Sample records for based action representation

  1. Space-time modeling using environmental constraints in a mobile robot system

    NASA Technical Reports Server (NTRS)

    Slack, Marc G.

    1990-01-01

    Grid-based models of a robot's local environment have been used by many researchers building mobile robot control systems. The attraction of grid-based models is their clear parallel between the internal model and the external world. However, the discrete nature of such representations does not match well with the continuous nature of actions and usually serves to limit the abilities of the robot. This work describes a spatial modeling system that extracts information from a grid-based representation to form a symbolic representation of the robot's local environment. The approach makes a separation between the representation provided by the sensing system and the representation used by the action system. Separation allows asynchronous operation between sensing and action in a mobile robot, as well as the generation of a more continuous representation upon which to base actions.

  2. Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations.

    PubMed

    Brayanov, Jordan B; Press, Daniel Z; Smith, Maurice A

    2012-10-24

    Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices.

  3. Motor Memory Is Encoded as a Gain-Field Combination of Intrinsic and Extrinsic Action Representations

    PubMed Central

    Brayanov, Jordan B.; Press, Daniel Z.; Smith, Maurice A.

    2013-01-01

    Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices. PMID:23100418

  4. Mental representation and motor imagery training

    PubMed Central

    Schack, Thomas; Essig, Kai; Frank, Cornelia; Koester, Dirk

    2014-01-01

    Research in sports, dance and rehabilitation has shown that basic action concepts (BACs) are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, the structural dimensional analysis of mental representation (SDA-M), to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations (MTMR) has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke. PMID:24904368

  5. Students and Teacher Academic Evaluation Perceptions: Methodology to Construct a Representation Based on Actionable Knowledge Discovery Framework

    ERIC Educational Resources Information Center

    Molina, Otilia Alejandro; Ratté, Sylvie

    2017-01-01

    This research introduces a method to construct a unified representation of teachers and students perspectives based on the actionable knowledge discovery (AKD) and delivery framework. The representation is constructed using two models: one obtained from student evaluations and the other obtained from teachers' reflections about their teaching…

  6. Striatal action-value neurons reconsidered.

    PubMed

    Elber-Dorozko, Lotem; Loewenstein, Yonatan

    2018-05-31

    It is generally believed that during economic decisions, striatal neurons represent the values associated with different actions. This hypothesis is based on studies, in which the activity of striatal neurons was measured while the subject was learning to prefer the more rewarding action. Here we show that these publications are subject to at least one of two critical confounds. First, we show that even weak temporal correlations in the neuronal data may result in an erroneous identification of action-value representations. Second, we show that experiments and analyses designed to dissociate action-value representation from the representation of other decision variables cannot do so. We suggest solutions to identifying action-value representation that are not subject to these confounds. Applying one solution to previously identified action-value neurons in the basal ganglia we fail to detect action-value representations. We conclude that the claim that striatal neurons encode action-values must await new experiments and analyses. © 2018, Elber-Dorozko et al.

  7. Linking Language with Embodied and Teleological Representations of Action for Humanoid Cognition

    PubMed Central

    Lallee, Stephane; Madden, Carol; Hoen, Michel; Dominey, Peter Ford

    2010-01-01

    The current research extends our framework for embodied language and action comprehension to include a teleological representation that allows goal-based reasoning for novel actions. The objective of this work is to implement and demonstrate the advantages of a hybrid, embodied-teleological approach to action–language interaction, both from a theoretical perspective, and via results from human–robot interaction experiments with the iCub robot. We first demonstrate how a framework for embodied language comprehension allows the system to develop a baseline set of representations for processing goal-directed actions such as “take,” “cover,” and “give.” Spoken language and visual perception are input modes for these representations, and the generation of spoken language is the output mode. Moving toward a teleological (goal-based reasoning) approach, a crucial component of the new system is the representation of the subcomponents of these actions, which includes relations between initial enabling states, and final resulting states for these actions. We demonstrate how grammatical categories including causal connectives (e.g., because, if–then) can allow spoken language to enrich the learned set of state-action-state (SAS) representations. We then examine how this enriched SAS inventory enhances the robot's ability to represent perceived actions in which the environment inhibits goal achievement. The paper addresses how language comes to reflect the structure of action, and how it can subsequently be used as an input and output vector for embodied and teleological aspects of action. PMID:20577629

  8. Action simulation: time course and representational mechanisms

    PubMed Central

    Springer, Anne; Parkinson, Jim; Prinz, Wolfgang

    2013-01-01

    The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control. PMID:23847563

  9. Action Recognition Using Nonnegative Action Component Representation and Sparse Basis Selection.

    PubMed

    Wang, Haoran; Yuan, Chunfeng; Hu, Weiming; Ling, Haibin; Yang, Wankou; Sun, Changyin

    2014-02-01

    In this paper, we propose using high-level action units to represent human actions in videos and, based on such units, a novel sparse model is developed for human action recognition. There are three interconnected components in our approach. First, we propose a new context-aware spatial-temporal descriptor, named locally weighted word context, to improve the discriminability of the traditionally used local spatial-temporal descriptors. Second, from the statistics of the context-aware descriptors, we learn action units using the graph regularized nonnegative matrix factorization, which leads to a part-based representation and encodes the geometrical information. These units effectively bridge the semantic gap in action recognition. Third, we propose a sparse model based on a joint l2,1-norm to preserve the representative items and suppress noise in the action units. Intuitively, when learning the dictionary for action representation, the sparse model captures the fact that actions from the same class share similar units. The proposed approach is evaluated on several publicly available data sets. The experimental results and analysis clearly demonstrate the effectiveness of the proposed approach.

  10. Contingent plan structures for spacecraft

    NASA Technical Reports Server (NTRS)

    Drummond, M.; Currie, K.; Tate, A.

    1987-01-01

    Most current AI planners build partially ordered plan structures which delay decisions on action ordering. Such structures cannot easily represent contingent actions. A representation which can is presented. The representation has some other useful features: it provides a good account of the causal structure of a plan, can be used to describe disjunctive actions, and it offers a planner the opportunity of even less commitment than the classical partial order on actions. The use of this representation is demonstrated in an on-board spacecraft activity sequencing problem. Contingent plan execution in a spacecraft context highlights the requirements for a fully disjunctive representation, since communication delays often prohibit extensive ground-based accounting for remotely sensed information and replanning on execution failure.

  11. Incidental and context-responsive activation of structure- and function-based action features during object identification

    PubMed Central

    Lee, Chia-lin; Middleton, Erica; Mirman, Daniel; Kalénine, Solène; Buxbaum, Laurel J.

    2012-01-01

    Previous studies suggest that action representations are activated during object processing, even when task-irrelevant. In addition, there is evidence that lexical-semantic context may affect such activation during object processing. Finally, prior work from our laboratory and others indicates that function-based (“use”) and structure-based (“move”) action subtypes may differ in their activation characteristics. Most studies assessing such effects, however, have required manual object-relevant motor responses, thereby plausibly influencing the activation of action representations. The present work utilizes eyetracking and a Visual World Paradigm task without object-relevant actions to assess the time course of activation of action representations, as well as their responsiveness to lexical-semantic context. In two experiments, participants heard a target word and selected its referent from an array of four objects. Gaze fixations on non-target objects signal activation of features shared between targets and non-targets. The experiments assessed activation of structure-based (Experiment 1) or function-based (Experiment 2) distractors, using neutral sentences (“S/he saw the …”) or sentences with a relevant action verb (Experiment 1: “S/he picked up the……”; Experiment 2: “S/he used the….”). We observed task-irrelevant activations of action information in both experiments. In neutral contexts, structure-based activation was relatively faster-rising but more transient than function-based activation. Additionally, action verb contexts reliably modified patterns of activation in both Experiments. These data provide fine-grained information about the dynamics of activation of function-based and structure-based actions in neutral and action-relevant contexts, in support of the “Two Action System” model of object and action processing (e.g., Buxbaum & Kalénine, 2010). PMID:22390294

  12. Impact of action primes on implicit processing of thematic and functional similarity relations: evidence from eye-tracking.

    PubMed

    Pluciennicka, Ewa; Wamain, Yannick; Coello, Yann; Kalénine, Solène

    2016-07-01

    The aim of this study was to specify the role of action representations in thematic and functional similarity relations between manipulable artifact objects. Recent behavioral and neurophysiological evidence indicates that while they are all relevant for manipulable artifact concepts, semantic relations based on thematic (e.g., saw-wood), specific function similarity (e.g., saw-axe), and general function similarity (e.g., saw-knife) are differently processed, and may relate to different levels of action representation. Point-light displays of object-related actions previously encoded at the gesture level (e.g., "sawing") or at the higher level of action representation (e.g., "cutting") were used as primes before participants identified target objects (e.g., saw) among semantically related and unrelated distractors (e.g., wood, feather, piano). Analysis of eye movements on the different objects during target identification informed about the amplitude and the timing of implicit activation of the different semantic relations. Results showed that action prime encoding impacted the processing of thematic relations, but not that of functional similarity relations. Semantic competition with thematic distractors was greater and earlier following action primes encoded at the gesture level compared to action primes encoded at higher level. As a whole, these findings highlight the direct influence of action representations on thematic relation processing, and suggest that thematic relations involve gesture-level representations rather than intention-level representations.

  13. Culture-specific familiarity equally mediates action representations across cultures.

    PubMed

    Umla-Runge, Katja; Fu, Xiaolan; Wang, Lamei; Zimmer, Hubert D

    2014-01-01

    Previous studies have shown that we need to distinguish between means and end information about actions. It is unclear how these two subtypes of action information relate to each other with theoretical accounts postulating the superiority of end over means information and others linking separate means and end routes of processing to actions of differential meaningfulness. Action meaningfulness or familiarity differs between cultures. In a cross-cultural setting, we investigated how action familiarity influences recognition memory for means and end information. Object directed actions of differential familiarity were presented to Chinese and German participants. Action familiarity modulated the representation of means and end information in both cultures in the same way, although the effects were based on different stimulus sets. Our results suggest that, in the representation of actions in memory, end information is superordinate to means information. This effect is independent of culture whereas action familiarity is not.

  14. A neural network model of causative actions.

    PubMed

    Lee-Hand, Jeremy; Knott, Alistair

    2015-01-01

    A common idea in models of action representation is that actions are represented in terms of their perceptual effects (see e.g., Prinz, 1997; Hommel et al., 2001; Sahin et al., 2007; Umiltà et al., 2008; Hommel, 2013). In this paper we extend existing models of effect-based action representations to account for a novel distinction. Some actions bring about effects that are independent events in their own right: for instance, if John smashes a cup, he brings about the event of the cup smashing. Other actions do not bring about such effects. For instance, if John grabs a cup, this action does not cause the cup to "do" anything: a grab action has well-defined perceptual effects, but these are not registered by the perceptual system that detects independent events involving external objects in the world. In our model, effect-based actions are implemented in several distinct neural circuits, which are organized into a hierarchy based on the complexity of their associated perceptual effects. The circuit at the top of this hierarchy is responsible for actions that bring about independently perceivable events. This circuit receives input from the perceptual module that recognizes arbitrary events taking place in the world, and learns movements that reliably cause such events. We assess our model against existing experimental observations about effect-based motor representations, and make some novel experimental predictions. We also consider the possibility that the "causative actions" circuit in our model can be identified with a motor pathway reported in other work, specializing in "functional" actions on manipulable tools (Bub et al., 2008; Binkofski and Buxbaum, 2013).

  15. Grasp Representations Depend on Knowledge and Attention

    ERIC Educational Resources Information Center

    Chua, Kao-Wei; Bub, Daniel N.; Masson, Michael E. J.; Gauthier, Isabel

    2018-01-01

    Seeing pictures of objects activates the motor cortex and can have an influence on subsequent grasping actions. However, the exact nature of the motor representations evoked by these pictures is unclear. For example, action plans engaged by pictures could be most affected by direct visual input and computed online based on object shape.…

  16. Importance of perceptual representation in the visual control of action

    NASA Astrophysics Data System (ADS)

    Loomis, Jack M.; Beall, Andrew C.; Kelly, Jonathan W.; Macuga, Kristen L.

    2005-03-01

    In recent years, many experiments have demonstrated that optic flow is sufficient for visually controlled action, with the suggestion that perceptual representations of 3-D space are superfluous. In contrast, recent research in our lab indicates that some visually controlled actions, including some thought to be based on optic flow, are indeed mediated by perceptual representations. For example, we have demonstrated that people are able to perform complex spatial behaviors, like walking, driving, and object interception, in virtual environments which are rendered visible solely by cyclopean stimulation (random-dot cinematograms). In such situations, the absence of any retinal optic flow that is correlated with the objects and surfaces within the virtual environment means that people are using stereo-based perceptual representations to perform the behavior. The fact that people can perform such behaviors without training suggests that the perceptual representations are likely the same as those used when retinal optic flow is present. Other research indicates that optic flow, whether retinal or a more abstract property of the perceptual representation, is not the basis for postural control, because postural instability is related to perceived relative motion between self and the visual surroundings rather than to optic flow, even in the abstract sense.

  17. Evidence for sparse synergies in grasping actions.

    PubMed

    Prevete, Roberto; Donnarumma, Francesco; d'Avella, Andrea; Pezzulo, Giovanni

    2018-01-12

    Converging evidence shows that hand-actions are controlled at the level of synergies and not single muscles. One intriguing aspect of synergy-based action-representation is that it may be intrinsically sparse and the same synergies can be shared across several distinct types of hand-actions. Here, adopting a normative angle, we consider three hypotheses for hand-action optimal-control: sparse-combination hypothesis (SC) - sparsity in the mapping between synergies and actions - i.e., actions implemented using a sparse combination of synergies; sparse-elements hypothesis (SE) - sparsity in synergy representation - i.e., the mapping between degrees-of-freedom (DoF) and synergies is sparse; double-sparsity hypothesis (DS) - a novel view combining both SC and SE - i.e., both the mapping between DoF and synergies and between synergies and actions are sparse, each action implementing a sparse combination of synergies (as in SC), each using a limited set of DoFs (as in SE). We evaluate these hypotheses using hand kinematic data from six human subjects performing nine different types of reach-to-grasp actions. Our results support DS, suggesting that the best action representation is based on a relatively large set of synergies, each involving a reduced number of degrees-of-freedom, and that distinct sets of synergies may be involved in distinct tasks.

  18. 3D hierarchical spatial representation and memory of multimodal sensory data

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.

  19. Acting on Information: Representing Actions That Manipulate Information

    NASA Technical Reports Server (NTRS)

    Golden, Keith

    1999-01-01

    Information manipulation is the creation of new information based on existing information sources. This paper discusses problems that arise when planning for information manipulation, and proposes a novel action representation, called ADLIM, that addresses these problems, including: How to represent information in a way sufficient to express the effects of actions that modify the information. I present a simple, yet expressive, representation of information goals and effects that generalizes earlier work on representing sensing actions; How to concisely represent actions that copy information, or produce new information that is based on existing information sources. I show how this is a generalization of the frame problem, and present a solution based on generalized frame effects; and How to generate a pipeline of information-processing commands that will produce an output containing exactly the desired information. I present a new approach to goal regression.

  20. The inability to mentally represent action may be associated with performance deficits in children with developmental coordination disorder.

    PubMed

    Gabbard, Carl; Bobbio, Tatiana

    2011-03-01

    Several research studies indicate that children with developmental coordination disorder (DCD) show delays with an array of perceptual-motor skills. One of the explanations, based on limited research, is that these children have problems generating and/or monitoring a mental (action) representation of intended actions, termed the "internal modeling deficit" (IMD) hypothesis. According to the hypothesis, children with DCD have significant limitations in their ability to accurately generate and utilize internal models of motor planning and control. The focus of this review is on one of the methods used to examine action representation-motor imagery, which theorists argue provides a window into the process of action representation (e.g., Jeannerod, 2001 . Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14, 103-109.). Included in the review are performance studies of typically developing and DCD children, and possible brain structures involved.

  1. Mirror neurons and motor intentionality.

    PubMed

    Rizzolatti, Giacomo; Sinigaglia, Corrado

    2007-01-01

    Our social life rests to a large extent on our ability to understand the intentions of others. What are the bases of this ability? A very influential view is that we understand the intentions of others because we are able to represent them as having mental states. Without this meta-representational (mind-reading) ability their behavior would be meaningless to us. Over the past few years this view has been challenged by neurophysiological findings and, in particular, by the discovery of mirror neurons. The functional properties of these neurons indicate that intentional understanding is based primarily on a mechanism that directly matches the sensory representation of the observed actions with one's own motor representation of those same actions. These findings reveal how deeply motor and intentional components of action are intertwined, suggesting that both can be fully comprehended only starting from a motor approach to intentionality.

  2. Classifying Facial Actions

    PubMed Central

    Donato, Gianluca; Bartlett, Marian Stewart; Hager, Joseph C.; Ekman, Paul; Sejnowski, Terrence J.

    2010-01-01

    The Facial Action Coding System (FACS) [23] is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding is presently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facial actions in sequences of images. These techniques include analysis of facial motion through estimation of optical flow; holistic spatial analysis, such as principal component analysis, independent component analysis, local feature analysis, and linear discriminant analysis; and methods based on the outputs of local filters, such as Gabor wavelet representations and local principal components. Performance of these systems is compared to naive and expert human subjects. Best performances were obtained using the Gabor wavelet representation and the independent component representation, both of which achieved 96 percent accuracy for classifying 12 facial actions of the upper and lower face. The results provide converging evidence for the importance of using local filters, high spatial frequencies, and statistical independence for classifying facial actions. PMID:21188284

  3. Preexisting semantic representation improves working memory performance in the visuospatial domain.

    PubMed

    Rudner, Mary; Orfanidou, Eleni; Cardin, Velia; Capek, Cheryl M; Woll, Bencie; Rönnberg, Jerker

    2016-05-01

    Working memory (WM) for spoken language improves when the to-be-remembered items correspond to preexisting representations in long-term memory. We investigated whether this effect generalizes to the visuospatial domain by administering a visual n-back WM task to deaf signers and hearing signers, as well as to hearing nonsigners. Four different kinds of stimuli were presented: British Sign Language (BSL; familiar to the signers), Swedish Sign Language (SSL; unfamiliar), nonsigns, and nonlinguistic manual actions. The hearing signers performed better with BSL than with SSL, demonstrating a facilitatory effect of preexisting semantic representation. The deaf signers also performed better with BSL than with SSL, but only when WM load was high. No effect of preexisting phonological representation was detected. The deaf signers performed better than the hearing nonsigners with all sign-based materials, but this effect did not generalize to nonlinguistic manual actions. We argue that deaf signers, who are highly reliant on visual information for communication, develop expertise in processing sign-based items, even when those items do not have preexisting semantic or phonological representations. Preexisting semantic representation, however, enhances the quality of the gesture-based representations temporarily maintained in WM by this group, thereby releasing WM resources to deal with increased load. Hearing signers, on the other hand, may make strategic use of their speech-based representations for mnemonic purposes. The overall pattern of results is in line with flexible-resource models of WM.

  4. Action recognition using multi-scale histograms of oriented gradients based depth motion trail Images

    NASA Astrophysics Data System (ADS)

    Wang, Guanxi; Tie, Yun; Qi, Lin

    2017-07-01

    In this paper, we propose a novel approach based on Depth Maps and compute Multi-Scale Histograms of Oriented Gradient (MSHOG) from sequences of depth maps to recognize actions. Each depth frame in a depth video sequence is projected onto three orthogonal Cartesian planes. Under each projection view, the absolute difference between two consecutive projected maps is accumulated through a depth video sequence to form a Depth Map, which is called Depth Motion Trail Images (DMTI). The MSHOG is then computed from the Depth Maps for the representation of an action. In addition, we apply L2-Regularized Collaborative Representation (L2-CRC) to classify actions. We evaluate the proposed approach on MSR Action3D dataset and MSRGesture3D dataset. Promising experimental result demonstrates the effectiveness of our proposed method.

  5. The Representation of Motor (Inter)action, States of Action, and Learning: Three Perspectives on Motor Learning by Way of Imagery and Execution

    PubMed Central

    Frank, Cornelia; Schack, Thomas

    2017-01-01

    Learning in intelligent systems is a result of direct and indirect interaction with the environment. While humans can learn by way of different states of (inter)action such as the execution or the imagery of an action, their unique potential to induce brain- and mind-related changes in the motor action system is still being debated. The systematic repetition of different states of action (e.g., physical and/or mental practice) and their contribution to the learning of complex motor actions has traditionally been approached by way of performance improvements. More recently, approaches highlighting the role of action representation in the learning of complex motor actions have evolved and may provide additional insight into the learning process. In the present perspective paper, we build on brain-related findings and sketch recent research on learning by way of imagery and execution from a hierarchical, perceptual-cognitive approach to motor control and learning. These findings provide insights into the learning of intelligent systems from a perceptual-cognitive, representation-based perspective and as such add to our current understanding of action representation in memory and its changes with practice. Future research should build bridges between approaches in order to more thoroughly understand functional changes throughout the learning process and to facilitate motor learning, which may have particular importance for cognitive systems research in robotics, rehabilitation, and sports. PMID:28588510

  6. On the nature of hand-action representations evoked during written sentence comprehension.

    PubMed

    Bub, Daniel N; Masson, Michael E J

    2010-09-01

    We examine the nature of motor representations evoked during comprehension of written sentences describing hand actions. We distinguish between two kinds of hand actions: a functional action, applied when using the object for its intended purpose, and a volumetric action, applied when picking up or holding the object. In Experiment 1, initial activation of both action representations was followed by selection of the functional action, regardless of sentence context. Experiment 2 showed that when the sentence was followed by a picture of the object, clear context-specific effects on evoked action representations were obtained. Experiment 3 established that when a picture of an object was presented alone, the time course of both functional and volumetric actions was the same. These results provide evidence that representations of object-related hand actions are evoked as part of sentence processing. In addition, we discuss the conditions that elicit context-specific evocation of motor representations. 2010 Elsevier B.V. All rights reserved.

  7. Social Representations of the Development of Intelligence, Parental Values and Parenting Styles: A Theoretical Model for Analysis

    ERIC Educational Resources Information Center

    Miguel, Isabel; Valentim, Joaquim Pires; Carugati, Felice

    2013-01-01

    Within the theoretical framework of social representations theory, a substantial body of literature has advocated and shown that, as interpretative systems and forms of knowledge concurring in the construction of a social reality, social representations are guides for action, influencing behaviours and social relations. Based on this assumption,…

  8. Action representation: crosstalk between semantics and pragmatics.

    PubMed

    Prinz, Wolfgang

    2014-03-01

    Marc Jeannerod pioneered a representational approach to movement and action. In his approach, motor representations provide both, declarative knowledge about action and procedural knowledge for action (action semantics and action pragmatics, respectively). Recent evidence from language comprehension and action simulation supports the claim that action pragmatics and action semantics draw on common representational resources, thus challenging the traditional divide between declarative and procedural action knowledge. To account for these observations, three kinds of theoretical frameworks are discussed: (i) semantics is grounded in pragmatics, (ii) pragmatics is anchored in semantics, and (iii) pragmatics is part and parcel of semantics. © 2013 Elsevier Ltd. All rights reserved.

  9. Good Practices for Learning to Recognize Actions Using FV and VLAD.

    PubMed

    Wu, Jianxin; Zhang, Yu; Lin, Weiyao

    2016-12-01

    High dimensional representations such as Fisher vectors (FV) and vectors of locally aggregated descriptors (VLAD) have shown state-of-the-art accuracy for action recognition in videos. The high dimensionality, on the other hand, also causes computational difficulties when scaling up to large-scale video data. This paper makes three lines of contributions to learning to recognize actions using high dimensional representations. First, we reviewed several existing techniques that improve upon FV or VLAD in image classification, and performed extensive empirical evaluations to assess their applicability for action recognition. Our analyses of these empirical results show that normality and bimodality are essential to achieve high accuracy. Second, we proposed a new pooling strategy for VLAD and three simple, efficient, and effective transformations for both FV and VLAD. Both proposed methods have shown higher accuracy than the original FV/VLAD method in extensive evaluations. Third, we proposed and evaluated new feature selection and compression methods for the FV and VLAD representations. This strategy uses only 4% of the storage of the original representation, but achieves comparable or even higher accuracy. Based on these contributions, we recommend a set of good practices for action recognition in videos for practitioners in this field.

  10. Theory of Mind in the Wild: Toward Tackling the Challenges of Everyday Mental State Reasoning

    PubMed Central

    Wertz, Annie E.; German, Tamsin C.

    2013-01-01

    A complete understanding of the cognitive systems underwriting theory of mind (ToM) abilities requires articulating how mental state representations are generated and processed in everyday situations. Individuals rarely announce their intentions prior to acting, and actions are often consistent with multiple mental states. In order for ToM to operate effectively in such situations, mental state representations should be generated in response to certain actions, even when those actions occur in the presence of mental state content derived from other aspects of the situation. Results from three experiments with preschool children and adults demonstrate that mental state information is indeed generated based on an approach action cue in situations that contain competing mental state information. Further, the frequency with which participants produced or endorsed explanations that include mental states about an approached object decreased when the competing mental state information about a different object was made explicit. This set of experiments provides some of the first steps toward identifying the observable action cues that are used to generate mental state representations in everyday situations and offers insight into how both young children and adults processes multiple mental state representations. PMID:24069160

  11. [Children with developmental coordination disorder have difficulty with action representation].

    PubMed

    Gabbard, Carl; Cacola, Priscila

    The study of children with developmental coordination disorder (DCD) has emerged as a vibrant line of inquiry over the last two decades. The literature indicates quite clearly that children with DCD display deficits with an array of perceptual-motor and daily living skills. The movements of children with DCD are often described as clumsy and uncoordinated and lead to difficulties with performing many of the activities of daily living and sports that typically developing children perform easily. It has been hypothesized, based on limited research, that an underlying problem is a deficit in generating and/or monitoring an action representation termed the internal modeling deficit hypothesis. According to the hypothesis, children with DCD have significant limitations in their ability to accurately generate and utilize internal models of motor planning and control. The focus of this review is on one of the methods used to examine action representation-motor imagery, which theorists argue provides a window into the process of action representation. Included are research methods and possible brain structures involved. An addition, a paradigm unique with this population-estimation of reachability (distance) via motor imagery, will be described.

  12. A word in the hand: action, gesture and mental representation in humans and non-human primates

    PubMed Central

    Cartmill, Erica A.; Beilock, Sian; Goldin-Meadow, Susan

    2012-01-01

    The movements we make with our hands both reflect our mental processes and help to shape them. Our actions and gestures can affect our mental representations of actions and objects. In this paper, we explore the relationship between action, gesture and thought in both humans and non-human primates and discuss its role in the evolution of language. Human gesture (specifically representational gesture) may provide a unique link between action and mental representation. It is kinaesthetically close to action and is, at the same time, symbolic. Non-human primates use gesture frequently to communicate, and do so flexibly. However, their gestures mainly resemble incomplete actions and lack the representational elements that characterize much of human gesture. Differences in the mirror neuron system provide a potential explanation for non-human primates' lack of representational gestures; the monkey mirror system does not respond to representational gestures, while the human system does. In humans, gesture grounds mental representation in action, but there is no evidence for this link in other primates. We argue that gesture played an important role in the transition to symbolic thought and language in human evolution, following a cognitive leap that allowed gesture to incorporate representational elements. PMID:22106432

  13. Shared knowledge or shared affordances? Insights from an ecological dynamics approach to team coordination in sports.

    PubMed

    Silva, Pedro; Garganta, Júlio; Araújo, Duarte; Davids, Keith; Aguiar, Paulo

    2013-09-01

    Previous research has proposed that team coordination is based on shared knowledge of the performance context, responsible for linking teammates' mental representations for collective, internalized action solutions. However, this representational approach raises many questions including: how do individual schemata of team members become reformulated together? How much time does it take for this collective cognitive process to occur? How do different cues perceived by different individuals sustain a general shared mental representation? This representational approach is challenged by an ecological dynamics perspective of shared knowledge in team coordination. We argue that the traditional shared knowledge assumption is predicated on 'knowledge about' the environment, which can be used to share knowledge and influence intentions of others prior to competition. Rather, during competitive performance, the control of action by perceiving surrounding informational constraints is expressed in 'knowledge of' the environment. This crucial distinction emphasizes perception of shared affordances (for others and of others) as the main communication channel between team members during team coordination tasks. From this perspective, the emergence of coordinated behaviours in sports teams is based on the formation of interpersonal synergies between players resulting from collective actions predicated on shared affordances.

  14. Predictive representations can link model-based reinforcement learning to model-free mechanisms.

    PubMed

    Russek, Evan M; Momennejad, Ida; Botvinick, Matthew M; Gershman, Samuel J; Daw, Nathaniel D

    2017-09-01

    Humans and animals are capable of evaluating actions by considering their long-run future rewards through a process described using model-based reinforcement learning (RL) algorithms. The mechanisms by which neural circuits perform the computations prescribed by model-based RL remain largely unknown; however, multiple lines of evidence suggest that neural circuits supporting model-based behavior are structurally homologous to and overlapping with those thought to carry out model-free temporal difference (TD) learning. Here, we lay out a family of approaches by which model-based computation may be built upon a core of TD learning. The foundation of this framework is the successor representation, a predictive state representation that, when combined with TD learning of value predictions, can produce a subset of the behaviors associated with model-based learning, while requiring less decision-time computation than dynamic programming. Using simulations, we delineate the precise behavioral capabilities enabled by evaluating actions using this approach, and compare them to those demonstrated by biological organisms. We then introduce two new algorithms that build upon the successor representation while progressively mitigating its limitations. Because this framework can account for the full range of observed putatively model-based behaviors while still utilizing a core TD framework, we suggest that it represents a neurally plausible family of mechanisms for model-based evaluation.

  15. Predictive representations can link model-based reinforcement learning to model-free mechanisms

    PubMed Central

    Botvinick, Matthew M.

    2017-01-01

    Humans and animals are capable of evaluating actions by considering their long-run future rewards through a process described using model-based reinforcement learning (RL) algorithms. The mechanisms by which neural circuits perform the computations prescribed by model-based RL remain largely unknown; however, multiple lines of evidence suggest that neural circuits supporting model-based behavior are structurally homologous to and overlapping with those thought to carry out model-free temporal difference (TD) learning. Here, we lay out a family of approaches by which model-based computation may be built upon a core of TD learning. The foundation of this framework is the successor representation, a predictive state representation that, when combined with TD learning of value predictions, can produce a subset of the behaviors associated with model-based learning, while requiring less decision-time computation than dynamic programming. Using simulations, we delineate the precise behavioral capabilities enabled by evaluating actions using this approach, and compare them to those demonstrated by biological organisms. We then introduce two new algorithms that build upon the successor representation while progressively mitigating its limitations. Because this framework can account for the full range of observed putatively model-based behaviors while still utilizing a core TD framework, we suggest that it represents a neurally plausible family of mechanisms for model-based evaluation. PMID:28945743

  16. Action’s influence on thought: The case of gesture

    PubMed Central

    Goldin-Meadow, Susan; Beilock, Sian

    2010-01-01

    Recent research shows that our actions can influence how we think. A separate body of research shows that the gestures we produce when we speak can also influence how we think. Here we bring these two literatures together to explore whether gesture has an impact on thinking by virtue of its ability to reflect real-world actions. We first argue that gestures contain detailed perceptual-motor information about the actions they represent, information often not found in the speech that accompanies the gestures. We then show that the action features in gesture do not just reflect the gesturer’s thinking—they can feed back and alter that thinking. Gesture actively brings action into a speaker’s mental representations, and those mental representations then affect behavior—at times more powerfully than the actions on which the gestures are based. Gesture thus has the potential to serve as a unique bridge between action and abstract thought. PMID:21572548

  17. Towards an Effective Theory of Reformulation. Part 1; Semantics

    NASA Technical Reports Server (NTRS)

    Benjamin, D. Paul

    1992-01-01

    This paper describes an investigation into the structure of representations of sets of actions, utilizing semigroup theory. The goals of this project are twofold: to shed light on the relationship between tasks and representations, leading to a classification of tasks according to the representations they admit; and to develop techniques for automatically transforming representations so as to improve problem-solving performance. A method is demonstrated for automatically generating serial algorithms for representations whose actions form a finite group. This method is then extended to representations whose actions form a finite inverse semigroup.

  18. An intact action-perception coupling depends on the integrity of the cerebellum.

    PubMed

    Christensen, Andrea; Giese, Martin A; Sultan, Fahad; Mueller, Oliver M; Goericke, Sophia L; Ilg, Winfried; Timmann, Dagmar

    2014-05-07

    It is widely accepted that action and perception in humans functionally interact on multiple levels. Moreover, areas originally suggested to be predominantly motor-related, as the cerebellum, are also involved in action observation. However, as yet, few studies provided unequivocal evidence that the cerebellum is involved in the action perception coupling (APC), specifically in the integration of motor and multisensory information for perception. We addressed this question studying patients with focal cerebellar lesions in a virtual-reality paradigm measuring the effect of action execution on action perception presenting self-generated movements as point lights. We measured the visual sensitivity to the point light stimuli based on signal detection theory. Compared with healthy controls cerebellar patients showed no beneficial influence of action execution on perception indicating deficits in APC. Applying lesion symptom mapping, we identified distinct areas in the dentate nucleus and the lateral cerebellum of both hemispheres that are causally involved in APC. Lesions of the right ventral dentate, the ipsilateral motor representations (lobules V/VI), and most interestingly the contralateral posterior cerebellum (lobule VII) impede the benefits of motor execution on perception. We conclude that the cerebellum establishes time-dependent multisensory representations on different levels, relevant for motor control as well as supporting action perception. Ipsilateral cerebellar motor representations are thought to support the somatosensory state estimate of ongoing movements, whereas the ventral dentate and the contralateral posterior cerebellum likely support sensorimotor integration in the cerebellar-parietal loops. Both the correct somatosensory as well as the multisensory state representations are vital for an intact APC.

  19. What should I do next? Using shared representations to solve interaction problems.

    PubMed

    Pezzulo, Giovanni; Dindo, Haris

    2011-06-01

    Studies on how "the social mind" works reveal that cognitive agents engaged in joint actions actively estimate and influence another's cognitive variables and form shared representations with them. (How) do shared representations enhance coordination? In this paper, we provide a probabilistic model of joint action that emphasizes how shared representations help solving interaction problems. We focus on two aspects of the model. First, we discuss how shared representations permit to coordinate at the level of cognitive variables (beliefs, intentions, and actions) and determine a coherent unfolding of action execution and predictive processes in the brains of two agents. Second, we discuss the importance of signaling actions as part of a strategy for sharing representations and the active guidance of another's actions toward the achievement of a joint goal. Furthermore, we present data from a human-computer experiment (the Tower Game) in which two agents (human and computer) have to build together a tower made of colored blocks, but only the human knows the constellation of the tower to be built (e.g., red-blue-red-blue-…). We report evidence that humans use signaling strategies that take another's uncertainty into consideration, and that in turn our model is able to use humans' actions as cues to "align" its representations and to select complementary actions.

  20. The Effect of Hierarchical Task Representations on Task Selection in Voluntary Task Switching

    ERIC Educational Resources Information Center

    Weaver, Starla M.; Arrington, Catherine M.

    2013-01-01

    The current study explored the potential for hierarchical representations to influence action selection during voluntary task switching. Participants switched between 4 individual task elements. In Experiment 1, participants were encouraged to represent the task elements as grouped within a hierarchy based on experimental manipulations of varying…

  1. Teachers' Practices and Mental Models: Transformation through Reflection on Action

    ERIC Educational Resources Information Center

    Manrique, María Soledad; Sánchez Abchi, Verónica

    2015-01-01

    This contribution explores the relationship between teaching practices, teaching discourses and teachers' implicit representations and mental models and the way these dimensions change through teacher education (T.E). In order to study these relationships, and based on the assumptions that representations underlie teaching practices and that T.E…

  2. Incidental and Context-Responsive Activation of Structure- and Function-Based Action Features during Object Identification

    ERIC Educational Resources Information Center

    Lee, Chia-lin; Middleton, Erica; Mirman, Daniel; Kalenine, Solene; Buxbaum, Laurel J.

    2013-01-01

    Previous studies suggest that action representations are activated during object processing, even when task-irrelevant. In addition, there is evidence that lexical-semantic context may affect such activation during object processing. Finally, prior work from our laboratory and others indicates that function-based ("use") and structure-based…

  3. How Equivalent Are the Action Execution, Imagery, and Observation of Intransitive Movements? Revisiting the Concept of Somatotopy during Action Simulation

    ERIC Educational Resources Information Center

    Lorey, Britta; Naumann, Tim; Pilgramm, Sebastian; Petermann, Carmen; Bischoff, Matthias; Zentgraf, Karen; Stark, Rudolf; Vaitl, Dieter; Munzert, Jorn

    2013-01-01

    Jeannerod (2001) hypothesized that action execution, imagery, and observation are functionally equivalent. This led to the major prediction that these motor states are based on the same action-specific and even effector-specific motor representations. The present study examined whether hand and foot movements are represented in a somatotopic…

  4. A Review on Human Activity Recognition Using Vision-Based Method.

    PubMed

    Zhang, Shugang; Wei, Zhiqiang; Nie, Jie; Huang, Lei; Wang, Shuang; Li, Zhen

    2017-01-01

    Human activity recognition (HAR) aims to recognize activities from a series of observations on the actions of subjects and the environmental conditions. The vision-based HAR research is the basis of many applications including video surveillance, health care, and human-computer interaction (HCI). This review highlights the advances of state-of-the-art activity recognition approaches, especially for the activity representation and classification methods. For the representation methods, we sort out a chronological research trajectory from global representations to local representations, and recent depth-based representations. For the classification methods, we conform to the categorization of template-based methods, discriminative models, and generative models and review several prevalent methods. Next, representative and available datasets are introduced. Aiming to provide an overview of those methods and a convenient way of comparing them, we classify existing literatures with a detailed taxonomy including representation and classification methods, as well as the datasets they used. Finally, we investigate the directions for future research.

  5. The interplay of representations and patterns of classroom discourse in science teaching sequences

    NASA Astrophysics Data System (ADS)

    Tang, Kok-Sing

    2016-09-01

    The purpose of this study is to examines the relationship between the communicative approach of classroom talk and the modes of representations used by science teachers. Based on video data from two physics classrooms in Singapore, a recurring pattern in the relationship was observed as the teaching sequence of a lesson unfolded. It was found that as the mode of representation shifted from enactive (action based) to iconic (image based) to symbolic (language based), there was a concurrent and coordinated shift in the classroom communicative approach from interactive-dialogic to interactive-authoritative to non-interactive-authoritative. Specifically, the shift from enactive to iconic to symbolic representations occurred mainly within the interactive-dialogic approach while the shift towards the interactive-authoritative and non-interactive-authoritative approaches occurred when symbolic modes of representation were used. This concurrent and coordinated shift has implications on how we conceive the use of representations in conjunction with the co-occurring classroom discourse, both theoretically and pedagogically.

  6. A Review on Human Activity Recognition Using Vision-Based Method

    PubMed Central

    Nie, Jie

    2017-01-01

    Human activity recognition (HAR) aims to recognize activities from a series of observations on the actions of subjects and the environmental conditions. The vision-based HAR research is the basis of many applications including video surveillance, health care, and human-computer interaction (HCI). This review highlights the advances of state-of-the-art activity recognition approaches, especially for the activity representation and classification methods. For the representation methods, we sort out a chronological research trajectory from global representations to local representations, and recent depth-based representations. For the classification methods, we conform to the categorization of template-based methods, discriminative models, and generative models and review several prevalent methods. Next, representative and available datasets are introduced. Aiming to provide an overview of those methods and a convenient way of comparing them, we classify existing literatures with a detailed taxonomy including representation and classification methods, as well as the datasets they used. Finally, we investigate the directions for future research. PMID:29065585

  7. The role of action representations in thematic object relations

    PubMed Central

    Tsagkaridis, Konstantinos; Watson, Christine E.; Jax, Steven A.; Buxbaum, Laurel J.

    2014-01-01

    A number of studies have explored the role of associative/event-based (thematic) and categorical (taxonomic) relations in the organization of object representations. Recent evidence suggests that thematic information may be particularly important in determining relationships between manipulable artifacts. However, although sensorimotor information is on many accounts an important component of manipulable artifact representations, little is known about the role that action may play during the processing of semantic relationships (particularly thematic relationships) between multiple objects. In this study, we assessed healthy and left hemisphere stroke participants to explore three questions relevant to object relationship processing. First, we assessed whether participants tended to favor thematic relations including action (Th+A, e.g., wine bottle—corkscrew), thematic relationships without action (Th-A, e.g., wine bottle—cheese), or taxonomic relationships (Tax, e.g., wine bottle—water bottle) when choosing between them in an association judgment task with manipulable artifacts. Second, we assessed whether the underlying constructs of event relatedness, action relatedness, and categorical relatedness determined the choices that participants made. Third, we assessed the hypothesis that degraded action knowledge and/or damage to temporo-parietal cortex, a region of the brain associated with the representation of action knowledge, would reduce the influence of action on the choice task. Experiment 1 showed that explicit ratings of event, action, and categorical relatedness were differentially predictive of healthy participants' choices, with action relatedness determining choices between Th+A and Th-A associations above and beyond event and categorical ratings. Experiment 2 focused more specifically on these Th+A vs. Th-A choices and demonstrated that participants with left temporo-parietal lesions, a brain region known to be involved in sensorimotor processing, were less likely than controls and tended to be less likely than patients with lesions sparing that region to use action relatedness in determining their choices. These data indicate that action knowledge plays a critical role in processing of thematic relations for manipulable artifacts. PMID:24672461

  8. The role of action representations in thematic object relations.

    PubMed

    Tsagkaridis, Konstantinos; Watson, Christine E; Jax, Steven A; Buxbaum, Laurel J

    2014-01-01

    A number of studies have explored the role of associative/event-based (thematic) and categorical (taxonomic) relations in the organization of object representations. Recent evidence suggests that thematic information may be particularly important in determining relationships between manipulable artifacts. However, although sensorimotor information is on many accounts an important component of manipulable artifact representations, little is known about the role that action may play during the processing of semantic relationships (particularly thematic relationships) between multiple objects. In this study, we assessed healthy and left hemisphere stroke participants to explore three questions relevant to object relationship processing. First, we assessed whether participants tended to favor thematic relations including action (Th+A, e.g., wine bottle-corkscrew), thematic relationships without action (Th-A, e.g., wine bottle-cheese), or taxonomic relationships (Tax, e.g., wine bottle-water bottle) when choosing between them in an association judgment task with manipulable artifacts. Second, we assessed whether the underlying constructs of event relatedness, action relatedness, and categorical relatedness determined the choices that participants made. Third, we assessed the hypothesis that degraded action knowledge and/or damage to temporo-parietal cortex, a region of the brain associated with the representation of action knowledge, would reduce the influence of action on the choice task. Experiment 1 showed that explicit ratings of event, action, and categorical relatedness were differentially predictive of healthy participants' choices, with action relatedness determining choices between Th+A and Th-A associations above and beyond event and categorical ratings. Experiment 2 focused more specifically on these Th+A vs. Th-A choices and demonstrated that participants with left temporo-parietal lesions, a brain region known to be involved in sensorimotor processing, were less likely than controls and tended to be less likely than patients with lesions sparing that region to use action relatedness in determining their choices. These data indicate that action knowledge plays a critical role in processing of thematic relations for manipulable artifacts.

  9. Studying Action Representation in Children via Motor Imagery

    ERIC Educational Resources Information Center

    Gabbard, Carl

    2009-01-01

    The use of motor imagery is a widely used experimental paradigm for the study of cognitive aspects of action planning and control in adults. Furthermore, there are indications that motor imagery provides a window into the process of action representation. These notions complement internal model theory suggesting that such representations allow…

  10. Invariant recognition drives neural representations of action sequences

    PubMed Central

    Poggio, Tomaso

    2017-01-01

    Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs), that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences. PMID:29253864

  11. Cognitive problem solving patterns of medical students correlate with success in diagnostic case solutions.

    PubMed

    Kiesewetter, Jan; Ebersbach, René; Görlitz, Anja; Holzer, Matthias; Fischer, Martin R; Schmidmaier, Ralf

    2013-01-01

    Problem-solving in terms of clinical reasoning is regarded as a key competence of medical doctors. Little is known about the general cognitive actions underlying the strategies of problem-solving among medical students. In this study, a theory-based model was used and adapted in order to investigate the cognitive actions in which medical students are engaged when dealing with a case and how patterns of these actions are related to the correct solution. Twenty-three medical students worked on three cases on clinical nephrology using the think-aloud method. The transcribed recordings were coded using a theory-based model consisting of eight different cognitive actions. The coded data was analysed using time sequences in a graphical representation software. Furthermore the relationship between the coded data and accuracy of diagnosis was investigated with inferential statistical methods. The observation of all main actions in a case elaboration, including evaluation, representation and integration, was considered a complete model and was found in the majority of cases (56%). This pattern significantly related to the accuracy of the case solution (φ = 0.55; p<.001). Extent of prior knowledge was neither related to the complete model nor to the correct solution. The proposed model is suitable to empirically verify the cognitive actions of problem-solving of medical students. The cognitive actions evaluation, representation and integration are crucial for the complete model and therefore for the accuracy of the solution. The educational implication which may be drawn from this study is to foster students reasoning by focusing on higher level reasoning.

  12. Action, outcome, and value: a dual-system framework for morality.

    PubMed

    Cushman, Fiery

    2013-08-01

    Dual-system approaches to psychology explain the fundamental properties of human judgment, decision making, and behavior across diverse domains. Yet, the appropriate characterization of each system is a source of debate. For instance, a large body of research on moral psychology makes use of the contrast between "emotional" and "rational/cognitive" processes, yet even the chief proponents of this division recognize its shortcomings. Largely independently, research in the computational neurosciences has identified a broad division between two algorithms for learning and choice derived from formal models of reinforcement learning. One assigns value to actions intrinsically based on past experience, while another derives representations of value from an internally represented causal model of the world. This division between action- and outcome-based value representation provides an ideal framework for a dual-system theory in the moral domain.

  13. Team Action Imagery and Team Cognition: Imagery of Game Situations and Required Team Actions Promotes a Functional Structure in Players' Representations of Team-Level Tactics.

    PubMed

    Frank, Cornelia; Linstromberg, Gian-Luca; Hennig, Linda; Heinen, Thomas; Schack, Thomas

    2018-02-01

    A team's cognitions of interpersonally coordinated actions are a crucial component for successful team performance. Here, we present an approach to practice team action by way of imagery and examine its impact on team cognitions in long-term memory. We investigated the impact of a 4-week team action imagery intervention on futsal players' mental representations of team-level tactics. Skilled futsal players were assigned to either an imagery training group or a no imagery training control group. Participants in the imagery training group practiced four team-level tactics by imagining team actions in specific game situations for three times a week. Results revealed that the imagery training group's representations were more similar to that of an expert representation after the intervention compared with the control group. This study indicates that team action imagery training can have a significant impact on players' tactical skill representations and thus order formation in long-term memory.

  14. The Emergence of a Novel Representation from Action: Evidence from Preschoolers

    ERIC Educational Resources Information Center

    Boncoddo, Rebecca; Dixon, James A.; Kelley, Elizabeth

    2010-01-01

    Recent work in embodied cognition has proposed that representations and actions are inextricably linked. The current study examines a developmental account of this relationship. Specifically, we propose that children's actions are foundational for novel representations. Thirty-two preschoolers, aged 3.4 to 5.7 years, were asked to solve a set of…

  15. The structure of affective action representations: temporal binding of affective response codes.

    PubMed

    Eder, Andreas B; Müsseler, Jochen; Hommel, Bernhard

    2012-01-01

    Two experiments examined the hypothesis that preparing an action with a specific affective connotation involves the binding of this action to an affective code reflecting this connotation. This integration into an action plan should lead to a temporary occupation of the affective code, which should impair the concurrent representation of affectively congruent events, such as the planning of another action with the same valence. This hypothesis was tested with a dual-task setup that required a speeded choice between approach- and avoidance-type lever movements after having planned and before having executed an evaluative button press. In line with the code-occupation hypothesis, slower lever movements were observed when the lever movement was affectively compatible with the prepared evaluative button press than when the two actions were affectively incompatible. Lever movements related to approach and avoidance and evaluative button presses thus seem to share a code that represents affective meaning. A model of affective action control that is based on the theory of event coding is discussed.

  16. Modelling Dowel Action of Discrete Reinforcing Bars in Cracked Concrete Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, A. K. H.; Ng, P. L.; Lam, J. Y. K.

