatory proteins, the overriding principle of a Golgi stack assembly is likely to be quite simple. From this simplified perspective, we propose a model, based on cisternal adhesion and cisternal maturation as the two core principles, illustrating how the most ancient form of Golgi stacking might have occurred using only weak cisternal adhesive processes because of the differential between the rate of influx and outflux of membrane transport through the Golgi.
Membrane adhesion dictates Golgi stacking and cisternal morphology
Lee, Intaek; Tiwari, Neeraj; Dunlop, Myun Hwa; Graham, Morven; Liu, Xinran; Rothman, James E.
2014-01-01
Two classes of proteins that bind to each other and to Golgi membranes have been implicated in the adhesion of Golgi cisternae to each other to form their characteristic stacks: Golgi reassembly and stacking proteins 55 and 65 (GRASP55 and GRASP65) and Golgin of 45 kDa and Golgi matrix protein of 130 kDa. We report here that efficient stacking occurs in the absence of GRASP65/55 when either Golgin is overexpressed, as judged by quantitative electron microscopy. The Golgi stacks in these GRASP-deficient HeLa cells were normal both in morphology and in anterograde cargo transport. This suggests the simple hypothesis that the total amount of adhesive energy gluing cisternae dictates Golgi cisternal stacking, irrespective of which molecules mediate the adhesive process. In support of this hypothesis, we show that adding artificial adhesive energy between cisternae and mitochondria by dimerizing rapamycin-binding domain and FK506-binding protein domains that are attached to cisternal adhesive proteins allows mitochondria to invade the stack and even replace Golgi cisternae within a few hours. These results indicate that although Golgi stacking is a highly complicated process involving a large number of adhesive and regulatory proteins, the overriding principle of a Golgi stack assembly is likely to be quite simple. From this simplified perspective, we propose a model, based on cisternal adhesion and cisternal maturation as the two core principles, illustrating how the most ancient form of Golgi stacking might have occurred using only weak cisternal adhesive processes because of the differential between the rate of influx and outflux of membrane transport through the Golgi. PMID:24449908
Retrieval of Body-Wave Reflections Using Ambient Noise Interferometry Using a Small-Scale Experiment
NASA Astrophysics Data System (ADS)
Dantas, Odmaksuel Anísio Bezerra; do Nascimento, Aderson Farias; Schimmel, Martin
2018-02-01
We report the retrieval of body-wave reflections from noise records using a small-scale experiment over a mature oil field. The reflections are obtained by cross-correlation and stacking of the data. We used the stacked correlograms to create virtual source-to-receiver common shot gathers and are able to obtain body-wave reflections. Surface waves that obliterate the body-waves in our noise correlations were attenuated following a standard procedure from active source seismics. Further different strategies were employed to cross-correlate and stack the data: classical geometrical normalized cross-correlation (CCGN), phase cross-correlation (PCC), linear stacking**** and phase weighted stacking (PWS). PCC and PWS are based on the instantaneous phase coherence of analytic signals. The four approaches are independent and reveal the reflections; nevertheless, the combination of PWS and CCGN provided the best results. Our analysis is based on 2145 cross-correlations of 600 s data segments. We also compare the resulted virtual shot gathers with an active 2D seismic line near the passive experiment. It is shown that our ambient noise analysis reproduces reflections which are present in the active seismic data.
Modelling the protocol stack in NCS with deterministic and stochastic petri net
NASA Astrophysics Data System (ADS)
Hui, Chen; Chunjie, Zhou; Weifeng, Zhu
2011-06-01
Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.
StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab
NASA Astrophysics Data System (ADS)
Grund, Michael
2017-08-01
SplitLab is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to the noisy seaside, ocean bottom or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure which is based on MATLAB. The effectiveness and use of this plugin is demonstrated with data examples of a long running seismological recording station in Finland.
Reliability prediction of large fuel cell stack based on structure stress analysis
NASA Astrophysics Data System (ADS)
Liu, L. F.; Liu, B.; Wu, C. W.
2017-09-01
The aim of this paper is to improve the reliability of Proton Electrolyte Membrane Fuel Cell (PEMFC) stack by designing the clamping force and the thickness difference between the membrane electrode assembly (MEA) and the gasket. The stack reliability is directly determined by the component reliability, which is affected by the material property and contact stress. The component contact stress is a random variable because it is usually affected by many uncertain factors in the production and clamping process. We have investigated the influences of parameter variation coefficient on the probability distribution of contact stress using the equivalent stiffness model and the first-order second moment method. The optimal contact stress to make the component stay in the highest level reliability is obtained by the stress-strength interference model. To obtain the optimal contact stress between the contact components, the optimal thickness of the component and the stack clamping force are optimally designed. Finally, a detailed description is given how to design the MEA and gasket dimensions to obtain the highest stack reliability. This work can provide a valuable guidance in the design of stack structure for a high reliability of fuel cell stack.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.
1998-04-21
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.
1998-01-01
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1985-01-01
A 25 cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 6000 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests were carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. In light of the favorable results obtained, a 25kW stack that will contain 175 cells of the same size is being constructed using the same technology base. The components for the 25kW stack have been completed. A methanol steam reformer with a design output equivalent to 50kW has been constructed to serve as a hydrogen generator for the 25kW stack. This reformer and the balance of the fuel processing sub system are currently being tested and debugged. The stack technology development program focused on cost reduction in bipolar plates, nonmetallic cooling plates, and current collecting plates; more stable cathode catalyst support materials; more corrosion resistant metal hardware; and shutdown/start up tolerance.
A high-performance aluminum-feed microfluidic fuel cell stack
NASA Astrophysics Data System (ADS)
Wang, Yifei; Leung, Dennis Y. C.
2016-12-01
In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.
Conductance of carbon based macro-molecular structures
NASA Astrophysics Data System (ADS)
Stafström, S.; Hansson, A.; Paulsson, M.
2000-11-01
Electron transport through metallic nanotubes and stacks of wide bandgap polyaromatic hydrocarbons (PAH) are studied theoretically using the Landauer formalism. These two systems constitute examples of different types of carbon based nanostructured materials of potential use in molecular electronics. The studies are carried out for structures with finite length that bridge two contact pads. In the case of perfect metallic nanotubes, the current is observed to increase stepwise with the applied voltage and the resistance is independent on the length of the tube. In the PAH stacks, the off resonance tunneling conductance decreases exponentially with the number of molecules in the stack and shows a near linear increase with the number of carbon atoms in each molecule.
Remote direct memory access over datagrams
Grant, Ryan Eric; Rashti, Mohammad Javad; Balaji, Pavan; Afsahi, Ahmad
2014-12-02
A communication stack for providing remote direct memory access (RDMA) over a datagram network is disclosed. The communication stack has a user level interface configured to accept datagram related input and communicate with an RDMA enabled network interface card (NIC) via an NIC driver. The communication stack also has an RDMA protocol layer configured to supply one or more data transfer primitives for the datagram related input of the user level. The communication stack further has a direct data placement (DDP) layer configured to transfer the datagram related input from a user storage to a transport layer based on the one or more data transfer primitives by way of a lower layer protocol (LLP) over the datagram network.
Automated manufacturing process for DEAP stack-actuators
NASA Astrophysics Data System (ADS)
Tepel, Dominik; Hoffstadt, Thorben; Maas, Jürgen
2014-03-01
Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP), which are coated with compliant and conductive electrodes on each side. Due to the influence of an electrical field, dielectric elastomers perform a large amount of deformation. In this contribution a manufacturing process of automated fabricated stack-actuators based on dielectric electroactive polymers (DEAP) are presented. First of all the specific design of the considered stack-actuator is explained and afterwards the development, construction and realization of an automated manufacturing process is presented in detail. By applying this automated process, stack-actuators with reproducible and homogeneous properties can be manufactured. Finally, first DEAP actuator modules fabricated by the mentioned process are validated experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crooks, Gavin E.
WebLogo is a web based application designed to make the generation of sequence logos as easy and painless as possible. Sequesnce logos are a graphical representation of an amino acid or nucleic acid multiple sequence alignment developed by Tom Schneider and Mike Stephens. Each logo consists of stacks of symbols, one stack for each position in the sequence. The overall height of the stack indicates the sequence conservation at that position, while the height of symbols within the stack indicates the relative frequency of each amino or nucleic acid at that position. In general, a sequence logo provides a richermore » and more precise description of, for example, a binding site, than would a consensus sequence.« less
Multistage Force Amplification of Piezoelectric Stacks
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)
2015-01-01
Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.
ERIC Educational Resources Information Center
Dunac, Patricia S.; Demi, Kadir
2013-01-01
We engaged secondary science students in a teacher and student constructed Uno card game (UCG) to change their conceptual understanding of the various energy transformations. The paper outlines how we incorporated Toulmin's argumentation pattern (Toulmin 1958 "The Uses of Argument"(Cambridge: Cambridge University Press)) in the UCG,…
Stories from the Stacks: Students Lost in the Labyrinth
ERIC Educational Resources Information Center
Schoonover, Dan; Kinsley, Kirsten M.
2014-01-01
Research shows that academic libraries can be difficult to navigate and that students are often frustrated with not being able to find the right materials. This current study attempts to identify access barriers in FSU's Strozier Library by assessing the effectiveness of signs and directories, as well as wayfinding patterns of both undergraduate…
Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain.
Koyama, Minoru; Kinkhabwala, Amina; Satou, Chie; Higashijima, Shin-ichi; Fetcho, Joseph
2011-01-18
The hindbrain of larval zebrafish contains a relatively simple ground plan in which the neurons throughout it are arranged into stripes that represent broad neuronal classes that differ in transmitter identity, morphology, and transcription factor expression. Within the stripes, neurons are stacked continuously according to age as well as structural and functional properties, such as axonal extent, input resistance, and the speed at which they are recruited during movements. Here we address the question of how particular networks among the many different sensory-motor networks in hindbrain arise from such an orderly plan. We use a combination of transgenic lines and pairwise patch recording to identify excitatory and inhibitory interneurons in the hindbrain network for escape behaviors initiated by the Mauthner cell. We map this network onto the ground plan to show that an individual hindbrain network is built by drawing components in predictable ways from the underlying broad patterning of cell types stacked within stripes according to their age and structural and functional properties. Many different specialized hindbrain networks may arise similarly from a simple early patterning.
Revisiting the Al/Al₂O₃ interface: coherent interfaces and misfit accommodation.
Pilania, Ghanshyam; Thijsse, Barend J; Hoagland, Richard G; Lazić, Ivan; Valone, Steven M; Liu, Xiang-Yang
2014-03-27
We study the coherent and semi-coherent Al/α-Al2O3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions at the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. Our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al2O3 composite heterostructures.
Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol
2017-05-17
To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (<3 Ω/sq) and high transparency (∼90%) simultaneously. A proper space between two metal films led to high transmittance by an optical phenomenon. The principle of parallel connection allowed the electrode to have high conductivity. In situ fabrication was possible because the only materials composing the electrode were silver and WO 3 , which can be deposited by thermal evaporation. The electrode was flexible enough to withstand 10 000 bending cycles with a 1 mm bending radius. Furthermore, a few μm scale patterning of the electrode was easily implemented by using photolithography, which is widely employed industrially for patterning. Flexible organic light-emitting diodes and a transparent flexible thin-film transistor were successfully fabricated with the proposed electrode. Various practical applications of this electrode to new transparent flexible electronics are expected.
OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.
Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao
2014-12-01
It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.
NASA Astrophysics Data System (ADS)
Davtyan, Arman; Biermanns, Andreas; Loffeld, Otmar; Pietsch, Ullrich
2016-06-01
Coherent x-ray diffraction imaging is used to measure diffraction patterns from individual highly defective nanowires, showing a complex speckle pattern instead of well-defined Bragg peaks. The approach is tested for nanowires of 500 nm diameter and 500 nm height predominately composed by zinc-blende (ZB) and twinned zinc-blende (TZB) phase domains. Phase retrieval is used to reconstruct the measured 2-dimensional intensity patterns recorded from single nanowires with 3.48 nm and 0.98 nm spatial resolution. Whereas the speckle amplitudes and distribution are perfectly reconstructed, no unique solution could be obtained for the phase structure. The number of phase switches is found to be proportional to the number of measured speckles and follows a narrow number distribution. Using data with 0.98 nm spatial resolution the mean number of phase switches is in reasonable agreement with estimates taken from TEM. However, since the resolved phase domain still is 3-4 times larger than a single GaAs bilayer we explain the non-ambiguous phase reconstruction by the fact that depending on starting phase and sequence of subroutines used during the phase retrieval the retrieved phase domain host a different sequence of randomly stacked bilayers. Modelling possible arrangements of bilayer sequences within a phase domain demonstrate that the complex speckle patterns measured can indeed be explained by the random arrangement of the ZB and TZB phase domains.
Stacking of purines in water: the role of dipolar interactions in caffeine.
Tavagnacco, L; Di Fonzo, S; D'Amico, F; Masciovecchio, C; Brady, J W; Cesàro, A
2016-05-11
During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.
Monolithic stacked blue light-emitting diodes with polarization-enhanced tunnel junctions.
Kuo, Yen-Kuang; Shih, Ya-Hsuan; Chang, Jih-Yuan; Lai, Wei-Chih; Liu, Heng; Chen, Fang-Ming; Lee, Ming-Lun; Sheu, Jinn-Kong
2017-08-07
Monolithic stacked InGaN light-emitting diode (LED) connected by a polarization-enhanced GaN/AlN-based tunnel junction is demonstrated experimentally in this study. The typical stacked LEDs exhibit 80% enhancement in output power compared with conventional single LEDs because of the repeated use of electrons and holes for photon generation. The typical operation voltage of stacked LEDs is higher than twice the operation voltage of single LEDs. This high operation voltage can be attributed to the non-optimal tunneling junction in stacked LEDs. In addition to the analyses of experimental results, theoretical analysis of different schemes of tunnel junctions, including diagrams of energy bands, diagrams of electric fields, and current-voltage relation curves, are investigated using numerical simulation. The results shown in this paper demonstrate the feasibility in developing cost-effective and highly efficient tunnel-junction LEDs.
Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whyatt, Greg A.; Chick, Lawrence A.
This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electricalmore » generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 7878 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.« less
Compact piezoelectric tripod manipulator based on a reverse bridge-type amplification mechanism
NASA Astrophysics Data System (ADS)
Na, Tae-Won; Choi, Jun-Ho; Jung, Jin-Young; Kim, Hyeong-Geon; Han, Jae-Hung; Park, Kwang-Chun; Oh, Il-Kwon
2016-09-01
We report a hierarchical piezoelectric tripod manipulator based on a reverse bridge-type displacement amplifier. The reverse bridge-type amplification mechanism is pre-strained by each piezo-stack actuator up to 60 μm and is cross-stacked in a series arrangement to make a compact and high-stroke manipulator having load-bearing characteristics. The designed manipulator with three degrees of freedom is compact with a height of 56.0 mm, a diameter of 48.6 mm and total weight of 115 g. It achieves a translational stroke of up to 880 μm in heaving motion and a tilting angle of up to 2.0° in rotational motion within the operating voltage and power range of the piezoelectric stack actuator. A key feature of the present design is built-in and pre-strained displacement amplification mechanisms integrated with piezoelectric stacked actuators, resulting in a compact tripod manipulator having exceptionally high stroke and load-bearing capacity.
NASA Astrophysics Data System (ADS)
Starek, Dušan; Fuksi, Tomáš
2017-08-01
A part of the Upper Oligocene sand-rich turbidite systems of the Central Carpathian Basin is represented by the Zuberec Formation. Sand/mud-mixed deposits of this formation are well exposed in the northern part of the basin, allowing us to interpret the turbidite succession as terminal lobe deposits of a submarine fan. This interpretation is based on the discrimination of three facies associations that are comparable to different components of distributive lobe deposits in deep-water fan systems. They correspond to the lobe off-axis, lobe fringe and lobe distal fringe depositional subenvironments, respectively. The inferences about the depositional paleoenvironment based on sedimentological observations are verified by statistical analyses. The bed-thickness frequency distributions and vertical organization of the facies associations show cyclic trends at different hierarchical levels that enable us to reconstruct architectural elements of a turbidite fan. First, small-scale trends correspond with shift in the lobe element centroid between successive elements. Differences in the distribution and frequency of sandstone bed thicknesses as well as differences in the shape of bed-thickness frequency distributions between individual facies associations reflect a gradual fining and thinning in a down-dip direction. Second, meso-scale trends are identified within lobes and they generally correspond to the significant periodicity identified by the time series analysis of the bed thicknesses. The meso-scale trends demonstrate shifts in the position of the lobe centroid within the lobe system. Both types of trends have a character of a compensational stacking pattern and could be linked to autogenic processes. Third, a largescale trend documented by generally thickening-upward stacking pattern of beds, accompanied by a general increase of the sandstones/mudstones ratio and by a gradual change of percentage of individual facies, could be comparable to lobe-system scale. This trend probably indicates a gradual basinward progradation of lobe system controlled by allogenic processes related to tectonic activity of sources and sea-level fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomczak, Y., E-mail: Yoann.Tomczak@imec.be; Department of Chemistry, KU Leuven; Swerts, J.
2016-01-25
Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a replacement for next generation embedded and stand-alone memory applications. One of the main challenges in the STT-MRAM stack development is the compatibility of the stack with CMOS process flows in which thermal budgets up to 400 °C are applied. In this letter, we report on a perpendicularly magnetized MgO-based tunnel junction (p-MTJ) on a thin Co/Ni perpendicular synthetic antiferromagnetic layer with high annealing tolerance. Tunnel magneto resistance (TMR) loss after annealing occurs when the reference layer loses its perpendicular magnetic anisotropy due to reduction of the CoFeB/MgO interfacial anisotropy. Amore » stable Co/Ni based p-MTJ stack with TMR values of 130% at resistance-area products of 9 Ω μm{sup 2} after 400 °C anneal is achieved via moment control of the Co/Ta/CoFeB reference layer. Thinning of the CoFeB polarizing layer down to 0.8 nm is the key enabler to achieve 400 °C compatibility with limited TMR loss. Thinning the Co below 0.6 nm leads to a loss of the antiferromagnetic interlayer exchange coupling strength through Ru. Insight into the thickness and moment engineering of the reference layer is displayed to obtain the best magnetic properties and high thermal stability for thin Co/Ni SAF-based STT-MRAM stacks.« less
Lower energy and pulse stacking. A safer alternative for skin tightening using fractional CO2 laser.
Motta, Marcos Matias; Stelini, Rafael Fantelli; Calderoni, Davi Reis; Gilioli, Rovilson; Kharmandayan, Paulo
2016-01-01
To evaluate the effect of different energies and stacking in skin shrinkage. Three decreasing settings of a fractional CO2 laser were applied to the abdomen of Twenty five Wistar rats divided into three groups. Group I (n=5) was histologically evaluated for microthermal zones dimensions. Groups II and III (n=10 each) were macroscopic evaluated with freeware ImageJ for area contraction immediately and after 30 and 60 days. No statistical significance was found within microthermal zone histological dimensions (Group I) in all settings studied. (Ablation depth: 76.90 to 97.18µm; Coagulation depth: 186.01 to 219.84 µm). In Group II, macroscopic evaluation showed that all settings cause significant immediate skin contraction. The highest setting cause significant more intense tightening effect initially, contracting skin area from 258.65 to 179.09 mm2. The same pattern was observed in Group III. At 30 and 60 days, the lowest setting significantly sustained contraction. Lower fractional CO2 laser energies associated to pulse stacking could cause consistent and long lasting tissue contraction in rats.
