Toward improved durability in advanced aircraft engine hot sections
NASA Technical Reports Server (NTRS)
Sokolowski, Daniel E. (Editor)
1989-01-01
The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.
Thermodynamic analysis of steam-injected advanced gas turbine cycles
NASA Astrophysics Data System (ADS)
Pandey, Devendra; Bade, Mukund H.
2017-12-01
This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark B. Murphy
The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.
Advanced Coal-Based Power Generations
NASA Technical Reports Server (NTRS)
Robson, F. L.
1982-01-01
Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.
Zhu, Yunhua; Frey, H Christopher
2006-12-01
Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed.
Continued Development of Compact Multi-gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado-Alonso, Jesús; Phillips, Straun; Chullen, Cinda; Quinn, Gregory
2016-01-01
Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to Near-Infrared-based gas sensor systems for the advanced space suit portable life support system (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. This paper presents the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.
An assessment of advanced technology for industrial cogeneration
NASA Technical Reports Server (NTRS)
Moore, N.
1983-01-01
The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.
Aircraft gas turbine materials and processes.
Kear, B H; Thompson, E R
1980-05-23
Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.
Advances in quantifying air-sea gas exchange and environmental forcing.
Wanninkhof, Rik; Asher, William E; Ho, David T; Sweeney, Colm; McGillis, Wade R
2009-01-01
The past decade has seen a substantial amount of research on air-sea gas exchange and its environmental controls. These studies have significantly advanced the understanding of processes that control gas transfer, led to higher quality field measurements, and improved estimates of the flux of climate-relevant gases between the ocean and atmosphere. This review discusses the fundamental principles of air-sea gas transfer and recent developments in gas transfer theory, parameterizations, and measurement techniques in the context of the exchange of carbon dioxide. However, much of this discussion is applicable to any sparingly soluble, non-reactive gas. We show how the use of global variables of environmental forcing that have recently become available and gas exchange relationships that incorporate the main forcing factors will lead to improved estimates of global and regional air-sea gas fluxes based on better fundamental physical, chemical, and biological foundations.
NASA Technical Reports Server (NTRS)
Baez, A. N.
1985-01-01
Research programs have demonstrated that digital electronic controls are more suitable for advanced aircraft/rotorcraft turbine engine systems than hydromechanical controls. Commercially available microprocessors are believed to have the speed and computational capability required for implementing advanced digital control algorithms. Thus, it is desirable to demonstrate that off-the-shelf microprocessors are indeed capable of performing real time control of advanced gas turbine engines. The engine monitoring and control (EMAC) unit was designed and fabricated specifically to meet the requirements of an advanced gas turbine engine control system. The EMAC unit is fully operational in the Army/NASA small turboshaft engine digital research program.
The Impact of Advanced Greenhouse Gas Measurement Science on Policy Goals and Research Strategies
NASA Astrophysics Data System (ADS)
Abrahams, L.; Clavin, C.; McKittrick, A.
2016-12-01
In support of the Paris agreement, accurate characterizations of U.S. greenhouse gas (GHG) emissions estimates have been area of increased scientific focus. Over the last several years, the scientific community has placed significant emphasis on understanding, quantifying, and reconciling measurement and modeling methods that characterize methane emissions from petroleum and natural gas sources. This work has prompted national policy discussions and led to the improvement of regional and national methane emissions estimates. Research campaigns focusing on reconciling atmospheric measurements ("top-down") and process-based emissions estimates ("bottom-up") have sought to identify where measurement technology advances could inform policy objectives. A clear next step is development and deployment of advanced detection capabilities that could aid U.S. emissions mitigation and verification goals. The breadth of policy-relevant outcomes associated with advances in GHG measurement science are demonstrated by recent improvements in the petroleum and natural gas sector emission estimates in the EPA Greenhouse Gas Inventory, ambitious efforts to apply inverse modeling results to inform or validate national GHG inventory, and outcomes from federal GHG measurement science technology development programs. In this work, we explore the variety of policy-relevant outcomes impacted by advances in GHG measurement science, with an emphasis on improving GHG inventory estimates, identifying emissions mitigation strategies, and informing technology development requirements.
each year. A certain percentage of this renewable fuel must be advanced biofuel, which includes fuels derived from approved renewable biomass, excluding corn starch-based ethanol. Other advanced biofuels may exist in the future. All advanced biofuels must achieve a minimum of a 50% greenhouse gas (GHG
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2010-01-01
Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed
Recent advances and progress in photonic crystal-based gas sensors
NASA Astrophysics Data System (ADS)
Goyal, Amit Kumar; Sankar Dutta, Hemant; Pal, Suchandan
2017-05-01
This review covers the recent progress made in the photonic crystal-based sensing technology for gas sensing applications. Photonic crystal-based sensing has tremendous potential because of its obvious advantages in sensitivity, stability, miniaturisation, portability, online use, remote monitoring etc. Several 1D and 2D photonic crystal structures including photonic crystal waveguides and cavities for gas sensing applications have been discussed in this review. For each kind of photonic crystal structure, the novelty, measurement principle and their respective gas sensing properties are presented. The reported works and the corresponding results predict the possibility to realize a commercially viable miniaturized and highly sensitive photonic crystal-based optical gas sensor having flexibility in the structure of ultra-compact size with excellent sensing properties.
An advanced kinetic theory for morphing continuum with inner structures
NASA Astrophysics Data System (ADS)
Chen, James
2017-12-01
Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.
Recent advances in quartz enhanced photoacoustic sensing
NASA Astrophysics Data System (ADS)
Patimisco, Pietro; Sampaolo, Angelo; Dong, Lei; Tittel, Frank K.; Spagnolo, Vincenzo
2018-03-01
This review aims to discuss the latest advancements in quartz-enhanced photoacoustic spectroscopy (QEPAS) based trace-gas sensing. Starting from the QEPAS basic physical principles, the most used QEPAS configurations will be described. This is followed by a detailed theoretical analysis and experimental study regarding the influence of quartz tuning forks (QTFs) geometry on their optoacoustic transducer performance. Furthermore, an overview of the latest developments in QEPAS trace-gas sensor technology employing custom QTFs will be reported. Results obtained by exploiting novel micro-resonator configurations, capable of increasing the QEPAS signal-to-noise ratio by more than two orders of magnitude and the utilization of QTF overtone flexural modes for QEPAS based sensing will be presented. A comparison of the QEPAS performance of different spectrophone configurations is reported based upon signal-to-noise ratio. Finally, a novel QEPAS approach allowing simultaneous dual-gas detection will be described.
Technology advancement of the static feed water electrolysis process
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.
1977-01-01
A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.
Sensor failure detection system. [for the F100 turbofan engine
NASA Technical Reports Server (NTRS)
Beattie, E. C.; Laprad, R. F.; Mcglone, M. E.; Rock, S. M.; Akhter, M. M.
1981-01-01
Advanced concepts for detecting, isolating, and accommodating sensor failures were studied to determine their applicability to the gas turbine control problem. Five concepts were formulated based upon such techniques as Kalman filters and a screening process led to the selection of one advanced concept for further evaluation. The selected advanced concept uses a Kalman filter to generate residuals, a weighted sum square residuals technique to detect soft failures, likelihood ratio testing of a bank of Kalman filters for isolation, and reconfiguring of the normal mode Kalman filter by eliminating the failed input to accommodate the failure. The advanced concept was compared to a baseline parameter synthesis technique. The advanced concept was shown to be a viable concept for detecting, isolating, and accommodating sensor failures for the gas turbine applications.
Semiconductor metal oxide compounds based gas sensors: A literature review
NASA Astrophysics Data System (ADS)
Patil, Sunil Jagannath; Patil, Arun Vithal; Dighavkar, Chandrakant Govindrao; Thakare, Kashinath Shravan; Borase, Ratan Yadav; Nandre, Sachin Jayaram; Deshpande, Nishad Gopal; Ahire, Rajendra Ramdas
2015-03-01
This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (LPG), H2S, NH3, CO2, acetone, ethanol, other volatile compounds and hazardous gases. Moreover, it is revealed that the alloy/composite made up of SMO gas sensors show better gas response than their counterpart single component gas sensors, i.e., they are found to enhance the 4S characteristics namely speed, sensitivity, selectivity and stability. Improvement of such types of sensors used for detection of various air pollutants, which are reported in last two decades, is highlighted herein.
Nickel base alloy. [for gas turbine engine stator vanes
NASA Technical Reports Server (NTRS)
Freche, J. C.; Waters, W. J. (Inventor)
1977-01-01
A nickel base superalloy for use at temperatures of 2000 F (1095 C) to 2200 F (1205 C) was developed for use as stator vane material in advanced gas turbine engines. The alloy has a nominal composition in weight percent of 16 tungsten, 7 aluminum, 1 molybdenum, 2 columbium, 0.3 zirconium, 0.2 carbon and the balance nickel.
Thermodynamic analysis of the advanced zero emission power plant
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Job, Marcin
2016-03-01
The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.
Overview of Advanced Turbine Systems Program
NASA Astrophysics Data System (ADS)
Webb, H. A.; Bajura, R. A.
The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.
DOT National Transportation Integrated Search
1997-11-01
The Advanced Technology Transit Bus (ATTB), developed under primary funding from : the U.S. DOT/Federal Transit Administration (FTA), currently uses a power plant : based on a natural gas burning IC engine-generator set. FTA is interested in : demons...
A nickel base alloy, NASA WAZ-16, with potential for gas turbine stator vane application
NASA Technical Reports Server (NTRS)
Waters, W. J.; Freche, J. C.
1974-01-01
A nickel-base superalloy based on the nickel-aluminum-tungsten system designated WAZ-16 was developed for high strength in the 1095 C (2000 F) to 1205 C (2200 F) range. Its tensile strength at the latter temperature is approximately 186 MN/m2 (27,000 psi). The combination of properties of the alloy suggest that it has potential as a stator vane material in advanced gas turbine engines.
NASA Technical Reports Server (NTRS)
Sagerman, G. D.; Barna, G. J.; Burns, R. K.
1979-01-01
An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.
Advanced IGCC/Hydrogen Gas Turbine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, William; Hughes, Michael; Berry, Jonathan
2015-07-30
The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CCmore » efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first stage hot gas path components, and systems analyses to determine benefits of all previously mentioned technologies to a gas turbine system in an IGCC configuration. This project built on existing gas turbine technology and product developments, and developed and validated the necessary turbine related technologies and sub-systems needed to meet the DOE turbine program goals. The scope of the program did not cover the design and validation of a full-scale prototype machine with the technology advances from this program incorporated. In summary, the DOE goals were met with this program. While the commercial landscape has not resulted in a demand for IGCC gas turbines many of the technologies that were developed over the course of the program are benefiting the US by being applied to new higher efficiency natural gas fueled gas turbines.« less
Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.
2016-09-27
A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.
Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation
NASA Astrophysics Data System (ADS)
Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui
2016-05-01
Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis.
Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation
Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui
2016-01-01
Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis. PMID:27194417
Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation.
Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui
2016-05-19
Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis.
Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...
Advanced gas turbine systems program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeh, C.M.
1995-06-01
The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of themore » utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.« less
Gas-turbine critical research and advanced technology support project
NASA Technical Reports Server (NTRS)
Clark, J. S.; Hodge, P. E.; Lowell, C. E.; Anderson, D. N.; Schultz, D. F.
1981-01-01
A technology data base for utility gas turbine systems capable of burning coal derived fuels was developed. The following areas are investigated: combustion; materials; and system studies. A two stage test rig is designed to study the conversion of fuel bound nitrogen to NOx. The feasibility of using heavy fuels in catalytic combustors is evaluated. A statistically designed series of hot corrosion burner rig tests was conducted to measure the corrosion rates of typical gas turbine alloys with several fuel contaminants. Fuel additives and several advanced thermal barrier coatings are tested. Thermal barrier coatings used in conjunction with low critical alloys and those used in a combined cycle system in which the stack temperature was maintained above the acid corrosion temperature are also studied.
Coal-fired high performance power generating system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can bemore » achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.« less
Advanced photovoltaic power system technology for lunar base applications
NASA Astrophysics Data System (ADS)
Brinker, David J.; Flood, Dennis J.
1992-09-01
The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.
Teng, Xin; Zhan, Chun; Bai, Ying; Ma, Lu; Liu, Qi; Wu, Chuan; Wu, Feng; Yang, Yusheng; Lu, Jun; Amine, Khalil
2015-10-21
Gas generation in lithium-ion batteries is one of the critical issues limiting their safety performance and lifetime. In this work, a set of 900 mAh pouch cells were applied to systematically compare the composition of gases generated from a serial of carbonate-based composite electrolytes, using a self-designed gas analyzing system. Among electrolytes used in this work, the composite γ-butyrolactone/ethyl methyl carbonate (GBL/EMC) exhibited remarkably less gassing because of the electrochemical stability of the GBL, which makes it a promising electrolyte for battery with advanced safety and lifetime.
Thermal barrier coatings issues in advanced land-based gas turbines
NASA Technical Reports Server (NTRS)
Parks, W. P.; Lee, W. Y.; Wright, I. G.
1995-01-01
The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.
ERIC Educational Resources Information Center
Blonder, Ron; Mamlock-Naaman, Rachel; Hofstein, Avi
2008-01-01
This paper describes the implementation of an open-ended inquiry experiment for high-school students, based on gas chromatography (GC). The research focuses on identifying the level of questions that students ask during the GC open inquiry laboratory, and it examines whether implementing the advanced inquiry laboratory opens up new directions for…
Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance
NASA Technical Reports Server (NTRS)
Walsworth, Ronald L.
2003-01-01
We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, D.F.
This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologiesmore » mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.« less
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2010-01-01
Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.
NASA Technical Reports Server (NTRS)
Signorelli, R. A.
1972-01-01
The current status of development of refractory-wire-superalloy composites and the potential for their application to turbine blades in land-based power generation and advanced aircraft engines are reviewed. The data indicate that refractory-wire-superalloy composites have application as turbine blades at temperatures of 2200 F and above.
A Preliminary Foil Gas Bearing Performance Map
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam
2006-01-01
Recent breakthrough improvements in foil gas bearing load capacity, high temperature tribological coatings and computer based modeling have enabled the development of increasingly larger and more advanced Oil-Free Turbomachinery systems. Successful integration of foil gas bearings into turbomachinery requires a step wise approach that includes conceptual design and feasibility studies, bearing testing, and rotor testing prior to full scale system level demonstrations. Unfortunately, the current level of understanding of foil gas bearings and especially their tribological behavior is often insufficient to avoid developmental problems thereby hampering commercialization of new applications. In this paper, a new approach loosely based upon accepted hydrodynamic theory, is developed which results in a "Foil Gas Bearing Performance Map" to guide the integration process. This performance map, which resembles a Stribeck curve for bearing friction, is useful in describing bearing operating regimes, performance safety margins, the effects of load on performance and limiting factors for foil gas bearings.
3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review
Xia, Yi; Li, Ran; Chen, Ruosong; Wang, Jing; Xiang, Lan
2018-01-01
Graphene/metal oxide-based materials have been demonstrated as promising candidates for gas sensing applications due to the enhanced sensing performance and synergetic effects of the two components. Plenty of metal oxides such as SnO2, ZnO, WO3, etc. have been hybridized with graphene to improve the gas sensing properties. However, graphene/metal oxide nanohybrid- based gas sensors still have several limitations in practical application such as the insufficient sensitivity and response rate, and long recovery time in some cases. To achieve higher sensing performances of graphene/metal oxides nanocomposites, many recent efforts have been devoted to the controllable synthesis of 3D graphene/metal oxides architectures owing to their large surface area and well-organized structure for the enhanced gas adsorption/diffusion on sensing films. This review summarizes recent advances in the synthesis, assembly, and applications of 3D architectured graphene/metal oxide hybrids for gas sensing. PMID:29735951
NASA Astrophysics Data System (ADS)
Buric, Michael P.; Ohodnicky, Paul R.; Duy, Janice
2012-10-01
Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.
Deadly diving? Physiological and behavioural management of decompression stress in diving mammals
Hooker, S. K.; Fahlman, A.; Moore, M. J.; Aguilar de Soto, N.; Bernaldo de Quirós, Y.; Brubakk, A. O.; Costa, D. P.; Costidis, A. M.; Dennison, S.; Falke, K. J.; Fernandez, A.; Ferrigno, M.; Fitz-Clarke, J. R.; Garner, M. M.; Houser, D. S.; Jepson, P. D.; Ketten, D. R.; Kvadsheim, P. H.; Madsen, P. T.; Pollock, N. W.; Rotstein, D. S.; Rowles, T. K.; Simmons, S. E.; Van Bonn, W.; Weathersby, P. K.; Weise, M. J.; Williams, T. M.; Tyack, P. L.
2012-01-01
Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. PMID:22189402
A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu Deming; Cai Zhonghou; Lai, Barry
2007-01-19
We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.
A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation
NASA Astrophysics Data System (ADS)
Shu, Deming; Cai, Zhonghou; Lai, Barry
2007-01-01
We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.
Hot-filament chemical vapor deposition chamber and process with multiple gas inlets
Deng, Xunming; Povolny, Henry S.
2004-06-29
A thin film deposition method uses a vacuum confinement cup that employs a dense hot filament and multiple gas inlets. At least one reactant gas is introduced into the confinement cup both near and spaced apart from the heated filament. An electrode inside the confinement cup is used to generate plasma for film deposition. The method is used to deposit advanced thin films (such as silicon based thin films) at a high quality and at a high deposition rate.
TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties
Galstyan, Vardan; Comini, Elisabetta; Faglia, Guido; Sberveglieri, Giorgio
2013-01-01
Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes. PMID:24184919
On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis H. LeMieux
2004-10-01
Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.« less
Rajh, Boštjan; Yin, Chungen; Samec, Niko; Hriberšek, Matjaž; Kokalj, Filip; Zadravec, Matej
2018-07-15
Grate-fired boilers are commonly used to burn biomass/wastes for heat and power production. In spite of the recent breakthrough in integration of advanced secondary air systems in grate boilers, grate-firing technology needs to be advanced for higher efficiency and lower emissions. In this paper, innovative staging of combustion air and recycled flue gas in a 13 MW th waste wood-fired grate boiler is comprehensively studied based on a numerical model that has been previously validated. In particular, the effects of the jet momentum, position and orientation of the combustion air and recycled flue gas streams on in-furnace mixing, combustion and pollutant emissions from the boiler are examined. It is found that the optimized air and recycled flue gas jets remarkably enhance mixing and heat transfer, result in a more uniform temperature and velocity distribution, extend the residence time of the combustibles in the hot zone and improve burnout in the boiler. Optimizing the air and recycled flue gas jet configuration can reduce carbon monoxide emission from the boiler by up to 86%, from the current 41.0 ppm to 5.7 ppm. The findings of this study can serve as useful guidelines for novel design and optimization of the combustion air supply and flue gas recycling for grate boilers of this type. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chemical Microthruster Options
NASA Technical Reports Server (NTRS)
DeGroot, Wim; Oleson, Steve
1996-01-01
Chemical propulsion systems with potential application to microsatellites are classified by propellant phase, i.e. gas, liquid, or solid. Four promising concepts are selected based on performance, weight, size, cost, and reliability. The selected concepts, in varying stages of development, are advanced monopropellants, tridyne(TM), electrolysis, and solid gas generator propulsion. Tridyne(TM) and electrolysis propulsion are compared vs. existing cold gas and monopropellant systems for selected microsatellite missions. Electrolysis is shown to provide a significant weight advantage over monopropellant propulsion for an orbit transfer and plane change mission. Tridyne(TM) is shown to provide a significant advantage over cold gas thrusters for orbit trimming and spacecraft separation.
Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope
NASA Technical Reports Server (NTRS)
Bloser, P. F.; Hunter, S. D.; Ryan, J. M.; McConnell, M. L.; Miller, R. S.; Jackson, T. N.; Bai, B.; Jung, S.
2003-01-01
We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.
Silva, Tânia L S; Morales-Torres, Sergio; Castro-Silva, Sérgio; Figueiredo, José L; Silva, Adrián M T
2017-09-15
Rising global energy demands associated to unbalanced allocation of water resources highlight the importance of water management solutions for the gas industry. Advanced drilling, completion and stimulation techniques for gas extraction, allow more economical access to unconventional gas reserves. This stimulated a shale gas revolution, besides tight gas and coalbed methane, also causing escalating water handling challenges in order to avoid a major impact on the environment. Hydraulic fracturing allied to horizontal drilling is gaining higher relevance in the exploration of unconventional gas reserves, but a large amount of wastewater (known as "produced water") is generated. Its variable chemical composition and flow rates, together with more severe regulations and public concern, have promoted the development of solutions for the treatment and reuse of such produced water. This work intends to provide an overview on the exploration and subsequent environmental implications of unconventional gas sources, as well as the technologies for treatment of produced water, describing the main results and drawbacks, together with some cost estimates. In particular, the growing volumes of produced water from shale gas plays are creating an interesting market opportunity for water technology and service providers. Membrane-based technologies (membrane distillation, forward osmosis, membrane bioreactors and pervaporation) and advanced oxidation processes (ozonation, Fenton, photocatalysis) are claimed to be adequate treatment solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gas Sensors Based on Molecular Imprinting Technology.
Zhang, Yumin; Zhang, Jin; Liu, Qingju
2017-07-04
Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.
NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance
in Borrego Springs, California | Energy Systems Integration Facility | NREL NREL, San Diego Gas & Electric Models Utility Microgrid in Borrego Springs NREL, San Diego Gas & Electric Are Advancing Utility Microgrid Performance in Borrego Springs, California San Diego Gas & Electric Company
Sorbent-based Oxygen Production for Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethi, Vijay
Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO 2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a majormore » advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O 2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.« less
Continued Development of Compact Multi-Gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Phillips, Straun; Chullen, Cinda
2015-01-01
Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to NIR-based gas sensor systems for the Portable Life Support System (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. In this paper we present the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.
Continued Development of Compact Multi-Gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado-Alonso, Jesus; Phillips, Straun; Berry, David; DiCarmine, Paul; Chullen, Cinda; Quinn, Gregory
2016-01-01
Miniature optical gas sensors based on luminescent materials have shown great potential as alternatives to NIR-based gas sensor systems for the Portable Life Support System (PLSS). The unique capability of luminescent sensors for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages over both traditional and advanced non-dispersive infrared (NDIR) gas sensors, which have so far shown longer life than luminescent sensors. In this paper we present the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted in Intelligent Optical Systems laboratories, a United Technologies Corporation Aerospace Systems (UTC) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems, and the advantages and limitations found through detailed sensor validation are discussed.
NASA Astrophysics Data System (ADS)
Kuznetsov, V. P.; Lesnikov, V. P.; Muboyadzhyan, S. A.; Repina, O. V.
2007-05-01
Complex diffusion-condensation protective coatings characterized by gradient distribution of alloying elements over the thickness due to formation of a diffusion barrier layer on the surface of blades followed by deposition of condensation alloyed layers based on the Ni-Co-Cr-Al-Y system and an external layer based on a NiAl alloyed β-phase and a ZrO2: Y2O3 ceramics are presented. A complex gradient coating possessing unique protective properties at t = 1100-1200°C for single-crystal blades from alloy ZhS36VI for advanced gas turbine engines with gas temperature of 1550°C at the inlet to the turbine is described.
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1982-01-01
A gas turbine powertrain for automobiles with reduced fuel consumption and reduced environmental impact is investigated. The automotive gas turbine, when installed in an automobile (3000 pounds inertia weight), provides a CFDC fuel economy of 42.8 miles per gallon based on EPA test procedures and diesel No. 2 fuel. The AGT powered vehicle substantially gives the same overall vehicle driveability and performance as a comparable production vehicle powered by a conventional spark ignition powertrain system. The emissions are less than federal standards, and a variety of fuels can be used.
ADVANCED SULFUR CONTROL CONCEPTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael
Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce themore » number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).« less
Advanced technologies and devices for inhalational anesthetic drug dosing.
Meyer, J-U; Kullik, G; Wruck, N; Kück, K; Manigel, J
2008-01-01
Technological advances in micromechanics, optical sensing, and computing have led to innovative and reliable concepts of precise dosing and sensing of modern volatile anesthetics. Mixing of saturated desflurane flow with fresh gas flow (FGF) requires differential pressure sensing between the two circuits for precise delivery. The medical gas xenon is administered most economically in a closed circuit breathing system. Sensing of xenon in the breathing system is achieved with miniaturized and unique gas detector systems. Innovative sensing principles such as thermal conductivity and sound velocity are applied. The combination of direct injection of volatile anesthetics and low-flow in a closed circuit system requires simultaneous sensing of the inhaled and exhaled gas concentrations. When anesthetic conserving devices are used for sedation with volatile anesthetics, regular gas concentration monitoring is advised. High minimal alveolar concentration (MAC) of some anesthetics and low-flow conditions bear the risk of hypoxic gas delivery. Oxygen sensing based on paramagnetic thermal transduction has become the choice when long lifetime and one-time calibration are required. Compact design of beam splitters, infrared filters, and detectors have led to multiple spectra detector systems that fit in thimble-sized housings. Response times of less than 500 ms allow systems to distinguish inhaled from exhaled gas concentrations. The compact gas detector systems are a prerequisite to provide "quantitative anesthesia" in closed circuit feedback-controlled breathing systems. Advanced anesthesia devices in closed circuit mode employ multiple feedback systems. Multiple feedbacks include controls of volume, concentrations of anesthetics, and concentration of oxygen with a corresponding safety system. In the ideal case, the feedback system delivers precisely what the patient is consuming. In this chapter, we introduce advanced technologies and device concepts for delivering inhalational anesthetic drugs. First, modern vaporizers are described with special attention to the particularities of delivering desflurane. Delivery of xenon is presented, followed by a discussion of direct injection of volatile anesthetics and of a device designed to conserve anesthetic drugs. Next, innovative sensing technologies are presented for reliable control and precise metering of the delivered volatile anesthetics. Finally, we discuss the technical challenges of automatic control in low-flow and closed circuit breathing systems in anesthesia.
Development of braided rope seals for hypersonic engine applications. Part 2: Flow modeling
NASA Technical Reports Server (NTRS)
Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Ko, Frank
1991-01-01
Two models based on the Kozeny-Carmen equation were developed to analyze the fluid flow through a new class of braided rope seals under development for advanced hypersonic engines. A hybrid seal geometry consisting of a braided sleeve and a substantial amount of longitudinal fibers with high packing density was selected for development based on its low leakage rates. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal.
Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu
2018-02-01
Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Wang, Yifeng
A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.
On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis H. LeMieux
2005-04-01
Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs havemore » been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less
ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis H. LeMieux
2003-10-01
Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less
ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis H. LeMieux
2003-07-01
Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less
On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis H. LeMieux
2005-10-01
Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs havemore » been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less
Li, Kangkang; Yu, Hai; Tade, Moses; Feron, Paul; Yu, Jingwen; Wang, Shujuan
2014-06-17
An advanced NH3 abatement and recycling process that makes great use of the waste heat in flue gas was proposed to solve the problems of ammonia slip, NH3 makeup, and flue gas cooling in the ammonia-based CO2 capture process. The rigorous rate-based model, RateFrac in Aspen Plus, was thermodynamically and kinetically validated by experimental data from open literature and CSIRO pilot trials at Munmorah Power Station, Australia, respectively. After a thorough sensitivity analysis and process improvement, the NH3 recycling efficiency reached as high as 99.87%, and the NH3 exhaust concentration was only 15.4 ppmv. Most importantly, the energy consumption of the NH3 abatement and recycling system was only 59.34 kJ/kg CO2 of electricity. The evaluation of mass balance and temperature steady shows that this NH3 recovery process was technically effective and feasible. This process therefore is a promising prospect toward industrial application.
NASA Technical Reports Server (NTRS)
Brown, D. H.; Corman, J. C.
1976-01-01
Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.
China's emissions trading takes steps towards big ambitions
NASA Astrophysics Data System (ADS)
Jotzo, Frank; Karplus, Valerie; Grubb, Michael; Löschel, Andreas; Neuhoff, Karsten; Wu, Libo; Teng, Fei
2018-04-01
China recently announced its national emissions trading scheme, advancing market-based approaches to cutting greenhouse gas emissions. Its evolution over coming years will determine whether it becomes an effective part of China's portfolio of climate policies.
Anderson, Travis; Ren, Fan; Pearton, Stephen; Kang, Byoung Sam; Wang, Hung-Ta; Chang, Chih-Yang; Lin, Jenshan
2009-01-01
In this paper, we review our recent results in developing gas sensors for hydrogen using various device structures, including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio, which will improve sensitivity, and because they operate at low current levels, will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure, high temperature operation, and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity, recoverability, and reliability are presented. Also reported are demonstrations of detection of other gases, including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application. PMID:22408548
Mugler, John P.; Altes, Talissa A.; Ruset, Iulian C.; Dregely, Isabel M.; Mata, Jaime F.; Miller, G. Wilson; Ketel, Stephen; Ketel, Jeffrey; Hersman, F. William; Ruppert, Kai
2010-01-01
Despite a myriad of technical advances in medical imaging, as well as the growing need to address the global impact of pulmonary diseases, such as asthma and chronic obstructive pulmonary disease, on health and quality of life, it remains challenging to obtain in vivo regional depiction and quantification of the most basic physiological functions of the lung—gas delivery to the airspaces and gas uptake by the lung parenchyma and blood—in a manner suitable for routine application in humans. We report a method based on MRI of hyperpolarized xenon-129 that permits simultaneous observation of the 3D distributions of ventilation (gas delivery) and gas uptake, as well as quantification of regional gas uptake based on the associated ventilation. Subjects with lung disease showed variations in gas uptake that differed from those in ventilation in many regions, suggesting that gas uptake as measured by this technique reflects such features as underlying pathological alterations of lung tissue or of local blood flow. Furthermore, the ratio of the signal associated with gas uptake to that associated with ventilation was substantially altered in subjects with lung disease compared with healthy subjects. This MRI-based method provides a way to quantify relationships among gas delivery, exchange, and transport, and appears to have significant potential to provide more insight into lung disease. PMID:21098267
Xu, Linfeng; Lee, Hun; Jetta, Deekshitha; Oh, Kwang W
2015-10-21
Suitable pumping methods for flow control remain a major technical hurdle in the path of biomedical microfluidic systems for point-of-care (POC) diagnostics. A vacuum-driven power-free micropumping method provides a promising solution to such a challenge. In this review, we focus on vacuum-driven power-free microfluidics based on the gas solubility or permeability of polydimethylsiloxane (PDMS); degassed PDMS can restore air inside itself due to its high gas solubility or gas permeable nature. PDMS allows the transfer of air into a vacuum through it due to its high gas permeability. Therefore, it is possible to store or transfer air into or through the gas soluble or permeable PDMS in order to withdraw liquids into the embedded dead-end microfluidic channels. This article provides a comprehensive look at the physics of the gas solubility and permeability of PDMS, a systematic review of different types of vacuum-driven power-free microfluidics, and guidelines for designing solubility-based or permeability-based PDMS devices, alongside existing applications. Advanced topics and the outlook in using micropumping that utilizes the gas solubility or permeability of PDMS will be also discussed. We strongly recommend that microfluidics and lab-on-chip (LOC) communities harness vacuum energy to develop smart vacuum-driven microfluidic systems.
Flexible Transparent Electronic Gas Sensors.
Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming
2016-07-01
Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CURRENT STATUS OF ADVACATE PROCESS FOR FLUE GAS DESULFURIZATION
The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbentsfor flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a l...
Optical Breath Gas Sensor for Extravehicular Activity Application
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S>
2012-01-01
The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .
75 FR 14669 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
...Under the Clean Air Act Section 211(o), as amended by the Energy Independence and Security Act of 2007 (EISA), the Environmental Protection Agency is required to promulgate regulations implementing changes to the Renewable Fuel Standard program. The revised statutory requirements specify the volumes of cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel. This action finalizes the regulations that implement the requirements of EISA, including the cellulosic, biomass- based diesel, advanced biofuel, and renewable fuel standards that will apply to all gasoline and diesel produced or imported in 2010. The final regulations make a number of changes to the current Renewable Fuel Standard program while retaining many elements of the compliance and trading system already in place. This final rule also implements the revised statutory definitions and criteria, most notably the new greenhouse gas emission thresholds for renewable fuels and new limits on renewable biomass feedstocks. This rulemaking marks the first time that greenhouse gas emission performance is being applied in a regulatory context for a nationwide program. As mandated by the statute, our greenhouse gas emission assessments consider the full lifecycle emission impacts of fuel production from both direct and indirect emissions, including significant emissions from land use changes. In carrying out our lifecycle analysis we have taken steps to ensure that the lifecycle estimates are based on the latest and most up-to-date science. The lifecycle greenhouse gas assessments reflected in this rulemaking represent significant improvements in analysis based on information and data received since the proposal. However, we also recognize that lifecycle GHG assessment of biofuels is an evolving discipline and will continue to revisit our lifecycle analyses in the future as new information becomes available. EPA plans to ask the National Academy of Sciences for assistance as we move forward. Based on current analyses we have determined that ethanol from corn starch will be able to comply with the required greenhouse gas (GHG) threshold for renewable fuel. Similarly, biodiesel can be produced to comply with the 50% threshold for biomass-based diesel, sugarcane with the 50% threshold for advanced biofuel and multiple cellulosic-based fuels with their 60% threshold. Additional fuel pathways have also been determined to comply with their thresholds. The assessment for this rulemaking also indicates the increased use of renewable fuels will have important environmental, energy and economic impacts for our Nation.
Two-Dimensional Materials as Prospective Scaffolds for Mixed-Matrix Membrane-Based CO2 Separation.
Zhu, Xiang; Tian, Chengcheng; Do-Thanh, Chi-Linh; Dai, Sheng
2017-09-11
Membrane-based CO 2 separation technology plays a significant role in environmental remediation and clean energy. Two-dimensional (2D) materials with atomically precise structures have emerged as prospective scaffolds to develop mixed-matrix membranes (MMMs) for gas separation. Summarized in this perspective review are the latest breakthrough studies in the synthesis of 2D-material-based MMMs to separate CO 2 from gas mixtures. 2D materials including graphene oxide (GO), metal-organic framework (MOF)-derived nanosheets, covalent organic frameworks (COFs), and transition metal dichalcogenides (TMDs), as fascinating building blocks, have been comprehensively summarized, together with a focus on synthetic processes and gas separation properties. Challenges and the latest advances in the manufacture of novel synthetic 2D materials are briefly discussed to foresee emerging opportunities for the development of new generations of 2D-material-based MMMs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Open-circuit respirometry: real-time, laboratory-based systems.
Ward, Susan A
2018-05-04
This review explores the conceptual and technological factors integral to the development of laboratory-based, automated real-time open-circuit mixing-chamber and breath-by-breath (B × B) gas-exchange systems, together with considerations of assumptions and limitations. Advances in sensor technology, signal analysis, and digital computation led to the emergence of these technologies in the mid-20th century, at a time when investigators were beginning to recognise the interpretational advantages of nonsteady-state physiological-system interrogation in understanding the aetiology of exercise (in)tolerance in health, sport, and disease. Key milestones include the 'Auchincloss' description of an off-line system to estimate alveolar O 2 uptake B × B during exercise. This was followed by the first descriptions of real-time automated O 2 uptake and CO 2 output B × B measurement by Beaver and colleagues and by Linnarsson and Lindborg, and mixing-chamber measurement by Wilmore and colleagues. Challenges to both approaches soon emerged: e.g., the influence of mixing-chamber washout kinetics on mixed-expired gas concentration determination, and B × B alignment of gas-concentration signals with respired flow. The challenging algorithmic and technical refinements required for gas-exchange estimation at the alveolar level have also been extensively explored. In conclusion, while the technology (both hardware and software) underpinning real-time automated gas-exchange measurement has progressively advanced, there are still concerns regarding accuracy especially under the challenging conditions of changing metabolic rate.
Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor
2012-02-01
Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.
Advances in SAW gas sensors based on the condensate-adsorption effect.
Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang
2011-01-01
A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.
Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.
Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C
2015-05-01
Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of Nanotechnology and Nanomaterials in Oil and Gas Industry
NASA Astrophysics Data System (ADS)
Nabhani, Nader; Emami, Milad; Moghadam, A. B. Taghavi
2011-12-01
Micro and nano technologies have already contributed significantly to technological advances in a number of industries, including electronics, biomedical, pharmaceutical, materials and manufacturing, aerospace, photography and more recently the energy industries. Micro and nanotechnologies have the potential to introduce revolutionary changes in several areas of the oil and gas industries such as exploration, drilling, production, refining and distribution. For example, nanosensors might provide more detailed and accurate information about reservoirs and smart fluids for enhanced oil recovery (EOR) and drilling. This paper examines and documents applicable nanotechnology base products that can improve the competitiveness of the oil and gas industry. The future challenges of nanotechnology application in the oil and gas industry are also discussed.
Kim, Min-Gu; Alrowais, Hommood; Kim, Choongsoon; Yeon, Pyungwoo; Ghovanloo, Maysam; Brand, Oliver
2017-06-27
Lightweight, flexible, stretchable, and wireless sensing platforms have gained significant attention for personal healthcare and environmental monitoring applications. This paper introduces an all-soft (flexible and stretchable), battery-free, and wireless chemical microsystem using gallium-based liquid metal (eutectic gallium-indium alloy, EGaIn) and poly(dimethylsiloxane) (PDMS), fabricated using an advanced liquid metal thin-line patterning technique based on soft lithography. Considering its flexible, stretchable, and lightweight characteristics, the proposed sensing platform is well suited for wearable sensing applications either on the skin or on clothing. Using the microfluidic sensing platform, detection of liquid-phase and gas-phase volatile organic compounds (VOC) is demonstrated using the same design, which gives an opportunity to have the sensor operate under different working conditions and environments. In the case of liquid-phase chemical sensing, the wireless sensing performance and microfluidic capacitance tunability for different dielectric liquids are evaluated using analytical, numerical, and experimental approaches. In the case of gas-phase chemical sensing, PDMS is used both as a substrate and a sensing material. The gas sensing performance is evaluated and compared to a silicon-based, solid-state gas sensor with a PDMS sensing film.
Advanced gas turbines breathe new life into vintage reheat units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-01
This article describes the repowering of reheat units with advanced gas turbines. The topics of the article include a project overview, plant configuration including heat recovery steam generators and the plant-wide distributed control system, upgrade of existing steam turbines, gas turbine technology, reliability, availability, maintenance features, and training.
Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin
2016-01-01
The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andretta, Antonio, E-mail: Antonio-Andretta@klopman.com; Terranova, Maria Letizia; Lavecchia, Teresa
2014-06-19
Carbon nanotubes (CNT) and CNT-based active materials have been used to assemble the gas sensing unit of innovative platforms able to detect toxic atmospheres developing in confined workplaces. The main goal of the project was to realize a full-featured, operator-friendly safety detection and monitoring system based on multifunctional textiles nanotechnologies. The fabricated sensing platform consists of a multiple gas detector coupled with a specifically designed telecommunication infrastructure. The portable device, totally integrated in the workwear, offers several advantages over the conventional safety tools employed in industrial work activities.
NASA Astrophysics Data System (ADS)
Andretta, Antonio; Terranova, Maria Letizia; Lavecchia, Teresa; Gay, Stefano; Picano, Alfredo; Mascioletti, Alessandro; Stirpe, Daniele; Cucchiella, Cristian; Pascucci, Eddy; Dugnani, Giovanni; Gatti, Davide; Laria, Giuseppe; Codenotti, Barbara; Maldini, Giorgio; Roth, Siegmar; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela
2014-06-01
Carbon nanotubes (CNT) and CNT-based active materials have been used to assemble the gas sensing unit of innovative platforms able to detect toxic atmospheres developing in confined workplaces. The main goal of the project was to realize a full-featured, operator-friendly safety detection and monitoring system based on multifunctional textiles nanotechnologies. The fabricated sensing platform consists of a multiple gas detector coupled with a specifically designed telecommunication infrastructure. The portable device, totally integrated in the workwear, offers several advantages over the conventional safety tools employed in industrial work activities.
Silicon-slurry/aluminide coating. [protecting gas turbine engine vanes and blades
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Young, S. G. (Inventor)
1983-01-01
A low cost coating protects metallic base system substrates from high temperatures, high gas velocity ovidation, thermal fatigue and hot corrosion and is particularly useful fo protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrates from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue and increased the resistance of certain superalloys to hot corrosion.
Two-step rapid sulfur capture. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-04-01
The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the rangemore » of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.« less
Technology base for microgravity horticulture
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.
1987-01-01
Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.
Selected results from combustion research at the Lewis Research Center
NASA Technical Reports Server (NTRS)
Jones, R. E.
1981-01-01
Combustion research at Lewis is organized to provide a balanced program responsive to national needs and the gas turbine industry. The results of this research is a technology base that assists the gas turbine engine manufacturers in developing new and improved combustion systems for advanced civil and military engines with significant improvements in performance, durability, fuel flexibility and control of exhaust emissions. Research efforts consist of fundamentals and modeling, and applied component and combustor research.
The Evolution of High Temperature Gas Sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzon, F. H.; Brosha, E. L.; Mukundan, R.
2001-01-01
Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.
Optical Breath Gas Sensor for Extravehicular Activity Application
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer
2013-01-01
The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S., E-mail: sankha.deepp@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com
Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical modelmore » of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.« less
Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong
2018-08-15
Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.
Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review
NASA Astrophysics Data System (ADS)
Hardwicke, Canan U.; Lau, Yuk-Chiu
2013-06-01
Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.
Conservation and renewable energy technologies for transportation
NASA Astrophysics Data System (ADS)
1990-11-01
The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the U.S. transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.
Well log characterization of natural gas-hydrates
Collett, Timothy S.; Lee, Myung W.
2012-01-01
In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas-hydrate reservoir properties (i.e., porosities and permeabilities) needed to accurately predict gas production rates for various gas-hydrate production schemes.
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Edward
The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less
Cascading biomethane energy systems for sustainable green gas production in a circular economy.
Wall, David M; McDonagh, Shane; Murphy, Jerry D
2017-11-01
Biomethane is a flexible energy vector that can be used as a renewable fuel for both the heat and transport sectors. Recent EU legislation encourages the production and use of advanced, third generation biofuels with improved sustainability for future energy systems. The integration of technologies such as anaerobic digestion, gasification, and power to gas, along with advanced feedstocks such as algae will be at the forefront in meeting future sustainability criteria and achieving a green gas supply for the gas grid. This paper explores the relevant pathways in which an integrated biomethane industry could potentially materialise and identifies and discusses the latest biotechnological advances in the production of renewable gas. Three scenarios of cascading biomethane systems are developed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gas-phase advanced oxidation for effective, efficient in situ control of pollution.
Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka
2014-01-01
In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.
Competing power-generating technologies for the 21st century
NASA Astrophysics Data System (ADS)
Troost, G. K.
1994-04-01
Several new and advanced power-generating systems are presently being developed, e.g., fuel cells, advanced heat pumps, high-performance gas turbines. An analysis of these systems is presented and is based on projections of comparative studies and relevant trends. For advanced systems, a trade-off between efficiency gain and projected development cost is crucial. Projections for market conditions in the 21st century and, in particular, environmental issues are made in order to assess market-entry opportunities. Results from various case studies indicate challenging opportunities in process and metallurgical industries; several process-integrated configurations are being studied.
Deep-sea geohazards in the South China Sea
NASA Astrophysics Data System (ADS)
Wu, Shiguo; Wang, Dawei; Völker, David
2018-02-01
Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.
Advanced online control mode selection for gas turbine aircraft engines
NASA Astrophysics Data System (ADS)
Wiseman, Matthew William
The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.
High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.
2007-01-01
Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.
Gas-turbine critical research and advanced technology support project
NASA Technical Reports Server (NTRS)
Clark, J. S.; Lowell, C. E.; Niedzwiecki, R. W.; Nainiger, J. J.
1979-01-01
The technical progress made during the first 15 months of a planned 40-month project to provide a critical-technology data base for utility gas-turbine systems capable of burning coal-derived fuels is summarized. Tasks were included in the following areas: (1) combustion, to study the combustion of coal-derived fuels and conversion of fuel-bound nitrogen to NOx; (2) materials, to understand and prevent hot corrosion; and (3) system studies, to integrate and guide the other technologies. Significant progress was made.
The AGT 101 advanced automotive gas turbine
NASA Technical Reports Server (NTRS)
Rackley, R. A.; Kidwell, J. R.
1982-01-01
A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.
Analysis of potential benefits of integrated-gasifier combined cycles for a utility system
NASA Technical Reports Server (NTRS)
Choo, Y. K.
1983-01-01
Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units.
NASA Astrophysics Data System (ADS)
Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai
2017-06-01
Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.
Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok
2014-08-27
We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.
Low Carbon Technology Options for the Natural Gas ...
The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic
Warwick, Peter D.
2007-01-01
The inevitable increase in demand and continuing depletion of accessible oil and gas resources during the 21st century will cause greater dependence on energy minerals such as coal, uranium, and unconventional sources of oil and natural gas to satisfy our increasing energy needs. The Energy Minerals Division (EMD) of the American Association of Petroleum Geologists (AAPG) is a membership-based technical interest group with goals to: (1) advance the science of geology, especially as it relates to exploration, discovery, and production of mineral resources and subsurface gas and liquids (other than conventional oil and gas) for energy-related purposes; (2) foster the spirit of scientific research; (3) disseminate information related to the geology of energy minerals and the associated technology of energy mineral resources extraction; and (4) advance the professional wellbeing of its members. This article contains a brief summary of some of the 2006 annual committee reports presented to the EMD Leadership. These reports are available to the EMD Membership at http://emd.aapg.org/members_only. This collection of short reports is presented here by the EMD as a service to the general geologic community and to simulate interest in the focus technical areas of EMD.
Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J Valentine, Stephen
2017-05-01
Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J. Valentine, Stephen
2017-05-01
Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed.
Surface emitting ring quantum cascade lasers for chemical sensing
NASA Astrophysics Data System (ADS)
Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried
2018-01-01
We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1982-01-01
The COSAM program for reduction of the use of strategic alloying elements in nickel-based superalloys for gas turbine engines was reviewed. Sources, consumption, and pricing of cobalt, tantalum, columbium, and chromium are surveyed. Research projects in strategic element substitution, advanced processing concepts, and the development of alternate materials (intermetallics and iron-base alloys) are listed and research plans for FY 1983 and FY 1984 summarized.
Volatile Reaction Products From Silicon-Based Ceramics in Combustion Environments Identified
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.
1997-01-01
Silicon-based ceramics and composites are prime candidates for use as components in the hot sections of advanced aircraft engines. These materials must have long-term durability in the combustion environment. Because water vapor is always present as a major product of combustion in the engine environment, its effect on the durability of silicon-based ceramics must be understood. In combustion environments, silicon-based ceramics react with water vapor to form a surface silica (SiO2) scale. This SiO2 scale, in turn, has been found to react with water vapor to form volatile hydroxides. Studies to date have focused on how water vapor reacts with high-purity silicon carbide (SiC) and SiO2 in model combustion environments. Because the combustion environment in advanced aircraft engines is expected to contain about 10-percent water vapor at 10-atm total pressure, the durability of SiC and SiO2 in gas mixtures containing 0.1- to 1-atm water vapor is of interest. The reactions of SiC and SiO2 with water vapor were monitored by measuring weight changes of sample coupons in a 0.5-atm water vapor/0.5-atm oxygen gas mixture with thermogravimetric analysis.
Application of Advanced Materials in Petroleum Engineering
NASA Astrophysics Data System (ADS)
Zhao, Gufan; Di, Weina; Wang, Minsheng
With the background of increasing requirements on the petroleum engineering technology from more high demanding exploration targets, global oil companies and oil service companies are making more efforts on both R&D and application of new petroleum engineering technology. Advanced materials always have a decisive role in the functionality of a new product. Technology transplantation has become the important means of innovation in oil and gas industry. Here, we mainly discuss the properties and scope of application of several advanced materials. Based on the material requirements in petroleum engineering, we provide several candidates for downhole electronics protection, drilling fluid additives, downhole tools, etc. Based on the analysis of petroleum engineering technology characteristics, this paper made analysis and research on such advanced materials as new insulation materials, functional gradient materials, self-healing polymers, and introduced their application prospect in petroleum engineering in terms of specific characteristics.
Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications
NASA Astrophysics Data System (ADS)
Guo, Qing; Ye, Fang; Guo, Hang; Ma, Chong Fang
2017-02-01
Hydrogen/oxygen fuel cells were successfully utilized in the field of space applications to provide electric energy and potable water in human-rated space mission since the 1960s. Proton exchange membrane (PEM) based fuel cells, which provide high power/energy densities, were reconsidered as a promising space power equipment for future space exploration. PEM-based water electrolyzers were employed to provide life support for crews or as major components of regenerative fuel cells for energy storage. Gas/water and heat are some of the key challenges in PEM-based fuel cells and electrolytic cells, especially when applied to space scenarios. In the past decades, efforts related to gas/water and thermal control have been reported to effectively improve cell performance, stability lifespan, and reduce mass, volume and costs of those space cell systems. This study aimed to present a primary review of research on gas/water and waste thermal management for PEM-based electrochemical cell systems applied to future space explorations. In the fuel cell system, technologies related to reactant supplement, gas humidification, water removal and active/passive water separation were summarized in detail. Experimental studies were discussed to provide a direct understanding of the effect of the gas-liquid two-phase flow on product removal and mass transfer for PEM-based fuel cell operating in a short-term microgravity environment. In the electrolyzer system, several active and static passive phaseseparation methods based on diverse water supplement approaches were discussed. A summary of two advanced passive thermal management approaches, which are available for various sizes of space cell stacks, was specifically provided
A spacecraft's own ambient environment: The role of simulation-based research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketsdever, Andrew D.; Gimelshein, Sergey
2014-12-09
Spacecraft contamination has long been a subject of study in the rarefied gas dynamics community. Professor Mikhail Ivanov coined the term a spacecraft's 'own ambient environment' to describe the effects of natural and satellite driven processes on the conditions encountered by a spacecraft in orbit. Outgassing, thruster firings, and gas and liquid dumps all contribute to the spacecraft's contamination environment. Rarefied gas dynamic modeling techniques, such as Direct Simulation Monte Carlo, are well suited to investigate these spacebased environments. However, many advances were necessary to fully characterize the extent of this problem. A better understanding of modeling flows over largemore » pressure ranges, for example hybrid continuum and rarefied numerical schemes, were required. Two-phase flow modeling under rarefied conditions was necessary. And the ability to model plasma flows for a new era of propulsion systems was also required. Through the work of Professor Ivanov and his team, we now have a better understanding of processes that create a spacecraft's own ambient environment and are able to better characterize these environments. Advances in numerical simulation have also spurred on the development of experimental facilities to study these effects. The relationship between numerical results and experimental advances will be explored in this manuscript.« less
Ross, Jeffrey S; Wang, Kai; Khaira, Depinder; Ali, Siraj M; Fisher, Huge A G; Mian, Badar; Nazeer, Tipu; Elvin, Julia A; Palma, Norma; Yelensky, Roman; Lipson, Doron; Miller, Vincent A; Stephens, Philip J; Subbiah, Vivek; Pal, Sumanta K
2016-03-01
In the current study, the authors present a comprehensive genomic profile (CGP)-based study of advanced urothelial carcinoma (UC) designed to detect clinically relevant genomic alterations (CRGAs). DNA was extracted from 40 µm of formalin-fixed, paraffin-embedded sections from 295 consecutive cases of recurrent/metastatic UC. CGP was performed on hybridization-captured, adaptor ligation-based libraries to a mean coverage depth of 688X for all coding exons of 236 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer, using process-matched normal control samples as a reference. CRGAs were defined as GAs linked to drugs on the market or currently under evaluation in mechanism-driven clinical trials. All 295 patients assessed were classified with high-grade (International Society of Urological Pathology classification) and advanced stage (stage III/IV American Joint Committee on Cancer) disease, and 294 of 295 patients (99.7%) had at least 1 GA on CGP with a mean of 6.4 GAs per UC (61% substitutions/insertions/deletions, 37% copy number alterations, and 2% fusions). Furthermore, 275 patients (93%) had at least 1 CRGA involving 75 individual genes with a mean of 2.6 CRGAs per UC. The most common CRGAs involved cyclin-dependent kinase inhibitor 2A (CDKN2A) (34%), fibroblast growth factor receptor 3 (FGFR3) (21%), phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) (20%), and ERBB2 (17%). FGFR3 GAs were diverse types and included 10% fusions. ERBB2 GAs were equally divided between amplifications and substitutions. ERBB2 substitutions were predominantly within the extracellular domain and were highly enriched in patients with micropapillary UC (38% of 32 cases vs 5% of 263 nonmicropapillary UC cases; P<.0001). Using a CGP assay capable of detecting all classes of GA simultaneously, an extraordinarily high frequency of CRGA was identified in a large series of patients with advanced UC. Cancer 2016;122:702-711. © 2015 American Cancer Society. © 2015 American Cancer Society.
Advances in central receivers for concentrating solar applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Clifford K.
This paper provides a review of current state-of-the-art commercial central receiver systems and emerging technologies intended to increase the outlet temperature to >700 °C. Research on particle-based, gas-based, and liquid-based receiver designs that can achieve these higher temperatures are discussed. Particle-based technologies include directly irradiated designs (free-falling, obstructed, centrifugal) and enclosed designs (gravity fed, fluidized). New gas-based receivers include micro-channel designs and light-trapping configurations that increase the surface area, heat transfer, and solar absorptance to enable higher fluxes and pressures. Liquid-based receivers and materials that are reviewed include high-temperature halide salts (chlorides and fluorides), carbonate salts, and liquid metals (sodiummore » and lead bismuth). Advantages and challenges associated with each of the technologies and receiver designs are presented.« less
Advances in central receivers for concentrating solar applications
Ho, Clifford K.