    2010-05-21

    Dowel action is one of the component actions for shear force transfer in cracked reinforced concrete. In finite element analysis of concrete structures, the use of discrete representation of reinforcing bars is considered advantageous over the smeared representation due to the relative ease of modelling the bond-slip behaviour. However, there is very limited research on how to simulate the dowel action of discrete reinforcing bars. Herein, a numerical model for dowel action of discrete reinforcing bars crossing cracks in concrete is developed. The model features the derivation of dowel stiffness matrix based on beam-on-elastic-foundation theory and the direct assemblage ofmore » dowel stiffness into the concrete element stiffness matrices. The dowel action model is incorporated in a nonlinear finite element programme with secant stiffness formulation. Deep beams tested in the literature are analysed and it is found that the incorporation of dowel action model improves the accuracy of analysis.« less

  17. A Neural Dynamic Model Generates Descriptions of Object-Oriented Actions.

    PubMed

    Richter, Mathis; Lins, Jonas; Schöner, Gregor

    2017-01-01

    Describing actions entails that relations between objects are discovered. A pervasively neural account of this process requires that fundamental problems are solved: the neural pointer problem, the binding problem, and the problem of generating discrete processing steps from time-continuous neural processes. We present a prototypical solution to these problems in a neural dynamic model that comprises dynamic neural fields holding representations close to sensorimotor surfaces as well as dynamic neural nodes holding discrete, language-like representations. Making the connection between these two types of representations enables the model to describe actions as well as to perceptually ground movement phrases-all based on real visual input. We demonstrate how the dynamic neural processes autonomously generate the processing steps required to describe or ground object-oriented actions. By solving the fundamental problems of neural pointing, binding, and emergent discrete processing, the model may be a first but critical step toward a systematic neural processing account of higher cognition. Copyright © 2017 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  18. A Cross-Talk between Brain-Damage Patients and Infants on Action and Language

    ERIC Educational Resources Information Center

    Papeo, Liuba; Hochmann, Jean-Remy

    2012-01-01

    Sensorimotor representations in the brain encode the sensory and motor aspects of one's own bodily activity. It is highly debated whether sensorimotor representations are the core basis for the representation of action-related knowledge and, in particular, action words, such as verbs. In this review, we will address this question by bringing to…

  19. Maximum entropy perception-action space: a Bayesian model of eye movement selection

    NASA Astrophysics Data System (ADS)

    Colas, Francis; Bessière, Pierre; Girard, Benoît

    2011-03-01

    In this article, we investigate the issue of the selection of eye movements in a free-eye Multiple Object Tracking task. We propose a Bayesian model of retinotopic maps with a complex logarithmic mapping. This model is structured in two parts: a representation of the visual scene, and a decision model based on the representation. We compare different decision models based on different features of the representation and we show that taking into account uncertainty helps predict the eye movements of subjects recorded in a psychophysics experiment. Finally, based on experimental data, we postulate that the complex logarithmic mapping has a functional relevance, as the density of objects in this space in more uniform than expected. This may indicate that the representation space and control strategies are such that the object density is of maximum entropy.

  20. Real and Fictive Motion Processing in Polish L2 Users of English and Monolinguals: Evidence for Different Conceptual Representations

    ERIC Educational Resources Information Center

    Tomczak, Ewa; Ewert, Anna

    2015-01-01

    We examine cross-linguistic influence in the processing of motion sentences by L2 users from an embodied cognition perspective. The experiment employs a priming paradigm to test two hypotheses based on previous action and motion research in cognitive psychology. The first hypothesis maintains that conceptual representations of motion are embodied…

  1. A Systematic Investigation of the Effect of Action Observation Training and Motor Imagery Training on the Development of Mental Representation Structure and Skill Performance

    PubMed Central

    Kim, Taeho; Frank, Cornelia; Schack, Thomas

    2017-01-01

    Action observation training and motor imagery training have independently been studied and considered as an effective training strategy for improving motor skill learning. However, comparative studies of the two training strategies are relatively few. The purpose of this study was to investigate the effects of action observation training and motor imagery training on the development of mental representation structure and golf putting performance as well as the relation between the changes in mental representation structure and skill performance during the early learning stage. Forty novices were randomly assigned to one of four groups: action observation training, motor imagery training, physical practice and no practice. The mental representation structure and putting performance were measured before and after 3 days of training, then after a 2-day retention period. The results showed that mental representation structure and the accuracy of the putting performance were improved over time through the two types of cognitive training (i.e., action observation training and motor imagery training). In addition, we found a significant positive correlation between changes in mental representation structure and skill performance for the action observation training group only. Taken together, these results suggest that both cognitive adaptations and skill improvement occur through the training of the two simulation states of action, and that perceptual-cognitive changes are associated with the change of skill performance for action observation training. PMID:29089881

  2. Studying action representation in children via motor imagery.

    PubMed

    Gabbard, Carl

    2009-12-01

    The use of motor imagery is a widely used experimental paradigm for the study of cognitive aspects of action planning and control in adults. Furthermore, there are indications that motor imagery provides a window into the process of action representation. These notions complement internal model theory suggesting that such representations allow predictions (estimates) about the mapping of the self to parameters of the external world; processes that enable successful planning and execution of action. The ability to mentally represent action is important to the development of motor control. This paper presents a critical review of motor imagery research conducted with children (typically developing and special populations) with focus on its merits and possible shortcomings in studying action representation. Included in the review are age-related findings, possible brain structures involved, experimental paradigms, and recommendations for future work. The merits of this review are associated with the apparent increasing attraction for using and studying motor imagery to understand the developmental aspects of action processing in children.

  3. Shared action spaces: a basis function framework for social re-calibration of sensorimotor representations supporting joint action

    PubMed Central

    Pezzulo, Giovanni; Iodice, Pierpaolo; Ferraina, Stefano; Kessler, Klaus

    2013-01-01

    The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the “re-calibration” of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors’ spatial representations and creates a “Shared Action Space” (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. PMID:24324425

  4. Action-Based Digital Tools: Mathematics Learning in 6-Year-Old Children

    ERIC Educational Resources Information Center

    Dejonckheere, Peter J. N.; Desoete, Annemie; Fonck, Nathalie; Roderiguez, Dave; Six, Leen; Vermeersch, Tine; Vermeulen, Lies

    2014-01-01

    Introduction: In the present study we used a metaphorical representation in order to stimulate the numerical competences of six-year-olds. It was expected that when properties of physical action are used for mathematical thinking or when abstract mathematical thinking is grounded in sensorimotor processes, learning gains should be more pronounced…

  5. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations.

    PubMed

    Freud, Erez; Macdonald, Scott N; Chen, Juan; Quinlan, Derek J; Goodale, Melvyn A; Culham, Jody C

    2018-01-01

    In the current era of touchscreen technology, humans commonly execute visually guided actions directed to two-dimensional (2D) images of objects. Although real, three-dimensional (3D), objects and images of the same objects share high degree of visual similarity, they differ fundamentally in the actions that can be performed on them. Indeed, previous behavioral studies have suggested that simulated grasping of images relies on different representations than actual grasping of real 3D objects. Yet the neural underpinnings of this phenomena have not been investigated. Here we used functional magnetic resonance imaging (fMRI) to investigate how brain activation patterns differed for grasping and reaching actions directed toward real 3D objects compared to images. Multivoxel Pattern Analysis (MVPA) revealed that the left anterior intraparietal sulcus (aIPS), a key region for visually guided grasping, discriminates between both the format in which objects were presented (real/image) and the motor task performed on them (grasping/reaching). Interestingly, during action planning, the representations of real 3D objects versus images differed more for grasping movements than reaching movements, likely because grasping real 3D objects involves fine-grained planning and anticipation of the consequences of a real interaction. Importantly, this dissociation was evident in the planning phase, before movement initiation, and was not found in any other regions, including motor and somatosensory cortices. This suggests that the dissociable representations in the left aIPS were not based on haptic, motor or proprioceptive feedback. Together, these findings provide novel evidence that actions, particularly grasping, are affected by the realness of the target objects during planning, perhaps because real targets require a more elaborate forward model based on visual cues to predict the consequences of real manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Disentangling representations of shape and action components in the tool network.

    PubMed

    Wang, Xiaoying; Zhuang, Tonghe; Shen, Jiasi; Bi, Yanchao

    2018-05-30

    Shape and how they should be used are two key components of our knowledge about tools. Viewing tools preferentially activated a frontoparietal and occipitotemporal network, with dorsal regions implicated in computation of tool-related actions and ventral areas in shape representation. As shape and manners of manipulation are highly correlated for daily tools, whether they are independently represented in different regions remains inconclusive. In the current study, we collected fMRI data when participants viewed blocks of pictures of four daily tools (i.e., paintbrush, corkscrew, screwdriver, razor) where shape and action (manner of manipulation for functional use) were orthogonally manipulated, to tease apart these two dimensions. Behavioral similarity judgments tapping on object shape and finer aspects of actions (i.e., manners of motion, magnitude of arm movement, configuration of hand) were also collected to further disentangle the representation of object shape and different action components. Information analysis and representational similarity analysis were conducted on regional neural activation patterns of the tool-preferring network. In both analyses, the bilateral lateral occipitotemporal cortex showed robust shape representations but could not effectively distinguish between tool-use actions. The frontal and precentral regions represented kinematic action components, whereas the left parietal region (in information analyses) exhibited coding of both shape and tool-use action. By teasing apart shape and action components, we found both dissociation and association of them within the tool network. Taken together, our study disentangles representations for object shape from finer tool-use action components in the tool network, revealing the potential dissociable roles different tool-preferring regions play in tool processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. New Actions Upon Old Objects: A New Ontological Perspective on Functions.

    ERIC Educational Resources Information Center

    Schwarz, Baruch; Dreyfus, Tommy

    1995-01-01

    A computer microworld called Triple Representation Model uses graphical, tabular, and algebraic representations to influence conceptions of function. A majority of students were able to cope with partial data, recognize invariants while coordinating actions among representations, and recognize invariants while creating and comparing different…

  8. ''How To Do Things with Words'': Role of Motor Cortex in Semantic Representation of Action Words

    ERIC Educational Resources Information Center

    Kana, Rajesh K.; Blum, Elizabeth R.; Ladden, Stacy Levin; Ver Hoef, Lawrence W.

    2012-01-01

    Language, believed to have originated from actions, not only functions as a medium to access other minds, but it also helps us commit actions and enriches our social life. This fMRI study investigated the semantic and neural representations of actions and mental states. We focused mainly on language semantics (comprehending sentences with "action"…

  9. Error Tolerant Plan Recognition: An Empirical Investigation

    DTIC Science & Technology

    2015-05-01

    structure can differ drastically in semantics. For instance, a plan to travel to a grocery store to buy milk might coincidentally be structurally...algorithm for its ability to tolerate input errors, and that storing and leveraging state information in its plan representation substantially...proposed a novel representation for storing and organizing plans in a plan library, based on action-state pairs and abstract states. It counts the

  10. The Influence of Action Perception on Object Recognition: A Developmental Study

    ERIC Educational Resources Information Center

    Mounoud, Pierre; Duscherer, Katia; Moy, Guenael; Perraudin, Sandrine

    2007-01-01

    Two experiments explored the existence and the development of relations between action representations and object representations. A priming paradigm was used in which participants viewed an action pantomime followed by the picture of a tool, the tool being either associated or unassociated with the preceding action. Overall, we observed that the…

  11. HiTEC: a connectionist model of the interaction between perception and action planning.

    PubMed

    Haazebroek, Pascal; Raffone, Antonino; Hommel, Bernhard

    2017-11-01

    Increasing evidence suggests that perception and action planning do not represent separable stages of a unidirectional processing sequence, but rather emerging properties of highly interactive processes. To capture these characteristics of the human cognitive system, we have developed a connectionist model of the interaction between perception and action planning: HiTEC, based on the Theory of Event Coding (Hommel et al. in Behav Brain Sci 24:849-937, 2001). The model is characterized by representations at multiple levels and by shared representations and processes. It complements available models of stimulus-response translation by providing a rationale for (1) how situation-specific meanings of motor actions emerge, (2) how and why some aspects of stimulus-response translation occur automatically and (3) how task demands modulate sensorimotor processing. The model is demonstrated to provide a unitary account and simulation of a number of key findings with multiple experimental paradigms on the interaction between perception and action such as the Simon effect, its inversion (Hommel in Psychol Res 55:270-279, 1993), and action-effect learning.

  12. Communication, concepts and grounding.

    PubMed

    van der Velde, Frank

    2015-02-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Gestural Imitation and Limb Apraxia in Corticobasal Degeneration

    ERIC Educational Resources Information Center

    Salter, Jennifer E.; Roy, Eric A.; Black, Sandra E.; Joshi, Anish; Almeida, Quincy

    2004-01-01

    Limb apraxia is a common symptom of corticobasal degeneration (CBD). While previous research has shown that individuals with CBD have difficulty imitating transitive (tool-use actions) and intransitive non-representational gestures (nonsense actions), intransitive representational gestures (actions without a tool) have not been examined. In the…

  14. On the Dynamics of Action Representations Evoked by Names of Manipulable Objects

    ERIC Educational Resources Information Center

    Bub, Daniel N.; Masson, Michael E. J.

    2012-01-01

    Two classes of hand action representations are shown to be activated by listening to the name of a manipulable object (e.g., cellphone). The functional action associated with the proper use of an object is evoked soon after the onset of its name, as indicated by primed execution of that action. Priming is sustained throughout the duration of the…

  15. The Cognitive Representation of Intending Not to Act: Evidence for Specific Non-Action-Effect Binding

    ERIC Educational Resources Information Center

    Kuhn, Simone; Brass, Marcel

    2010-01-01

    The question how we represent voluntary action on a cognitive level has recently become of increasing interest to researchers studying motor control. However, so far it has been neglected how we represent the voluntary omission of an action. In our attempt to investigate the representation of voluntary non-actions we demonstrated binding effects…

  16. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance.

    PubMed

    Króliczak, Gregory; Piper, Brian J; Frey, Scott H

    2016-12-01

    Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., "pounding") or intransitive (e.g. "waving") action words. In linguistic control trials, cues denoted non-physical actions (e.g., "believing"). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one's motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations-the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely on dissociable mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance

    PubMed Central

    Króliczak, Gregory; Piper, Brian J.; Frey, Scott H.

    2016-01-01

    Data from focal brain injury and functional neuroimaging studies implicate a distributed network of parieto-fronto-temporal areas in the human left cerebral hemisphere as playing distinct roles in the representation of meaningful actions (praxis). Because these data come primarily from right-handed individuals, the relationship between left cerebral specialization for praxis representation and hand dominance remains unclear. We used functional magnetic resonance imaging (fMRI) to evaluate the hypothesis that strongly left-handed (right hemisphere motor dominant) adults also exhibit this left cerebral specialization. Participants planned familiar actions for subsequent performance with the left or right hand in response to transitive (e.g., “pounding”) or intransitive (e.g. “waving”) action words. In linguistic control trials, cues denoted non-physical actions (e.g., “believing”). Action planning was associated with significant, exclusively left-lateralized and extensive increases of activity in the supramarginal gyrus (SMg), and more focal modulations in the left caudal middle temporal gyrus (cMTg). This activity was hand- and gesture-independent, i.e., unaffected by the hand involved in subsequent action performance, and the type of gesture (i.e., transitive or intransitive). Compared directly with right-handers, left-handers exhibited greater involvement of the right angular gyrus (ANg) and dorsal premotor cortex (dPMC), which is indicative of a less asymmetric functional architecture for praxis representation. We therefore conclude that the organization of mechanisms involved in planning familiar actions is influenced by one’s motor dominance. However, independent of hand dominance, the left SMg and cMTg are specialized for ideomotor transformations—the integration of conceptual knowledge and motor representations into meaningful actions. These findings support the view that higher-order praxis representation and lower-level motor dominance rely on dissociable mechanisms. PMID:27020138

  18. Functional but Inefficient Kinesthetic Motor Imagery in Adolescents with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Chen, Ya-Ting; Tsou, Kuo-Su; Chen, Hao-Ling; Wong, Ching-Ching; Fan, Yang-Teng; Wu, Chien-Te

    2018-01-01

    Whether action representation in individuals with autism spectrum disorder (ASD) is deficient remains controversial, as previous studies of action observation or imitation report conflicting results. Here we investigated the characteristics of action representation in adolescents with ASD through motor imagery (MI) using a hand rotation and an…

  19. Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model

    PubMed Central

    Mannella, Francesco; Mirolli, Marco; Baldassarre, Gianluca

    2016-01-01

    Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviors guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers) activate the representation of rewards (or “action-outcomes”, e.g., foods) while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods). The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a) the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b) three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c) the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and explains the results of several devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behavior. PMID:27803652

  20. Simple Map in Action-Angle Coordinates.

    NASA Astrophysics Data System (ADS)

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima

    2008-04-01

    The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) the natural coordinates - toroidal magnetic flux and poloidal angle (ψ,θ), (ii) the physical coordinates - the physical variables (R,Z) or (X,Y), and (iii) the action-angle coordinates - (J,θ) or magnetic coordinates (ψ, θ). All three are canonical coordinates for field lines. The simple map in the (X,Y) representation has been studied extensively ^1, 2. Here we analytically calculate the action-angle coordinates and safety factor q for the simple map. We construct the equilibrium generating function for the simple map in action-angle coordinates. We derive the simple map in action-angle representation, and calculate the stochastic broadening of the ideal separatrix due to topological noise in action-angle representation. We also show how the geometric effects such as elongation, the height, and width of the ideal separatrix surface can be investigated using a slight modification of the simple map in action-angle representation. This work is supported by the following grants US Department of Energy - OFES DE-FG02-01ER54624 and DE-FG02-04ER54793 and National Science Foundation - HRD-0630372 and 0411394. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A, 364 140-145 (2007). [2] A. Punjabi, A. Verma, and A. Boozer, Phys.Rev. Lett. 69, 3322 (1992).

  1. Promoting self-care through symptom management: a theory-based approach for nurse practitioners.

    PubMed

    Fowler, Christopher; Kirschner, Michelle; Van Kuiken, Debra; Baas, Linda

    2007-05-01

    To present a theory of illness representation useful in clinical practice along with two case studies as examples of theory implementation. Literature review of relevant theory and associated literature, case studies from clinical practice. An individual asks several questions when experiencing a physical sensation: "Am I sick, stressed, or is this a sign of aging? If I'm sick, is the symptom connected with a disease label?" After asking these questions, the individual develops a cognitive and emotional illness representation that includes the dimensions of identity, cause, consequences, control, and timeline. This representation is guided by personal, cultural, and environmental contexts and determines coping strategies. By assessing the individual's cognitive and emotional representations of the illness, the nurse practitioner (NP) can use the common sense model of illness representation (CSM) to establish interventions and action plans helpful in decreasing distress in the management of symptoms. NPs frequently care for patients who present with very severe symptoms related to their health problem. This becomes a major challenge in effective disease management. Leventhal's CSM can be used as a framework to identify the cognitive and emotional illness representations individuals develop when acute and chronic symptoms are presented. By assessing the individual's cognitive and emotional representations of the illness, the NP will be able to use the CSM to establish interventions and action plans that will be helpful in decreasing the patient's distress in the management of symptoms.

  2. Short-term Action Intentions Overrule Long-Term Semantic Knowledge

    ERIC Educational Resources Information Center

    van Elk, M.; van Schie, H.T.; Bekkering, H.

    2009-01-01

    In the present study, we investigated whether the preparation of an unusual action with an object (e.g. bringing a cup towards the eye) could selectively overrule long-term semantic representations. In the first experiment it was found that unusual action intentions activated short-term semantic goal representations, rather than long-term…

  3. From action representation to action execution: exploring the links between cognitive and biomechanical levels of motor control

    PubMed Central

    Land, William M.; Volchenkov, Dima; Bläsing, Bettina E.; Schack, Thomas

    2013-01-01

    Along with superior performance, research indicates that expertise is associated with a number of mediating cognitive adaptations. To this extent, extensive practice is associated with the development of general and task-specific mental representations, which play an important role in the organization and control of action. Recently, new experimental methods have been developed, which allow for investigating the organization and structure of these representations, along with the functional structure of the movement kinematics. In the current article, we present a new approach for examining the overlap between skill representations and motor output. In doing so, we first present an architecture model, which addresses links between biomechanical and cognitive levels of motor control. Next, we review the state of the art in assessing memory structures underlying complex action. Following we present a new spatio-temporal decomposition method for illuminating the functional structure of movement kinematics, and finally, we apply these methods to investigate the overlap between the structure of motor representations in memory and their corresponding kinematic structures. Our aim is to understand the extent to which the output at a kinematic level is governed by representations at a cognitive level of motor control. PMID:24065915

  4. The ‘like me’ framework for recognizing and becoming an intentional agent

    PubMed Central

    Meltzoff, Andrew N.

    2007-01-01

    Infant imitation demonstrates that the perception and production of human action are closely linked by a ‘supramodal’ representation of action. This action representation unites observation and execution into a common framework, and it has far-reaching implications for the development of social cognition. It allows infants to see the behaviors of others as commensurate with their own—as ‘like me.’ Based on the ‘like me’ perception of others, social encounters are interpretable and informative. Infants can use themselves as a framework for understanding others and can learn about the possibilities and consequences of their own potential acts by observing the behavior of others. Through social interaction with other intentional agents who are viewed as ‘like me,’ infants develop a richer social cognition. This paper explores the early manifestations and cascading developmental effects of the ‘like me’ conception. PMID:17081488

  5. Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture.

    PubMed

    Layher, Georg; Brosch, Tobias; Neumann, Heiko

    2017-01-01

    Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks ( Eedn ) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based methods described in the literature, which select key pose frames by optimizing classification accuracy, (II) compared to the training on the full set of frames, representations trained on key pose frames result in a higher confidence in class assignments, and (III) key pose representations show promising generalization capabilities in a cross-dataset evaluation.

  6. Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture

    PubMed Central

    Layher, Georg; Brosch, Tobias; Neumann, Heiko

    2017-01-01

    Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks (Eedn) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based methods described in the literature, which select key pose frames by optimizing classification accuracy, (II) compared to the training on the full set of frames, representations trained on key pose frames result in a higher confidence in class assignments, and (III) key pose representations show promising generalization capabilities in a cross-dataset evaluation. PMID:28381998

  7. Action Anticipation and Interference: A Test of Prospective Gaze

    PubMed Central

    Cannon, Erin N.; Woodward, Amanda L.

    2013-01-01

    In the current study we investigate the proposal that one aspect of social perception, action anticipation, involves the recruitment of representations for self-produced action. An eye tracking paradigm was implemented to measure prospective gaze to a goal while performing either a motor or working memory task. Results indicate an effect of the motor task, suggesting the interference of a shared motor and action perception representation. PMID:25285317

  8. The Representation of Object-Directed Action and Function Knowledge in the Human Brain

    PubMed Central

    Chen, Quanjing; Garcea, Frank E.; Mahon, Bradford Z.

    2016-01-01

    The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. PMID:25595179

  9. Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.

    PubMed

    Tettamanti, Marco; Conca, Francesca; Falini, Andrea; Perani, Daniela

    2017-11-01

    The hypothesis that the brain constitutively encodes observed manipulable objects for the actions they afford is still debated. Yet, crucial evidence demonstrating that, even in the absence of perceptual awareness, the mere visual appearance of a manipulable object triggers a visuomotor coding in the action representation system including the premotor cortex, has hitherto not been provided. In this fMRI study, we instantiated reliable unaware visual perception conditions by means of continuous flash suppression, and we tested in 24 healthy human participants (13 females) whether the visuomotor object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices is activated even under subliminal perceptual conditions. We found consistent activation in the target visuomotor cortices, both with and without perceptual awareness, specifically for pictures of manipulable versus non-manipulable objects. By means of a multivariate searchlight analysis, we also found that the brain activation patterns in this visuomotor network enabled the decoding of manipulable versus non-manipulable object picture processing, both with and without awareness. These findings demonstrate the intimate neural coupling between visual perception and motor representation that underlies manipulable object processing: manipulable object stimuli specifically engage the visuomotor object-directed action representation system, in a constitutive manner that is independent from perceptual awareness. This perceptuo-motor coupling endows the brain with an efficient mechanism for monitoring and planning reactions to external stimuli in the absence of awareness. SIGNIFICANCE STATEMENT Our brain constantly encodes the visual information that hits the retina, leading to a stimulus-specific activation of sensory and semantic representations, even for objects that we do not consciously perceive. Do these unconscious representations encompass the motor programming of actions that could be accomplished congruently with the objects' functions? In this fMRI study, we instantiated unaware visual perception conditions, by dynamically suppressing the visibility of manipulable object pictures with mondrian masks. Despite escaping conscious perception, manipulable objects activated an object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices. This demonstrates that visuomotor encoding occurs independently of conscious object perception. Copyright © 2017 the authors 0270-6474/17/3710712-13$15.00/0.

  10. Relative Contributions of Goal Representation and Kinematic Information to Self-Monitoring by Chimpanzees and Humans

    ERIC Educational Resources Information Center

    Kaneko, Takaaki; Tomonaga, Masaki

    2012-01-01

    It is important to monitor feedback related to the intended result of an action while executing that action. This monitoring process occurs hierarchically; that is, sensorimotor processing occurs at a lower level, and conceptual representation of action goals occurs at a higher level. Although the hierarchical nature of self-monitoring may derive…

  11. Online Build-Order Optimization for Real-Time Strategy Agents using Multi-Objective Evolutionary Algorithms

    DTIC Science & Technology

    2014-03-27

    Their chromosome representation is a binary string of 13 actions or 39 bits. Plans consist of a limited number of build actions for the creation of...injected via case-injection which resembles case-base reasoning. Expert actions are recorded and then transformed into chromosomes for injection into GAPs...sites supply a finite amount of a resource. For example, a gold mine in AOE will disappear after a player’s workers have extracted the finite amount of

  12. Action Bank: A High Level Representation of Activity in Video (Author’s Manuscript)

    DTIC Science & Technology

    2012-07-26

    of highly discriminative performance. We have tested action bank on four major activity recognition benchmarks. In all cases, our perfor- mance is...that seek a more semantically rich and discriminative Bank of Action Detectors View 1 View 2 View n Biking Javelin Jump Rope Fencing Input Video...Positive: jumping, throwing , running, ... Negative: biking, fencing, drumming, ... Figure 1. Action bank is a high-level representation for video ac

  13. Prospective memory: A comparative perspective

    PubMed Central

    Crystal, Jonathon D.; Wilson, A. George

    2014-01-01

    Prospective memory consists of forming a representation of a future action, temporarily storing that representation in memory, and retrieving it at a future time point. Here we review the recent development of animal models of prospective memory. We review experiments using rats that focus on the development of time-based and event-based prospective memory. Next, we review a number of prospective-memory approaches that have been used with a variety of non-human primates. Finally, we review selected approaches from the human literature on prospective memory to identify targets for development of animal models of prospective memory. PMID:25101562

  14. The indexed time table approach for planning and acting

    NASA Technical Reports Server (NTRS)

    Ghallab, Malik; Alaoui, Amine Mounir

    1989-01-01

    A representation is discussed of symbolic temporal relations, called IxTeT, that is both powerful enough at the reasoning level for tasks such as plan generation, refinement and modification, and efficient enough for dealing with real time constraints in action monitoring and reactive planning. Such representation for dealing with time is needed in a teleoperated space robot. After a brief survey of known approaches, the proposed representation shows its computational efficiency for managing a large data base of temporal relations. Reactive planning with IxTeT is described and exemplified through the problem of mission planning and modification for a simple surveying satellite.

  15. Non-photorealistic rendering of virtual implant models for computer-assisted fluoroscopy-based surgical procedures

    NASA Astrophysics Data System (ADS)

    Zheng, Guoyan

    2007-03-01

    Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.

  16. Children's Representation and Imitation of Events: How Goal Organization Influences 3-Year-Old Children's Memory for Action Sequences

    ERIC Educational Resources Information Center

    Loucks, Jeff; Mutschler, Christina; Meltzoff, Andrew N.

    2017-01-01

    Children's imitation of adults plays a prominent role in human cognitive development. However, few studies have investigated how children represent the complex structure of observed actions which underlies their imitation. We integrate theories of action segmentation, memory, and imitation to investigate whether children's event representation is…

  17. Intact action segmentation in Parkinson's disease: Hypothesis testing using a novel computational approach.

    PubMed

    Schiffer, Anne-Marike; Nevado-Holgado, Alejo J; Johnen, Andreas; Schönberger, Anna R; Fink, Gereon R; Schubotz, Ricarda I

    2015-11-01

    Action observation is known to trigger predictions of the ongoing course of action and thus considered a hallmark example for predictive perception. A related task, which explicitly taps into the ability to predict actions based on their internal representations, is action segmentation; the task requires participants to demarcate where one action step is completed and another one begins. It thus benefits from a temporally precise prediction of the current action. Formation and exploitation of these temporal predictions of external events is now closely associated with a network including the basal ganglia and prefrontal cortex. Because decline of dopaminergic innervation leads to impaired function of the basal ganglia and prefrontal cortex in Parkinson's disease (PD), we hypothesised that PD patients would show increased temporal variability in the action segmentation task, especially under medication withdrawal (hypothesis 1). Another crucial aspect of action segmentation is its reliance on a semantic representation of actions. There is no evidence to suggest that action representations are substantially altered, or cannot be accessed, in non-demented PD patients. We therefore expected action segmentation judgments to follow the same overall patterns in PD patients and healthy controls (hypothesis 2), resulting in comparable segmentation profiles. Both hypotheses were tested with a novel classification approach. We present evidence for both hypotheses in the present study: classifier performance was slightly decreased when it was tested for its ability to predict the identity of movies segmented by PD patients, and a measure of normativity of response behaviour was decreased when patients segmented movies under medication-withdrawal without access to an episodic memory of the sequence. This pattern of results is consistent with hypothesis 1. However, the classifier analysis also revealed that responses given by patients and controls create very similar action-specific patterns, thus delivering evidence in favour hypothesis 2. In terms of methodology, the use of classifiers in the present study allowed us to establish similarity of behaviour across groups (hypothesis 2). The approach opens up a new avenue that standard statistical methods often fail to provide and is discussed in terms of its merits to measure hypothesised similarities across study populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Action mechanisms for social cognition: behavioral and neural correlates of developing Theory of Mind

    PubMed Central

    Bowman, Lindsay C.; Thorpe, Samuel G.; Cannon, Erin N.; Fox, Nathan A.

    2016-01-01

    Many psychological theories posit foundational links between two fundamental constructs: (1) our ability to produce, perceive, and represent action; and (2) our ability to understand the meaning and motivation behind the action (i.e. Theory of Mind; ToM). This position is contentious, however, and long-standing competing theories of social-cognitive development debate roles for basic action-processing in ToM. Developmental research is key to investigating these hypotheses, but whether individual differences in neural and behavioral measures of motor action relate to social-cognitive development is unknown. We examined 3- to 5-year-old children’s (N = 26) EEG mu-desynchronization during production of object-directed action, and explored associations between mu-desynchronization and children’s behavioral motor skills, behavioral action-representation abilities, and behavioral ToM. For children with high (but not low) mu-desynchronization, motor skill related to action-representation abilities, and action-representation mediated relations between motor skill and ToM. Results demonstrate novel foundational links between action-processing and ToM, suggesting that basic motor action may be a key mechanism for social-cognitive development, thus shedding light on the origins and emergence of higher social cognition. PMID:27573916

  19. Functional but Inefficient Kinesthetic Motor Imagery in Adolescents with Autism Spectrum Disorder.

    PubMed

    Chen, Ya-Ting; Tsou, Kuo-Su; Chen, Hao-Ling; Wong, Ching-Ching; Fan, Yang-Teng; Wu, Chien-Te

    2018-03-01

    Whether action representation in individuals with autism spectrum disorder (ASD) is deficient remains controversial, as previous studies of action observation or imitation report conflicting results. Here we investigated the characteristics of action representation in adolescents with ASD through motor imagery (MI) using a hand rotation and an object rotation task. Comparable with the typically-developing group, the individuals with ASD were able to spontaneously use kinesthetic MI to perform the hand rotation task, as manifested by the significant biomechanical effects. However, the ASD group performed significantly slower only in the hand rotation task, but not in the object rotation task. The findings suggest that the adolescents with ASD showed inefficient but functional kinesthetic MI, implicating that their action representation might be preserved.

  20. Intention, emotion, and action: a neural theory based on semantic pointers.

    PubMed

    Schröder, Tobias; Stewart, Terrence C; Thagard, Paul

    2014-06-01

    We propose a unified theory of intentions as neural processes that integrate representations of states of affairs, actions, and emotional evaluation. We show how this theory provides answers to philosophical questions about the concept of intention, psychological questions about human behavior, computational questions about the relations between belief and action, and neuroscientific questions about how the brain produces actions. Our theory of intention ties together biologically plausible mechanisms for belief, planning, and motor control. The computational feasibility of these mechanisms is shown by a model that simulates psychologically important cases of intention. © 2013 Cognitive Science Society, Inc.

  1. The Representation of Object-Directed Action and Function Knowledge in the Human Brain.

    PubMed

    Chen, Quanjing; Garcea, Frank E; Mahon, Bradford Z

    2016-04-01

    The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Connecting and Using Multiple Representations

    ERIC Educational Resources Information Center

    Nielsen, Maria E.; Bostic, Jonathan D.

    2018-01-01

    "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014) emphasizes eight teaching practices for effective mathematics teaching, one of which is to "use and connect multiple representations" (NCTM 2014, p. 24). An action that describes how teachers might promote this practice is to "allocate substantial…

  3. An analysis of primary school students’ representational ability in mathematics based on gender perspective

    NASA Astrophysics Data System (ADS)

    Kowiyah; Mulyawati, I.

    2018-01-01

    Mathematic representation is one of the basic mathematic skills that allows students to communicate their mathematic ideas through visual realities such as pictures, tables, mathematic expressions and mathematic equities. The present research aims at: 1) analysing students’ mathematic representation ability in solving mathematic problems and 2) examining the difference of students’ mathematic ability based on their gender. A total of sixty primary school students participated in this study comprising of thirty males and thirty females. Data required in this study were collected through mathematic representation tests, interviews and test evaluation rubric. Findings of this study showed that students’ mathematic representation of visual realities (image and tables) was reported higher at 62.3% than at in the form of description (or statement) at 8.6%. From gender perspective, male students performed better than the females at action planning stage. The percentage of males was reported at 68% (the highest), 33% (medium) and 21.3% (the lowest) while the females were at 36% (the highest), 37.7% (medium) and 32.6% (the lowest).

  4. Action sounds update the mental representation of arm dimension: contributions of kinaesthesia and agency

    PubMed Central

    Tajadura-Jiménez, Ana; Tsakiris, Manos; Marquardt, Torsten; Bianchi-Berthouze, Nadia

    2015-01-01

    Auditory feedback accompanies almost all our actions, but its contribution to body-representation is understudied. Recently it has been shown that the auditory distance of action sounds recalibrates perceived tactile distances on one’s arm, suggesting that action sounds can change the mental representation of arm length. However, the question remains open of what factors play a role in this recalibration. In this study we investigate two of these factors, kinaesthesia, and sense of agency. Across two experiments, we asked participants to tap with their arm on a surface while extending their arm. We manipulated the tapping sounds to originate at double the distance to the tapping locations, as well as their synchrony to the action, which is known to affect feelings of agency over the sounds. Kinaesthetic cues were manipulated by having additional conditions in which participants did not displace their arm but kept tapping either close (Experiment 1) or far (Experiment 2) from their body torso. Results show that both the feelings of agency over the action sounds and kinaesthetic cues signaling arm displacement when displacement of the sound source occurs are necessary to observe changes in perceived tactile distance on the arm. In particular, these cues resulted in the perceived tactile distances on the arm being felt smaller, as compared to distances on a reference location. Moreover, our results provide the first evidence of consciously perceived changes in arm-representation evoked by action sounds and suggest that the observed changes in perceived tactile distance relate to experienced arm elongation. We discuss the observed effects in the context of forward internal models of sensorimotor integration. Our results add to these models by showing that predictions related to action sounds must fit with kinaesthetic cues in order for auditory inputs to change body-representation. PMID:26074843

  5. Action Sounds Modulate Arm Reaching Movements

    PubMed Central

    Tajadura-Jiménez, Ana; Marquardt, Torsten; Swapp, David; Kitagawa, Norimichi; Bianchi-Berthouze, Nadia

    2016-01-01

    Our mental representations of our body are continuously updated through multisensory bodily feedback as we move and interact with our environment. Although it is often assumed that these internal models of body-representation are used to successfully act upon the environment, only a few studies have actually looked at how body-representation changes influence goal-directed actions, and none have looked at this in relation to body-representation changes induced by sound. The present work examines this question for the first time. Participants reached for a target object before and after adaptation periods during which the sounds produced by their hand tapping a surface were spatially manipulated to induce a representation of an elongated arm. After adaptation, participants’ reaching movements were performed in a way consistent with having a longer arm, in that their reaching velocities were reduced. These kinematic changes suggest auditory-driven recalibration of the somatosensory representation of the arm morphology. These results provide support to the hypothesis that one’s represented body size is used as a perceptual ruler to measure objects’ distances and to accordingly guide bodily actions. PMID:27695430

  6. ENZVU--An Enzyme Kinetics Computer Simulation Based upon a Conceptual Model of Enzyme Action.

    ERIC Educational Resources Information Center

    Graham, Ian

    1985-01-01

    Discusses a simulation on enzyme kinetics based upon the ability of computers to generate random numbers. The program includes: (1) enzyme catalysis in a restricted two-dimensional grid; (2) visual representation of catalysis; and (3) storage and manipulation of data. Suggested applications and conclusions are also discussed. (DH)

  7. Facilitating Mathematical Practices through Visual Representations

    ERIC Educational Resources Information Center

    Murata, Aki; Stewart, Chana

    2017-01-01

    Effective use of mathematical representation is key to supporting student learning. In "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014), "use and connect mathematical representations" is one of the effective Mathematics Teaching Practices. By using different representations, students examine concepts…

  8. At the Mercy of Strategies: The Role of Motor Representations in Language Understanding

    PubMed Central

    Tomasino, Barbara; Rumiati, Raffaella Ida

    2013-01-01

    Classical cognitive theories hold that word representations in the brain are abstract and amodal, and are independent of the objects’ sensorimotor properties they refer to. An alternative hypothesis emphasizes the importance of bodily processes in cognition: the representation of a concept appears to be crucially dependent upon perceptual-motor processes that relate to it. Thus, understanding action-related words would rely upon the same motor structures that also support the execution of the same actions. In this context, motor simulation represents a key component. Our approach is to draw parallels between the literature on mental rotation and the literature on action verb/sentence processing. Here we will discuss recent studies on mental imagery, mental rotation, and language that clearly demonstrate how motor simulation is neither automatic nor necessary to language understanding. These studies have shown that motor representations can or cannot be activated depending on the type of strategy the participants adopt to perform tasks involving motor phrases. On the one hand, participants may imagine the movement with the body parts used to carry out the actions described by the verbs (i.e., motor strategy); on the other, individuals may solve the task without simulating the corresponding movements (i.e., visual strategy). While it is not surprising that the motor strategy is at work when participants process action-related verbs, it is however striking that sensorimotor activation has been reported also for imageable concrete words with no motor content, for “non-words” with regular phonology, for pseudo-verb stimuli, and also for negations. Based on the extant literature, we will argue that implicit motor imagery is not uniquely used when a body-related stimulus is encountered, and that it is not the type of stimulus that automatically triggers the motor simulation but the type of strategy. Finally, we will also comment on the view that sensorimotor activations are subjected to a top-down modulation. PMID:23382722

  9. Cognitive training with action-related verbs induces neural plasticity in the action representation system as assessed by gray matter brain morphometry.

    PubMed

    Ghio, Marta; Locatelli, Matteo; Tettamanti, Andrea; Perani, Daniela; Gatti, Roberto; Tettamanti, Marco

    2018-06-01

    Embodied cognition theories of semantic memory still face the need for multiple sources of converging evidence in support of the involvement of sensory-motor systems in action-related knowledge. Previous studies showed that training manual actions improves semantic processing of verbs referring to the trained actions. The present work aimed to provide complementary evidence by measuring the brain plasticity effects of a cognitive training requiring sustained lexical-semantic processing of action-related verbs. We included two groups of participants, namely the Proximal Group (PG) and the Distal Group (DG), which underwent a 3-week training with verbs referring to actions involving the proximal and the distal upper limb musculature, respectively. Before and after training, we measured gray matter voxel brain morphometry based on T1 structural magnetic resonance imaging. By means of this 2 (Group: PG, DG) × 2 (Time: pre-, post-training) factorial design, we tested whether sustained cognitive experience with specific action-related verbs induces congruent brain plasticity modifications in target regions of interest pertaining to the action representation system. We found significant post- versus pre-training gray matter volume increases, specifically for PG in the left dorsal precentral gyrus, and for DG in the right cerebellar lobule VIIa. These preliminary results suggest that a cognitive training can induce structural plasticity modifications in brain regions specifically coding for the distal and proximal motor actions the trained verbs refer to. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Computational Models of Human Performance: Validation of Memory and Procedural Representation in Advanced Air/Ground Simulation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Labacqz, J. Victor (Technical Monitor)

    1997-01-01

    The Man-Machine Interaction Design and Analysis System (MIDAS) under joint U.S. Army and NASA cooperative is intended to assist designers of complex human/automation systems in successfully incorporating human performance capabilities and limitations into decision and action support systems. MIDAS is a computational representation of multiple human operators, selected perceptual, cognitive, and physical functions of those operators, and the physical/functional representation of the equipment with which they operate. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. We have extended the human performance models to include representation of both human operators and intelligent aiding systems in flight management, and air traffic service. The focus of this development is to predict human performance in response to aiding system developed to identify aircraft conflict and to assist in the shared authority for resolution. The demands of this application requires representation of many intelligent agents sharing world-models, coordinating action/intention, and cooperative scheduling of goals and action in an somewhat unpredictable world of operations. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper, we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communication issues connected with aircraft-based separation assurance.

  11. When action is not enough: tool-use reveals tactile-dependent access to Body Schema.

    PubMed

    Cardinali, L; Brozzoli, C; Urquizar, C; Salemme, R; Roy, A C; Farnè, A

    2011-11-01

    Proper motor control of our own body implies a reliable representation of body parts. This information is supposed to be stored in the Body Schema (BS), a body representation that appears separate from a more perceptual body representation, the Body Image (BI). The dissociation between BS for action and BI for perception, originally based on neuropsychological evidence, has recently become the focus of behavioural studies in physiological conditions. By inducing the rubber hand illusion in healthy participants, Kammers et al. (2009) showed perceptual changes attributable to the BI to which the BS, as indexed via motor tasks, was immune. To more definitively support the existence of dissociable body representations in physiological conditions, here we tested for the opposite dissociation, namely, whether a tool-use paradigm would induce a functional update of the BS (via a motor localization task) without affecting the BI (via a perceptual localization task). Healthy subjects were required to localize three anatomical landmarks on their right arm, before and after using the same arm to control a tool. In addition to this classical task-dependency approach, we assessed whether preferential access to the BS could also depend upon the way positional information about forearm targets is provided, to subsequently execute the same task. To this aim, participants performed either verbally or tactually driven versions of the motor and perceptual localization tasks. Results showed that both the motor and perceptual tasks were sensitive to the update of the forearm representation, but only when the localization task (perceptual or motor) was driven by a tactile input. This pattern reveals that the motor output is not sufficient per se, but has to be coupled with tactually mediated information to guarantee access to the BS. These findings shade a new light on the action-perception models of body representations and underlie how functional plasticity may be a useful tool to clarify their operational definition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Promoting Decimal Number Sense and Representational Fluency

    ERIC Educational Resources Information Center

    Suh, Jennifer M.; Johnston, Chris; Jamieson, Spencer; Mills, Michelle

    2008-01-01

    The abstract nature of mathematics requires the communication of mathematical ideas through multiple representations, such as words, symbols, pictures, objects, or actions. Building representational fluency involves using mathematical representations flexibly and being able to interpret and translate among these different models and mathematical…

  13. Embodied effects of conceptual knowledge continuously perturb the hand in flight.

    PubMed

    Till, Bernie C; Masson, Michael E J; Bub, Daniel N; Driessen, Peter F

    2014-08-01

    Attending to a manipulable object evokes a mental representation of hand actions associated with the object's form and function. In one view, these representations are sufficiently abstract that their competing influence on an unrelated action is confined to the planning stages of movement and does not affect its on-line control. Alternatively, an object may evoke action representations that affect the entire trajectory of an unrelated grasping action. We developed a new methodology to statistically analyze the forward motion and rotation of the hand and fingers under different task conditions. Using this novel approach, we established that a grasping action executed after seeing a photograph of an object is systematically perturbed even into the late stages of its trajectory by the competing influence of the grasping posture associated with the object. Our results show that embodied effects of conceptual knowledge continuously modulate the hand in flight. © The Author(s) 2014.

  14. Idiosyncratic representation of peripersonal space depends on the success of one's own motor actions, but also the successful actions of others!

    PubMed Central

    Quesque, François; Gigliotti, Maria-Francesca; Ott, Laurent; Bruyelle, Jean-Luc

    2018-01-01

    Peripersonal space is a multisensory representation of the environment around the body in relation to the motor system, underlying the interactions with the physical and social world. Although changing body properties and social context have been shown to alter the functional processing of space, little is known about how changing the value of objects influences the representation of peripersonal space. In two experiments, we tested the effect of modifying the spatial distribution of reward-yielding targets on manual reaching actions and peripersonal space representation. Before and after performing a target-selection task consisting of manually selecting a set of targets on a touch-screen table, participants performed a two-alternative forced-choice reachability-judgment task. In the target-selection task, half of the targets were associated with a reward (change of colour from grey to green, providing 1 point), the other half being associated with no reward (change of colour from grey to red, providing no point). In Experiment 1, the target-selection task was performed individually with the aim of maximizing the point count, and the distribution of the reward-yielding targets was either 50%, 25% or 75% in the proximal and distal spaces. In Experiment 2, the target-selection task was performed in a social context involving cooperation between two participants to maximize the point count, and the distribution of the reward-yielding targets was 50% in the proximal and distal spaces. Results showed that changing the distribution of the reward-yielding targets or introducing the social context modified concurrently the amplitude of self-generated manual reaching actions and the representation of peripersonal space. Moreover, a decrease of the amplitude of manual reaching actions caused a reduction of peripersonal space when resulting from the distribution of reward-yielding targets, while this effect was not observed in a social interaction context. In that case, the decreased amplitude of manual reaching actions was accompanied by an increase of peripersonal space representation, which was not due to the mere presence of a confederate (control experiment). We conclude that reward-dependent modulation of objects values in the environment modifies the representation of peripersonal space, when resulting from either self-generated motor actions or observation of motor actions performed by a confederate. PMID:29771982

  15. Idiosyncratic representation of peripersonal space depends on the success of one's own motor actions, but also the successful actions of others!

    PubMed

    Coello, Yann; Quesque, François; Gigliotti, Maria-Francesca; Ott, Laurent; Bruyelle, Jean-Luc

    2018-01-01

    Peripersonal space is a multisensory representation of the environment around the body in relation to the motor system, underlying the interactions with the physical and social world. Although changing body properties and social context have been shown to alter the functional processing of space, little is known about how changing the value of objects influences the representation of peripersonal space. In two experiments, we tested the effect of modifying the spatial distribution of reward-yielding targets on manual reaching actions and peripersonal space representation. Before and after performing a target-selection task consisting of manually selecting a set of targets on a touch-screen table, participants performed a two-alternative forced-choice reachability-judgment task. In the target-selection task, half of the targets were associated with a reward (change of colour from grey to green, providing 1 point), the other half being associated with no reward (change of colour from grey to red, providing no point). In Experiment 1, the target-selection task was performed individually with the aim of maximizing the point count, and the distribution of the reward-yielding targets was either 50%, 25% or 75% in the proximal and distal spaces. In Experiment 2, the target-selection task was performed in a social context involving cooperation between two participants to maximize the point count, and the distribution of the reward-yielding targets was 50% in the proximal and distal spaces. Results showed that changing the distribution of the reward-yielding targets or introducing the social context modified concurrently the amplitude of self-generated manual reaching actions and the representation of peripersonal space. Moreover, a decrease of the amplitude of manual reaching actions caused a reduction of peripersonal space when resulting from the distribution of reward-yielding targets, while this effect was not observed in a social interaction context. In that case, the decreased amplitude of manual reaching actions was accompanied by an increase of peripersonal space representation, which was not due to the mere presence of a confederate (control experiment). We conclude that reward-dependent modulation of objects values in the environment modifies the representation of peripersonal space, when resulting from either self-generated motor actions or observation of motor actions performed by a confederate.

  16. The cognitive nature of action - functional links between cognitive psychology, movement science, and robotics.

    PubMed

    Schack, Thomas; Ritter, Helge

    2009-01-01

    This paper examines the cognitive architecture of human action, showing how it is organized over several levels and how it is built up. Basic action concepts (BACs) are identified as major building blocks on a representation level. These BACs are cognitive tools for mastering the functional demands of movement tasks. Results from different lines of research showed that not only the structure formation of mental representations in long-term memory but also chunk formation in working memory are built up on BACs and relate systematically to movement structures. It is concluded that such movement representations might provide the basis for action implementation and action control in skilled voluntary movements in the form of cognitive reference structures. To simulate action implementation we discuss challenges and issues that arise when we try to replicate complex movement abilities in robots. Among the key issues to be addressed is the question how structured representations can arise during skill acquisition and how the underlying processes can be understood sufficiently succinctly to replicate them on robot platforms. Working towards this goal, we translate our findings in studies of motor control in humans into models that can guide the implementation of cognitive robot architectures. Focusing on the issue of manual action control, we illustrate some results in the context of grasping with a five-fingered anthropomorphic robot hand.

  17. Bruner's Three Forms of Representation Revisited: Action, Pictures and Words for Effective Computer Instruction.

    ERIC Educational Resources Information Center

    Presno, Caroline

    1997-01-01

    Discusses computer instruction in light of Bruner's theory of three forms of representation (action, icons, and symbols). Examines how studies regarding Paivio's dual-coding theory and studies focusing on procedural knowledge support Bruner's theory. Provides specific examples for instruction in three categories: demonstrations, pictures and…

  18. Do Stimulus-Action Associations Contribute to Repetition Priming?

    ERIC Educational Resources Information Center

    Dennis, Ian; Perfect, Timothy J.