Veidt, Martin; Ng, Ching-Tai
2011-03-01
This paper investigates the scattering characteristics of the fundamental anti-symmetric (A(0)) Lamb wave at through holes in composite laminates. Three-dimensional (3D) finite element (FE) simulations and experimental measurements are used to study the physical phenomenon. Unidirectional, bidirectional, and quasi-isotropic composite laminates are considered in the study. The influence of different hole diameter to wavelength aspect ratios and different stacking sequences on wave scattering characteristics are investigated. The results show that amplitudes and directivity distribution of the scattered Lamb wave depend on these parameters. In the case of quasi-isotropic composite laminates, the scattering directivity patterns are dominated by the fiber orientation of the outer layers and are quite different for composite laminates with the same number of laminae but different stacking sequence. The study provides improved physical insight into the scattering phenomena at through holes in composite laminates, which is essential to develop, validate, and optimize guided wave damage detection and characterization techniques. © 2011 Acoustical Society of America
Structure analysis of Si(111)-7 × 7 reconstructed surface by transmission electron diffraction
NASA Astrophysics Data System (ADS)
Takayanagi, Kunio; Tanishiro, Yasumasa; Takahashi, Shigeki; Takahashi, Masaetsu
1985-12-01
The atomic structure of the 7 × 7 reconstructed Si(111) surface has been analysed by ultra-high vacuum (UHV) transmission electron diffraction (TED). A possible projected structure of the surface is deduced from the intensity distribution in TED patterns of normal electron incidence and from Patterson and Fourier syntheses of the intensities. A new three-dimensional structure model, the DAS model, is proposed: The model consists of 12 adatoms arranged locally in the 2 × 2 structure, a stacking fault layer and a layer with a vacancy at the corner and 9 dimers on the sides of each of the two triangular subcells of the 7 × 7 unit cell. The silicon layers in one subcell are stacked with the normal sequence, CcAaB + adatoms, while those in the other subcell are stacked with a faulted sequence, CcAa/C + adatoms. The model has only 19 dangling bonds, the smallest number among models so far proposed. Previously proposed models are tested quantitatively by the TED intensity. Advantages and limits of the TED analysis are discussed.
Reliability analysis and initial requirements for FC systems and stacks
NASA Astrophysics Data System (ADS)
Åström, K.; Fontell, E.; Virtanen, S.
In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.
Ab initio study of point defects near stacking faults in 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Jianqi; Liu, Bin; Zhang, Yanwen
Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less
Ab initio study of point defects near stacking faults in 3C-SiC
Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...
2016-07-02
Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less
Optimization of hole generation in Ti/CFRP stacks
NASA Astrophysics Data System (ADS)
Ivanov, Y. N.; Pashkov, A. E.; Chashhin, N. S.
2018-03-01
The article aims to describe methods for improving the surface quality and hole accuracy in Ti/CFRP stacks by optimizing cutting methods and drill geometry. The research is based on the fundamentals of machine building, theory of probability, mathematical statistics, and experiment planning and manufacturing process optimization theories. Statistical processing of experiment data was carried out by means of Statistica 6 and Microsoft Excel 2010. Surface geometry in Ti stacks was analyzed using a Taylor Hobson Form Talysurf i200 Series Profilometer, and in CFRP stacks - using a Bruker ContourGT-Kl Optical Microscope. Hole shapes and sizes were analyzed using a Carl Zeiss CONTURA G2 Measuring machine, temperatures in cutting zones were recorded with a FLIR SC7000 Series Infrared Camera. Models of multivariate analysis of variance were developed. They show effects of drilling modes on surface quality and accuracy of holes in Ti/CFRP stacks. The task of multicriteria drilling process optimization was solved. Optimal cutting technologies which improve performance were developed. Methods for assessing thermal tool and material expansion effects on the accuracy of holes in Ti/CFRP/Ti stacks were developed.
Application of preconditioned alternating direction method of multipliers in depth from focal stack
NASA Astrophysics Data System (ADS)
Javidnia, Hossein; Corcoran, Peter
2018-03-01
Postcapture refocusing effect in smartphone cameras is achievable using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map, which has been an open issue for decades. To tackle this issue, a framework is proposed based on a preconditioned alternating direction method of multipliers for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy, the optimization function of the proposed framework can, in fact, converge faster and better than state-of-the-art methods. The qualitative evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against five other methods. Later, 10 light field image sets have been transformed into focal stacks for quantitative evaluation purposes. Preliminary results indicate that the proposed framework has a better performance in terms of structural accuracy and optimization in comparison to the current state-of-the-art methods.
Advancements in high-power diode laser stacks for defense applications
NASA Astrophysics Data System (ADS)
Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens
2012-06-01
This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.
Schneebeli, Severin T; Kamenetska, Maria; Cheng, Zhanling; Skouta, Rachid; Friesner, Richard A; Venkataraman, Latha; Breslow, Ronald
2011-02-23
Understanding electron transport across π-π-stacked systems will help to answer fundamental questions about biochemical redox processes and benefit the design of new materials and molecular devices. Herein we employed the STM break-junction technique to measure the single-molecule conductance of multiple π-π-stacked aromatic rings. We studied electron transport through up to four stacked benzene rings held together in an eclipsed fashion via a paracyclophane scaffold. We found that the strained hydrocarbons studied herein couple directly to gold electrodes during the measurements; hence, we did not require any heteroatom binding groups as electrical contacts. Density functional theory-based calculations suggest that the gold atoms of the electrodes bind to two neighboring carbon atoms of the outermost cyclophane benzene rings in η(2) fashion. Our measurements show an exponential decay of the conductance with an increasing number of stacked benzene rings, indicating a nonresonant tunneling mechanism. Furthermore, STM tip-substrate displacement data provide additional evidence that the electrodes bind to the outermost benzene rings of the π-π-stacked molecular wires.
NASA Astrophysics Data System (ADS)
Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari
2015-03-01
Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.
NASA Astrophysics Data System (ADS)
Yoshimura, Fumitaka; Yamane, Hisanori; Nagasako, Makoto
2017-07-01
Single crystals of Ba5B2Al4Si32N52:Eu were grown on the wall of a boron nitride crucible by heating a starting mixture of binary nitrides at 2050 °C and a N2 pressure of 0.85 MPa. The fundamental reflections of X-ray diffraction (XRD) for the crystals were indexed with triclinic cell parameters, a=9.7879(11) Å, b=9.7920(11) Å, c=12.7226(15) Å, α=96.074(4)°, β=112.330(3)°, and γ=94.080(4)°. Streak lines were observed between the fundamental reflections in the direction of the c* axis in the oscillation XRD images and selected area electron diffraction (SAED) patterns, indicating stacking faults in the structure. The atomic images of stacking faults with a slip system of (0 0 1)[-1 1 0]/3, and displacement of a Ba atom layer with (0 0 1)[-1 -1 0]/6 were observed with a scanning transmission electron microscope (STEM). The models of the basic (normal-stacking) structure with space group P1 and local structures of the stacking faults are herein presented. The single crystals emitted blue light with a peak wavelength of 472 nm and a full width at half maximum of 78 nm under 365 nm excitation.
Novel conformal organic antireflective coatings for advanced I-line lithography
NASA Astrophysics Data System (ADS)
Deshpande, Shreeram V.; Nowak, Kelly A.; Fowler, Shelly; Williams, Paul; Arjona, Mikko
2001-08-01
Flash memory chips are playing a critical role in semiconductor devices due to increased popularity of hand held electronic communication devices such as cell phones and PDAs (personal Digital Assistants). Flash memory offers two primary advantages in semiconductor devices. First, it offers flexibility of in-circuit programming capability to reduce the loss from programming errors and to significantly reduce commercialization time to market for new devices. Second, flash memory has a double density memory capability through stacked gate structures which increases the memory capability and thus saves significantly on chip real estate. However, due to stacked gate structures the requirements for manufacturing of flash memory devices are significantly different from traditional memory devices. Stacked gate structures also offer unique challenges to lithographic patterning materials such as Bottom Anti-Reflective Coating (BARC) compositions used to achieve CD control and to minimize standing wave effect in photolithography. To be applicable in flash memory manufacturing a BARC should form a conformal coating on high topography of stacked gate features as well as provide the normal anti-reflection properties for CD control. In this paper we report on a new highly conformal advanced i-line BARC for use in design and manufacture of flash memory devices. Conformal BARCs being significantly thinner in trenches than the planarizing BARCs offer the advantage of reducing BARC overetch and thus minimizing resist thickness loss.
Biswas, Sovan; Sen, Suman; Im, JongOne; Biswas, Sudipta; Krstic, Predrag; Ashcroft, Brian; Borges, Chad; Zhao, Yanan; Lindsay, Stuart; Zhang, Peiming
2016-12-27
A reader molecule, which recognizes all the naturally occurring nucleobases in an electron tunnel junction, is required for sequencing DNA by a recognition tunneling (RT) technique, referred to as a universal reader. In the present study, we have designed a series of heterocyclic carboxamides based on hydrogen bonding and a large-sized pyrene ring based on a π-π stacking interaction as universal reader candidates. Each of these compounds was synthesized to bear a thiolated linker for attachment to metal electrodes and examined for their interactions with naturally occurring DNA nucleosides and nucleotides by 1 H NMR, ESI-MS, computational calculations, and surface plasmon resonance. RT measurements were carried out in a scanning tunnel microscope. All of these molecules generated electrical signals with DNA nucleotides in tunneling junctions under physiological conditions (phosphate buffered aqueous solution, pH 7.4). Using a support vector machine as a tool for data analysis, we found that these candidates distinguished among naturally occurring DNA nucleotides with the accuracy of pyrene (by π-π stacking interactions) > azole carboxamides (by hydrogen-bonding interactions). In addition, the pyrene reader operated efficiently in a larger tunnel junction. However, the azole carboxamide could read abasic (AP) monophosphate, a product from spontaneous base hydrolysis or an intermediate of base excision repair. Thus, we envision that sequencing DNA using both π-π stacking and hydrogen-bonding-based universal readers in parallel should generate more comprehensive genome sequences than sequencing based on either reader molecule alone.
Strain measurement in semiconductor heterostructures by scanning transmission electron microscopy.
Müller, Knut; Rosenauer, Andreas; Schowalter, Marco; Zweck, Josef; Fritz, Rafael; Volz, Kerstin
2012-10-01
This article deals with the measurement of strain in semiconductor heterostructures from convergent beam electron diffraction patterns. In particular, three different algorithms in the field of (circular) pattern recognition are presented that are able to detect diffracted disc positions accurately, from which the strain in growth direction is calculated. Although the three approaches are very different as one is based on edge detection, one on rotational averages, and one on cross correlation with masks, it is found that identical strain profiles result for an In x Ga1-x N y As1-y /GaAs heterostructure consisting of five compressively and tensile strained layers. We achieve a precision of strain measurements of 7-9·10-4 and a spatial resolution of 0.5-0.7 nm over the whole width of the layer stack which was 350 nm. Being already very applicable to strain measurements in contemporary nanostructures, we additionally suggest future hardware and software designs optimized for fast and direct acquisition of strain distributions, motivated by the present studies.
Nurius, Paula S.; Prince, Dana M.; Rocha, Anita
2015-01-01
Purpose The accumulation of disadvantage has been shown to increase psychosocial stressors that impact life course well-being. This study tests for significant differences, based on disadvantage exposure, on youths’ emotional and physical health, as well as family supports, peer assets, and academic success, which hold potential for resilience and amelioration of negative health outcomes. Methods A 12 item cumulative disadvantage summed index derived from surveys of a racially and socioeconomically diverse sample of urban high school seniors (n=9,658) was used to distinguish youth at low, moderate, and high levels. Results Findings supported hypothesized stepped patterns such that as multiple disadvantages accumulate, a concomitant decline is evident across the assessed outcome variables (except positive academic identity). Post-hoc tests indicated a pattern of groups being significantly different from one another. Discussion Overall, results lend support for an additive stress load associated with stacked disadvantage, with implications for continuing trends into adulthood as well as preventive interventions PMID:26617431
New families of low frequency earthquakes beneath the Olympic Peninsula, Washington
NASA Astrophysics Data System (ADS)
Chestler, S.; Creager, K. C.; Sweet, J. R.
2013-12-01
Using data from the Array of Arrays (AofA) and Cascadia Arrays for Earthscope (CAFÉ) experiments we search for new families of low frequency earthquakes (LFEs) beneath the Olympic Peninsula, Washington. LFE families are clusters of repeating LFEs that occur in approximately the same location. Following methodology similar to Bostock et al. [2012, G3], we cross correlate 6-second long windows within an hour of data during the 2010 and 2011 ETS events. We apply this to 99 hours of tremor data. For each hour, we stack the autocorrelation functions from a set of 7 3-component base stations chosen for their high signal-to-noise ratios (SNRs). We extract a maximum of 10 windows per hour with correlation coefficients higher than 9 times the median absolute deviation (MAD). These time windows contain our preliminary LFE detections. We then cross correlate these data and group them using a hierarchical clustering algorithm. We produce template waveforms by stacking the waveforms corresponding to a given cluster. To strengthen the templates we scan them through on day of tremor and stack all waveforms that correlate with the original template. Our efforts have yielded dozens of new families scattered beneath the AofA stations. These additional LFE families add to the 9 known families beneath the Olympic Peninsula [Sweet et al., AGU fall meeting, 2012]. The detection of more LFE families will allow us to (1) interpolate the pattern of stress transfer through the transition zone [Wech et al., Nature Geoscie., 2011], (2) gain insight into the distribution of asperities, or sticky spots, on the plate interface [Ghosh et al., JGR, 2012], and (3) track slow slip rupture propagation with unprecedented spatial and temporal accuracy.
Heerschap, A; Haasnoot, C A; Hilbers, C W
1983-01-01
Resonances of the water exchangeable iminoprotons of the T and anticodon stem of yeast tRNAPhe were assigned by means of Nuclear Overhauser Effects (NOE's). Together with our previous assignments of iminoproton resonances from the acceptor and D stem (A. Heerschap, C.A.G. Haasnoot and C.W. Hilbers (1982) Nucleic Acids Res. 10, 6981-7000) the present results constitute a complete assignment of all resonances of iminoprotons involved in the secondary structure of yeast tRNAPhe with a reliability and spectral resolution not reached heretofore. Separate identification of the methylprotons in m5C40 and m5C49 was also possible due to specific NOE patterns in the lowfield part of the spectrum. Our experiments indicate that in solution the psi 39 residue in the anticodon stem is orientated in a syn conformation in contrast to the normally observed anti orientation of the uracil base in AU basepairs. Evidence is presented that in solution the acceptor stem is stacked upon the T stem. Furthermore, it turns out that in a similar way the anticodon stem forms a continuous stack with the D stem, but here the m2(2)G26 residue is located between the latter two stems (as is found in the X-ray crystal structure). The stacking of these stems is not strictly dependent on the presence of magnesium ions. NOE experiments show that these structural features are preserved when proceeding from a buffer with magnesium ions to a buffer without magnesium ions although differences in chemical shifts and NOE intensities indicate changes in the conformation of the tRNA. PMID:6346268
Plants with stacked genetically modified events: to assess or not to assess?
Kok, Esther J; Pedersen, Jan; Onori, Roberta; Sowa, Slawomir; Schauzu, Marianna; De Schrijver, Adinda; Teeri, Teemu H
2014-02-01
The principles for the safety assessment of genetically modified (GM) organisms (GMOs) are harmonised worldwide to a large extent. There are, however, still differences between the European GMO regulations and the GMO regulations as they have been formulated in other parts of the world. One of these differences relates to the so-called 'stacked GM events', that is, GMOs, plants so far, where new traits are combined by conventional crossing of different GM plants. This paper advocates rethinking the current food/feed safety assessment of stacked GM events in Europe based on an analysis of different aspects that currently form the rationale for the safety assessment of stacked GM events. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liang, JingXin; Nguyen, Quynh L.; Matsika, Spiridoula
2016-01-01
Fluorescent analogues of the natural DNA bases are useful in the study of nucleic acids’ structure and dynamics. 2-Aminopurine (2AP) is a widely used analogue with environmentally sensitive fluorescence behavior. The quantum yield of 2AP has been found to be significantly decreased when engaged in π-stacking interactions with the native bases. We present a theoretical study on fluorescence quenching mechanisms in dimers of 2AP π-stacked with adenine or guanine as in natural DNA. Relaxation pathways on the potential energy surfaces of the first excited states have been computed and reveal the importance of exciplexes and conical intersections in the fluorescence quenching process. PMID:23625036
A study of swing-curve physics in diffraction-based overlay
NASA Astrophysics Data System (ADS)
Bhattacharyya, Kaustuve; den Boef, Arie; Storms, Greet; van Heijst, Joost; Noot, Marc; An, Kevin; Park, Noh-Kyoung; Jeon, Se-Ra; Oh, Nang-Lyeom; McNamara, Elliott; van de Mast, Frank; Oh, SeungHwa; Lee, Seung Yoon; Hwang, Chan; Lee, Kuntack
2016-03-01
With the increase of process complexity in advanced nodes, the requirements of process robustness in overlay metrology continues to tighten. Especially with the introduction of newer materials in the film-stack along with typical stack variations (thickness, optical properties, profile asymmetry etc.), the signal formation physics in diffraction-based overlay (DBO) becomes an important aspect to apply in overlay metrology target and recipe selection. In order to address the signal formation physics, an effort is made towards studying the swing-curve phenomena through wavelength and polarizations on production stacks using simulations as well as experimental technique using DBO. The results provide a wealth of information on target and recipe selection for robustness. Details from simulation and measurements will be reported in this technical publication.
NASA Astrophysics Data System (ADS)
Lee, Chang-Chun; Huang, Pei-Chen
2018-05-01
The long-term reliability of multi-stacked coatings suffering the bending or rolling load was a severe challenge to extend the lifespan of foregoing structure. In addition, the adhesive strength of dissimilar materials was regarded as the major mechanical reliability concerns among multi-stacked films. However, the significant scale-mismatch from several nano-meter to micro-meter among the multi-stacked coatings causing the numerical accuracy and converged capability issues on fracture-based simulation approach. For those reasons, this study proposed the FEA-based multi-level submodeling and multi-point constraint (MPC) technique to conquer the foregoing scale-mismatch issue. The results indicated that the decent region of first and second-order submodeling can achieve the small error of 1.27% compared with the experimental result and significantly reduced the mesh density and computing time. Moreover, the MPC method adopted in FEA simulation also shown only 0.54% error when the boundary of selected local region was away the concerned critical region following the Saint-Venant principle. In this investigation, two FEA-based approaches were used to conquer the evidently scale mismatch issue when the adhesive strengths of micro and nano-scale multi-stacked coating were taken into account.
NASA Astrophysics Data System (ADS)
Ye, Qiang; Hu, Jing; Cheng, Ping; Ma, Zhiqi
2015-11-01
Trade-off between shunt current loss and pumping loss is a major challenge in the design of the electrolyte piping network in a flow battery system. It is generally recognized that longer and thinner ducts are beneficial to reduce shunt current but detrimental to minimize pumping power. Base on the developed analog circuit model and the flow network model, we make case studies of multi-stack vanadium flow battery piping systems and demonstrate that both shunt current and electrolyte flow resistance can be simultaneously minimized by using longer and thicker ducts in the piping network. However, extremely long and/or thick ducts lead to a bulky system and may be prohibited by the stack structure. Accordingly, the intrinsic design trade-off is between system efficiency and compactness. Since multi-stack configurations bring both flexibility and complexity to the design process, we perform systematic comparisons among representative piping system designs to illustrate the complicated trade-offs among numerous parameters including stack number, intra-stack channel resistance and inter-stack pipe resistance. As the final design depends on various technical and economical requirements, this paper aims to provide guidelines rather than solutions for designers to locate the optimal trade-off points according to their specific cases.
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.
2005-01-01
Dissolution of ruthenium was observed in the 80-cell stack. Duration testing was performed in single cell MEAs to determine the pathway of cell degradation. EDAX analysis on each of the single cell MEAs has shown that the Johnson Matthey commercial catalyst is stable in DMFC operation for 250 hours, no ruthenium dissolution was observed. Changes in the hydrophobicity of the cathode backing papers was minimum. Electrode polarization analysis revealed that the MEA performance loss is attributed to changes in the cathode catalyst layer. Ruthenium migration does not seem to occur during cell operation but can occur when methanol is absent from the anode compartment, the cathode compartment has access to air, and the cells in the stack are electrically connected to a load (Shunt Currents). The open-to-air cathode stack design allowed for: a) The MEAs to have continual access to oxygen; and b) The stack to sustain shunt currents. Ruthenium dissolution in a DMFC stack can be prevented by: a) Developing an internally manifolded stacks that seal reactant compartments when not in operation; b) Bringing the cell voltages to zero quickly when not in operation; and c) Limiting the total number of cells to 25 in an effort to limit shunt currents.
Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.