2017-04-09
This paper provides a review of current state-of-the-art commercial central receiver systems and emerging technologies intended to increase the outlet temperature to >700 °C. Research on particle-based, gas-based, and liquid-based receiver designs that can achieve these higher temperatures are discussed. Particle-based technologies include directly irradiated designs (free-falling, obstructed, centrifugal) and enclosed designs (gravity fed, fluidized). New gas-based receivers include micro-channel designs and light-trapping configurations that increase the surface area, heat transfer, and solar absorptance to enable higher fluxes and pressures. Liquid-based receivers and materials that are reviewed include high-temperature halide salts (chlorides and fluorides), carbonate salts, and liquid metals (sodiummore » and lead bismuth). Advantages and challenges associated with each of the technologies and receiver designs are presented.« less
Modeling and Controls Development of 48V Mild Hybrid Electric Vehicles
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types c...
NASA Technical Reports Server (NTRS)
Hair, L. M.
1975-01-01
The aerodynamic effects of plumes from hot combustion gases in the presence of a transonic external flow field were measured to advance plumes simulation technology, extend a previously acquired data base, and provide data to compare with the effects observed using cold gas plumes. A variety of underexpanded plumes issuing from the base of a strut-mounted ogive-cylinder body were produced by combusting solid propellant gas generators. The gas generator fired in a short-duration mode (200 to 300 msec). Propellants containing 16 percent and 2 percent A1 were used, with chamber pressures from 400 to 1800 psia. Conical nozzles of 15 deg half-angle were tested with area ratios of 4 and 8. Pressures were measured in the gas generator combustion chamber, along the nozzle wall, on the base, and along the body rear exterior. Schlieren photographs were taken for all tests. Test data are presented along with a description of the test setup and procedures.
Laser-polarized noble gases: a powerful probe for biology, medicine, and subatomic physics
NASA Astrophysics Data System (ADS)
Cates, Gordon
2010-03-01
For over a decade, laser-polarized noble gases such as ^3He and ^129Xe have proven useful for a wide range of scientific inquiries. These include investigations of pulmonary disease using the polarized gas as a signal source for magnetic resonance imaging (MRI), measurements of various aspects of nucleon structure, and tests of fundamental symmetries. Early efforts were often limited by expensive and bulky laser systems, but ongoing advancements in solid-state lasers have enabled increasingly large volumes of polarized gas to be produced with steadily improved polarization. Equally important have been advances in the fundamental understanding of spin exchange. This has led, for example, to the introduction of hybrid mixtures of alkali metals that can increase the efficiency of spin exchange by an order of magnitude. As a consequence of these advances, the figure of merit for polarized nuclear targets has increased by roughly three orders of magnitude in comparison to early accelerator-based experiments. And in MRI applications, it has become possible to pursue increasingly sophisticated imaging protocols that provide a wide range of diagnostic information. Even the earliest noble-gas MR images of the gas space of the human lung provided unprecedented resolution. More recent work includes the use of diffusion-sensitizing pulse sequences to study lung microstructure, and tagging techniques that enable the visualization (in real-time MRI movies) of gas flow during breathing. The range of applications of laser-polarized noble gases is continuing to grow, and it is notable that with an improved understanding of the underlying physics, it is quite likely that the capabilities of this useful technology will expand for some time to come.
NASA Technical Reports Server (NTRS)
Lane, R. L.
1981-01-01
Six growth runs used the Kayex-Hameo Automatic Games Logic (AGILE) computer based system for growth from larger melts in the Mod CG2000. The implementation of the melt pyrometer sensor allowed for dip temperature monitoring and usage by the operator/AGILE system. Use of AGILE during recharge operations was successfully evaluated. The tendency of crystals to lose cylindrical shape (spiraling) continued to be a problem. The hygrometer was added to the Furnace Gas Analysis System and used on several growth runs. The gas chromatograph, including the integrator, was also used for more accurate carbon monoxide concentration measurements. Efforts continued for completing the automation of the total Gas Analysis System. An economic analysis, based on revised achievable straight growth rate, is presented.
Singamneni, Sarat; Ramos, Maximiano; Al-Jumaily, Ahmed M
2017-01-01
The conventional gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells incorporates a carbon-based substrate, which suffers from electrochemical oxidation as well as mechanical degradation, resulting in reduced durability and performance. In addition, it involves a complex manufacturing process to produce it. The proposed technique aims to resolve both these issues by an advanced 3D printing technique, namely selective laser sintering (SLS). In the proposed work, polyamide (PA) is used as the base powder and titanium metal powder is added at an optimised level to enhance the electrical conductivity, thermal, and mechanical properties. The application of selective laser sintering to fabricate a robust gas diffusion substrate for PEM fuel cell applications is quite novel and is attempted here for the first time. PMID:28773156
Jayakumar, Arunkumar; Singamneni, Sarat; Ramos, Maximiano; Al-Jumaily, Ahmed M; Pethaiah, Sethu Sundar
2017-07-14
The conventional gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells incorporates a carbon-based substrate, which suffers from electrochemical oxidation as well as mechanical degradation, resulting in reduced durability and performance. In addition, it involves a complex manufacturing process to produce it. The proposed technique aims to resolve both these issues by an advanced 3D printing technique, namely selective laser sintering (SLS). In the proposed work, polyamide (PA) is used as the base powder and titanium metal powder is added at an optimised level to enhance the electrical conductivity, thermal, and mechanical properties. The application of selective laser sintering to fabricate a robust gas diffusion substrate for PEM fuel cell applications is quite novel and is attempted here for the first time.
NASA Astrophysics Data System (ADS)
Montzka, S. A.
2016-12-01
Measurements from global surface-based air sampling networks provide a fundamental understanding of how and why concentrations of long-lived trace gases are changing over time. Results from these networks are used to quantify trace-gas concentrations and their time-dependent changes on global and smaller scales, and thus provide a means to quantify emission rates, loss frequencies, and mixing processes. Substantial advances in measurement and sampling technologies and the ability of these programs to create and maintain reliable gas standards mean that spatial concentration gradients and time-dependent changes are often very reliably measured. The presence of multiple independent networks allows an assessment of this reliability. Furthermore, recent global `snap-shot' surveys (e.g., HIPPO and ATom) and ongoing atmospheric profiling programs help us assess the ability of surface-based data to describe concentration distributions throughout most of the atmosphere ( 80% of its mass). In this overview talk, I'll explore the usefulness and limitations of existing long-term, ongoing sampling network programs and their advantages and disadvantages for characterizing concentrations on global and regional scales, and how recent advances (and short-term sampling programs) help us assess the accuracy of the surface networks to provide estimates of source and sink magnitudes, and inter-annual variability in both.
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Young, S. G. (Inventor)
1982-01-01
A low cost coating for protecting metallic base system substrates from high temperatures, high gas velocity oxidation, thermal fatigue and hot corrosion is described. The coating is particularly useful for protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrate from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue. Also, the Si-Al coating increased the resistance of certain superalloys to hot corrosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel
2014-04-07
Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development suchmore » that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.« less
NASA Technical Reports Server (NTRS)
1983-01-01
The development and progress of the Advanced Gas Turbine engine program is examined. An analysis of the role of ceramics in the design and major engine components is included. Projected fuel economy, emissions and performance standards, and versatility in fuel use are also discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... accounting for the value of liquid hydrocarbons contained in the gas stream by applying an adjustment or... the public without advance registration; however, attendance may be limited to the space available at...
Advanced Seal Development for Large Industrial Gas Turbines
NASA Technical Reports Server (NTRS)
Chupp, Raymond E.
2006-01-01
Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.
Simulation modelling for new gas turbine fuel controller creation.
NASA Astrophysics Data System (ADS)
Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.
2017-11-01
State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.
Modeling and Validation of Lithium-ion Automotive Battery Packs (SAE 2013-01-1539)
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types c...
Benchmarking and Modeling of a Conventional Mid-Size Car Using ALPHA (SAE Paper 2015-01-1140)
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...
Development of Advanced Seals for Industrial Turbine Applications
NASA Astrophysics Data System (ADS)
Chupp, Raymond E.; Aksit, Mahmut F.; Ghasripoor, Farshad; Turnquist, Norman A.; Dinc, Saim; Mortzheim, Jason; Demiroglu, Mehmet
2002-10-01
A critical area being addressed to improve industrial turbine performance is reducing the parasitic leakage flows through the various static and dynamic seals. Implementation of advanced seals into General Electric (GE) industrial turbines has progressed well over the last few years with significant operating performance gains achieved. Advanced static seals have been placed in gas turbine hot gas-path junctions and steam turbine packing ring segment end gaps. Brush seals have significantly decreased labyrinth seal leakages in gas turbine compressors and turbine interstages, steam turbine interstage and end packings, industrial compressor shaft seals, and generator seals. Abradable seals are being developed for blade-tip locations in various turbine locations. This presentation summarizes the status of advanced seal development for industrial turbines at GE.
NASA Astrophysics Data System (ADS)
Warren, Kevin Wilson
The Independent Sustain and Address (ISA) AC plasma panel is a flat, flicker-free, gas discharge type of display device. This display technology promises to reduce both the cost of manufacturing and operation of AC plasma displays. The ISA technology uses a vastly different mechanism to change the state of the display pixels than the standard AC plasma technology. This addressing mechanism is an exploitation of some of the natural characteristics associated with the plasma that can form during strong gas discharges. This thesis presents detailed data from experiments that were designed to evaluate and test the effectiveness of this mechanism. Through these experiments, the theory that the addressing methodology is based upon is developed and evaluated. These experiments show that the address margin windows for this technology are very large, minimally two to three times larger than the address margins for the standard XY AC plasma addressing techniques. New capabilities are also described, such as global brightness control for the ISA technology and a technique for increasing the addressing rate. These advances were designed into working prototypes and transferred to industry where there are currently commercial products available based upon these advances. A technique for implementing gray scale using some of these advances is also proposed.
NASA Astrophysics Data System (ADS)
Gajic, Gordana; Stankovski, Stevan; Ostojic, Gordana; Tesic, Zdravko; Miladinovic, Ljubomir
2014-01-01
The so far implemented enterprise resource planning (ERP) systems have in many cases failed to meet the requirements regarding the business process control, decrease of business costs and increase of company profit margin. Therefore, there is a real need for an evaluation of the influence of ERP on the company's performance indicators. Proposed in this article is an advanced model for the evaluation of the success of ERP implementation on organisational and operational performance indicators in oil-gas companies. The recommended method establishes a correlation between a process-based method, a scorecard model and ERP critical success factors. The method was verified and tested on two case studies in oil-gas companies using the following procedure: the model was developed, tested and implemented in a pilot gas-oil company, while the results were implemented and verified in another gas-oil company.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, J.T.; Chu, L.A.
The modular nature of gasification-combined-cycle (GCC) plants is known to facilitate capacity addition in increments (phased construction) that may match more closely with the anticipated growth in electrical load. Because the gas turbines are the primary building blocks of a phased GCC plant, utility planners are investigating in more detail prospective gas turbines of current and advanced designs developed by several manufacturers. This report summarizes the results of the evaluation of a GCC power plant based on the Kraftwerk Union Model V84.2 gas turbines of the current design now offered for the US market. The design of the Model V84.2more » machine, a scaled-down version of Kraftwerk Union's 50 Hz Model V94 machine, incorporates features suitable for burning gases, such as coal-derived synthesis gas. 14 figs., 42 tabs.« less
Air impacts of increased natural gas acquisition, processing, and use: a critical review.
Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B
2014-01-01
During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource.
Development of a Hot Working Steel Based on a Controlled Gas-Metal-Reaction
NASA Astrophysics Data System (ADS)
Ritzenhoff, Roman; Gharbi, Mohammad Malekipour
As a result of cost sensitiveness, the demand on hot working steels with advanced characteristics and properties are ascending. We have used a controlled gas-metal-reaction in a P-ESR furnace to produce high quality hot working steel. These types of materials are also known as High Nitrogen Steels (HNS). An overview of the development in a pressurized induction furnace to the final industrial scale using P-ESR will be provided. Different heat treatment strategies are conducted and their effect on mechanical properties is investigated.
Technical Development Path for Gas Foil Bearings
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
2016-01-01
Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1992-01-01
The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.
Advance Notice of Proposed Rule Making for Minor Source Permitting in Indian Country - Oil and Gas
Advance Notice of Proposed Rulemaking to solicit broad feedback on the most effective and efficient means of implementing the EPA's Indian Country Minor New Source Review program for sources in the oil and natural gas production segment.
Methane emissions from the global oil and gas supply chain: recent advances and next steps
NASA Astrophysics Data System (ADS)
Zavala Araiza, D.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Knighton, W. B.; Johnson, M.; Tyner, D. R.; Hamburg, S.
2017-12-01
A wide body of research has characterized methane emissions from the oil and gas system in the US. In contrast, empirical data is limited for other significant oil and gas producing regions across the world. As a consequence, measuring and characterizing methane emissions across global oil and gas operations will be crucial to the design of effective mitigation strategies. Several countries have announced pledges to reduce methane emissions from this system (e.g., North America, Climate and Clean Air Coalition [CCAC] ministers). In the case of Canada, the federal government recently announced regulations supporting a 40-45% reduction of methane emissions from the oil and gas production systems. For these regulations to be effective, it is critical to understand the current methane emission patterns. We present results from a coordinated multiscale (i.e., airborne-based, ground-based) measurement campaign in Alberta, Canada. We use empirically derived emission estimates to characterize site-level emissions and derive an emissions distribution. Our work shows that many major sources of emissions are unmeasured or underreported. Consistent with previous studies in the US, a small fraction of sites disproportionately account for the majority of emissions: roughly 20% of sites accounted for 75% of emissions. An independent airborne-based regional estimate was 40% lower than the ground-based regional estimate, but not statistically different. Finally, we summarize next steps as part of the CCAC Oil and Gas Methane Study: ongoing work that is targeting oil and gas sectors/production regions with limited empirical data on methane emissions. This work builds on the approach deployed in quantifying methane emissions from the oil and gas supply chain in the US, underscoring the commitment to transparency of the collected data, external review, deployment of multiple methodologies, and publication of results in peer-reviewed journals.
The Cummins advanced turbocompound diesel engine evaluation
NASA Technical Reports Server (NTRS)
Hoehne, J. L.; Werner, J. R.
1982-01-01
An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.
Well log characterization of natural gas hydrates
Collett, Timothy S.; Lee, Myung W.
2011-01-01
In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate production schemes.
Feedstock powder processing research needs for additive manufacturing development
Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan
2018-02-01
Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less
Feedstock powder processing research needs for additive manufacturing development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan
Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less
Improved Astronomical Instrumentation for the Far Ultra-Violet
NASA Astrophysics Data System (ADS)
Witt, Emily M.; Fleming, Brian; Egan, Arika; Tyler, Rachel; Wiley, James
2018-06-01
Recent technological advances have opened up new instrument capabilities in the ultraviolet. Of particular interest are advanced deposition processes that have made lithium fluoride (LiF) based mirrors more accessible, achieving greater than 80% broadband reflectivity down into the Lyman UV (100 nm). Traditional MgF2 protected aluminum mirrors cut off at 115 nm, missing crucial tracers of warm gas and molecules. The hygroscopic sensitivity of LiF, which adds mission risk and cost, has also been mitigated with a thin capping layer of a more durable substance, making LiF mirrors accessible without onerous environmental procedures. These advances open up a new paradigm in UV astronomy by enabling multi-reflection systems in the Lyman UV. We present recent progress in the testing of eLiF-based optics, and then discuss the potential scientific avenues this opens up in UV astronomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-05-01
An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less
Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.
Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi
2016-01-01
Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology
NASA Technical Reports Server (NTRS)
Chullen, Cinda
2015-01-01
Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).
Jet engine applications for materials with nanometer-scale dimensions
NASA Technical Reports Server (NTRS)
Appleby, J. W., Jr.
1995-01-01
The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.
Jet engine applications for materials with nanometer-scale dimensions
NASA Technical Reports Server (NTRS)
Appleby, J. W., Jr.
1995-01-01
The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and material with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.
Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.
Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
DeLaat, John C.
2011-01-01
Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.
This status report provides a review of advances in the state of the science for interspecies inhalation gas dosimetry related to extrathoracic (ET) or upper respiratory tract (URT), tracheobronchial (TB), pulmonary (PU), and extrarespiratory (systemic, SYS) effects.
Modeling and Validation of Power-split and P2 Parallel Hybrid Electric Vehicles SAE 2013-01-1470)
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined ...
A status review of NASA's COSAM (Conservation Of Strategic Aerospace Materials) program
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1982-01-01
The use and supply of strategic elements in nickel base superalloys for gas turbine engines are reviewed. Substitution of strategic elements, advanced processing concepts, and the identification of alternate materials are considered. Cobalt, tantalum, columbium, and chromium, the supplies of which are 91-100% imported, are the materials of major concern.
Life-Cycle Inventory Analysis of Bioproducts from a Modular Advanced Biomass Pyrolysis System
Richard Bergman; Hongmei Gu
2014-01-01
Expanding bioenergy production has the potential to reduce net greenhouse gas (GHG) emissions and improve energy security. Science-based assessments of new bioenergy technologies are essential tools for policy makers dealing with expanding renewable energy production. Using life cycle inventory (LCI) analysis, this study evaluated a 200-kWe...
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...
NASA Astrophysics Data System (ADS)
Palmiste, Ü.; Voll, H.
2017-10-01
The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.
NASA Astrophysics Data System (ADS)
Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.
2012-07-01
The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.
Benefits of advanced technology in industrial cogeneration
NASA Technical Reports Server (NTRS)
Barna, G. J.; Burns, R. K.
1979-01-01
This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.
Landis, G.P.; Hofstra, A.H.