    2013-01-01

    Despite evidence that response learning makes a major contribution to repetition priming, the involvement of response representations at the level of motor actions remains uncertain. Levels of response representation were investigated in 4 experiments that used different tasks at priming and test. Priming for stimuli that required congruent…

  19. 39 CFR 501.13 - False representations of Postal Service actions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANUFACTURE AND DISTRIBUTE POSTAGE EVIDENCING SYSTEMS § 501.13 False representations of Postal Service actions... Evidencing Systems. The Postal Service reserves the right to suspend and/or revoke the authorization to manufacture or distribute Postage Evidencing Systems throughout the United States or any part thereof pursuant...

  20. Musical training increases functional connectivity, but does not enhance mu suppression.

    PubMed

    Wu, C Carolyn; Hamm, Jeff P; Lim, Vanessa K; Kirk, Ian J

    2017-09-01

    Musical training provides an ideal platform for investigating action representation for sound. Learning to play an instrument requires integration of sensory and motor perception-action processes. Functional neuroimaging studies have indicated that listening to trained music can result in the activity in premotor areas, even after a short period of training. These studies suggest that action representation systems are heavily dependent on specific sensorimotor experience. However, others suggest that because humans naturally move to music, sensorimotor training is not necessary and there is a more general action representation for music. We previously demonstrated that EEG mu suppression, commonly implemented to demonstrate mirror-neuron-like action representation while observing movements, can also index action representations for sounds in pianists. The current study extends these findings to a group of non-musicians who learned to play randomised sequences on a piano, in order to acquire specific sound-action mappings for the five fingers of their right hand. We investigated training-related changes in neural dynamics as indexed by mu suppression and task-related coherence measures. To test the specificity of training effects, we included sounds similar to those encountered in the training and additionally rhythm sequences. We found no effect of training on mu suppression between pre- and post-training EEG recordings. However, task-related coherence indexing functional connectivity between electrodes over audiomotor areas increased after training. These results suggest that long-term training in musicians and short-term training in novices may be associated with different stages of audiomotor integration that can be reflected in different EEG measures. Furthermore, the changes in functional connectivity were specifically found for piano tones, and were not apparent when participants listened to rhythms, indicating some degree of specificity related to training. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Novel Locally Linear KNN Method With Applications to Visual Recognition.

    PubMed

    Liu, Qingfeng; Liu, Chengjun

    2017-09-01

    A locally linear K Nearest Neighbor (LLK) method is presented in this paper with applications to robust visual recognition. Specifically, the concept of an ideal representation is first presented, which improves upon the traditional sparse representation in many ways. The objective function based on a host of criteria for sparsity, locality, and reconstruction is then optimized to derive a novel representation, which is an approximation to the ideal representation. The novel representation is further processed by two classifiers, namely, an LLK-based classifier and a locally linear nearest mean-based classifier, for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Additional new theoretical analysis is presented, such as the nonnegative constraint, the group regularization, and the computational efficiency of the proposed LLK method. New methods such as a shifted power transformation for improving reliability, a coefficients' truncating method for enhancing generalization, and an improved marginal Fisher analysis method for feature extraction are proposed to further improve visual recognition performance. Extensive experiments are implemented to evaluate the proposed LLK method for robust visual recognition. In particular, eight representative data sets are applied for assessing the performance of the LLK method for various visual recognition applications, such as action recognition, scene recognition, object recognition, and face recognition.

  2. Increasingly complex representations of natural movies across the dorsal stream are shared between subjects.

    PubMed

    Güçlü, Umut; van Gerven, Marcel A J

    2017-01-15

    Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Moral Learning: Conceptual foundations and normative relevance.

    PubMed

    Railton, Peter

    2017-10-01

    What is distinctive about a bringing a learning perspective to moral psychology? Part of the answer lies in the remarkable transformations that have taken place in learning theory over the past two decades, which have revealed how powerful experience-based learning can be in the acquisition of abstract causal and evaluative representations, including generative models capable of attuning perception, cognition, affect, and action to the physical and social environment. When conjoined with developments in neuroscience, these advances in learning theory permit a rethinking of fundamental questions about the acquisition of moral understanding and its role in the guidance of behavior. For example, recent research indicates that spatial learning and navigation involve the formation of non-perspectival as well as ego-centric models of the physical environment, and that spatial representations are combined with learned information about risk and reward to guide choice and potentiate further learning. Research on infants provides evidence that they form non-perspectival expected-value representations of agents and actions as well, which help them to navigate the human environment. Such representations can be formed by highly-general mental processes such as causal and empathic simulation, and thus afford a foundation for spontaneous moral learning and action that requires no innate moral faculty and can exhibit substantial autonomy with respect to community norms. If moral learning is indeed integral with the acquisition and updating of casual and evaluative models, this affords a new way of understanding well-known but seemingly puzzling patterns in intuitive moral judgment-including the notorious "trolley problems." Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  4. Dissociating the Representation of Action- and Sound-Related Concepts in Middle Temporal Cortex

    ERIC Educational Resources Information Center

    Kiefer, Markus; Trumpp, Natalie; Herrnberger, Barbel; Sim, Eun-Jin; Hoenig, Klaus; Pulvermuller, Friedemann

    2012-01-01

    Modality-specific models of conceptual memory propose close links between concepts and the sensory-motor systems. Neuroimaging studies found, in different subject groups, that action-related and sound-related concepts activated different parts of posterior middle temporal gyrus (pMTG), suggesting a modality-specific representation of conceptual…

  5. Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions.

    PubMed

    Yang, Yang; Saleemi, Imran; Shah, Mubarak

    2013-07-01

    This paper proposes a novel representation of articulated human actions and gestures and facial expressions. The main goals of the proposed approach are: 1) to enable recognition using very few examples, i.e., one or k-shot learning, and 2) meaningful organization of unlabeled datasets by unsupervised clustering. Our proposed representation is obtained by automatically discovering high-level subactions or motion primitives, by hierarchical clustering of observed optical flow in four-dimensional, spatial, and motion flow space. The completely unsupervised proposed method, in contrast to state-of-the-art representations like bag of video words, provides a meaningful representation conducive to visual interpretation and textual labeling. Each primitive action depicts an atomic subaction, like directional motion of limb or torso, and is represented by a mixture of four-dimensional Gaussian distributions. For one--shot and k-shot learning, the sequence of primitive labels discovered in a test video are labeled using KL divergence, and can then be represented as a string and matched against similar strings of training videos. The same sequence can also be collapsed into a histogram of primitives or be used to learn a Hidden Markov model to represent classes. We have performed extensive experiments on recognition by one and k-shot learning as well as unsupervised action clustering on six human actions and gesture datasets, a composite dataset, and a database of facial expressions. These experiments confirm the validity and discriminative nature of the proposed representation.

  6. Facilitating Understanding of Movements in Dynamic Visualizations: An Embodied Perspective

    ERIC Educational Resources Information Center

    de Koning, Bjorn B.; Tabbers, Huib K.

    2011-01-01

    Learners studying mechanical or technical processes via dynamic visualizations often fail to build an accurate mental representation of the system's movements. Based on embodied theories of cognition assuming that action, perception, and cognition are closely intertwined, this paper proposes that the learning effectiveness of dynamic…

  7. Applying the Common Sense Model to Understand Representations of Arsenic Contaminated Well Water

    PubMed Central

    Severtson, Dolores J.; Baumann, Linda C.; Brown, Roger L.

    2015-01-01

    Theory-based research is needed to understand how people respond to environmental health risk information. The common sense model of self-regulation and the mental models approach propose that information shapes individual’s personal understandings that influence their decisions and actions. We compare these frameworks and explain how the common sense model (CSM) was applied to describe and measure mental representations of arsenic contaminated well water. Educational information, key informant interviews, and environmental risk literature were used to develop survey items to measure dimensions of cognitive representations (identity, cause, timeline, consequences, control) and emotional representations. Surveys mailed to 1067 private well users with moderate and elevated arsenic levels yielded an 84% response rate (n=897). Exploratory and confirmatory factor analyses of data from the elevated arsenic group identified a factor structure that retained the CSM representational structure and was consistent across moderate and elevated arsenic groups. The CSM has utility for describing and measuring representations of environmental health risks thus supporting its application to environmental health risk communication research. PMID:18726811

  8. Changing views of emotion regulation and neurobiological models of the mechanism of action of psychotherapy.

    PubMed

    Messina, Irene; Sambin, Marco; Beschoner, Petra; Viviani, Roberto

    2016-08-01

    Influential neurobiological models of the mechanism of action of psychotherapy attribute its success to increases of activity in prefrontal areas and decreases in limbic areas, interpreted as the successful and adaptive recruitment of controlled processes to achieve emotion regulation. In this article, we review the behavioral and neuroscientific evidence in support of this model and its applicability to explain the mechanism of action of psychotherapy. Neuroimaging studies of explicit emotion regulation, evidence on the neurobiological substrates of implicit emotion regulation, and meta-analyses of neuroimaging studies of the effect of psychotherapy consistently suggest that areas implicated in coding semantic representations play an important role in emotion regulation not covered by existing models based on controlled processes. We discuss the findings that implicate these same areas in supporting working memory, in encoding preferences and the prospective outcome of actions taken in rewarding or aversive contingencies, and show how these functions may be integrated into process models of emotion regulation that depend on elaborate semantic representations for their effectiveness. These alternative models also appear to be more consistent with internal accounts in the psychotherapeutic literature of how psychotherapy works.

  9. Action understanding and active inference

    PubMed Central

    Mattout, Jérémie; Kilner, James

    2012-01-01

    We have suggested that the mirror-neuron system might be usefully understood as implementing Bayes-optimal perception of actions emitted by oneself or others. To substantiate this claim, we present neuronal simulations that show the same representations can prescribe motor behavior and encode motor intentions during action–observation. These simulations are based on the free-energy formulation of active inference, which is formally related to predictive coding. In this scheme, (generalised) states of the world are represented as trajectories. When these states include motor trajectories they implicitly entail intentions (future motor states). Optimizing the representation of these intentions enables predictive coding in a prospective sense. Crucially, the same generative models used to make predictions can be deployed to predict the actions of self or others by simply changing the bias or precision (i.e. attention) afforded to proprioceptive signals. We illustrate these points using simulations of handwriting to illustrate neuronally plausible generation and recognition of itinerant (wandering) motor trajectories. We then use the same simulations to produce synthetic electrophysiological responses to violations of intentional expectations. Our results affirm that a Bayes-optimal approach provides a principled framework, which accommodates current thinking about the mirror-neuron system. Furthermore, it endorses the general formulation of action as active inference. PMID:21327826

  10. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech.

    PubMed

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.

  11. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech

    PubMed Central

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax. PMID:20119879

  12. Visual perception from the perspective of a representational, non-reductionistic, level-dependent account of perception and conscious awareness

    PubMed Central

    Overgaard, Morten; Mogensen, Jesper

    2014-01-01

    This article proposes a new model to interpret seemingly conflicting evidence concerning the correlation of consciousness and neural processes. Based on an analysis of research of blindsight and subliminal perception, the reorganization of elementary functions and consciousness framework suggests that mental representations consist of functions at several different levels of analysis, including truly localized perceptual elementary functions and perceptual algorithmic modules, which are interconnections of the elementary functions. We suggest that conscious content relates to the ‘top level’ of analysis in a ‘situational algorithmic strategy’ that reflects the general state of an individual. We argue that conscious experience is intrinsically related to representations that are available to guide behaviour. From this perspective, we find that blindsight and subliminal perception can be explained partly by too coarse-grained methodology, and partly by top-down enhancing of representations that normally would not be relevant to action. PMID:24639581

  13. ARCH: Adaptive recurrent-convolutional hybrid networks for long-term action recognition

    PubMed Central

    Xin, Miao; Zhang, Hong; Wang, Helong; Sun, Mingui; Yuan, Ding

    2017-01-01

    Recognition of human actions from digital video is a challenging task due to complex interfering factors in uncontrolled realistic environments. In this paper, we propose a learning framework using static, dynamic and sequential mixed features to solve three fundamental problems: spatial domain variation, temporal domain polytrope, and intra- and inter-class diversities. Utilizing a cognitive-based data reduction method and a hybrid “network upon networks” architecture, we extract human action representations which are robust against spatial and temporal interferences and adaptive to variations in both action speed and duration. We evaluated our method on the UCF101 and other three challenging datasets. Our results demonstrated a superior performance of the proposed algorithm in human action recognition. PMID:29290647

  14. Science Divulgation: The Social Representations of Brazilian Researchers Working in the Field of Astronomy

    NASA Astrophysics Data System (ADS)

    Carneiro, Dalira Lúcia Cunha Maradei; Longhini, Marcos Daniel

    2015-12-01

    This article addresses the role of scientific divulgation in the interaction between science and society, debating the importance of Astronomy as a prime starter of the scientific divulgation. In the light of Moscovici’s Social Representations Theory, the social representations on scientific divulgation of Brazilian researchers that work in the field of Astronomy are studied. Individuals from different educational trajectories ansewered semi-structured interviews, which were analyzed according to Spink. The results indicate two representations: one for the society at large, moved by passion, based on values and beliefs, and on the satisfaction of seeing the results of their actions on people’s life; and another for their peers. In the first representation, gaps that obstruct the science divulgation emerge, such as the lack of training and the difficulty to use a plain language, the bureaucracy required for the projects’ execution and its negative representation in the media. Other inferences are that Astronomy is neither part of a systematic teaching nor a part of the media at large, and it often presents conceptual mistakes. Those representations find an echo in the theoretical framework, showing that, despite their advances, scientific divulgation and Astronomy Education are in a context of social fragility.

  15. The processing of actions and action-words in amyotrophic lateral sclerosis patients.

    PubMed

    Papeo, Liuba; Cecchetto, Cinzia; Mazzon, Giulia; Granello, Giulia; Cattaruzza, Tatiana; Verriello, Lorenzo; Eleopra, Roberto; Rumiati, Raffaella I

    2015-03-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with prime consequences on the motor function and concomitant cognitive changes, most frequently in the domain of executive functions. Moreover, poorer performance with action-verbs versus object-nouns has been reported in ALS patients, raising the hypothesis that the motor dysfunction deteriorates the semantic representation of actions. Using action-verbs and manipulable-object nouns sharing semantic relationship with the same motor representations, the verb-noun difference was assessed in a group of 21 ALS-patients with severely impaired motor behavior, and compared with a normal sample's performance. ALS-group performed better on nouns than verbs, both in production (action and object naming) and comprehension (word-picture matching). This observation implies that the interpretation of the verb-noun difference in ALS cannot be accounted by the relatedness of verbs to motor representations, but has to consider the role of other semantic and/or morpho-phonological dimensions that distinctively define the two grammatical classes. Moreover, this difference in the ALS-group was not greater than the noun-verb difference in the normal sample. The mental representation of actions also involves an executive-control component to organize, in logical/temporal order, the individual motor events (or sub-goals) that form a purposeful action. We assessed this ability with action sequencing tasks, requiring participants to re-construct a purposeful action from the scrambled presentation of its constitutive motor events, shown in the form of photographs or short sentences. In those tasks, ALS-group's performance was significantly poorer than controls'. Thus, the executive dysfunction manifested in the sequencing deficit -but not the selective verb deficit- appears as a consistent feature of the cognitive profile associated with ALS. We suggest that ALS can offer a valuable model to study the relationship between (frontal) motor centers and the executive-control machinery housed in the frontal brain, and the implications of executive dysfunctions in tasks such as action processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Representational Practices by the Numbers: How Kindergarten and First-Grade Students Create, Evaluate, and Modify Their Science Representations

    ERIC Educational Resources Information Center

    Danish, Joshua Adam; Phelps, David

    2011-01-01

    A productive approach to studying the role of representations in supporting students' learning of science content is to examine their actions from a practice perspective. The current study examines kindergarten and first-grade students' representational practices across a consistent context--the creation of storyboards--both before and after a…

  17. The organization and dissolution of semantic-conceptual knowledge: is the 'amodal hub' the only plausible model?

    PubMed

    Gainotti, Guido

    2011-04-01

    In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the 'amodal semantic hub') supporting the interactive activation of semantic representations in all modalities and for all semantic categories. The aim of then present paper is to discuss this model, arguing against the notion of an 'amodal' semantic hub, because we maintain, in agreement with the Damasio's construct of 'higher-order convergence zone', that a continuum exists between perceptual information and conceptual representations, whereas the 'amodal' account views perceptual informations only as a channel through which abstract semantic knowledge can be activated. According to our model, semantic organization can be better explained by two orthogonal higher-order convergence systems, concerning, on one hand, the right vs. left hemisphere and, on the other hand, the ventral vs. dorsal processing pathways. This model posits that conceptual representations may be mainly based upon perceptual activities in the right hemisphere and upon verbal mediation in the left side of the brain. It also assumes that conceptual knowledge based on the convergence of highly processed visual information with other perceptual data (and mainly concerning living categories) may be bilaterally represented in the anterior parts of the temporal lobes, whereas knowledge based on the integration of visual data with action schemata (namely knowledge of actions, body parts and artefacts) may be more represented in the left fronto-temporo-parietal areas. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. What puts the how in where? Tool use and the divided visual streams hypothesis.

    PubMed

    Frey, Scott H

    2007-04-01

    An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.

  19. Interference Effects Demonstrate Distinct Roles for Visual and Motor Imagery during the Mental Representation of Human Action

    ERIC Educational Resources Information Center

    Stevens, J.A.

    2005-01-01

    Four experiments were completed to characterize the utilization of visual imagery and motor imagery during the mental representation of human action. In Experiment 1, movement time functions for a motor imagery human locomotion task conformed to a speed-accuracy trade-off similar to Fitts' Law, whereas those for a visual imagery object motion task…

  20. "She" Is Not Like "I": The Tie between Language and Action Is in Our Imagination

    ERIC Educational Resources Information Center

    Papeo, Liuba; Corradi-Dell'Acqua, Corrado; Rumiati, Raffaella Ida

    2011-01-01

    Embodied theories hold that understanding what another person is doing requires the observer to map that action directly onto his or her own motor representation and simulate it internally. The human motor system may, thus, be endowed with a "mirror matching" device through which the same motor representation is activated, when the subject is…

  1. Hand specific representations in language comprehension.

    PubMed

    Moody-Triantis, Claire; Humphreys, Gina F; Gennari, Silvia P

    2014-01-01

    Theories of embodied cognition argue that language comprehension involves sensory-motor re-enactments of the actions described. However, the degree of specificity of these re-enactments as well as the relationship between action and language remains a matter of debate. Here we investigate these issues by examining how hand-specific information (left or right hand) is recruited in language comprehension and action execution. An fMRI study tested self-reported right-handed participants in two separate tasks that were designed to be as similar as possible to increase sensitivity of the comparison across task: an action execution go/no-go task where participants performed right or left hand actions, and a language task where participants read sentences describing the same left or right handed actions as in the execution task. We found that language-induced activity did not match the hand-specific patterns of activity found for action execution in primary somatosensory and motor cortex, but it overlapped with pre-motor and parietal regions associated with action planning. Within these pre-motor regions, both right hand actions and sentences elicited stronger activity than left hand actions and sentences-a dominant hand effect. Importantly, both dorsal and ventral sections of the left pre-central gyrus were recruited by both tasks, suggesting different action features being recruited. These results suggest that (a) language comprehension elicits motor representations that are hand-specific and akin to multimodal action plans, rather than full action re-enactments; and (b) language comprehension and action execution share schematic hand-specific representations that are richer for the dominant hand, and thus linked to previous motor experience.

  2. Fidelity of the representation of value in decision-making

    PubMed Central

    Dowding, Ben A.

    2017-01-01

    The ability to make optimal decisions depends on evaluating the expected rewards associated with different potential actions. This process is critically dependent on the fidelity with which reward value information can be maintained in the nervous system. Here we directly probe the fidelity of value representation following a standard reinforcement learning task. The results demonstrate a previously-unrecognized bias in the representation of value: extreme reward values, both low and high, are stored significantly more accurately and precisely than intermediate rewards. The symmetry between low and high rewards pertained despite substantially higher frequency of exposure to high rewards, resulting from preferential exploitation of more rewarding options. The observed variation in fidelity of value representation retrospectively predicted performance on the reinforcement learning task, demonstrating that the bias in representation has an impact on decision-making. A second experiment in which one or other extreme-valued option was omitted from the learning sequence showed that representational fidelity is primarily determined by the relative position of an encoded value on the scale of rewards experienced during learning. Both variability and guessing decreased with the reduction in the number of options, consistent with allocation of a limited representational resource. These findings have implications for existing models of reward-based learning, which typically assume defectless representation of reward value. PMID:28248958

  3. Propagating Mixed Uncertainties in Cyber Attacker Payoffs: Exploration of Two-Phase Monte Carlo Sampling and Probability Bounds Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Samrat; Tipireddy, Ramakrishna; Oster, Matthew R.

    Securing cyber-systems on a continual basis against a multitude of adverse events is a challenging undertaking. Game-theoretic approaches, that model actions of strategic decision-makers, are increasingly being applied to address cybersecurity resource allocation challenges. Such game-based models account for multiple player actions and represent cyber attacker payoffs mostly as point utility estimates. Since a cyber-attacker’s payoff generation mechanism is largely unknown, appropriate representation and propagation of uncertainty is a critical task. In this paper we expand on prior work and focus on operationalizing the probabilistic uncertainty quantification framework, for a notional cyber system, through: 1) representation of uncertain attacker andmore » system-related modeling variables as probability distributions and mathematical intervals, and 2) exploration of uncertainty propagation techniques including two-phase Monte Carlo sampling and probability bounds analysis.« less

  4. The interaction between felt touch and tactile consequences of observed actions: an action-based somatosensory congruency paradigm.

    PubMed

    Deschrijver, Eliane; Wiersema, Jan R; Brass, Marcel

    2016-07-01

    Action observation leads to a representation of both the motor aspect of an observed action (motor simulation) and its somatosensory consequences (action-based somatosensory simulation) in the observer's brain. In the current electroencephalography-study, we investigated the neuronal interplay of action-based somatosensory simulation and felt touch. We presented index or middle finger tapping movements of a human or a wooden hand, while simultaneously presenting 'tap-like' tactile sensations to either the corresponding or non-corresponding fingertip of the participant. We focused on an early stage of somatosensory processing [P50, N100 and N140 sensory evoked potentials (SEPs)] and on a later stage of higher-order processing (P3-complex). The results revealed an interaction effect of animacy and congruency in the early P50 SEP and an animacy effect in the N100/N140 SEPs. In the P3-complex, we found an interaction effect indicating that the influence of congruency was larger in the human than in the wooden hand. We argue that the P3-complex may reflect higher-order self-other distinction by signaling simulated action-based touch that does not match own tactile information. As such, the action-based somatosensory congruency paradigm might help understand higher-order social processes from a somatosensory point of view. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Mu rhythm suppression demonstrates action representation in pianists during passive listening of piano melodies.

    PubMed

    Wu, C Carolyn; Hamm, Jeff P; Lim, Vanessa K; Kirk, Ian J

    2016-08-01

    Musicians undergo extensive training which enhances established neural links between auditory and motor areas of the brain. Long-term training develops, strengthens and enables flexibility in these connections allowing proficiency in performance. Previous research has indicated that passive listening of trained music results in the recruitment of premotor areas. It has been argued that this sound-action representation may rely on activity in mirror neuron systems and that these systems are heavily dependent on actual sensorimotor experience. Action observation studies using electroencephalography have associated changes in mu rhythm activity with the mirror neuron system in the visuomotor domain. We aimed to investigate similar effects in the audiomotor domain. We utilised a mu suppression method in our action-listening study to detect involuntary motor coactivation when pianists passively listened to piano melodies. Wavelet analysis revealed sensorimotor mu rhythm suppression while pianists listened passively to piano melodies. Thus, we show that this spectral analysis method can also be used to demonstrate that auditory stimuli can activate the human mirror neuron system when sounds are linked to actions. Mu suppression could be a useful index for further research on action representation and training-induced plasticity.

  6. Dissociation between Semantic Representations for Motion and Action Verbs: Evidence from Patients with Left Hemisphere Lesions

    PubMed Central

    Taylor, Lawrence J.; Evans, Carys; Greer, Joanna; Senior, Carl; Coventry, Kenny R.; Ietswaart, Magdalena

    2017-01-01

    This multiple single case study contrasted left hemisphere stroke patients (N = 6) to healthy age-matched control participants (N = 15) on their understanding of action (e.g., holding, clenching) and motion verbs (e.g., crumbling, flowing). The tasks required participants to correctly identify the matching verb or associated picture. Dissociations on action and motion verb content depending on lesion site were expected. As predicted for verbs containing an action and/or motion content, modified t-tests confirmed selective deficits in processing motion verbs in patients with lesions involving posterior parietal and lateral occipitotemporal cortex. In contrast, deficits in verbs describing motionless actions were found in patients with more anterior lesions sparing posterior parietal and lateral occipitotemporal cortex. These findings support the hypotheses that semantic representations for action and motion are behaviorally and neuro-anatomically dissociable. The findings clarify the differential and critical role of perceptual and motor regions in processing modality-specific semantic knowledge as opposed to a supportive but not necessary role. We contextualize these results within theories from both cognitive psychology and cognitive neuroscience that make claims over the role of sensory and motor information in semantic representation. PMID:28261070

  7. The Effect of Visual Devices Based on Bruner's Modes of Representation on Teaching Concepts of Electrostatics to Elementary School Children

    ERIC Educational Resources Information Center

    McIntyre, Patrick J.; Reed, Jack A.

    1976-01-01

    Visual devices were used, corresponding to Bruner's three types of information-processing models: enactive (action), iconic (imagery), and symbolic (language). Concluded that the type of visual device had no significant effect on the subjects' achievement on an electrostatics concepts test. (MLH)

  8. DEMO: Action Recommendation for Cyber Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Luke R.; Curtis, Darren S.; Choudhury, Sutanay

    In this demonstration we show the usefulness of our unifying graph-based model for the representation of infrastructure, behavior, and missions of cyber enterprise in both a software simulation and on an Amazon Web Services (AWS) instance. We show the effectiveness of our recommendation algorithm for preserving various system health metrics in both cases.

  9. A survey of planning and scheduling research at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1989-01-01

    NASA Ames Research Center has a diverse program in planning and scheduling. Some research projects as well as some applications are highlighted. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling.

  10. 40 CFR 97.10 - Authorization and responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... account certificate of representation under § 97.13, the NOX authorized account representative of the source shall represent and, by his or her representations, actions, inactions, or submissions, legally... at a source, until the Administrator has received a complete account certificate of representation...

  11. 40 CFR 97.10 - Authorization and responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... account certificate of representation under § 97.13, the NOX authorized account representative of the source shall represent and, by his or her representations, actions, inactions, or submissions, legally... at a source, until the Administrator has received a complete account certificate of representation...

  12. 40 CFR 97.10 - Authorization and responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... account certificate of representation under § 97.13, the NOX authorized account representative of the source shall represent and, by his or her representations, actions, inactions, or submissions, legally... at a source, until the Administrator has received a complete account certificate of representation...

  13. 40 CFR 97.10 - Authorization and responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... account certificate of representation under § 97.13, the NOX authorized account representative of the source shall represent and, by his or her representations, actions, inactions, or submissions, legally... at a source, until the Administrator has received a complete account certificate of representation...

  14. 40 CFR 97.151 - Establishment of accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...(e), upon receipt of a complete certificate of representation under § 97.113, the Administrator will establish a compliance account for the CAIR NOX source for which the certificate of representation was... such person shall be fully bound by my representations, actions, inactions, or submissions and by any...

  15. 40 CFR 97.151 - Establishment of accounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...(e), upon receipt of a complete certificate of representation under § 97.113, the Administrator will establish a compliance account for the CAIR NOX source for which the certificate of representation was... such person shall be fully bound by my representations, actions, inactions, or submissions and by any...

  16. 40 CFR 97.10 - Authorization and responsibilities of NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... account certificate of representation under § 97.13, the NOX authorized account representative of the source shall represent and, by his or her representations, actions, inactions, or submissions, legally... at a source, until the Administrator has received a complete account certificate of representation...

  17. Mesencephalic representations of recent experience influence decision making.

    PubMed

    Thompson, John A; Costabile, Jamie D; Felsen, Gidon

    2016-07-25

    Decisions are influenced by recent experience, but the neural basis for this phenomenon is not well understood. Here, we address this question in the context of action selection. We focused on activity in the pedunculopontine tegmental nucleus (PPTg), a mesencephalic region that provides input to several nuclei in the action selection network, in well-trained mice selecting actions based on sensory cues and recent trial history. We found that, at the time of action selection, the activity of many PPTg neurons reflected the action on the previous trial and its outcome, and the strength of this activity predicted the upcoming choice. Further, inactivating the PPTg predictably decreased the influence of recent experience on action selection. These findings suggest that PPTg input to downstream motor regions, where it can be integrated with other relevant information, provides a simple mechanism for incorporating recent experience into the computations underlying action selection.

  18. The Logic of Reachability

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Jonsson, Ari K.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In recent years, Graphplan style reachability analysis and mutual exclusion reasoning have been used in many high performance planning systems. While numerous refinements and extensions have been developed, the basic plan graph structure and reasoning mechanisms used in these systems are tied to the very simple STRIPS model of action. In 1999, Smith and Weld generalized the Graphplan methods for reachability and mutex reasoning to allow actions to have differing durations. However, the representation of actions still has some severe limitations that prevent the use of these techniques for many real-world planning systems. In this paper, we 1) separate the logic of reachability from the particular representation and inference methods used in Graphplan, and 2) extend the notions of reachability and mutual exclusion to more general notions of time and action. As it turns out, the general rules for mutual exclusion reasoning take on a remarkably clean and simple form. However, practical instantiations of them turn out to be messy, and require that we make representation and reasoning choices.

  19. What makes a movement a gesture?

    PubMed

    Novack, Miriam A; Wakefield, Elizabeth M; Goldin-Meadow, Susan

    2016-01-01

    Theories of how adults interpret the actions of others have focused on the goals and intentions of actors engaged in object-directed actions. Recent research has challenged this assumption, and shown that movements are often interpreted as being for their own sake (Schachner & Carey, 2013). Here we postulate a third interpretation of movement-movement that represents action, but does not literally act on objects in the world. These movements are gestures. In this paper, we describe a framework for predicting when movements are likely to be seen as representations. In Study 1, adults described one of three scenes: (1) an actor moving objects, (2) an actor moving her hands in the presence of objects (but not touching them) or (3) an actor moving her hands in the absence of objects. Participants systematically described the movements as depicting an object-directed action when the actor moved objects, and favored describing the movements as depicting movement for its own sake when the actor produced the same movements in the absence of objects. However, participants favored describing the movements as representations when the actor produced the movements near, but not on, the objects. Study 2 explored two additional features-the form of an actor's hands and the presence of speech-like sounds-to test the effect of context on observers' classification of movement as representational. When movements are seen as representations, they have the power to influence communication, learning, and cognition in ways that movement for its own sake does not. By incorporating representational gesture into our framework for movement analysis, we take an important step towards developing a more cohesive understanding of action-interpretation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. 40 CFR 97.251 - Establishment of accounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...(e), upon receipt of a complete certificate of representation under § 97.213, the Administrator will establish a compliance account for the CAIR SO2 source for which the certificate of representation was... person shall be fully bound by my representations, actions, inactions, or submissions and by any order or...

  1. 40 CFR 97.310 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administrator of a complete certificate of representation under § 97.313, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions... Administrator has received a complete certificate of representation under § 97.313 for a CAIR designated...

  2. 40 CFR 96.10 - Authorization and responsibilities of the NOX authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administrator of a complete account certificate of representation under § 96.13, the NOX authorized account representative of the source shall represent and, by his or her representations, actions, inactions, or... at a source, until the Administrator has received a complete account certificate of representation...

  3. 40 CFR 97.310 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administrator of a complete certificate of representation under § 97.313, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions... Administrator has received a complete certificate of representation under § 97.313 for a CAIR designated...

  4. 40 CFR 97.310 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administrator of a complete certificate of representation under § 97.313, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions... Administrator has received a complete certificate of representation under § 97.313 for a CAIR designated...

  5. 40 CFR 96.10 - Authorization and responsibilities of the NOX authorized account representative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administrator of a complete account certificate of representation under § 96.13, the NOX authorized account representative of the source shall represent and, by his or her representations, actions, inactions, or... at a source, until the Administrator has received a complete account certificate of representation...

  6. 40 CFR 98.4 - Authorization and responsibilities of the designated representative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administrator of a complete certificate of representation under this section for a facility or supplier, the designated representative identified in such certificate of representation shall represent and, by his or her representations, actions, inactions, or submissions, legally bind each owner and operator of such facility or...

  7. 40 CFR 96.10 - Authorization and responsibilities of the NOX authorized account representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administrator of a complete account certificate of representation under § 96.13, the NOX authorized account representative of the source shall represent and, by his or her representations, actions, inactions, or... at a source, until the Administrator has received a complete account certificate of representation...

  8. 40 CFR 97.251 - Establishment of accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...(e), upon receipt of a complete certificate of representation under § 97.213, the Administrator will establish a compliance account for the CAIR SO2 source for which the certificate of representation was... person shall be fully bound by my representations, actions, inactions, or submissions and by any order or...

  9. 40 CFR 97.310 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administrator of a complete certificate of representation under § 97.313, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions... Administrator has received a complete certificate of representation under § 97.313 for a CAIR designated...

  10. 40 CFR 96.10 - Authorization and responsibilities of the NOX authorized account representative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administrator of a complete account certificate of representation under § 96.13, the NOX authorized account representative of the source shall represent and, by his or her representations, actions, inactions, or... at a source, until the Administrator has received a complete account certificate of representation...

  11. 40 CFR 96.10 - Authorization and responsibilities of the NOX authorized account representative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administrator of a complete account certificate of representation under § 96.13, the NOX authorized account representative of the source shall represent and, by his or her representations, actions, inactions, or... at a source, until the Administrator has received a complete account certificate of representation...

  12. 40 CFR 97.310 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administrator of a complete certificate of representation under § 97.313, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions... Administrator has received a complete certificate of representation under § 97.313 for a CAIR designated...

  13. Motion and Actions in Language: Semantic Representations in Occipito-Temporal Cortex

    ERIC Educational Resources Information Center

    Humphreys, Gina F.; Newling, Katherine; Jennings, Caroline; Gennari, Silvia P.

    2013-01-01

    Understanding verbs typically activates posterior temporal regions and, in some circumstances, motion perception area V5. However, the nature and role of this activation remains unclear: does language alone indeed activate V5? And are posterior temporal representations modality-specific motion representations, or supra-modal motion-independent…

  14. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  15. Handling or being the concept: An fMRI study on metonymy representations in coverbal gestures.

    PubMed

    Joue, Gina; Boven, Linda; Willmes, Klaus; Evola, Vito; Demenescu, Liliana R; Hassemer, Julius; Mittelberg, Irene; Mathiak, Klaus; Schneider, Frank; Habel, Ute

    2018-01-31

    In "Two heads are better than one," "head" stands for people and focuses the message on the intelligence of people. This is an example of figurative language through metonymy, where substituting a whole entity by one of its parts focuses attention on a specific aspect of the entity. Whereas metaphors, another figurative language device, are substitutions based on similarity, metonymy involves substitutions based on associations. Both are figures of speech but are also expressed in coverbal gestures during multimodal communication. The closest neuropsychological studies of metonymy in gestures have been nonlinguistic tool-use, illustrated by the classic apraxic problem of body-part-as-object (BPO, equivalent to an internal metonymy representation of the tool) vs. pantomimed action (external metonymy representation of the absent object/tool). Combining these research domains with concepts in cognitive linguistic research on gestures, we conducted an fMRI study to investigate metonymy resolution in coverbal gestures. Given the greater difficulty in developmental and apraxia studies, perhaps explained by the more complex semantic inferencing involved for external metonymy than for internal metonymy representations, we hypothesized that external metonymy resolution requires greater processing demands and that the neural resources supporting metonymy resolution would modulate regions involved in semantic processing. We found that there are indeed greater activations for external than for internal metonymy resolution in the temporoparietal junction (TPJ). This area is posterior to the lateral temporal regions recruited by metaphor processing. Effective connectivity analysis confirmed our hypothesis that metonymy resolution modulates areas implicated in semantic processing. We interpret our results in an interdisciplinary view of what metonymy in action can reveal about abstract cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mirror representations innate versus determined by experience: a viewpoint from learning theory.

    PubMed

    Giese, Martin A

    2014-04-01

    From the viewpoint of pattern recognition and computational learning, mirror neurons form an interesting multimodal representation that links action perception and planning. While it seems unlikely that all details of such representations are specified by the genetic code, robust learning of such complex representations likely requires an appropriate interplay between plasticity, generalization, and anatomical constraints of the underlying neural architecture.

  17. Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives.

    PubMed

    Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan

    2014-01-01

    The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.

  18. Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives

    PubMed Central

    Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan

    2014-01-01

    The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context. PMID:24550798

  19. Social representations and normative beliefs of aging.

    PubMed

    Torres, Tatiana de Lucena; Camargo, Brigido Vizeu; Boulsfield, Andréa Barbará; Silva, Antônia Oliveira

    2015-12-01

    This study adopted the theory of social representations as a theoretical framework in order to characterize similarities and differences in social representations and normative beliefs of aging for different age groups. The 638 participants responded to self-administered questionnaire and were equally distributed by sex and age. The results show that aging is characterized by positive stereotypes (knowledge and experience); however, retirement is linked to aging, but in a negative way, particularly for men, involving illness, loneliness and disability. When age was considered, it was verified that the connections with the representational elements became more complex for older groups, showing social representation functionality, largely for the elderly. Adulthood seems to be preferred and old age is disliked. There were divergences related to the perception of the beginning of life phases, especially that of old age. Work was characterized as the opposite of aging, and it revealed the need for actions intended for the elderly and retired workers, with post-retirement projects. In addition, it suggests investment in public policies that encourage intergenerational contact, with efforts to reduce intolerance and discrimination based on age of people.

  20. Evidence for a distributed hierarchy of action representation in the brain

    PubMed Central

    Grafton, Scott T.; de C. Hamilton, Antonia F.

    2007-01-01

    Complex human behavior is organized around temporally distal outcomes. Behavioral studies based on tasks such as normal prehension, multi-step object use and imitation establish the existence of relative hierarchies of motor control. The retrieval errors in apraxia also support the notion of a hierarchical model for representing action in the brain. In this review, three functional brain imaging studies of action observation using the method of repetition suppression are used to identify a putative neural architecture that supports action understanding at the level of kinematics, object centered goals and ultimately, motor outcomes. These results, based on observation, may match a similar functional anatomic hierarchy for action planning and execution. If this is true, then the findings support a functional anatomic model that is distributed across a set of interconnected brain areas that are differentially recruited for different aspects of goal oriented behavior, rather than a homogeneous mirror neuron system for organizing and understanding all behavior. PMID:17706312

  1. Static force field representation of environments based on agents' nonlinear motions

    NASA Astrophysics Data System (ADS)

    Campo, Damian; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo

    2017-12-01

    This paper presents a methodology that aims at the incremental representation of areas inside environments in terms of attractive forces. It is proposed a parametric representation of velocity fields ruling the dynamics of moving agents. It is assumed that attractive spots in the environment are responsible for modifying the motion of agents. A switching model is used to describe near and far velocity fields, which in turn are used to learn attractive characteristics of environments. The effect of such areas is considered radial over all the scene. Based on the estimation of attractive areas, a map that describes their effects in terms of their localizations, ranges of action, and intensities is derived in an online way. Information of static attractive areas is added dynamically into a set of filters that describes possible interactions between moving agents and an environment. The proposed approach is first evaluated on synthetic data; posteriorly, the method is applied on real trajectories coming from moving pedestrians in an indoor environment.

  2. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation.

    PubMed

    Sun, Rui; Zhang, Guanghai; Yan, Xiaoxing; Gao, Jun

    2016-08-16

    Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods.

  3. Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation

    PubMed Central

    Sun, Rui; Zhang, Guanghai; Yan, Xiaoxing; Gao, Jun

    2016-01-01

    Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods. PMID:27537888

  4. Navigation based on a sensorimotor representation: a virtual reality study

    NASA Astrophysics Data System (ADS)

    Zetzsche, Christoph; Galbraith, Christopher; Wolter, Johannes; Schill, Kerstin

    2007-02-01

    We investigate the hypothesis that the basic representation of space which underlies human navigation does not resemble an image-like map and is not restricted by the laws of Euclidean geometry. For this we developed a new experimental technique in which we use the properties of a virtual environment (VE) to directly influence the development of the representation. We compared the navigation performance of human observers under two conditions. Either the VE is consistent with the geometrical properties of physical space and could hence be represented in a map-like fashion, or it contains severe violations of Euclidean metric and planar topology, and would thus pose difficulties for the correct development of such a representation. Performance is not influenced by this difference, suggesting that a map-like representation is not the major basis of human navigation. Rather, the results are consistent with a representation which is similar to a non-planar graph augmented with path length information, or with a sensorimotor representation which combines sensory properties and motor actions. The latter may be seen as part of a revised view of perceptual processes due to recent results in psychology and neurobiology, which indicate that the traditional strict separation of sensory and motor systems is no longer tenable.

  5. On the development of a reactive sensor-based robotic system

    NASA Technical Reports Server (NTRS)

    Hexmoor, Henry H.; Underwood, William E., Jr.

    1989-01-01

    Flexible robotic systems for space applications need to use local information to guide their action in uncertain environments where the state of the environment and even the goals may change. They have to be tolerant of unexpected events and robust enough to carry their task to completion. Tactical goals should be modified while maintaining strategic goals. Furthermore, reactive robotic systems need to have a broader view of their environments than sensory-based systems. An architecture and a theory of representation extending the basic cycles of action and perception are described. This scheme allows for dynamic description of the environment and determining purposive and timely action. Applications of this scheme for assembly and repair tasks using a Universal Machine Intelligence RTX robot are being explored, but the ideas are extendable to other domains. The nature of reactivity for sensor-based robotic systems and implementation issues encountered in developing a prototype are discussed.

  6. Imaging when acting: picture but not word cues induce action-related biases of visual attention.

    PubMed

    Wykowska, Agnieszka; Hommel, Bernhard; Schubö, Anna

    2012-01-01

    In line with the Theory of Event Coding (Hommel et al., 2001a), action planning has been shown to affect perceptual processing - an effect that has been attributed to a so-called intentional weighting mechanism (Wykowska et al., 2009; Memelink and Hommel, 2012), whose functional role is to provide information for open parameters of online action adjustment (Hommel, 2010). The aim of this study was to test whether different types of action representations induce intentional weighting to various degrees. To meet this aim, we introduced a paradigm in which participants performed a visual search task while preparing to grasp or to point. The to-be performed movement was signaled either by a picture of a required action or a word cue. We reasoned that picture cues might trigger a more concrete action representation that would be more likely to activate the intentional weighting of perceptual dimensions that provide information for online action control. In contrast, word cues were expected to trigger a more abstract action representation that would be less likely to induce intentional weighting. In two experiments, preparing for an action facilitated the processing of targets in an unrelated search task if they differed from distractors on a dimension that provided information for online action control. As predicted, however, this effect was observed only if action preparation was signaled by picture cues but not if it was signaled by word cues. We conclude that picture cues are more efficient than word cues in activating the intentional weighting of perceptual dimensions, presumably by specifying not only invariant characteristics of the planned action but also the dimensions of action-specific parameters.

  7. Imaging When Acting: Picture but Not Word Cues Induce Action-Related Biases of Visual Attention

    PubMed Central

    Wykowska, Agnieszka; Hommel, Bernhard; Schubö, Anna

    2012-01-01

    In line with the Theory of Event Coding (Hommel et al., 2001a), action planning has been shown to affect perceptual processing – an effect that has been attributed to a so-called intentional weighting mechanism (Wykowska et al., 2009; Memelink and Hommel, 2012), whose functional role is to provide information for open parameters of online action adjustment (Hommel, 2010). The aim of this study was to test whether different types of action representations induce intentional weighting to various degrees. To meet this aim, we introduced a paradigm in which participants performed a visual search task while preparing to grasp or to point. The to-be performed movement was signaled either by a picture of a required action or a word cue. We reasoned that picture cues might trigger a more concrete action representation that would be more likely to activate the intentional weighting of perceptual dimensions that provide information for online action control. In contrast, word cues were expected to trigger a more abstract action representation that would be less likely to induce intentional weighting. In two experiments, preparing for an action facilitated the processing of targets in an unrelated search task if they differed from distractors on a dimension that provided information for online action control. As predicted, however, this effect was observed only if action preparation was signaled by picture cues but not if it was signaled by word cues. We conclude that picture cues are more efficient than word cues in activating the intentional weighting of perceptual dimensions, presumably by specifying not only invariant characteristics of the planned action but also the dimensions of action-specific parameters. PMID:23087656

  8. The use of head/eye-centered, hand-centered and allocentric representations for visually guided hand movements and perceptual judgments.

    PubMed

    Thaler, Lore; Todd, James T

    2009-04-01

    Two experiments are reported that were designed to measure the accuracy and reliability of both visually guided hand movements (Exp. 1) and perceptual matching judgments (Exp. 2). The specific procedure for informing subjects of the required response on each trial was manipulated so that some tasks could only be performed using an allocentric representation of the visual target; others could be performed using either an allocentric or hand-centered representation; still others could be performed based on an allocentric, hand-centered or head/eye-centered representation. Both head/eye and hand centered representations are egocentric because they specify visual coordinates with respect to the subject. The results reveal that accuracy and reliability of both motor and perceptual responses are highest when subjects direct their response towards a visible target location, which allows them to rely on a representation of the target in head/eye-centered coordinates. Systematic changes in averages and standard deviations of responses are observed when subjects cannot direct their response towards a visible target location, but have to represent target distance and direction in either hand-centered or allocentric visual coordinates instead. Subjects' motor and perceptual performance agree quantitatively well. These results strongly suggest that subjects process head/eye-centered representations differently from hand-centered or allocentric representations, but that they process visual information for motor actions and perceptual judgments together.

  9. [Municipal Health Councils: activity and representation of grassroots communities].

    PubMed

    Gerschman, Silvia

    2004-01-01

    This article was based on the results of research concerning health policy in municipalities that achieved the most extensive development of decentralization and innovation in the State of Rio de Janeiro, Brazil. The study applied a questionnaire for health system users' representatives in Municipal Health Councils. The central issues were: the Councils' political role; social control by the Councils, viewed as surveillance by organized society over government actions; the nature of social representation exercised by the Council members; and the type of mandate they serve. Community representatives in the Councils reinforce aspects pertaining to the exercise of representation in unequal societies. There is a predominance of a differentiated elite consisting of older males with more schooling and higher income than the community average. The notion of "social control" as the basis for the Councils is difficult for the members to grasp. Exercise of representation is diffuse, occurring by way of designation by community associations, election in assemblies, or designation by institutional health policy agencies.

  10. Context of the beginning of tobacco use in different social groups

    PubMed Central

    Panaino, Edina Ferreira; Soares, Cássia Baldini; Campos, Célia Maria Sivalli

    2014-01-01

    Objective analyze contextual aspects of the beginning of tobacco use in different social groups, from everyday representations about the act of smoking. Methods five focus groups were conducted to promote discussion about the context of beginning of tobacco use, with groups of people who represented different patterns of social reproduction. The data analysis was based on the theory of social representations, which contextualizes how each group presents the tobacco consumption. Results the contexts of the beginning of tobacco use were diverse, according to patterns of social reproduction; there were common representations to all groups, but there were also unique representations of each social group. Tobacco is represented as indispensable for groups in unstable social reproduction situations, and as an instrument of pleasure and stress relief for those who can access other material assets. Conclusions the study contributed to exposing the concepts on tobacco consumption that are socially disseminated, which can serve as an instrument to planning programs and health actions. PMID:25029047

  11. Audio Spatial Representation Around the Body

    PubMed Central

    Aggius-Vella, Elena; Campus, Claudio; Finocchietti, Sara; Gori, Monica

    2017-01-01

    Studies have found that portions of space around our body are differently coded by our brain. Numerous works have investigated visual and auditory spatial representation, focusing mostly on the spatial representation of stimuli presented at head level, especially in the frontal space. Only few studies have investigated spatial representation around the entire body and its relationship with motor activity. Moreover, it is still not clear whether the space surrounding us is represented as a unitary dimension or whether it is split up into different portions, differently shaped by our senses and motor activity. To clarify these points, we investigated audio localization of dynamic and static sounds at different body levels. In order to understand the role of a motor action in auditory space representation, we asked subjects to localize sounds by pointing with the hand or the foot, or by giving a verbal answer. We found that the audio sound localization was different depending on the body part considered. Moreover, a different pattern of response was observed when subjects were asked to make actions with respect to the verbal responses. These results suggest that the audio space around our body is split in various spatial portions, which are perceived differently: front, back, around chest, and around foot, suggesting that these four areas could be differently modulated by our senses and our actions. PMID:29249999

  12. On the Inclusion of Externally Controlled Actions in Action Planning

    ERIC Educational Resources Information Center

    Tsai, Jessica Chia-Chin; Knoblich, Gunther; Sebanz, Natalie

    2011-01-01

    According to ideomotor theories, perceiving action effects produced by others triggers corresponding action representations in the observer. We tested whether this principle extends to actions performed by externally controlled limbs and tools. Participants performed a go-no-go version of a spatial compatibility task in which their own actions…

  13. Representational geometry: integrating cognition, computation, and the brain

    PubMed Central

    Kriegeskorte, Nikolaus; Kievit, Rogier A.