2015-09-01
This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probemore » to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.« less
Veerman, Joost; Saakes, Michel; Metz, Sybrand J; Harmsen, G Jan
2010-12-01
Electricity can be produced directly with reverse electrodialysis (RED) from the reversible mixing of two solutions of different salinity, for example, sea and river water. The literature published so far on RED was based on experiments with relatively small stacks with cell dimensions less than 10 × 10 cm(2). For the implementation of the RED technique, it is necessary to know the challenges associated with a larger system. In the present study we show the performance of a scaled-up RED stack, equipped with 50 cells, each measuring 25 × 75 cm(2). A single cell consists of an AEM (anion exchange membrane) and a CEM (cation exchange membrane) and therefore, the total active membrane area in the stack is 18.75 m(2). This is the largest dimension of a reverse electrodialysis stack published so far. By comparing the performance of this stack with a small stack (10 × 10 cm(2), 50 cells) it was found that the key performance parameter to maximal power density is the hydrodynamic design of the stack. The power densities of the different stacks depend on the residence time of the fluids in the stack. For the large stack this was negatively affected by the increased hydrodynamic losses due to the longer flow path. It was also found that the large stack generated more power when the sea and river water were flowing in co-current operation. Co-current flow has other advantages, the local pressure differences between sea and river water compartments are low, hence preventing leakage around the internal manifolds and through pinholes in the membranes. Low pressure differences also enable the use of very thin membranes (with low electrical resistance) as well as very open spacers (with low hydrodynamic losses) in the future. Moreover, we showed that the use of segmented electrodes increase the power output by 11%.
The use of Graphic User Interface for development of a user-friendly CRS-Stack software
NASA Astrophysics Data System (ADS)
Sule, Rachmat; Prayudhatama, Dythia; Perkasa, Muhammad D.; Hendriyana, Andri; Fatkhan; Sardjito; Adriansyah
2017-04-01
The development of a user-friendly Common Reflection Surface (CRS) Stack software that has been built by implementing Graphical User Interface (GUI) is described in this paper. The original CRS-Stack software developed by WIT Consortium is compiled in the unix/linux environment, which is not a user-friendly software, so that a user must write the commands and parameters manually in a script file. Due to this limitation, the CRS-Stack become a non popular method, although applying this method is actually a promising way in order to obtain better seismic sections, which have better reflector continuity and S/N ratio. After obtaining successful results that have been tested by using several seismic data belong to oil companies in Indonesia, it comes to an idea to develop a user-friendly software in our own laboratory. Graphical User Interface (GUI) is a type of user interface that allows people to interact with computer programs in a better way. Rather than typing commands and module parameters, GUI allows the users to use computer programs in much simple and easy. Thus, GUI can transform the text-based interface into graphical icons and visual indicators. The use of complicated seismic unix shell script can be avoided. The Java Swing GUI library is used to develop this CRS-Stack GUI. Every shell script that represents each seismic process is invoked from Java environment. Besides developing interactive GUI to perform CRS-Stack processing, this CRS-Stack GUI is design to help geophysicists to manage a project with complex seismic processing procedures. The CRS-Stack GUI software is composed by input directory, operators, and output directory, which are defined as a seismic data processing workflow. The CRS-Stack processing workflow involves four steps; i.e. automatic CMP stack, initial CRS-Stack, optimized CRS-Stack, and CRS-Stack Supergather. Those operations are visualized in an informative flowchart with self explanatory system to guide the user inputting the parameter values for each operation. The knowledge of CRS-Stack processing procedure is still preserved in the software, which is easy and efficient to be learned. The software will still be developed in the future. Any new innovative seismic processing workflow will also be added into this GUI software.
NASA Astrophysics Data System (ADS)
Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim
2016-12-01
Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.
NASA Astrophysics Data System (ADS)
Kubis, Michael; Wise, Rich; Reijnen, Liesbeth; Viatkina, Katja; Jaenen, Patrick; Luca, Melisa; Mernier, Guillaume; Chahine, Charlotte; Hellin, David; Kam, Benjamin; Sobieski, Daniel; Vertommen, Johan; Mulkens, Jan; Dusa, Mircea; Dixit, Girish; Shamma, Nader; Leray, Philippe
2016-03-01
With shrinking design rules, the overall patterning requirements are getting aggressively tighter. For the 7-nm node and below, allowable CD uniformity variations are entering the Angstrom region (ref [1]). Optimizing inter- and intra-field CD uniformity of the final pattern requires a holistic tuning of all process steps. In previous work, CD control with either litho cluster or etch tool corrections has been discussed. Today, we present a holistic CD control approach, combining the correction capability of the etch tool with the correction capability of the exposure tool. The study is done on 10-nm logic node wafers, processed with a test vehicle stack patterning sequence. We include wafer-to-wafer and lot-to-lot variation and apply optical scatterometry to characterize the fingerprints. Making use of all available correction capabilities (lithography and etch), we investigated single application of exposure tool corrections and of etch tool corrections as well as combinations of both to reach the lowest CD uniformity. Results of the final pattern uniformity based on single and combined corrections are shown. We conclude on the application of this holistic lithography and etch optimization to 7nm High-Volume manufacturing, paving the way to ultimate within-wafer CD uniformity control.
Tunable electronic lens using a gradient polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Ren, Hongwen; Wu, Shin-Tson
2003-01-01
Tunable electronic lenses using gradient polymer network liquid crystal (PNLC) cells were demonstrated. By changing the photomask pattern, both positive and negative lenses were fabricated. The advantages of such a PNLC lens are low operation voltage, large aperture size, and simple electrode design. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC cells is considered.
Circulation and Library Design: The Influence of 'Movement' on the Layout of Libraries.
ERIC Educational Resources Information Center
Marples, D. L.; Knell, K. A.
The movement of people in a library is inevitably noisy and also creates a visual distraction for the reader. If the provision of quiet areas where readers can work undisturbed is an important criterion of library design, the traffic patterns generated in a library by the disposition of the various facilities - stacks, periodicals, reference…
Bandwidth enhancement of dielectric resonator antennas
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1993-01-01
An experimental investigation of bandwidth enhancement of dielectric resonator antennas (DRA) using parasitic elements is reported. Substantial bandwidth enhancement for the HE(sub 11delta) mode of the stacked geometry and for the HE(sub 13delta) mode of the coplanar collinear geometry was demonstrated. Excellent radiation patterns for the HE(sub 11delta) mode were also recorded.
NASA Astrophysics Data System (ADS)
Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.
Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.
NASA Astrophysics Data System (ADS)
Ferrari, S.; Penasa, L.; La Forgia, F.; Massironi, M.; Naletto, G.; Lazzarin, M.; Fornasier, S.; Barucci, M. A.; Lucchetti, A.; Pajola, M.; Frattin, E.; Bertini, I.; Ferri, F.; Cremonese, G.
2017-09-01
The Rosetta/OSIRIS cameras unveiled the layered nature of comet 67P/Churyumov-Gerasimenko, suggesting that the comet bilobate shape results from the low-velocity merging of two independent onion-like objects. Several physiographical regions of the southern-hemisphere big lobe show stacks of layers forming high scarps, terraces and mesas. A spectrophotometric analysis of OSIRIS images based on multispectral data classifications was conducted in order to identify possible morphological, textural and/or compositional characters that allow to distinguish regional stacks of layers.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Olson, B.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.
1986-01-01
The testing of two 25-cell stacks of the 13 inch x 23 inch cell size (about 4kW) was carried out for 7000 and 8400 hours, respectively. A 25kW stack containing 175 cells of the same size and based on the same technology was constructed and is on test. A third 4kW stack, which will contain 24 cells, will comprise several new technology features; these will be assesed for performance and durability in long-term testing.
Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong
2015-06-01
A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues. © 2014 Wiley Periodicals, Inc.
Jiang, Hao; Kaminska, Bozena
2018-04-24
To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohacs, K.M.
1990-05-01
Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, facies stacking patterns, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level change and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed by typingmore » the outcrop sections to an integrated well-log/seismic grid through outcrop gamma-ray-spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies, evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary, Downlap surfaces exhibited increased proportions of pelagic facies around the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or no significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to the rock properties to genetic processes for construction of predictive models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Shuangluo; Vashishtha, Ashwani; Bulkley, David
During DNA synthesis, base stacking and Watson-Crick (WC) hydrogen bonding increase the stability of nascent base pairs when they are in a ternary complex. To evaluate the contribution of base stacking to the incorporation efficiency of dNTPs when a DNA polymerase encounters an abasic site, we varied the penultimate base pairs (PBs) adjacent to the abasic site using all 16 possible combinations. We then determined pre-steady-state kinetic parameters with an RB69 DNA polymerase variant and solved nine structures of the corresponding ternary complexes. The efficiency of incorporation for incoming dNTPs opposite an abasic site varied between 2- and 210-fold dependingmore » on the identity of the PB. We propose that the A rule can be extended to encompass the fact that DNA polymerase can bypass dA/abasic sites more efficiently than other dN/abasic sites. Crystal structures of the ternary complexes show that the surface of the incoming base was stacked against the PB's interface and that the kinetic parameters for dNMP incorporation were consistent with specific features of base stacking, such as surface area and partial charge-charge interactions between the incoming base and the PB. Without a templating nucleotide residue, an incoming dNTP has no base with which it can hydrogen bond and cannot be desolvated, so that these surrounding water molecules become ordered and remain on the PB's surface in the ternary complex. When these water molecules are on top of a hydrophobic patch on the PB, they destabilize the ternary complex, and the incorporation efficiency of incoming dNTPs is reduced.« less
High density submicron magnetoresistive random access memory (invited)
NASA Astrophysics Data System (ADS)
Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.
1999-04-01
Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.
Anatomy of biocalcarenitic units in the Plio-Pleistocene record of the Northern Apennines (Italy)
NASA Astrophysics Data System (ADS)
Cau, Simone; Roveri, Marco; Taviani, Marco
2017-04-01
The Castell'Arquato Basin (CAB) in the foothills of the thrust-belt Northern Apennines is a foreland basin infilled by Plio-Quaternary sediments and a reference area for Plio-Pleistocene biostratigraphy. The CAB exposes plurimetric biodetrital carbonate units at discrete temporal intervals. Such shell-rich units are at places lithified, turning into conspicuous biodetritral carbonate rocks (biocalcarenites) that display a cyclical stacking motif highlighted by the regular alternation with finer-grained marine deposits. The cyclical nature of thick biocalcarenites has been hypothesized to be orbitally-controlled by obliquity and/or precession cyclicity. Furthermore, biocalcarenite-mudstone couplets form distinct clusters governed by 100-400 ka eccentricity maxima starting from 3.1 Ma at the inception of the Northern Hemisphere glaciation. They correlate with sapropels cycles formed at times of maximum insolation (precession minima). The CAB calcarenites are poorly known with respect to their environmental genetic context what motivated a detailed paleoecological analysis to unravel at best their formative context. Five distinct biofacies arranged in stacking patterns are identified through two-way cluster analysis based on the macrofossil content. Our quantitative and qualitative results suggest that these polytaxic shell concentrations and their bracketing marine mudstones developed in middle shelf settings being sensitive to climatically-driven changes.
Solute effect on basal and prismatic slip systems of Mg.
Moitra, Amitava; Kim, Seong-Gon; Horstemeyer, M F
2014-11-05
In an effort to design novel magnesium (Mg) alloys with high ductility, we present a first principles data based on the Density Functional Theory (DFT). The DFT was employed to calculate the generalized stacking fault energy curves, which can be used in the generalized Peierls-Nabarro (PN) model to study the energetics of basal slip and prismatic slip in Mg with and without solutes to calculate continuum scale dislocation core widths, stacking fault widths and Peierls stresses. The generalized stacking fault energy curves for pure Mg agreed well with other DFT calculations. Solute effects on these curves were calculated for nine alloying elements, namely Al, Ca, Ce, Gd, Li, Si, Sn, Zn and Zr, which allowed the strength and ductility to be qualitatively estimated based on the basal dislocation properties. Based on our multiscale methodology, a suggestion has been made to improve Mg formability.
RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X, Zhang; J. E. O'Brien; R. C. O'Brien
2012-07-01
High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupportedmore » and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.« less
Hill, Megan O.; Calvo-Almazan, Irene; Allain, Marc; ...
2018-01-08
III - As nanowires are candidates for near-infrared light emitters and detectors that can be directly integrated onto silicon. However, nanoscale to microscale variations in structure, composition, and strain within a given nanowire, as well as variations between nanowires, pose challenges to correlating microstructure with device performance. In this work, we utilize coherent nanofocused X-rays to characterize stacking defects and strain in a single InGaAs nanowire supported on Si. By reconstructing diffraction patterns from the 2110 Bragg peak, we show that the lattice orientation varies along the length of the wire, while the strain field along the cross-section is largelymore » unaffected, leaving the band structure unperturbed. Diffraction patterns from the 0110 Bragg peak are reproducibly reconstructed to create three-dimensional images of stacking defects and associated lattice strains, revealing sharp planar boundaries between different crystal phases of wurtzite (WZ) structure that contribute to charge carrier scattering. Phase retrieval is made possible by developing multiangle Bragg projection ptychography (maBPP) to accommodate coherent nanodiffraction patterns measured at arbitrary overlapping positions at multiple angles about a Bragg peak, eliminating the need for scan registration at different angles. The penetrating nature of X-ray radiation, together with the relaxed constraints of maBPP, will enable the in operando imaging of nanowire devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Megan O.; Calvo-Almazan, Irene; Allain, Marc
III - As nanowires are candidates for near-infrared light emitters and detectors that can be directly integrated onto silicon. However, nanoscale to microscale variations in structure, composition, and strain within a given nanowire, as well as variations between nanowires, pose challenges to correlating microstructure with device performance. In this work, we utilize coherent nanofocused X-rays to characterize stacking defects and strain in a single InGaAs nanowire supported on Si. By reconstructing diffraction patterns from the 2110 Bragg peak, we show that the lattice orientation varies along the length of the wire, while the strain field along the cross-section is largelymore » unaffected, leaving the band structure unperturbed. Diffraction patterns from the 0110 Bragg peak are reproducibly reconstructed to create three-dimensional images of stacking defects and associated lattice strains, revealing sharp planar boundaries between different crystal phases of wurtzite (WZ) structure that contribute to charge carrier scattering. Phase retrieval is made possible by developing multiangle Bragg projection ptychography (maBPP) to accommodate coherent nanodiffraction patterns measured at arbitrary overlapping positions at multiple angles about a Bragg peak, eliminating the need for scan registration at different angles. The penetrating nature of X-ray radiation, together with the relaxed constraints of maBPP, will enable the in operando imaging of nanowire devices.« less
Metal hierarchical patterning by direct nanoimprint lithography
Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S. M.; Kulkarni, Giridhar U.
2013-01-01
Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles. PMID:23446801
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru; Sitin, A. G.; Gulakova, E. N.
The crystal and molecular structures of five styrylheterocycles of the quinoline series are studied. All molecules are planar. The double bond in the ethylene fragment is essentially localized. In the molecule of 2-(4-methylstyryl)quinoline, the ethylene fragment is disordered by the bicycle-pedal pattern. In four of the five compounds, the crystal packings do not contain stacking dimers prearranged for the [2+2] photocycloaddition (PCA) reaction. In the crystal of 2-(3-nitrostyryl)quinoline, pairs of crystallographically independent molecules form stacking dimers. In a dimer, the ethylene fragments have a twist orientation, which is incompatible with the PCA reaction. An attempt to initiate a temperature-dependent processmore » of bicyclepedal isomerization in the crystal and, as a consequence, the PCA reaction by means of simultaneous irradiation and heating of a single crystal is unsuccessful.« less
The Beam Characteristics of High Power Diode Laser Stack
NASA Astrophysics Data System (ADS)
Gu, Yuanyuan; Fu, Yueming; Lu, Hui; Cui, Yan
2018-03-01
Direct diode lasers have some of the most attractive features of any laser. They are very efficient, compact, wavelength versatile, low cost, and highly reliable. However, the full utilization of direct diode lasers has yet to be realized. However, the poor quality of diode laser beam itself, directly affect its application ranges, in order to better use of diode laser stack, need a proper correction of optical system, which requires accurate understanding of the diode laser beam characteristics. Diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. Therefore diode laser cladding will open a new field of repairing for the damaged machinery parts which must contribute to recycling of the used machines and saving of cost.
Mining dynamic noteworthy functions in software execution sequences.
Zhang, Bing; Huang, Guoyan; Wang, Yuqian; He, Haitao; Ren, Jiadong
2017-01-01
As the quality of crucial entities can directly affect that of software, their identification and protection become an important premise for effective software development, management, maintenance and testing, which thus contribute to improving the software quality and its attack-defending ability. Most analysis and evaluation on important entities like codes-based static structure analysis are on the destruction of the actual software running. In this paper, from the perspective of software execution process, we proposed an approach to mine dynamic noteworthy functions (DNFM)in software execution sequences. First, according to software decompiling and tracking stack changes, the execution traces composed of a series of function addresses were acquired. Then these traces were modeled as execution sequences and then simplified so as to get simplified sequences (SFS), followed by the extraction of patterns through pattern extraction (PE) algorithm from SFS. After that, evaluating indicators inner-importance and inter-importance were designed to measure the noteworthiness of functions in DNFM algorithm. Finally, these functions were sorted by their noteworthiness. Comparison and contrast were conducted on the experiment results from two traditional complex network-based node mining methods, namely PageRank and DegreeRank. The results show that the DNFM method can mine noteworthy functions in software effectively and precisely.
On the Use of Windcatchers in Schools: Climate Change, Occupancy Patterns, and Adaptation Strategies
Mumovic, D.
2009-01-01
Advanced naturally ventilated systems based on integration of basic natural ventilation strategies such as cross-ventilation and stack effect have been considered to be a key element of sustainable design. In this respect, there is a pressing need to explore the potential of such systems to achieve the recommended occupant comfort targets throughout their lifetime without relying on mechanical means. This study focuses on use of a windcatcher system in typical classrooms which are usually characterized by high and intermittent internal heat gains. The aims of this paper are 3-fold. First, to describe a series of field measurements that investigated the ventilation rates, indoor air quality, and thermal comfort in a newly constructed school located at an urban site in London. Secondly, to investigate the effect of changing climate and occupancy patterns on thermal comfort in selected classrooms, while taking into account adaptive potential of this specific ventilation strategy. Thirdly, to assess performance of the ventilation system using the newly introduced performance-based ventilation standards for school buildings. The results suggest that satisfactory occupant comfort levels could be achieved until the 2050s by a combination of advanced ventilation control settings and informed occupant behavior. PMID:27110216
Modeling of direct wafer bonding: Effect of wafer bow and etch patterns
NASA Astrophysics Data System (ADS)
Turner, K. T.; Spearing, S. M.
2002-12-01
Direct wafer bonding is an important technology for the manufacture of silicon-on-insulator substrates and microelectromechanical systems. As devices become more complex and require the bonding of multiple patterned wafers, there is a need to understand the mechanics of the bonding process. A general bonding criterion based on the competition between the strain energy accumulated in the wafers and the surface energy that is dissipated as the bond front advances is developed. The bonding criterion is used to examine the case of bonding bowed wafers. An analytical expression for the strain energy accumulation rate, which is the quantity that controls bonding, and the final curvature of a bonded stack is developed. It is demonstrated that the thickness of the wafers plays a large role and bonding success is independent of wafer diameter. The analytical results are verified through a finite element model and a general method for implementing the bonding criterion numerically is presented. The bonding criterion developed permits the effect of etched features to be assessed. Shallow etched patterns are shown to make bonding more difficult, while it is demonstrated that deep etched features can facilitate bonding. Model results and their process design implications are discussed in detail.
Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate
NASA Astrophysics Data System (ADS)
Ren, Yiru; Jiang, Hongyong; Ji, Wenyuan; Zhang, Hanyu; Xiang, Jinwu; Yuan, Fuh-Gwo
2018-02-01
To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.
NASA Astrophysics Data System (ADS)
Bialas, David; Zitzler-Kunkel, André; Kirchner, Eva; Schmidt, David; Würthner, Frank
2016-09-01
Exciton coupling is of fundamental importance and determines functional properties of organic dyes in (opto-)electronic and photovoltaic devices. Here we show that strong exciton coupling is not limited to the situation of equal chromophores as often assumed. Quadruple dye stacks were obtained from two bis(merocyanine) dyes with same or different chromophores, respectively, which dimerize in less-polar solvents resulting in the respective homo- and heteroaggregates. The structures of the quadruple dye stacks were assigned by NMR techniques and unambiguously confirmed by single-crystal X-ray analysis. The heteroaggregate stack formed from the bis(merocyanine) bearing two different chromophores exhibits remarkably different ultraviolet/vis absorption bands compared with those of the homoaggregate of the bis(merocyanine) comprising two identical chromophores. Quantum chemical analysis based on an extension of Kasha's exciton theory appropriately describes the absorption properties of both types of stacks revealing strong exciton coupling also between different chromophores within the heteroaggregate.