1991-01-01
Recent advances in instrumentation now permit quantitative analysis of gas species from individual fluid inclusions. Fluid inclusion gas data can be applied to minerals exploration empirically to establish chemical (gas composition) signatures of the ore fluids, and conceptually through the development of genetic models of ore formation from a framework of integrated geologic, geochemical, and isotopic investigations. Case studies of fluid inclusion gas chemistry from ore deposits representing a spectrum of ore-forming processes and environments are presented to illustrate both the empirical and conceptual approaches. We consider epithermal silver-gold deposits of Creede, Colorado, Carlin-type sediment-hosted disseminated gold deposits of Jerritt Canyon, Nevada, metamorphic silver-base-metal veins of the Coeur d'Alene district, Idaho and Montana, gold-quartz veins in accreted terranes of southern Alaska, and the mid-continent base-metal sulfide deposits of Mississippi Valley-Type (MVT's). Variations in gas chemistry determine the redox state of the ore fluids, provide compositional input for gas geothermometers, characterize ore fluid chemistry (e.g., CH4CO2, H2SSO2, CO2/H2S, organic-rich fluids, gas-rich and gas-poor fluids), identify magmatic, meteoric, metamorphic, shallow and deep basin fluids in ore systems, locate upwelling plumes of magmatic-derived volatiles, zones of boiling and volatile separation, interfaces between contrasting fluids, and important zones of fluid mixing. Present techniques are immediately applicable to exploration programsas empirical studies that monitor fluid inclusion gas threshold concentration levels, presence or absence of certain gases, or changes in gas ratios. We suggest that the greater contribution of fluid inclusion gas analysis is in the integrated and comprehensive chemical dimension that gas data impart to genetic models, and in the exploration concepts based on processes and environments of ore formation derived from these genetic models. ?? 1991.
Industry/University Consortium for ATS research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, R.P.; Golan, L.P.
1993-11-01
The Industry/University ATS research program is the result of two planning workshops. Workshop I was held April 8--10, 1991 and had the goal of identifying research needs for advanced gas turbine cycles that would permit rapid commercialization of cycles with significant improvements over the machines currently under development, in terms of the cost of electricity produced and the environmental burdens resulting from their use in power producing. Workshop II was held in January 1992 and continued the identification of the research needs to develop advanced gas turbine systems. The goals established for the ATS systems were: (1) efficiency exceeding 60%more » for large utility turbine system and 15% improvement in heat rate for industrial systems; (2) busbar energy costs 10% less than current state of the art and (3) fuel flexible designs. In addition Workshop II participants agreed that an industry driven research consortium was an acceptable mechanism to achieve base technology development needs.« less
Technology initiatives with government/business overlap
NASA Astrophysics Data System (ADS)
Knapp, Robert H., Jr.
2015-03-01
Three important present-day technology development settings involve significant overlap between government and private sectors. The Advanced Research Project Agency for Energy (ARPA-E) supports a wide range of "high risk, high return" projects carried out in academic, non-profit or private business settings. The Materials Genome Initiative (MGI), based in the White House, aims at radical acceleration of the development process for advanced materials. California public utilities such as Pacific Gas & Electric operate under a structure of financial returns and political program mandates that make them arms of public policy as much as independent businesses.
Greenhouse gas mitigation in a carbon constrained world - the role of CCS in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Katja; Sands, Ronald D.
2009-01-05
In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: energy efficiency, switching to low or carbon-free energy sources, introduction of carbon dioxide capture and storage along with electric generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The contribution of each option to overall greenhouse gas mitigation varies by cost, scale, and timing. In particular, carbon dioxide capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. This is particularly relevant for Germany, where electricity generation is largely coal-based and, at the same time, ambitious climate targets are inmore » place. Our objective is to provide a balanced analysis of the various classes of greenhouse gas mitigation options with a particular focus on CCS for Germany. We simulate the potential role of advanced fossil fuel based electricity generating technologies with CCS (IGCC, NGCC) as well the potential for retrofit with CCS for existing and currently built fossil plants from the present through 2050. We employ a computable general equilibrium (CGE) economic model as a core model and integrating tool.« less
Gas in the Uinta Basin, Utah - Resources in continuous accumulations
Schmoker, J.W.; Fouch, T.D.; Charpentier, R.R.
1996-01-01
Continuous-type gas plays can be envisioned as large areas within which the reservoir rock is everywhere charged with gas. As part of its 1995 National Assessment of oil and gas resources, the U.S. Geological Survey identified four continuous-type gas plays in the Uinta Basin. These occur in sandstone reservoirs of the lower Tertiary Wasatch Formation (two plays) and the underlying Upper Cretaceous Mesaverde Group (two plays). Only the play representing the eastern part of the Wasatch Formation continuous accumulation (Natural Buttes area) has been the target of appreciable drilling activity to date. The volume of undiscovered gas estimated to be recoverable from these four plays using existing technology and development practices ranges between 3.7 trillion cubic feet of gas (TCFG) (95th fractile) and 11.9 TCFG (5th fractile), and averages 7.0 TCFG. However, these are geologically based resource estimates, made without direct reference to economic viability. Economic analysis indicates that only a fraction of this assessed resource could be economically found and produced at prices less than $2.00 per thousand cubic feet of gas (MCFG), based on costs that prevailed at the beginning of 1993. Production characteristics of continuous-type gas plays vary significantly from well to well. Difficulty in identifying locations with poor production characteristics in advance of drilling contributes to the unfavorable economics of some plays. The need exists for improvements in technology and geologic understanding that increase the chances of selectively drilling the more productive locations within a continuous-type play.
CO 2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts
Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; ...
2014-12-31
Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO 2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO 2 emissions involves coupling CO 2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO 2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gasesmore » (CH 4 and CO 2) and associated economic consequences. Where enhanced condensation of CO 2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH 4. Volumetric changes to montmorillonites occur during exposure to CO 2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO 2 intercalation. Thus, experimental evidence suggests CH 4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH 4:CO 2 gas systems, where CH 4 concentrations prevail, indicate preferential CO 2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO 2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH 4/CO 2 exchange rates to obtain peak natural gas production.« less
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
NASA Astrophysics Data System (ADS)
Marsik, S. J.; Morea, S. F.
1985-03-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-09-01
A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less
Geological and geochemical implications of gas hydrates in the Gulf of Mexico. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, J.M.; Bryant, W.R.
1985-09-01
This document presents the results of a study of the geological and geochemical implications of gas hydrates in the Gulf of Mexico. The report is based primarily on data obtained from available seismic surveys of the Green Canyon, Garden Banks, Mississippi Canyon, and Orca Basins areas of the northern continental margin of the Gulf of Mexico. The study also includes the data and analysis obtained from several gas hydrate cores recovered in these areas. The report provides new data relevant to gas hydrate research for more in-depth research of the Gulf of Mexico gas hydrates and provides significant information whichmore » advances the knowledge and understanding of gas hydrate formations in the natural environment. The report contains several high resolution seismic surveys. In the four hydrate sites studied in detail, the seismic ''wipeout'' zones were all associated with collapsed structures, fault scarps, and/or salt piercement structures. These features provide conduits for the upward migration of either biogenic or thermogenic gas from depth. 35 refs., 47 figs., 9 tabs.« less
Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review
NASA Astrophysics Data System (ADS)
Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet
2016-05-01
It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.
Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors
NASA Astrophysics Data System (ADS)
Choi, Seon-Jin; Kim, Il-Doo
2018-03-01
Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.
Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors
NASA Astrophysics Data System (ADS)
Choi, Seon-Jin; Kim, Il-Doo
2018-05-01
Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.
NASA Technical Reports Server (NTRS)
Cairelli, J.; Horvath, D.
1981-01-01
The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.
Advanced liner-cooling techniques for gas turbine combustors
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Riddlebaugh, S. M.
1985-01-01
Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).
Readout electronics for the GEM detector
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Czarski, T.; Chernyshova, M.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Jakubowska, K.; Karpinski, L.; Kierzkowski, K.; Kudla, I. M.; Pozniak, K.; Rzadkiewicz, J.; Salapa, Z.; Scholz, M.; Zabolotny, W.
2011-10-01
A novel approach to the Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators[2],[3] and analogue FIFOs[1], the method developed uses simultaneously sampling high speed ADCs and advanced FPGA-based processing logic to estimate the energy of every single photon. Such method is applied to every GEM strip signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, where higher order reflections need to be identified and rejected[5].
Residual gas analysis for long-pulse, advanced tokamak operation.
Klepper, C C; Hillis, D L; Bucalossi, J; Douai, D; Oddon, P; Vartanian, S; Colas, L; Manenc, L; Pégourié, B
2010-10-01
A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H(2)/D(2) isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H(2) injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H(2) could increase due to thermodesorption of overheated plasma facing components.
The Problem of Ensuring Reliability of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Nozhnitsky, Yu A.
2018-01-01
Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.
Geochemistry of coalbed gas - a review
Clayton, J.L.
1998-01-01
Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greehouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greenhouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.
Analytical investigation of thermal barrier coatings on advanced power generation gas turbines
NASA Technical Reports Server (NTRS)
Amos, D. J.
1977-01-01
An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.
Performance and economics of advanced energy conversion systems for coal and coal-derived fuels
NASA Technical Reports Server (NTRS)
Corman, J. C.; Fox, G. R.
1978-01-01
The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.
Liner cooling research at NASA Lewis Research Center. [for gas turbine combustion chambers
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.
1987-01-01
Described are recently completed and current advanced liner research applicable to advanced small gas turbine engines. Research relating to the evolution of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently under way at NASA Lewis Research Center. As part of this research, a reverse-flow combustor geometry was maintained while different advanced liner wall cooling techniques were investigated and compared to a baseline combustor. The performance of the combustors featuring counterflow film-cooled (CFFC) panels, transpiration cooled liner walls (TRANS), and compliant metal/ceramic (CMC) walls was obtained over a range of simulated flight conditions of a 16:1 pressure ratio gas turbine engine and fuel/air ratios up to 0.034. All the combustors featured an identical fuel injection system, identical geometric configuration outline, and similar designed internal aerothermodynamics.
NASA Technical Reports Server (NTRS)
Locci, Ivan E.; MacKay, Rebecca A.; Garg, Anita; Ritzert, Frank J.
2004-01-01
An optimized carburization treatment has been developed to mitigate instabilities that form in the microstructures of advanced turbine airfoil materials. Current turbine airfoils consist of a single crystal superalloy base that provides the mechanical performance of the airfoil, a thermal barrier coating (TBC) that reduces the temperature of the base superalloy, and a bondcoat between the superalloy and the TBC, that improves the oxidation and corrosion resistance of the base superalloy and the spallation resistance of the TBC. Advanced nickel-base superalloys containing high levels of refractory metals have been observed to develop an instability called secondary reaction zone (SRZ), which can form beneath diffusion aluminide bondcoats. This instability between the superalloy and the bondcoat has the potential of reducing the mechanical properties of thin-wall turbine airfoils. Controlled gas carburization treatments combined with a prior stress relief heat treatment and adequate surface preparation have been utilized effectively to minimize the formation of SRZ. These additional processing steps are employed before the aluminide bondcoat is deposited and are believed to change the local chemistry and local stresses of the surface of the superalloy. This paper presents the detailed processing steps used to reduce SRZ between platinum aluminide bondcoats and advanced single crystal superalloys.
With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but unce...
NASA Technical Reports Server (NTRS)
Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.
2002-01-01
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.
NASA Astrophysics Data System (ADS)
Shinar, J.; Shinar, R.
The chapter describes the development, advantages, challenges, and potential of an emerging, compact photoluminescence-based sensing platform for chemical and biological analytes, including multiple analytes. In this platform, the excitation source is an array of organic light-emitting device (OLED) pixels that is structurally integrated with the sensing component. Steps towards advanced integration with additionally a thin-film-based photodetector are also described. The performance of the OLED-based sensing platform is examined for gas-phase and dissolved oxygen, glucose, lactate, ethanol, hydrazine, and anthrax lethal factor.
Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko
2012-03-01
Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
AGT (Advanced Gas Turbine) technology project
NASA Technical Reports Server (NTRS)
1988-01-01
An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated; (7) Small turbine engine aerodynamic and mechanical design capability has been initiated; and (8) An infrastructure of manpower, facilities, materials, and fabrication capabilities has been established which is available for continued development of ceramic component technology in gas turbine and other heat engines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the engine department on liquefied gas tankers; or (iii) A combination of the service in paragraphs (c)(3)(i) and (c)(3)(ii) of this section. (d) Applicants holding an endorsement in advanced oil tanker... any appropriate limitations, without meeting the requirements of paragraph (a) of this section...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura; Brown, Austin; Newes, Emily
The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources usedmore » for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.« less
A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation
NASA Astrophysics Data System (ADS)
Roozeboom, F.; Kniknie, B.; Lankhorst, A. M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.; Dingemans, G.; Keuning, W.; Kessels, W. M. M.
2012-12-01
Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ~20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C4F8 passivation steps by ALD-based oxide (e.g. SiO2) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.
Ceramic Technology Project semiannual progress report, April 1992--September 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-07-01
This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less
Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks
NASA Astrophysics Data System (ADS)
Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin
2017-10-01
There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.
Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James
2017-09-01
The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k -means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.
NASA Astrophysics Data System (ADS)
Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James
2017-09-01
The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k-means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyman, Heino M.; Zhang, Xing; Tang, Keqi
2016-02-16
Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.
NASA Technical Reports Server (NTRS)
Miladinovich, Daniel S.; Zhu, Dongming
2011-01-01
Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.
2011-09-01
carry finished jet fuel from the CBTL facility. The pipeline connects the CBTL facility to a petroleum refinery located in Wood River, Illinois...Under Option 1, all the blended jet fuel is transported via pipeline from the refinery in Wood River to Chicago’s O’Hare airport. Under Option 2...shipping F-T jet fuel to a refinery in Wood River, Illinois (near St. Louis, Missouri) for blending and final transport of the blended jet fuel to
Task 6 -- Advanced turbine systems program conceptual design and product development
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-10
The Allison Engine Company has completed the Task 6 Conceptual Design and Analysis of Phase 2 of the Advanced Turbine System (ATS) contract. At the heart of Allison`s system is an advanced simple cycle gas turbine engine. This engine will incorporate components that ensure the program goals are met. Allison plans to commercialize the ATS demonstrator and market a family of engines incorporating this technology. This family of engines, ranging from 4.9 MW to 12 MW, will be suitable for use in all industrial engine applications, including electric power generation, mechanical drive, and marine propulsion. In the field of electricmore » power generation, the engines will be used for base load, standby, cogeneration, and distributed generation applications.« less
NASA Technical Reports Server (NTRS)
Cinke, Martin; Li, Jing; Chen, Bin; Wignarajah, Kanapathipillai; Pisharody, Suresh A.; Fisher, John W.; Delzeit, Lance; Meyyappan, Meyya; Partridge, Harry; Clark, Kimberlee
2003-01-01
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT's.
Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors
Cheng, Lap-Yan; Wei, Thomas Y. C.
2009-01-01
The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less
NASA Technical Reports Server (NTRS)
Beecher, D. T.
1976-01-01
Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.
Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.
2008-11-25
A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.
Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.
2012-01-01
One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.
UV-enhanced CO sensing using Ga 2O 3-based nanorod arrays at elevated temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian
Monitoring and control of gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such application due to the inherent high temperature of combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °Cmore » by an order of magnitude. Under the 254 nm UV illumination, CO gas-sensing performance of Ga 2O 3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125 %, and the response time reduced by 30 % for La 0.8Sr 0.2FeO 3(LSFO)-decorated sample. The UV-enhanced detecting of CO might be due to the increased population of photo-induced electron-hole pairs. While for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of sensitizing effect and photocurrent effect.« less
UV-enhanced CO sensing using Ga 2O 3-based nanorod arrays at elevated temperature
Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian
2017-01-23
Monitoring and control of gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such application due to the inherent high temperature of combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °Cmore » by an order of magnitude. Under the 254 nm UV illumination, CO gas-sensing performance of Ga 2O 3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125 %, and the response time reduced by 30 % for La 0.8Sr 0.2FeO 3(LSFO)-decorated sample. The UV-enhanced detecting of CO might be due to the increased population of photo-induced electron-hole pairs. While for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of sensitizing effect and photocurrent effect.« less
UV-enhanced CO sensing using Ga2O3-based nanorod arrays at elevated temperature
NASA Astrophysics Data System (ADS)
Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian
2017-01-01
Monitoring and control of the gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such applications due to the inherent high temperature of the combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found that surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °C by an order of magnitude. Under the 254 nm UV illumination, the CO gas-sensing performance of Ga2O3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125% and the response time reduced by 30% for the La0.8Sr0.2FeO3(LSFO)-decorated sample. The UV-enhanced detection of CO might be due to the increased population of photo-induced electron-hole pairs, whereas for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of the sensitizing effect and photocurrent effect.
ERIC Educational Resources Information Center
Smith, Merry K.; Angle, Samantha R.; Northrop, Brian H.
2015-01-01
?-Cyclodextrin can assemble in the presence of KOH or RbOH into metal-organic frameworks (CD-MOFs) with applications in gas adsorption and environmental remediation. Crystalline CD-MOFs are grown by vapor diffusion and their reversible adsorption of CO[subscript 2](g) is analyzed both qualitatively and quantitatively. The experiment can be…
Microcombustor-thermoelectric power generator for 10-50 watt applications
NASA Astrophysics Data System (ADS)
Marshall, Daniel S.; Cho, Steve T.
2010-04-01
Fuel-based portable power systems, including combustion and fuel cell systems, take advantage of the 80x higher energy density of fuel over lithium battery technologies and offer the potential for much higher energy density power sources - especially for long-duration applications, such as unattended sensors. Miniaturization of fuel-based systems poses significant challenges, including processing of fuel in small channels, catalyst poisoning, and coke and soot formation. Recent advances in micro-miniature combustors in the 200Watt thermal range have enabled the development of small power sources that use the chemical energy of heavy fuel to drive thermal-to-electric converters for portable applications. CUBE Technology has developed compact Micro-Furnace combustors that efficiently deliver high-quality heat to optimized thermal-to-electric power converters, such as advanced thermoelectric power modules and Stirling motors, for portable power generation at the 10-50Watt scale. Key innovations include a compact gas-gas recuperator, innovative heavy fuel processing, coke- & soot-free operation, and combustor optimization for low balance-of-plant power use while operating at full throttle. This combustor enables the development of robust, high energy density, miniature power sources for portable applications.