    2013-01-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. PMID:23876494

  14. Adaptive Agent Modeling of Distributed Language: Investigations on the Effects of Cultural Variation and Internal Action Representations

    ERIC Educational Resources Information Center

    Cangelosi, Angelo

    2007-01-01

    In this paper we present the "grounded adaptive agent" computational framework for studying the emergence of communication and language. This modeling framework is based on simulations of population of cognitive agents that evolve linguistic capabilities by interacting with their social and physical environment (internal and external symbol…

  15. On inducing finite dimensional physical field representations for massless particles in even dimensions

    NASA Technical Reports Server (NTRS)

    Bhansali, Vineer

    1993-01-01

    Assuming trivial action of Euclidean translations, the method of induced representations is used to derive a correspondence between massless field representations transforming under the full generalized even dimensional Lorentz group, and highest weight states of the relevant little group. This gives a connection between 'helicity' and 'chirality' in all dimensions. Restrictions on 'gauge independent' representations for physical particles that this induction imposes are also stated.

  16. 40 CFR 97.110 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by the Administrator of a complete certificate of representation under § 97.113, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or... representation under § 97.113 for a CAIR designated representative of the source and the CAIR NOX units at the...

  17. 40 CFR 96.210 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(4)(iv). (c) Upon receipt by the Administrator of a complete certificate of representation under § 96... representations, actions, inactions, or submissions, legally bind each owner and operator of the CAIR SO2 source... a complete certificate of representation under § 96.213 for a CAIR designated representative of the...

  18. 40 CFR 97.210 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administrator of a complete certificate of representation under § 97.213, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions... representation under § 97.213 for a CAIR designated representative of the source and the CAIR SO2 units at the...

  19. 40 CFR 97.620 - Establishment of compliance accounts, assurance accounts, and general accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representation under § 97.616, the Administrator will establish a compliance account for the TR SO2 Group 1 source for which the certificate of representation was submitted, unless the source already has a... such persons and that each such person shall be fully bound by my representations, actions, inactions...

  20. 40 CFR 97.210 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administrator of a complete certificate of representation under § 97.213, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions... representation under § 97.213 for a CAIR designated representative of the source and the CAIR SO2 units at the...

  1. 40 CFR 97.110 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... by the Administrator of a complete certificate of representation under § 97.113, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or... representation under § 97.113 for a CAIR designated representative of the source and the CAIR NOX units at the...

  2. 40 CFR 97.110 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... by the Administrator of a complete certificate of representation under § 97.113, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or... representation under § 97.113 for a CAIR designated representative of the source and the CAIR NOX units at the...

  3. 40 CFR 96.210 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(4)(iv). (c) Upon receipt by the Administrator of a complete certificate of representation under § 96... representations, actions, inactions, or submissions, legally bind each owner and operator of the CAIR SO2 source... a complete certificate of representation under § 96.213 for a CAIR designated representative of the...

  4. 40 CFR 96.110 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(4)(iv). (c) Upon receipt by the Administrator of a complete certificate of representation under § 96... representations, actions, inactions, or submissions, legally bind each owner and operator of the CAIR NOX source... received a complete certificate of representation under § 96.113 for a CAIR designated representative of...

  5. 40 CFR 96.110 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(4)(iv). (c) Upon receipt by the Administrator of a complete certificate of representation under § 96... representations, actions, inactions, or submissions, legally bind each owner and operator of the CAIR NOX source... received a complete certificate of representation under § 96.113 for a CAIR designated representative of...

  6. 40 CFR 97.720 - Establishment of compliance accounts, assurance accounts, and general accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representation under § 97.716, the Administrator will establish a compliance account for the TR SO2 Group 2 source for which the certificate of representation was submitted, unless the source already has a... such persons and that each such person shall be fully bound by my representations, actions, inactions...

  7. 40 CFR 96.110 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)(4)(iv). (c) Upon receipt by the Administrator of a complete certificate of representation under § 96... representations, actions, inactions, or submissions, legally bind each owner and operator of the CAIR NOX source... received a complete certificate of representation under § 96.113 for a CAIR designated representative of...

  8. 40 CFR 96.210 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)(4)(iv). (c) Upon receipt by the Administrator of a complete certificate of representation under § 96... representations, actions, inactions, or submissions, legally bind each owner and operator of the CAIR SO2 source... a complete certificate of representation under § 96.213 for a CAIR designated representative of the...

  9. 40 CFR 96.110 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(4)(iv). (c) Upon receipt by the Administrator of a complete certificate of representation under § 96... representations, actions, inactions, or submissions, legally bind each owner and operator of the CAIR NOX source... received a complete certificate of representation under § 96.113 for a CAIR designated representative of...

  10. 40 CFR 97.110 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by the Administrator of a complete certificate of representation under § 97.113, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or... representation under § 97.113 for a CAIR designated representative of the source and the CAIR NOX units at the...

  11. 40 CFR 97.210 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administrator of a complete certificate of representation under § 97.213, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions... representation under § 97.213 for a CAIR designated representative of the source and the CAIR SO2 units at the...

  12. 40 CFR 96.210 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(4)(iv). (c) Upon receipt by the Administrator of a complete certificate of representation under § 96... representations, actions, inactions, or submissions, legally bind each owner and operator of the CAIR SO2 source... a complete certificate of representation under § 96.213 for a CAIR designated representative of the...

  13. 40 CFR 97.210 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administrator of a complete certificate of representation under § 97.213, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions... representation under § 97.213 for a CAIR designated representative of the source and the CAIR SO2 units at the...

  14. 40 CFR 97.420 - Establishment of compliance accounts, assurance accounts, and general accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representation under § 97.416, the Administrator will establish a compliance account for the TR NOX Annual source for which the certificate of representation was submitted, unless the source already has a compliance... such persons and that each such person shall be fully bound by my representations, actions, inactions...

  15. 40 CFR 60.4110 - Authorization and Responsibilities of Hg designated representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... representation under § 60.4113, the Hg designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions, legally bind each owner and operator of the Hg Budget source... complete certificate of representation under § 60.4113 for a Hg designated representative of the source and...

  16. 40 CFR 96.110 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(4)(iv). (c) Upon receipt by the Administrator of a complete certificate of representation under § 96... representations, actions, inactions, or submissions, legally bind each owner and operator of the CAIR NOX source... received a complete certificate of representation under § 96.113 for a CAIR designated representative of...

  17. 40 CFR 60.4110 - Authorization and Responsibilities of Hg designated representative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representation under § 60.4113, the Hg designated representative of the source shall represent and, by his or her representations, actions, inactions, or submissions, legally bind each owner and operator of the Hg Budget source... complete certificate of representation under § 60.4113 for a Hg designated representative of the source and...

  18. 40 CFR 97.110 - Authorization and responsibilities of CAIR designated representative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by the Administrator of a complete certificate of representation under § 97.113, the CAIR designated representative of the source shall represent and, by his or her representations, actions, inactions, or... representation under § 97.113 for a CAIR designated representative of the source and the CAIR NOX units at the...

  19. Effects of motion speed in action representations

    PubMed Central

    van Dam, Wessel O.; Speed, Laura J.; Lai, Vicky T.; Vigliocco, Gabriella; Desai, Rutvik H.

    2017-01-01

    Grounded cognition accounts of semantic representation posit that brain regions traditionally linked to perception and action play a role in grounding the semantic content of words and sentences. Sensory-motor systems are thought to support partially abstract simulations through which conceptual content is grounded. However, which details of sensory-motor experience are included in, or excluded from these simulations, is not well understood. We investigated whether sensory-motor brain regions are differentially involved depending on the speed of actions described in a sentence. We addressed this issue by examining the neural signature of relatively fast (The old lady scurried across the road) and slow (The old lady strolled across the road) action sentences. The results showed that sentences that implied fast motion modulated activity within the right posterior superior temporal sulcus and the angular and middle occipital gyri, areas associated with biological motion and action perception. Sentences that implied slow motion resulted in greater signal within the right primary motor cortex and anterior inferior parietal lobule, areas associated with action execution and planning. These results suggest that the speed of described motion influences representational content and modulates the nature of conceptual grounding. Fast motion events are represented more visually whereas motor regions play a greater role in representing conceptual content associated with slow motion. PMID:28160739

  20. The shared neural basis of empathy and facial imitation accuracy.

    PubMed

    Braadbaart, L; de Grauw, H; Perrett, D I; Waiter, G D; Williams, J H G

    2014-01-01

    Empathy involves experiencing emotion vicariously, and understanding the reasons for those emotions. It may be served partly by a motor simulation function, and therefore share a neural basis with imitation (as opposed to mimicry), as both involve sensorimotor representations of intentions based on perceptions of others' actions. We recently showed a correlation between imitation accuracy and Empathy Quotient (EQ) using a facial imitation task and hypothesised that this relationship would be mediated by the human mirror neuron system. During functional Magnetic Resonance Imaging (fMRI), 20 adults observed novel 'blends' of facial emotional expressions. According to instruction, they either imitated (i.e. matched) the expressions or executed alternative, pre-prescribed mismatched actions as control. Outside the scanner we replicated the association between imitation accuracy and EQ. During fMRI, activity was greater during mismatch compared to imitation, particularly in the bilateral insula. Activity during imitation correlated with EQ in somatosensory cortex, intraparietal sulcus and premotor cortex. Imitation accuracy correlated with activity in insula and areas serving motor control. Overlapping voxels for the accuracy and EQ correlations occurred in premotor cortex. We suggest that both empathy and facial imitation rely on formation of action plans (or a simulation of others' intentions) in the premotor cortex, in connection with representations of emotional expressions based in the somatosensory cortex. In addition, the insula may play a key role in the social regulation of facial expression. © 2013.

  1. Integration of Temporal and Ordinal Information During Serial Interception Sequence Learning

    PubMed Central

    Gobel, Eric W.; Sanchez, Daniel J.; Reber, Paul J.

    2011-01-01

    The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements (e.g., language production, music performance, athletic skills). Research examining incidental sequence learning has previously relied on a perceptually-cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. Using a novel perceptual-motor sequence learning task, learning a precisely timed cued sequence of motor actions is shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In a second experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order, and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills. PMID:21417511

  2. Time perception of visual motion is tuned by the motor representation of human actions

    PubMed Central

    Gavazzi, Gioele; Bisio, Ambra; Pozzo, Thierry

    2013-01-01

    Several studies have shown that the observation of a rapidly moving stimulus dilates our perception of time. However, this effect appears to be at odds with the fact that our interactions both with environment and with each other are temporally accurate. This work exploits this paradox to investigate whether the temporal accuracy of visual motion uses motor representations of actions. To this aim, the stimuli were a dot moving with kinematics belonging or not to the human motor repertoire and displayed at different velocities. Participants had to replicate its duration with two tasks differing in the underlying motor plan. Results show that independently of the task's motor plan, the temporal accuracy and precision depend on the correspondence between the stimulus' kinematics and the observer's motor competencies. Our data suggest that the temporal mechanism of visual motion exploits a temporal visuomotor representation tuned by the motor knowledge of human actions. PMID:23378903

  3. Changing Internal Representations of Self and Other: Philosophical Tools for the Attachment-Informed Psychotherapy with Perpetrators and Victims of Violence1

    PubMed Central

    Pârvan, Alexandra

    2016-01-01

    Attachment research shows that the formation of unconscious, insecure representations of the self, the other, and the self-other relations is linked to perpetration and receipt of violence. Attachment-focused therapy aims to change these internal schemata to more secure, adaptive representations by therapeutic work addressed to senses, emotions, and behavior. The paper proposes a new approach to altering the self and other representations in offenders and victims: it involves intellectual reflection on self, will, action and responsibility informed by Augustine’s views, facilitated by actual relational experience, and translated into a distinct self-soothing strategy. The reflective-experiential approach can complement existing methods of working with violent or traumatized individuals both within and outside an attachment theory framework. It consists in: identifying that a non-reflective nondistinction between self and behavior supports damaging self- and other- representations and interactions; proposing ways for clients to comprehend and consciously operate with the distinction between self and action. PMID:28936108

  4. Two takes on the social brain: a comparison of theory of mind tasks.

    PubMed

    Gobbini, Maria Ida; Koralek, Aaron C; Bryan, Ronald E; Montgomery, Kimberly J; Haxby, James V

    2007-11-01

    We compared two tasks that are widely used in research on mentalizing--false belief stories and animations of rigid geometric shapes that depict social interactions--to investigate whether the neural systems that mediate the representation of others' mental states are consistent across these tasks. Whereas false belief stories activated primarily the anterior paracingulate cortex (APC), the posterior cingulate cortex/precuneus (PCC/PC), and the temporo-parietal junction (TPJ)--components of the distributed neural system for theory of mind (ToM)--the social animations activated an extensive region along nearly the full extent of the superior temporal sulcus, including a locus in the posterior superior temporal sulcus (pSTS), as well as the frontal operculum and inferior parietal lobule (IPL)--components of the distributed neural system for action understanding--and the fusiform gyrus. These results suggest that the representation of covert mental states that may predict behavior and the representation of intentions that are implied by perceived actions involve distinct neural systems. These results show that the TPJ and the pSTS play dissociable roles in mentalizing and are parts of different distributed neural systems. Because the social animations do not depict articulated body movements, these results also highlight that the perception of the kinematics of actions is not necessary to activate the mirror neuron system, suggesting that this system plays a general role in the representation of intentions and goals of actions. Furthermore, these results suggest that the fusiform gyrus plays a general role in the representation of visual stimuli that signify agency, independent of visual form.

  5. Intersubjective Action-Effect Binding: Eye Contact Modulates Acquisition of Bidirectional Association between Our and Others' Actions

    ERIC Educational Resources Information Center

    Sato, Atsushi; Itakura, Shoji

    2013-01-01

    In everyday social life, we predict others' actions in response to our own actions. Subsequently, on the basis of these predictions, we control our actions to attain desired social outcomes and/or adjust our actions to accommodate the anticipated actions of the others. Representation of the bidirectional association between our and others'…

  6. Seeking connections, creating movement: the power of altruistic action.

    PubMed

    Abma, Tineke A; Baur, Vivianne

    2014-12-01

    Participation of older people in designing and improving the care and services provided in residential care settings is limited. Traditional forms of democratic representation, such as client councils, and consumer models are management-driven. An alternative way of involving older people in the decisions over their lives, grounded in notions of care ethics and deliberative democracy, was explored by action research. In line with this tradition older people engage in collective action to enhance the control over their lives and those of others. In this article the theoretical background of altruistic action is presented and illustrated by a case example of a group of older women who changed the food policies within their residential home. Altruistic action is the joint and coordinated action by a group of clients based on their agenda. Such action is given in by a shared dissatisfaction and search for connections. Altruistic action may enhance the sense of self, belonging and ownership, and create a transformative movement enhancing the wellbeing and community life in residential settings.

  7. Toward a radically embodied neuroscience of attachment and relationships.

    PubMed

    Beckes, Lane; IJzerman, Hans; Tops, Mattie

    2015-01-01

    Attachment theory (Bowlby, 1969/1982) posits the existence of internal working models as a foundational feature of human bonds. Radical embodied approaches instead suggest that cognition requires no computation or representation, favoring a cognition situated in a body in an environmental context with affordances for action (Chemero, 2009; Barrett, 2011; Wilson and Golonka, 2013; Casasanto and Lupyan, 2015). We explore whether embodied approaches to social soothing, interpersonal warmth, separation distress, and support seeking could replace representational constructs such as internal working models with a view of relationship cognition anchored in the resources afforded to the individual by their brain, body, and environment in interaction. We review the neurobiological bases for social attachments and relationships and attempt to delineate how these systems overlap or don't with more basic physiological systems in ways that support or contradict a radical embodied explanation. We suggest that many effects might be the result of the fact that relationship cognition depends on and emerges out of the action of neural systems that regulate several clearly physically grounded systems. For example, the neuropeptide oxytocin appears to be central to attachment and pair-bond behavior (Carter and Keverne, 2002) and is implicated in social thermoregulation more broadly, being necessary for maintaining a warm body temperature (for a review, see IJzerman et al., 2015b). Finally, we discuss the most challenging issues around taking a radically embodied perspective on social relationships. We find the most crucial challenge in individual differences in support seeking and responses to social contact, which have long been thought to be a function of representational structures in the mind (e.g., Baldwin, 1995). Together we entertain the thought to explain such individual differences without mediating representations or computations, but in the end propose a hybrid model of radical embodiment and internal representations.

  8. Toward a radically embodied neuroscience of attachment and relationships

    PubMed Central

    Beckes, Lane; IJzerman, Hans; Tops, Mattie

    2015-01-01

    Attachment theory (Bowlby, 1969/1982) posits the existence of internal working models as a foundational feature of human bonds. Radical embodied approaches instead suggest that cognition requires no computation or representation, favoring a cognition situated in a body in an environmental context with affordances for action (Chemero, 2009; Barrett, 2011; Wilson and Golonka, 2013; Casasanto and Lupyan, 2015). We explore whether embodied approaches to social soothing, interpersonal warmth, separation distress, and support seeking could replace representational constructs such as internal working models with a view of relationship cognition anchored in the resources afforded to the individual by their brain, body, and environment in interaction. We review the neurobiological bases for social attachments and relationships and attempt to delineate how these systems overlap or don’t with more basic physiological systems in ways that support or contradict a radical embodied explanation. We suggest that many effects might be the result of the fact that relationship cognition depends on and emerges out of the action of neural systems that regulate several clearly physically grounded systems. For example, the neuropeptide oxytocin appears to be central to attachment and pair-bond behavior (Carter and Keverne, 2002) and is implicated in social thermoregulation more broadly, being necessary for maintaining a warm body temperature (for a review, see IJzerman et al., 2015b). Finally, we discuss the most challenging issues around taking a radically embodied perspective on social relationships. We find the most crucial challenge in individual differences in support seeking and responses to social contact, which have long been thought to be a function of representational structures in the mind (e.g., Baldwin, 1995). Together we entertain the thought to explain such individual differences without mediating representations or computations, but in the end propose a hybrid model of radical embodiment and internal representations. PMID:26052276

  9. Representational geometry: integrating cognition, computation, and the brain.

    PubMed

    Kriegeskorte, Nikolaus; Kievit, Rogier A

    2013-08-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Children's Representation and Imitation of Events: How Goal Organization Influences 3-Year-Old Children's Memory for Action Sequences.

    PubMed

    Loucks, Jeff; Mutschler, Christina; Meltzoff, Andrew N

    2017-09-01

    Children's imitation of adults plays a prominent role in human cognitive development. However, few studies have investigated how children represent the complex structure of observed actions which underlies their imitation. We integrate theories of action segmentation, memory, and imitation to investigate whether children's event representation is organized according to veridical serial order or a higher level goal structure. Children were randomly assigned to learn novel event sequences either through interactive hands-on experience (Study 1) or via storybook (Study 2). Results demonstrate that children's representation of observed actions is organized according to higher level goals, even at the cost of representing the veridical temporal ordering of the sequence. We argue that prioritizing goal structure enhances event memory, and that this mental organization is a key mechanism of social-cognitive development in real-world, dynamic environments. It supports cultural learning and imitation in ecologically valid settings when social agents are multitasking and not demonstrating one isolated goal at a time. Copyright © 2016 Cognitive Science Society, Inc.

  11. The effects of a dynamic graphical model during simulation-based training of console operation skill

    NASA Technical Reports Server (NTRS)

    Farquhar, John D.; Regian, J. Wesley

    1993-01-01

    LOADER is a Windows-based simulation of a complex procedural task. The task requires subjects to execute long sequences of console-operation actions (e.g., button presses, switch actuations, dial rotations) to accomplish specific goals. The LOADER interface is a graphical computer-simulated console which controls railroad cars, tracks, and cranes in a fictitious railroad yard. We hypothesized that acquisition of LOADER performance skill would be supported by the representation of a dynamic graphical model linking console actions to goal and goal states in the 'railroad yard'. Twenty-nine subjects were randomly assigned to one of two treatments (i.e., dynamic model or no model). During training, both groups received identical text-based instruction in an instructional-window above the LOADER interface. One group, however, additionally saw a dynamic version of the bird's-eye view of the railroad yard. After training, both groups were tested under identical conditions. They were asked to perform the complete procedure without guidance and without access to either type of railroad yard representation. Results indicate that rather than becoming dependent on the animated rail yard model, subjects in the dynamic model condition apparently internalized the model, as evidenced by their performance after the model was removed.

  12. Separate neural systems support representations for actions and objects during narrative speech in post-stroke aphasia☆

    PubMed Central

    Gleichgerrcht, Ezequiel; Fridriksson, Julius; Rorden, Chris; Nesland, Travis; Desai, Rutvik; Bonilha, Leonardo

    2015-01-01

    Background Representations of objects and actions in everyday speech are usually materialized as nouns and verbs, two grammatical classes that constitute the core elements of language. Given their very distinct roles in singling out objects (nouns) or referring to transformative actions (verbs), they likely rely on distinct brain circuits. Method We tested this hypothesis by conducting network-based lesion-symptom mapping in 38 patients with chronic stroke to the left hemisphere. We reconstructed the individual brain connectomes from probabilistic tractography applied to magnetic resonance imaging and obtained measures of production of words referring to objects and actions from narrative discourse elicited by picture naming tasks. Results Words for actions were associated with a frontal network strongly engaging structures involved in motor control and programming. Words for objects, instead, were related to a posterior network spreading across the occipital, posterior inferior temporal, and parietal regions, likely related with visual processing and imagery, object recognition, and spatial attention/scanning. Thus, each of these networks engaged brain areas typically involved in cognitive and sensorimotor experiences equivalent to the function served by each grammatical class (e.g. motor areas for verbs, perception areas for nouns). Conclusions The finding that the two major grammatical classes in human speech rely on two dissociable networks has both important theoretical implications for the neurobiology of language and clinical implications for the assessment and potential rehabilitation and treatment of patients with chronic aphasia due to stroke. PMID:26759789

  13. Mental Representation and Mental Practice: Experimental Investigation on the Functional Links between Motor Memory and Motor Imagery

    PubMed Central

    Frank, Cornelia; Land, William M.; Popp, Carmen; Schack, Thomas

    2014-01-01

    Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal) on both putting performance and the development of one's representation of the golf putt during early skill acquisition. Novice golfers (N = 52) practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only. PMID:24743576

  14. Tendencies and Problems in the Shaping of College Students' Culture of Citizenship

    ERIC Educational Resources Information Center

    Vishnevskii, Iu. R.; Trynov, D. V.; Shapko, V. T.

    2010-01-01

    In this article, a civil society is viewed as the qualitative state of the social organism as the result of the social actions of individuals in the framework of the particular culture. Such a representation is based on the sociocultural approach, and it finds expression in the formulation of the terms "culture of civic-mindedness" and…

  15. A survey of planning and scheduling research at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1988-01-01

    NASA Ames Research Center has a diverse program in planning and scheduling. This paper highlights some of our research projects as well as some of our applications. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling.

  16. An Analysis of Grade 11 Learners' Levels of Understanding of Functions in Terms of APOS Theory

    ERIC Educational Resources Information Center

    Chimhande, Tinoda; Naidoo, Ana; Stols, Gerrit

    2017-01-01

    This article reports on a study of six Grade 11 learners' levels of understanding of concepts related to the function definition and representation. Task-based clinical interviews were used to elicit the learners' interpretations and reasoning when working with these function-related concepts. Indicators for Action-Process-Object-Schema (APOS)…

  17. Spatial Working Memory Is Necessary for Actions to Guide Thought

    ERIC Educational Resources Information Center

    Thomas, Laura E.

    2013-01-01

    Directed actions can play a causal role in cognition, shaping thought processes. What drives this cross-talk between action and thought? I investigated the hypothesis that representations in spatial working memory mediate interactions between directed actions and problem solving. Participants attempted to solve an insight problem while…

  18. How Task Goals Mediate the Interplay between Perception and Action

    PubMed Central

    Haazebroek, Pascal; van Dantzig, Saskia; Hommel, Bernhard

    2013-01-01

    Theories of embodied cognition suppose that perception, action, and cognition are tightly intertwined and share common representations and processes. Indeed, numerous empirical studies demonstrate interaction between stimulus perception, response planning, and response execution. In this paper, we present an experiment and a connectionist model that show how the Simon effect, a canonical example of perception–action congruency, can be moderated by the (cognitive representation of the) task instruction. To date, no representational account of this influence exists. In the experiment, a two-dimensional Simon task was used, with critical stimuli being colored arrows pointing in one of four directions (backward, forward, left, or right). Participants stood on a Wii balance board, oriented diagonally toward the screen displaying the stimuli. They were either instructed to imagine standing on a snowboard or on a pair of skis and to respond to the stimulus color by leaning toward either the left or right foot. We expected that participants in the snowboard condition would encode these movements as forward or backward, resulting in a Simon effect on this dimension. This was confirmed by the results. The left–right congruency effect was larger in the ski condition, whereas the forward–backward congruency effect appeared only in the snowboard condition. The results can be readily accounted for by HiTEC, a connectionist model that aims at capturing the interaction between perception and action at the level of representations, and the way this interaction is mediated by cognitive control. Together, the empirical work and the connectionist model contribute to a better understanding of the complex interaction between perception, cognition, and action. PMID:23675361

  19. AND/OR graph representation of assembly plans

    NASA Astrophysics Data System (ADS)

    Homem de Mello, Luiz S.; Sanderson, Arthur C.

    1990-04-01

    A compact representation of all possible assembly plans of a product using AND/OR graphs is presented as a basis for efficient planning algorithms that allow an intelligent robot to pick a course of action according to instantaneous conditions. The AND/OR graph is equivalent to a state transition graph but requires fewer nodes and simplifies the search for feasible plans. Three applications are discussed: (1) the preselection of the best assembly plan, (2) the recovery from execution errors, and (3) the opportunistic scheduling of tasks. An example of an assembly with four parts illustrates the use of the AND/OR graph representation in assembly-plan preselection, based on the weighting of operations according to complexity of manipulation and stability of subassemblies. A hypothetical error situation is discussed to show how a bottom-up search of the AND/OR graph leads to an efficient recovery.

  20. AND/OR graph representation of assembly plans

    NASA Technical Reports Server (NTRS)

    Homem De Mello, Luiz S.; Sanderson, Arthur C.

    1990-01-01

    A compact representation of all possible assembly plans of a product using AND/OR graphs is presented as a basis for efficient planning algorithms that allow an intelligent robot to pick a course of action according to instantaneous conditions. The AND/OR graph is equivalent to a state transition graph but requires fewer nodes and simplifies the search for feasible plans. Three applications are discussed: (1) the preselection of the best assembly plan, (2) the recovery from execution errors, and (3) the opportunistic scheduling of tasks. An example of an assembly with four parts illustrates the use of the AND/OR graph representation in assembly-plan preselection, based on the weighting of operations according to complexity of manipulation and stability of subassemblies. A hypothetical error situation is discussed to show how a bottom-up search of the AND/OR graph leads to an efficient recovery.

  1. Complementary and alternative medicine - representations in popular magazines.

    PubMed

    Dunne, Alexandra; Phillips, Christine

    2010-09-01

    More than half the patients who use complementary and alternative medicine (CAM) in Australia do not discuss it with their doctors. Many consumers use popular media, especially women's magazines, to learn about CAM. To explore representations of CAM in popular Australian women's magazines. Content analysis of three Australian magazines: Australian Women's Weekly, Dolly and New Idea published from January to June 2008. Of 220 references to CAM (4-17 references per issue), most were to biologically based practices, particularly 'functional foods', which enhance health. Most representations of CAM were positive (81.3% positive, 16.4% neutral, 2.3% negative). Explanations of modes of action of CAM tended to be biological but relatively superficial. Australian magazines cast CAM as safe therapy which enhances patient engagement in healthcare, and works in ways analogous to orthodox medical treatments. General practitioners can use discussions with their patients about CAM to encourage health promoting practices.

  2. Learning robot actions based on self-organising language memory.

    PubMed

    Wermter, Stefan; Elshaw, Mark

    2003-01-01

    In the MirrorBot project we examine perceptual processes using models of cortical assemblies and mirror neurons to explore the emergence of semantic representations of actions, percepts and concepts in a neural robot. The hypothesis under investigation is whether a neural model will produce a life-like perception system for actions. In this context we focus in this paper on how instructions for actions can be modeled in a self-organising memory. Current approaches for robot control often do not use language and ignore neural learning. However, our approach uses language instruction and draws from the concepts of regional distributed modularity, self-organisation and neural assemblies. We describe a self-organising model that clusters actions into different locations depending on the body part they are associated with. In particular, we use actual sensor readings from the MIRA robot to represent semantic features of the action verbs. Furthermore, we outline a hierarchical computational model for a self-organising robot action control system using language for instruction.

  3. Mesencephalic representations of recent experience influence decision making

    PubMed Central

    Thompson, John A; Costabile, Jamie D; Felsen, Gidon

    2016-01-01

    Decisions are influenced by recent experience, but the neural basis for this phenomenon is not well understood. Here, we address this question in the context of action selection. We focused on activity in the pedunculopontine tegmental nucleus (PPTg), a mesencephalic region that provides input to several nuclei in the action selection network, in well-trained mice selecting actions based on sensory cues and recent trial history. We found that, at the time of action selection, the activity of many PPTg neurons reflected the action on the previous trial and its outcome, and the strength of this activity predicted the upcoming choice. Further, inactivating the PPTg predictably decreased the influence of recent experience on action selection. These findings suggest that PPTg input to downstream motor regions, where it can be integrated with other relevant information, provides a simple mechanism for incorporating recent experience into the computations underlying action selection. DOI: http://dx.doi.org/10.7554/eLife.16572.001 PMID:27454033

  4. Lexical-semantic body knowledge in 5- to 11-year-old children: How spatial body representation influences body semantics.

    PubMed

    Auclair, Laurent; Jambaqué, Isabelle

    2015-01-01

    This study addresses the relation between lexico-semantic body knowledge (i.e., body semantics) and spatial body representation (i.e., structural body representation) by analyzing naming performances as a function of body structural topography. One hundred and forty-one children ranging from 5 years 2 months to 10 years 5 months old were asked to provide a lexical label for isolated body part pictures. We compared the children's naming performances according to the location of the body parts (body parts vs. head features and also upper vs. lower limbs) or to their involvement in motor skills (distal segments, joints, and broader body parts). The results showed that the children's naming performance was better for facial body parts than for other body parts. Furthermore, it was found that the naming of body parts was better for body parts related to action. These findings suggest that the development of a spatial body representation shapes the elaboration of semantic body representation processing. Moreover, this influence was not limited to younger children. In our discussion of these results, we focus on the important role of action in the development of body representations and semantic organization.

  5. Imagining others' handedness: visual and motor processes in the attribution of the dominant hand to an imagined agent.

    PubMed

    Marzoli, Daniele; Menditto, Silvia; Lucafò, Chiara; Tommasi, Luca

    2013-08-01

    In a previous study, we found that when required to imagine another person performing an action, participants reported a higher correspondence between their own dominant hand and the hand used by the imagined person when the agent was visualized from the back compared to when the agent was visualized from the front. This suggests a greater involvement of motor representations in the back-view perspective, possibly indicating a greater proneness to put oneself in the agent's shoes in such a condition. In order to assess whether bringing to the foreground the right or left hand of an imagined agent can foster the activation of the corresponding motor representations, we required 384 participants to imagine a person-as seen from the right or left side-performing a single manual action and to indicate the hand used by the imagined person during movement execution. The proportion of right- versus left-handed reported actions was higher in the right-view condition than in the left-view condition, suggesting that a lateral vantage point may activate the corresponding hand motor representations, which is in line with previous research indicating a link between the hemispheric specialization of one's own body and the visual representation of others' bodies. Moreover, in agreement with research on hand laterality judgments, the effect of vantage point was stronger for left-handers (who reported a higher proportion of right- than left-handed actions in the right-view condition and a slightly higher proportion of left- than right-handed actions in the left-view condition) than for right-handers (who reported a higher proportion of right- than left-handed actions in both view conditions), indicating that during the mental simulation of others' actions, right-handers rely on sensorimotor processes more than left-handers, while left-handers rely on visual processes more than right-handers.

  6. Semantic domain-specific functional integration for action-related vs. abstract concepts.

    PubMed

    Ghio, Marta; Tettamanti, Marco

    2010-03-01

    A central topic in cognitive neuroscience concerns the representation of concepts and the specific neural mechanisms that mediate conceptual knowledge. Recently proposed modal theories assert that concepts are grounded on the integration of multimodal, distributed representations. The aim of the present work is to complement the available neuropsychological and neuroimaging evidence suggesting partially segregated anatomo-functional correlates for concrete vs. abstract concepts, by directly testing the semantic domain-specific patterns of functional integration between language and modal semantic brain regions. We report evidence from a functional magnetic resonance imaging study, in which healthy participants listened to sentences with either an action-related (actions involving physical entities) or an abstract (no physical entities involved) content. We measured functional integration using dynamic causal modeling, and found that the left superior temporal gyrus was more strongly connected: (1) for action-related vs. abstract sentences, with the left-hemispheric action representation system, including sensorimotor areas; (2) for abstract vs. action-related sentences, with left infero-ventral frontal, temporal, and retrosplenial cingulate areas. A selective directionality effect was observed, with causal modulatory effects exerted by perisylvian language regions on peripheral modal areas, and not vice versa. The observed condition-specific modulatory effects are consistent with embodied and situated language processing theories, and indicate that linguistic areas promote a semantic content-specific reactivation of modal simulations by top-down mechanisms. Copyright 2008 Elsevier Inc. All rights reserved.

  7. Representations of Patients' Experiences of Autonomy in Graphic Medicine.

    PubMed

    Tschaepe, Mark

    2018-02-01

    I advocate using graphic medicine in introductory medical ethics courses to help trainees learn about patients' experiences of autonomy. Graphic narratives about this content offer trainees opportunities to gain insights into making diagnoses and recommending treatments. Graphic medicine can also illuminate aspects of patients' experiences of autonomy differently than other genres. Specifically, comics allow readers to consider visual and text-based representations of a patient's actions, speech, thoughts, and emotions. Here, I use Ellen Forney's Marbles: Mania, Depression, Michelangelo, and Me: A Graphic Memoir and Peter Dunlap-Shohl's My Degeneration: A Journey Through Parkinson's as two examples that can serve as pedagogical resources. © 2018 American Medical Association. All Rights Reserved.

  8. Automated detection of pain from facial expressions: a rule-based approach using AAM

    NASA Astrophysics Data System (ADS)

    Chen, Zhanli; Ansari, Rashid; Wilkie, Diana J.

    2012-02-01

    In this paper, we examine the problem of using video analysis to assess pain, an important problem especially for critically ill, non-communicative patients, and people with dementia. We propose and evaluate an automated method to detect the presence of pain manifested in patient videos using a unique and large collection of cancer patient videos captured in patient homes. The method is based on detecting pain-related facial action units defined in the Facial Action Coding System (FACS) that is widely used for objective assessment in pain analysis. In our research, a person-specific Active Appearance Model (AAM) based on Project-Out Inverse Compositional Method is trained for each patient individually for the modeling purpose. A flexible representation of the shape model is used in a rule-based method that is better suited than the more commonly used classifier-based methods for application to the cancer patient videos in which pain-related facial actions occur infrequently and more subtly. The rule-based method relies on the feature points that provide facial action cues and is extracted from the shape vertices of AAM, which have a natural correspondence to face muscular movement. In this paper, we investigate the detection of a commonly used set of pain-related action units in both the upper and lower face. Our detection results show good agreement with the results obtained by three trained FACS coders who independently reviewed and scored the action units in the cancer patient videos.

  9. Social representations of the health care of the Mbyá-Guarani indigenous population by health workers 1

    PubMed Central

    Falkenberg, Mirian Benites; Shimizu, Helena Eri; Bermudez, Ximena Pamela Díaz

    2017-01-01

    ABSTRACT Objective: to analyze the social representations of health care of the Mbyá-Guarani ethnic group by multidisciplinary teams from the Special Indigenous Health District in the south coast of Rio Grande do Sul state (Distrito Sanitário Especial Indígena Litoral Sul do Rio Grande do Sul), Brazil. Method: a qualitative method based on the theory of social representations was used. Data were collected via semi-structured interviews with 20 health workers and by participant observation. The interviews were analyzed with ALCESTE software, which conducts a lexical content analysis using quantitative techniques for the treatment of textual data. Results: there were disagreements in the health care concepts and practices between traditional medicine and biomedicine; however, some progress has been achieved in the area of intermedicality. The ethnic boundaries established between health workers and indigenous peoples based on their representations of culture and family, together with the lack of infrastructure and organization of health actions, are perceived as factors that hinder health care in an intercultural context. Conclusion: a new basis for the process of indigenous health care needs to be established by understanding the needs identified and by agreement among individuals, groups, and health professionals via intercultural exchange. PMID:28177056

  10. A Policy Representation Using Weighted Multiple Normal Distribution

    NASA Astrophysics Data System (ADS)

    Kimura, Hajime; Aramaki, Takeshi; Kobayashi, Shigenobu

    In this paper, we challenge to solve a reinforcement learning problem for a 5-linked ring robot within a real-time so that the real-robot can stand up to the trial and error. On this robot, incomplete perception problems are caused from noisy sensors and cheap position-control motor systems. This incomplete perception also causes varying optimum actions with the progress of the learning. To cope with this problem, we adopt an actor-critic method, and we propose a new hierarchical policy representation scheme, that consists of discrete action selection on the top level and continuous action selection on the low level of the hierarchy. The proposed hierarchical scheme accelerates learning on continuous action space, and it can pursue the optimum actions varying with the progress of learning on our robotics problem. This paper compares and discusses several learning algorithms through simulations, and demonstrates the proposed method showing application for the real robot.

  11. Weighted fusion of depth and inertial data to improve view invariance for real-time human action recognition

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Hao, Huiyan; Jafari, Roozbeh; Kehtarnavaz, Nasser

    2017-05-01

    This paper presents an extension to our previously developed fusion framework [10] involving a depth camera and an inertial sensor in order to improve its view invariance aspect for real-time human action recognition applications. A computationally efficient view estimation based on skeleton joints is considered in order to select the most relevant depth training data when recognizing test samples. Two collaborative representation classifiers, one for depth features and one for inertial features, are appropriately weighted to generate a decision making probability. The experimental results applied to a multi-view human action dataset show that this weighted extension improves the recognition performance by about 5% over equally weighted fusion deployed in our previous fusion framework.

  12. Cognitive, perceptual and action-oriented representations of falling objects.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-01-01

    We interact daily with moving objects. How accurate are our predictions about objects' motions? What sources of information do we use? These questions have received wide attention from a variety of different viewpoints. On one end of the spectrum are the ecological approaches assuming that all the information about the visual environment is present in the optic array, with no need to postulate conscious or unconscious representations. On the other end of the spectrum are the constructivist approaches assuming that a more or less accurate representation of the external world is built in the brain using explicit or implicit knowledge or memory besides sensory inputs. Representations can be related to naive physics or to context cue-heuristics or to the construction of internal copies of environmental invariants. We address the issue of prediction of objects' fall at different levels. Cognitive understanding and perceptual judgment of simple Newtonian dynamics can be surprisingly inaccurate. By contrast, motor interactions with falling objects are often very accurate. We argue that the pragmatic action-oriented behaviour and the perception-oriented behaviour may use different modes of operation and different levels of representation.

  13. Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.

  14. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields

    PubMed Central

    Karniel, Amir; Nisky, Ilana

    2015-01-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. PMID:25717155

  15. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    PubMed

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  16. [The motor organization of cerebral cortex and the role of the mirror neuron system. Clinical impact for rehabilitation].

    PubMed

    Sallés, Laia; Gironès, Xavier; Lafuente, José Vicente

    2015-01-06

    The basic characteristics of Penfield homunculus (somatotopy and unique representation) have been questioned. The existence of a defined anatomo-functional organization within different segments of the same region is controversial. The presence of multiple motor representations in the primary motor area and in the parietal lobe interconnected by parieto-frontal circuits, which are widely overlapped, form a complex organization. Both features support the recovery of functions after brain injury. Regarding the movement organization, it is possible to yield a relevant impact through the understanding of actions and intentions of others, which is mediated by the activation of mirror-neuron systems. The implementation of cognitive functions (observation, image of the action and imitation) from the acute treatment phase allows the activation of motor representations without having to perform the action and it plays an important role in learning motor patterns. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  17. An integrated theory of language production and comprehension.

    PubMed

    Pickering, Martin J; Garrod, Simon

    2013-08-01

    Currently, production and comprehension are regarded as quite distinct in accounts of language processing. In rejecting this dichotomy, we instead assert that producing and understanding are interwoven, and that this interweaving is what enables people to predict themselves and each other. We start by noting that production and comprehension are forms of action and action perception. We then consider the evidence for interweaving in action, action perception, and joint action, and explain such evidence in terms of prediction. Specifically, we assume that actors construct forward models of their actions before they execute those actions, and that perceivers of others' actions covertly imitate those actions, then construct forward models of those actions. We use these accounts of action, action perception, and joint action to develop accounts of production, comprehension, and interactive language. Importantly, they incorporate well-defined levels of linguistic representation (such as semantics, syntax, and phonology). We show (a) how speakers and comprehenders use covert imitation and forward modeling to make predictions at these levels of representation, (b) how they interweave production and comprehension processes, and (c) how they use these predictions to monitor the upcoming utterances. We show how these accounts explain a range of behavioral and neuroscientific data on language processing and discuss some of the implications of our proposal.

  18. Decoding the neural mechanisms of human tool use

    PubMed Central

    Gallivan, Jason P; McLean, D Adam; Valyear, Kenneth F; Culham, Jody C

    2013-01-01

    Sophisticated tool use is a defining characteristic of the primate species but how is it supported by the brain, particularly the human brain? Here we show, using functional MRI and pattern classification methods, that tool use is subserved by multiple distributed action-centred neural representations that are both shared with and distinct from those of the hand. In areas of frontoparietal cortex we found a common representation for planned hand- and tool-related actions. In contrast, in parietal and occipitotemporal regions implicated in hand actions and body perception we found that coding remained selectively linked to upcoming actions of the hand whereas in parietal and occipitotemporal regions implicated in tool-related processing the coding remained selectively linked to upcoming actions of the tool. The highly specialized and hierarchical nature of this coding suggests that hand- and tool-related actions are represented separately at earlier levels of sensorimotor processing before becoming integrated in frontoparietal cortex. DOI: http://dx.doi.org/10.7554/eLife.00425.001 PMID:23741616

  19. Conspiracy theories as quasi-religious mentality: an integrated account from cognitive science, social representations theory, and frame theory.

    PubMed

    Franks, Bradley; Bangerter, Adrian; Bauer, Martin W

    2013-01-01

    Conspiracy theories (CTs) can take many forms and vary widely in popularity, the intensity with which they are believed and their effects on individual and collective behavior. An integrated account of CTs thus needs to explain how they come to appeal to potential believers, how they spread from one person to the next via communication, and how they motivate collective action. We summarize these aspects under the labels of stick, spread, and action. We propose the quasi-religious hypothesis for CTs: drawing on cognitive science of religion, social representations theory, and frame theory. We use cognitive science of religion to describe the main features of the content of CTs that explain how they come to stick: CTs are quasi-religious representations in that their contents, forms and functions parallel those found in beliefs of institutionalized religions. However, CTs are quasi-religious in that CTs and the communities that support them, lack many of the institutional features of organized religions. We use social representations theory to explain how CTs spread as devices for making sense of sudden events that threaten existing worldviews. CTs allow laypersons to interpret such events by relating them to common sense, thereby defusing some of the anxiety that those events generate. We use frame theory to explain how some, but not all CTs mobilize collective counter-conspiratorial action by identifying a target and by proposing credible and concrete rationales for action. We specify our integrated account in 13 propositions.

  20. Conspiracy theories as quasi-religious mentality: an integrated account from cognitive science, social representations theory, and frame theory

    PubMed Central

    Franks, Bradley; Bangerter, Adrian; Bauer, Martin W.

    2013-01-01

    Conspiracy theories (CTs) can take many forms and vary widely in popularity, the intensity with which they are believed and their effects on individual and collective behavior. An integrated account of CTs thus needs to explain how they come to appeal to potential believers, how they spread from one person to the next via communication, and how they motivate collective action. We summarize these aspects under the labels of stick, spread, and action. We propose the quasi-religious hypothesis for CTs: drawing on cognitive science of religion, social representations theory, and frame theory. We use cognitive science of religion to describe the main features of the content of CTs that explain how they come to stick: CTs are quasi-religious representations in that their contents, forms and functions parallel those found in beliefs of institutionalized religions. However, CTs are quasi-religious in that CTs and the communities that support them, lack many of the institutional features of organized religions. We use social representations theory to explain how CTs spread as devices for making sense of sudden events that threaten existing worldviews. CTs allow laypersons to interpret such events by relating them to common sense, thereby defusing some of the anxiety that those events generate. We use frame theory to explain how some, but not all CTs mobilize collective counter-conspiratorial action by identifying a target and by proposing credible and concrete rationales for action. We specify our integrated account in 13 propositions. PMID:23882235

  1. From action to language: comparative perspectives on primate tool use, gesture and the evolution of human language

    PubMed Central

    Steele, James; Ferrari, Pier Francesco; Fogassi, Leonardo

    2012-01-01

    The papers in this Special Issue examine tool use and manual gestures in primates as a window on the evolution of the human capacity for language. Neurophysiological research has supported the hypothesis of a close association between some aspects of human action organization and of language representation, in both phonology and semantics. Tool use provides an excellent experimental context to investigate analogies between action organization and linguistic syntax. Contributors report and contextualize experimental evidence from monkeys, great apes, humans and fossil hominins, and consider the nature and the extent of overlaps between the neural representations of tool use, manual gestures and linguistic processes. PMID:22106422

  2. 76 FR 72368 - Representation Case Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    [email protected] . SUPPLEMENTARY INFORMATION: The National Labor Relations Board will hold an open public... NATIONAL LABOR RELATIONS BOARD 29 CFR Parts 101, 102, 103 RIN 3142-AAO8 Representation Case Procedures AGENCY: National Labor Relations Board. ACTION: Proposed rule; notice of meeting. SUMMARY: The...

  3. Unconscious Modulation of the Conscious Experience of Voluntary Control

    ERIC Educational Resources Information Center

    Linser, Katrin; Goschke, Thomas

    2007-01-01

    How does the brain generate our experience of being in control over our actions and their effects? Here, we argue that the perception of events as self-caused emerges from a comparison between anticipated and actual action-effects: if the representation of an event that follows an action is activated before the action, the event is experienced as…

  4. Decoding the neural representation of fine-grained conceptual categories.

    PubMed

    Ghio, Marta; Vaghi, Matilde Maria Serena; Perani, Daniela; Tettamanti, Marco

    2016-05-15

    Neuroscientific research on conceptual knowledge based on the grounded cognition framework has shed light on the organization of concrete concepts into semantic categories that rely on different types of experiential information. Abstract concepts have traditionally been investigated as an undifferentiated whole, and have only recently been addressed in a grounded cognition perspective. The present fMRI study investigated the involvement of brain systems coding for experiential information in the conceptual processing of fine-grained semantic categories along the abstract-concrete continuum. These categories consisted of mental state-, emotion-, mathematics-, mouth action-, hand action-, and leg action-related meanings. Thirty-five sentences for each category were used as stimuli in a 1-back task performed by 36 healthy participants. A univariate analysis failed to reveal category-specific activations. Multivariate pattern analyses, in turn, revealed that fMRI data contained sufficient information to disentangle all six fine-grained semantic categories across participants. However, the category-specific activity patterns showed no overlap with the regions coding for experiential information. These findings demonstrate the possibility of detecting specific patterns of neural representation associated with the processing of fine-grained conceptual categories, crucially including abstract ones, though bearing no anatomical correspondence with regions coding for experiential information as predicted by the grounded cognition hypothesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Sex-specific effects of posture on the attribution of handedness to an imagined agent.

    PubMed

    Marzoli, Daniele; Lucafò, Chiara; Rescigno, Carmine; Mussini, Elena; Padulo, Caterina; Prete, Giulia; D'Anselmo, Anita; Malatesta, Gianluca; Tommasi, Luca

    2017-04-01

    In a series of previous studies, we found that when participants were required to imagine another person performing a manual action, they imagined a significantly higher proportion of actions performed with their dominant rather than non-dominant hand, which indicates that shared motor representations between the self and the other are involved also during the imagination of others' actions. Interestingly, the activation of lateralized body-specific motor representations (as indexed by the congruence between the participant's handedness and the imagined person's handedness) appeared to be affected by the visual perspective adopted and participants' handedness. Given that past literature indicates that incongruent or unnatural postures interfere with motor imagery, we tested 480 right-handed participants to investigate whether subjects holding their right hand behind their back would have imagined right-handed actions less frequently than those holding their left hand behind their back. Moreover, we examined the effects of participant's sex, action category (simple or complex) and hand shape (open or fist). Contrary to our prediction, female participants holding their right hand behind their back imagined right-handed actions more frequently than those holding their left hand behind their back, whereas no significant effect was observed in male participants. We propose that the muscle contraction needed to keep a hand behind the back could activate the motor representations of that hand so as to increase the likelihood of imagining an action performed with the corresponding hand. Moreover, the sex difference observed is consistent with the greater use of embodied strategies by females than by males.

  6. Representation: a call to action for allied health professionals.

    PubMed

    Rourke, K M; Kuck, L; Rosenbloom, J; Wilson, S L

    2000-01-01

    The Coalition of Allied Health Leadership (CAHL) Representation Project committee examined the representation of allied health professionals in political and other policy-making groups and found it both fragmented and lacking. The benefits to individuals participating in such groups, as well as to the allied health profession as a whole and to the groups themselves, are described. Individuals are urged to participate, and the means to do so are presented.