Multi-stability and variable stiffness of cellular solids designed based on origami patterns
NASA Astrophysics Data System (ADS)
Sengupta, Sattam; Li, Suyi
2017-04-01
The application of origami-inspired designs to engineered structures and materials has been a subject of much research efforts. These structures and materials, whose mechanical properties are directly related to the geometry of folding, are capable of achieving a host of unique adaptive functions. In this study, we investigate a three-dimensional multistability and variable stiffness function of a cellular solid based on the Miura-Ori folding pattern. The unit cell of such a solid, consisting of two stacked Miura-Ori sheets, can be elastically bistable due to the nonlinear relationship between rigid-folding deformation and crease material bending. Such a bistability possesses an unorthodox property: the critical, unstable configuration lies on the same side of two stable ones, so that two different force-deformation curves co-exist within the same range of deformation. By exploiting such unique stability properties, we can achieve a programmable stiffness change between the two elastically stable states, and the stiffness differences can be prescribed by tailoring the crease patterns of the cell. This paper presents a comprehensive parametric study revealing the correlations between such variable stiffness and various design parameters. The unique properties stemming from the bistability and design of such a unit cell can be advanced further by assembling them into a solid which can be capable of shape morphing and programmable mechanical properties.
Fuel cell stack monitoring and system control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2005-01-25
A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.
Chou, Chi-Ta; Lin, Chien-Hung; Tai, Yian; Liu, Chin-Hsin J; Chen, Li-Chyong; Chen, Kuei-Hsien
2012-05-03
In this Letter, we investigated the effect of the molecular stacking orientation on the open circuit voltage (VOC) of pentacene-based organic solar cells. Two functionalized pentacenes, namely, 6,13-diphenyl-pentacene (DP-penta) and 6,13-dibiphenyl-4-yl-pentacene (DB-penta), were utilized. Different molecular stacking orientations of the pentacene derivatives from the pristine pentacene were identified by angle-dependent near-edge X-ray absorption fine structure measurements. It is concluded that pentacene molecules stand up on the substrate surface, while both functionalized pentacenes lie down. A significant increase of the VOC from 0.28 to 0.83 V can be achieved upon the utilization of functionalized pentacene, owing to the modulation of molecular stacking orientation, which induced a vacuum-level shift.
Ok, Seung-Ho; Lee, Yong-Hwan; Shim, Jae Hoon; Lim, Sung Kyu; Moon, Byungin
2017-02-22
Recently, stereo matching processors have been adopted in real-time embedded systems such as intelligent robots and autonomous vehicles, which require minimal hardware resources and low power consumption. Meanwhile, thanks to the through-silicon via (TSV), three-dimensional (3D) stacking technology has emerged as a practical solution to achieving the desired requirements of a high-performance circuit. In this paper, we present the benefits of 3D stacking and process technology scaling on stereo matching processors. We implemented 2-tier 3D-stacked stereo matching processors with GlobalFoundries 130-nm and Nangate 45-nm process design kits and compare them with their two-dimensional (2D) counterparts to identify comprehensive design benefits. In addition, we examine the findings from various analyses to identify the power benefits of 3D-stacked integrated circuit (IC) and device technology advancements. From experiments, we observe that the proposed 3D-stacked ICs, compared to their 2D IC counterparts, obtain 43% area, 13% power, and 14% wire length reductions. In addition, we present a logic partitioning method suitable for a pipeline-based hardware architecture that minimizes the use of TSVs.
The Impact of 3D Stacking and Technology Scaling on the Power and Area of Stereo Matching Processors
Ok, Seung-Ho; Lee, Yong-Hwan; Shim, Jae Hoon; Lim, Sung Kyu; Moon, Byungin
2017-01-01
Recently, stereo matching processors have been adopted in real-time embedded systems such as intelligent robots and autonomous vehicles, which require minimal hardware resources and low power consumption. Meanwhile, thanks to the through-silicon via (TSV), three-dimensional (3D) stacking technology has emerged as a practical solution to achieving the desired requirements of a high-performance circuit. In this paper, we present the benefits of 3D stacking and process technology scaling on stereo matching processors. We implemented 2-tier 3D-stacked stereo matching processors with GlobalFoundries 130-nm and Nangate 45-nm process design kits and compare them with their two-dimensional (2D) counterparts to identify comprehensive design benefits. In addition, we examine the findings from various analyses to identify the power benefits of 3D-stacked integrated circuit (IC) and device technology advancements. From experiments, we observe that the proposed 3D-stacked ICs, compared to their 2D IC counterparts, obtain 43% area, 13% power, and 14% wire length reductions. In addition, we present a logic partitioning method suitable for a pipeline-based hardware architecture that minimizes the use of TSVs. PMID:28241437
Design and fabrication of silver-hydrogen cells
NASA Technical Reports Server (NTRS)
Klein, M. G.
1975-01-01
The design and fabrication of silver-hydrogen secondary cells capable of delivering higher energy densities than comparable nickel-cadmium and nickel-hydrogen cells and relatively high cycle life is presented. An experimental task utilizing single electrode pairs for the optimization of the individual electrode components, the preparation of a design for lightweight 20Ahr cells, and the fabrication of four 20Ahr cells in heavy wall test housing containing electrode stacks of the lightweight design are described. The design approach is based on the use of a single cylindrical self-contained cell with a stacked disc sequence of electrodes. The electrode stack design is based on the use of NASA- Astropower Separator Material, PPF fuel cell anodes, an intercell electrolyte reservoir concept and sintered silver electrodes. Results of performance tests are given.
Enhancements to AERMOD's building downwash algorithms based on wind-tunnel and Embedded-LES modeling
Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this stu...
54. VIEW OF ROASTER ADDITION FROM SOUTHEAST. SHOWS ELEVATOR/ORE BIN ...
54. VIEW OF ROASTER ADDITION FROM SOUTHEAST. SHOWS ELEVATOR/ORE BIN ADDITION ON LEFT WITH BASE OF EXHAUST STACK, PORTION OF TOPPLED STACK ON LOWER RIGHT IN VIEW, AND UPPER TAILINGS POND BEYOND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Gopakumar, Gopalakrishna Pillai; Swetha, Murali; Sai Siva, Gorthi; Sai Subrahmanyam, Gorthi R K
2018-03-01
The present paper introduces a focus stacking-based approach for automated quantitative detection of Plasmodium falciparum malaria from blood smear. For the detection, a custom designed convolutional neural network (CNN) operating on focus stack of images is used. The cell counting problem is addressed as the segmentation problem and we propose a 2-level segmentation strategy. Use of CNN operating on focus stack for the detection of malaria is first of its kind, and it not only improved the detection accuracy (both in terms of sensitivity [97.06%] and specificity [98.50%]) but also favored the processing on cell patches and avoided the need for hand-engineered features. The slide images are acquired with a custom-built portable slide scanner made from low-cost, off-the-shelf components and is suitable for point-of-care diagnostics. The proposed approach of employing sophisticated algorithmic processing together with inexpensive instrumentation can potentially benefit clinicians to enable malaria diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hongo, Kenta; Cuong, Nguyen Thanh; Maezono, Ryo
2013-02-12
We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction energy between two adenine(A)-thymine(T) base pairs in B-DNA (AA:TT), for which reference data are available, obtained from a complete basis set estimate of CCSD(T) (coupled-cluster with singles, doubles, and perturbative triples). We consider four sets of nodal surfaces obtained from self-consistent field calculations and examine how the different nodal surfaces affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking energies. We find that the DMC potential energy curves using the different nodes look similar to each other as a whole. We also benchmark the performance of various quantum chemistry methods, including Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT). The DMC and recently developed DFT results of the stacking energy reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give unsatisfactory results.
Improved Durability of SOEC Stacks for High Temperature Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Robert C. O'Brien; Xiaoyu Zhang
2013-01-01
High temperature steam electrolysis is a promising technology for efficient and sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology can be realized. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-termmore » durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc. and Materials and Systems Research Inc. (MSRI), respectively, for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, espectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. Optimization of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks.« less
The Chandra Source Catalog 2.0: Interfaces
NASA Astrophysics Data System (ADS)
D'Abrusco, Raffaele; Zografou, Panagoula; Tibbetts, Michael; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Van Stone, David W.
2018-01-01
Easy-to-use, powerful public interfaces to access the wealth of information contained in any modern, complex astronomical catalog are fundamental to encourage its usage. In this poster,I present the public interfaces of the second Chandra Source Catalog (CSC2). CSC2 is the most comprehensive catalog of X-ray sources detected by Chandra, thanks to the inclusion of Chandra observations public through the end of 2014 and to methodological advancements. CSC2 provides measured properties for a large number of sources that sample the X-ray sky at fainter levels than the previous versions of the CSC, thanks to the stacking of single overlapping observations within 1’ before source detection. Sources from stacks are then crossmatched, if multiple stacks cover the same area of the sky, to create a list of unique, optimal CSC2 sources. The properties of sources detected in each single stack and each single observation are also measured. The layered structure of the CSC2 catalog is mirrored in the organization of the CSC2 database, consisting of three tables containing all properties for the unique stacked sources (“Master Source”), single stack sources (“Stack Source”) and sources in any single observation (“Observation Source”). These tables contain estimates of the position, flags, extent, significances, fluxes, spectral properties and variability (and associated errors) for all classes of sources. The CSC2 also includes source region and full-field data products for all master sources, stack sources and observation sources: images, photon event lists, light curves and spectra.CSCview, the main interface to the CSC2 source properties and data products, is a GUI tool that allows to build queries based on the values of all properties contained in CSC2 tables, query the catalog, inspect the returned table of source properties, browse and download the associated data products. I will also introduce the suite of command-line interfaces to CSC2 that can be used in alternative to CSCview, and will present the concept for an additional planned cone-search web-based interface.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
NASA Astrophysics Data System (ADS)
Hartmann, D.; Sarfert, W.; Meier, S.; Bolink, H.; García Santamaría, S.; Wecker, J.
2010-05-01
Typically high efficient OLED device structures are based on a multitude of stacked thin organic layers prepared by thermal evaporation. For lighting applications these efficient device stacks have to be up-scaled to large areas which is clearly challenging in terms of high through-put processing at low-cost. One promising approach to meet cost-efficiency, high through-put and high light output is the combination of solution and evaporation processing. Moreover, the objective is to substitute as many thermally evaporated layers as possible by solution processing without sacrificing the device performance. Hence, starting from the anode side, evaporated layers of an efficient white light emitting OLED stack are stepwise replaced by solution processable polymer and small molecule layers. In doing so different solutionprocessable hole injection layers (= polymer HILs) are integrated into small molecule devices and evaluated with regard to their electro-optical performance as well as to their planarizing properties, meaning the ability to cover ITO spikes, defects and dust particles. Thereby two approaches are followed whereas in case of the "single HIL" approach only one polymer HIL is coated and in case of the "combined HIL" concept the coated polymer HIL is combined with a thin evaporated HIL. These HIL architectures are studied in unipolar as well as bipolar devices. As a result the combined HIL approach facilitates a better control over the hole current, an improved device stability as well as an improved current and power efficiency compared to a single HIL as well as pure small molecule based OLED stacks. Furthermore, emitting layers based on guest/host small molecules are fabricated from solution and integrated into a white hybrid stack (WHS). Up to three evaporated layers were successfully replaced by solution-processing showing comparable white light emission spectra like an evaporated small molecule reference stack and lifetime values of several 100 h.
Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.
We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less
Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation
Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.; ...
2014-03-27
We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less
Hu, Jicheng; Zheng, Minghui; Liu, Wenbin; Nie, Zhiqiang; Li, Changliang; Liu, Guorui; Xiao, Ke
2014-10-01
Unintentionally produced persistent organic pollutants (UP-POPs) were determined in ambient air from around five secondary non-ferrous metal processing plants in China, to investigate the potential impacts of the emissions of these plants on their surrounding environments. The target compounds were polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (dl-PCBs), and polychlorinated naphthalenes (PCNs). The PCDD/F, dl-PCB, and PCN concentrations in the ambient air downwind of the plants were 4.70-178, 8.23-7520 and 152-4190 pg/m(3), respectively, and the concentrations upwind of the plants were lower. Clear correlations were found between ambient air and stack gas concentrations of the PCDD/Fs, dl-PCBs, and PCNs among the five plants, respectively. Furthermore, the UP-POPs homolog and congener patterns in the ambient air were similar to the patterns in the stack gas samples. These results indicate that UP-POPs emissions from the plants investigated have obvious impacts on the environments surrounding the plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schimelman, Jacob B; Dryden, Daniel M; Poudel, Lokendra; Krawiec, Katherine E; Ma, Yingfang; Podgornik, Rudolf; Parsegian, V Adrian; Denoyer, Linda K; Ching, Wai-Yim; Steinmetz, Nicole F; French, Roger H
2015-02-14
The role of base pair composition and stacking sequence in the optical properties and electronic transitions of DNA is of fundamental interest. We present and compare the optical properties of DNA oligonucleotides (AT)10, (AT)5(GC)5, and (AT-GC)5 using both ab initio methods and UV-vis molar absorbance measurements. Our data indicate a strong dependence of both the position and intensity of UV absorbance features on oligonucleotide composition and stacking sequence. The partial densities of states for each oligonucleotide indicate that the valence band edge arises from a feature associated with the PO4(3-) complex anion, and the conduction band edge arises from anti-bonding states in DNA base pairs. The results show a strong correspondence between the ab initio and experimentally determined optical properties. These results highlight the benefit of full spectral analysis of DNA, as opposed to reductive methods that consider only the 260 nm absorbance (A260) or simple purity ratios, such as A260/A230 or A260/A280, and suggest that the slope of the absorption edge onset may provide a useful metric for the degree of base pair stacking in DNA. These insights may prove useful for applications in biology, bioelectronics, and mesoscale self-assembly.
[Analysis on Mechanism of Rainout Carried by Wet Stack of Thermal Power Plant].
Ouyang, Li-hua; Zhuang, Ye; Liu, Ke-wei; Chen, Zhen-yu; Gu, Peng
2015-06-01
Rainout from wet-stack took placed in many thermal power plants with WFGD system. Research on causes of the rainout is important to solve the problem. The objective of this research is to analyze the mechanism of rainout. Field study was performed to collect experimental data in one thermal power plant, including the amount of desulfurization slurry carried by wet flue gas, liquor condensate from wet duct, and droplets from the wet stack. Source apportionment analysis was carried out based on physical and chemical data of liquid sample and solid sample. The result showed that mist eliminator operated well, which met the performance guarantee value. But the total amount of desulfurization slurry in flue gas and the sulfate concentration in liquid condensate discharge from the wet duct/stack increased. The liquid condensate accumulated in the wet duct/stack led to liquid re-entrainment. In conclusion, the rainout in this power plant was caused by the short of wet ductwork or liquid discharge system, the droplets caused by re-entrainment carried by the saturated gas released from the stack. The main undissolved components of the rainout were composite carbonate and aluminosilicate. Although ash concentration in this WFGD met the regulation criteria, source apportionment analysis showed that fly ash contributed to rainout was accounted for 60%. This percentage value was same as the data of solid particles in the condensate. It is important to optimize the wet ductwork, wet stack liner, liquid collectors and drainage. Avoiding the accumulation from saturated vapor thermal condensation is an effective way to solve the wet stack rainout.
MutSα's Multi-Domain Allosteric Response to Three DNA Damage Types Revealed by Machine Learning
NASA Astrophysics Data System (ADS)
Melvin, Ryan L.; Thompson, William G.; Godwin, Ryan C.; Gmeiner, William H.; Salsbury, Freddie R.
2017-03-01
MutSalpha is a key component in the mismatch repair (MMR) pathway. This protein is responsible for initiating the signaling pathways for DNA repair or cell death. Herein we investigate this heterodimer’s post-recognition, post-binding response to three types of DNA damage involving cytotoxic, anti-cancer agents - carboplatin, cisplatin, and FdU. Through a combination of supervised and unsupervised machine learning techniques along with more traditional structural and kinetic analysis applied to all-atom molecular dynamics (MD) calculations, we predict that MutSalpha has a distinct response to each of the three damage types. Via a binary classification tree (a supervised machine learning technique), we identify key hydrogen bond motifs unique to each type of damage and suggest residues for experimental mutation studies. Through a combination of a recently developed clustering (unsupervised learning) algorithm, RMSF calculations, PCA, and correlated motions we predict that each type of damage causes MutS↵to explore a specific region of conformation space. Detailed analysis suggests a short range effect for carboplatin - primarily altering the structures and kinetics of residues within 10 angstroms of the damaged DNA - and distinct longer-range effects for cisplatin and FdU. In our simulations, we also observe that a key phenylalanine residue - known to stack with a mismatched or unmatched bases in MMR - stacks with the base complementary to the damaged base in 88.61% of MD frames containing carboplatinated DNA. Similarly, this Phe71 stacks with the base complementary to damage in 91.73% of frames with cisplatinated DNA. This residue, however, stacks with the damaged base itself in 62.18% of trajectory frames with FdU-substituted DNA and has no stacking interaction at all in 30.72% of these frames. Each drug investigated here induces a unique perturbation in the MutS↵complex, indicating the possibility of a distinct signaling event and specific repair or death pathway (or set of pathways) for a given type of damage.
Arsenic sulfide layers for dielectric reflection mirrors prepared from solution
NASA Astrophysics Data System (ADS)
Matějec, Vlastimil; Pedlikova, Jitka; BartoÅ, Ivo; Podrazký, Ondřej
2017-12-01
Chalcogenide materials due to high refractive indices, transparency in the mid-IR spectral region, nonlinear refractive indices, etc, have been employed as fibers and films in different photonic devices such as light amplifiers, optical regenerators, broadband radiation sources. Chalcogenide films can be prepared by physical methods as well as by solution-based techniques in which solutions of chalcogenides in amines are used. This paper presents results on the solution-based fabrication and optical characterization of single arsenic sulfide layers and multilayer stacks containing As2S3 layers together with porous silica layers coated on planar and fiber-optic substrates. Input As2S3 solutions for the layer fabrications were prepared by dissolving As2S3 powder in n-propylamine in a concentration of 0.50 mol/l. These solutions were applied on glass slides by dip-coating method and obtained layers were thermally treated in vacuum at temperatures up to 180 °C. Similar procedure was used for As2S3 layers in multilayer stacks. Such stacks were fabricated by repeating the application of one porous silica layer prepared by the sol-gel method and one As2S3 layer onto glass slides or silica fibers (a diameter of 0.3 mm) by using the dip-coating method. It has been found that the curing process of the applied layers has to be carefully controlled in order to obtain stacks with three pairs of such layers. Single arsenic and porous silica layers were characterized by optical microscopy, and by measuring their transmission spectra in a range of 200-2500 nm. Thicknesses and refractive indices were estimated from the spectra. Transmission spectra of planar multilayer stacks were measured, too. Interference bands have been determined from optical measurements on the multilayer stacks with a minimum transmittance of about 50% which indicates the possibility of using such stacks as reflecting mirrors.
NASA Astrophysics Data System (ADS)
Peterson, C.; Lisiecki, L. E.
2016-12-01
Across the deglaciation, atmospheric CO2 and global temperatures rise while the deep ocean ventilates carbon to the atmosphere and terrestrial biosphere. As the terrestrial biosphere expands, the mean global ocean δ13C signature increases in response. How well constrained is the global mean benthic δ13C from 20-6 ka? Are the atmosphere and terrestrial biosphere signals in benthic δ13C coupled across the deglaciation? Improved understanding of deglacial carbon cycle interactions can help close the gap between data-based and model-based estimates of global mean benthic δ13C and deep ocean carbon storage changes. Here we present a 118-record compilation of Cibicides wuellerstorfi δ13C time series that span 20-6 kyr. The δ13C records with a resolution better than 3 kyr and gaps between data smaller than 4 kyr are aligned to age models that are constrained by planktic 14C ages (Stern and Lisiecki, 2014). The δ13C records are stacked within nine regions. Then these regional stacks are combined using volume-weighted averages to create intermediate, deep and whole ocean δ13C stacks. The δ13C gradient between the intermediate and deep stacks covaries with atmospheric CO2 change. Meanwhile the deglacial global ocean mean δ13C rise tracks the expansion of the global terrestrial biosphere from 19-6 ka. From this volume-weighted global δ13C stack, the LGM-Holocene mean δ13C change is 0.35±0.10‰ similar to previous estimates (Curry et al., 1988; Duplessy et al., 1988; Peterson et al., 2015; Gebbie et al., 2015). The δ13C stacks and this 4D δ13C compilation are ideal for model-data comparisons and time-stepping 3D visualizations.