NASA Astrophysics Data System (ADS)
Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.
2018-05-01
The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.
The Gaseous State. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P1.
ERIC Educational Resources Information Center
Inner London Education Authority (England).
This unit on the gaseous state is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one deals with the distinctive characteristics of gases, then considers the gas laws, in particular the ideal gas equation and its applications. Level two concentrates on…
World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States
2011-01-01
The Energy Information Administration sponsored Advanced Resources International, Inc., to assess 48 gas shale basins in 32 countries, containing almost 70 shale gas formations. This effort has culminated in the report: World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States.
Economic aspects of advanced coal-fired gas turbine locomotives
NASA Technical Reports Server (NTRS)
Liddle, S. G.; Bonzo, B. B.; Houser, B. C.
1983-01-01
Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.
Advanced Gas Turbine (AGT) powertrain system development for automotive applications report
NASA Technical Reports Server (NTRS)
1984-01-01
This report describes progress and work performed during January through June 1984 to develop technology for an Advanced Gas Turbine (AGT) engine for automotive applications. Work performed during the first eight periods initiated design and analysis, ceramic development, component testing, and test bed evaluation. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System Program. This program is oriented at providing the United States automotive industry the high-risk long-range techology necessary to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. Technology resulting from this program is intended to reach the marketplace by the early 1990s.
Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda
2015-01-01
Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated by optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, oxygen, and ammonia have been developed, and their preliminary characterization in the laboratory using Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a space suit prototype is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Dwayne; Dulikravich, George; Cizmas, Paul
2017-11-27
This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providingmore » accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.« less
Non-Intrusive, Distributed Gas Sensing Technology for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Phillips, Straun; Rubtsov, Vladimir; Chullen, Cinda
2015-01-01
Chemical sensors for monitoring gas composition, including oxygen, humidity, carbon dioxide, and trace contaminants, are needed to characterize and validate spacesuit design and operating parameters. This paper reports on the first prototypes of a non-intrusive gas sensing technology based on flexible sensitive patches positioned inside spacesuit prototypes and interrogated via optical fibers routed outside the suit, taking advantage of the transparent materials of the suit prototypes. The sensitive patches are based on luminescent materials whose emission parameters vary with the partial pressure of a specific gas. Patches sensitive to carbon dioxide, humidity, and temperature have been developed, and their preliminary laboratory characterization in Mark III-like helmet parts is described. The first prototype system consists of a four-channel fiber optic luminescent detector that can be used to monitor any of the selected target gases at four locations. To switch from one gas to another we replace the (disposable) sensor patches and adjust the system settings. Repeatability among sensitive patches and of sensor performance from location to location has been confirmed, assuring that suit engineers will have flexibility in selecting multiple sensing points, fitting the sensor elements into the spacesuit, and easily repositioning the sensor elements as desired. The evaluation of the first prototype for monitoring carbon dioxide during washout studies in a spacesuit prototype is presented.
Venezuela natural gas for vehicles project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsicobetre, D.; Molero, T.
1998-12-31
The Natural Gas for Vehicles (NGV) Project in Venezuela describes the development and growth of the NGV project in the country. Venezuela is a prolific oil producer with advanced exploration, production, refining and solid marketing infrastructure. Gas production is 5.2 Bscfd. The Venezuelan Government and the oil state owned company Petroleos de Venezuela (PDVSA), pursued the opportunity of using natural gas for vehicles based on the huge amounts of gas reserves present and produced every day associated with the oil production. A nationwide gas pipeline network crosses the country from south to west reaching the most important cities and servingmore » domestic and industrial purposes but there are no facilities to process or export liquefied natural gas. NGV has been introduced gradually in Venezuela over the last eight years by PDVSA. One hundred forty-five NGV stations have been installed and another 25 are under construction. Work done comprises displacement or relocation of existing gasoline equipment, civil work, installation and commissioning of equipment. The acceptance and usage of the NGV system is reflected in the more than 17,000 vehicles that have been converted to date using the equivalent of 2,000 bbl oil/day.« less
NIST Gas Hydrate Research Database and Web Dissemination Channel.
Kroenlein, K; Muzny, C D; Kazakov, A; Diky, V V; Chirico, R D; Frenkel, M; Sloan, E D
2010-01-01
To facilitate advances in application of technologies pertaining to gas hydrates, a freely available data resource containing experimentally derived information about those materials was developed. This work was performed by the Thermodynamic Research Center (TRC) paralleling a highly successful database of thermodynamic and transport properties of molecular pure compounds and their mixtures. Population of the gas-hydrates database required development of guided data capture (GDC) software designed to convert experimental data and metadata into a well organized electronic format, as well as a relational database schema to accommodate all types of numerical and metadata within the scope of the project. To guarantee utility for the broad gas hydrate research community, TRC worked closely with the Committee on Data for Science and Technology (CODATA) task group for Data on Natural Gas Hydrates, an international data sharing effort, in developing a gas hydrate markup language (GHML). The fruits of these efforts are disseminated through the NIST Sandard Reference Data Program [1] as the Clathrate Hydrate Physical Property Database (SRD #156). A web-based interface for this database, as well as scientific results from the Mallik 2002 Gas Hydrate Production Research Well Program [2], is deployed at http://gashydrates.nist.gov.
Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Storey, John Morse; Theiss, Timothy J
Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance ismore » straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation, reformer, and lean NOx trap catalysts. The initial work on NOx reduction efficiency demonstrated that NOx emissions <0.1 g/bhp-hr (the ARES goal) can be achieved with the lean NOx trap catalyst technology. Subsequent work focused on cost and size optimization and durability issues which addressed two specific ARES areas of interest to industry ('Cost of Power' and 'Availability, Reliability, and Maintainability', respectively). Thus, the research addressed the approach of the lean NOx trap catalyst technology toward the ARES goals as shown in Table 1-1.« less
Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleeson, Brian
2014-09-30
Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO 2, SO 2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potentialmore » to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K 2SO 4, and FeS) and environmental oxidants (i.e., O 2, H 2O and CO 2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.« less
Advanced radial inflow turbine rotor program: Design and dynamic testing
NASA Technical Reports Server (NTRS)
Rodgers, C.
1976-01-01
The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).
Novel fabrication of silicon carbide based ceramics for nuclear applications
NASA Astrophysics Data System (ADS)
Singh, Abhishek Kumar
Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous silicon carbide (a-SiC) at 900--1150 °C. Results indicated that this processing technique can be effectively used to fabricate various silicon carbide composites with UC or UO2 as the nuclear component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-08-01
Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less
Affordable Manufacturing Technologies Being Developed for Actively Cooled Ceramic Components
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1999-01-01
Efforts to improve the performance of modern gas turbine engines have imposed increasing service temperature demands on structural materials. Through active cooling, the useful temperature range of nickel-base superalloys in current gas turbine engines has been extended, but the margin for further improvement appears modest. Because of their low density, high-temperature strength, and high thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, high processing costs have proven to be a major obstacle to their widespread application. Advanced rapid prototyping technology, which is developing rapidly, offers the possibility of an affordable manufacturing approach.
Heat exchangers in regenerative gas turbine cycles
NASA Astrophysics Data System (ADS)
Nina, M. N. R.; Aguas, M. P. N.
1985-09-01
Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.
From the speed of sound to the speed of light: Ultrasonic Cherenkov refractometry
NASA Astrophysics Data System (ADS)
Hallewell, G. D.
2017-12-01
Despite its success in the SLD CRID at the SLAC Linear Collider, ultrasonic measurement of Cherenkov radiator refractive index has been less fully exploited in more recent Cherenkov detectors employing gaseous radiators. This is surprising, since it is ideally suited to monitoring hydrostatic variations in refractive index as well as its evolution during the replacement of a light radiator passivation gas (e.g. N2, CO2) with a heavier fluorocarbon (e.g. C4F10[CF4]; mol. wt. 188[88]). The technique exploits the dependence of sound velocity on the molar concentrations of the two components at known temperature and pressure. The SLD barrel CRID used an 87%C5F12/13%N2 blend, mixed before injection into the radiator vessel: blend control based on ultrasonic mixture analysis maintained the β=1 Cherenkov ring angle to a long term variation better than ±0.3%, with refractivity monitored ultrasonically at multiple points within the radiator vessel. Recent advances using microcontroller-based electronics have led to ultrasonic instruments capable of simultaneously measuring gas flow and binary mixture composition in the fluorocarbon evaporative cooling systems of the ATLAS Inner Detector. Sound transit times are measured with multi-MHz transit time clocks in opposite directions in flowing gas for simultaneous measurement of flow rate and sound velocity. Gas composition is evaluated in real-time by comparison with a sound velocity/composition database. Such instruments could be incorporated into new and upgraded gas Cherenkov detectors for radiator gas mixture (and corresponding refractive index) measurement to a precision better than 10-3. They have other applications in binary gas analysis - including in Xenon-based anaesthesia. These possibilities are discussed.
Combustion of Han-Based Monopropellant Droplets in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, B. D.
1999-01-01
The objective of this research is to study combustion of monopropellant droplets and monopropellant droplet components in reduced-gravity environments so that spherical symmetry is strongly promoted. The experiments will use hydroxylammonium nitrate (HAN, chemical formula NH3OHNO3) based monopropellants. This class of monopropellant is selected for study because of its current relevance and also because it is relatively benign and safe to work with. The experimental studies will allow for accurate determination of fundamental data on deflagration rates, gas-phase temperature profiles, transient gas-phase flame behaviors, the onset of bubbling in droplets at lower pressures, and the low-pressure deflagration limit. The theoretical studies will provide rational models of deflagration mechanisms of HAN-based liquid propellants. Besides advancing fundamental knowledge, the proposed research should aid in applications (e.g., spacecraft thrusters and liquid propellant guns) of this unique class of monopropellants.
AGR-2 and AGR-3/4 Release-to-Birth Ratio Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Binh T.; Einerson, Jeffrey J.; Scates, Dawn M.
A series of Advanced Gas Reactor (AGR) irradiation tests is being conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) in support of development and qualification of tristructural isotropic (TRISO) low enriched fuel used in the High Temperature Gas-cooled Reactor (HTGR). Each AGR test consists of multiple independently controlled and monitored capsules containing fuel compacts placed in a graphite cylinder shrouded by a steel shell. These capsules are instrumented with thermocouples embedded in the graphite enabling temperature control. AGR configuration and irradiation conditions are based on prismatic HTGR technology that is distinguished primarily through use of heliummore » coolant, a low-power-density ceramic core capable of withstanding very high temperatures, and TRISO coated particle fuel. Thus, these tests provide valuable irradiation performance data to support fuel process development, qualify fuel for normal operating conditions, and support development and validation of fuel performance and fission product transport models and codes.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
... gas resources regulations to update some fees that cover BSEE's cost of processing and filing certain... natural gas on the OCS and to reflect advancements in technology and new information. The BSEE also..., Crude Petroleum and Natural Gas Extraction, and 213111, Drilling Oil and Gas Wells. For these NAICS code...
Microtube strip heat exchanger
NASA Astrophysics Data System (ADS)
Doty, F. D.
1992-07-01
The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with 'conventional' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.
Made in Norway -- Produsert i Norge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lia, A.
1996-08-01
This paper reviews the technology advances that have occurred as a result of the harsh offshore conditions and rigid environmental conditions that the Norwegian offshore has created. Over 25 years of offshore oil and gas production on the Norwegian continental shelf have given an impressive number of technological innovations. It includes the submerged turret loading system, concrete gravity based platforms, and the use of various platform configurations for protection against icebergs. This paper reviews the history of these and other Norwegian based technologies.
Advanced nickel base alloys for high strength, corrosion applications
Flinn, John E.
1998-01-01
Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.
Advanced nickel base alloys for high strength, corrosion applications
Flinn, J.E.
1998-11-03
Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.
NASA Astrophysics Data System (ADS)
McLeod, Jeffrey
The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production and use by illustrating links between relevant economic and environmental variables.
ERIC Educational Resources Information Center
Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.
2011-01-01
We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…
Policy Considerations for Commercializing Natural Gas and Biomass CCUS
NASA Astrophysics Data System (ADS)
Abrahams, L.; Clavin, C.
2017-12-01
Captured CO2 from power generation has been discussed as an opportunity to improve the environmental sustainability of fossil fuel-based electricity generation and likely necessary technological solution necessary for meeting long-term climate change mitigation goals. In our presentation, we review the findings of a study of natural gas CCUS technology research and development and discuss their applications to biomass CCUS technology potential. Based on interviews conducted with key stakeholders in CCUS technology development and operations, this presentation will discuss these technical and economic challenges and potential policy opportunities to support commercial scale CCUS deployment. In current domestic and electricity and oil markets, CCUS faces economic challenges for commercial deployment. In particular, the economic viability of CCUS has been impacted by the sustained low oil prices that have limited the potential for enhanced oil recovery (EOR) to serve as a near-term utilization opportunity for the captured CO2. In addition, large scale commercial adoption of CCUS is constrained by regulatory inconsistencies and uncertainties across the United States, high initial capital costs, achieving familiarity with new technology applications to existing markets, developing a successful performance track record to acquire financing agreements, and competing against well-established incumbent technologies. CCUS also has additional technical hurdles for measurement, verification, and reporting within states that have existing policy and regulatory frameworks for climate change mitigation. In addition to fossil-fuel based CCUS, we will discuss emerging opportunities to utilize CCUS fueled by gasified biomass resulting in carbon negative power generation with expanded economic opportunities associated with the enhanced carbon sequestration. Successful technology development of CCUS technology requires a portfolio of research leading to technical advances, advances in financial instruments to leverage the benefits of multiple commodity markets (e.g. natural gas, oil, biomass), and policy instruments that address regulatory hurdles posed CCUS technology deployment.
Radial inflow gas turbine engine with advanced transition duct
Wiebe, David J
2015-03-17
A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).
ERIC Educational Resources Information Center
Alberta Advanced Education and Technology, 2011
2011-01-01
The graduate of the Natural Gas Compression Technician apprenticeship program is a certified journeyperson who will be able to install, commission, maintain and repair equipment used to gather store and transmit natural gas. Advanced Education and Technology has prepared this course outline in partnership with the Natural Gas Compression…
Fast ADC based multichannel acquisition system for the GEM detector
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Czarski, T.; Chernyshova, M.; Dominik, W.; Jakubowska, K.; Karpinski, L.; Kierzkowski, K.; Pozniak, K.; Rzadkiewicz, J.; Scholz, M.; Zabolotny, W.
2012-05-01
A novel approach to the Gas Electron Multiplier1 (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators, and analogue FIFOs,[ the method developed uses simultaneously sampling high speed ADCs and advanced FPGA-based processing logic to estimate the energy of every single photon. Such method is applied to every GEM strip signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, where higher order reflections need to be identified and rejected. For the purpose of the detector readout, a novel conception of the measurement platform was developed.
Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later
NASA Astrophysics Data System (ADS)
Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael
2017-03-01
Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).
Infrared hyperspectral imaging sensor for gas detection
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2000-11-01
A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.
Thermal barrier coatings for gas turbine and diesel engines
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Brindley, William J.; Bailey, M. Murray
1989-01-01
The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.
Development of a high strength hot isostatically pressed /HIP/ disk alloy, MERL 76
NASA Technical Reports Server (NTRS)
Evans, D. J.; Eng, R. D.
1980-01-01
A nickel-based powder metal disk alloy developed for use in advanced commercial gas turbines is described. Consideration is given to final alloy chemistry modifications made to achieve a desirable balance between tensile strength and stress rupture life and ductility. The effects of post-consolidation heat treatment are discussed, the preliminary mechanical properties obtained from full-scale turbine disks are presented.
Advances and challenges in the field of plasma polymer nanoparticles
Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847
Preliminary Assessment of a Rotary Detonation Engine Concept.
1983-09-01
As advances were made in compressors (both axial and centrifugal), it was possible to develop gas turbine engines based on the Brayton cycle rather...induced cycle pressure ratio. In the case of the axial flow compressor, as stages are added to increase the pressure, the blades become progressively...DESIGN OF THE TORQUE TUBE --------- 96 APPENDIX E. EQUIPMENT LISTING- - --------- -- 104 APPENDIX F. DESIGN DRAWINGS FOR ROTARY DETONATION TURBINE
Advances and challenges in the field of plasma polymer nanoparticles.
Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.
NASA Technical Reports Server (NTRS)
Turk, M. A.; Zeiner, P. K.
1986-01-01
In connection with the significant advances made regarding the performance of larger gas turbines, challenges arise concerning the improvement of small gas turbine engines in the 250 to 1000 horsepower range. In response to these challenges, the NASA/Army-sponsored Small Engine Component Technology (SECT) study was undertaken with the objective to identify the engine cycle, configuration, and component technology requirements for the substantial performance improvements desired in year-2000 small gas turbine engines. In the context of this objective, an American turbine engine company evaluated engines for four year-2000 applications, including a rotorcraft, a commuter aircraft, a supersonic cruise missile, and an auxiliary power unit (APU). Attention is given to reference missions, reference engines, reference aircraft, year-2000 technology projections, cycle studies, advanced engine selections, and a technology evaluation.
Haggarty, Jennifer; Burgess, Karl Ev
2017-02-01
The metabolome is the complete complement of metabolites (small organic biomolecules). In order to comprehensively understand the effect of stimuli on a biological system, it is important to detect as many of the metabolites within that system as possible. This review briefly describes some new advances in liquid and gas chromatography to improve coverage of the metabolome, including the serial combination of two columns in tandem, column switching and different variations of two-dimensional chromatography. Supercritical fluid chromatography could provide complimentary data to liquid and gas chromatography. Although there have been many recent advancements in the field of metabolomics, it is evident that a combination, rather than a single method, is required to approach full coverage of the metabolome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Computational thermo-fluid dynamics contributions to advanced gas turbine engine design
NASA Technical Reports Server (NTRS)
Graham, R. W.; Adamczyk, J. J.; Rohlik, H. E.