  7. The geometry of expertise

    PubMed Central

    Leone, María J.; Fernandez Slezak, Diego; Cecchi, Guillermo A.; Sigman, Mariano

    2014-01-01

    Theories of expertise based on the acquisition of chunk and templates suggest a differential geometric organization of perception between experts and novices. It is implied that expert representation is less anchored by spatial (Euclidean) proximity and may instead be dictated by the intrinsic relation in the structure and grammar of the specific domain of expertise. Here we set out to examine this hypothesis. We used the domain of chess which has been widely used as a tool to study human expertise. We reasoned that the movement of an opponent piece to a specific square constitutes an external cue and the reaction of the player to this “perturbation” should reveal his internal representation of proximity. We hypothesized that novice players will tend to respond by moving a piece in closer squares than experts. Similarly, but now in terms of object representations, we hypothesized weak players will more likely focus on a specific piece and hence produce sequence of actions repeating movements of the same piece. We capitalized on a large corpus of data obtained from internet chess servers. Results showed that, relative to experts, weaker players tend to (1) produce consecutive moves in proximal board locations, (2) move more often the same piece and (3) reduce the number of remaining pieces more rapidly, most likely to decrease cognitive load and mental effort. These three principles might reflect the effect of expertise on human actions in complex setups. PMID:24550869

  8. Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind.

    PubMed

    Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B

    2014-01-01

    For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments.

  9. Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind

    PubMed Central

    Connors, Erin C.; Chrastil, Elizabeth R.; Sánchez, Jaime; Merabet, Lotfi B.

    2014-01-01

    For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments. PMID:24653690

  10. Decision paths in complex tasks

    NASA Technical Reports Server (NTRS)

    Galanter, Eugene

    1991-01-01

    Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.

  11. 76 FR 25619 - Watermelon Research and Promotion Plan; Redistricting and Importer Representation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 1210 [Document Number AMS-FV-10-0093] Watermelon Research and Promotion Plan; Redistricting and Importer Representation AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: This proposed rule invites comments on...

  12. 77 FR 28536 - Representation Procedures and Rulemaking Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... NATIONAL MEDIATION BOARD 29 CFR Part 1206 [Docket No. C-7034] RIN 3140-ZA01 Representation Procedures and Rulemaking Authority AGENCY: National Mediation Board. ACTION: Proposed rule with request for comments. SUMMARY: This proposal amends the National Mediation Board's (NMB or Board) existing rules for...

  13. 77 FR 33701 - Representation Procedures and Rulemaking Authority; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... NATIONAL MEDIATION BOARD 29 CFR Parts 1206 [Docket No. C-7034] RIN 3140-ZA01 Representation Procedures and Rulemaking Authority; Correction AGENCY: National Mediation Board. ACTION: Proposed rule... May 15, 2012. The proposed rule changes the National Mediation Board's (NMB or Board) existing rules...

  14. 75 FR 32273 - Representation Election Procedure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... NATIONAL MEDIATION BOARD 29 CFR Parts 1202 and 1206 [Docket No. C-6964] RIN 3140-ZA00 Representation Election Procedure AGENCY: National Mediation Board. ACTION: Final rule; delay of effective date. SUMMARY: The National Mediation Board (NMB) is delaying the effective date of its rule regarding...

  15. Walking Out Graphs

    ERIC Educational Resources Information Center

    Shen, Ji

    2009-01-01

    In the Walking Out Graphs Lesson described here, students experience several types of representations used to describe motion, including words, sentences, equations, graphs, data tables, and actions. The most important theme of this lesson is that students have to understand the consistency among these representations and form the habit of…

  16. 76 FR 37291 - Representation Case Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... communications must include the following words on the Subject Line--``Request to Attend Public Meeting Regarding... NATIONAL LABOR RELATIONS BOARD 29 CFR Parts 101, 102, 103 RIN 3142-AAO8 Representation Case Procedures AGENCY: National Labor Relations Board. ACTION: Proposed rule; notice of meeting. SUMMARY: The...

  17. Perspective Taking Promotes Action Understanding and Learning

    ERIC Educational Resources Information Center

    Lozano, Sandra C.; Martin Hard, Bridgette; Tversky, Barbara

    2006-01-01

    People often learn actions by watching others. The authors propose and test the hypothesis that perspective taking promotes encoding a hierarchical representation of an actor's goals and subgoals-a key process for observational learning. Observers segmented videos of an object assembly task into coarse and fine action units. They described what…

  18. The joint Simon effect: a review and theoretical integration

    PubMed Central

    Dolk, Thomas; Hommel, Bernhard; Colzato, Lorenza S.; Schütz-Bosbach, Simone; Prinz, Wolfgang; Liepelt, Roman

    2014-01-01

    The social or joint Simon effect has been developed to investigate how and to what extent people mentally represent their own and other persons' action/task and how these cognitive representations influence an individual's own behavior when interacting with another person. Here, we provide a review of the available evidence and theoretical frameworks. Based on this review, we suggest a comprehensive theory that integrates aspects of earlier approaches–the Referential Coding Account. This account provides an alternative to the social interpretation of the (joint) go-nogo Simon effect (aka the social Simon effect) and is able to integrate seemingly opposite findings on joint action. PMID:25249991

  19. Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Joyce, G.; Montgomery, D.

    1977-01-01

    Two-dimensional magnetohydrodynamic turbulence is explored by means of numerical simulation. Previous analytical theory, based on non-dissipative constants of the motion in a truncated Fourier representation, is verified by following the evolution of highly non-equilibrium initial conditions numerically. Dynamo action (conversion of a significant fraction of turbulent kinetic energy into long-wavelength magnetic field energy) is observed. It is conjectured that in the presence of dissipation and external forcing, a dual cascade will be observed for zero-helicity situations. Energy will cascade to higher wavenumbers simultaneously with a cascade of mean square vector potential to lower wavenumbers, leading to an omni-directional magnetic energy spectrum.

  20. C-Language Integrated Production System, Version 6.0

    NASA Technical Reports Server (NTRS)

    Riley, Gary; Donnell, Brian; Ly, Huyen-Anh Bebe; Ortiz, Chris

    1995-01-01

    C Language Integrated Production System (CLIPS) computer programs are specifically intended to model human expertise or other knowledge. CLIPS is designed to enable research on, and development and delivery of, artificial intelligence on conventional computers. CLIPS 6.0 provides cohesive software tool for handling wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming: representation of knowledge as heuristics - essentially, rules of thumb that specify set of actions performed in given situation. Object-oriented programming: modeling of complex systems comprised of modular components easily reused to model other systems or create new components. Procedural-programming: representation of knowledge in ways similar to those of such languages as C, Pascal, Ada, and LISP. Version of CLIPS 6.0 for IBM PC-compatible computers requires DOS v3.3 or later and/or Windows 3.1 or later.

  1. Simulating Chemical Kinetics Without Differential Equations: A Quantitative Theory Based on Chemical Pathways.

    PubMed

    Bai, Shirong; Skodje, Rex T

    2017-08-17

    A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.

  2. Developing quality indicators and auditing protocols from formal guideline models: knowledge representation and transformations.

    PubMed

    Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A

    2003-01-01

    Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically context-specific and case-mix-adjusted quality indicators that can model global or local levels of detail about the guideline parameterized by defining the reliability of each indicator or element of the guideline.

  3. Teleological and referential understanding of action in infancy.

    PubMed Central

    Csibra, Gergely

    2003-01-01

    There are two fundamentally different ways to attribute intentional mental states to others upon observing their actions. Actions can be interpreted as goal-directed, which warrants ascribing intentions, desires and beliefs appropriate to the observed actions, to the agents. Recent studies suggest that young infants also tend to interpret certain actions in terms of goals, and their reasoning about these actions is based on a sophisticated teleological representation. Several theorists proposed that infants rely on motion cues, such as self-initiated movement, in selecting goal-directed agents. Our experiments revealed that, although infants are more likely to attribute goals to self-propelled than to non-self-propelled agents, they do not need direct evidence about the source of motion for interpreting actions in teleological terms. The second mode of action-based mental state attribution interprets actions as referential, and allows ascription of attentional states, referential intents, communicative messages, etc., to the agents. Young infants also display evidence of interpreting actions in referential terms (for example, when following others' gaze or pointing gesture) and are very sensitive to the communicative situations in which these actions occur. For example, young infants prefer faces with eye-contact and objects that react to them contingently, and these are the very situations that later elicit gaze following. Whether or not these early abilities amount to a 'theory of mind' is a matter of debate among infant researchers. Nevertheless, they represent skills that are vital for understanding social agents and engaging in social interactions. PMID:12689372

  4. Action-based sensory encoding in spinal sensorimotor circuits.

    PubMed

    Schouenborg, Jens

    2008-01-01

    The concept of a modular organisation of the spinal withdrawal reflex circuits has proven to be fundamental for the understanding of how the spinal cord is organised and how the sensorimotor circuits translate sensory information into adequate movement corrections. Recent studies indicate that a task-related body representation is engraved at the network level through learning-dependent mechanisms involving an active probing procedure termed 'somatosensory imprinting' during development. It was found that somatosensory imprinting depends on the tactile input that is associated with spontaneous movements that occur during sleep and results in elimination of erroneous connections and establishment of correct connections. In parallel studies it was found that the strength of the first order tactile synapses in rostrocaudally elongated zones in the adult dorsal horn in the lower lumbar cord is related to the modular organisation of the withdrawal reflexes. Hence, the topographical organisation of the tactile input to this spinal area seems to be action-based rather than a simple body map as previously thought. Far from being innate and adult like at birth, the adult organisation seems to emerge from an initial 'floating' and diffuse body representation with many inappropriate connections through profound activity-dependent rearrangements of afferent synaptic connections. It is suggested that somatosensory imprinting plays a key role in the self-organisation of the spinal cord during development.

  5. Integrating robotic action with biologic perception: A brain-machine symbiosis theory

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Babak

    In patients with motor disability the natural cyclic flow of information between the brain and external environment is disrupted by their limb impairment. Brain-Machine Interfaces (BMIs) aim to provide new communication channels between the brain and environment by direct translation of brain's internal states into actions. For enabling the user in a wide range of daily life activities, the challenge is designing neural decoders that autonomously adapt to different tasks, environments, and to changes in the pattern of neural activity. In this dissertation, a novel decoding framework for BMIs is developed in which a computational agent autonomously learns how to translate neural states into action based on maximization of a measure of shared goal between user and the agent. Since the agent and brain share the same goal, a symbiotic relationship between them will evolve therefore this decoding paradigm is called a Brain-Machine Symbiosis (BMS) framework. A decoding agent was implemented within the BMS framework based on the Actor-Critic method of Reinforcement Learning. The rule of the Actor as a neural decoder was to find mapping between the neural representation of motor states in the primary motor cortex (MI) and robot actions in order to solve reaching tasks. The Actor learned the optimal control policy using an evaluative feedback that was estimated by the Critic directly from the user's neural activity of the Nucleus Accumbens (NAcc). Through a series of computational neuroscience studies in a cohort of rats it was demonstrated that NAcc could provide a useful evaluative feedback by predicting the increase or decrease in the probability of earning reward based on the environmental conditions. Using a closed-loop BMI simulator it was demonstrated the Actor-Critic decoding architecture was able to adapt to different tasks as well as changes in the pattern of neural activity. The custom design of a dual micro-wire array enabled simultaneous implantation of MI and NAcc for the development of a full closed-loop system. The Actor-Critic decoding architecture was able to solve the brain-controlled reaching task using a robotic arm by capturing the interdependency between the simultaneous action representation in MI and reward expectation in NAcc.

  6. Alaska Consumer Protection Unit

    Science.gov Websites

    Office investigates unfair or deceptive business practices and files legal actions on behalf of the State affecting the public interest. Although we informally mediate consumer complaints, we do not provide legal representation to consumers. The Attorney General's Office cannot provide legal advice, representation, or

  7. 76 FR 42009 - Watermelon Research and Promotion Plan; Redistricting and Importer Representation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 1210 [Document Number AMS-FV-10-0093] Watermelon Research and Promotion Plan; Redistricting and Importer Representation AGENCY: Agricultural Marketing Service, USDA ACTION: Final rule. SUMMARY: This rule changes the boundaries of all seven...

  8. Type of iconicity matters in the vocabulary development of signing children.

    PubMed

    Ortega, Gerardo; Sümer, Beyza; Özyürek, Aslı

    2017-01-01

    Recent research on signed as well as spoken language shows that the iconic features of the target language might play a role in language development. Here, we ask further whether different types of iconic depictions modulate children's preferences for certain types of sign-referent links during vocabulary development in sign language. Results from a picture description task indicate that lexical signs with 2 possible variants are used in different proportions by deaf signers from different age groups. While preschool and school-age children favored variants representing actions associated with their referent (e.g., a writing hand for the sign PEN), adults preferred variants representing the perceptual features of those objects (e.g., upward index finger representing a thin, elongated object for the sign PEN). Deaf parents interacting with their children, however, used action- and perceptual-based variants in equal proportion and favored action variants more than adults signing to other adults. We propose that when children are confronted with 2 variants for the same concept, they initially prefer action-based variants because they give them the opportunity to link a linguistic label to familiar schemas linked to their action/motor experiences. Our results echo findings showing a bias for action-based depictions in the development of iconic co-speech gestures suggesting a modality bias for such representations during development. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition

    PubMed Central

    Shu, Na; Gao, Zhiyong; Chen, Xiangan; Liu, Haihua

    2015-01-01

    Humans can easily understand other people’s actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1), and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model. PMID:26132270

  10. Literacy shapes thought: the case of event representation in different cultures

    PubMed Central

    Dobel, Christian; Enriquez-Geppert, Stefanie; Zwitserlood, Pienie; Bölte, Jens

    2013-01-01

    There has been a lively debate whether conceptual representations of actions or scenes follow a left-to-right spatial transient when participants depict such events or scenes. It was even suggested that conceptualizing the agent on the left side represents a universal. We review the current literature with an emphasis on event representation and on cross-cultural studies. While there is quite some evidence for spatial bias for representations of events and scenes in diverse cultures, their extent and direction depend on task demands, one‘s native language, and importantly, on reading and writing direction. Whether transients arise only in subject-verb-object languages, due to their linear sentential position of event participants, is still an open issue. We investigated a group of illiterate speakers of Yucatec Maya, a language with a predominant verb-object-subject structure. They were compared to illiterate native speakers of Spanish. Neither group displayed a spatial transient. Given the current literature, we argue that learning to read and write has a strong impact on representations of actions and scenes. Thus, while it is still under debate whether language shapes thought, there is firm evidence that literacy does. PMID:24795665

  11. Extent and Location of the Excitatory and Inhibitory Cortical Hand Representation Maps: A Navigated Transcranial Magnetic Stimulation Study.

    PubMed

    Pitkänen, Minna; Kallioniemi, Elisa; Julkunen, Petro

    2015-09-01

    Voluntary muscle action and control are modulated by the primary motor cortex, which is characterized by a well-defined somatotopy. Muscle action and control depend on a sensitive balance between excitatory and inhibitory mechanisms in the cortex and in the corticospinal tract. The cortical locations evoking excitatory and inhibitory responses in brain stimulation can be mapped, for example, as a pre-surgical procedure. The purpose of this study was to find the differences between excitatory and inhibitory motor representations mapped using navigated transcranial magnetic stimulation (nTMS). The representations of small hand muscles were mapped to determine the areas and the center of gravities (CoGs) in both hemispheres of healthy right-handed volunteers. The excitatory representations were obtained via resting motor evoked potential (MEP) mapping, with and without a stimulation grid. The inhibitory representations were mapped using the grid and measuring corticospinal silent periods (SPs) during voluntary muscle contraction. The excitatory representations were larger on the dominant hemisphere compared with the non-dominant (p < 0.05). The excitatory CoGs were more medial (p < 0.001) and anterior (p < 0.001) than the inhibitory CoGs. The use of the grid did not influence the areas or the CoGs. The results support the common hypothesis that the MEP and SP representations are located at adjacent sites. Furthermore, the dominant hemisphere seems to be better organized for controlling excitatory motor functions with respect to TMS. In addition, the inhibitory representations could provide further information about motor reorganization and aid in surgery planning when the functional cortical representations are located in abnormal cortical regions.

  12. Computational validation of the motor contribution to speech perception.

    PubMed

    Badino, Leonardo; D'Ausilio, Alessandro; Fadiga, Luciano; Metta, Giorgio

    2014-07-01

    Action perception and recognition are core abilities fundamental for human social interaction. A parieto-frontal network (the mirror neuron system) matches visually presented biological motion information onto observers' motor representations. This process of matching the actions of others onto our own sensorimotor repertoire is thought to be important for action recognition, providing a non-mediated "motor perception" based on a bidirectional flow of information along the mirror parieto-frontal circuits. State-of-the-art machine learning strategies for hand action identification have shown better performances when sensorimotor data, as opposed to visual information only, are available during learning. As speech is a particular type of action (with acoustic targets), it is expected to activate a mirror neuron mechanism. Indeed, in speech perception, motor centers have been shown to be causally involved in the discrimination of speech sounds. In this paper, we review recent neurophysiological and machine learning-based studies showing (a) the specific contribution of the motor system to speech perception and (b) that automatic phone recognition is significantly improved when motor data are used during training of classifiers (as opposed to learning from purely auditory data). Copyright © 2014 Cognitive Science Society, Inc.

  13. A Cognitive System Model for Human/Automation Dynamics in Airspace Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. In order to support that cognitive function definition, we have extended the Man Machine Integrated Design and Analysis System (MIDAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems) operating aircraft, airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The MIDAS operator models have undergone significant development in order to understand the requirements for operator aiding and the impact of that aiding in the complex nondeterminate system of national airspace operations. The operator model's structure has been modified to include attention functions, action priority, and situation assessment. The cognitive function model has been expanded to include working memory operations including retrieval from long-term store, interference, visual-motor and verbal articulatory loop functions, and time-based losses. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. The model's internal representation has been be modified so that multiple, autonomous sets of equipment will function in a scenario as the single equipment sets do now. In order to support the analysis requirements with multiple items of equipment, it is necessary for equipment to access the state of other equipment objects at initialization time (a radar object may need to access the position and speed of aircraft in its area, for example), and as a function of perception and sensor system interaction. The model has been improved to include multiple world-states as a function of equipment am operator interaction. The model has been used -1o predict the impact of warning and alert zones in aircraft operation, and, more critic-ally, the interaction of flight-deck based warning mechanisms and air traffic controller action in response to ground-based conflict prediction and alerting systems. In this operation, two operating systems provide alerting to two autonomous, but linked sets of operators, whose view of the system and whose dynamics in response are radically different. System stability and operator action was predicted using the MIDAS model.

  14. The mirror mechanism in the parietal lobe.

    PubMed

    Rizzolatti, Giacomo; Rozzi, Stefano

    2018-01-01

    The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Dynamic evocation of hand action representations during sentence comprehension.

    PubMed

    Masson, Michael E J; Bub, Daniel N; Lavelle, Hillary

    2013-08-01

    When listening to a sentence describing an interaction with a manipulable object, understanding the actor's intentions is shown to have a striking influence on action representations evoked during comprehension. Subjects performed a cued reach and grasp response while listening to a context sentence. Responses were primed when they were consistent with the proximal intention of an actor ("John lifted the cell phone..."), but this effect was evanescent and appeared only when sentences mentioned the proximal intention first. When the sentence structure was changed to mention the distal intention first ("To clear the shelf..."), priming effects were no longer context specific and actions pertaining to the function of an object were clearly favored. These results are not compatible with a straightforward mental-simulation account of sentence comprehension but instead reflect a hierarchy of intentions distinguishing how and why actions are performed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Understanding and representing natural language meaning

    NASA Astrophysics Data System (ADS)

    Waltz, D. L.; Maran, L. R.; Dorfman, M. H.; Dinitz, R.; Farwell, D.

    1982-12-01

    During this contract period the authors have: (1) continued investigation of events and actions by means of representation schemes called 'event shape diagrams'; (2) written a parsing program which selects appropriate word and sentence meanings by a parallel process know as activation and inhibition; (3) begun investigation of the point of a story or event by modeling the motivations and emotional behaviors of story characters; (4) started work on combining and translating two machine-readable dictionaries into a lexicon and knowledge base which will form an integral part of our natural language understanding programs; (5) made substantial progress toward a general model for the representation of cognitive relations by comparing English scene and event descriptions with similar descriptions in other languages; (6) constructed a general model for the representation of tense and aspect of verbs; (7) made progress toward the design of an integrated robotics system which accepts English requests, and uses visual and tactile inputs in making decisions and learning new tasks.

  17. Impaired Comprehension of Speed Verbs in Parkinson's Disease.

    PubMed

    Speed, Laura J; van Dam, Wessel O; Hirath, Priyantha; Vigliocco, Gabriella; Desai, Rutvik H

    2017-05-01

    A wealth of studies provide evidence for action simulation during language comprehension. Recent research suggests such action simulations might be sensitive to fine-grained information, such as speed. Here, we present a crucial test for action simulation of speed in language by assessing speed comprehension in patients with Parkinson's disease (PD). Based on the patients' motor deficits, we hypothesized that the speed of motion described in language would modulate their performance in semantic tasks. Specifically, they would have more difficulty processing language about relatively fast speed than language about slow speed. We conducted a semantic similarity judgment task on fast and slow action verbs in patients with PD and age-matched healthy controls. Participants had to decide which of two verbs most closely matched a target word. Compared to controls, PD patients were slower making judgments about fast action verbs, but not for judgments about slow action verbs, suggesting impairment in processing language about fast action. Moreover, this impairment was specific to verbs describing fast action performed with the hand. Problems moving quickly lead to difficulties comprehending language about moving quickly. This study provides evidence that speed is an important part of action representations. (JINS, 2017, 23, 412-420).

  18. Listening to music primes space: pianists, but not novices, simulate heard actions.

    PubMed

    Taylor, J Eric T; Witt, Jessica K

    2015-03-01

    Musicians sometimes report twitching in their fingers or hands while listening to music. This anecdote could be indicative of a tendency for auditory-motor co-representation in musicians. Here, we describe two studies showing that pianists (Experiment 1), but not novices (Experiment 2) automatically generate spatial representations that correspond to learned musical actions while listening to music. Participants made one-handed movements to the left or right from a central location in response to visual stimuli while listening to task-irrelevant auditory stimuli, which were scales played on a piano. These task-irrelevant scales were either ascending (compatible with rightward movements) or descending (compatible with leftward movements). Pianists were faster to respond when the scale direction was compatible with the direction of response movement, whereas novices' movements were unaffected by the scale. These results are in agreement with existing research on action-effect coupling in musicians, which draw heavily on common coding theory. In addition, these results show how intricate auditory stimuli (ascending or descending scales) evoke coarse, domain-general spatial representations.

  19. The Koslowski-Sahlmann representation: quantum configuration space

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel; Varadarajan, Madhavan

    2014-09-01

    The Koslowski-Sahlmann (KS) representation is a generalization of the representation underlying the discrete spatial geometry of loop quantum gravity (LQG), to accommodate states labelled by smooth spatial geometries. As shown recently, the KS representation supports, in addition to the action of the holonomy and flux operators, the action of operators which are the quantum counterparts of certain connection dependent functions known as ‘background exponentials’. Here we show that the KS representation displays the following properties which are the exact counterparts of LQG ones: (i) the abelian * algebra of SU(2) holonomies and ‘U(1)’ background exponentials can be completed to a C* algebra, (ii) the space of semianalytic SU(2) connections is topologically dense in the spectrum of this algebra, (iii) there exists a measure on this spectrum for which the KS Hilbert space is realized as the space of square integrable functions on the spectrum, (iv) the spectrum admits a characterization as a projective limit of finite numbers of copies of SU(2) and U(1), (v) the algebra underlying the KS representation is constructed from cylindrical functions and their derivations in exactly the same way as the LQG (holonomy-flux) algebra except that the KS cylindrical functions depend on the holonomies and the background exponentials, this extra dependence being responsible for the differences between the KS and LQG algebras. While these results are obtained for compact spaces, they are expected to be of use for the construction of the KS representation in the asymptotically flat case.

  20. 34 CFR 33.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... statement: (a) Has actual knowledge that the claim or statement is false, fictitious, or fraudulent; (b... administrative enforcement action under this part, and that he or she has the right to representation by counsel or to self-representation. (Authority: 31 U.S.C. 3803(g)(2)(F)) Reviewing official means the General...

  1. 34 CFR 33.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... statement: (a) Has actual knowledge that the claim or statement is false, fictitious, or fraudulent; (b... administrative enforcement action under this part, and that he or she has the right to representation by counsel or to self-representation. (Authority: 31 U.S.C. 3803(g)(2)(F)) Reviewing official means the General...

  2. Processes and Reasoning in Representations of Linear Functions

    ERIC Educational Resources Information Center

    Adu-Gyamfi, Kwaku; Bossé, Michael J.

    2014-01-01

    This study examined student actions, interpretations, and language in respect to questions raised regarding tabular, graphical, and algebraic representations in the context of functions. The purpose was to investigate students' interpretations and specific ways of working within table, graph, and the algebraic on notions fundamental to a…

  3. Representational Competence: Towards a Distributed and Embodied Cognition Account

    ERIC Educational Resources Information Center

    Pande, Prajakt; Chandrasekharan, Sanjay

    2017-01-01

    Multiple external representations (MERs) are central to the practice and learning of science, mathematics and engineering, as the phenomena and entities investigated and controlled in these domains are often not available for perception and action. MERs therefore play a twofold constitutive role in reasoning in these domains. Firstly, MERs stand…

  4. The Mirror Reflects both Ways: Action Influences Perception of Others

    ERIC Educational Resources Information Center

    Blaesi, Sabine; Wilson, Margaret

    2010-01-01

    Substantial evidence links perception of others' bodies and mental representation of the observer's own body; however, the overwhelming majority of this evidence is unidirectional, showing influence from perception to action. It has been proposed that the influence also runs from action to perception, but to date the evidence is scant. Here we…

  5. The Performance and Observation of Action Shape Future Behaviour

    ERIC Educational Resources Information Center

    Welsh, Timothy N.; McDougall, Laura M.; Weeks, Daniel J.

    2009-01-01

    The observation of other people's actions plays an important role in shaping the perceptual, cognitive, and motor processes of the observer. It has been suggested that these social influences occur because the observation of action evokes a representation of that response in the observer and that these codes are subsequently accessed by other…

  6. Actionability and Simulation: No Representation without Communication

    PubMed Central

    Feldman, Jerome A.

    2016-01-01

    There remains considerable controversy about how the brain operates. This review focuses on brain activity rather than just structure and on concepts of action and actionability rather than truth conditions. Neural Communication is reviewed as a crucial aspect of neural encoding. Consequently, logical inference is superseded by neural simulation. Some remaining mysteries are discussed. PMID:27725807

  7. Dissociable contributions of motor-execution and action-observation to intramanual transfer.

    PubMed

    Hayes, Spencer J; Elliott, Digby; Andrew, Matthew; Roberts, James W; Bennett, Simon J

    2012-09-01

    We examined the hypothesis that different processes and representations are associated with the learning of a movement sequence through motor-execution and action-observation. Following a pre-test in which participants attempted to achieve an absolute, and relative, time goal in a sequential goal-directed aiming movement, participants received either physical or observational practice with feedback. Post-test performance indicated that motor-execution and action-observation participants learned equally well. Participants then transferred to conditions where the gain between the limb movements and their visual consequences were manipulated. Under both bigger and smaller transfer conditions, motor-execution and action-observation participants exhibited similar intramanual transfer of absolute timing. However, participants in the action-observation group exhibited superior transfer of relative timing than the motor-execution group. These findings suggest that learning via action-observation is underpinned by a visual-spatial representation, while learning via motor-execution depends more on specific force-time planning (feed forward) and afferent processing associated with sensorimotor feedback. These behavioural effects are discussed with reference to neural processes associated with striatum, cerebellum and motor cortical regions (pre-motor cortex; SMA; pre-SMA).

  8. Everyday representations of young people about peripheral areas.

    PubMed

    Oliveira, Elda de; Soares, Cassia Baldini; Batista, Leandro Leonardo

    2016-01-01

    to understand everyday representations of young people about the peripheral areas, with the purpose of establishing topics to drug education media programs. Marxist approach, with emancipatory action research and the participation in workshops of 13 youngsters from a public school of the peripheral area of São Paulo. there are contradictory everyday representations about the State's role, which, on the one hand, does not guarantee social rights and exert social control over the peripheral areas and, on the other hand, is considered the privileged interlocutor for the improvement of life and work conditions. the action research discussed mainly topics related to social rights context, claim of the young participants. It is necessary to expand the discussion beyond the citizenship rights sphere, which is only part of the debate about social inequalities inherent in capitalist exploitation and the necessary transformations to build equality policies.

  9. Teachers' social representations on drug use in a secondary school.

    PubMed

    Martini, Jussara Gue; Furegato, Antonia Regina Ferreira

    2008-01-01

    Increased concern regarding drug abuse among adolescents contributes to the elaboration of prevention programs at schools. This investigation aims to know teachers' social representations, regarding drug abuse, in a secondary school in Florianopolis, SC, Brazil. A total of 16 teachers of the 5th to 8th grades participated in the study. Data were collected through associations elaborated by teachers in response to the expression: drugs use/abuse. The teacher's representations are organized around a central concept - the vulnerable other: a needy adolescent, who becomes drugs user, highlighting the family, everyday coping, and the school's (in)visibility in prevention actions, as factors related. The complexity of factors involving drugs production, distribution and its commercialization, demands the implementation of actions that go beyond the scopes of education and health. The elaboration of inter-sector prevention programs considering local characteristics is necessary.

  10. Prioritizing Information during Working Memory: Beyond Sustained Internal Attention.

    PubMed

    Myers, Nicholas E; Stokes, Mark G; Nobre, Anna C

    2017-06-01

    Working memory (WM) has limited capacity. This leaves attention with the important role of allowing into storage only the most relevant information. It is increasingly evident that attention is equally crucial for prioritizing representations within WM as the importance of individual items changes. Retrospective prioritization has been proposed to result from a focus of internal attention highlighting one of several representations. Here, we suggest an updated model, in which prioritization acts in multiple steps: first orienting towards and selecting a memory, and then reconfiguring its representational state in the service of upcoming task demands. Reconfiguration sets up an optimized perception-action mapping, obviating the need for sustained attention. This view is consistent with recent literature, makes testable predictions, and links WM with task switching and action preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. 'Proactive' use of cue-context congruence for building reinforcement learning's reward function.

    PubMed

    Zsuga, Judit; Biro, Klara; Tajti, Gabor; Szilasi, Magdolna Emma; Papp, Csaba; Juhasz, Bela; Gesztelyi, Rudolf

    2016-10-28

    Reinforcement learning is a fundamental form of learning that may be formalized using the Bellman equation. Accordingly an agent determines the state value as the sum of immediate reward and of the discounted value of future states. Thus the value of state is determined by agent related attributes (action set, policy, discount factor) and the agent's knowledge of the environment embodied by the reward function and hidden environmental factors given by the transition probability. The central objective of reinforcement learning is to solve these two functions outside the agent's control either using, or not using a model. In the present paper, using the proactive model of reinforcement learning we offer insight on how the brain creates simplified representations of the environment, and how these representations are organized to support the identification of relevant stimuli and action. Furthermore, we identify neurobiological correlates of our model by suggesting that the reward and policy functions, attributes of the Bellman equitation, are built by the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), respectively. Based on this we propose that the OFC assesses cue-context congruence to activate the most context frame. Furthermore given the bidirectional neuroanatomical link between the OFC and model-free structures, we suggest that model-based input is incorporated into the reward prediction error (RPE) signal, and conversely RPE signal may be used to update the reward-related information of context frames and the policy underlying action selection in the OFC and ACC, respectively. Furthermore clinical implications for cognitive behavioral interventions are discussed.

  12. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing

    PubMed Central

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are “in situ.” In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired “blackboards.” The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing. PMID:27242504

  13. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing.

    PubMed

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are "in situ." In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired "blackboards." The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing.

  14. Tensor and Spin Representations of SO(4) and Discrete Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Lorente, M.; Kramer, P.

    Starting from the defining transformations of complex matrices for the SO(4) group, we construct the fundamental representation and the tensor and spinor representations of the group SO(4). Given the commutation relations for the corresponding algebra, the unitary representations of the group in terms of the generalized Euler angles are constructed. These mathematical results help us to a more complete description of the Barret-Crane model in Quantum Gravity. In particular a complete realization of the weight function for the partition function is given and a new geometrical interpretation of the asymptotic limit for the Regge action is presented.

  15. Dysregulation in level of goal and action identification across psychological disorders.

    PubMed

    Watkins, Edward

    2011-03-01

    Goals, events, and actions can be mentally represented within a hierarchical framework that ranges from more abstract to more concrete levels of identification. A more abstract level of identification involves general, superordinate, and decontextualized mental representations that convey the meaning of goals, events, and actions, "why" an action is performed, and its purpose, ends, and consequences. A more concrete level of identification involves specific and subordinate mental representations that include contextual details of goals, events, and actions, and the specific "how" details of an action. This review considers three lines of evidence for considering that dysregulation of level of goal/action identification may be a transdiagnostic process. First, there is evidence that different levels of identification have distinct functional consequences and that in non-clinical samples level of goal/action identification appears to be regulated in a flexible and adaptive way to match the level of goal/action identification to circumstances. Second, there is evidence that level of goal/action identification causally influences symptoms and processes involved in psychological disorders, including emotional response, repetitive thought, impulsivity, problem solving and procrastination. Third, there is evidence that the level of goal/action identification is biased and/or dysregulated in certain psychological disorders, with a bias towards more abstract identification for negative events in depression, GAD, PTSD, and social anxiety. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Dysregulation in level of goal and action identification across psychological disorders

    PubMed Central

    Watkins, Edward

    2011-01-01

    Goals, events, and actions can be mentally represented within a hierarchical framework that ranges from more abstract to more concrete levels of identification. A more abstract level of identification involves general, superordinate, and decontextualized mental representations that convey the meaning of goals, events, and actions, “why” an action is performed, and its purpose, ends, and consequences. A more concrete level of identification involves specific and subordinate mental representations that include contextual details of goals, events, and actions, and the specific “how” details of an action. This review considers three lines of evidence for considering that dysregulation of level of goal/action identification may be a transdiagnostic process. First, there is evidence that different levels of identification have distinct functional consequences and that in non-clinical samples level of goal/action identification appears to be regulated in a flexible and adaptive way to match the level of goal/action identification to circumstances. Second, there is evidence that level of goal/action identification causally influences symptoms and processes involved in psychological disorders, including emotional response, repetitive thought, impulsivity, problem solving and procrastination. Third, there is evidence that the level of goal/action identification is biased and/or dysregulated in certain psychological disorders, with a bias towards more abstract identification for negative events in depression, GAD, PTSD, and social anxiety. PMID:20579789

  17. Evaluation of an Intelligent Tutoring System in Pathology: Effects of External Representation on Performance Gains, Metacognition, and Acceptance

    PubMed Central

    Crowley, Rebecca S.; Legowski, Elizabeth; Medvedeva, Olga; Tseytlin, Eugene; Roh, Ellen; Jukic, Drazen

    2007-01-01

    Objective Determine effects of computer-based tutoring on diagnostic performance gains, meta-cognition, and acceptance using two different problem representations. Describe impact of tutoring on spectrum of diagnostic skills required for task performance. Identify key features of student-tutor interaction contributing to learning gains. Design Prospective, between-subjects study, controlled for participant level of training. Resident physicians in two academic pathology programs spent four hours using one of two interfaces which differed mainly in external problem representation. The case-focused representation provided an open-learning environment in which students were free to explore evidence-hypothesis relationships within a case, but could not visualize the entire diagnostic space. The knowledge-focused representation provided an interactive representation of the entire diagnostic space, which more tightly constrained student actions. Measurements Metrics included results of pretest, post-test and retention-test for multiple choice and case diagnosis tests, ratios of performance to student reported certainty, results of participant survey, learning curves, and interaction behaviors during tutoring. Results Students had highly significant learning gains after one tutoring session. Learning was retained at one week. There were no differences between the two interfaces in learning gains on post-test or retention test. Only students in the knowledge-focused interface exhibited significant metacognitive gains from pretest to post-test and pretest to retention test. Students rated the knowledge-focused interface significantly higher than the case-focused interface. Conclusions Cognitive tutoring is associated with improved diagnostic performance in a complex medical domain. The effect is retained at one-week post-training. Knowledge-focused external problem representation shows an advantage over case-focused representation for metacognitive effects and user acceptance. PMID:17213494

  18. Evaluation of an intelligent tutoring system in pathology: effects of external representation on performance gains, metacognition, and acceptance.

    PubMed

    Crowley, Rebecca S; Legowski, Elizabeth; Medvedeva, Olga; Tseytlin, Eugene; Roh, Ellen; Jukic, Drazen

    2007-01-01

    Determine effects of computer-based tutoring on diagnostic performance gains, meta-cognition, and acceptance using two different problem representations. Describe impact of tutoring on spectrum of diagnostic skills required for task performance. Identify key features of student-tutor interaction contributing to learning gains. Prospective, between-subjects study, controlled for participant level of training. Resident physicians in two academic pathology programs spent four hours using one of two interfaces which differed mainly in external problem representation. The case-focused representation provided an open-learning environment in which students were free to explore evidence-hypothesis relationships within a case, but could not visualize the entire diagnostic space. The knowledge-focused representation provided an interactive representation of the entire diagnostic space, which more tightly constrained student actions. Metrics included results of pretest, post-test and retention-test for multiple choice and case diagnosis tests, ratios of performance to student reported certainty, results of participant survey, learning curves, and interaction behaviors during tutoring. Students had highly significant learning gains after one tutoring session. Learning was retained at one week. There were no differences between the two interfaces in learning gains on post-test or retention test. Only students in the knowledge-focused interface exhibited significant metacognitive gains from pretest to post-test and pretest to retention test. Students rated the knowledge-focused interface significantly higher than the case-focused interface. Cognitive tutoring is associated with improved diagnostic performance in a complex medical domain. The effect is retained at one-week post-training. Knowledge-focused external problem representation shows an advantage over case-focused representation for metacognitive effects and user acceptance.

  19. Body posture modulates action perception.

    PubMed

    Zimmermann, Marius; Toni, Ivan; de Lange, Floris P

    2013-04-03

    Recent studies have highlighted cognitive and neural similarities between planning and perceiving actions. Given that action planning involves a simulation of potential action plans that depends on the actor's body posture, we reasoned that perceiving actions may also be influenced by one's body posture. Here, we test whether and how this influence occurs by measuring behavioral and cerebral (fMRI) responses in human participants predicting goals of observed actions, while manipulating postural congruency between their own body posture and postures of the observed agents. Behaviorally, predicting action goals is facilitated when the body posture of the observer matches the posture achieved by the observed agent at the end of his action (action's goal posture). Cerebrally, this perceptual postural congruency effect modulates activity in a portion of the left intraparietal sulcus that has previously been shown to be involved in updating neural representations of one's own limb posture during action planning. This intraparietal area showed stronger responses when the goal posture of the observed action did not match the current body posture of the observer. These results add two novel elements to the notion that perceiving actions relies on the same predictive mechanism as planning actions. First, the predictions implemented by this mechanism are based on the current physical configuration of the body. Second, during both action planning and action observation, these predictions pertain to the goal state of the action.

  20. Sketching for Military Courses of Action Diagrams

    DTIC Science & Technology

    2003-01-01

    the glyph bar and (optionally) spoken input2. Avoiding the need for recognition in glyphs Glyphs in nuSketch systems have two parts. The ink is the...time-stamped collection of ink strokes that comprise the base- level visual representation of the glyph. The content of the glyph is an entity in...preferred having a neat symbol drawn where they wanted it. Those who had tried ink recognition systems particularly appreciated never having to

  1. Multimodal Literacies in Science: Currency, Coherence and Focus

    NASA Astrophysics Data System (ADS)

    Klein, Perry D.; Kirkpatrick, Lori C.

    2010-01-01

    Since the 1990s, researchers have increasingly drawn attention to the multiplicity of representations used in science. This issue of RISE advances this line of research by placing such representations at the centre of science teaching and learning. The authors show that representations do not simply transmit scientific information; they are integral to reasoning about scientific phenomena. This focus on thinking with representations mediates between well-resolved representations and formal reasoning of disciplinary science, and the capacity-limited, perceptually-driven nature of human cognition. The teaching practices described here build on three key principles: Each representation is interpreted through others; natural language is a sign system that is used to interpret a variety of other kinds of representations; and this chain of signs or representations is ultimately grounded in bodily experiences of perception and action. In these papers, the researchers provide examples and analysis of teachers scaffolding students in using representations to construct new knowledge, and in constructing new representations to express and develop their knowledge. The result is a new delineation of the power and the challenges of teaching science with multiple representations.

  2. Action-outcome learning and prediction shape the window of simultaneity of audiovisual outcomes.

    PubMed

    Desantis, Andrea; Haggard, Patrick

    2016-08-01

    To form a coherent representation of the objects around us, the brain must group the different sensory features composing these objects. Here, we investigated whether actions contribute in this grouping process. In particular, we assessed whether action-outcome learning and prediction contribute to audiovisual temporal binding. Participants were presented with two audiovisual pairs: one pair was triggered by a left action, and the other by a right action. In a later test phase, the audio and visual components of these pairs were presented at different onset times. Participants judged whether they were simultaneous or not. To assess the role of action-outcome prediction on audiovisual simultaneity, each action triggered either the same audiovisual pair as in the learning phase ('predicted' pair), or the pair that had previously been associated with the other action ('unpredicted' pair). We found the time window within which auditory and visual events appeared simultaneous increased for predicted compared to unpredicted pairs. However, no change in audiovisual simultaneity was observed when audiovisual pairs followed visual cues, rather than voluntary actions. This suggests that only action-outcome learning promotes temporal grouping of audio and visual effects. In a second experiment we observed that changes in audiovisual simultaneity do not only depend on our ability to predict what outcomes our actions generate, but also on learning the delay between the action and the multisensory outcome. When participants learned that the delay between action and audiovisual pair was variable, the window of audiovisual simultaneity for predicted pairs increased, relative to a fixed action-outcome pair delay. This suggests that participants learn action-based predictions of audiovisual outcome, and adapt their temporal perception of outcome events based on such predictions. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Neural representations of kinematic laws of motion: evidence for action-perception coupling.

    PubMed

    Dayan, Eran; Casile, Antonino; Levit-Binnun, Nava; Giese, Martin A; Hendler, Talma; Flash, Tamar

    2007-12-18

    Behavioral and modeling studies have established that curved and drawing human hand movements obey the 2/3 power law, which dictates a strong coupling between movement curvature and velocity. Human motion perception seems to reflect this constraint. The functional MRI study reported here demonstrates that the brain's response to this law of motion is much stronger and more widespread than to other types of motion. Compliance with this law is reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. Hence, these results strongly support the notion of similar neural coding for motion perception and production. These findings suggest that cortical motion representations are optimally tuned to the kinematic and geometrical invariants characterizing biological actions.

  4. Bridging the Gap: Possible Roles and Contributions of Representational Momentum

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2006-01-01

    Memory for the position of a moving target is often displaced in the direction of anticipated motion, and this has been referred to as "representational momentum". Such displacement might aid spatial localization by bridging the gap between perception and action, and might reflect a second-order isomorphism between subjective consequences of…

  5. Transforming the Social Practices of Learning with Representations: A Study of Disciplinary Discourse

    ERIC Educational Resources Information Center

    Nichols, Kim; Hanan, Jim; Ranasinghe, Muditha

    2013-01-01

    This study used an interactive dynamic simulation of action potential to explore social practices of learning among first year undergraduate biology students. It aimed to create a learning environment that fosters knowledge building discourse through working with multiple concept-specific representations. Three hundred and eighty-nine students and…

  6. Representational Momentum in Older Adults

    ERIC Educational Resources Information Center

    Piotrowski, Andrea S.; Jakobson, Lorna S.

    2011-01-01

    Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion--a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of…

  7. Spatial Representations in Older Adults are Not Modified by Action: Evidence from Tool Use

    PubMed Central

    Costello, Matthew C.; Bloesch, Emily K.; Davoli, Christopher C.; Panting, Nicholas D.; Abrams, Richard A.; Brockmole, James R.

    2015-01-01

    Theories of embodied perception hold that the visual system is calibrated by both the body schema and the action system, allowing for adaptive action-perception responses. One example of embodied perception involves the effects of tool-use on distance perception, in which wielding a tool with the intention to act upon a target appears to bring that object closer. This tool-based spatial compression (i.e., tool-use effect) has been studied exclusively with younger adults, but it is unknown whether the phenomenon exists with older adults. In this study, we examined the effects of tool use on distance perception in younger and older adults in two experiments. In Experiment 1, younger and older adults estimated the distances of targets just beyond peripersonal space while either wielding a tool or pointing with the hand. Younger adults, but not older adults, estimated targets to be closer after reaching with a tool. In Experiment 2, younger and older adults estimated the distance to remote targets while using either a baton or laser pointer. Younger adults displayed spatial compression with the laser pointer compared to the baton, although older adults did not. Taken together, these findings indicate a generalized absence of the tool-use effect in older adults during distance estimation suggesting that the visuomotor system of older adults does not remap from peripersonal to extrapersonal spatial representations during tool use. PMID:26052886

  8. Developing Quality Indicators and Auditing Protocols from Formal Guideline Models: Knowledge Representation and Transformations

    PubMed Central

    Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A.

    2003-01-01

    Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically (1) context-specific and (2) case-mix-adjusted quality indicators that (3) can model global or local levels of detail about the guideline (4) parameterized by defining the reliability of each indicator or element of the guideline. PMID:14728124

  9. Highly effective action from large N gauge fields

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Seok

    2014-10-01

    Recently Schwarz put forward a conjecture that the world-volume action of a probe D3-brane in an AdS5×S5 background of type IIB superstring theory can be reinterpreted as the highly effective action (HEA) of four-dimensional N =4 superconformal field theory on the Coulomb branch. We argue that the HEA can be derived from the noncommutative (NC) field theory representation of the AdS/CFT correspondence and the Seiberg-Witten (SW) map defining a spacetime field redefinition between ordinary and NC gauge fields. It is based only on the well-known facts that the master fields of large N matrices are higher-dimensional NC U(1) gauge fields and the SW map is a local coordinate transformation eliminating U(1) gauge fields known as the Darboux theorem in symplectic geometry.

  10. Parallel Representation of Value-Based and Finite State-Based Strategies in the Ventral and Dorsal Striatum

    PubMed Central

    Ito, Makoto; Doya, Kenji

    2015-01-01

    Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the “win-stay, lose-switch” strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS), the dorsomedial striatum (DMS), and the ventral striatum (VS) identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum. PMID:26529522

  11. Components of action representations evoked when identifying manipulable objects

    PubMed Central

    Bub, Daniel N.; Masson, Michael E. J.; Lin, Terry

    2015-01-01

    We examined the influence of holding planned hand actions in working memory on the time taken to visually identify objects with handles. Features of the hand actions and position of the object's handle were congruent or incongruent on two dimensions: alignment (left vs. right) and orientation (horizontal vs. vertical). When an object was depicted in an upright view, subjects were slower to name it when its handle was congruent with the planned hand actions on one dimension but incongruent on the other, relative to when the object handle and actions were congruent on both or neither dimension. This pattern is consistent with many other experiments demonstrating that a cost occurs when there is partial feature overlap between a planned action and a perceived target. An opposite pattern of results was obtained when the depicted object appeared in a 90° rotated view (e.g., a beer mug on its side), suggesting that the functional goal associated with the object (e.g., drinking from an upright beer mug) was taken into account during object perception and that this knowledge superseded the influence of the action afforded by the depicted view of the object. These results have implications for the relationship between object perception and action representations, and for the mechanisms that support the identification of rotated objects. PMID:25705187

  12. Human action recognition based on point context tensor shape descriptor

    NASA Astrophysics Data System (ADS)

    Li, Jianjun; Mao, Xia; Chen, Lijiang; Wang, Lan

    2017-07-01

    Motion trajectory recognition is one of the most important means to determine the identity of a moving object. A compact and discriminative feature representation method can improve the trajectory recognition accuracy. This paper presents an efficient framework for action recognition using a three-dimensional skeleton kinematic joint model. First, we put forward a rotation-scale-translation-invariant shape descriptor based on point context (PC) and the normal vector of hypersurface to jointly characterize local motion and shape information. Meanwhile, an algorithm for extracting the key trajectory based on the confidence coefficient is proposed to reduce the randomness and computational complexity. Second, to decrease the eigenvalue decomposition time complexity, a tensor shape descriptor (TSD) based on PC that can globally capture the spatial layout and temporal order to preserve the spatial information of each frame is proposed. Then, a multilinear projection process is achieved by tensor dynamic time warping to map the TSD to a low-dimensional tensor subspace of the same size. Experimental results show that the proposed shape descriptor is effective and feasible, and the proposed approach obtains considerable performance improvement over the state-of-the-art approaches with respect to accuracy on a public action dataset.

  13. Analysis of technical alternative technologies for the development of context-driven composable environmental representations for JSB

    NASA Astrophysics Data System (ADS)

    Hummel, John R.; Bergenthal, Jeff J.; Seng, William F.; Moulton, Joseph R., Jr.; Prager, S. D.