Alternative actions on the K stack problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, H.G.
1958-09-29
On June 6, 1958, KW Operations had HCR Channel No. 16 borescoped to determine why this rod could not be inserted on May 3. Observations revealed 3X balls in the channel and horizontal separation between graphite blocks ranging from 1/2 inch to 2 1/4 inch. The separations were noted only in the first fifteen feet in from the outer skin and in the last five feet of the channel. As a result of these findings and past operational difficulties with certain HCR`s at both KE and KW Reactors, a program of measurements is in progress to determine the extent andmore » causes of the stack displacements. From measurements and observations so far obtained, the following conclusions may be drawn about separations at locations of consequence to the loss of 3X balls from channels: Side to side horizontal separations totaling two to three inches have been observed at both reactors. The significant separations lie outside of the VSR pattern and in the lower half of the stack. The VSR pattern does not include the six outer ball 3X channels. There are probably a few small separations (< 1/2 inch) at the outer VSR`s. There are probably no separations large enough to admit balls on inner VSR channels, i.e. VSR`s inside the outer front to rear rows of VSR`s. These conclusions can not be considered fully reliable, but no information obtained to date refutes them. A team was established on 9-17-58 to evaluate and provide information on alternate courses of action for elimination or alleviation of the problem. This report contains the information and recommendations developed by the team.« less
Speeding up nanomagnetic logic by DMI enhanced Pt/Co/Ir films
NASA Astrophysics Data System (ADS)
Ziemys, Grazvydas; Ahrens, Valentin; Mendisch, Simon; Csaba, Gyorgy; Becherer, Markus
2018-05-01
We investigated a new type of multilayer film for Nanomagnetic Logic with perpendicular anisotropy (pNML) enhanced by the Dzyaloshinskii-Moriya interaction (DMI). The DMI effect provides an additional energy term and widens the design space for pNML film optimization. In this work we added an Ir layer between Co and Pt to our standard pNML multilayer (ML) film stack - [Co/Pt]x4. Multilayer stacks of films with and w/o Ir were sputtered and patterned to nanowires of 400 nm width by means of focused ion beam lithography (FIB). For comparability of the films they were tuned to show identical anisotropy for multilayer stacks with and w/o Ir. The field-driven domain wall (DW) velocity in the nanowires was measured by using wide-field MOKE microscopy. We found a strong impact of Ir on the DW velocity being up to 2 times higher compared to the standard [Co/Pt]x4 ML films. Moreover, the maximum velocity is reached at much lower magnetic field, which is beneficial for pNML operation. These results pave the way for pNML with higher clocking rates and at the same time allow a further reduce power consumption.
Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate
NASA Astrophysics Data System (ADS)
Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.
2017-03-01
The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.
Thermo-Mechanical and Electrochemistry Modeling of Planar SOFC Stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaleel, Mohammad A.; Recknagle, Kurtis P.; Lin, Zijing
2002-12-01
Modeling activities at PNNL support design and development of modular SOFC systems. The SOFC stack modeling capability at PNNL has developed to a level at which planar stack designs can be compared and optimized for startup performance. Thermal-fluids and stress modeling is being performed to predict the transient temperature distribution and to determine the thermal stresses based on the temperature distribution. Current efforts also include the development of a model for calculating current density, cell voltage, and heat production in SOFC stacks with hydrogen or other fuels. The model includes the heat generation from both Joule heating and chemical reactions.more » It also accounts for species production and destruction via mass balance. The model is being linked to the finite element code MARC to allow for the evaluation of temperatures and stresses during steady state operations.« less
The effect of compression on individual pressure vessel nickel/hydrogen components
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Perez-Davis, Marla E.
1988-01-01
Compression tests were performed on representative Individual Pressure Vessel (IPV) Nickel/Hydrogen cell components in an effort to better understand the effects of force on component compression and the interactions of components under compression. It appears that the separator is the most easily compressed of all of the stack components. It will typically partially compress before any of the other components begin to compress. The compression characteristics of the cell components in assembly differed considerably from what would be predicted based on individual compression characteristics. Component interactions played a significant role in the stack response to compression. The results of the compression tests were factored into the design and selection of Belleville washers added to the cell stack to accommodate nickel electrode expansion while keeping the pressure on the stack within a reasonable range of the original preset.
High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; X. Zhang; R. C. O'Brien
2011-11-01
Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode ofmore » operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.« less
Zhang, Jianhua; Li, Sunan; Wang, Rubin
2017-01-01
In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN) to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking) were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.
Datskos, Panagiotis G.; Rajic, Solobodan; Datskou, Irene C.
1999-01-01
Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.
TechTuning: Stress Management For 3D Through-Silicon-Via Stacking Technologies
NASA Astrophysics Data System (ADS)
Radojcic, Riko; Nowak, Matt; Nakamoto, Mark
2011-09-01
The concerns with managing mechanical stress distributions and the consequent effects on device performance and material integrity, for advanced TSV based technologies 3D are outlined. A model and simulation based Design For Manufacturability (DFM) type of a flow for managing the mechanical stresses throughout Si die, stack and package design is proposed. The key attributes of the models and simulators required to fuel the proposed flow are summarized. Finally, some of the essential infrastructure and the Supply Chain support items are described.
Surface patterning by pulsed-laser-induced transfer of metals and compounds
NASA Astrophysics Data System (ADS)
Toth, Zsolt; Mogyorosi, Peter; Szoerenyi, Tamas
1990-08-01
Besults of a systematic study on Q-switched nthy laser induced rrrn2 area transfer of supported titanium and chranium thin films and Ge/Se multilayer structures are reported. The appearance of the prints is governed by film-support adhesion and source-target spacing. Best quality prints are produced by ablating well adhering ntal films in close proximity ( spacing < 15 pm) to the target to be patterned. Transfer fran stacked elenntaxy layers as a source offers a unique possibility of depositing acinpound films by mixing the constituents and transferring the material onto the target substrate in a single step.
Strogatz, S
1983-08-21
An enormous length of DNA is packaged in the nuclei of eukaryotic cells. This is achieved through several intermediate levels of compaction, ranging from the double helix to the chromosome. The nucleosome is now firmly established as the first level of chromatin structure. Next it appears that the nucleosomes are themselves stacked in a two-track array, with a dinucleosome repeat. Several winding patterns of DNA are compatible with such a structure. It is shown here that, compared to other feasible DNA paths, the observed winding pattern has remarkable topological properties. The possible biological significance of this peculiarity is discussed.
USDA-ARS?s Scientific Manuscript database
It is challenging to achieve rapid and accurate processing of large amounts of hyperspectral image data. This research was aimed to develop a novel classification method by employing deep feature representation with the stacked sparse auto-encoder (SSAE) and the SSAE combined with convolutional neur...
Steichen, Marc; Malaquias, João C; Arasimowicz, Monika; Djemour, Rabie; Brooks, Neil R; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen; Dale, Phillip J
2017-01-16
Cu 2 ZnSnSe 4 -based solar cells with 5.5% power conversion efficiency were fabricated from Cu/Sn/Zn stacks electrodeposited from liquid metal salts. These electrolytes allow metal deposition rates one order of magnitude higher than those of other deposition methods.
EUV mirror based absolute incident flux detector
Berger, Kurt W.
2004-03-23
A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.
Development of an automatic subsea blowout preventer stack control system using PLC based SCADA.
Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen
2012-01-01
An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
The influence of arene-ring size on stacking interaction with canonical base pairs
NASA Astrophysics Data System (ADS)
Formánek, Martin; Burda, Jaroslav V.
2014-04-01
Stacking interactions between aromatic molecules (benzene, p-cymene, biphenyl, and di- and tetra-hydrogen anthracene) and G.C and A.T canonical Watson-Crick (WC) base pairs are explored. Two functionals with dispersion corrections: ω-B97XD and B3LYP-D3 are used. For a comparison also the MP2 and B3LYP-D3/PCM methods were used for the most stable p-cymene…WC geometries. It was found that the stacking interaction increases with the size of π-conjugation system. Its extent is in agreement with experimental finding on anticancer activity of Ru(II) piano-stool complexes where intercalation of these aromatic molecules should play an important role. The explored structures are considered as ternary system so that decomposition of the interaction energy to pairwise and non-additivity contributions is also examined.
Integrated approach to improving local CD uniformity in EUV patterning
NASA Astrophysics Data System (ADS)
Liang, Andrew; Hermans, Jan; Tran, Timothy; Viatkina, Katja; Liang, Chen-Wei; Ward, Brandon; Chuang, Steven; Yu, Jengyi; Harm, Greg; Vandereyken, Jelle; Rio, David; Kubis, Michael; Tan, Samantha; Dusa, Mircea; Singhal, Akhil; van Schravendijk, Bart; Dixit, Girish; Shamma, Nader
2017-03-01
Extreme ultraviolet (EUV) lithography is crucial to enabling technology scaling in pitch and critical dimension (CD). Currently, one of the key challenges of introducing EUV lithography to high volume manufacturing (HVM) is throughput, which requires high source power and high sensitivity chemically amplified photoresists. Important limiters of high sensitivity chemically amplified resists (CAR) are the effects of photon shot noise and resist blur on the number of photons received and of photoacids generated per feature, especially at the pitches required for 7 nm and 5 nm advanced technology nodes. These stochastic effects are reflected in via structures as hole-to-hole CD variation or local CD uniformity (LCDU). Here, we demonstrate a synergy of film stack deposition, EUV lithography, and plasma etch techniques to improve LCDU, which allows the use of high sensitivity resists required for the introduction of EUV HVM. Thus, to improve LCDU to a level required by 5 nm node and beyond, film stack deposition, EUV lithography, and plasma etch processes were combined and co-optimized to enhance LCDU reduction from synergies. Test wafers were created by depositing a pattern transfer stack on a substrate representative of a 5 nm node target layer. The pattern transfer stack consisted of an atomically smooth adhesion layer and two hardmasks and was deposited using the Lam VECTOR PECVD product family. These layers were designed to mitigate hole roughness, absorb out-of-band radiation, and provide additional outlets for etch to improve LCDU and control hole CD. These wafers were then exposed through an ASML NXE3350B EUV scanner using a variety of advanced positive tone EUV CAR. They were finally etched to the target substrate using Lam Flex dielectric etch and Kiyo conductor etch systems. Metrology methodologies to assess dimensional metrics as well as chip performance and defectivity were investigated to enable repeatable patterning process development. Illumination conditions in EUV lithography were optimized to improve normalized image log slope (NILS), which is expected to reduce shot noise related effects. It can be seen that the EUV imaging contrast improvement can further reduce post-develop LCDU from 4.1 nm to 3.9 nm and from 2.8 nm to 2.6 nm. In parallel, etch processes were developed to further reduce LCDU, to control CD, and to transfer these improvements into the final target substrate. We also demonstrate that increasing post-develop CD through dose adjustment can enhance the LCDU reduction from etch. Similar trends were also observed in different pitches down to 40 nm. The solutions demonstrated here are critical to the introduction of EUV lithography in high volume manufacturing. It can be seen that through a synergistic deposition, lithography, and etch optimization, LCDU at a 40 nm pitch can be improved to 1.6 nm (3-sigma) in a target oxide layer and to 1.4 nm (3-sigma) at the photoresist layer.
Synthesis of Large-grain, Single-crystalline Monolayer and AB-stacking Bilayer Graphene
NASA Astrophysics Data System (ADS)
Zhang, Luyao; Lin, Yung-Chen; Zhang, Yi; Chang, Han-Wen; Yeh, Wen-Cheng; Zhou, Chongwu; USC Nanotechnology Research Laboratory Team
2013-03-01
We report the growth of large-grain, single-crystalline monolayer and AB-stacking bilayer graphene by the combination of ambient pressure chemical vapor deposition and low pressure chemical vapor deposition. The shape of the monolayer graphene was modified to be either hexagons or flowers under different growth conditions. The size of the bilayer graphene region was enlarged under ambient pressure growth conditions with low methane concentration. Raman spectra and selected area electron diffraction of individual graphene grain indicated that the each graphene grain is single-crystalline. With electron beam lithography patterned PMMA seeds, graphene nucleation can be controlled and graphene monolayer and bilayer arrays were synthesized on copper foil. Electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Mork Family Department of Chemical Engineering and Materials Science
A Late Pleistocene sea level stack
NASA Astrophysics Data System (ADS)
Spratt, R. M.; Lisiecki, L. E.
2015-08-01
Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the δ18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.
Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao
2017-05-15
Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-05-02
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-01-01
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components. PMID:28468324
Computerized method and system for designing an aerodynamic focusing lens stack
Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA
2011-11-22
A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.
StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab
NASA Astrophysics Data System (ADS)
Grund, Michael
2017-04-01
The SplitLab package (Wüstefeld et al., Computers and Geosciences, 2008), written in MATLAB, is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to seaside or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure.
Low-power DRAM-compatible Replacement Gate High-k/Metal Gate Stacks
NASA Astrophysics Data System (ADS)
Ritzenthaler, R.; Schram, T.; Bury, E.; Spessot, A.; Caillat, C.; Srividya, V.; Sebaai, F.; Mitard, J.; Ragnarsson, L.-Å.; Groeseneken, G.; Horiguchi, N.; Fazan, P.; Thean, A.
2013-06-01
In this work, the possibility of integration of High-k/Metal Gate (HKMG), Replacement Metal Gate (RMG) gate stacks for low power DRAM compatible transistors is studied. First, it is shown that RMG gate stacks used for Logic applications need to be seriously reconsidered, because of the additional anneal(s) needed in a DRAM process. New solutions are therefore developed. A PMOS stack HfO2/TiN with TiN deposited in three times combined with Work Function metal oxidations is demonstrated, featuring a very good Work Function of 4.95 eV. On the other hand, the NMOS side is shown to be a thornier problem to solve: a new solution based on the use of oxidized Ta as a diffusion barrier is proposed, and a HfO2/TiN/TaOX/TiAl/TiN/TiN gate stack featuring an aggressive Work Function of 4.35 eV (allowing a Work Function separation of 600 mV between NMOS and PMOS) is demonstrated. This work paves the way toward the integration of gate-last options for DRAM periphery transistors.
Volumetric Imaging and Characterization of Focusing Waveguide Grating Couplers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzenmeyer, Aaron Michael; McGuinness, Hayden James Evans; Starbuck, Andrew Lea
Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabricationmore » layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.« less
Volumetric Imaging and Characterization of Focusing Waveguide Grating Couplers
Katzenmeyer, Aaron Michael; McGuinness, Hayden James Evans; Starbuck, Andrew Lea; ...
2017-08-29
Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabricationmore » layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; R. C. O'Brien; X. Zhang
2011-11-01
Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cellmore » and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.« less
Solid Freeform Fabrication of Composite-Material Objects
NASA Technical Reports Server (NTRS)
Wang, C. Jeff; Yang, Jason; Jang, Bor Z.
2005-01-01
Composite solid freeform fabrication (C-SFF) or composite layer manufacturing (CLM) is an automated process in which an advanced composite material (a matrix reinforced with continuous fibers) is formed into a freestanding, possibly complex, three-dimensional object. In CLM, there is no need for molds, dies, or other expensive tooling, and there is usually no need for machining to ensure that the object is formed to the desired net size and shape. CLM is a variant of extrusion-type rapid prototyping, in which a model or prototype of a solid object is built up by controlled extrusion of a polymeric or other material through an orifice that is translated to form patterned layers. The second layer is deposited on top of the first layer, the third layer is deposited on top of the second layer, and so forth, until the stack of layers reaches the desired final thickness and shape. The elements of CLM include (1) preparing a matrix resin in a form in which it will solidify subsequently, (2) mixing the fibers and matrix material to form a continuous pre-impregnated tow (also called "towpreg"), and (3) dispensing the pre-impregnated tow from a nozzle onto a base while moving the nozzle to form the dispensed material into a patterned layer of controlled thickness. When the material deposited into a given layer has solidified, the material for the next layer is deposited and patterned similarly, and so forth, until the desired overall object has been built up as a stack of patterned layers. Preferably, the deposition apparatus is controlled by a computer-aided design (CAD) system. The basic CLM concept can be adapted to the fabrication of parts from a variety of matrix materials. It is conceivable that a CLM apparatus could be placed at a remote location on Earth or in outer space where (1) spare parts are expected to be needed but (2) it would be uneconomical or impractical to store a full inventory of spare parts. A wide variety of towpregs could be prepared and stored on spools until needed. Long-shelf-life towpreg materials suitable for such use could include thermoplastic-coated carbon fibers and metal-coated SiC fibers. When a spare part was needed, the part could be fabricated by CLM under control by a CAD data file; thus, the part could be built automatically, at the scene, within hours or minutes.
Kasavajhala, Koushik; Bikkina, Swetha; Patil, Indrajit; MacKerell, Alexander D.; Priyakumar, U. Deva
2015-01-01
Urea has long been used to investigate protein folding and, more recently, RNA folding. Studies have proposed that urea denatures RNA by participating in stacking interactions and hydrogen bonds with nucleic acid bases. In this study, the ability of urea to form unconventional stacking interactions with RNA bases is investigated using ab initio calculations (RI-MP2 and CCSD(T) methods with the aug-cc-pVDZ basis set). A total of 29 stable nucleobase-urea stacked complexes are identified in which the intermolecular interaction energies (up to −14 kcal/mol) are dominated by dispersion effects. Natural bond orbital (NBO) and atoms in molecules (AIM) calculations further confirm strong interactions between urea and nucleobases. Calculations on model systems with multiple urea and water molecules interacting with a guanine base lead to a hypothesis that urea molecules along with water are able to form cage-like structures capable of trapping nucleic acid bases in extrahelical states by forming both hydrogen bonded and dispersion interactions, thereby contributing to the unfolding of RNA in the presence of urea in aqueous solution. PMID:25668757
PRECISION COSMOGRAPHY WITH STACKED VOIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavaux, Guilhem; Wandelt, Benjamin D.
2012-08-01
We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. Wemore » establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.« less
NASA Astrophysics Data System (ADS)
Park, Jeong-Ho; Kang, Seok-Ju; Park, Jeong-Woo; Lim, Bogyu; Kim, Dong-Yu
2007-11-01
The submicroscaled octadecyltrichlorosilane (OTS) line patterns on gate-dielectric surfaces were introduced into the fabrication of organic field effect transistors (OFETs). These spin-cast regioregular poly(3-hexylthiophene) films on soft-lithographically patterned SiO2 surfaces yielded a higher hole mobility (˜0.072cm2/Vs ) than those of unpatterned (˜0.015cm2/Vs) and untreated (˜5×10-3cm2/Vs) OFETs. The effect of mobility enhancement as a function of the patterned line pitch was investigated in structural and geometric characteristics. The resulting improved mobility is likely attributed to the formation of efficient π-π stacking as a result of guide-assisted, local self-organization-involved molecular interactions between the poly(3-hexylthiophene) polymer and the geometrical OTS patterns.
NASA Astrophysics Data System (ADS)
Ruppe, John M.; Pei, Hanzhang; Chen, Siyun; Sheikhsofla, Morteza; Wilcox, Russell B.; Nees, John A.; Galvanauskas, Almantas
2017-03-01
We report multi-mJ energy (>5mJ) extraction from femtosecond-pulse Yb-doped fiber CPA using coherent pulse stacking amplification (CPSA) technique. This high energy extraction has been enabled by amplifying 10's of nanosecond long pulse sequence, and by using 85-µm core Yb-doped CCC fiber based power amplification stage. The CPSA system consists of 1-GHz repetition rate mode-locked fiber oscillator, followed by a pair of fast phase and amplitude electro-optic modulators, a diffraction-grating based pulse stretcher, a fiber amplifier chain, a GTI-cavity based pulse stacker, and a diffraction grating pulse compressor. Electro-optic modulators are used to carve out from the 1-GHz mode-locked pulse train an amplitude and phase modulated pulse burst, which after stretching and amplification, becomes equal-amplitude pulse burst consisting of 27 stretched pulses, each approximately 1-ns long. Initial pulse-burst shaping accounts for the strong amplifier saturation effects, so that it is compensated at the power amplifier output. This 27-pulse burst is then coherently stacked into a single pulse using a multiplexed sequence of 5 GTI cavities. The compact-footprint 4+1 multiplexed pulse stacker consists of 4 cavities having rountrip of 1 ns, and one Herriott-cell folded cavity - with 9ns roundtrip. After stacking, stretched pulses are compressed down to the bandwidth-limited 300 fs duration using a standard diffraction-grating pulse compressor.
Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.
1987-01-01
An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.
Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.
1985-09-09
An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohacs, K.M.
1991-02-01
Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, stacking patterns of facies, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level changes and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities, nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed bymore » typing the outcrop sections to an integrated will-log/seismic grid through outcrop gamma-ray spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies and evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary. Downlap surfaces exhibited increased proportions of pelagic facies around the surface, a secular change in the dominant lithology across the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or not significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to tie rock properties to genetic processes for construction of predictive models.« less
Interlayer interactions in graphites.
Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian
2013-11-06
Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.
Cell module and fuel conditioner development
NASA Technical Reports Server (NTRS)
Feret, J. M.
1981-01-01
A phosphoric acid fuel cell (PAFC) stack design having a 10 kW power rating for operation at higher than atmospheric pressure based on the existing Mark II design configuration is described. Functional analysis, trade studies and thermodynamic cycle analysis for requirements definition and system operating parameter selection purposes were performed. Fuel cell materials and components, and performance testing and evaluation of the repeating electrode components were characterized. The state of the art manufacturing technology for all fuel cell components and the fabrication of short stacks of various sites were established. A 10 kW PAFC stack design for higher pressure operation utilizing the top down systems engineering aproach was developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummel, K.E.
1987-12-01
Expert systems are artificial intelligence programs that solve problems requiring large amounts of heuristic knowledge, based on years of experience and tradition. Production systems are domain-independent tools that support the development of rule-based expert systems. This document describes a general purpose production system known as HERB. This system was developed to support the programming of expert systems using hierarchically structured rule bases. HERB encourages the partitioning of rules into multiple rule bases and supports the use of multiple conflict resolution strategies. Multiple rule bases can also be placed on a system stack and simultaneously searched during each interpreter cycle. Bothmore » backward and forward chaining rules are supported by HERB. The condition portion of each rule can contain both patterns, which are matched with facts in a data base, and LISP expressions, which are explicitly evaluated in the LISP environment. Properties of objects can also be stored in the HERB data base and referenced within the scope of each rule. This document serves both as an introduction to the principles of LISP-based production systems and as a user's manual for the HERB system. 6 refs., 17 figs.« less
The Memory Stack: New Technologies Harness Talking for Writing.
ERIC Educational Resources Information Center
Gannon, Maureen T.
In this paper, an elementary school teacher describes her experiences with the Memory Stack--a HyperCard based tool that can accommodate a voice recording, a graphic image, and a written text on the same card--which she designed to help her second and third grade students integrate their oral language fluency into the process of learning how to…
Measurement of the through thickness compression of a battery separator
NASA Astrophysics Data System (ADS)
Yan, Shutian; Huang, Xiaosong; Xiao, Xinran
2018-04-01
The mechanical integrity of the separator is critical to the reliable operation of a battery. Due to its minimal thickness, compression experiments with a single/a few layers of separator are difficult to perform. In this work, a capacitance based displacement set-up has been developed for the measurement of the through thickness direction (TTD) compression stress-strain behavior of the separator and the investigation of its interaction with the electrode. The experiments were performed for a stack of two layers of Celgard 2400 separator, NMC cathode, and separator/NMC cathode/separator stack in both dry and wet (i.e. submersed in dimethyl carbonate DMC) conditions. The experimental results reveal that the separator compression modulus can be significantly affected by the presence of DMC. The iso-stress based rule of mixtures was used to compute the compressive stress-strain curve for the stack from that of the separator and NMC layer. The computed curve agreed with the experimental curve reasonably well up to about 0.16 strain but deviated significantly to a softer response at higher strains. The results suggest that, in the stack, the TTD compressive deformation of the separator is influenced by the NMC cathode.
NASA Astrophysics Data System (ADS)
Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef
2016-04-01
This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.
Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X
2014-09-10
Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.
Electrochemical Detection in Stacked Paper Networks.
Liu, Xiyuan; Lillehoj, Peter B
2015-08-01
Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.
Kanda, Hiroyuki; Uzum, Abdullah; Nishino, Hitoshi; Umeyama, Tomokazu; Imahori, Hiroshi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo
2016-12-14
Engineering of photonics for antireflection and electronics for extraction of the hole using 2.5 nm of a thin Au layer have been performed for two- and four-terminal tandem solar cells using CH 3 NH 3 PbI 3 perovskite (top cell) and p-type single crystal silicon (c-Si) (bottom cell) by mechanically stacking. Highly transparent connection multilayers of evaporated-Au and sputtered-ITO films were fabricated at the interface to be a point-contact tunneling junction between the rough perovskite and flat silicon solar cells. The mechanically stacked tandem solar cell with an optimized tunneling junction structure was ⟨perovskite for the top cell/Au (2.5 nm)/ITO (154 nm) stacked-on ITO (108 nm)/c-Si for the bottom cell⟩. It was confirmed the best efficiency of 13.7% and 14.4% as two- and four-terminal devices, respectively.
Narrowband diode laser pump module for pumping alkali vapors.
Rotondaro, M D; Zhdanov, B V; Shaffer, M K; Knize, R J
2018-04-16
We describe a method of line narrowing and frequency-locking a diode laser stack to an alkali atomic line for use as a pump module for Diode Pumped Alkali Lasers. The pump module consists of a 600 W antireflection coated diode laser stack configured to lase using an external cavity. The line narrowing and frequency locking is accomplished by introducing a narrowband polarization filter based on magneto-optical Faraday effect into the external cavity, which selectively transmits only the frequencies that are in resonance with the 6 2 S 1/2 → 6 2 P 3/2 transition of Cs atoms. The resulting pump module has demonstrated that a diode laser stack, which lases with a line width of 3 THz without narrowbanding, can be narrowed to 10 GHz. The line narrowed pump module produced 518 Watts that is 80% of the power generated by the original broadband diode laser stack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Lee, Choong Hyun; Zhang, Wenfeng
2014-11-07
A systematic investigation was carried out on the material and electrical properties of metal oxide doped germanium dioxide (M-GeO{sub 2}) on Ge. We propose two criteria on the selection of desirable M-GeO{sub 2} for gate stack formation on Ge. First, metal oxides with larger cation radii show stronger ability in modifying GeO{sub 2} network, benefiting the thermal stability and water resistance in M-GeO{sub 2}/Ge stacks. Second, metal oxides with a positive Gibbs free energy for germanidation are required for good interface properties of M-GeO{sub 2}/Ge stacks in terms of preventing the Ge-M metallic bond formation. Aggressive equivalent oxide thickness scalingmore » to 0.5 nm is also demonstrated based on these understandings.« less
Polymer electrolyte fuel cell mini power unit for portable application
NASA Astrophysics Data System (ADS)
Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E.; Zerbinati, O.
This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H 2 supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm 2 and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance.
Thermal and Power Challenges in High Performance Computing Systems
NASA Astrophysics Data System (ADS)
Natarajan, Venkat; Deshpande, Anand; Solanki, Sudarshan; Chandrasekhar, Arun
2009-05-01
This paper provides an overview of the thermal and power challenges in emerging high performance computing platforms. The advent of new sophisticated applications in highly diverse areas such as health, education, finance, entertainment, etc. is driving the platform and device requirements for future systems. The key ingredients of future platforms are vertically integrated (3D) die-stacked devices which provide the required performance characteristics with the associated form factor advantages. Two of the major challenges to the design of through silicon via (TSV) based 3D stacked technologies are (i) effective thermal management and (ii) efficient power delivery mechanisms. Some of the key challenges that are articulated in this paper include hot-spot superposition and intensification in a 3D stack, design/optimization of thermal through silicon vias (TTSVs), non-uniform power loading of multi-die stacks, efficient on-chip power delivery, minimization of electrical hotspots etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villamil, T.; Kauffman, E.G.
1993-02-01
The Late Cretaceous Villeta Group and La Luna Formation shows remarkable depositional cyclicity attributable to Milankovitch climate cycles. Each 30-60 cm thick hemicycle is composed of a basal gray shale, a medial black, organic-rich shale, and an upper gray shale with a dense argillaceous limestone cap. Fourier time-series analysis revealed peak frequencies of 500, 100, and 31 ka (blending 21 and 42 ka data). ThiS cyclicity reflects possibly wet cooler (shale) to dry, possibly warm (limestone) climatic changes and their influence on relative sea level, sedimentation rates/patterns, productivity, water chemistry and stratification. Wet/cool hemicycles may produce slight lowering of sealevel,more » increased rates of clay sedimentation, diminished carbonate production, water stratification, increased productivity among noncalcareous marine plankton, and increased Corg production and storage. Dry/warm hemicycles may produce a slight rise in sealevel, and return to normal marine conditions with low Corg storage. Source rock quality may depend upon the predominance of wet over dry climatic phases. Differences between climate-forced cyclicity and random facies repetition, are shown by contrasting observed lithological patterns and geochemical signals with litho- and chemostratigraphy generated from random models. Accomodation space plots (Fischer plots) for cyclically interbedded black shale-pelagic limestone sequences, allowed prediction of facies behavior, shoreline architecture, and quantitative analysis of relative sea level. The synchroneity of Milankovitch cycles and changes in hemicycle stacking patterns, were tested against a new high-resolution event-chronostratigraphic and biostratigraphic framework for NW South America. Geochemical spikes and hemicycle stacking patterns occur consistently throughout the sections measured, supporting the correlation potential of cyclostratigraphy.« less
LYE, DAVID
2006-01-01
• Background and Aims Dwarf mistletoes (Arceuthobium; Viscaceae) are highly specialized dioecious angiosperms parasitic on many gymnosperm hosts in the northern hemisphere. Several dwarf mistletoe species are capable of inducing an unusual form of isophasic infection in which the internal (endophytic) system proliferates even into the apical buds of its hosts. Studies of the internal endophytic system have, for the most part, focused on the parasite within secondary host tissues. The present anatomical and ultrastructural study characterizes the growth pattern of the isophasic endophytic system of Arceuthobium douglasii within the dormant apical buds of Pseudotsuga menziesii. • Methods Semi-thin serial sections from dwarf mistletoe-infected host apical buds were mounted, stained and micrographed. Graphic files were created from the serial micrographs and these files were stacked. These stacked files were utilized to describe the pattern of growth of the endophyte within the host tissue. The interface between cells of the mistletoe and host was also examined at the ultrastructural level by transmission electron microscopy. • Key Results By utilizing a novel technique of superimposed graphics, the current study reveals an organized pattern of mistletoe distribution that penetrates further into host tissues than previously known. A consistent pattern of growth occurring even into the preformed leaves of the host is documented. • Conclusions The apparently non-intrusive growth of the parasite appears to be developmentally synchronized with that of the host. No symplastic connections were observed in the ultrastructural examination of the parasite/host interface within the apical buds of Pseudotsuga menziesii parasitized by A. douglasii or of Pinus contorta parasitized by A. americanum. PMID:16613903
Design and Implementation of an Operations Module for the ARGOS paperless Ship System
1989-06-01
A. OPERATIONS STACK SCRIPTS SCRIPTS FOR STACK: operations * BACKGROUND #1: Operations * on openStack hide message box show menuBar pass openStack end... openStack ** CARD #1, BUTTON #1: Up ***** on mouseUp visual effect zoom out go to card id 10931 of stack argos end mouseUp ** CARD #1, BUTTON #2...STACK SCRIPTS SCRIPTS FOR STACK: Reports ** BACKGROUND #1: Operations * on openStack hie message box show menuBar pass openStack end openStack ** CARD #1
NASA Technical Reports Server (NTRS)
1973-01-01
A fuel cell technology program was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Program tasks are described consisting of baseline cell design and stack testing, hydrogen pump design and testing, and DM-2 powerplant testing and technology extension efforts. A baseline cell configuration capable of a minimum of 2000 hours of life was defined. A 6-cell prototype stack, incorporating most of the scheme cell features, was tested for a total of 10,497 hours. A 6-cell stack incorporating all of the design features was tested. The DM-2 powerplant with a 34 cell stack, an accessory section packaged in the basic configuration anticipated for the space shuttle powerplant and a powerplant control unit, was defined, assembled, and tested. Cells were used in the stack and a drag-type hydrogen pump was installed in the accessory section. A test program was established, in conjunction with NASA/JSC, based on space shuttle orbiter mission. A 2000-hour minimum endurance test and a 5000-hour goal were set and the test started on August 8, 1972. The 2000-hour milestone was completed on November 3, 1972. On 13 March 1973, at the end of the thirty-first simulated seven-day mission and 5072 load hours, the test was concluded, all goals having been met. At this time, the DM-2 was in excellent condition and capable of additional endurance.
Evolution of risk assessment strategies for food and feed uses of stacked GM events.
Kramer, Catherine; Brune, Phil; McDonald, Justin; Nesbitt, Monique; Sauve, Alaina; Storck-Weyhermueller, Sabine
2016-09-01
Data requirements are not harmonized globally for the regulation of food and feed derived from stacked genetically modified (GM) events, produced by combining individual GM events through conventional breeding. The data required by some regulatory agencies have increased despite the absence of substantiated adverse effects to animals or humans from the consumption of GM crops. Data from studies conducted over a 15-year period for several stacked GM event maize (Zea mays L.) products (Bt11 × GA21, Bt11 × MIR604, MIR604 × GA21, Bt11 × MIR604 × GA21, Bt11 × MIR162 × GA21 and Bt11 × MIR604 × MIR162 × GA21), together with their component single events, are presented. These data provide evidence that no substantial changes in composition, protein expression or insert stability have occurred after combining the single events through conventional breeding. An alternative food and feed risk assessment strategy for stacked GM events is suggested based on a problem formulation approach that utilizes (i) the outcome of the single event risk assessments, and (ii) the potential for interactions in the stack, based on an understanding of the mode of action of the transgenes and their products. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone.
Zhang, Xiu-Xiu; Song, Yi-Zhen; Fang, Fang; Wu, Zhi-Yong
2018-04-01
On-site rapid monitoring of nitrite as an assessment indicator of the environment, food, and physiological systems has drawn extensive attention. Here, electrokinetic stacking (ES) was combined with colorimetric reaction on a paper-based device (PAD) to achieve colorless nitrite detection with smartphone. In this paper, nitrite was stacked on the paper fluidic channel as a narrow band by electrokinetic stacking. Then, Griess reagent was introduced to visualize the stacking band. Under optimal conditions, the sensitivity of nitrite was 160-fold increased within 5 min. A linear response in the range of 0.075 to 1.0 μg mL -1 (R 2 = 0.99) and a limit of detection (LOD) of 73 ng mL -1 (0.86 μM) were obtained. The LOD was 10 times lower than the reported PAD, and close to that achieved by a desktop spectrophotometer. The applicability was demonstrated by nitrite detection from saliva and water with good selectivity, adding 100 times more concentrated co-ions. High recovery (91.0~108.7%) and reasonable intra-day and inter-day reproducibility (RSD < 9%) were obtained. This work shows that the sensitivity of colorless analyte detection-based colorimetric reaction can be effectively enhanced by integration of ES on a PAD. Graphical abstract Schematic of the experimental setups (left) and the corresponding images (right) of the actual portable device.
Ahn, Geunseon; Min, Kyung-Hyun; Kim, Changhwan; Lee, Jeong-Seok; Kang, Donggu; Won, Joo-Yun; Cho, Dong-Woo; Kim, Jun-Young; Jin, Songwan; Yun, Won-Soo; Shim, Jin-Hyung
2017-08-17
Three-dimensional (3D) cell printing systems allow the controlled and precise deposition of multiple cells in 3D constructs. Hydrogel materials have been used extensively as printable bioinks owing to their ability to safely encapsulate living cells. However, hydrogel-based bioinks have drawbacks for cell printing, e.g. inappropriate crosslinking and liquid-like rheological properties, which hinder precise 3D shaping. Therefore, in this study, we investigated the influence of various factors (e.g. bioink concentration, viscosity, and extent of crosslinking) on cell printing and established a new 3D cell printing system equipped with heating modules for the precise stacking of decellularized extracellular matrix (dECM)-based 3D cell-laden constructs. Because the pH-adjusted bioink isolated from native tissue is safely gelled at 37 °C, our heating system facilitated the precise stacking of dECM bioinks by enabling simultaneous gelation during printing. We observed greater printability compared with that of a non-heating system. These results were confirmed by mechanical testing and 3D construct stacking analyses. We also confirmed that our heating system did not elicit negative effects, such as cell death, in the printed cells. Conclusively, these results hold promise for the application of 3D bioprinting to tissue engineering and drug development.
Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft
NASA Astrophysics Data System (ADS)
Verstraete, D.; Lehmkuehler, K.; Gong, A.; Harvey, J. R.; Brian, G.; Palmer, J. L.
2014-03-01
Advanced hybrid powerplants combining a fuel cell and battery can enable significantly higher endurance for small, electrically powered unmanned aircraft systems, compared with batteries alone. However, detailed investigations of the static and dynamic performance of such systems are required to address integration challenges. This article describes a series of tests used to characterise the Horizon Energy Systems' AeroStack hybrid, fuel-cell-based powertrain. The results demonstrate that a significant difference can exist between the dynamic performance of the fuel-cell system and its static polarisation curve, confirming the need for detailed measurements. The results also confirm that the AeroStack's lithium-polymer battery plays a crucial role in its response to dynamic load changes and protects the fuel cell from membrane dehydration and fuel starvation. At low static loads, the AeroStack fuel cell recharges the battery with currents up to 1 A, which leads to further differences with the polarisation curve.
NASA Astrophysics Data System (ADS)
Smith, T. M.; Esser, B. D.; Good, B.; Hooshmand, M. S.; Viswanathan, G. B.; Rae, C. M. F.; Ghazisaeidi, M.; McComb, D. W.; Mills, M. J.
2018-06-01
In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale γ' to D019 phase transformation. Other notable observations are prominent γ-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.
Programmable molecular recognition based on the geometry of DNA nanostructures.
Woo, Sungwook; Rothemund, Paul W K
2011-07-10
From ligand-receptor binding to DNA hybridization, molecular recognition plays a central role in biology. Over the past several decades, chemists have successfully reproduced the exquisite specificity of biomolecular interactions. However, engineering multiple specific interactions in synthetic systems remains difficult. DNA retains its position as the best medium with which to create orthogonal, isoenergetic interactions, based on the complementarity of Watson-Crick binding. Here we show that DNA can be used to create diverse bonds using an entirely different principle: the geometric arrangement of blunt-end stacking interactions. We show that both binary codes and shape complementarity can serve as a basis for such stacking bonds, and explore their specificity, thermodynamics and binding rules. Orthogonal stacking bonds were used to connect five distinct DNA origami. This work, which demonstrates how a single attractive interaction can be developed to create diverse bonds, may guide strategies for molecular recognition in systems beyond DNA nanostructures.
2011-02-15
VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 576-E at Vandenberg Air Force Base in California, Orbital Sciences workers prepare NASA's Glory upper stack for attachment to the Taurus XL rocket's Stage 0. The upper stack consists of Stages 1, 2 and 3 of the Taurus as well as the encapsulated Glory spacecraft. Workers put the non-flight environmental shield over the fairing prior to assembly. A portion of the umbilical tower is attached to the upper stack which falls away from the spacecraft during liftoff. The Orbital Sciences Taurus XL rocket will launch Glory into low Earth orbit. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Randy Beaudoin, VAFB
Acoustic thermometry for detecting quenches in superconducting coils and conductor stacks
NASA Astrophysics Data System (ADS)
Marchevsky, M.; Gourlay, S. A.
2017-01-01
Quench detection capability is essential for reliable operation and protection of superconducting magnets, coils, cables, and machinery. We propose a quench detection technique based on sensing local temperature variations in the bulk of a superconducting winding by monitoring its transient acoustic response. Our approach is primarily aimed at coils and devices built with high-temperature superconductor materials where quench detection using standard voltage-based techniques may be inefficient due to the slow velocity of quench propagation. The acoustic sensing technique is non-invasive, fast, and capable of detecting temperature variations of less than 1 K in the interior of the superconductor cable stack in a 77 K cryogenic environment. We show results of finite element modeling and experiments conducted on a model superconductor stack demonstrating viability of the technique for practical quench detection, discuss sensitivity limits of the technique, and its various applications.