1984-01-01
The design practices for the gas turbine are traced throughout history with particular emphasis on the calculational or analytical methods. Three principal components of the gas turbine engine will be considered: namely, the compressor, the combustor and the turbine.
Fayda, Merdan; Isin, Mustafa; Tambas, Makbule; Guveli, Murat; Meral, Rasim; Altun, Musa; Sahin, Dilek; Ozkan, Gozde; Sanli, Yasemin; Isin, Husniye; Ozgur, Emre; Gezer, Ugur
2016-03-01
Long non-coding RNAs (lncRNAs) have been shown to be aberrantly expressed in head and neck cancer (HNC). The aim of the present study was to evaluate plasma levels of three lncRNA molecules (lincRNA-p21, GAS5, and HOTAIR) in the treatment response in HNC patients treated with radical chemoradiotherapy (CRT). Forty-one patients with HNC were enrolled in the study. Most of the patients had nasopharyngeal carcinoma (n = 27, 65.9 %) and locally advanced disease. Blood was drawn at baseline and treatment evaluation 4.5 months after therapy. lncRNAs in plasma were measured by semiquantitative PCR. Treatment response was evaluated according to clinical examination, RECIST and PERCIST criteria based on magnetic resonance imaging (MRI), and positron emission tomography with computed tomography (PET/CT) findings. Complete response (CR) rates were 73.2, 36.6, and 50 % for clinical investigation, PET/CT-, or MRI-based response evaluation, respectively. Predictive value of lncRNAs was investigated in patients with CR vs. those with partial response (PR)/progressive disease (PD). We found that post-treatment GAS5 levels in patients with PR/PD were significantly higher compared with patients with CR based on clinical investigation (p = 0.01). Receiver operator characteristic (ROC) analysis showed that at a cutoff value of 0.3 of GAS5, sensitivity and specificity for clinical tumor response were 82 and 77 %, respectively. Interestingly, pretreatment GAS5 levels were significantly increased in patients with PR/PD compared to those with CR upon MRI-based response evaluation (p = 0.042). In contrast to GAS5, pretreatment or post-treatment lincRNA-p21 and HOTAIR levels were not informative for treatment response. Our results suggest that circulating GAS5 could be a biomarker in predicting treatment response in HNC patients.
Effect of vane twist on the performance of dome swirlers for gas turbine airblast atomizers
NASA Technical Reports Server (NTRS)
Micklow, Gerald J.; Dogra, Anju S.; Nguyen, H. Lee
1990-01-01
For advanced gas turbine engines, two combustor systems, the lean premixed/prevaporized (LPP) and the rich burn/quick quench/lean burn (RQL) offer great potential for reducing NO(x) emissions. An important consideration for either concept is the development of an advanced fuel injection system that will provide a stable, efficient, and very uniform combustion system over a wide operating range. High-shear airblast fuel injectors for gas turbine combustors have exhibited superior atomization and mixing compared with pressure-atomizing fuel injectors. This improved mixing has lowered NO(x) emissions and the pattern factor, and has enabled combustors to alternate fuels while maintaining a stable, efficient combustion system. The performance of high-shear airblast fuel injectors is highly dependent on the design of the dome swirl vanes. The type of swirl vanes most widely used in gas turbine combustors are usually flat for ease of manufacture, but vanes with curvature will, in general, give superior aerodynamic performance. The design and performance of high-turning, low-loss curved dome swirl vanes with twist along the span are investigated. The twist induces a secondary vortex flow pattern which will improve the atomization of the fuel, thereby producing a more uniform fuel-air distribution. This uniform distribution will increase combustion efficiency while lowering NO(x) emissions. A systematic swirl vane design system is presented based on one-, two-, and three-dimensional flowfield calculations, with variations in vane-turning angle, rate of turning, vane solidity, and vane twist as design parameters.
Effect of vane twist on the performance of dome swirlers for gas turbine airblast atomizers
NASA Astrophysics Data System (ADS)
Micklow, Gerald J.; Dogra, Anju S.; Nguyen, H. Lee
1990-07-01
For advanced gas turbine engines, two combustor systems, the lean premixed/prevaporized (LPP) and the rich burn/quick quench/lean burn (RQL) offer great potential for reducing NO(x) emissions. An important consideration for either concept is the development of an advanced fuel injection system that will provide a stable, efficient, and very uniform combustion system over a wide operating range. High-shear airblast fuel injectors for gas turbine combustors have exhibited superior atomization and mixing compared with pressure-atomizing fuel injectors. This improved mixing has lowered NO(x) emissions and the pattern factor, and has enabled combustors to alternate fuels while maintaining a stable, efficient combustion system. The performance of high-shear airblast fuel injectors is highly dependent on the design of the dome swirl vanes. The type of swirl vanes most widely used in gas turbine combustors are usually flat for ease of manufacture, but vanes with curvature will, in general, give superior aerodynamic performance. The design and performance of high-turning, low-loss curved dome swirl vanes with twist along the span are investigated. The twist induces a secondary vortex flow pattern which will improve the atomization of the fuel, thereby producing a more uniform fuel-air distribution. This uniform distribution will increase combustion efficiency while lowering NO(x) emissions. A systematic swirl vane design system is presented based on one-, two-, and three-dimensional flowfield calculations, with variations in vane-turning angle, rate of turning, vane solidity, and vane twist as design parameters.
Effect of vane twist on the performance of dome swirlers for gas turbine airblast atomizers
NASA Astrophysics Data System (ADS)
Micklow, Gerald J.; Dogra, Anju S.; Nguyen, H. Lee
1990-06-01
For advanced gas turbine engines, two combustor systems, the lean premixed/prevaporized (LPP) and the rich burn/quick quench/lean burn (RQL) offer great potential for reducing NO(x) emissions. An important consideration for either concept is the development of an advanced fuel injection system that will provide a stable, efficient, and very uniform combustion system over a wide operating range. High-shear airblast fuel injectors for gas turbine combustors have exhibited superior atomization and mixing compared with pressure-atomizing fuel injectors. This improved mixing has lowered NO(x) emissions and the pattern factor, and has enabled combustors to alternate fuels while maintaining a stable, efficient combustion system. The performance of high-shear airblast fuel injectors is highly dependent on the design of the dome swirl vanes. The type of swirl vanes most widely used in gas turbine combustors are usually flat for ease of manufacture, but vanes with curvature will, in general, give superior aerodynamic performance. The design and performance of high-turning, low-loss curved dome swirl vanes with twist along the span are investigated. The twist induces a secondary vortex flow pattern which will improve the atomization of the fuel, thereby producing a more uniform fuel-air distribution. This uniform distribution will increase combustion efficiency while lowering NO(x) emissions. A systematic swirl vane design system is presented based on one-, two-, and three-dimensional flowfield calculations, with variations in vane-turning angle, rate of turning, vane solidity, and vane twist as design parameters.
Saudi Arabia: A future regional hub for advanced education, research, science and technology.
Meo, Sultan Ayoub
2015-10-01
Saudi Arabia is the largest country of the Arabian Peninsula, blessed with significant natural resources, including oil, gas and minerals. Saudi Arabia has recognised the importance of education in social and economic transformation, and has established a large number of universities, research and advanced technical institutes which have broken the metropolitan boundaries and have been extended to the far-flung areas of the country. There are 68 universities and degree-awarding institutes. The educational budget reached its highest-ever level of $56.56 billion for the year 2014. About 124,000 Saudi students are pursuing higher education in about 500 universities around the world. Saudi Arabia produced 177826 research papers in Institute for Scientific Information (ISI) database and in the year 2014 alone, 26168 research papers were published in indexed science journals with a rising h-index of 144. The country is turning into a regional hub for advanced education, research, science and technology while swiftly shifting from an oil-based to a knowledge-based economy.
Energy efficient engine high-pressure turbine detailed design report
NASA Technical Reports Server (NTRS)
Thulin, R. D.; Howe, D. C.; Singer, I. D.
1982-01-01
The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.
Schatton, Cornelia; Synofzik, Matthis; Fleszar, Zofia; Giese, Martin A; Schöls, Ludger; Ilg, Winfried
2017-06-01
Treatment options are rare in degenerative ataxias, especially in advanced, multisystemic disease. Exergame training might offer a novel treatment strategy, but its effectiveness has not been investigated in advanced stages. We examined the effectiveness of a 12-week home-based training with body-controlled videogames in 10 young subjects with advanced degenerative ataxia unable or barely able to stand. Training was structured in two 6-weeks phases, allowing to adapt the training according to individual training progress. Rater-blinded clinical assessment (Scale for the Assessment and Rating of Ataxia; SARA), individual goal-attainment scoring (GAS), and quantitative movement analysis were performed two weeks before training, immediately prior to training, and after training phases 1 and 2 (intra-individual control design). This study is registered with ClinicalTrials.gov, NCT02874911). After intervention, ataxia symptoms were reduced (SARA -2.5 points, p < 0.01), with benefits correlating to the amount of training (p = 0.04). Goal attainment during daily living was higher than expected (GAS: 0.45). Movement analysis revealed reduced body sway while sitting (p < 0.01), which correlated with improvements in SARA posture and gait (p = 0.005), indicating training-induced improvements in posture control mechanisms. This study provides first evidence that, even in advanced stages, subjects with degenerative ataxia may benefit from individualized training, with effects translating into daily living and improving underlying control mechanisms. The proposed training strategy can be performed at home, is motivating and facilitates patient self-empowerment. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, W.R.; Rechnitz, G.A.
1999-01-01
A mini review of enzyme-based electrochemical biosensors for inhibition analysis of organophosphorus and carbamate pesticides is presented. Discussion includes the most recent literature to present advances in detection limits, selectivity and real sample analysis. Recent reviews on the monitoring of pesticides and their residues suggest that the classical analytical techniques of gas and liquid chromatography are the most widely used methods of detection. These techniques, although very accurate in their determinations, can be quite time consuming and expensive and usually require extensive sample clean up and pro-concentration. For these and many other reasons, the classical techniques are very difficult tomore » adapt for field use. Numerous researchers, in the past decade, have developed and made improvements on biosensors for use in pesticide analysis. This mini review will focus on recent advances made in enzyme-based electrochemical biosensors for the determinations of organophosphorus and carbamate pesticides.« less
Rudowski, R; Frostell, C; Gill, H
1989-09-01
The KUSIVAR is an expert system for mechanical ventilation of adult patients suffering from respiratory insufficiency. Its main objective is to provide guidance in respirator management. The knowledge base includes both qualitative, rule-based knowledge and quantitative knowledge expressed in the form of mathematical models (expert control) which is used for prediction of arterial gas tensions and optimization purposes. The system is data driven and uses a forward chaining mechanism for rule invocation. The interaction with the user will be performed in advisory, critiquing, semi-automatic and automatic modes. The system is at present in an advanced prototype stage. Prototyping is performed using KEE (Knowledge Engineering Environment) on a Sperry Explorer workstation. For further development and clinical use the expert system will be downloaded to an advanced PC. The system is intended to support therapy with a Siemens-Elema Servoventilator 900 C.
Inverter-based GTA welding machines improve fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sammons, M.
2000-05-01
While known as precision process, many fabricators using the gas tungsten arc welding (GTAW) process fight several common problems that hinder quality, slow production, frustrate the operator and otherwise prevent the process from achieving its full potential. These include a limited ability to tailor the weld bead profile, poor control of the arc direction and arc wandering, poor arc starting, unstable or inconsistent arcs in the AC mode, high-frequency interference with electronics and tungsten contamination. Fortunately, new GTA welding technology--made possible by advances with inverter-based power sources and micro-processor controls--can eliminate common productivity gremlins. Further, new AC/DC inverter-based GTA powermore » sources provide advanced arc shaping capabilities. As a result, many fabricators adopting this new technology have experienced phenomenal production increases, taken on new types of projects and reduced costs. Most importantly, the operators enjoy welding more.« less
Nandanwar, Manish S.; Anderson, Brian J.; Ajayi, Taiwo; Collett, Timothy S.; Zyrianova, Margarita V.
2016-01-01
An evaluation of the gas production potential of Sunlight Peak gas hydrate accumulation in the eastern portion of the National Petroleum Reserve Alaska (NPRA) of Alaska North Slope (ANS) is conducted using numerical simulations, as part of the U.S. Geological Survey (USGS) gas hydrate Life Cycle Assessment program. A field scale reservoir model for Sunlight Peak is developed using Advanced Processes & Thermal Reservoir Simulator (STARS) that approximates the production design and response of this gas hydrate field. The reservoir characterization is based on available structural maps and the seismic-derived hydrate saturation map of the study region. A 3D reservoir model, with heterogeneous distribution of the reservoir properties (such as porosity, permeability and vertical hydrate saturation), is developed by correlating the data from the Mount Elbert well logs. Production simulations showed that the Sunlight Peak prospect has the potential of producing 1.53 × 109 ST m3 of gas in 30 years by depressurization with a peak production rate of around 19.4 × 104 ST m3/day through a single horizontal well. To determine the effect of uncertainty in reservoir properties on the gas production, an uncertainty analysis is carried out. It is observed that for the range of data considered, the overall cumulative production from the Sunlight Peak will always be within the range of ±4.6% error from the overall mean value of 1.43 × 109 ST m3. A sensitivity analysis study showed that the proximity of the reservoir from the base of permafrost and the base of hydrate stability zone (BHSZ) has significant effect on gas production rates. The gas production rates decrease with the increase in the depth of the permafrost and the depth of BHSZ. From the overall analysis of the results it is concluded that Sunlight Peak gas hydrate accumulation behaves differently than other Class III reservoirs (Class III reservoirs are composed of a single layer of hydrate with no underlying zone of mobile fluids) due to its smaller thickness and high angle of dip.
Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present
NASA Astrophysics Data System (ADS)
Arble, Chris; Jia, Meng; Newberg, John T.
2018-05-01
Chemical interactions which occur at a heterogeneous interface between a gas and substrate are critical in many technological and natural processes. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental and chemical specific, with the ability to probe sample surfaces in the presence of a gas phase. In this review, we discuss the evolution of lab-based AP-XPS instruments, from the first development by Siegbahn and coworkers up through modern day systems. A comprehensive overview is given of heterogeneous experiments investigated to date via lab-based AP-XPS along with the different instrumental metrics that affect the quality of sample probing. We conclude with a discussion of future directions for lab-based AP-XPS, highlighting the efficacy for this in-demand instrument to continue to expand in its ability to significantly advance our understanding of surface chemical processes under in situ conditions in a technologically multidisciplinary setting.
NASA Astrophysics Data System (ADS)
Lieberman, Robert A.
Various paper on chemical, biochemical, and environmental fiber sensors are presented. Some of the individual topics addressed include: evanescent-wave fiber optic (FO) biosensor, refractive-index sensors based on coupling to high-index multimode overlays, advanced technique in FO sensors, design of luminescence-based temperature sensors, NIR fluorescence in FO applications, FO sensor based on microencapsulated reagents, emitters and detectors for optical gas and chemical sensing, tunable fiber laser source for methane detection at 1.68 micron, FO fluorometer based on a dual-wavelength laser excitation source, thin polymer films as active components of FO chemical sensors, submicron optical sources for single macromolecule detection, nanometer optical fiber pH sensor. Also discussed are: microfabrication of optical sensor array, luminescent FO sensor for the measurement of pH, time-domain fluorescence methods as applied to pH sensing, characterization of a sol-gel-entrapped artificial receptor, FO technology for nuclear waste cleanup, spectroscopic gas sensing with IR hollow waveguides, dissolved-oxygen quenching of in situ fluorescence measurements.
Gasification Product Improvement Facility (GPIF). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less
Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2
NASA Technical Reports Server (NTRS)
Robson, F. L.
1981-01-01
Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.
Unconventional Reservoirs: Ideas to Commercialization
NASA Astrophysics Data System (ADS)
Tinker, S. W.
2015-12-01
There is no shortage of coal, oil, and natural gas in the world. What are sometimes in short supply are fresh ideas. Scientific innovation combined with continued advances in drilling and completion technology revitalized the natural gas industry in North America by making production from shale economic. Similar advances are now happening in shale oil. The convergence of ideas and technology has created a commercial environment in which unconventional reservoirs could supply natural gas to the North American consumer for 50 years or more. And, although not as far along in terms of resource development, oil from the Eagle Ford and Bakken Shales and the oil sands in Alberta could have a similar impact. Without advanced horizontal drilling, geosteering, staged hydraulic-fracture stimulation, synthetic and natural proppants, evolution of hydraulic fluid chemistry, and high-end monitoring and simulation, many of these plays would not exist. Yet drilling and completion technology cannot stand alone. Also required for success are creative thinking, favorable economics, and a tolerance for risk by operators. Current understanding and completion practices will leave upwards of 80% of oil and natural gas in the shale reservoirs. The opportunity to enhance recovery through advanced reservoir understanding and imaging, as well as through recompletions and infill drilling, is considerable. The path from ideas to commercialization will continue to provide economic results in unconventional reservoirs.
NASA Astrophysics Data System (ADS)
Brookshire, B. N., Jr.; Mattox, B. A.; Parish, A. E.; Burks, A. G.