    2004-08-01

    The Joint Synthetic Battlespace for the Air Force (JSB-AF) is being developed to provide realistic representations of friendly and threat capabilities and the natural environmental conditions to support a variety of Department of Defense missions including training, mission rehearsal, decision support, acquisition, deployment, employment, operations, and the development of Courses of Action. This paper addresses three critical JSB issues associated with providing environ-mental representations to Modeling and Simulation (M&S) applications. First, how should the requirements for envi-ronmental functionality in a JSB-AF application be collected, analyzed, and used to define an Authoritative Environ-mental Representation (AER)? Second, how can JSB-AF AERs be generated? Third, once an AER has been generated, how should it be "served up" to the JSB-AF components? Our analyses of these issues will be presented from a general M&S perspective, with examples given from a JSB-AF centered view. In the context of this effort, the term "representa-tions" is meant to incorporate both basic environmental "data" (e.g., temperature, pressure, slope, elevation, etc.) and "effects", properties that can be derived from these data using physics-based models or empirical relationship from the fundamental data (e.g., extinction coefficients, radiance, soil moisture strength, etc.) We present a state-of-the-art review of the existing processes and technologies that address these questions.

  14. The Neuroscience of Storing and Molding Tool Action Concepts: How "Plastic" is Grounded Cognition?

    PubMed

    Mizelle, J C; Wheaton, Lewis A

    2010-01-01

    Choosing how to use tools to accomplish a task is a natural and seemingly trivial aspect of our lives, yet engages complex neural mechanisms. Recently, work in healthy populations has led to the idea that tool knowledge is grounded to allow for appropriate recall based on some level of personal history. This grounding has presumed neural loci for tool use, centered on parieto-temporo-frontal areas to fuse perception and action representations into one dynamic system. A challenge for this idea is related to one of its great benefits. For such a system to exist, it must be very plastic, to allow for the introduction of novel tools or concepts of tool use and modification of existing ones. Thus, learning new tool usage (familiar tools in new situations and new tools in familiar situations) must involve mapping into this grounded network while maintaining existing rules for tool usage. This plasticity may present a challenging breadth of encoding that needs to be optimally stored and accessed. The aim of this work is to explore the challenges of plasticity related to changing or incorporating representations of tool action within the theory of grounded cognition and propose a modular model of tool-object goal related accomplishment. While considering the neuroscience evidence for this approach, we will focus on the requisite plasticity for this system. Further, we will highlight challenges for flexibility and organization of already grounded tool actions and provide thoughts on future research to better evaluate mechanisms of encoding in the theory of grounded cognition.

  15. A novel video recommendation system based on efficient retrieval of human actions

    NASA Astrophysics Data System (ADS)

    Ramezani, Mohsen; Yaghmaee, Farzin

    2016-09-01

    In recent years, fast growth of online video sharing eventuated new issues such as helping users to find their requirements in an efficient way. Hence, Recommender Systems (RSs) are used to find the users' most favorite items. Finding these items relies on items or users similarities. Though, many factors like sparsity and cold start user impress the recommendation quality. In some systems, attached tags are used for searching items (e.g. videos) as personalized recommendation. Different views, incomplete and inaccurate tags etc. can weaken the performance of these systems. Considering the advancement of computer vision techniques can help improving RSs. To this end, content based search can be used for finding items (here, videos are considered). In such systems, a video is taken from the user to find and recommend a list of most similar videos to the query one. Due to relating most videos to humans, we present a novel low complex scalable method to recommend videos based on the model of included action. This method has recourse to human action retrieval approaches. For modeling human actions, some interest points are extracted from each action and their motion information are used to compute the action representation. Moreover, a fuzzy dissimilarity measure is presented to compare videos for ranking them. The experimental results on HMDB, UCFYT, UCF sport and KTH datasets illustrated that, in most cases, the proposed method can reach better results than most used methods.

  16. 16 CFR 1025.18 - Class actions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROCEEDINGS Pleadings, Form, Execution, Service of Documents § 1025.18 Class actions. (a) Prerequisites to a..., the extent and nature of any proceedings concerning the controversy already commenced against members... that the pleadings be amended to eliminate allegations concerning the representation of absent persons...

  17. Action understanding as inverse planning.

    PubMed

    Baker, Chris L; Saxe, Rebecca; Tenenbaum, Joshua B

    2009-12-01

    Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the principle of rationality: the expectation that agents will plan approximately rationally to achieve their goals, given their beliefs about the world. The mental states that caused an agent's behavior are inferred by inverting this model of rational planning using Bayesian inference, integrating the likelihood of the observed actions with the prior over mental states. This approach formalizes in precise probabilistic terms the essence of previous qualitative approaches to action understanding based on an "intentional stance" [Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press] or a "teleological stance" [Gergely, G., Nádasdy, Z., Csibra, G., & Biró, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56, 165-193]. In three psychophysical experiments using animated stimuli of agents moving in simple mazes, we assess how well different inverse planning models based on different goal priors can predict human goal inferences. The results provide quantitative evidence for an approximately rational inference mechanism in human goal inference within our simplified stimulus paradigm, and for the flexible nature of goal representations that human observers can adopt. We discuss the implications of our experimental results for human action understanding in real-world contexts, and suggest how our framework might be extended to capture other kinds of mental state inferences, such as inferences about beliefs, or inferring whether an entity is an intentional agent.

  18. Hearing sounds, understanding actions: action representation in mirror neurons.

    PubMed

    Kohler, Evelyne; Keysers, Christian; Umiltà, M Alessandra; Fogassi, Leonardo; Gallese, Vittorio; Rizzolatti, Giacomo

    2002-08-02

    Many object-related actions can be recognized by their sound. We found neurons in monkey premotor cortex that discharge when the animal performs a specific action and when it hears the related sound. Most of the neurons also discharge when the monkey observes the same action. These audiovisual mirror neurons code actions independently of whether these actions are performed, heard, or seen. This discovery in the monkey homolog of Broca's area might shed light on the origin of language: audiovisual mirror neurons code abstract contents-the meaning of actions-and have the auditory access typical of human language to these contents.

  19. Neural alpha oscillations index the balance between self-other integration and segregation in real-time joint action.

    PubMed

    Novembre, Giacomo; Sammler, Daniela; Keller, Peter E

    2016-08-01

    Shared knowledge and interpersonal coordination are prerequisites for most forms of social behavior. Influential approaches to joint action have conceptualized these capacities in relation to the separate constructs of co-representation (knowledge) and self-other entrainment (coordination). Here we investigated how brain mechanisms involved in co-representation and entrainment interact to support joint action. To do so, we used a musical joint action paradigm to show that the neural mechanisms underlying co-representation and self-other entrainment are linked via a process - indexed by EEG alpha oscillations - regulating the balance between self-other integration and segregation in real time. Pairs of pianists performed short musical items while action familiarity and interpersonal (behavioral) synchronization accuracy were manipulated in a factorial design. Action familiarity referred to whether or not pianists had rehearsed the musical material performed by the other beforehand. Interpersonal synchronization was manipulated via congruent or incongruent tempo change instructions that biased performance timing towards the impending, new tempo. It was observed that, when pianists were familiar with each other's parts, millisecond variations in interpersonal synchronized behavior were associated with a modulation of alpha power over right centro-parietal scalp regions. Specifically, high behavioral entrainment was associated with self-other integration, as indexed by alpha suppression. Conversely, low behavioral entrainment encouraged reliance on internal knowledge and thus led to self-other segregation, indexed by alpha enhancement. These findings suggest that alpha oscillations index the processing of information about self and other depending on the compatibility of internal knowledge and external (environmental) events at finely resolved timescales. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Strings in bubbling geometries and dual Wilson loop correlators

    NASA Astrophysics Data System (ADS)

    Aguilera-Damia, Jeremías; Correa, Diego H.; Fucito, Francesco; Giraldo-Rivera, Victor I.; Morales, Jose F.; Pando Zayas, Leopoldo A.

    2017-12-01

    We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU( N) gauge group in N=4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry, explicitly. We also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a "small" one in the fundamental, totally symmetric or totally antisymmetric representation.

  1. Wear your hat: representational resistance in safer sex discourse.

    PubMed

    Nelson, S D

    1994-01-01

    Through an analysis of four posters used by the AIDS Action Committee of Massachusetts, this article asks how representation can effectively promote safer sex practices. The images under investigation have different targeted groups--one is aimed at African-American men, one at Latinas, and two at gay men. Using a frame-work that connects definitions of sex in the respective communities with differences surrounding gender, race, and class, the imagery is unpacked in order to expose the effects of safer sex representation. This essay then argues that the degree to which ingrained definitions of sex are challenged constitutes a determining factor in the success or failure of safer sex representations.

  2. Basolateral amygdala rapid glutamate release encodes an outcome-specific representation vital for reward-predictive cues to selectively invigorate reward-seeking actions

    PubMed Central

    Malvaez, Melissa; Greenfield, Venuz Y.; Wang, Alice S.; Yorita, Allison M.; Feng, Lili; Linker, Kay E.; Monbouquette, Harold G.; Wassum, Kate M.

    2015-01-01

    Environmental stimuli have the ability to generate specific representations of the rewards they predict and in so doing alter the selection and performance of reward-seeking actions. The basolateral amygdala participates in this process, but precisely how is unknown. To rectify this, we monitored, in near-real time, basolateral amygdala glutamate concentration changes during a test of the ability of reward-predictive cues to influence reward-seeking actions (Pavlovian-instrumental transfer). Glutamate concentration was found to be transiently elevated around instrumental reward seeking. During the Pavlovian-instrumental transfer test these glutamate transients were time-locked to and correlated with only those actions invigorated by outcome-specific motivational information provided by the reward-predictive stimulus (i.e., actions earning the same specific outcome as predicted by the presented CS). In addition, basolateral amygdala AMPA, but not NMDA glutamate receptor inactivation abolished the selective excitatory influence of reward-predictive cues over reward seeking. These data the hypothesis that transient glutamate release in the BLA can encode the outcome-specific motivational information provided by reward-predictive stimuli. PMID:26212790

  3. Visual Information Theory and Visual Representation for Achieving Provable Bounds in Vision-Based Control and Decision

    DTIC Science & Technology

    2014-07-30

    of the IEEE Intl. Conf. on Comp. Vis. and Patt . Recog. (CVPR). 07-JAN-14, . : , B. Taylor, A. Ayvaci, A. Ravichandran, and S. Soatto.. Semantic video...detection, localization and tracking, Intl. Conf. on Comp. Vis. Patt . Recog.. 06-JAN-11, . : , Michalis Raptis, Iasonas Kokkinos, Stefano Soatto...of the IEEE Intl. Conf. on Comp. Vis. and Patt . Recog., 2012. [12] M. Raptis and S. Soatto. Tracklet descriptors for action modeling and video

  4. Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.

    PubMed

    Venkataraman, Vinay; Turaga, Pavan

    2016-12-01

    This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.

  5. Calibration strategies for a groundwater model in a highly dynamic alpine floodplain

    USGS Publications Warehouse

    Foglia, L.; Burlando, P.; Hill, Mary C.; Mehl, S.

    2004-01-01

    Most surface flows to the 20-km-long Maggia Valley in Southern Switzerland are impounded and the valley is being investigated to determine environmental flow requirements. The aim of the investigation is the devel-opment of a modelling framework that simulates the dynamics of the ground-water, hydrologic, and ecologic systems. Because of the multi-scale nature of the modelling framework, large-scale models are first developed to provide the boundary conditions for more detailed models of reaches that are of eco-logical importance. We describe here the initial (large-scale) groundwa-ter/surface water model and its calibration in relation to initial and boundary conditions. A MODFLOW-2000 model was constructed to simulate the inter-action of groundwater and surface water and was developed parsimoniously to avoid modelling artefacts and parameter inconsistencies. Model calibration includes two steady-state conditions, with and without recharge to the aquifer from the adjoining hillslopes. Parameters are defined to represent areal re-charge, hydraulic conductivity of the aquifer (up to 5 classes), and streambed hydraulic conductivity. Model performance was investigated following two system representation. The first representation assumed unknown flow input at the northern end of the groundwater domain and unknown lateral inflow. The second representation used simulations of the lateral flow obtained by means of a raster-based, physically oriented and continuous in time rainfall-runoff (R-R) model. Results based on these two representations are compared and discussed.

  6. Neural Correlates of Action Observation and Execution in 14-Month-Old Infants: An Event-Related EEG Desynchronization Study

    ERIC Educational Resources Information Center

    Marshall, Peter J.; Young, Thomas; Meltzoff, Andrew N.

    2011-01-01

    There is increasing interest in neurobiological methods for investigating the shared representation of action perception and production in early development. We explored the extent and regional specificity of EEG desynchronization in the infant alpha frequency range (6-9 Hz) during action observation and execution in 14-month-old infants.…

  7. Unconscious automatic brain activation of acoustic and action-related conceptual features during masked repetition priming.

    PubMed

    Trumpp, Natalie M; Traub, Felix; Pulvermüller, Friedemann; Kiefer, Markus

    2014-02-01

    Classical theories of semantic memory assume that concepts are represented in a unitary amodal memory system. In challenging this classical view, pure or hybrid modality-specific theories propose that conceptual representations are grounded in the sensory-motor brain areas, which typically process sensory and action-related information. Although neuroimaging studies provided evidence for a functional-anatomical link between conceptual processing of sensory or action-related features and the sensory-motor brain systems, it has been argued that aspects of such sensory-motor activation may not directly reflect conceptual processing but rather strategic imagery or postconceptual elaboration. In the present ERP study, we investigated masked effects of acoustic and action-related conceptual features to probe unconscious automatic conceptual processing in isolation. Subliminal feature-specific ERP effects at frontocentral electrodes were observed, which differed with regard to polarity, topography, and underlying brain electrical sources in congruency with earlier findings under conscious viewing conditions. These findings suggest that conceptual acoustic and action representations can also be unconsciously accessed, thereby excluding any postconceptual strategic processes. This study therefore further substantiates a grounding of conceptual and semantic processing in action and perception.

  8. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond.

    PubMed

    Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2015-01-23

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.

  9. Representational and Executive Selection Resources in "Theory of Mind": Evidence from Compromised Belief-Desire Reasoning in Old Age

    ERIC Educational Resources Information Center

    German, Tim P.; Hehman, Jessica A.

    2006-01-01

    Effective belief-desire reasoning requires both specialized representational capacities--the capacity to represent the mental states as such--as well as executive selection processes for accurate performance on tasks requiring the prediction and explanation of the actions of social agents. Compromised belief-desire reasoning in a given population…

  10. Body Schematics: On the Role of the Body Schema in Embodied Lexical-Semantic Representations

    ERIC Educational Resources Information Center

    Rueschemeyer, Shirley-Ann; Pfeiffer, Christian; Bekkering, Harold

    2010-01-01

    Words denoting manipulable objects activate sensorimotor brain areas, likely reflecting action experience with the denoted objects. In particular, these sensorimotor lexical representations have been found to reflect the way in which an object is used. In the current paper we present data from two experiments (one behavioral and one neuroimaging)…

  11. Examining Latino Representation on California's School Boards: Their Impact on Perceptions about District Problems, Priorities and Policies

    ERIC Educational Resources Information Center

    Fraga, Luis; Krimm, Daniel; Neiman, Max; Reyes, Belinda

    2010-01-01

    The California Voting Rights Act of 2001 had the effect, among others, of granting standing for "protected classes" disadvantaged by at-large school board elections to sue their school districts for lack of appropriate representation. This has generated increased legal action along these lines, particularly among Latino communities that…

  12. Reasoning about procedural knowledge

    NASA Technical Reports Server (NTRS)

    Georgeff, M. P.

    1985-01-01

    A crucial aspect of automated reasoning about space operations is that knowledge of the problem domain is often procedural in nature - that is, the knowledge is often in the form of sequences of actions or procedures for achieving given goals or reacting to certain situations. In this paper a system is described that explicitly represents and reasons about procedural knowledge. The knowledge representation used is sufficiently rich to describe the effects of arbitrary sequences of tests and actions, and the inference mechanism provides a means for directly using this knowledge to reach desired operational goals. Furthermore, the representation has a declarative semantics that provides for incremental changes to the system, rich explanatory capabilities, and verifiability. The approach also provides a mechanism for reasoning about the use of this knowledge, thus enabling the system to choose effectively between alternative courses of action.

  13. Marketing actions can modulate neural representations of experienced pleasantness.

    PubMed

    Plassmann, Hilke; O'Doherty, John; Shiv, Baba; Rangel, Antonio

    2008-01-22

    Despite the importance and pervasiveness of marketing, almost nothing is known about the neural mechanisms through which it affects decisions made by individuals. We propose that marketing actions, such as changes in the price of a product, can affect neural representations of experienced pleasantness. We tested this hypothesis by scanning human subjects using functional MRI while they tasted wines that, contrary to reality, they believed to be different and sold at different prices. Our results show that increasing the price of a wine increases subjective reports of flavor pleasantness as well as blood-oxygen-level-dependent activity in medial orbitofrontal cortex, an area that is widely thought to encode for experienced pleasantness during experiential tasks. The paper provides evidence for the ability of marketing actions to modulate neural correlates of experienced pleasantness and for the mechanisms through which the effect operates.

  14. Multi-Agent Strategic Modeling in a Specific Environment

    NASA Astrophysics Data System (ADS)

    Gams, Matjaz; Bezek, Andraz

    Multi-agent modeling in ambient intelligence (AmI) is concerned with the following task [19]: How can external observations of multi-agent systems in the ambient be used to analyze, model, and direct agent behavior? The main purpose is to obtain knowledge about acts in the environment thus enabling proper actions of the AmI systems [1]. Analysis of such systems must thus capture complex world state representation and asynchronous agent activities. Instead of studying basic numerical data, researchers often use more complex data structures, such as rules and decision trees. Some methods are extremely useful when characterizing state space, but lack the ability to clearly represent temporal state changes occurred by agent actions. To comprehend simultaneous agent actions and complex changes of state space, most often a combination of graphical and symbolical representation performs better in terms of human understanding and performance.

  15. Mental representation for action in the elderly: implications for movement efficiency and injury risk.

    PubMed

    Gabbard, Carl

    2015-04-01

    Recent research findings indicate that with older adulthood, there are functional decrements in spatial cognition and more specially, in the ability to mentally represent and effectively plan motor actions. A typical finding is a significant over- or underestimation of one's actual physical abilities with movement planning-planning that has implications for movement efficiency and physical safety. A practical, daily life example is estimation of reachability--a situation that for the elderly may be linked with fall incidence. A strategy used to mentally represent action is the use of motor imagery--an ability that also declines with advancing older age. This brief review highlights research findings on mental representation and motor imagery in the elderly and addresses the implications for improving movement efficiency and lowering the risk of movement-related injury. © The Author(s) 2013.

  16. Predicting Intentions of a Familiar Significant Other Beyond the Mirror Neuron System

    PubMed Central

    Cacioppo, Stephanie; Juan, Elsa; Monteleone, George

    2017-01-01

    Inferring intentions of others is one of the most intriguing issues in interpersonal interaction. Theories of embodied cognition and simulation suggest that this mechanism takes place through a direct and automatic matching process that occurs between an observed action and past actions. This process occurs via the reactivation of past self-related sensorimotor experiences within the inferior frontoparietal network (including the mirror neuron system, MNS). The working model is that the anticipatory representations of others' behaviors require internal predictive models of actions formed from pre-established, shared representations between the observer and the actor. This model suggests that observers should be better at predicting intentions performed by a familiar actor, rather than a stranger. However, little is known about the modulations of the intention brain network as a function of the familiarity between the observer and the actor. Here, we combined functional magnetic resonance imaging (fMRI) with a behavioral intention inference task, in which participants were asked to predict intentions from three types of actors: A familiar actor (their significant other), themselves (another familiar actor), and a non-familiar actor (a stranger). Our results showed that the participants were better at inferring intentions performed by familiar actors than non-familiar actors and that this better performance was associated with greater activation within and beyond the inferior frontoparietal network i.e., in brain areas related to familiarity (e.g., precuneus). In addition, and in line with Hebbian principles of neural modulations, the more the participants reported being cognitively close to their partner, the less the brain areas associated with action self-other comparison (e.g., inferior parietal lobule), attention (e.g., superior parietal lobule), recollection (hippocampus), and pair bond (ventral tegmental area, VTA) were recruited, suggesting that the more a shared mental representation has been pre-established, the more neurons show suppression in their response to the presentation of information to which they are sensitive. These results suggest that the relation of performance to the extent of neural activation during intention understanding may display differential relationships based on the cognitive domain, brain region, and the cognitive interdependence between the observer and the actor. PMID:28890691

  17. Interactive exploration of surveillance video through action shot summarization and trajectory visualization.

    PubMed

    Meghdadi, Amir H; Irani, Pourang

    2013-12-01

    We propose a novel video visual analytics system for interactive exploration of surveillance video data. Our approach consists of providing analysts with various views of information related to moving objects in a video. To do this we first extract each object's movement path. We visualize each movement by (a) creating a single action shot image (a still image that coalesces multiple frames), (b) plotting its trajectory in a space-time cube and (c) displaying an overall timeline view of all the movements. The action shots provide a still view of the moving object while the path view presents movement properties such as speed and location. We also provide tools for spatial and temporal filtering based on regions of interest. This allows analysts to filter out large amounts of movement activities while the action shot representation summarizes the content of each movement. We incorporated this multi-part visual representation of moving objects in sViSIT, a tool to facilitate browsing through the video content by interactive querying and retrieval of data. Based on our interaction with security personnel who routinely interact with surveillance video data, we identified some of the most common tasks performed. This resulted in designing a user study to measure time-to-completion of the various tasks. These generally required searching for specific events of interest (targets) in videos. Fourteen different tasks were designed and a total of 120 min of surveillance video were recorded (indoor and outdoor locations recording movements of people and vehicles). The time-to-completion of these tasks were compared against a manual fast forward video browsing guided with movement detection. We demonstrate how our system can facilitate lengthy video exploration and significantly reduce browsing time to find events of interest. Reports from expert users identify positive aspects of our approach which we summarize in our recommendations for future video visual analytics systems.

  18. Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search

    PubMed Central

    Zhang, Sheng; Eckstein, Miguel P.

    2010-01-01

    A prevailing theory proposes that the brain's two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways. PMID:20838589

  19. Examining age-related movement representations for sequential (fine-motor) finger movements.

    PubMed

    Gabbard, Carl; Caçola, Priscila; Bobbio, Tatiana

    2011-12-01

    Theory suggests that imagined and executed movement planning relies on internal models for action. Using a chronometry paradigm to compare the movement duration of imagined and executed movements, we tested children aged 7-11 years and adults on their ability to perform sequential finger movements. Underscoring this tactic was our desire to gain a better understanding of the age-related ability to create internal models for action requiring fine-motor movements. The task required number recognition and ordering and was presented in three levels of complexity. Results for movement duration indicated that 7-year-olds and adults were different from the other groups with no statistical distinction between 9- and 11-year-olds. Correlation analysis indicated a significant relationship between imagined and executed actions. These results are the first to document the increasing convergence between imagined and executed movements in the context of fine-motor behavior; a finding that adds to our understanding of action representation in children. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. The ability to mentally represent action is associated with low motor ability in children: a preliminary investigation.

    PubMed

    Gabbard, Carl; Caçola, Priscila; Bobbio, Tatiana

    2012-05-01

    Theory and anatomical research suggest that the ability to mentally represent intended actions affect level of execution. This study presents preliminary data examining the association between children's ability to mentally represent action and general motor ability. Children aged 7- to 10 years were assessed for motor imagery ability using a simulation of reach task and motor ability via the Movement ABC-2. Motor ability values, based on percentile rank, ranged from 2 to 91, with a mean of 36. The overall correlation between mental representation and motor ability yielded a moderately positive relationship (r = .39). Interestingly, when looking at motor ability subcategories, only Balance was significant in the model, explaining 20% of the variance. These results provide preliminary evidence that children's motor ability and the ability to mentally represent action are associated in a positive direction. Furthermore, given the results for Balance, we speculate that there are clinical implications regarding work with potentially at-risk children. © 2011 Blackwell Publishing Ltd.

  1. Advancing Models and Theories for Digital Behavior Change Interventions.

    PubMed

    Hekler, Eric B; Michie, Susan; Pavel, Misha; Rivera, Daniel E; Collins, Linda M; Jimison, Holly B; Garnett, Claire; Parral, Skye; Spruijt-Metz, Donna

    2016-11-01

    To be suitable for informing digital behavior change interventions, theories and models of behavior change need to capture individual variation and changes over time. The aim of this paper is to provide recommendations for development of models and theories that are informed by, and can inform, digital behavior change interventions based on discussions by international experts, including behavioral, computer, and health scientists and engineers. The proposed framework stipulates the use of a state-space representation to define when, where, for whom, and in what state for that person, an intervention will produce a targeted effect. The "state" is that of the individual based on multiple variables that define the "space" when a mechanism of action may produce the effect. A state-space representation can be used to help guide theorizing and identify crossdisciplinary methodologic strategies for improving measurement, experimental design, and analysis that can feasibly match the complexity of real-world behavior change via digital behavior change interventions. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Building words on actions: verb enactment and verb recognition in children with specific language impairment.

    PubMed

    Levi, Gabriel; Colonnello, Valentina; Giacchè, Roberta; Piredda, Maria Letizia; Sogos, Carla

    2014-05-01

    Recent studies have shown that language processing is grounded in actions. Multiple independent research findings indicate that children with specific language impairment (SLI) show subtle difficulties beyond the language domain. Uncertainties remain on possible association between body-mediated, non-linguistic expression of verbs and early manifestation of SLI during verb acquisition. The present study was conducted to determine whether verb production through non-linguistic modalities is impaired in children with SLI. Children with SLI (mean age 41 months) and typically developing children (mean age 40 months) were asked to recognize target verbs while viewing video clips showing the action associated with the verb (verb-recognition task) and to enact the action corresponding to the verb (verb-enacting task). Children with SLI performed more poorly than control children in both tasks. The present study demonstrates that early language impairment emerges at the bodily level. These findings are consistent with the embodied theories of cognition and underscore the role of action-based representations during language development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Comparison of Marine Spatial Planning Methods in Madagascar Demonstrates Value of Alternative Approaches

    PubMed Central

    Allnutt, Thomas F.; McClanahan, Timothy R.; Andréfouët, Serge; Baker, Merrill; Lagabrielle, Erwann; McClennen, Caleb; Rakotomanjaka, Andry J. M.; Tianarisoa, Tantely F.; Watson, Reg; Kremen, Claire

    2012-01-01

    The Government of Madagascar plans to increase marine protected area coverage by over one million hectares. To assist this process, we compare four methods for marine spatial planning of Madagascar's west coast. Input data for each method was drawn from the same variables: fishing pressure, exposure to climate change, and biodiversity (habitats, species distributions, biological richness, and biodiversity value). The first method compares visual color classifications of primary variables, the second uses binary combinations of these variables to produce a categorical classification of management actions, the third is a target-based optimization using Marxan, and the fourth is conservation ranking with Zonation. We present results from each method, and compare the latter three approaches for spatial coverage, biodiversity representation, fishing cost and persistence probability. All results included large areas in the north, central, and southern parts of western Madagascar. Achieving 30% representation targets with Marxan required twice the fish catch loss than the categorical method. The categorical classification and Zonation do not consider targets for conservation features. However, when we reduced Marxan targets to 16.3%, matching the representation level of the “strict protection” class of the categorical result, the methods show similar catch losses. The management category portfolio has complete coverage, and presents several management recommendations including strict protection. Zonation produces rapid conservation rankings across large, diverse datasets. Marxan is useful for identifying strict protected areas that meet representation targets, and minimize exposure probabilities for conservation features at low economic cost. We show that methods based on Zonation and a simple combination of variables can produce results comparable to Marxan for species representation and catch losses, demonstrating the value of comparing alternative approaches during initial stages of the planning process. Choosing an appropriate approach ultimately depends on scientific and political factors including representation targets, likelihood of adoption, and persistence goals. PMID:22359534

  4. Comparison of marine spatial planning methods in Madagascar demonstrates value of alternative approaches.

    PubMed

    Allnutt, Thomas F; McClanahan, Timothy R; Andréfouët, Serge; Baker, Merrill; Lagabrielle, Erwann; McClennen, Caleb; Rakotomanjaka, Andry J M; Tianarisoa, Tantely F; Watson, Reg; Kremen, Claire

    2012-01-01

    The Government of Madagascar plans to increase marine protected area coverage by over one million hectares. To assist this process, we compare four methods for marine spatial planning of Madagascar's west coast. Input data for each method was drawn from the same variables: fishing pressure, exposure to climate change, and biodiversity (habitats, species distributions, biological richness, and biodiversity value). The first method compares visual color classifications of primary variables, the second uses binary combinations of these variables to produce a categorical classification of management actions, the third is a target-based optimization using Marxan, and the fourth is conservation ranking with Zonation. We present results from each method, and compare the latter three approaches for spatial coverage, biodiversity representation, fishing cost and persistence probability. All results included large areas in the north, central, and southern parts of western Madagascar. Achieving 30% representation targets with Marxan required twice the fish catch loss than the categorical method. The categorical classification and Zonation do not consider targets for conservation features. However, when we reduced Marxan targets to 16.3%, matching the representation level of the "strict protection" class of the categorical result, the methods show similar catch losses. The management category portfolio has complete coverage, and presents several management recommendations including strict protection. Zonation produces rapid conservation rankings across large, diverse datasets. Marxan is useful for identifying strict protected areas that meet representation targets, and minimize exposure probabilities for conservation features at low economic cost. We show that methods based on Zonation and a simple combination of variables can produce results comparable to Marxan for species representation and catch losses, demonstrating the value of comparing alternative approaches during initial stages of the planning process. Choosing an appropriate approach ultimately depends on scientific and political factors including representation targets, likelihood of adoption, and persistence goals.

  5. Sensory and semantic activations evoked by action attributes of manipulable objects: Evidence from ERPs

    PubMed Central

    Lee, Chia-lin; Huang, Hsu-Wen; Federmeier, Kara D.; Buxbaum, Laurel J.

    2018-01-01

    “Two route” theories of object-related action processing posit different temporal activation profiles of grasp-to-move actions (rapidly evoked based on object structure) versus skilled use actions (more slowly activated based on semantic knowledge). We capitalized on the exquisite temporal resolution and multidimensionality of Event-Related Potentials (ERPs) to directly test this hypothesis. Participants viewed manipulable objects (e.g., calculator) preceded by objects sharing either “grasp”, “use”, or no action attributes (e.g., bar of soap, keyboard, earring, respectively), as well as by action-unrelated but taxonomically-related objects (e.g., abacus); participants judged whether the two objects were related. The results showed more positive responses to “grasp-to-move” primed objects than “skilled use” primed objects or unprimed objects starting in the P1 (0–150 ms) time window and continuing onto the subsequent N1 and P2 components (150–300 ms), suggesting that only “grasp-to-move”, but not “skilled use”, actions may facilitate visual attention to object attributes. Furthermore, reliably reduced N400s (300–500 ms), an index of semantic processing, were observed to taxonomically primed and “skilled use” primed objects relative to unprimed objects, suggesting that “skilled use” action attributes are a component of distributed, multimodal semantic representations of objects. Together, our findings provide evidence supporting two-route theories by demonstrating that “grasp-to-move” and “skilled use” actions impact different aspects of object processing and highlight the relationship of “skilled use” information to other aspects of semantic memory. PMID:29183777

  6. Representation of action in occipito-temporal cortex.

    PubMed

    Wiggett, Alison J; Downing, Paul E

    2011-07-01

    A fundamental question for social cognitive neuroscience is how and where in the brain the identities and actions of others are represented. Here we present a replication and extension of a study by Kable and Chatterjee [Kable, J. W., & Chatterjee, A. Specificity of action representations in the lateral occipito-temporal cortex. Journal of Cognitive Neuroscience, 18, 1498-1517, 2006] examining the role of occipito-temporal cortex in these processes. We presented full-cue movies of actors performing whole-body actions and used fMRI to test for action- and identity-specific adaptation effects. We examined a series of functionally defined regions, including the extrastriate and fusiform body areas, the fusiform face area, the parahippocampal place area, the lateral occipital complex, the right posterior superior temporal sulcus, and motion-selective area hMT+. These regions were analyzed with both standard univariate measures as well as multivoxel pattern analyses. Additionally, we performed whole-brain tests for significant adaptation effects. We found significant action-specific adaptation in many areas, but no evidence for identity-specific adaptation. We argue that this finding could be explained by differences in the familiarity of the stimuli presented: The actions shown were familiar but the actors performing the actions were unfamiliar. However, in contrast to previous findings, we found that the action adaptation effect could not be conclusively tied to specific functionally defined regions. Instead, our results suggest that the adaptation to previously seen actions across identities is a widespread effect, evident across lateral and ventral occipito-temporal cortex.

  7. Imitation, empathy, and mirror neurons.

    PubMed

    Iacoboni, Marco

    2009-01-01

    There is a convergence between cognitive models of imitation, constructs derived from social psychology studies on mimicry and empathy, and recent empirical findings from the neurosciences. The ideomotor framework of human actions assumes a common representational format for action and perception that facilitates imitation. Furthermore, the associative sequence learning model of imitation proposes that experience-based Hebbian learning forms links between sensory processing of the actions of others and motor plans. Social psychology studies have demonstrated that imitation and mimicry are pervasive, automatic, and facilitate empathy. Neuroscience investigations have demonstrated physiological mechanisms of mirroring at single-cell and neural-system levels that support the cognitive and social psychology constructs. Why were these neural mechanisms selected, and what is their adaptive advantage? Neural mirroring solves the "problem of other minds" (how we can access and understand the minds of others) and makes intersubjectivity possible, thus facilitating social behavior.

  8. Brain reflections: A circuit-based framework for understanding information processing and cognitive control.

    PubMed

    Gratton, Gabriele

    2018-03-01

    Here, I propose a view of the architecture of the human information processing system, and of how it can be adapted to changing task demands (which is the hallmark of cognitive control). This view is informed by an interpretation of brain activity as reflecting the excitability level of neural representations, encoding not only stimuli and temporal contexts, but also action plans and task goals. The proposed cognitive architecture includes three types of circuits: open circuits, involved in feed-forward processing such as that connecting stimuli with responses and characterized by brief, transient brain activity; and two types of closed circuits, positive feedback circuits (characterized by sustained, high-frequency oscillatory activity), which help select and maintain representations, and negative feedback circuits (characterized by brief, low-frequency oscillatory bursts), which are instead associated with changes in representations. Feed-forward activity is primarily responsible for the spread of activation along the information processing system. Oscillatory activity, instead, controls this spread. Sustained oscillatory activity due to both local cortical circuits (gamma) and longer corticothalamic circuits (alpha and beta) allows for the selection of individuated representations. Through the interaction of these circuits, it also allows for the preservation of representations across different temporal spans (sensory and working memory) and their spread across the brain. In contrast, brief bursts of oscillatory activity, generated by novel and/or conflicting information, lead to the interruption of sustained oscillatory activity and promote the generation of new representations. I discuss how this framework can account for a number of psychological and behavioral phenomena. © 2017 Society for Psychophysiological Research.

  9. Advanced control architecture for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  10. Social knowledge and the construction of drinking water preference.

    PubMed

    Soares, Ana Carolina Cordeiro; Carmo, Rose Ferraz; Bevilacqua, Paula Dias

    2017-10-01

    The analytical categories of Health Surveillance territorialization and daily life guided the design of this study, which aimed to understand from the methodological framework of qualitative research the factors involved in the use of individual supply solutions (ISS) as drinking water sources. We conducted semi-structured interviews with residents of 22 households set at a municipality in the Zona da Mata Mineira. Statements were fully transcribed, processed through content analysis and interpreted based on the psychosocial theory of social representations. It was possible to apprehend the social and affective components of social representations. The social component characterized by the representation of water from IWSS ISS water as clean and of good quality seemed to drive or justify the "resistance" of individuals to use water from public supply. The affective component referred to the use of IWSS water from ISS as a return to and protection of individuals' origins, a way to strengthen respondents' identity. The results pointed out that people's perceptions and demands might guide actions aimed to stimulate trust in the use of public system water and the choice of this source of supply, contributing to health protection.

  11. Using qualitative maps to direct reactive robots

    NASA Technical Reports Server (NTRS)

    Bertin, Randolph; Pendleton, Tom

    1992-01-01

    The principal advantage of mobile robots is that they are able to go to specific locations to perform useful tasks rather than have the tasks brought to them. It is important therefore that the robot be used to reach desired locations efficiently and reliably. A mobile robot whose environment extends significantly beyond its sensory horizon must maintain a representation of the environment, a map, in order to attain these efficiency and reliability requirements. We believe that qualitative mapping methods provide useful and robust representation schemes and that such maps may be used to direct the actions of a reactively controlled robot. In this paper we describe our experience in employing qualitative maps to direct, through the selection of desired control strategies, a reactive-behavior based robot. This mapping capability represents the development of one aspect of a successful deliberative/reactive hybrid control architecture.

  12. Strings in bubbling geometries and dual Wilson loop correlators

    DOE PAGES

    Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco; ...

    2017-12-20

    We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less

  13. Strings in bubbling geometries and dual Wilson loop correlators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco

    We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less

  14. From needs to goals and representations: Foundations for a unified theory of motivation, personality, and development.

    PubMed

    Dweck, Carol S

    2017-11-01

    Drawing on both classic and current approaches, I propose a theory that integrates motivation, personality, and development within one framework, using a common set of principles and mechanisms. The theory begins by specifying basic needs and by suggesting how, as people pursue need-fulfilling goals, they build mental representations of their experiences (beliefs, representations of emotions, and representations of action tendencies). I then show how these needs, goals, and representations can serve as the basis of both motivation and personality, and can help to integrate disparate views of personality. The article builds on this framework to provide a new perspective on development, particularly on the forces that propel development and the roles of nature and nurture. I argue throughout that the focus on representations provides an important entry point for change and growth. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Path-integral representation for the relativistic particle propagators and BFV quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, E.S.; Gitman, D.M.

    1991-11-15

    The path-integral representations for the propagators of scalar and spinor fields in an external electromagnetic field are derived. The Hamiltonian form of such expressions can be interpreted in the sense of Batalin-Fradkin-Vilkovisky quantization of one-particle theory. The Lagrangian representation as derived allows one to extract in a natural way the expressions for the corresponding gauge-invariant (reparametrization- and supergauge-invariant) actions for pointlike scalar and spinning particles. At the same time, the measure and ranges of integrations, admissible gauge conditions, and boundary conditions can be exactly established.

  16. What's in a goal? The role of motivational relevance in cognition and action.

    PubMed

    Eitam, Baruch; Higgins, E Tory

    2014-04-01

    We argue that it is possible to go beyond the "selfish goal" metaphor and make an even stronger case for the role of unconscious motivation in cognition and action. Through the relevance of a representation (ROAR) framework, we describe how not only value motivation, which relates to "selfish goals," but also truth motivation and control motivation impact cognition and action.

  17. Drawing and Storytelling as Political Action: Difference, Plurality and Coming into Presence in the Early Childhood Classroom

    ERIC Educational Resources Information Center

    Sunday, Kristine E.

    2018-01-01

    This article is an embodied representation of how narrative illustrates Hannah Arendt's ideas of action, natality and plurality. It is, in essence, a story of a story that situates the actions of two young children as an instance where difference came together through the political and public act of drawing. Throughout the unfolding of the event,…

  18. Understanding Human Original Actions Directed at Real-World Goals: The Role of the Lateral Prefrontal Cortex

    PubMed Central

    Sitnikova, Tatiana; Rosen, Bruce R.; Lord, Louis-David; West, W. Caroline

    2014-01-01

    Adaptive, original actions, which can succeed in multiple contextual situations, require understanding of what is relevant to a goal. Recognizing what is relevant may also help in predicting kinematics of observed, original actions. During action observation, comparisons between sensory input and expected action kinematics have been argued critical to accurate goal inference. Experimental studies with laboratory tasks, both in humans and nonhuman primates, demonstrated that the lateral prefrontal cortex (LPFC) can learn, hierarchically organize, and use goal-relevant information. To determine whether this LPFC capacity is generalizable to real-world cognition, we recorded functional magnetic resonance imaging (fMRI) data in the human brain during comprehension of original and usual object-directed actions embedded in video-depictions of real-life behaviors. We hypothesized that LPFC will contribute to forming goal-relevant representations necessary for kinematic predictions of original actions. Additionally, resting-state fMRI was employed to examine functional connectivity between the brain regions delineated in the video fMRI experiment. According to behavioral data, original videos could be understood by identifying elements relevant to real-life goals at different levels of abstraction. Patterns of enhanced activity in four regions in the left LPFC, evoked by original, relative to usual, video scenes, were consistent with previous neuroimaging findings on representing abstract and concrete stimuli dimensions relevant to laboratory goals. In the anterior left LPFC, the activity increased selectively when representations of broad classes of objects and actions, which could achieve the perceived overall behavioral goal, were likely to bias kinematic predictions of original actions. In contrast, in the more posterior regions, the activity increased even when concrete properties of the target object were more likely to bias the kinematic prediction. Functional connectivity was observed between contiguous regions along the rostro-caudal LPFC axis, but not between the regions that were not immediately adjacent. These findings generalize the representational hierarchy account of LPFC function to diverse core principles that can govern both production and comprehension of flexible real-life behavior. PMID:25224997

  19. Human action recognition with group lasso regularized-support vector machine

    NASA Astrophysics Data System (ADS)

    Luo, Huiwu; Lu, Huanzhang; Wu, Yabei; Zhao, Fei

    2016-05-01

    The bag-of-visual-words (BOVW) and Fisher kernel are two popular models in human action recognition, and support vector machine (SVM) is the most commonly used classifier for the two models. We show two kinds of group structures in the feature representation constructed by BOVW and Fisher kernel, respectively, since the structural information of feature representation can be seen as a prior for the classifier and can improve the performance of the classifier, which has been verified in several areas. However, the standard SVM employs L2-norm regularization in its learning procedure, which penalizes each variable individually and cannot express the structural information of feature representation. We replace the L2-norm regularization with group lasso regularization in standard SVM, and a group lasso regularized-support vector machine (GLRSVM) is proposed. Then, we embed the group structural information of feature representation into GLRSVM. Finally, we introduce an algorithm to solve the optimization problem of GLRSVM by alternating directions method of multipliers. The experiments evaluated on KTH, YouTube, and Hollywood2 datasets show that our method achieves promising results and improves the state-of-the-art methods on KTH and YouTube datasets.

  20. Geometric constrained variational calculus. II: The second variation (Part I)

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2016-10-01

    Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.

  1. Representation of grasp postures and anticipatory motor planning in children.

    PubMed

    Stöckel, Tino; Hughes, Charmayne M L; Schack, Thomas

    2012-11-01

    In this study, we investigated anticipatory motor planning and the development of cognitive representation of grasp postures in children aged 7, 8, and 9 years. Overall, 9-year-old children were more likely to plan their movements to end in comfortable postures, and have distinct representational structures of certain grasp postures, compared to the 7- and 8-year old children. Additionally, the sensitivity toward comfortable end-states (end-state comfort) was related to the mental representation of certain grasp postures. Children with grasp comfort related and functionally well-structured representations were more likely to have satisfied end-state comfort in both the simple and the advanced planning condition. In contrast, end-state comfort satisfaction for the advanced planning condition was much lower for children whose cognitive representations were not structured by grasp comfort. The results of the present study support the notion that cognitive action representation plays an important role in the planning and control of grasp postures.

  2. Exploring the bases for a mixed reality stroke rehabilitation system, Part I: A unified approach for representing action, quantitative evaluation, and interactive feedback

    PubMed Central

    2011-01-01

    Background Although principles based in motor learning, rehabilitation, and human-computer interfaces can guide the design of effective interactive systems for rehabilitation, a unified approach that connects these key principles into an integrated design, and can form a methodology that can be generalized to interactive stroke rehabilitation, is presently unavailable. Results This paper integrates phenomenological approaches to interaction and embodied knowledge with rehabilitation practices and theories to achieve the basis for a methodology that can support effective adaptive, interactive rehabilitation. Our resulting methodology provides guidelines for the development of an action representation, quantification of action, and the design of interactive feedback. As Part I of a two-part series, this paper presents key principles of the unified approach. Part II then describes the application of this approach within the implementation of the Adaptive Mixed Reality Rehabilitation (AMRR) system for stroke rehabilitation. Conclusions The accompanying principles for composing novel mixed reality environments for stroke rehabilitation can advance the design and implementation of effective mixed reality systems for the clinical setting, and ultimately be adapted for home-based application. They furthermore can be applied to other rehabilitation needs beyond stroke. PMID:21875441

  3. Episodic Contributions to Sequential Control: Learning from a Typist's Touch

    ERIC Educational Resources Information Center

    Crump, Matthew J. C.; Logan, Gordon D.

    2010-01-01

    Sequential control over routine action is widely assumed to be controlled by stable, highly practiced representations. Our findings demonstrate that the processes controlling routine actions in the domain of skilled typing can be flexibly manipulated by memory processes coding recent experience with typing particular words and letters. In two…

  4. Universal Design for Learning and School Libraries: A Logical Partnership

    ERIC Educational Resources Information Center

    Robinson, David E.

    2017-01-01

    This article will explore the basic tenets of Universal Design for Learning (UDL) in relation to collaborative curriculum development and implementation; provide a case study examination of UDL principles in action; and suggest school library curricular activities that provide opportunities for multiple means of representation, action, and…

  5. The Role of Selective Attention in Matching Observed and Executed Actions

    ERIC Educational Resources Information Center

    Chong, Trevor T.-J.; Cunnington, Ross; Williams, Mark A.; Mattingley, Jason B.

    2009-01-01

    Substantial evidence suggests that observed actions can engage their corresponding motor representations within the observer. It is currently believed that this process of observation-execution matching occurs relatively automatically, without the need for top-down control. In this study we tested the susceptibility of the observation-execution…

  6. Studying the Expansion of Violence in Educational Institutions

    ERIC Educational Resources Information Center

    Korchagina, Lunika Nikolaevna; Sugrobova, Galina Alekseevna; Galich, Galina Olegovna; Gapeenkova, Svetlana Maximovna; Bareeva, Irkyam Adgamovna

    2016-01-01

    During a prolonged period of time, the problem of violence among the minors in Russia did not receive enough attention, because the proportions of this phenomenon had not been very significant. Present work addresses students' representations of violence. Evaluating violence manifestations as a normative action or an action deviating from the…

  7. Marketing actions can modulate neural representations of experienced pleasantness

    PubMed Central

    Plassmann, Hilke; O'Doherty, John; Shiv, Baba; Rangel, Antonio

    2008-01-01

    Despite the importance and pervasiveness of marketing, almost nothing is known about the neural mechanisms through which it affects decisions made by individuals. We propose that marketing actions, such as changes in the price of a product, can affect neural representations of experienced pleasantness. We tested this hypothesis by scanning human subjects using functional MRI while they tasted wines that, contrary to reality, they believed to be different and sold at different prices. Our results show that increasing the price of a wine increases subjective reports of flavor pleasantness as well as blood-oxygen-level-dependent activity in medial orbitofrontal cortex, an area that is widely thought to encode for experienced pleasantness during experiential tasks. The paper provides evidence for the ability of marketing actions to modulate neural correlates of experienced pleasantness and for the mechanisms through which the effect operates. PMID:18195362

  8. Reading your own lips: common-coding theory and visual speech perception.

    PubMed

    Tye-Murray, Nancy; Spehar, Brent P; Myerson, Joel; Hale, Sandra; Sommers, Mitchell S

    2013-02-01

    Common-coding theory posits that (1) perceiving an action activates the same representations of motor plans that are activated by actually performing that action, and (2) because of individual differences in the ways that actions are performed, observing recordings of one's own previous behavior activates motor plans to an even greater degree than does observing someone else's behavior. We hypothesized that if observing oneself activates motor plans to a greater degree than does observing others, and if these activated plans contribute to perception, then people should be able to lipread silent video clips of their own previous utterances more accurately than they can lipread video clips of other talkers. As predicted, two groups of participants were able to lipread video clips of themselves, recorded more than two weeks earlier, significantly more accurately than video clips of others. These results suggest that visual input activates speech motor activity that links to word representations in the mental lexicon.

  9. Where there is a goal, there is a way: what, why and how the parieto-frontal mirror network can mediate imitative behaviours.

    PubMed

    Casartelli, Luca; Molteni, Massimo

    2014-11-01

    The relationships between mirror neurons (MNs) and motor imitation, and its clinical implications in autism spectrum disorder (ASD) have been widely investigated; however, the literature remains—at least partially—controversial. In this review we support a multi-level action understanding model focusing on the mirror-based understanding. We review the functional role of the parieto-frontal MNs (PFMN) network claiming that PFMNs function cannot be limited to imitation nor can imitation be explained solely by the activity of PFMNs. The distinction between movement, motor act and motor action is useful to characterize deeply both act(ion) understanding and imitation of act(ion). A more abstract representation of act(ion) may be crucial for clarifying what, why and how an imitator is imitating. What counts in social interactions is achieving goals: it does not matter which effector or string of motor acts you eventually use for achieving (proximal and distal) goals. Similarly, what counts is the ability to recognize/imitate the style of act(ion) regardless of the way in which it is expressed. We address this crucial point referring to its potential implications in ASD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A Biologically Plausible Architecture of the Striatum to Solve Context-Dependent Reinforcement Learning Tasks.

    PubMed

    Shivkumar, Sabyasachi; Muralidharan, Vignesh; Chakravarthy, V Srinivasa

    2017-01-01

    Basal ganglia circuit is an important subcortical system of the brain thought to be responsible for reward-based learning. Striatum, the largest nucleus of the basal ganglia, serves as an input port that maps cortical information. Microanatomical studies show that the striatum is a mosaic of specialized input-output structures called striosomes and regions of the surrounding matrix called the matrisomes. We have developed a computational model of the striatum using layered self-organizing maps to capture the center-surround structure seen experimentally and explain its functional significance. We believe that these structural components could build representations of state and action spaces in different environments. The striatum model is then integrated with other components of basal ganglia, making it capable of solving reinforcement learning tasks. We have proposed a biologically plausible mechanism of action-based learning where the striosome biases the matrisome activity toward a preferred action. Several studies indicate that the striatum is critical in solving context dependent problems. We build on this hypothesis and the proposed model exploits the modularity of the striatum to efficiently solve such tasks.