Ha, Ji Won; Hahn, Jong Hoon
2017-02-01
Acupuncture sample injection is a simple method to deliver well-defined nanoliter-scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost-effective acupuncture sample injection method can be used for PDMS microchip-based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA-HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Towards Linked Open Services and Processes
NASA Astrophysics Data System (ADS)
Krummenacher, Reto; Norton, Barry; Marte, Adrian
The combination of semantic technology and Web services in form of 'Semantic Web Services' has until now been oriented towards extension of the WS-* stack with ontology-based descriptions. The same time, there is a strong movement away from this stack - for which the 'Web' part is little more than branding - towards RESTful services. The Linked Open Data initiative is a keen adopter of this approach and exposes many datasets via SPARQL endpoints and RESTful services. Our developing approach of 'Linked Open Services', whose current state is described in this paper, accommodates such Linked Data endpoints and general RESTful services alongside WS-* stack-based services with descriptions based on RDF and SPARQL. This capitalises on the Linked Data Cloud and makes service description and comprehension more easy and direct to the growing Linked Data community. Along the way, we show how the existing link between service messaging and the semantic viewpoint, commonly called 'lifting and lowering', is usually unduly restricted to ontology-based classification and misses how the effect of a service contributes to the knowledge of its consumer. Our SPARQL-based approach helps also in the composition of services as knowledge-centric processes, and encourages the development and exposure of services that communicate RDF.
NASA Astrophysics Data System (ADS)
Wu, Chi-Chang; Hsiao, Yu-Ping; You, Hsin-Chiang; Lin, Guan-Wei; Kao, Min-Fang; Manga, Yankuba B.; Yang, Wen-Luh
2018-02-01
We have developed an organic-based resistive random access memory (ReRAM) by using spin-coated polyimide (PI) as the resistive layer. In this study, the chain distance and number of chain stacks of PI molecules are investigated. We employed different solid contents of polyamic acid (PAA) to synthesize various PI films, which served as the resistive layer of ReRAM, the electrical performance of which was evaluated. By tuning the PAA solid content, the intermolecular interaction energy of the PI films is changed without altering the molecular structure. Our results show that the leakage current in the high-resistance state and the memory window of the PI-based ReRAM can be substantially improved using this technique. The superior properties of the PI-based ReRAM are ascribed to fewer molecular chain stacks in the PI films when the PAA solid content is decreased, hence suppressing the leakage current. In addition, a device retention time of more than 107 s can be achieved using this technique. Finally, the conduction mechanism in the PI-based ReRAM was analyzed using hopping and conduction models.
All-atomic simulations on human telomeric G-quadruplex DNA binding with thioflavin T.
Luo, Di; Mu, Yuguang
2015-04-16
Ligand-stabilized human telomeric G-quadruplex DNA is believed to be an anticancer agent, as it can impede the continuous elongation of telomeres by telomerase in cancer cells. In this study, five well-established human telomeric G-quadruplex DNA models were probed on their binding behaviors with thioflavin T (ThT) via both conventional molecular dynamics (MD) and well-tempered metadynamics (WT-MetaD) simulations. Novel dynamics and characteristic binding patterns were disclosed by the MD simulations. It was observed that the K(+) promoted parallel and hybridized human telomeric G-quadruplex conformations pose higher binding affinities to ThT than the Na(+) and K(+) promoted basket conformations. It is the end, sandwich, and base stacking driven by π-π interactions that are identified as the major binding mechanisms. As the most energy favorable binding mode, the sandwich stacking observed in (3 + 1) hybridized form 1 G-quadruplex conformation is triggered by reversible conformational change of the G-quadruplex. To further examine the free energy landscapes, WT-MetaD simulations were utilized on G-quadruplex-ThT systems. It is found that all of the major binding modes predicted by the MD simulations are confirmed by the WT-MetaD simulations. The results in this work not only accord with existing experimental findings, but also reinforce our understanding on the dynamics of G-quadruplexes and aid future drug developments for G-quadruplex stabilization ligands.
Ghobadi, Amir; Hajian, Hodjat; Dereshgi, Sina Abedini; Bozok, Berkay; Butun, Bayram; Ozbay, Ekmel
2017-11-08
In this paper, we demonstrate a facile, lithography free, and large scale compatible fabrication route to synthesize an ultra-broadband wide angle perfect absorber based on metal-insulator-metal-insulator (MIMI) stack design. We first conduct a simulation and theoretical modeling approach to study the impact of different geometries in overall stack absorption. Then, a Pt-Al 2 O 3 multilayer is fabricated using a single atomic layer deposition (ALD) step that offers high repeatability and simplicity in the fabrication step. In the best case, we get an absorption bandwidth (BW) of 600 nm covering a range of 400 nm-1000 nm. A substantial improvement in the absorption BW is attained by incorporating a plasmonic design into the middle Pt layer. Our characterization results demonstrate that the best configuration can have absorption over 0.9 covering a wavelength span of 400 nm-1490 nm with a BW that is 1.8 times broader compared to that of planar design. On the other side, the proposed structure retains its absorption high at angles as wide as 70°. The results presented here can serve as a beacon for future performance enhanced multilayer designs where a simple fabrication step can boost the overall device response without changing its overall thickness and fabrication simplicity.
Electronic, Magnetic and Optical Properties of 2D Metal Nanolayers: A DFT Study
NASA Astrophysics Data System (ADS)
Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Singh, Deobrat; Sonvane, Yogesh; Gajjar, P. N.
2018-03-01
In the recent work, we have investigated the structural, electronic, magnetic and optical properties of graphene-like hexagonal monolayers and multilayers (up to five layers) of 3d-transition metals Fe, Co and Ni based on spin-polarized density functional theory. Here, we have taken two types of pattern namely AA-stacking and AB-stacking for the calculations. The binding energy calculations show that the AA-type configuration is energetically more stable. The calculated binding energies of Fe, Co and Ni-bilayer monolayer are - 3.24, - 2.53 and - 1.94 eV, respectively. The electronic band structures show metallic behavior for all the systems and each configurations of Fe, Co and Ni-atoms. While, the quantum ballistic conductances of these metallic systems are found to be higher for pentalayer than other layered systems. The density of states confirms the ferromagnetic behavior of monolayers and multilayers of Fe and Co having negative spin polarizations. We have also calculated frequency dependent complex dielectric function, electronic energy loss spectrum and reflectance spectrum of monolayer to pentalayer metallic systems. The ferromagnetic material shows different permittivity tensor (ɛ), which is due to high spin magnetic moment for n-layered Fe and Co two-dimensional (2D) nanolayers. The theoretical investigation suggests that the electronic, magnetic and optical properties of 3d-transition metal nanolayers offers great promise for their use in spintronics nanodevices and magneto-optical nanodevices applications.
Specificity Bio-identification of CNT-Based Transistor
NASA Astrophysics Data System (ADS)
Wang, Sheng-Yu; Wu, Hue-Min
2017-12-01
In this research, we report a simple and general approach to π-π stacking functionalization of the sidewalls of CNTs by 1-pyrenebutanoic acid, succinimidyl ester (PSE), and subsequent immobilization of insulin-like growth factor 1 receptor (IGF1R) onto SWNTs with a high degree of control and specificity. The selection of PSE provides visualization and characterization of individual CNTs based on its strong luminescence. In addition, we designed a simple and efficient electrode with a staggered pattern to increase the effect of electrophoresis by using electric field for the macroscopic alignment of CNTs to complete a field-effect device for CNT-based biosensors. Scanning Electron Microscopy (SEM) was used to investigate the morphology of the biosensors. The results of four-point probe method demonstrated high selectivity and sensitivity of detection. The functionalization of SWNTs was investigated by Fourier transform infrared spectroscopy (FTIR). Experimental results imply that specific binding between IGF1R and its specific mAb results in a dramatic change in electrical current of CNT-based devices, and suggest that the devices are very promising biosensor candidates to detect circulating cancer cells.
NASA Astrophysics Data System (ADS)
Zingerle, Philipp; Fecher, Thomas; Pail, Roland; Gruber, Thomas
2016-04-01
One of the major obstacles in modern global gravity field modelling is the seamless combination of lower degree inhomogeneous gravity field observations (e.g. data from satellite missions) with (very) high degree homogeneous information (e.g. gridded and reduced gravity anomalies, beyond d/o 1000). Actual approaches mostly combine such data only on the basis of the coefficients, meaning that previously for both observation classes (resp. models) a spherical harmonic analysis is done independently, solving dense normal equations (NEQ) for the inhomogeneous model and block-diagonal NEQs for the homogeneous. Obviously those methods are unable to identify or eliminate effects as spectral leakage due to band limitations of the models and non-orthogonality of the spherical harmonic base functions. To antagonize such problems a combination of both models on NEQ-basis is desirable. Theoretically this can be achieved using NEQ-stacking. Because of the higher maximum degree of the homogeneous model a reordering of the coefficient is needed which leads inevitably to the destruction of the block diagonal structure of the appropriate NEQ-matrix and therefore also to the destruction of simple sparsity. Hence, a special coefficient ordering is needed to create some new favorable sparsity pattern leading to a later efficient computational solving method. Such pattern can be found in the so called kite-structure (Bosch, 1993), achieving when applying the kite-ordering to the stacked NEQ-matrix. In a first step it is shown what is needed to attain the kite-(NEQ)system, how to solve it efficiently and also how to calculate the appropriate variance information from it. Further, because of the massive computational workload when operating on large kite-systems (theoretically possible up to about max. d/o 100.000), the main emphasis is put on to the presentation of special distributed algorithms which may solve those systems parallel on an indeterminate number of processes and are therefore suitable for the application on supercomputers (such as SuperMUC). Finally, (if time or space) some in-detail problems are shown that occur when dealing with high degree spherical harmonic base functions (mostly due to instabilities of Legendre polynomials), introducing also an appropriate solution for each.
Graphene materials having randomly distributed two-dimensional structural defects
Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C
2013-10-08
Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
Graphene materials having randomly distributed two-dimensional structural defects
Kung, Harold H.; Zhao, Xin; Hayner, Cary M.; Kung, Mayfair C.
2016-05-31
Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.
The Ocean's Carbon Factory: Ocean Composition. The Growth Patterns of Phytoplankton Species
NASA Technical Reports Server (NTRS)
Gregg, Watson
2000-01-01
According to biological data recorded by the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite, the ocean contains nearly half of all the Earth's photosynthesis activity. Through photosynthesis, plant life forms use carbon from the atmosphere, and in return, plants produce the oxygen that life requires. In effect, ocean chlorophyll works like a factory, taking carbon and "manufacturing" the air we breathe. Most ocean-bound photosynthesis is performed by single-celled plants called phytoplankton. "These things are so small," according to Michael Behrenfeld, a researcher at NASA Goddard Space Flight Center, "that if you take hundreds of them and stack them end-to-end, the length of that stack is only the thickness of a penny". The humble phytoplankton species plays a vital role in balancing the amounts of oxygen and carbon dioxide in the atmosphere. Therefore, understanding exactly how phytoplankton growth works is important.
High efficiency x-ray nanofocusing by the blazed stacking of binary zone plates
NASA Astrophysics Data System (ADS)
Mohacsi, I.; Karvinen, P.; Vartiainen, I.; Diaz, A.; Somogyi, A.; Kewish, C. M.; Mercere, P.; David, C.
2013-09-01
The focusing efficiency of binary Fresnel zone plate lenses is fundamentally limited and higher efficiency requires a multi step lens profile. To overcome the manufacturing problems of high resolution and high efficiency multistep zone plates, we investigate the concept of stacking two different binary zone plates in each other's optical near-field. We use a coarse zone plate with π phase shift and a double density fine zone plate with π/2 phase shift to produce an effective 4- step profile. Using a compact experimental setup with piezo actuators for alignment, we demonstrated 47.1% focusing efficiency at 6.5 keV using a pair of 500 μm diameter and 200 nm smallest zone width. Furthermore, we present a spatially resolved characterization method using multiple diffraction orders to identify manufacturing errors, alignment errors and pattern distortions and their effect on diffraction efficiency.
NASA Astrophysics Data System (ADS)
Bézard, P.; Chevalier, X.; Legrain, A.; Navarro, C.; Nicolet, C.; Fleury, G.; Cayrefourcq, I.; Tiron, R.; Zelsmann, M.
2018-03-01
In this work, we present our recent achievements on the integration and transfer etching of a novel silicon-containing high-χ block copolymer for lines/spaces applications. Developed carbo-silane BCPs are synthesized under industrial conditions and present periodicities as low as 14 nm. A full directed self-assembly by graphoepitaxy process is shown using standard photolithography stacks and all processes are performed on 300 mm wafer compatible tools. Specific plasma processes are developed to isolate perpendicular lamellae and sub-12 nm features are finally transferred into silicon substrates. The quality of the final BCP hard mask (CDU, LWR, LER) are also investigated. Finally, thanks to the development of dedicated neutral layers and top-coats allowing perpendicular orientations, it was possible to investigate plasma etching experiments on full-sheets at 7 nm resolution, opening the way to the integration of these polymers in chemoepitaxy stacks.
NASA Astrophysics Data System (ADS)
Garabito, German; Cruz, João Carlos Ribeiro; Oliva, Pedro Andrés Chira; Söllner, Walter
2017-01-01
The Common Reflection Surface stack is a robust method for simulating zero-offset and common-offset sections with high accuracy from multi-coverage seismic data. For simulating common-offset sections, the Common-Reflection-Surface stack method uses a hyperbolic traveltime approximation that depends on five kinematic parameters for each selected sample point of the common-offset section to be simulated. The main challenge of this method is to find a computationally efficient data-driven optimization strategy for accurately determining the five kinematic stacking parameters on which each sample of the stacked common-offset section depends. Several authors have applied multi-step strategies to obtain the optimal parameters by combining different pre-stack data configurations. Recently, other authors used one-step data-driven strategies based on a global optimization for estimating simultaneously the five parameters from multi-midpoint and multi-offset gathers. In order to increase the computational efficiency of the global optimization process, we use in this paper a reduced form of the Common-Reflection-Surface traveltime approximation that depends on only four parameters, the so-called Common Diffraction Surface traveltime approximation. By analyzing the convergence of both objective functions and the data enhancement effect after applying the two traveltime approximations to the Marmousi synthetic dataset and a real land dataset, we conclude that the Common-Diffraction-Surface approximation is more efficient within certain aperture limits and preserves at the same time a high image accuracy. The preserved image quality is also observed in a direct comparison after applying both approximations for simulating common-offset sections on noisy pre-stack data.
Leske, David A; Hatt, Sarah R; Liebermann, Laura; Holmes, Jonathan M
2016-02-01
We compare two methods of analysis for Rasch scoring pre- to postintervention data: Rasch lookup table versus de novo stacked Rasch analysis using the Adult Strabismus-20 (AS-20). One hundred forty-seven subjects completed the AS-20 questionnaire prior to surgery and 6 weeks postoperatively. Subjects were classified 6 weeks postoperatively as "success," "partial success," or "failure" based on angle and diplopia status. Postoperative change in AS-20 scores was compared for all four AS-20 domains (self-perception, interactions, reading function, and general function) overall and by success status using two methods: (1) applying historical Rasch threshold measures from lookup tables and (2) performing a stacked de novo Rasch analysis. Change was assessed by analyzing effect size, improvement exceeding 95% limits of agreement (LOA), and score distributions. Effect sizes were similar for all AS-20 domains whether obtained from lookup tables or stacked analysis. Similar proportions exceeded 95% LOAs using lookup tables versus stacked analysis. Improvement in median score was observed for all AS-20 domains using lookup tables and stacked analysis ( P < 0.0001 for all comparisons). The Rasch-scored AS-20 is a responsive and valid instrument designed to measure strabismus-specific health-related quality of life. When analyzing pre- to postoperative change in AS-20 scores, Rasch lookup tables and de novo stacked Rasch analysis yield essentially the same results. We describe a practical application of lookup tables, allowing the clinician or researcher to score the Rasch-calibrated AS-20 questionnaire without specialized software.
Leske, David A.; Hatt, Sarah R.; Liebermann, Laura; Holmes, Jonathan M.
2016-01-01
Purpose We compare two methods of analysis for Rasch scoring pre- to postintervention data: Rasch lookup table versus de novo stacked Rasch analysis using the Adult Strabismus-20 (AS-20). Methods One hundred forty-seven subjects completed the AS-20 questionnaire prior to surgery and 6 weeks postoperatively. Subjects were classified 6 weeks postoperatively as “success,” “partial success,” or “failure” based on angle and diplopia status. Postoperative change in AS-20 scores was compared for all four AS-20 domains (self-perception, interactions, reading function, and general function) overall and by success status using two methods: (1) applying historical Rasch threshold measures from lookup tables and (2) performing a stacked de novo Rasch analysis. Change was assessed by analyzing effect size, improvement exceeding 95% limits of agreement (LOA), and score distributions. Results Effect sizes were similar for all AS-20 domains whether obtained from lookup tables or stacked analysis. Similar proportions exceeded 95% LOAs using lookup tables versus stacked analysis. Improvement in median score was observed for all AS-20 domains using lookup tables and stacked analysis (P < 0.0001 for all comparisons). Conclusions The Rasch-scored AS-20 is a responsive and valid instrument designed to measure strabismus-specific health-related quality of life. When analyzing pre- to postoperative change in AS-20 scores, Rasch lookup tables and de novo stacked Rasch analysis yield essentially the same results. Translational Relevance We describe a practical application of lookup tables, allowing the clinician or researcher to score the Rasch-calibrated AS-20 questionnaire without specialized software. PMID:26933524
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, S.
The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost,more » high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.« less
NASA Astrophysics Data System (ADS)
Wantha, Channarong
2018-02-01
This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.
Mining dynamic noteworthy functions in software execution sequences
Huang, Guoyan; Wang, Yuqian; He, Haitao; Ren, Jiadong
2017-01-01
As the quality of crucial entities can directly affect that of software, their identification and protection become an important premise for effective software development, management, maintenance and testing, which thus contribute to improving the software quality and its attack-defending ability. Most analysis and evaluation on important entities like codes-based static structure analysis are on the destruction of the actual software running. In this paper, from the perspective of software execution process, we proposed an approach to mine dynamic noteworthy functions (DNFM)in software execution sequences. First, according to software decompiling and tracking stack changes, the execution traces composed of a series of function addresses were acquired. Then these traces were modeled as execution sequences and then simplified so as to get simplified sequences (SFS), followed by the extraction of patterns through pattern extraction (PE) algorithm from SFS. After that, evaluating indicators inner-importance and inter-importance were designed to measure the noteworthiness of functions in DNFM algorithm. Finally, these functions were sorted by their noteworthiness. Comparison and contrast were conducted on the experiment results from two traditional complex network-based node mining methods, namely PageRank and DegreeRank. The results show that the DNFM method can mine noteworthy functions in software effectively and precisely. PMID:28278276
Stacked graphene nanofibers for electrochemical oxidation of DNA bases.
Ambrosi, Adriano; Pumera, Martin
2010-08-21
In this article, we show that stacked graphene nanofibers (SGNFs) demonstrate superior electrochemical performance for oxidation of DNA bases over carbon nanotubes (CNTs). This is due to an exceptionally high number of accessible graphene sheet edges on the surface of the nanofibers when compared to carbon nanotubes, as shown by transmission electron microscopy and Raman spectroscopy. The oxidation signals of adenine, guanine, cytosine, and thymine exhibit two to four times higher currents than on CNT-based electrodes. SGNFs also exhibit higher sensitivity than do edge-plane pyrolytic graphite, glassy carbon, or graphite microparticle-based electrodes. We also demonstrate that influenza A(H1N1)-related strands can be sensitively oxidized on SGNF-based electrodes, which could therefore be applied to label-free DNA analysis.
NASA Astrophysics Data System (ADS)
Kumar, Manoranjan; Topham, Benjamin J.; Yu, RuiHui; Ha, Quoc Binh Dang; Soos, Zoltán G.