  11. A Biologically Plausible Architecture of the Striatum to Solve Context-Dependent Reinforcement Learning Tasks

    PubMed Central

    Shivkumar, Sabyasachi; Muralidharan, Vignesh; Chakravarthy, V. Srinivasa

    2017-01-01

    Basal ganglia circuit is an important subcortical system of the brain thought to be responsible for reward-based learning. Striatum, the largest nucleus of the basal ganglia, serves as an input port that maps cortical information. Microanatomical studies show that the striatum is a mosaic of specialized input-output structures called striosomes and regions of the surrounding matrix called the matrisomes. We have developed a computational model of the striatum using layered self-organizing maps to capture the center-surround structure seen experimentally and explain its functional significance. We believe that these structural components could build representations of state and action spaces in different environments. The striatum model is then integrated with other components of basal ganglia, making it capable of solving reinforcement learning tasks. We have proposed a biologically plausible mechanism of action-based learning where the striosome biases the matrisome activity toward a preferred action. Several studies indicate that the striatum is critical in solving context dependent problems. We build on this hypothesis and the proposed model exploits the modularity of the striatum to efficiently solve such tasks. PMID:28680395

  12. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid

    PubMed Central

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot. PMID:26998923

  13. View-Invariant Visuomotor Processing in Computational Mirror Neuron System for Humanoid.

    PubMed

    Dawood, Farhan; Loo, Chu Kiong

    2016-01-01

    Mirror neurons are visuo-motor neurons found in primates and thought to be significant for imitation learning. The proposition that mirror neurons result from associative learning while the neonate observes his own actions has received noteworthy empirical support. Self-exploration is regarded as a procedure by which infants become perceptually observant to their own body and engage in a perceptual communication with themselves. We assume that crude sense of self is the prerequisite for social interaction. However, the contribution of mirror neurons in encoding the perspective from which the motor acts of others are seen have not been addressed in relation to humanoid robots. In this paper we present a computational model for development of mirror neuron system for humanoid based on the hypothesis that infants acquire MNS by sensorimotor associative learning through self-exploration capable of sustaining early imitation skills. The purpose of our proposed model is to take into account the view-dependency of neurons as a probable outcome of the associative connectivity between motor and visual information. In our experiment, a humanoid robot stands in front of a mirror (represented through self-image using camera) in order to obtain the associative relationship between his own motor generated actions and his own visual body-image. In the learning process the network first forms mapping from each motor representation onto visual representation from the self-exploratory perspective. Afterwards, the representation of the motor commands is learned to be associated with all possible visual perspectives. The complete architecture was evaluated by simulation experiments performed on DARwIn-OP humanoid robot.

  14. A quantum kinematics for asymptotically flat gravity

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel; Varadarajan, Madhavan

    2015-07-01

    We construct a quantum kinematics for asymptotically flat gravity based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying loop quantum gravity (LQG) which supports, in addition to the usual LQG operators, the action of ‘background exponential operators’, which are connection dependent operators labelled by ‘background’ su(2) electric fields. KS states have, in addition to the LQG state label corresponding to one dimensional excitations of the triad, a label corresponding to a ‘background’ electric field that describes three dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields that label the states and the background electric fields that label the operators. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We show that KS states can be realised as wave functions on a quantum configuration space of generalized connections and that the asymptotic behaviour of each such generalized connection is determined by that of the background electric fields which label the background exponential operators. Similar to the spatially compact case, the Gauss law and diffeomorphism constraints are then imposed through group averaging techniques to obtain a large sector of gauge invariant states. It is shown that this sector supports a unitary action of the group of asymptotic rotations and translations and that, as anticipated by Friedman and Sorkin, for appropriate spatial topology, this sector contains states that display fermionic behaviour under 2π rotations.

  15. GRAPES-Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain.

    PubMed

    Martin, Alex

    2016-08-01

    In this article, I discuss some of the latest functional neuroimaging findings on the organization of object concepts in the human brain. I argue that these data provide strong support for viewing concepts as the products of highly interactive neural circuits grounded in the action, perception, and emotion systems. The nodes of these circuits are defined by regions representing specific object properties (e.g., form, color, and motion) and thus are property-specific, rather than strictly modality-specific. How these circuits are modified by external and internal environmental demands, the distinction between representational content and format, and the grounding of abstract social concepts are also discussed.

  16. Embodied cognition for autonomous interactive robots.

    PubMed

    Hoffman, Guy

    2012-10-01

    In the past, notions of embodiment have been applied to robotics mainly in the realm of very simple robots, and supporting low-level mechanisms such as dynamics and navigation. In contrast, most human-like, interactive, and socially adept robotic systems turn away from embodiment and use amodal, symbolic, and modular approaches to cognition and interaction. At the same time, recent research in Embodied Cognition (EC) is spanning an increasing number of complex cognitive processes, including language, nonverbal communication, learning, and social behavior. This article suggests adopting a modern EC approach for autonomous robots interacting with humans. In particular, we present three core principles from EC that may be applicable to such robots: (a) modal perceptual representation, (b) action/perception and action/cognition integration, and (c) a simulation-based model of top-down perceptual biasing. We describe a computational framework based on these principles, and its implementation on two physical robots. This could provide a new paradigm for embodied human-robot interaction based on recent psychological and neurological findings. Copyright © 2012 Cognitive Science Society, Inc.

  17. Navigating Into the Future or Driven by the Past.

    PubMed

    Seligman, Martin E P; Railton, Peter; Baumeister, Roy F; Sripada, Chandra

    2013-03-01

    Prospection (Gilbert & Wilson, 2007), the representation of possible futures, is a ubiquitous feature of the human mind. Much psychological theory and practice, in contrast, has understood human action as determined by the past and viewed any such teleology (selection of action in light of goals) as a violation of natural law because the future cannot act on the present. Prospection involves no backward causation; rather, it is guidance not by the future itself but by present, evaluative representations of possible future states. These representations can be understood minimally as "If X, then Y" conditionals, and the process of prospection can be understood as the generation and evaluation of these conditionals. We review the history of the attempt to cast teleology out of science, culminating in the failures of behaviorism and psychoanalysis to account adequately for action without teleology. A wide range of evidence suggests that prospection is a central organizing feature of perception, cognition, affect, memory, motivation, and action. The authors speculate that prospection casts new light on why subjectivity is part of consciousness, what is "free" and "willing" in "free will," and on mental disorders and their treatment. Viewing behavior as driven by the past was a powerful framework that helped create scientific psychology, but accumulating evidence in a wide range of areas of research suggests a shift in framework, in which navigation into the future is seen as a core organizing principle of animal and human behavior. © The Author(s) 2013.

  18. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments.

    PubMed

    Garbarini, Francesca; Pia, Lorenzo

    2013-11-05

    When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the "moving" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  19. Preferential coding of eye/hand motor actions in the human ventral occipito-temporal cortex.

    PubMed

    Tosoni, Annalisa; Guidotti, Roberto; Del Gratta, Cosimo; Committeri, Giorgia; Sestieri, Carlo

    2016-12-01

    The human ventral occipito-temporal cortex (OTC) contains areas specialized for particular perceptual/semantic categories, such as faces (fusiform face area, FFA) and places (parahippocampal place area, PPA). This organization has been interpreted as reflecting the visual structure of the world, i.e. perceptual similarity and/or eccentricity biases. However, recent functional magnetic resonance imaging (fMRI) studies have shown not only that regions of the OTC are modulated by non-visual, action-related object properties but also by motor planning and execution, although the functional role and specificity of this motor-related activity are still unclear. Here, through a reanalysis of previously published data, we tested whether the selectivity for perceptual/semantic categories in the OTC corresponds to a preference for particular motor actions. The results demonstrate for the first time that face- and place-selective regions of the OTC exhibit preferential BOLD response to the execution of hand pointing and saccadic eye movements, respectively. Moreover, multivariate analyses provide novel evidence for the consistency across neural representations of stimulus category and movement effector in OTC. According to a 'spatial hypothesis', this pattern of results originates from the match between the region eccentricity bias and the typical action space of the motor effectors. Alternatively, the double dissociation may be caused by the different effect produced by hand vs. eye movements on regions coding for body representation. Overall, the present findings offer novel insights on the coupling between visual and motor cortical representations. Copyright © 2016. Published by Elsevier Ltd.

  20. Ambient clumsiness in virtual environments

    NASA Astrophysics Data System (ADS)

    Ruzanka, Silvia; Behar, Katherine

    2010-01-01

    A fundamental pursuit of Virtual Reality is the experience of a seamless connection between the user's body and actions within the simulation. Virtual worlds often mediate the relationship between the physical and virtual body through creating an idealized representation of the self in an idealized space. This paper argues that the very ubiquity of the medium of virtual environments, such as the massively popular Second Life, has now made them mundane, and that idealized representations are no longer appropriate. In our artwork we introduce the attribute of clumsiness to Second Life by creating and distributing scripts that cause users' avatars to exhibit unpredictable stumbling, tripping, and momentary poor coordination, thus subtly and unexpectedly intervening with, rather than amplifying, a user's intent. These behaviors are publicly distributed, and manifest only occasionally - rather than intentional, conscious actions, they are involuntary and ambient. We suggest that the physical human body is itself an imperfect interface, and that the continued blurring of distinctions between the physical body and virtual representations calls for the introduction of these mundane, clumsy elements.

  1. Thematic knowledge, artifact concepts, and the left posterior temporal lobe: Where action and object semantics converge

    PubMed Central

    Kalénine, Solène; Buxbaum, Laurel J.

    2016-01-01

    Converging evidence supports the existence of functionally and neuroanatomically distinct taxonomic (similarity-based; e.g., hammer-screwdriver) and thematic (event-based; e.g., hammer-nail) semantic systems. Processing of thematic relations between objects has been shown to selectively recruit the left posterior temporoparietal cortex. Similar posterior regions have been also been shown to be critical for knowledge of relationships between actions and manipulable human-made objects (artifacts). Based on the hypothesis that thematic relationships for artifacts are based, at least in part, on action relationships, we assessed the prediction that the same regions of the left posterior temporoparietal cortex would be critical for conceptual processing of artifact-related actions and thematic relations for artifacts. To test this hypothesis, we evaluated processing of taxonomic and thematic relations for artifact and natural objects as well as artifact action knowledge (gesture recognition) abilities in a large sample of 48 stroke patients with a range of lesion foci in the left hemisphere. Like control participants, patients identified thematic relations faster than taxonomic relations for artifacts, whereas they identified taxonomic relations faster than thematic relations for natural objects. Moreover, response times for identifying thematic relations for artifacts selectively predicted performance in gesture recognition. Whole brain Voxel Based Lesion-Symptom Mapping (VLSM) analyses and Region of Interest (ROI) regression analyses further demonstrated that lesions to the left posterior temporal cortex, overlapping with LTO and visual motion area hMT+, were associated both with relatively slower response times in identifying thematic relations for artifacts and poorer artifact action knowledge in patients. These findings provide novel insights into the functional role of left posterior temporal cortex in thematic knowledge, and suggest that the close association between thematic relations for artifacts and action representations may reflect their common dependence on visual motion and manipulation information. PMID:27389801

  2. Gesture as Representational Action: A paper about function

    PubMed Central

    Novack, Miriam A.; Goldin-Meadow, Susan

    2016-01-01

    A great deal of attention has recently been paid to gesture and its effects on thinking and learning. It is well established that the hand movements that accompany speech are an integral part of communication, ubiquitous across cultures, and a unique feature of human behavior. In an attempt to understand this intriguing phenomenon, researchers have focused on pinpointing the mechanisms that underlie gesture production. One proposal—that gesture arises from simulated action (see Hostetter & Alibali, 2008)—has opened up discussions about action, gesture, and the relation between the two. However, there is another side to understanding a phenomenon, and that is to understand its function. A phenomenon’s function is its purpose rather than its precipitating cause—the why rather than the how. This paper sets forth a theoretical framework for exploring why gesture serves the functions that it does, and reviews where the current literature fits, and fails to fit, this proposal. Our framework proposes that whether or not gesture is simulated action in terms of its mechanism—it is clearly not reducible to action in terms of its function. Most notably, because gestures are abstracted representations and are not actions tied to particular events and objects, they can play a powerful role in thinking and learning beyond the particular, specifically, in supporting generalization and transfer of knowledge. PMID:27604493

  3. Cross-View Action Recognition via Transferable Dictionary Learning.

    PubMed

    Zheng, Jingjing; Jiang, Zhuolin; Chellappa, Rama

    2016-05-01

    Discriminative appearance features are effective for recognizing actions in a fixed view, but may not generalize well to a new view. In this paper, we present two effective approaches to learn dictionaries for robust action recognition across views. In the first approach, we learn a set of view-specific dictionaries where each dictionary corresponds to one camera view. These dictionaries are learned simultaneously from the sets of correspondence videos taken at different views with the aim of encouraging each video in the set to have the same sparse representation. In the second approach, we additionally learn a common dictionary shared by different views to model view-shared features. This approach represents the videos in each view using a view-specific dictionary and the common dictionary. More importantly, it encourages the set of videos taken from the different views of the same action to have the similar sparse representations. The learned common dictionary not only has the capability to represent actions from unseen views, but also makes our approach effective in a semi-supervised setting where no correspondence videos exist and only a few labeled videos exist in the target view. The extensive experiments using three public datasets demonstrate that the proposed approach outperforms recently developed approaches for cross-view action recognition.

  4. Understanding 'what' others do: mirror mechanisms play a crucial role in action perception.

    PubMed

    Avenanti, Alessio; Urgesi, Cosimo

    2011-06-01

    Neurophysiological and imaging studies suggest that the inferior frontal cortex (IFC) implements a mechanism that matches perceived actions to one's motor representation of similar actions (mirror mechanism) and recent lesion studies have also established that IFC is critical for action perception. However, to date causative evidence that action perception requires activation within the same populations of IFC neurons involved in action execution is lacking. In this issue, Cattaneo and colleagues provide the first direct evidence that mirror mechanisms in IFC influence action perception. We discuss the implications of these findings for the understanding of the functional role of mirror mechanisms.

  5. Understanding ‘what’ others do: mirror mechanisms play a crucial role in action perception

    PubMed Central

    Avenanti, Alessio; Urgesi, Cosimo

    2011-01-01

    Neurophysiological and imaging studies suggest that the inferior frontal cortex (IFC) implements a mechanism that matches perceived actions to one’s motor representation of similar actions (mirror mechanism) and recent lesion studies have also established that IFC is critical for action perception. However, to date causative evidence that action perception requires activation within the same populations of IFC neurons involved in action execution is lacking. In this issue, Cattaneo and colleagues provide the first direct evidence that mirror mechanisms in IFC influence action perception. We discuss the implications of these findings for the understanding of the functional role of mirror mechanisms. PMID:21653637

  6. Spinal cord lesions shrink peripersonal space around the feet, passive mobilization of paraplegic limbs restores it.

    PubMed

    Scandola, Michele; Aglioti, Salvatore Maria; Bonente, Claudio; Avesani, Renato; Moro, Valentina

    2016-04-06

    Peripersonal space (PPS) is the space surrounding us within which we interact with objects. PPS may be modulated by actions (e.g. when using tools) or sense of ownership (e.g. over a rubber hand). Indeed, intense and/or prolonged use of a tool may induce a sense of ownership over it. Conversely, inducing ownership over a rubber hand may activate brain regions involved in motor control. However, the extent to which PPS is modulated by action-dependent or ownership-dependent mechanisms remains unclear. Here, we explored the PPS around the feet and the sense of ownership over lower limbs in people with Paraplegia following Complete spinal cord Lesions (PCL) and in healthy subjects. PCL people can move their upper body but have lost all sensory-motor functions in their lower body (e.g. lower limbs). We tested whether PPS alterations reflect the topographical representations of various body parts. We found that the PPS around the feet was impaired in PCL who however had a normal representation of the PPS around the hands. Significantly, passive mobilization of paraplegic limbs restored the PPS around the feet suggesting that activating action representations in PCL brings about short-term changes of PPS that may thus be more plastic than previously believed.

  7. Spinal cord lesions shrink peripersonal space around the feet, passive mobilization of paraplegic limbs restores it

    PubMed Central

    Scandola, Michele; Aglioti, Salvatore Maria; Bonente, Claudio; Avesani, Renato; Moro, Valentina

    2016-01-01

    Peripersonal space (PPS) is the space surrounding us within which we interact with objects. PPS may be modulated by actions (e.g. when using tools) or sense of ownership (e.g. over a rubber hand). Indeed, intense and/or prolonged use of a tool may induce a sense of ownership over it. Conversely, inducing ownership over a rubber hand may activate brain regions involved in motor control. However, the extent to which PPS is modulated by action-dependent or ownership-dependent mechanisms remains unclear. Here, we explored the PPS around the feet and the sense of ownership over lower limbs in people with Paraplegia following Complete spinal cord Lesions (PCL) and in healthy subjects. PCL people can move their upper body but have lost all sensory-motor functions in their lower body (e.g. lower limbs). We tested whether PPS alterations reflect the topographical representations of various body parts. We found that the PPS around the feet was impaired in PCL who however had a normal representation of the PPS around the hands. Significantly, passive mobilization of paraplegic limbs restored the PPS around the feet suggesting that activating action representations in PCL brings about short-term changes of PPS that may thus be more plastic than previously believed. PMID:27049439

  8. Children's Enactment of Characters' Movements: A Novel Measure of Spatial Situation Model Representations and Indicator of Comprehension

    ERIC Educational Resources Information Center

    Nyhout, Angela; O'Neill, Daniela K.

    2017-01-01

    A story's space or setting often determines and constrains the actions of its characters. We report on an experiment with 106 children of 7-8 years old in which, using a novel enactment task, we measured children's representation of a story character's movement during story listening. We found that children were more likely to enact movements that…

  9. Causal Role of Motor Simulation in Turn-Taking Behavior.

    PubMed

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real-time repetitive transcranial magnetic stimulation protocol, we provide evidence indicating that the dorsal premotor cortex plays a causal role in accurate turn-taking coordination between a pianist and their observed interaction partner. Given that turn-taking behavior is a fundamental feature of human communication, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of communicative joint action. Copyright © 2015 the authors 0270-6474/15/3516516-05$15.00/0.

  10. A continuous-time neural model for sequential action.

    PubMed

    Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard

    2014-11-05

    Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. How to think about your drink: Action-identification and the relation between mindfulness and dyscontrolled drinking.

    PubMed

    Schellhas, Laura; Ostafin, Brian D; Palfai, Tibor P; de Jong, Peter J

    2016-05-01

    Cross-sectional and intervention research have shown that mindfulness is inversely associated with difficulties in controlling alcohol use. However, little is known regarding the mechanisms through which mindfulness is related to increased control over drinking. One potential mechanism consists of the way individuals represent their drinking behaviour. Action identification theory proposes that self-control of behaviour is improved by shifting from high-level representations regarding the meaning of a behaviour to lower-level representations regarding "how-to" aspects of a behaviour. Because mindfulness involves present-moment awareness, it may help to facilitate such shifts. We hypothesized that an inverse relation between mindfulness and dyscontrolled drinking would be partially accounted for by the way individuals mentally represent their drinking behaviour - i.e., reduced levels of high-level action identification and increased levels of low-level action identification. One hundred and twenty five undergraduate psychology students completed self-report measures of mindful awareness, action identification of alcohol use, and difficulty in controlling alcohol use. Results supported the hypothesis that high-level action identification partially mediates the relation between mindfulness and dyscontrolled drinking but did not support a mediating role for low-level action identification. These results suggest that mindfulness can improve self-control of alcohol by changing the way we think about our drinking behaviour. Copyright © 2016. Published by Elsevier Ltd.

  12. The Feeling of Action Tendencies: On the Emotional Regulation of Goal-Directed Behavior

    PubMed Central

    Lowe, Robert; Ziemke, Tom

    2011-01-01

    In this article, we review the nature of the functional and causal relationship between neurophysiologically/psychologically generated states of emotional feeling and action tendencies and extrapolate a novel perspective. Emotion theory, over the past century and beyond, has tended to regard feeling and action tendency as independent phenomena: attempts to outline the functional and causal relationship that exists between them have been framed therein. Classically, such relationships have been viewed as unidirectional, but an argument for bidirectionality rooted in a dynamic systems perspective has gained strength in recent years whereby the feeling–action tendency relationship is viewed as a composite whole. On the basis of our review of somatic–visceral theories of feelings, we argue that feelings are grounded upon neural-dynamic representations (elevated and stable activation patterns) of action tendency. Such representations amount to predictions updated by cognitive and bodily feedback. Specifically, we view emotional feelings as minimalist predictions of the action tendency (what the agent is physiologically and cognitively primed to do) in a given situation. The essence of this point is captured by our exposition of action tendency prediction–feedback loops which we consider, above all, in the context of emotion regulation, and in particular, of emotional regulation of goal-directed behavior. The perspective outlined may be of use to emotion theorists, computational modelers, and roboticists. PMID:22207854

  13. Intention understanding over T: a neuroimaging study on shared representations and tennis return predictions

    PubMed Central

    Cacioppo, Stephanie; Fontang, Frederic; Patel, Nisa; Decety, Jean; Monteleone, George; Cacioppo, John T.

    2014-01-01

    Studying the way athletes predict actions of their peers during fast-ball sports, such as a tennis, has proved to be a valuable tool for increasing our knowledge of intention understanding. The working model in this area is that the anticipatory representations of others' behaviors require internal predictive models of actions formed from pre-established and shared representations between the observer and the actor. This model also predicts that observers would not be able to read accurately the intentions of a competitor if the competitor were to perform the action without prior knowledge of their intention until moments before the action. To test this hypothesis, we recorded brain activity from 25 male tennis players while they performed a novel behavioral tennis intention inference task, which included two conditions: (i) one condition in which they viewed video clips of a tennis athlete who knew in advance where he was about to act/serve (initially intended serves) and (ii) one condition in which they viewed video clips of that same athlete when he did not know where he was to act/serve until the target was specified after he had tossed the ball into the air to complete his serve (non-initially intended serves). Our results demonstrated that (i) tennis expertise is related to the accuracy in predicting where another server intends to serve when that server knows where he intends to serve before (but not after) he tosses the ball in the air; and (ii) accurate predictions are characterized by the recruitment of both cortical areas within the human mirror neuron system (that is known to be involved in higher-order (top-down) processes of embodied cognition and shared representation) and subcortical areas within brain regions involved in procedural memory (caudate nucleus). Interestingly, inaccurate predictions instead recruit areas known to be involved in low-level (bottom-up) computational processes associated with the sense of agency and self-other distinction. PMID:25339886

  14. Brief Report: Is Perceived Motor Competence a Constraint in Children's Action Planning?

    ERIC Educational Resources Information Center

    Gabbard, Carl; Cacola, Priscila; Cordova, Alberto

    2009-01-01

    A form of action representation of developmental interest is "reach estimation"--the perceptual and cognitive judgment of whether an object is within or out of reach. A common observation among children is overestimation, which, speculatively, has been linked to perceived motor competence (PMC). The authors examined the PMC effect on…

  15. Tool-Use and the Left Hemisphere: What Is Lost in Ideomotor Apraxia?

    ERIC Educational Resources Information Center

    Sunderland, Alan; Wilkins, Leigh; Dineen, Rob; Dawson, Sophie E.

    2013-01-01

    Impaired tool related action in ideomotor apraxia is normally ascribed to loss of sensorimotor memories for habitual actions (engrams), but this account has not been tested against a hypothesis of a general deficit in representation of hand-object spatial relationships. Rapid reaching for familiar tools was compared with reaching for abstract…

  16. Doing Without Schema Hierarchies: A Recurrent Connectionist Approach to Normal and Impaired Routine Sequential Action

    ERIC Educational Resources Information Center

    Botvinick, Matthew; Plaut, David C.

    2004-01-01

    In everyday tasks, selecting actions in the proper sequence requires a continuously updated representation of temporal context. Previous models have addressed this problem by positing a hierarchy of processing units, mirroring the roughly hierarchical structure of naturalistic tasks themselves. The present study considers an alternative framework,…

  17. MATHEMATICS OF SENSING, EXPLOITATION, AND EXECUTION (MSEE) Sensing, Exploitation, and Execution (SEE) on a Foundation for Representation, Inference, and Learning

    DTIC Science & Technology

    2016-07-01

    reconstruction, video synchronization, multi - view tracking, action recognition, reasoning with uncertainty 16. SECURITY CLASSIFICATION OF: 17...3.4.2. Human action recognition across multi - views ......................................................................................... 44 3.4.3...68 4.2.1. Multi - view Multi -object Tracking with 3D cues

  18. Twofold symmetries of the pure gravity action

    DOE PAGES

    Cheung, Clifford; Remmen, Grant N.

    2017-01-25

    Here, we recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinitemore » class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. Finally, while these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.« less

  19. Twofold symmetries of the pure gravity action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Clifford; Remmen, Grant N.

    Here, we recast the action of pure gravity into a form that is invariant under a twofold Lorentz symmetry. To derive this representation, we construct a general parameterization of all theories equivalent to the Einstein-Hilbert action up to a local field redefinition and gauge fixing. We then exploit this freedom to eliminate all interactions except those exhibiting two sets of independently contracted Lorentz indices. The resulting action is local, remarkably simple, and naturally expressed in a field basis analogous to the exponential parameterization of the nonlinear sigma model. The space of twofold Lorentz invariant field redefinitions then generates an infinitemore » class of equivalent representations. By construction, all off-shell Feynman diagrams are twofold Lorentz invariant while all on-shell tree amplitudes are automatically twofold gauge invariant. We extend our results to curved spacetime and calculate the analogue of the Einstein equations. Finally, while these twofold invariances are hidden in the canonical approach of graviton perturbation theory, they are naturally expected given the double copy relations for scattering amplitudes in gauge theory and gravity.« less

  20. Typical Neural Representations of Action Verbs Develop without Vision

    PubMed Central

    Caramazza, A.; Pascual-Leone, A.; Saxe, R.

    2012-01-01

    Many empiricist theories hold that concepts are composed of sensory–motor primitives. For example, the meaning of the word “run” is in part a visual image of running. If action concepts are partly visual, then the concepts of congenitally blind individuals should be altered in that they lack these visual features. We compared semantic judgments and neural activity during action verb comprehension in congenitally blind and sighted individuals. Participants made similarity judgments about pairs of nouns and verbs that varied in the visual motion they conveyed. Blind adults showed the same pattern of similarity judgments as sighted adults. We identified the left middle temporal gyrus (lMTG) brain region that putatively stores visual–motion features relevant to action verbs. The functional profile and location of this region was identical in sighted and congenitally blind individuals. Furthermore, the lMTG was more active for all verbs than nouns, irrespective of visual–motion features. We conclude that the lMTG contains abstract representations of verb meanings rather than visual–motion images. Our data suggest that conceptual brain regions are not altered by the sensory modality of learning. PMID:21653285

  1. Skeletal Muscle Fascicle Arrangements Can Be Reconstructed Using a Laplacian Vector Field Simulation

    PubMed Central

    Choi, Hon Fai; Blemker, Silvia S.

    2013-01-01

    Skeletal muscles are characterized by a large diversity in anatomical architecture and function. Muscle force and contraction are generated by contractile fiber cells grouped in fascicle bundles, which transmit the mechanical action between origin and insertion attachments of the muscle. Therefore, an adequate representation of fascicle arrangements in computational models of skeletal muscles is important, especially when investigating three-dimensional muscle deformations in finite element models. However, obtaining high resolution in vivo measurements of fascicle arrangements in skeletal muscles is currently still challenging. This motivated the development of methods in previous studies to generate numerical representations of fascicle trajectories using interpolation templates. Here, we present an alternative approach based on the hypothesis of a rotation and divergence free (Laplacian) vector field behavior which reflects observed physical characteristics of fascicle trajectories. To obtain this representation, the Laplace equation was solved in anatomical reconstructions of skeletal muscle shapes based on medical images using a uniform flux boundary condition on the attachment areas. Fascicle tracts were generated through a robust flux based tracing algorithm. The concept of this approach was demonstrated in two-dimensional synthetic examples of typical skeletal muscle architectures. A detailed evaluation was performed in an example of the anatomical human tibialis anterior muscle which showed an overall agreement with measurements from the literature. The utility and capability of the proposed method was further demonstrated in other anatomical examples of human skeletal muscles with a wide range of muscle shapes and attachment morphologies. PMID:24204878

  2. From Content Knowledge to Community Change: A Review of Representations of Environmental Health Literacy

    PubMed Central

    Gray, Kathleen M.

    2018-01-01

    Environmental health literacy (EHL) is a relatively new framework for conceptualizing how people understand and use information about potentially harmful environmental exposures and their influence on health. As such, information on the characterization and measurement of EHL is limited. This review provides an overview of EHL as presented in peer-reviewed literature and aggregates studies based on whether they represent individual level EHL or community level EHL or both. A range of assessment tools has been used to measure EHL, with many studies relying on pre-/post-assessment; however, a broader suite of assessment tools may be needed to capture community-wide outcomes. This review also suggests that the definition of EHL should explicitly include community change or collective action as an important longer-term outcome and proposes a refinement of previous representations of EHL as a theoretical framework, to include self-efficacy. PMID:29518955

  3. When will Little Red Riding Hood become scared? Children's attribution of mental states to a story character.

    PubMed

    Ronfard, Samuel; Harris, Paul L

    2014-01-01

    As children listen to a simple action-based narrative, they construct a dynamic representation of the protagonist's movements, visual perspective, and goal-directed thoughts. We examined children's representations of more complex narratives in which the protagonist will encounter an unexpected outcome upon reaching his or her goal. Three studies involving 105 children between 3 and 6 years of age showed that children shifted in the mental states they attributed depending on the distance of the protagonist from the unexpected outcome. Even though children consistently recognized that the protagonist did not know about the surprise at any point, they increasingly attributed feelings and thoughts consistent with the surprise. The studies highlight the degree to which children's mental state attributions are dynamic rather than fixed by their current theory of mind. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Don't Fear Optimality: Sampling for Probabilistic-Logic Sequence Models

    NASA Astrophysics Data System (ADS)

    Thon, Ingo

    One of the current challenges in artificial intelligence is modeling dynamic environments that change due to the actions or activities undertaken by people or agents. The task of inferring hidden states, e.g. the activities or intentions of people, based on observations is called filtering. Standard probabilistic models such as Dynamic Bayesian Networks are able to solve this task efficiently using approximative methods such as particle filters. However, these models do not support logical or relational representations. The key contribution of this paper is the upgrade of a particle filter algorithm for use with a probabilistic logical representation through the definition of a proposal distribution. The performance of the algorithm depends largely on how well this distribution fits the target distribution. We adopt the idea of logical compilation into Binary Decision Diagrams for sampling. This allows us to use the optimal proposal distribution which is normally prohibitively slow.

  5. The foundation of Piaget's theories: mental and physical action.

    PubMed

    Beilin, H; Fireman, G

    1999-01-01

    Piaget's late theory of action and action implication was the realization of a long history of development. A review of that history shows the central place of action in all of his theoretical assertions, despite the waxing and waning of other important features of his theories. Action was said to be the primary source of knowledge with perception and language in secondary roles. Action is for the most part not only organized but there is logic in action. Action, which is at first physical, becomes internalized and transformed into mental action and mental representation, largely in the development of the symbolic or semiotic function in the sensorimotor period. A number of alternative theories of cognitive development place primary emphasis on mental representation. Piaget provided it with an important place as well, but subordinated it to mental action in the form of operations. In this, as Russell claims, he paralleled Schopenhauer's distinction between representation and will. Piaget's theory of action was intimately related to the gradual development of intentionality in childhood. Intentions were tied to actions by way of the conscious awareness of goals and the means to achieve them. Mental action, following the sensorimotor period, was limited in its logical form to semilogical or one-way functions. These forms were said by Piaget to lack logical reversibility, which was achieved only in the sixth or seventh year, in concrete operations. Mental action was not to be fully realized until the development of formal operations, with hypothetical reasoning, in adolescence, according to the classical Piagetian formulation. This view of the child's logical development, which relied heavily on truth-table (extensional) logic, underwent a number of changes. First from the addition of other logics: category theory and the theory of functions among them. In his last theory, however, an even more radical change occurred. With the collaboration of R. Garcia, he proposed a logic of meanings that would require a recasting of his earlier truth-table-based operatory logic that he claimed explained the development of logical thought and problem solving. The new logic of meanings, influenced by Anderson and Belnap's (1975) logic of entailment, placed new emphasis on inferential processes in the sensorimotor period, introduced protological forms in the actions of the very young child, and proposed that knowledge has an inferential dimension. The consequence was that the late theory shifted emphasis to intentional (qualitative) logic and meaning from the earlier extensional (quantitative) logic and truth testing. The profound changes in Piaget's late theory requires a serious reevaluation of Piaget's entire corpus of research and theory; a task which is yet to be done. Seen in a new light, the late theory is much closer to intellectual currents associated with hermeneutic and semiotic traditions in their concern with meaning and interpretation and less, if at all, with truth. This, despite Piaget's couching of the new theory in a logical mode. The late theory added significant new elements to the theory of action and action-implication, and suggest that Piaget's, and his collaborator's, new research data, which were interpreted within the new theoretical framework, require corroboration and review. The question as to whether Piaget's assertions are at root metaphorical and lack psychological reality, which has followed his theories from its earliest days, arises as well with the assertions of the late theory. Possibly, even more so, since even a limited historical review of his theories points to a considerable concurrence between changes in the fundamental assumptions of his theories and intellectual currents of the times. In hindsight, Piaget's theories appear as "works in progress," down to his last theory. Yet, even in the end, he charted the direction of possible further progress.

  6. One wouldn't expect an expert bowler to hit only two pins: Hierarchical predictive processing of agent-caused events.

    PubMed

    Heil, Lieke; Kwisthout, Johan; van Pelt, Stan; van Rooij, Iris; Bekkering, Harold

    2018-01-01

    Evidence is accumulating that our brains process incoming information using top-down predictions. If lower level representations are correctly predicted by higher level representations, this enhances processing. However, if they are incorrectly predicted, additional processing is required at higher levels to "explain away" prediction errors. Here, we explored the potential nature of the models generating such predictions. More specifically, we investigated whether a predictive processing model with a hierarchical structure and causal relations between its levels is able to account for the processing of agent-caused events. In Experiment 1, participants watched animated movies of "experienced" and "novice" bowlers. The results are in line with the idea that prediction errors at a lower level of the hierarchy (i.e., the outcome of how many pins fell down) slow down reporting of information at a higher level (i.e., which agent was throwing the ball). Experiments 2 and 3 suggest that this effect is specific to situations in which the predictor is causally related to the outcome. Overall, the study supports the idea that a hierarchical predictive processing model can account for the processing of observed action outcomes and that the predictions involved are specific to cases where action outcomes can be predicted based on causal knowledge.

  7. Neural Mechanism for Mirrored Self-face Recognition.

    PubMed

    Sugiura, Motoaki; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Akimoto, Yoritaka; Nozawa, Takayuki; Yomogida, Yukihito; Hanawa, Sugiko; Yamamoto, Yuki; Sakuma, Atsushi; Nakagawa, Seishu; Kawashima, Ryuta

    2015-09-01

    Self-face recognition in the mirror is considered to involve multiple processes that integrate 2 perceptual cues: temporal contingency of the visual feedback on one's action (contingency cue) and matching with self-face representation in long-term memory (figurative cue). The aim of this study was to examine the neural bases of these processes by manipulating 2 perceptual cues using a "virtual mirror" system. This system allowed online dynamic presentations of real-time and delayed self- or other facial actions. Perception-level processes were identified as responses to only a single perceptual cue. The effect of the contingency cue was identified in the cuneus. The regions sensitive to the figurative cue were subdivided by the response to a static self-face, which was identified in the right temporal, parietal, and frontal regions, but not in the bilateral occipitoparietal regions. Semantic- or integration-level processes, including amodal self-representation and belief validation, which allow modality-independent self-recognition and the resolution of potential conflicts between perceptual cues, respectively, were identified in distinct regions in the right frontal and insular cortices. The results are supportive of the multicomponent notion of self-recognition and suggest a critical role for contingency detection in the co-emergence of self-recognition and empathy in infants. © The Author 2014. Published by Oxford University Press.

  8. Neural Mechanism for Mirrored Self-face Recognition

    PubMed Central

    Sugiura, Motoaki; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Akimoto, Yoritaka; Nozawa, Takayuki; Yomogida, Yukihito; Hanawa, Sugiko; Yamamoto, Yuki; Sakuma, Atsushi; Nakagawa, Seishu; Kawashima, Ryuta

    2015-01-01

    Self-face recognition in the mirror is considered to involve multiple processes that integrate 2 perceptual cues: temporal contingency of the visual feedback on one's action (contingency cue) and matching with self-face representation in long-term memory (figurative cue). The aim of this study was to examine the neural bases of these processes by manipulating 2 perceptual cues using a “virtual mirror” system. This system allowed online dynamic presentations of real-time and delayed self- or other facial actions. Perception-level processes were identified as responses to only a single perceptual cue. The effect of the contingency cue was identified in the cuneus. The regions sensitive to the figurative cue were subdivided by the response to a static self-face, which was identified in the right temporal, parietal, and frontal regions, but not in the bilateral occipitoparietal regions. Semantic- or integration-level processes, including amodal self-representation and belief validation, which allow modality-independent self-recognition and the resolution of potential conflicts between perceptual cues, respectively, were identified in distinct regions in the right frontal and insular cortices. The results are supportive of the multicomponent notion of self-recognition and suggest a critical role for contingency detection in the co-emergence of self-recognition and empathy in infants. PMID:24770712

  9. Making and monitoring errors based on altered auditory feedback

    PubMed Central

    Pfordresher, Peter Q.; Beasley, Robertson T. E.

    2014-01-01

    Previous research has demonstrated that altered auditory feedback (AAF) disrupts music performance and causes disruptions in both action planning and the perception of feedback events. It has been proposed that this disruption occurs because of interference within a shared representation for perception and action (Pfordresher, 2006). Studies reported here address this claim from the standpoint of error monitoring. In Experiment 1 participants performed short melodies on a keyboard while hearing no auditory feedback, normal auditory feedback, or alterations to feedback pitch on some subset of events. Participants overestimated error frequency when AAF was present but not for normal feedback. Experiment 2 introduced a concurrent load task to determine whether error monitoring requires executive resources. Although the concurrent task enhanced the effect of AAF, it did not alter participants’ tendency to overestimate errors when AAF was present. A third correlational study addressed whether effects of AAF are reduced for a subset of the population who may lack the kind of perception/action associations that lead to AAF disruption: poor-pitch singers. Effects of manipulations similar to those presented in Experiments 1 and 2 were reduced for these individuals. We propose that these results are consistent with the notion that AAF interference is based on associations between perception and action within a forward internal model of auditory-motor relationships. PMID:25191294

  10. Model-Based and Model-Free Pavlovian Reward Learning: Revaluation, Revision and Revelation

    PubMed Central

    Dayan, Peter; Berridge, Kent C.

    2014-01-01

    Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation. PMID:24647659

  11. Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation.

    PubMed

    Dayan, Peter; Berridge, Kent C

    2014-06-01

    Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.

  12. Action and perception in literacy: A common-code for spelling and reading.

    PubMed

    Houghton, George

    2018-01-01

    There is strong evidence that reading and spelling in alphabetical scripts depend on a shared representation (common-coding). However, computational models usually treat the two skills separately, producing a wide variety of proposals as to how the identity and position of letters is represented. This article treats reading and spelling in terms of the common-coding hypothesis for perception-action coupling. Empirical evidence for common representations in spelling-reading is reviewed. A novel version of the Start-End Competitive Queuing (SE-CQ) spelling model is introduced, and tested against the distribution of positional errors in Letter Position Dysgraphia, data from intralist intrusion errors in spelling to dictation, and dysgraphia because of nonperipheral neglect. It is argued that no other current model is equally capable of explaining this range of data. To pursue the common-coding hypothesis, the representation used in SE-CQ is applied, without modification, to the coding of letter identity and position for reading and lexical access, and a lexical matching rule for the representation is proposed (Start End Position Code model, SE-PC). Simulations show the model's compatibility with benchmark findings from form priming, its ability to account for positional effects in letter identification priming and the positional distribution of perseverative intrusion errors. The model supports the view that spelling and reading use a common orthographic description, providing a well-defined account of the major features of this representation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Higher Rank ABJM Wilson Loops from Matrix Models

    NASA Astrophysics Data System (ADS)

    Cookmeyer, Jonathan; Liu, James; Zayas, Leopoldo

    2017-01-01

    We compute the expectation values of 1/6 supersymmetric Wilson Loops in ABJM theory in higher rank representations. Using standard matrix model techniques, we calculate the expectation value in the rank m fully symmetric and fully antisymmetric representation where m is scaled with N. To leading order, we find agreement with the classical action of D6 and D2 branes in AdS4 ×CP3 respectively. Further, we compute the first subleading order term, which, on the AdS side, makes a prediction for the one-loop effective action of the corresponding D6 and D2 branes. Supported by the National Science Foundation under Grant No. PHY 1559988 and the US Department of Energy under Grant No. DE-SC0007859.

  14. GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain

    PubMed Central

    Martin, Alex

    2016-01-01

    In this article, I discuss some of the latest functional neuroimaging findings on the organization of object concepts in the human brain. I argue that these data provide strong support for viewing concepts as the products of highly interactive neural circuits grounded in the action, perception, and emotion systems. The nodes of these circuits are defined by regions representing specific object properties (e.g., form, color, and motion) and thus are property-specific, rather than strictly modality-specific. How these circuits are modified by external and internal environmental demands, the distinction between representational content and format, and the grounding of abstract social concepts are also discussed. PMID:25968087

  15. Exploiting map plans as resources for action

    NASA Technical Reports Server (NTRS)

    Payton, David

    1989-01-01

    When plans are used as programs for controlling the action of autonomous or teleoperated robots, their abstract representation can easily obscure a great deal of the critical knowledge that originally led to the planned course of action. An autonomous vehicle experiment is highlighted which illustrates how the information barriers created by abstraction can result in undesirable action. It is then shown how the same task can be performed correctly using plans as a resource for action. As a result of this simple change in outlook, problems requiring opportunistic reaction to unexpected changes in the environment can be solved.

  16. Interaction of non-Abelian tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Savvidy, George

    2018-01-01

    The non-Abelian tensor gauge fields take value in extended Poincaré algebra. In order to define the invariant Lagrangian we introduce a vector variable in two alternative ways: through the transversal representation of the extended Poincaré algebra and through the path integral over the auxiliary vector field with the U(1) Abelian action. We demonstrate that this allows to fix the unitary gauge and derive scattering amplitudes in spinor representation.

  17. Selective interference of grasp and space representations with number magnitude and serial order processing.

    PubMed

    van Dijck, Jean-Philippe; Fias, Wim; Andres, Michael

    2015-10-01

    It has been proposed that the metrics of space, time and other magnitudes relevant for action are coupled through a generalized magnitude system that also contribute to number representation. Several studies capitalized on stimulus-response compatibility effects to show that numbers map onto left-right representations and grasp representations as a function of their magnitude. However, the tasks typically used do not allow disentangling magnitude from serial order processing. Here, we devised a working memory (WM) task where participants had to remember random sequences of numbers and perform a precision/whole-hand grip (Experiment 1) or a uni-manual left/right button press (Experiment 2) in response to numbers presented during the retention interval. This task does allow differentiating the interference of number magnitude and serial order with each set of responses. Experiment 1 showed that precision grips were initiated faster than whole-hand grips in response to small numbers, irrespective of their serial position in WM. In contrast, Experiment 2 revealed an advantage of right over left button presses as serial position increased, without any influence of number magnitude. These findings demonstrate that grasping and left-right movements overlap with distinct dimensions of number processing. These findings are discussed in the light of different theories explaining the interactions between numbers, space and action.

  18. Representation primitives, process models and patient data in computer-interpretable clinical practice guidelines: a literature review of guideline representation models.

    PubMed

    Wang, Dongwen; Peleg, Mor; Tu, Samson W; Boxwala, Aziz A; Greenes, Robert A; Patel, Vimla L; Shortliffe, Edward H

    2002-12-18

    Representation of clinical practice guidelines in a computer-interpretable format is a critical issue for guideline development, implementation, and evaluation. We studied 11 types of guideline representation models that can be used to encode guidelines in computer-interpretable formats. We have consistently found in all reviewed models that primitives for representation of actions and decisions are necessary components of a guideline representation model. Patient states and execution states are important concepts that closely relate to each other. Scheduling constraints on representation primitives can be modeled as sequences, concurrences, alternatives, and loops in a guideline's application process. Nesting of guidelines provides multiple views to a guideline with different granularities. Integration of guidelines with electronic medical records can be facilitated by the introduction of a formal model for patient data. Data collection, decision, patient state, and intervention constitute four basic types of primitives in a guideline's logic flow. Decisions clarify our understanding on a patient's clinical state, while interventions lead to the change from one patient state to another.

  19. Perceptual-Cognitive Changes During Motor Learning: The Influence of Mental and Physical Practice on Mental Representation, Gaze Behavior, and Performance of a Complex Action

    PubMed Central

    Frank, Cornelia; Land, William M.; Schack, Thomas

    2016-01-01

    Despite the wealth of research on differences between experts and novices with respect to their perceptual-cognitive background (e.g., mental representations, gaze behavior), little is known about the change of these perceptual-cognitive components over the course of motor learning. In the present study, changes in one’s mental representation, quiet eye behavior, and outcome performance were examined over the course of skill acquisition as it related to physical and mental practice. Novices (N = 45) were assigned to one of three conditions: physical practice, combined physical plus mental practice, and no practice. Participants in the practice groups trained on a golf putting task over the course of 3 days, either by repeatedly executing the putt, or by both executing and imaging the putt. Findings revealed improvements in putting performance across both practice conditions. Regarding the perceptual-cognitive changes, participants practicing mentally and physically revealed longer quiet eye durations as well as more elaborate representation structures in comparison to the control group, while this was not the case for participants who underwent physical practice only. Thus, in the present study, combined mental and physical practice led to both formation of mental representations in long-term memory and longer quiet eye durations. Interestingly, the length of the quiet eye directly related to the degree of elaborateness of the underlying mental representation, supporting the notion that the quiet eye reflects cognitive processing. This study is the first to show that the quiet eye becomes longer in novices practicing a motor action. Moreover, the findings of the present study suggest that perceptual and cognitive adaptations co-occur over the course of motor learning. PMID:26779089

  20. Event-related potential effects of superior action anticipation in professional badminton players.

    PubMed

    Jin, Hua; Xu, Guiping; Zhang, John X; Gao, Hongwei; Ye, Zuoer; Wang, Pin; Lin, Huiyan; Mo, Lei; Lin, Chong-De

    2011-04-04

    The ability to predict the trajectory of a ball based on the opponent's body kinematics has been shown to be critical to high-performing athletes in many sports. However, little is known about the neural correlates underlying such superior ability in action anticipation. The present event-related potential study compared brain responses from professional badminton players and non-player controls when they watched video clips of badminton games and predicted a ball's landing position. Replicating literature findings, the players made significantly more accurate judgments than the controls and showed better action anticipation. Correspondingly, they showed enlarged amplitudes of two ERP components, a P300 peaking around 350ms post-stimulus with a parietal scalp distribution and a P2 peaking around 250ms with a posterior-occipital distribution. The P300 effect was interpreted to reflect primed access and/or directing of attention to game-related memory representations in the players facilitating their online judgment of related actions. The P2 effect was suggested to reflect some generic learning effects. The results identify clear neural responses that differentiate between different levels of action anticipation associated with sports expertise. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Spatio-temporal dynamics of action-effect associations in oculomotor control.

    PubMed

    Riechelmann, Eva; Pieczykolan, Aleksandra; Horstmann, Gernot; Herwig, Arvid; Huestegge, Lynn

    2017-10-01

    While there is ample evidence that actions are guided by anticipating their effects (ideomotor control) in the manual domain, much less is known about the underlying characteristics and dynamics of effect-based oculomotor control. Here, we address three open issues. 1) Is action-effect anticipation in oculomotor control reflected in corresponding spatial saccade characteristics in inanimate environments? 2) Does the previously reported dependency of action latency on the temporal effect delay (action-effect interval) also occur in the oculomotor domain? 3) Which temporal effect delay is optimally suited to develop strong action-effect associations over time in the oculomotor domain? Participants executed left or right free-choice saccades to peripheral traffic lights, causing an (immediate or delayed) action-contingent light switch in the upper vs. lower part of the traffic light. Results indicated that saccades were spatially shifted toward the location of the upcoming change, indicating anticipation of the effect (location). Saccade latency was affected by effect delay, suggesting that corresponding time information is integrated into event representations. Finally, delayed (vs. immediate) effects were more effective in strengthening action-effect associations over the course of the experiment, likely due to greater saliency of perceptual changes occurring during target fixation as opposed to changes during saccades (saccadic suppression). Overall, basic principles underlying ideomotor control appear to generalize to the oculomotor domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Metaphysics of the principle of least action

    NASA Astrophysics Data System (ADS)

    Terekhovich, Vladislav

    2018-05-01

    Despite the importance of the variational principles of physics, there have been relatively few attempts to consider them for a realistic framework. In addition to the old teleological question, this paper continues the recent discussion regarding the modal involvement of the principle of least action and its relations with the Humean view of the laws of nature. The reality of possible paths in the principle of least action is examined from the perspectives of the contemporary metaphysics of modality and Leibniz's concept of essences or possibles striving for existence. I elaborate a modal interpretation of the principle of least action that replaces a classical representation of a system's motion along a single history in the actual modality by simultaneous motions along an infinite set of all possible histories in the possible modality. This model is based on an intuition that deep ontological connections exist between the possible paths in the principle of least action and possible quantum histories in the Feynman path integral. I interpret the action as a physical measure of the essence of every possible history. Therefore only one actual history has the highest degree of the essence and minimal action. To address the issue of necessity, I assume that the principle of least action has a general physical necessity and lies between the laws of motion with a limited physical necessity and certain laws with a metaphysical necessity.

  3. The Two-Level Theory of verb meaning: An approach to integrating the semantics of action with the mirror neuron system.

    PubMed

    Kemmerer, David; Gonzalez-Castillo, Javier

    2010-01-01

    Verbs have two separate levels of meaning. One level reflects the uniqueness of every verb and is called the "root". The other level consists of a more austere representation that is shared by all the verbs in a given class and is called the "event structure template". We explore the following hypotheses about how, with specific reference to the motor features of action verbs, these two distinct levels of semantic representation might correspond to two distinct levels of the mirror neuron system. Hypothesis 1: Root-level motor features of verb meaning are partially subserved by somatotopically mapped mirror neurons in the left primary motor and/or premotor cortices. Hypothesis 2: Template-level motor features of verb meaning are partially subserved by representationally more schematic mirror neurons in Brodmann area 44 of the left inferior frontal gyrus. Evidence has been accumulating in support of the general neuroanatomical claims made by these two hypotheses-namely, that each level of verb meaning is associated with the designated cortical areas. However, as yet no studies have satisfied all the criteria necessary to support the more specific neurobiological claims made by the two hypotheses-namely, that each level of verb meaning is associated with mirror neurons in the pertinent brain regions. This would require demonstrating that within those regions the same neuronal populations are engaged during (a) the linguistic processing of particular motor features of verb meaning, (b) the execution of actions with the corresponding motor features, and (c) the observation of actions with the corresponding motor features. 2008 Elsevier Inc. All rights reserved.

  4. THE TWO-LEVEL THEORY OF VERB MEANING: AN APPROACH TO INTEGRATING THE SEMANTICS OF ACTION WITH THE MIRROR NEURON SYSTEM

    PubMed Central

    Kemmerer, David; Castillo, Javier Gonzalez

    2010-01-01

    Verbs have two separate levels of meaning. One level reflects the uniqueness of every verb and is called the “root.” The other level consists of a more austere representation that is shared by all the verbs in a given class and is called the “event structure template.” We explore the following hypotheses about how, with specific reference to the motor features of action verbs, these two distinct levels of semantic representation might correspond to two distinct levels of the mirror neuron system. Hypothesis 1: Root-level motor features of verb meaning are partially subserved by somatotopically mapped mirror neurons in the left primary motor and/or premotor cortices. Hypothesis 2: Template-level motor features of verb meaning are partially subserved by representationally more schematic mirror neurons in Brodmann area 44 of the left inferior frontal gyrus. Evidence has been accumulating in support of the general neuroanatomical claims made by these two hypotheses—namely, that each level of verb meaning is associated with the designated cortical areas. However, as yet no studies have satisfied all the criteria necessary to support the more specific neurobiological claims made by the two hypotheses—namely, that each level of verb meaning is associated with mirror neurons in the pertinent brain regions. This would require demonstrating that within those regions the same neuronal populations are engaged during (a) the linguistic processing of particular motor features of verb meaning, (b) the execution of actions with the corresponding motor features, and (c) the observation of actions with the corresponding motor features. PMID:18996582

  5. Uncovering the Connection between Artist and Audience: Viewing Painted Brushstrokes Evokes Corresponding Action Representations in the Observer

    ERIC Educational Resources Information Center

    Taylor, J. Eric T.; Witt, Jessica K.; Grimaldi, Phillip J.

    2012-01-01

    Observed actions are covertly and involuntarily simulated within the observer's motor system. It has been argued that simulation is involved in processing abstract, gestural paintings, as the artist's movements can be simulated by observing static brushstrokes. Though this argument is grounded in theory, empirical research has yet to examine the…

  6. California: A Case Study in the Loss of Affirmative Action. A Policy Report

    ERIC Educational Resources Information Center

    Gandara, Patricia

    2012-01-01

    This paper briefly reviews the various efforts undertaken by the University of California to maintain diversity in the institution, and especially at its highly competitive flagship campuses, UCLA and Berkeley, in the face of the loss of affirmative action during the mid-1990s. It demonstrates the continuing decline in representation of…

  7. School-University Action Research: Impacts on Teaching Practices and Pupil Learning

    ERIC Educational Resources Information Center

    Attorps, Iiris; Kellner, Eva

    2017-01-01

    The aim of this article is to describe a design and implementation of a school-university action research project about teaching and learning biology and mathematics in primary school. Nine teachers in grades 1 to 6, in collaboration with two researchers, were using content representation (CoRe) in learning study (LS)-inspired cycle as pedagogical…

  8. Exclusionary Discipline Practices across Students' Racial/Ethnic Backgrounds and Disability Status: Findings from the Pacific Northwest

    ERIC Educational Resources Information Center

    Vincent, Claudia G.; Sprague, Jeffrey R.; Tobin, Tary J.

    2012-01-01

    We examined 2009-2010 data on exclusionary discipline practices from one state in the Pacific Northwest of the United States across students' racial/ethnic backgrounds and disability status. Our focus was on proportionate representation in exclusionary discipline actions and in the duration of those disciplinary actions. Descriptive outcomes…

  9. Anticipation of Body-Scaled Action Is Modified in Anorexia Nervosa

    ERIC Educational Resources Information Center

    Guardia, Dewi; Lafargue, Gilles; Thomas, Pierre; Dodin, Vincent; Cottencin, Olivier; Luyat, Marion

    2010-01-01

    Patients with anorexia nervosa frequently believe they are larger than they really are. The precise nature of this bias is not known: is it a false belief related to the patient's aesthetic and emotional attitudes towards her body? Or could it also reflect abnormal processing of the representation of the body in action? We tested this latter…

  10. Predictive Biomarkers for Linking Disease Pathology and Drug Effect.

    PubMed

    Mayer, Bernd; Heinzel, Andreas; Lukas, Arno; Perco, Paul

    2017-01-01

    Productivity in drug R&D continues seeing significant attrition in clinical stage testing. Approval of new molecular entities proceeds with slow pace specifically when it comes to chronic, age-related diseases, calling for new conceptual approaches, methodological implementation and organizational adoption in drug development. Detailed phenotyping of disease presentation together with comprehensive representation of drug mechanism of action is considered as a path forward, and a big data spectrum has become available covering behavioral, clinical and molecular characteristics, the latter combining reductionist and explorative strategies. On this basis integrative analytics in the realm of Systems Biology has emerged, essentially aiming at traversing associations into causal relationships for bridging molecular disease specifics and clinical phenotype surrogates and finally explaining drug response and outcome. From a conceptual perspective bottom-up modeling approaches are available, with dynamical hierarchies as formalism capable of describing clinical findings as emergent properties of an underlying molecular process network comprehensively resembling disease pathology. In such representation biomarker candidates serve as proxy of a molecular process set, at the interface of a corresponding representation of drug mechanism of action allowing patient stratification and prediction of drug response. In practical implementation network analytics on a protein coding gene level has provided a number of example cases for matching disease presentation and drug molecular effect, and workflows combining computational hypothesis generation and experimental evaluation have become available for systematically optimizing biomarker candidate selection. With biomarker-based enrichment strategies in adaptive clinical trials, implementation routes for tackling development attrition are provided. Predictive biomarkers add precision in drug development and as companion diagnostics in clinical practice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. The Action Execution Process Implemented in Different Cognitive Architectures: A Review

    NASA Astrophysics Data System (ADS)

    Dong, Daqi; Franklin, Stan

    2014-12-01

    An agent achieves its goals by interacting with its environment, cyclically choosing and executing suitable actions. An action execution process is a reasonable and critical part of an entire cognitive architecture, because the process of generating executable motor commands is not only driven by low-level environmental information, but is also initiated and affected by the agent's high-level mental processes. This review focuses on cognitive models of action, or more specifically, of the action execution process, as implemented in a set of popular cognitive architectures. We examine the representations and procedures inside the action execution process, as well as the cooperation between action execution and other high-level cognitive modules. We finally conclude with some general observations regarding the nature of action execution.

  12. Everyday robotic action: lessons from human action control

    PubMed Central

    de Kleijn, Roy; Kachergis, George; Hommel, Bernhard

    2014-01-01

    Robots are increasingly capable of performing everyday human activities such as cooking, cleaning, and doing the laundry. This requires the real-time planning and execution of complex, temporally extended sequential actions under high degrees of uncertainty, which provides many challenges to traditional approaches to robot action control. We argue that important lessons in this respect can be learned from research on human action control. We provide a brief overview of available psychological insights into this issue and focus on four principles that we think could be particularly beneficial for robot control: the integration of symbolic and subsymbolic planning of action sequences, the integration of feedforward and feedback control, the clustering of complex actions into subcomponents, and the contextualization of action-control structures through goal representations. PMID:24672474

  13. Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.

    PubMed

    Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N

    2015-03-04

    The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. Copyright © 2015 the authors 0270-6474/15/354104-08$15.00/0.

  14. Time course of action representations evoked during sentence comprehension.

    PubMed

    Heard, Alison W; Masson, Michael E J; Bub, Daniel N

    2015-03-01

    The nature of hand-action representations evoked during language comprehension was investigated using a variant of the visual-world paradigm in which eye fixations were monitored while subjects viewed a screen displaying four hand postures and listened to sentences describing an actor using or lifting a manipulable object. Displayed postures were related to either a functional (using) or volumetric (lifting) interaction with an object that matched or did not match the object mentioned in the sentence. Subjects were instructed to select the hand posture that matched the action described in the sentence. Even before the manipulable object was mentioned in the sentence, some sentence contexts allowed subjects to infer the object's identity and the type of action performed with it and eye fixations immediately favored the corresponding hand posture. This effect was assumed to be the result of ongoing motor or perceptual imagery in which the action described in the sentence was mentally simulated. In addition, the hand posture related to the manipulable object mentioned in a sentence, but not related to the described action (e.g., a writing posture in the context of a sentence that describes lifting, but not using, a pencil), was favored over other hand postures not related to the object. This effect was attributed to motor resonance arising from conceptual processing of the manipulable object, without regard to the remainder of the sentence context. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The Suppression of Beta Oscillations in the Primate Supplementary Motor Complex Reflects a Volatile State During the Updating of Action Sequences.

    PubMed

    Hosaka, Ryosuke; Nakajima, Toshi; Aihara, Kazuyuki; Yamaguchi, Yoko; Mushiake, Hajime

    2016-08-01

    The medial motor areas play crucial but flexible roles in the temporal organizations of multiple movements. The beta oscillation of local field potentials is the predominant oscillatory activity in the motor areas, but the manner in which increases and decreases in beta power contribute to updating of multiple action plans is not yet fully understood. In the present study, beta and high-gamma activities in the supplementary motor area (SMA) and pre-SMA of monkeys were analyzed during performance of a bimanual motor sequence task that required updating and maintenance of the memory of action sequences. Beta power was attenuated during early delay periods of updating trials but was increased during maintenance trials, while there was a reciprocal increase in high-gamma power during updating trials. Moreover, transient attenuation of beta power during maintenance trials resulted in the erroneous selection of an action sequence. Therefore, it was concluded that the suppression of beta power during the early delay period reflects volatility of neural representation of the action sequence. This neural representation would be properly updated to the appropriate instructed action sequence via increases in high-gamma power in updating trials whereas it would be erroneously updated without the appropriate updating signal in maintenance trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. General and specific consciousness: a first-order representationalist approach

    PubMed Central

    Mehta, Neil; Mashour, George A.

    2013-01-01

    It is widely acknowledged that a complete theory of consciousness should explain general consciousness (what makes a state conscious at all) and specific consciousness (what gives a conscious state its particular phenomenal quality). We defend first-order representationalism, which argues that consciousness consists of sensory representations directly available to the subject for action selection, belief formation, planning, etc. We provide a neuroscientific framework for this primarily philosophical theory, according to which neural correlates of general consciousness include prefrontal cortex, posterior parietal cortex, and non-specific thalamic nuclei, while neural correlates of specific consciousness include sensory cortex and specific thalamic nuclei. We suggest that recent data support first-order representationalism over biological theory, higher-order representationalism, recurrent processing theory, information integration theory, and global workspace theory. PMID:23882231

  17. Investigating common coding of observed and executed actions in the monkey brain using cross-modal multi-variate fMRI classification.

    PubMed

    Fiave, Prosper Agbesi; Sharma, Saloni; Jastorff, Jan; Nelissen, Koen

    2018-05-19

    Mirror neurons are generally described as a neural substrate hosting shared representations of actions, by simulating or 'mirroring' the actions of others onto the observer's own motor system. Since single neuron recordings are rarely feasible in humans, it has been argued that cross-modal multi-variate pattern analysis (MVPA) of non-invasive fMRI data is a suitable technique to investigate common coding of observed and executed actions, allowing researchers to infer the presence of mirror neurons in the human brain. In an effort to close the gap between monkey electrophysiology and human fMRI data with respect to the mirror neuron system, here we tested this proposal for the first time in the monkey. Rhesus monkeys either performed reach-and-grasp or reach-and-touch motor acts with their right hand in the dark or observed videos of human actors performing similar motor acts. Unimodal decoding showed that both executed or observed motor acts could be decoded from numerous brain regions. Specific portions of rostral parietal, premotor and motor cortices, previously shown to house mirror neurons, in addition to somatosensory regions, yielded significant asymmetric action-specific cross-modal decoding. These results validate the use of cross-modal multi-variate fMRI analyses to probe the representations of own and others' actions in the primate brain and support the proposed mapping of others' actions onto the observer's own motor cortices. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A community practitioner abroad: listening to women in Dailekh, Nepal.

    PubMed

    Nixon, Catherine

    2015-07-01

    Nepal is one of the poorest countries in the world, and has a strongly patriarchal culture. This study reports on methods used to explore women's opportunities in decision-making roles in Dailekh, Nepal. Action-based research was used to support women to identify barriers and to enable them to find solutions which could increase meaningful, practical and genuine representation. Participants were women in nominal positions of leadership in the community and subsequently also men in leadership roles. Focus groups and interviews enabled data to be collected and analysed using participatory and 'rich picture' tools. A five-stage framework approach was used to analyse data. A major theme of 'power' emerged comprised of supporting themes; 'place in society 'formal power,' informal power and 'voice'. These outcomes formed the basis for identifying viable action plans generated by the participants of both genders to promote meaningful involvement of women in community decision making. Women were clear that involving men and women in the actions was key to increasing success.

  19. Bayesian Action–Perception Computational Model: Interaction of Production and Recognition of Cursive Letters

    PubMed Central

    Gilet, Estelle; Diard, Julien; Bessière, Pierre

    2011-01-01

    In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition, iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss experimental predictions and theoretical developments. PMID:21674043

  20. Vision for perception and vision for action in the primate brain.

    PubMed

    Goodale, M A

    1998-01-01

    Visual systems first evolved not to enable animals to see, but to provide distal sensory control of their movements. Vision as 'sight' is a relative newcomer to the evolutionary landscape, but its emergence has enabled animals to carry out complex cognitive operations on perceptual representations of the world. The two streams of visual processing that have been identified in the primate cerebral cortex are a reflection of these two functions of vision. The dorsal 'action' stream projecting from primary visual cortex to the posterior parietal cortex provides flexible control of more ancient subcortical visuomotor modules for the production of motor acts. The ventral 'perceptual' stream projecting from the primary visual cortex to the temporal lobe provides the rich and detailed representation of the world required for cognitive operations. Both streams process information about the structure of objects and about their spatial locations--and both are subject to the modulatory influences of attention. Each stream, however, uses visual information in different ways. Transformations carried out in the ventral stream permit the formation of perceptual representations that embody the enduring characteristics of objects and their relations; those carried out in the dorsal stream which utilize moment-to-moment information about objects within egocentric frames of reference, mediate the control of skilled actions. Both streams work together in the production of goal-directed behaviour.

  1. Self-organizing neural integration of pose-motion features for human action recognition

    PubMed Central

    Parisi, German I.; Weber, Cornelius; Wermter, Stefan

    2015-01-01

    The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented toward human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robust recognition of actions, also under noisy conditions caused by, for instance, systematic sensor errors and temporarily occluded persons. Studies of the mammalian visual system and its outperforming ability to process biological motion information suggest separate neural pathways for the distinct processing of pose and motion features at multiple levels and the subsequent integration of these visual cues for action perception. We present a neurobiologically-motivated approach to achieve noise-tolerant action recognition in real time. Our model consists of self-organizing Growing When Required (GWR) networks that obtain progressively generalized representations of sensory inputs and learn inherent spatio-temporal dependencies. During the training, the GWR networks dynamically change their topological structure to better match the input space. We first extract pose and motion features from video sequences and then cluster actions in terms of prototypical pose-motion trajectories. Multi-cue trajectories from matching action frames are subsequently combined to provide action dynamics in the joint feature space. Reported experiments show that our approach outperforms previous results on a dataset of full-body actions captured with a depth sensor, and ranks among the best results for a public benchmark of domestic daily actions. PMID:26106323

  2. Differential representation of Pavlovian-instrumental transfer by prefrontal cortex subregions and striatum.

    PubMed

    Homayoun, Houman; Moghaddam, Bita

    2009-04-01

    Environmental cues that once predicted reward can restore extinguished behavior directed toward that reward. This process may be modeled by the Pavlovian-instrumental transfer (PIT) paradigm where a previously learned Pavlovian conditioned stimulus (CS) elicits a representation of the reward associated with that CS, prompts motivation toward the absent reward, and triggers an instrumental action. We recorded in the medial and orbital prefrontal cortex (mPFC and OFC) and dorsal striatum (DS) of freely moving rats during PIT and found that a Pavlovian CS, as compared with neutral or no stimuli, amplified the phasic neuronal responses to instrumental nosepokes ('transfer' event). In mPFC and OFC, but not the DS, representation of the transfer event correlated with the strength of PIT behavior. Neurons in all three regions showed CS-selective amplification of Pavlovian approaches toward the reward delivery site. Whereas striatal neurons represented transfer and approach behavior through mostly segregated neuronal subsets, overlapping subsets represented these events in the mPFC and OFC. These findings suggest that parallel phasic activation of mPFC and OFC neuronal subsets participates in the transfer from Pavlovian incentives to instrumental actions.

  3. Action semantics: A unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge

    NASA Astrophysics Data System (ADS)

    van Elk, Michiel; van Schie, Hein; Bekkering, Harold

    2014-06-01

    Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain.

  4. Fairness in Representation Act

    THOMAS, 111th Congress

    Rep. Foxx, Virginia [R-NC-5

    2009-10-13

    House - 12/01/2009 Referred to the Subcommittee on Information Policy, Census, and National Archives. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  5. 17 CFR 8.12 - Right to representation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 8.12 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION EXCHANGE PROCEDURES FOR DISCIPLINARY, SUMMARY, AND MEMBERSHIP DENIAL ACTIONS Disciplinary Procedure § 8.12 Right to... disciplinary proceeding. ...

  6. The Quench Action

    NASA Astrophysics Data System (ADS)

    Caux, Jean-Sébastien

    2016-06-01

    We give a pedagogical introduction to the methodology of the Quench Action, which is an effective representation for the calculation of time-dependent expectation values of physical operators following a generic out-of-equilibrium state preparation protocol (for example a quantum quench). The representation, originally introduced in Caux and Essler (2013 Phys. Rev. Lett. 110 257203), is founded on a mixture of exact data for overlaps together with variational reasonings. It is argued to be quite generally valid and thermodynamically exact for arbitrary times after the quench (from short times all the way up to the steady state), and applicable to a wide class of physically relevant observables. Here, we introduce the method and its language, give an overview of some recent results, suggest a roadmap and offer some perspectives on possible future research directions.

  7. Affirmative Action Status Report: 1982-83 New Hires at New Jersey Public Colleges and Universities. Special Report Series.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Higher Education, Trenton. Office of Research.

    Recent hiring actions of New Jersey public colleges and universities were surveyed to determine the progress being made in increasing the representation of women and minorities among the institutions' employees. Information was obtained from all institutions on sex and race/ethnicity of all newly hired full-time employees. For faculty new hires,…

  8. On Belief State Representation and Its Application in Planning with Incomplete Information, Nondeterministic Actions, and Sensing Actions

    ERIC Educational Resources Information Center

    To, Son Thanh

    2012-01-01

    "Belief state" refers to the set of possible world states satisfying the agent's (usually imperfect) knowledge. The use of belief state allows the agent to reason about the world with incomplete information, by considering each possible state in the belief state individually, in the same way as if it had perfect knowledge. However, the…

  9. Differential Effects of Age-of-Acquisition for Concrete Nouns and Action Verbs: Evidence for Partly Distinct Representations?

    ERIC Educational Resources Information Center

    Boulenger, Veronique; Decoppet, Nathalie; Roy, Alice C.; Paulignan, Yves; Nazir, Tatjana A.

    2007-01-01

    There is growing evidence that words that are acquired early in life are processed faster and more accurately than words acquired later, even by adults. As neuropsychological and neuroimaging studies have implicated different brain networks in the processing of action verbs and concrete nouns, the present study was aimed at contrasting reaction…

  10. Eye Gaze Metrics Reflect a Shared Motor Representation for Action Observation and Movement Imagery

    ERIC Educational Resources Information Center

    McCormick, Sheree A.; Causer, Joe; Holmes, Paul S.

    2012-01-01

    Action observation (AO) and movement imagery (MI) have been reported to share similar neural networks. This study investigated the congruency between AO and MI using the eye gaze metrics, dwell time and fixation number. A simple reach-grasp-place arm movement was observed and, in a second condition, imagined where the movement was presented from…

  11. Legal Representation for Health Care Providers at Adverse Privileging Hearings

    DTIC Science & Technology

    1990-04-01

    actions and medical malpractice suits that arose from their previous civilian practices.’ The situation was scandalous: cfCicials responsible for... medical malpractice actions; 3 others complained to their congressional representatives. Members of Citizens Against Military Injustice (CAMI) were...because of military medical malpractice . 5 Responding to the clamor from their constituents, members of Congress held hearings with DOD health care

  12. A simulation of T-wave alternans vectocardiographic representation performed by changing the ventricular heart cells action potential duration.

    PubMed

    Janusek, D; Kania, M; Zaczek, R; Zavala-Fernandez, H; Maniewski, R

    2014-04-01

    The presence of T wave alternans (TWA) in the surface ECG signals has been recognized as a marker of electrical instability, and is hypothesized to be related to patients at increased risk for ventricular arrhythmias. In this paper we present a TWA simulation study. The TWA phenomenon was simulated by changing the duration of the ventricular heart cells action potential. The magnitude was calculated in the surface ECG with the use of the time domain method. The spatially concordant TWA, where during one heart beat all ventricular cells display a short-duration action potential and during the next beat they exhibit a long-duration action potential, as well as the discordant TWA, where at least one region is out of phase, was simulated. The vectocardiographic representation was employed. The obtained results showed a high level of T-loop pattern and location disturbances connected to the discordant TWA simulation in contrast to the concordant one. This result may be explained by the spatial heterogeneity of the ventricular repolarization process, which could be higher for the discordant TWA than for the concordant TWA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The Efficacy of Movement Representation Techniques for Treatment of Limb Pain--A Systematic Review and Meta-Analysis.

    PubMed

    Thieme, Holm; Morkisch, Nadine; Rietz, Christian; Dohle, Christian; Borgetto, Bernhard

    2016-02-01

    Relatively new evidence suggests that movement representation techniques (ie, therapies that use the observation and/or imagination of normal pain-free movements, such as mirror therapy, motor imagery, or movement and/or action observation) might be effective in reduction of some types of limb pain. To summarize the evidence regarding the efficacy of those techniques, a systematic review with meta-analysis was performed. We searched Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL, AMED, PsychINFO, Physiotherapy Evidence Database, and OT-seeker up to August 2014 and hand-searched further relevant resources for randomized controlled trials that studied the efficacy of movement representation techniques in reduction of limb pain. The outcomes of interest were pain, disability, and quality of life. Study selection and data extraction were performed by 2 reviewers independently. We included 15 trials on the effects of mirror therapy, (graded) motor imagery, and action observation in patients with complex regional pain syndrome, phantom limb pain, poststroke pain, and nonpathological (acute) pain. Overall, movement representation techniques were found to be effective in reduction of pain (standardized mean difference [SMD] = -.82, 95% confidence interval [CI], -1.32 to -.31, P = .001) and disability (SMD = .72, 95% CI, .22-1.22, P = .004) and showed a positive but nonsignificant effect on quality of life (SMD = 2.61, 85% CI, -3.32 to 8.54, P = .39). Especially mirror therapy and graded motor imagery should be considered for the treatment of patients with complex regional pain syndrome. Furthermore, the results indicate that motor imagery could be considered as a potential effective treatment in patients with acute pain after trauma and surgery. To date, there is no evidence for a pain reducing effect of movement representation techniques in patients with phantom limb pain and poststroke pain other than complex regional pain syndrome. In this systematic review we synthesize the evidence for the efficacy of movement representation techniques (ie, motor imagery, mirror therapy, or action observation) for treatment of limb pain. Our findings suggest effective pain reduction in some types of limb pain. Further research should address specific questions on the optimal type and dose of therapy. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Bridging analytical approaches for low-carbon transitions

    NASA Astrophysics Data System (ADS)

    Geels, Frank W.; Berkhout, Frans; van Vuuren, Detlef P.

    2016-06-01

    Low-carbon transitions are long-term multi-faceted processes. Although integrated assessment models have many strengths for analysing such transitions, their mathematical representation requires a simplification of the causes, dynamics and scope of such societal transformations. We suggest that integrated assessment model-based analysis should be complemented with insights from socio-technical transition analysis and practice-based action research. We discuss the underlying assumptions, strengths and weaknesses of these three analytical approaches. We argue that full integration of these approaches is not feasible, because of foundational differences in philosophies of science and ontological assumptions. Instead, we suggest that bridging, based on sequential and interactive articulation of different approaches, may generate a more comprehensive and useful chain of assessments to support policy formation and action. We also show how these approaches address knowledge needs of different policymakers (international, national and local), relate to different dimensions of policy processes and speak to different policy-relevant criteria such as cost-effectiveness, socio-political feasibility, social acceptance and legitimacy, and flexibility. A more differentiated set of analytical approaches thus enables a more differentiated approach to climate policy making.

  15. Seeing Iconic Gestures While Encoding Events Facilitates Children's Memory of These Events.

    PubMed

    Aussems, Suzanne; Kita, Sotaro

    2017-11-08

    An experiment with 72 three-year-olds investigated whether encoding events while seeing iconic gestures boosts children's memory representation of these events. The events, shown in videos of actors moving in an unusual manner, were presented with either iconic gestures depicting how the actors performed these actions, interactive gestures, or no gesture. In a recognition memory task, children in the iconic gesture condition remembered actors and actions better than children in the control conditions. Iconic gestures were categorized based on how much of the actors was represented by the hands (feet, legs, or body). Only iconic hand-as-body gestures boosted actor memory. Thus, seeing iconic gestures while encoding events facilitates children's memory of those aspects of events that are schematically highlighted by gesture. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  16. Different categories of living and non-living sound-sources activate distinct cortical networks

    PubMed Central

    Engel, Lauren R.; Frum, Chris; Puce, Aina; Walker, Nathan A.; Lewis, James W.

    2009-01-01

    With regard to hearing perception, it remains unclear as to whether, or the extent to which, different conceptual categories of real-world sounds and related categorical knowledge are differentially represented in the brain. Semantic knowledge representations are reported to include the major divisions of living versus non-living things, plus more specific categories including animals, tools, biological motion, faces, and places—categories typically defined by their characteristic visual features. Here, we used functional magnetic resonance imaging (fMRI) to identify brain regions showing preferential activity to four categories of action sounds, which included non-vocal human and animal actions (living), plus mechanical and environmental sound-producing actions (non-living). The results showed a striking antero-posterior division in cortical representations for sounds produced by living versus non-living sources. Additionally, there were several significant differences by category, depending on whether the task was category-specific (e.g. human or not) versus non-specific (detect end-of-sound). In general, (1) human-produced sounds yielded robust activation in the bilateral posterior superior temporal sulci independent of task. Task demands modulated activation of left-lateralized fronto-parietal regions, bilateral insular cortices, and subcortical regions previously implicated in observation-execution matching, consistent with “embodied” and mirror-neuron network representations subserving recognition. (2) Animal action sounds preferentially activated the bilateral posterior insulae. (3) Mechanical sounds activated the anterior superior temporal gyri and parahippocampal cortices. (4) Environmental sounds preferentially activated dorsal occipital and medial parietal cortices. Overall, this multi-level dissociation of networks for preferentially representing distinct sound-source categories provides novel support for grounded cognition models that may underlie organizational principles for hearing perception. PMID:19465134

  17. Recognizing flu-like symptoms from videos.

    PubMed

    Thi, Tuan Hue; Wang, Li; Ye, Ning; Zhang, Jian; Maurer-Stroh, Sebastian; Cheng, Li

    2014-09-12

    Vision-based surveillance and monitoring is a potential alternative for early detection of respiratory disease outbreaks in urban areas complementing molecular diagnostics and hospital and doctor visit-based alert systems. Visible actions representing typical flu-like symptoms include sneeze and cough that are associated with changing patterns of hand to head distances, among others. The technical difficulties lie in the high complexity and large variation of those actions as well as numerous similar background actions such as scratching head, cell phone use, eating, drinking and so on. In this paper, we make a first attempt at the challenging problem of recognizing flu-like symptoms from videos. Since there was no related dataset available, we created a new public health dataset for action recognition that includes two major flu-like symptom related actions (sneeze and cough) and a number of background actions. We also developed a suitable novel algorithm by introducing two types of Action Matching Kernels, where both types aim to integrate two aspects of local features, namely the space-time layout and the Bag-of-Words representations. In particular, we show that the Pyramid Match Kernel and Spatial Pyramid Matching are both special cases of our proposed kernels. Besides experimenting on standard testbed, the proposed algorithm is evaluated also on the new sneeze and cough set. Empirically, we observe that our approach achieves competitive performance compared to the state-of-the-arts, while recognition on the new public health dataset is shown to be a non-trivial task even with simple single person unobstructed view. Our sneeze and cough video dataset and newly developed action recognition algorithm is the first of its kind and aims to kick-start the field of action recognition of flu-like symptoms from videos. It will be challenging but necessary in future developments to consider more complex real-life scenario of detecting these actions simultaneously from multiple persons in possibly crowded environments.

  18. Polio Pictures

    MedlinePlus

    ... dimensional representation of poliovirus. A few examples from public health professionals Child in Nigeria with a leg partly ... for these sites, which offer more images/photos. Public Health Image Library (PHIL) Immunization Action Coalition Polio Eradication ...

  19. Representation Fairness Restoration Act

    THOMAS, 113th Congress

    Sen. Isakson, Johnny [R-GA

    2013-06-13

    Senate - 06/13/2013 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  20. Representation Fairness Restoration Act

    THOMAS, 112th Congress

    Sen. Isakson, Johnny [R-GA

    2011-11-10

    Senate - 11/10/2011 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  1. Does the Level of Graphical Detail of a Virtual Handball Thrower Influence a Goalkeeper’s Motor Response?

    PubMed Central

    Vignais, Nicolas; Bideau, Benoit; Craig, Cathy; Brault, Sébastien; Multon, Franck; Delamarche, Paul; Kulpa, Richard

    2009-01-01

    The authors investigated how different levels of detail (LODs) of a virtual throwing action can influence a handball goalkeeper’s motor response. Goalkeepers attempted to stop a virtual ball emanating from five different graphical LODs of the same virtual throwing action. The five levels of detail were: a textured reference level (L0), a non-textured level (L1), a wire-frame level (L2), a point-light-display (PLD) representation (L3) and a PLD level with reduced ball size (L4). For each motor response made by the goalkeeper we measured and analyzed the time to respond (TTR), the percentage of successful motor responses, the distance between the ball and the closest limb (when the stopping motion was incorrect) and the kinematics of the motion. Results showed that TTR, percentage of successful motor responses and distance with the closest limb were not significantly different for any of the five different graphical LODs. However the kinematics of the motion revealed that the trajectory of the stopping limb was significantly different when comparing the L1 and L3 levels, and when comparing the L1 and L4 levels. These differences in the control of the goalkeeper’s actions suggests that the different level of information available in the PLD representations (L3 and L4) are causing the goalkeeper to adopt different motor strategies to control the approach of their limb to stop the ball. Key points Virtual reality technology can be used to analyze sport performance because it enables standardization and reproduction of sport situations. Defining a minimal graphical level of detail of a virtual action could decrease the real time calculation of a virtual reality system. A Point Light Display graphical representation of a virtual throwing motion seems to influence the regulation of action of real handball goalkeepers. PMID:24149589

  2. Mathematical Representation Ability by Using Project Based Learning on the Topic of Statistics

    NASA Astrophysics Data System (ADS)

    Widakdo, W. A.

    2017-09-01

    Seeing the importance of the role of mathematics in everyday life, mastery of the subject areas of mathematics is a must. Representation ability is one of the fundamental ability that used in mathematics to make connection between abstract idea with logical thinking to understanding mathematics. Researcher see the lack of mathematical representation and try to find alternative solution to dolve it by using project based learning. This research use literature study from some books and articles in journals to see the importance of mathematical representation abiliy in mathemtics learning and how project based learning able to increase this mathematical representation ability on the topic of Statistics. The indicators for mathematical representation ability in this research classifies namely visual representation (picture, diagram, graph, or table); symbolize representation (mathematical statement. Mathematical notation, numerical/algebra symbol) and verbal representation (written text). This article explain about why project based learning able to influence student’s mathematical representation by using some theories in cognitive psychology, also showing the example of project based learning that able to use in teaching statistics, one of mathematics topic that very useful to analyze data.

  3. Canonical Representations of the Simple Map

    NASA Astrophysics Data System (ADS)

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima; Boozer, Allen

    2007-11-01

    The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) toroidal flux and poloidal angle (ψ,θ) as canonical coordinates, (ii) the physical variables (R,Z) or (X,Y) as canonical coordinates, and (iii) the action-angle (J,ζ) or magnetic variables (ψ,θ) as canonical coordinates. We give the derivation of the simple map in the (X,Y) representation. The simple map in this representation has been studied extensively (Ref. 1 and references therein). We calculate the magnetic coordinates for the simple map, construct the simple map in magnetic coordinates, and calculate generic topological effects of magnetic perturbations in divertor tokamaks using the map. We also construct the simple map in (ψ,θ) representation. Preliminary results of these studies will be presented. This work is supported by US DOE OFES DE-FG02-01ER54624 and DE-FG02-04ER54793. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A 364 140--145 (2007).

  4. Persistent identifiers for web service requests relying on a provenance ontology design pattern

    NASA Astrophysics Data System (ADS)

    Car, Nicholas; Wang, Jingbo; Wyborn, Lesley; Si, Wei

    2016-04-01

    Delivering provenance information for datasets produced from static inputs is relatively straightforward: we represent the processing actions and data flow using provenance ontologies and link to stored copies of the inputs stored in repositories. If appropriate detail is given, the provenance information can then describe what actions have occurred (transparency) and enable reproducibility. When web service-generated data is used by a process to create a dataset instead of a static inputs, we need to use sophisticated provenance representations of the web service request as we can no longer just link to data stored in a repository. A graph-based provenance representation, such as the W3C's PROV standard, can be used to model the web service request as a single conceptual dataset and also as a small workflow with a number of components within the same provenance report. This dual representation does more than just allow simplified or detailed views of a dataset's production to be used where appropriate. It also allow persistent identifiers to be assigned to instances of a web service requests, thus enabling one form of dynamic data citation, and for those identifiers to resolve to whatever level of detail implementers think appropriate in order for that web service request to be reproduced. In this presentation we detail our reasoning in representing web service requests as small workflows. In outline, this stems from the idea that web service requests are perdurant things and in order to most easily persist knowledge of them for provenance, we should represent them as a nexus of relationships between endurant things, such as datasets and knowledge of particular system types, as these endurant things are far easier to persist. We also describe the ontology design pattern that we use to represent workflows in general and how we apply it to different types of web service requests. We give examples of specific web service requests instances that were made by systems at Australia's National Computing Infrastructure and show how one can 'click' through provenance interfaces to see the dual representations of the requests using provenance management tooling we have built.

  5. Women in physics in Finland

    NASA Astrophysics Data System (ADS)

    Banzuzi, Kukka

    2013-03-01

    The representation of women in physics and related fields of study in Finland, career advancement of female physicists in Finland, and the actions carried out in recent years to improve the situation are summarized.

  6. Expansion of Biology Teachers' Pedagogical Content Knowledge (PCK) During a Long-Term Professional Development Program

    NASA Astrophysics Data System (ADS)

    Rozenszajn, Ronit; Yarden, Anat

    2014-02-01

    Experienced teachers possess a unique teaching knowledge comprised of an inter-related set of knowledge and beliefs that gives direction and justification to a teacher's actions. This study examined the expansion of two components of pedagogical content knowledge (PCK) of three in-service teachers in the course of a professional development program aimed at designing new teaching and learning materials suggested by the teachers themselves. The research presents an enlargement of previous PCK representations by focusing on a detailed representation of two main PCK domains: teaching and learning, including ten PCK components that emerged in the course of data analysis. This representation enabled revealing the unique PCK held by each teacher and to characterize the expansion of the two components of the participating teachers' PCK during the long-term professional development program. Retention of major parts of the expanded PCK a year after termination of the program implies that designing and implementing new teaching and learning materials based on the teachers' experiences, needs, and knowledge in a workshop format accompanied by biology and science education courses might provide a powerful means for PCK expansion. We recommend that designers of professional development programs be aware of the unique PCK held by each teacher in order to promote meaningful professional development of each teacher. Moreover, the PCK representations that were identified in the course of this study enabled clarifying the "orientation toward teaching science" category of PCK which appears to be unclear in current literature.

  7. [The social representation that adolescents from Jalisco, Mexico have of early detection of breast cancer].

    PubMed

    Tapia Curiel, Amparo; Villaseñor Farías, Martha; Lidia Nuño Gutiérrez, Bertha; Rodríguez Carlos, Aída Araceli; Salas González, Efraín; López López, José Luis

    2014-10-01

    To describe the social representation that adolescents from Jalisco, Mexico, have of early detection of breast cancer. Qualitative cross, analytical interpretative and based on the theory of social representations. Non-probability sampling. Contact schools in basic education level of 7municipalities of the State of Jalisco, Mexico, through various government and educational institutions. A hundred thirty five schooled adolescents, men and women. Interview with 12 focus group 8-12participants and 1 with 18participants. The interviews were transcribed in Atlas Ti program version 4.1 for a semiotic analysis to identify components of social representation. The precocious detection linked itself to the decrease of deaths for cancer of breast, long treatments and mastectomy, but little coverage was perceived to the mammary health of the teenager. They refer as limiter elements of the precocious detection the aspects of kind, psychological and of access to the information and services of health; since facilitators there was mentioned the transition of the limiter elements to facilitators. A favorable panorama appears on the level of awareness of the teenagers on his mammary health, identifying as a sector highly sensitive to the information about cancer of breast and with disposition to effect actions of early detection; there are identified as important challenge the generation of campaigns, educational materials and spaces of health focused on the teenager. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  8. Comparative investigations of manual action representations: evidence that chimpanzees represent the costs of potential future actions involving tools.

    PubMed

    Frey, Scott H; Povinelli, Daniel J

    2012-01-12

    The ability to adjust one's ongoing actions in the anticipation of forthcoming task demands is considered as strong evidence for the existence of internal action representations. Studies of action selection in tool use reveal that the behaviours that we choose in the present moment differ depending on what we intend to do next. Further, they point to a specialized role for mechanisms within the human cerebellum and dominant left cerebral hemisphere in representing the likely sensory costs of intended future actions. Recently, the question of whether similar mechanisms exist in other primates has received growing, but still limited, attention. Here, we present data that bear on this issue from a species that is a natural user of tools, our nearest living relative, the chimpanzee. In experiment 1, a subset of chimpanzees showed a non-significant tendency for their grip preferences to be affected by anticipation of the demands associated with bringing a tool's baited end to their mouths. In experiment 2, chimpanzees' initial grip preferences were consistently affected by anticipation of the forthcoming movements in a task that involves using a tool to extract a food reward. The partial discrepancy between the results of these two studies is attributed to the ability to accurately represent differences between the motor costs associated with executing the two response alternatives available within each task. These findings suggest that chimpanzees are capable of accurately representing the costs of intended future actions, and using those predictions to select movements in the present even in the context of externally directed tool use.

  9. Comparative investigations of manual action representations: evidence that chimpanzees represent the costs of potential future actions involving tools

    PubMed Central

    Frey, Scott H.; Povinelli, Daniel J.

    2012-01-01

    The ability to adjust one's ongoing actions in the anticipation of forthcoming task demands is considered as strong evidence for the existence of internal action representations. Studies of action selection in tool use reveal that the behaviours that we choose in the present moment differ depending on what we intend to do next. Further, they point to a specialized role for mechanisms within the human cerebellum and dominant left cerebral hemisphere in representing the likely sensory costs of intended future actions. Recently, the question of whether similar mechanisms exist in other primates has received growing, but still limited, attention. Here, we present data that bear on this issue from a species that is a natural user of tools, our nearest living relative, the chimpanzee. In experiment 1, a subset of chimpanzees showed a non-significant tendency for their grip preferences to be affected by anticipation of the demands associated with bringing a tool's baited end to their mouths. In experiment 2, chimpanzees' initial grip preferences were consistently affected by anticipation of the forthcoming movements in a task that involves using a tool to extract a food reward. The partial discrepancy between the results of these two studies is attributed to the ability to accurately represent differences between the motor costs associated with executing the two response alternatives available within each task. These findings suggest that chimpanzees are capable of accurately representing the costs of intended future actions, and using those predictions to select movements in the present even in the context of externally directed tool use. PMID:22106426

  10. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System.

    PubMed

    Roth, Zvi N

    2016-01-01

    Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream.

  11. Functional MRI Representational Similarity Analysis Reveals a Dissociation between Discriminative and Relative Location Information in the Human Visual System

    PubMed Central

    Roth, Zvi N.

    2016-01-01

    Neural responses in visual cortex are governed by a topographic mapping from retinal locations to cortical responses. Moreover, at the voxel population level early visual cortex (EVC) activity enables accurate decoding of stimuli locations. However, in many cases information enabling one to discriminate between locations (i.e., discriminative information) may be less relevant than information regarding the relative location of two objects (i.e., relative information). For example, when planning to grab a cup, determining whether the cup is located at the same retinal location as the hand is hardly relevant, whereas the location of the cup relative to the hand is crucial for performing the action. We have previously used multivariate pattern analysis techniques to measure discriminative location information, and found the highest levels in EVC, in line with other studies. Here we show, using representational similarity analysis, that availability of discriminative information in fMRI activation patterns does not entail availability of relative information. Specifically, we find that relative location information can be reliably extracted from activity patterns in posterior intraparietal sulcus (pIPS), but not from EVC, where we find the spatial representation to be warped. We further show that this variability in relative information levels between regions can be explained by a computational model based on an array of receptive fields. Moreover, when the model's receptive fields are extended to include inhibitory surround regions, the model can account for the spatial warping in EVC. These results demonstrate how size and shape properties of receptive fields in human visual cortex contribute to the transformation of discriminative spatial representations into relative spatial representations along the visual stream. PMID:27242455

  12. Action semantics: A unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge.

    PubMed

    van Elk, Michiel; van Schie, Hein; Bekkering, Harold

    2014-06-01

    Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Spontaneous Action Representation in Smokers when Watching Movie Characters Smoke

    PubMed Central

    Wagner, Dylan D.; Cin, Sonya Dal; Sargent, James D.; Kelley, William M.; Heatherton, Todd F.

    2013-01-01

    Do smokers simulate smoking when they see someone else smoke? For regular smokers, smoking is such a highly practiced motor skill that it often occurs automatically, without conscious awareness. Research on the brain basis of action observation has delineated a frontopareital network that is commonly recruited when people observe, plan or imitate actions. Here, we investigated whether this action observation network would be preferentially recruited in smokers when viewing complex smoking cues, such as those occurring in motion pictures. Seventeen right-handed smokers and seventeen non-smokers watched a popular movie while undergoing functional magnetic resonance imaging. Using a natural stimulus, such as a movie, allowd us to keep both smoking and non-smoking participants naïve to the goals of the experiment. Brain activity evoked by scenes of movie smoking was contrasted with non-smoking control scenes which were matched for frequency and duration. Compared to non-smokers, smokers showed greater activity in left anterior intraparietal sulcus and inferior frontal gyrus, both regions involved in the simulation of contralateral hand-based gestures, when viewing smoking vs. control scenes. These results demonstrate that smokers spontaneously represent the action of smoking when viewing others smoke, the consequence of which may make it more difficult to abstain from smoking. PMID:21248113

  14. The influence of rTMS over prefrontal and motor areas in a morphological task: grammatical vs. semantic effects.

    PubMed

    Gerfo, Emanuele Lo; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo

    2008-01-31

    We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to the left prefrontal cortex delays the processing of action verbs' retrieval, but is not critical for retrieval of state verbs and state nouns. In the second experiment we found that rTMS applied to the left motor cortex delays the processing of action words, both name and verbs, while it is not critical for the processing of state words. These results support the notion that left prefrontal and motor cortex are involved in the process of action word retrieval. Left prefrontal cortex subserves processing of both grammatical and semantic information, whereas motor cortex contributes to the processing of semantic representation of action words without any involvement in the representation of grammatical categories.

  15. State Regulatory Representation Clarification Act of 2014

    THOMAS, 113th Congress

    Sen. Coburn, Tom [R-OK

    2014-09-18

    Senate - 09/18/2014 Read twice and referred to the Committee on Banking, Housing, and Urban Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. Fair Representation in Elections Act of 2011

    THOMAS, 112th Congress

    Sen. DeMint, Jim [R-SC

    2011-07-27

    Senate - 07/27/2011 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catterall, Simon; Veernala, Aarti

    We construct a lattice theory with one exact supersymmetry which consists of fields transforming in both the adjoint and fundamental representations of a U(Nc) gauge group. In addition to gluons and gluinos, the theory contains Nf flavors of fermion in the fundamental representation along with their scalar partners and is invariant under a global U(Nf) flavor symmetry. The lattice action contains an additional Fayet-Iliopoulos term which can be used to generate a scalar potential. We perform numerical simulations that corroborate the theoretical expectation that supersymmetry is spontaneously broken for Nf

  18. Dynamic Uncertain Causality Graph for Knowledge Representation and Reasoning: Utilization of Statistical Data and Domain Knowledge in Complex Cases.

    PubMed

    Zhang, Qin; Yao, Quanying

    2018-05-01

    The dynamic uncertain causality graph (DUCG) is a newly presented framework for uncertain causality representation and probabilistic reasoning. It has been successfully applied to online fault diagnoses of large, complex industrial systems, and decease diagnoses. This paper extends the DUCG to model more complex cases than what could be previously modeled, e.g., the case in which statistical data are in different groups with or without overlap, and some domain knowledge and actions (new variables with uncertain causalities) are introduced. In other words, this paper proposes to use -mode, -mode, and -mode of the DUCG to model such complex cases and then transform them into either the standard -mode or the standard -mode. In the former situation, if no directed cyclic graph is involved, the transformed result is simply a Bayesian network (BN), and existing inference methods for BNs can be applied. In the latter situation, an inference method based on the DUCG is proposed. Examples are provided to illustrate the methodology.

  19. Comprehension by learning-disabled and nondisabled adolescents of personal/social problems presented in text.

    PubMed

    Williams, J P

    1991-01-01

    Four groups of 14-year-olds, differing in reading level, learning disability status, and socioeconomic status, read and retold short problem narratives and answered questions. The pattern of reporting components of the problem schema (goal/obstacles/choices) differed for problems presented with or without a statement of the character's priority for action, suggesting that including priorities adds another level of information to the problem text and changes its macrostructure. Even the poorest readers showed this sensitivity to text structure. Three of the four measures of problem representation (idea units recalled, problem-schema components reported, and error rate) reflected overall reading ability. However, the degree to which extraneous information was incorporated into problem representations did not. Learning-disabled students made more importations, and more implausible importations, than did non-disabled students. Moreover, this pattern was associated with poor problem solving. Only proficient readers showed awareness of the source of the information (text or extratext) on which their predictions were based.

  20. The effect of multiple external representations (MERs) worksheets toward complex system reasoning achievement

    NASA Astrophysics Data System (ADS)

    Sumarno; Ibrahim, M.; Supardi, Z. A. I.

    2018-03-01

    The application of a systems approach to assessing biological systems provides hope for a coherent understanding of cell dynamics patterns and their relationship to plant life. This action required the reasoning about complex systems. In other sides, there were a lot of researchers who provided the proof about the instructional successions. They involved the multiple external representations which improved the biological learning. The researcher conducted an investigation using one shoot case study design which involved 30 students in proving that the MERs worksheets could affect the student's achievement of reasoning about complex system. The data had been collected based on test of reasoning about complex system and student's identification result who worked through MERs. The result showed that only partially students could achieve reasoning about system complex, but their MERs skill could support their reasoning ability of complex system. This study could bring a new hope to develop the MERs worksheet as a tool to facilitate the reasoning about complex system.

Top