2011-06-01
The molar spin susceptibilities χ(T) of Na-tetracyanoquinodimethane (TCNQ), K-TCNQ, and Rb-TCNQ(II) are fit quantitatively to 450 K in terms of half-filled bands of three one-dimensional Hubbard models with extended interactions using exact results for finite systems. All three models have bond order wave (BOW) and charge density wave (CDW) phases with boundary V = Vc(U) for nearest-neighbor interaction V and on-site repulsion U. At high T, all three salts have regular stacks of TCNQ^- anion radicals. The χ(T) fits place Na and K in the CDW phase and Rb(II) in the BOW phase with V ≈ Vc. The Na and K salts have dimerized stacks at T < Td while Rb(II) has regular stacks at 100 K. The χ(T) analysis extends to dimerized stacks and to dimerization fluctuations in Rb(II). The three models yield consistent values of U, V, and transfer integrals t for closely related TCNQ^- stacks. Model parameters based on χ(T) are smaller than those from optical data that in turn are considerably reduced by electronic polarization from quantum chemical calculation of U, V, and t of adjacent TCNQ^- ions. The χ(T) analysis shows that fully relaxed states have reduced model parameters compared to optical or vibration spectra of dimerized or regular TCNQ^- stacks.
A Late Pleistocene sea level stack
NASA Astrophysics Data System (ADS)
Spratt, Rachel M.; Lisiecki, Lorraine E.
2016-04-01
Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ˜ 80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9-12 m (1σ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.
Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation
NASA Astrophysics Data System (ADS)
Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.
2017-11-01
In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.
High-brightness diode pump sources for solid-state and fiber laser pumping across 8xx-9xx nm range
NASA Astrophysics Data System (ADS)
Diamant, Ronen; Berk, Yuri; Cohen, Shalom; Klumel, Genady; Levy, Moshe; Openhaim, Yaki; Peleg, Ophir; Yanson, Dan; Karni, Yoram
2011-06-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scalable QCW pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang
2015-05-20
In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.
NASA Astrophysics Data System (ADS)
Westphal, Michel; Munschy, Marc
1999-10-01
In order to test the possible saw-tooth behaviour of the Earth's magnetic field during stable polarity intervals, we selected several magnetic profiles over the East Indian Ridge, the Juan de Fuca Ridge and the East Pacific Rise. We then compared the stacked magnetic anomaly profiles with different models. It appears that neither the uniform pattern nor the saw-tooth pattern fully explain the shape of all anomalies. We propose a new magnetic field model with a gradual transition between Gauss and Matuyama periods and smaller intensities for some short episodes.
3D P and S Wave Velocity Structure and Tremor Locations in the Parkfield Region
NASA Astrophysics Data System (ADS)
Zeng, X.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Cochran, E. S.; Harrington, R. M.
2014-12-01
We have assembled a new dataset to refine the 3D seismic velocity model in the Parkfield region. The S arrivals from 184 earthquakes recorded by the Parkfield Experiment to Record MIcroseismicity and Tremor array (PERMIT) during 2010-2011 were picked by a new S wave picker, which is based on machine learning. 74 blasts have been assigned to four quarries, whose locations were identified with Google Earth. About 1000 P and S wave arrivals from these blasts at permanent seismic network were also incorporated. Low frequency earthquakes (LFEs) occurring within non-volcanic tremor (NVT) are valuable for improving the precision of NVT location and the seismic velocity model at greater depths. Based on previous work (Shelley and Hardebeck, 2010), waveforms of hundreds of LFEs in same family were stacked to improve signal qualify. In a previous study (McClement et al., 2013), stacked traces of more than 30 LFE families at the Parkfileld Array Seismic Observatory (PASO) have been picked. We expanded our work to include LFEs recorded by the PERMIT array. The time-frequency Phase Weight Stacking (tf-PWS) method was introduced to improve the stack quality, as direct stacking does not produce clear S-wave arrivals on the PERMIT stations. This technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We found that it is extremely effective for picking LFE arrivals (Thurber et al., 2014). More than 500 P and about 1000 S arrivals from 58 LFE families were picked at the PERMIT and PASO arrays. Since the depths of LFEs are much deeper than earthquakes, we are able to extend model resolution to lower crustal depths. Both P and S wave velocity structure have been obtained with the tomoDD method. The result suggests that there is a low velocity zone (LVZ) in the lower crust and the location of the LVZ is consistent with the high conductivity zone beneath the southern segment of the Rinconada fault that was revealed in the 3D magnetotelluric inversion of Tietze and Ritter(2013).
Irregular Applications: Architectures & Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feo, John T.; Villa, Oreste; Tumeo, Antonino
Irregular applications are characterized by irregular data structures, control and communication patterns. Novel irregular high performance applications which deal with large data sets and require have recently appeared. Unfortunately, current high performance systems and software infrastructures executes irregular algorithms poorly. Only coordinated efforts by end user, area specialists and computer scientists that consider both the architecture and the software stack may be able to provide solutions to the challenges of modern irregular applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Stephenson, David E.
A robust performance-based cost model is developed for all-vanadium, iron-vanadium and iron chromium redox flow batteries. Systems aspects such as shunt current losses, pumping losses and thermal management are accounted for. The objective function, set to minimize system cost, allows determination of stack design and operating parameters such as current density, flow rate and depth of discharge (DOD). Component costs obtained from vendors are used to calculate system costs for various time frames. A 2 kW stack data was used to estimate unit energy costs and compared with model estimates for the same size electrodes. The tool has been sharedmore » with the redox flow battery community to both validate their stack data and guide future direction.« less
Recovery and Determination of Adsorbed Technetium on Savannah River Site Charcoal Stack Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahoda, Kristy G.; Engelmann, Mark D.; Farmer, Orville T.
2008-03-01
Experimental results are provided for the sample analyses for technetium (Tc) in charcoal samples placed in-line with a Savannah River Site (SRS) processing stack effluent stream as a part of an environmental surveillance program. The method for Tc removal from charcoal was based on that originally developed with high purity charcoal. Presented is the process that allowed for the quantitative analysis of 99Tc in SRS charcoal stack samples with and without 97Tc as a tracer. The results obtained with the method using the 97Tc tracer quantitatively confirm the results obtained with no tracer added. All samples contain 99Tc at themore » pg g-1 level.« less
Englbrecht, Franz Siegfried; Würl, Matthias; Olivari, Francesco; Ficorella, Andrea; Kreuzer, Christian; Lindner, Florian H; Palma, Matteo Dalla; Pancheri, Lucio; Betta, Gian-Franco Dalla; Schreiber, Jörg; Quaranta, Alberto; Parodi, Katia
2018-02-03
We report on a scintillator-based online detection system for the spectral characterization of polychromatic proton bunches. Using up to nine stacked layers of radiation hard polysiloxane scintillators, coupled to and readout edge-on by a large area pixelated CMOS detector, impinging polychromatic proton bunches were characterized. The energy spectra were reconstructed using calibration data and simulated using Monte-Carlo simulations. Despite the scintillator stack showed some problems like thickness inhomogeneities and unequal layer coupling, the prototype allows to obtain a first estimate of the energy spectrum of proton beams. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya
2004-01-01
The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.
Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude
2014-11-28
Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain effects. In contrast to the water reported to be present in Moolooite, neither thermogravimetric nor the in situ thermal decomposition investigations and crystal structure analysis of the neutron diffraction data revealed any trace of water. An appendix contains details about the profile parameters for the diffractometers used at the European Synchrotron Radiation Facility and the Institute Max von Laue-Paul Langevin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annette Rohr
2006-03-01
TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derivedmore » from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the scenarios utilizing secondary particles (oxidized emissions) ranged from 70-256 {micro}g/m{sup 3}, and some of the atmospheres contained high acidity levels (up to 49 {micro}g/m{sup 3} equivalent of sulfuric acid). However, caution must be used in generalizing these results to other power plants utilizing different coal types and with different plant configurations, as the emissions may vary based on these factors.« less
Controllable Growth and Formation Mechanisms of Dislocated WS2 Spirals.
Fan, Xiaopeng; Zhao, Yuzhou; Zheng, Weihao; Li, Honglai; Wu, Xueping; Hu, Xuelu; Zhang, Xuehong; Zhu, Xiaoli; Zhang, Qinglin; Wang, Xiao; Yang, Bin; Chen, Jianghua; Jin, Song; Pan, Anlian
2018-06-13
Two-dimensional (2D) layered metal dichalcogenides can form spiral nanostructures by a screw-dislocation-driven mechanism, which leads to changes in crystal symmetry and layer stackings that introduce attractive physical properties different from their bulk and few-layer nanostructures. However, controllable growth of spirals is challenging and their growth mechanisms are poorly understood. Here, we report the controllable growth of WS 2 spiral nanoplates with different stackings by a vapor phase deposition route and investigate their formation mechanisms by combining atomic force microscopy with second harmonic generation imaging. Previously not observed "spiral arm" features could be explained as covered dislocation spiral steps, and the number of spiral arms correlates with the number of screw dislocations initiated at the bottom plane. The supersaturation-dependent growth can generate new screw dislocations from the existing layers, or even new layers templated by existing screw dislocations. Different number of dislocations and orientation of new layers result in distinct morphologies, different layer stackings, and more complex nanostructures, such as triangular spiral nanoplates with hexagonal spiral pattern on top. This work provides the understanding and control of dislocation-driven growth of 2D nanostructures. These spiral nanostructures offer diverse candidates for probing the physical properties of layered materials and exploring new applications in functional nanoelectronic and optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru; Kucherepa, N. S.; Rodnikova, M. N.
The molecular and crystal structures of two p-(alkoxybenzylidene)-p'-toluidines C{sub 5}H{sub 11}O-C{sub 6}H{sub 4}-CH=N-C{sub 6}H{sub 4}-CH{sub 3} (1) and C{sub 8}H{sub 17}O-C{sub 6}H{sub 4}-CH=N-C{sub 6}H{sub 4}-CH{sub 3} (2), which form the nematic phase upon melting, is determined by X-ray diffraction. The geometry of the benzylideneaniline fragments in molecules 1 and 2 is actually identical. The crystal packings of 1 and 2 are characterized by the alternation of layers formed by loosely packed aliphatic fragments of molecules and layers of closely packed aromatic fragments. The packing in the aromatic regions of 1 follows the parquet pattern. The crystal packing of 2 hasmore » a stacking structure, which is formed by {pi}-stacking dimers superimposed on one another. The formation of the mesogenic phase upon melting of crystals 1 is due to the disturbance of the structurality of loose aliphatic layers with retention of the structure of the aromatic regions, which are stabilized by the cooperative effect of weak directed C-H ... {pi}-system interactions. The mesogenic phase of crystals 2 is formed upon melting as a consequence of the retention of the structure of {pi}-stacking dimers.« less
Structural and dynamic characteristics in monolayer square ice.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2017-07-28
When water is constrained between two sheets of graphene, it becomes an intriguing monolayer solid with a square pattern due to the ultrahigh van der Waals pressure. However, the square ice phase has become a matter of debate due to the insufficient experimental interpretation and the slightly rhomboidal feature in simulated monolayer square-like structures. Here, we performed classical molecular dynamics simulations to reveal monolayer square ice in graphene nanocapillaries from the perspective of structure and dynamic characteristics. Monolayer square-like ice (instantaneous snapshot), assembled square-rhombic units with stacking faults, is a long-range ordered structure, in which the square and rhombic units are assembled in an order of alternative distribution, and the other rhombic unit forms stacking faults (polarized water chains). Spontaneous flipping of water molecules in monolayer square-like ice is intrinsic and induces transformations among different elementary units, resulting in the structural evolution of monolayer square ice in dynamics. The existence of stacking faults should be attributed to the spontaneous flipping behavior of water molecules under ambient temperature. Statistical averaging results (thermal average positions) demonstrate the inherent square characteristic of monolayer square ice. The simulated data and insight obtained here might be significant for understanding the topological structure and dynamic behavior of monolayer square ice.
Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee
2013-01-01
Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a “beads-on-a-string” fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed. PMID:24040165
Microchannel Plates for the UVCS and SUMER Instruments on the SOHO Satellite
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Gummin, M. A.; Sasseen, T.; Jelinsky, P.; Gaines, G. A.; Hull, J.; Stock, J. M.; Edgar, M.; Welsh, B.; Jelinsky, S.;
1995-01-01
The microchannel plates for the detectors in the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) and UVCS (Ultraviolet Coronograph Spectrometer) instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in late 1995 are described. A low resistance Z stack of microchannel plates (MCP's) is employed in a detector format of 27 mm x 10 mm using a multilayer cross delay line anode (XDL) with 1024 x 360 digitized pixels. The MCP stacks provide gains of greater than 2 x 10(exp 7) with good pulse height distributions (as low as 25% FWHM) under uniform flood illumination. Background rates of approx. 0.6 event cm(exp -2) sec(exp -1) are obtained for this configuration. Local counting rates up to about 800 events/pixel/sec have been achieved with little drop of the MCP gain. MCP preconditioning results are discussed, showing that some MCP stacks fail to have gain decreases when subjected to a high flux UV scrub. Also, although the bare MCP quantum efficiencies are close to those expected (10%), we found that the long wavelength response of KBr photocathodes could be substantially enhanced by the MCP scrubbing process. Flat field images are characterized by a low level of MCP fixed pattern noise and are stable. Preliminary calibration results for the instruments are shown.
Statistics of Stacked Strata on Experimental Shelf Margins
NASA Astrophysics Data System (ADS)
Fernandes, A. M.; Straub, K. M.
2015-12-01
Continental margin deposits provide the most complete record on Earth of paleo-landscapes, but these records are complex and difficult to interpret. To a seismic geomorphologist or stratigrapher, mapped surfaces often present a static diachronous record of these landscapes through time. We present data that capture the dynamics of experimental shelf-margin landscapes at high-temporal resolution and define internal hierarchies within stacked channelized and weakly channelized deposits from the shelf to the slope. Motivated by observations from acoustically-imaged continental margins offshore Brunei and in the Gulf of Mexico, we use physical experiments to quantify stratal patterns of sub-aqueous slope channels and lobes that are linked to delta-top channels. The data presented here are from an experiment that was run for 26 hours of experimental run time. Overhead photographs and topographic scans captured flow dynamics and surface aggradation/degradation every ten minutes. Currents rich in sediment built a delta that prograded to the shelf-edge. These currents were designed to plunge at the shoreline and travel as turbidity currents beyond the delta and onto the continental slope. Pseudo-subsidence was imposed by a slight base-level rise that generated accommodation space and promoted the construction of stratigraphy on the delta-top. Compensational stacking is a term that is frequently applied to deposits that tend to fill in topographic lows in channelized and weakly channelized systems. The compensation index, a metric used to quantify the strength of compensation, is used here to characterize deposits at different temporal scales on the experimental landscape. The compensation timescale is the characteristic time at which the accumulated deposits begins to match the shape of basin-wide subsidence rates (uniform for these experiments). We will use the compensation indices along strike transects across the delta, proximal slope and distal slope to evaluate the degree of compensation and the trends in the compensation time-scale, tied to a reduced degree of channelization in the down-slope direction.
Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.
Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V
2014-09-24
We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.
Open stack thermal battery tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Kevin N.; Roberts, Christine C.; Grillet, Anne M.
We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transversemore » to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.« less
Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.
Jain, Niyati; Zhao, Liang; Liu, John D; Xia, Tianbing
2010-05-04
High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding and base stacking interactions, yielding the high affinity and specificity by the aptamer domain.
van Dongen, M J; Mooren, M M; Willems, E F; van der Marel, G A; van Boom, J H; Wijmenga, S S; Hilbers, C W
1997-01-01
The three-dimensional structure of the hairpin formed by d(ATCCTA-GTTA-TAGGAT) has been determined by means of two-dimensional NMR studies, distance geometry and molecular dynamics calculations. The first and the last residues of the tetraloop of this hairpin form a sheared G-A base pair on top of the six Watson-Crick base pairs in the stem. The glycosidic torsion angles of the guanine and adenine residues in the G-A base pair reside in the anti and high- anti domain ( approximately -60 degrees ) respectively. Several dihedral angles in the loop adopt non-standard values to accommodate this base pair. The first and second residue in the loop are stacked in a more or less normal helical fashion; the fourth loop residue also stacks upon the stem, while the third residue is directed away from the loop region. The loop structure can be classified as a so-called type-I loop, in which the bases at the 5'-end of the loop stack in a continuous fashion. In this situation, loop stability is unlikely to depend heavily on the nature of the unpaired bases in the loop. Moreover, the present study indicates that the influence of the polarity of a closing A.T pair is much less significant than that of a closing C.G base pair. PMID:9092659
Generator module architecture for a large solid oxide fuel cell power plant
Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.
2013-06-11
A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.
NASA Astrophysics Data System (ADS)
Kitano, Naomu; Horie, Shinya; Arimura, Hiroaki; Kawahara, Takaaki; Sakashita, Shinsuke; Nishida, Yukio; Yugami, Jiro; Minami, Takashi; Kosuda, Motomu; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji
2007-12-01
We demonstrated the use of an in situ metal/high-k fabrication method for improving the performance of metal-insulator-semiconductor field-effect transistors (MISFETs). Gate-first pMISFETs with polycrystalline silicon (poly-Si)/TiN/HfSiON stacks were fabricated by techniques based on low-damage physical vapor deposition, in which high-quality HfSiON dielectrics were formed by the interface reaction between an ultrathin metal-Hf layer (0.5 nm thick) and a SiO2 underlayer, and TiN electrodes were continuously deposited on the gate dielectrics without exposure to air. Gate-first pMISFETs with high carrier mobility and a low threshold voltage (Vth) were realized by reducing the carbon impurity in the gate stacks and improving the Vth stability against thermal treatment. As a result, we obtained superior current drivability (Ion = 350 μA/μm at Ioff = 200 pA/μm), which corresponds to a 13% improvement over that of conventional chemical vapor deposition-based metal/high-k devices.
Computationally efficient stochastic optimization using multiple realizations
NASA Astrophysics Data System (ADS)
Bayer, P.; Bürger, C. M.; Finkel, M.
2008-02-01
The presented study is concerned with computationally efficient methods for solving stochastic optimization problems involving multiple equally probable realizations of uncertain parameters. A new and straightforward technique is introduced that is based on dynamically ordering the stack of realizations during the search procedure. The rationale is that a small number of critical realizations govern the output of a reliability-based objective function. By utilizing a problem, which is typical to designing a water supply well field, several variants of this "stack ordering" approach are tested. The results are statistically assessed, in terms of optimality and nominal reliability. This study demonstrates that the simple ordering of a given number of 500 realizations while applying an evolutionary search algorithm can save about half of the model runs without compromising the optimization procedure. More advanced variants of stack ordering can, if properly configured, save up to more than 97% of the computational effort that would be required if the entire number of realizations were considered. The findings herein are promising for similar problems of water management and reliability-based design in general, and particularly for non-convex problems that require heuristic search techniques.
LoCuSS: THE MASS DENSITY PROFILE OF MASSIVE GALAXY CLUSTERS AT z = 0.2 {sup ,}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okabe, Nobuhiro; Umetsu, Keiichi; Smith, Graham P.
We present a stacked weak-lensing analysis of an approximately mass-selected sample of 50 galaxy clusters at 0.15 < z < 0.3, based on observations with Suprime-Cam on the Subaru Telescope. We develop a new method for selecting lensed background galaxies from which we estimate that our sample of red background galaxies suffers just 1% contamination. We detect the stacked tangential shear signal from the full sample of 50 clusters, based on this red sample of background galaxies, at a total signal-to-noise ratio of 32.7. The Navarro-Frenk-White model is an excellent fit to the data, yielding sub-10% statistical precision on massmore » and concentration: M{sub vir}=7.19{sup +0.53}{sub -0.50} Multiplication-Sign 10{sup 14} h{sup -1} M{sub sun}, c{sub vir}=5.41{sup +0.49}{sub -0.45} (c{sub 200}=4.22{sup +0.40}{sub -0.36}). Tests of a range of possible systematic errors, including shear calibration and stacking-related issues, indicate that they are subdominant to the statistical errors. The concentration parameter obtained from stacking our approximately mass-selected cluster sample is broadly in line with theoretical predictions. Moreover, the uncertainty on our measurement is comparable with the differences between the different predictions in the literature. Overall, our results highlight the potential for stacked weak-lensing methods to probe the mean mass density profile of cluster-scale dark matter halos with upcoming surveys, including Hyper-Suprime-Cam, Dark Energy Survey, and KIDS.« less