2016-02-01
Utilizing recently advanced ultrahigh-resolution 3-dimensional (UHR3D) seismic tools we have imaged the seafloor geomorphology and associated subsurface aspects of seep related expulsion features along the continental slope of the northern Gulf of Mexico with unprecedented clarity and continuity. Over an area of approximately 400 km2, over 50 discrete features were identified and three general seafloor geomorphologies indicative of seep activity including mounds, depressions and bathymetrically complex features were quantitatively characterized. Moreover, areas of high seafloor reflectivity indicative of mineralization and areas of coherent seismic amplitude anomalies in the near-seafloor water column indicative of active gas expulsion were identified. In association with these features, shallow source gas accumulations and migration pathways based on salt related stratigraphic uplift and faulting were imaged. Shallow, bottom simulating reflectors (BSRs) interpreted to be free gas trapped under near seafloor gas hydrate accumulations were very clearly imaged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
Offshore Europe 95 - which will be held September 5-8, 1995, in Aberdeen, Scotland - was designed to generate interest across the oil and gas industry and to be relevant to everyone from CEOs to trainee engineers. While the European offshore oil and gas industry has had some remarkable success in reducing its costs, it faces difficult and growing challenges, and Offshore Eurpoe is the perfect opportunity for companies to learn from each other how to successfully face these hurdles. Sessions will be held on every aspect of the oil and gas industry and are organized under eight technical categories:more » drilling; exploration; management and economics; development and abandonment; well intervention; health, safety, and environment; production; and reservoir management. Much greater operating effectiveness and striking technological advances have enabled us to maintain reserves, prolong the lives of mature producing fields, and continue the pace of new development.« less
NASA Astrophysics Data System (ADS)
Bao, Cheng; Cai, Ningsheng; Croiset, Eric
2011-10-01
Following our integrated hierarchical modeling framework of natural gas internal reforming solid oxide fuel cell (IRSOFC), this paper firstly introduces the model libraries of main balancing units, including some state-of-the-art achievements and our specific work. Based on gPROMS programming code, flexible configuration and modular design are fully realized by specifying graphically all unit models in each level. Via comparison with the steady-state experimental data of Siemens-Westinghouse demonstration system, the in-house multi-level SOFC-gas turbine (GT) simulation platform is validated to be more accurate than the advanced power system analysis tool (APSAT). Moreover, some units of the demonstration system are designed reversely for analysis of a typically part-load transient process. The framework of distributed and dynamic modeling in most of units is significant for the development of control strategies in the future.
Cross-cutting High Surface Area Graphene-based Frameworks with Controlled Pore Structure/Dopants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaillard, J.
The goal of this project is to enhance the performance of graphene-based materials by manufacturing specific 3D architectures. The materials have global applications regarding fuel cell catalysts, gas adsorbents, supercapacitor/battery electrodes, ion (e.g., actinide) capture, gas separation, oil adsorption, and catalysis. This research focuses on hydrogen storage for hydrogen fuel cell vehicles with a potential transformational impact on hydrogen adsorbents that exhibit high gravimetric and volumetric density, a clean energy application sought by the Department of Energy. The development of an adsorbent material would enable broad commercial opportunities in hydrogen-fueled vehicles, promote new advanced nanomanufacturing scale-up, and open other opportunitiesmore » at Savannah River National Laboratory to utilize a high surface area material that is robust, chemically stable, and radiation resistant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Di; Mo, Kun; Ye, Bei
2015-09-30
This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL). Two major accomplishments in FY 15 are summarized in this report: (1) implementation of the FASTGRASS module in the BISON code; and (2) a Xe implantation experiment for large-grained UO 2. Both BISON AND MARMOT codes have been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. To contribute to the development of the Moose-Bison-Marmot (MBM) code suite, we have implemented the FASTGRASS fission gas model as a module inmore » the BISON code. Based on rate theory formulations, the coupled FASTGRASS module in BISON is capable of modeling LWR oxide fuel fission gas behavior and fission gas release. In addition, we conducted a Xe implantation experiment at the Argonne Tandem Linac Accelerator System (ATLAS) in order to produce the needed UO 2 samples with desired bubble morphology. With these samples, further experiments to study the fission gas diffusivity are planned to provide validation data for the Fission Gas Release Model in MARMOT codes.« less
DOT National Transportation Integrated Search
2012-10-01
Recent advances in horizontal drilling and fracturing technology in gas shale formations have increased natural gas supply : such that its price has decoupled from petroleum and is likely to remain significantly lower for the foreseeable future. In t...
Evolutionary Constraints Shaping Streptococcus pyogenes-Host Interactions.
Wilkening, Reid V; Federle, Michael J
2017-07-01
Research on the Gram-positive human-restricted pathogen Streptococcus pyogenes (Group A Streptococcus, GAS) has long focused on invasive illness, the most severe manifestations of GAS infection. Recent advances in descriptions of molecular mechanisms of GAS virulence, coupled with massive sequencing efforts to isolate genomes, have allowed the field to better understand the molecular and evolutionary changes leading to pandemic strains. These findings suggest that it is necessary to rethink the dogma involving GAS pathogenesis, and that the most productive avenues for research going forward may be investigations into GAS in its 'normal' habitat, the nasopharynx, and its ability to either live with its host in an asymptomatic lifestyle or as an agent of superficial infections. This review will consider these advances, focusing on the natural history of GAS, the evolution of pandemic strains, and novel roles for several key virulence factors that may allow the field to better understand their physiological role. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advances in Thin Film Sensor Technologies for Engine Applications
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.
1997-01-01
Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.
Durability Challenges for Next Generation of Gas Turbine Engine Materials
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
2012-01-01
Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.
Shale gas development: a smart regulation framework.
Konschnik, Katherine E; Boling, Mark K
2014-01-01
Advances in directional drilling and hydraulic fracturing have sparked a natural gas boom from shale formations in the United States. Regulators face a rapidly changing industry comprised of hundreds of players, operating tens of thousands of wells across 30 states. They are often challenged to respond by budget cuts, a brain drain to industry, regulations designed for conventional gas developments, insufficient information, and deeply polarized debates about hydraulic fracturing and its regulation. As a result, shale gas governance remains a halting patchwork of rules, undermining opportunities to effectively characterize and mitigate development risk. The situation is dynamic, with research and incremental regulatory advances underway. Into this mix, we offer the CO/RE framework--characterization of risk, optimization of mitigation strategies, regulation, and enforcement--to design tailored governance strategies. We then apply CO/RE to three types of shale gas risks, to illustrate its potential utility to regulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Alexis T.; Alger, Monty M.; Flytzani-Stephanopoulos, Maria
A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world’s highest-cost producer in 2005 to among the lowest-cost producers today. The low cost and increased supply of natural gas and natural gas liquids provides an opportunity tomore » discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel. To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.« less
Future Issues and Approaches to Health Monitoring and Failure Prevention for Oil-Free Gas Turbines
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2004-01-01
Recent technology advances in foil air bearings, high temperature solid lubricants and computer based modeling has enabled the development of small Oil-Free gas turbines. These turbomachines are currently commercialized as small (<100 kW) microturbine generators and larger machines are being developed. Based upon these successes and the high potential payoffs offered by Oil-Free systems, NASA, industry, and other government entities are anticipating Oil-Free gas turbine propulsion systems to proliferate future markets. Since an Oil-Free engine has no oil system, traditional approaches to health monitoring and diagnostics, such as chip detection, oil analysis, and possibly vibration signature analyses (e.g., ball pass frequency) will be unavailable. As such, new approaches will need to be considered. These could include shaft orbit analyses, foil bearing temperature measurements, embedded wear sensors and start-up/coast down speed analysis. In addition, novel, as yet undeveloped techniques may emerge based upon concurrent developments in MEMS technology. This paper introduces Oil-Free technology, reviews the current state of the art and potential for future turbomachinery applications and discusses possible approaches to health monitoring, diagnostics and failure prevention.
Microfine coal firing results from a retrofit gas/oil-designed industrial boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R.; Borio, R.W.; Liljedahl, G.
1995-12-31
The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronizedmore » coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickrell, Gary; Scott, Brian
2014-06-30
This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study ofmore » a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO 2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber geometry to optical properties, and the development of a sensor packaging prototype for laboratory testing. Analysis and experiments determined that a bonding technique using a CO 2 laser is the most suitable joining technique. Pore morphology alteration showed that transmission improved with increasing annealing temperature (producing smaller pores), while the sensor response time increased and the mechanical strength decreased with increasing annealing temperature. Software was developed for data acquisition and signal processing to collect and interpret spectral gas absorption data. Gas detection on porous glass sensors was completed and the detection limit was evaluated using acetylene and was found to be around 1- 200ppm. A complete materials package for porous glass sensors was manufactured for testing.« less
Understanding Shale Gas: Recent Progress and Remaining Challenges
Striolo, Alberto; Cole, David R.
2017-08-27
Because of a number of technological advancements, unconventional hydrocarbons, and in particular shale gas, have transformed the US economy. Much is being learned, as demonstrated by the reduced cost of extracting shale gas in the US over the past five years. However, a number of challenges still need to be addressed. Many of these challenges represent grand scientific and technological tasks, overcoming which will have a number of positive impacts, ranging from the reduction of the environmental footprint of shale gas production to improvements and leaps forward in diverse sectors, including chemical manufacturing and catalytic transformations. This review addresses recentmore » advancements in computational and experimental approaches, which led to improved understanding of, in particular, structure and transport of fluids, including hydrocarbons, electrolytes, water, and CO 2 in heterogeneous subsurface rocks such as those typically found in shale formations. Finally, the narrative is concluded with a suggestion of a few research directions that, by synergistically combining computational and experimental advances, could allow us to overcome some of the hurdles that currently hinder the production of hydrocarbons from shale formations.« less
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1990-01-01
Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1987-01-01
Small engine technology programs being conducted at the NASA Lewis Research Center are described. Small gas turbine research is aimed at general aviation, commutercraft, rotorcraft, and cruise missile applications. The Rotary Engine Program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. There is a strong element of synergism between the various programs in several respects. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The Heavy Duty Diesel Transport (HDTT), rotary technology, and the compound cycle programs are all examining approached to minimum heat rejection, or adiabatic systems employing advanced materials. The Automotive Gas Turbine (AGT) program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbines will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
Competitive position of natural gas: industrial baking. Topical report, December 1986-January 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsker, B.S.; Salama, S.Y.
To quantify the competitive position of natural gas in industrial baking, market profiles were developed to define current technologies (single lap, tunnel, and Lanham ovens are predominant) and to characterize the applications and use of each technology in industrial baking. Important cost and performance parameters were identified and validated through interviews with industry representatives. Two areas of research that could improve technologies' effectiveness are advanced burner controls activated based on oven load that could reduce product loss, the largest coast associated with the oven, and cogeneration, which could penetrate the baking market if the high capital costs associated with existingmore » equipment could be reduced.« less
Advanced Diesel Oil Fuel Processor Development
1986-06-01
water exit 29 sample quencher: gas sample line inlet 30 sample quencher: gas sample line exit 31 sample quencher: cooling water inlet 32 desulfuriser ...exit line 33, 34 desulfurimer 35 heat exchanger: process gas exit (to desulfuriser ) 38 shift reactor inlet (top) 37 shift reactor: cooling air exit
A thermodynamic approach for advanced fuels of gas-cooled reactors
NASA Astrophysics Data System (ADS)
Guéneau, C.; Chatain, S.; Gossé, S.; Rado, C.; Rapaud, O.; Lechelle, J.; Dumas, J. C.; Chatillon, C.
2005-09-01
For both high temperature reactor (HTR) and gas cooled fast reactor (GFR) systems, the high operating temperature in normal and accidental conditions necessitates the assessment of the thermodynamic data and associated phase diagrams for the complex system constituted of the fuel kernel, the inert materials and the fission products. A classical CALPHAD approach, coupling experiments and thermodynamic calculations, is proposed. Some examples of studies are presented leading with the CO and CO 2 gas formation during the chemical interaction of [UO 2± x/C] in the HTR particle, and the chemical compatibility of the couples [UN/SiC], [(U, Pu)N/SiC], [(U, Pu)N/TiN] for the GFR system. A project of constitution of a thermodynamic database for advanced fuels of gas-cooled reactors is proposed.
Advanced optical blade tip clearance measurement system
NASA Technical Reports Server (NTRS)
Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.
1978-01-01
An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-01
The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.
2005-01-01
Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Barry B.; Bruffey, Stephanie H.; Jordan, Jacob A.
US regulations will require the removal of iodine and tritium, along with other volatile and semi-volatile radionuclides, from the off-gas streams of nuclear fuel reprocessing plants. Advanced tritium pretreatment (TPT) is an additional head-end operation that could be incorporated within nuclear fuel reprocessing plants. It utilizes nitrogen dioxide (NOR2R) as an oxidant to convert UOR2R to UR3ROR8R prior to traditional aqueous dissolution. Advanced TPT can result in the quantitative volatilization of both tritium and iodine. Up-front removal of iodine is of significant advantage because otherwise it distributes to several unit operations and the associated off-gas streams. The off-gas streams willmore » then require treatment to comply with US regulations. Advanced TPT is currently under development at Oak Ridge National Laboratory, and a kilogram-scale hot cell demonstration with used nuclear fuel (UNF) is planned for fiscal year (FY) 2018.« less
ERIC Educational Resources Information Center
Schafft, Kai A.; Borlu, Yetkin; Glenna, Leland
2013-01-01
Recent advances in gas and oil drilling technology have led to dramatic boomtown development in many rural areas that have endured extended periods of economic decline. In Pennsylvania's Marcellus gas fields, the recent development of unconventional shale gas resources has not been without controversy. It has been variously framed as a major…
Radiative Heat Transfer and Turbulence-Radiation Interactions in a Heavy-Duty Diesel Engine
NASA Astrophysics Data System (ADS)
Paul, C.; Sircar, A.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.
2016-11-01
Radiation in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method. DOE, NSF.
Radiative Heat Transfer modelling in a Heavy-Duty Diesel Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Chandan; Sircar, Arpan; Ferreyro-Fernandez, Sebastian
Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for amore » heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.« less
NASA Technical Reports Server (NTRS)
Costa, Gustavo C. C.; Zhu, Dongming
2016-01-01
CaO-MgO-Al2O3-SiO2 (CMAS) oxides are constituents in a broad number of materials and minerals which have recently inferred to discussions in materials science, planetary science, geochemistry and cosmochemistry communities. In materials science, there is increasing interest in the degradation studies of thermal (TBC) and environmental (EBC) barrier coatings of gas turbines by molten CMAS. These coatings have been explored to be applied on silicon-based ceramics and composites which are lighter and more temperature capable hot-section materials of gas turbines than the current Ni-based superalloys. The degradation of the coatings occurs when CMAS minerals carried by the intake air into gas turbines, e.g. in aircraft engines, reacts at high temperatures (1000C) with the coating materials. This causes premature failure of the static and rotating components of the turbine engines. We discuss some preliminary results of the reactions between CMAS and Rare-Earth (RE Y, Yb and Gd) oxide stabilized ZrO2 systems, and stability of the resulting oxides and silicates.
Cogeneration Technology Alternatives Study (CTAS). Volume 5: Cogeneration systems results
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
The use of various advanced energy conversion systems is examined and compared with each other and with current technology systems for savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. The methodology and results of matching the cogeneration energy conversion systems to approximately 50 industrial processes are described. Results include fuel energy saved, levelized annual energy cost saved, return on investment, and operational factors relative to the noncogeneration base cases.
Advanced nuclear thermal propulsion concepts
NASA Technical Reports Server (NTRS)
Howe, Steven D.
1993-01-01
In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.
Space Transportation Engine Program (STEP), phase B
NASA Technical Reports Server (NTRS)
1990-01-01
The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.
Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin
2016-01-01
The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.
40 CFR 86.521-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Analyzers used with petroleum fuels and liquefied petroleum gas-fuel shall be optimized using propane. Analyzers used with natural gas-fuel for measurement of hydrocarbons shall be optimized using methane. If a... gas-fuel. Alternate methods yielding equivalent results may be used, if approved in advance by the...
40 CFR 86.521-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Analyzers used with petroleum fuels and liquefied petroleum gas-fuel shall be optimized using propane. Analyzers used with natural gas-fuel for measurement of hydrocarbons shall be optimized using methane. If a... gas-fuel. Alternate methods yielding equivalent results may be used, if approved in advance by the...
40 CFR 86.521-90 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Analyzers used with petroleum fuels and liquefied petroleum gas-fuel shall be optimized using propane. Analyzers used with natural gas-fuel for measurement of hydrocarbons shall be optimized using methane. If a... gas-fuel. Alternate methods yielding equivalent results may be used, if approved in advance by the...
Rapid gas development in the Fayetteville shale basin, Arkansas
Advances in drilling and extraction of natural gas have resulted in rapid expansion of wells in shale basins. The rate of gas well installation in the Fayetteville shale is 774 wells a year since 2005 with thousands more planned. The Fayetteville shale covers 23,000 km2 although ...
Fuel-injector/air-swirl characterization
NASA Technical Reports Server (NTRS)
Mcvey, J. B.; Kennedy, J. B.; Bennett, J. C.
1985-01-01
The objectives of this program are to establish an experimental data base documenting the behavior of gas turbine engine fuel injector sprays as the spray interacts with the swirling gas flow existing in the combustor dome, and to conduct an assessment of the validity of current analytical techniques for predicting fuel spray behavior. Emphasis is placed on the acquisition of data using injector/swirler components which closely resemble components currently in use in advanced aircraft gas turbine engines, conducting tests under conditions that closely simulate or closely approximate those developed in actual combustors, and conducting a well-controlled experimental effort which will comprise using a combination of low-risk experiments and experiments requiring the use of state-of-the-art diagnostic instrumentation. Analysis of the data is to be conducted using an existing, TEACH-type code which employs a stochastic analysis of the motion of the dispersed phase in the turbulent continuum flow field.
Preface to the special issue on gas hydrate drilling in the Eastern Nankai Trough
Yamamoto, Koji; Ruppel, Carolyn D.
2015-01-01
Methane hydrate traps enormous amounts of methane in frozen deposits in continental margin sediments, and these deposits have long been targeted for studies investigating their potential as an energy resource. As a concentrated form of methane that occurs at shallower depths than conventional and most unconventional gas reservoirs, methane hydrates could be a readily accessible source of hydrocarbons for countries hosting deposits within their Exclusive Economic Zones. Japan is one such country, and since 2001 the Research Consortium for Methane Hydrate Resources in Japan (referred to as MH21) has conducted laboratory, modeling, and field-based programs to study methane hydrates as an energy resource. The MH21 consortium is funded by the Japanese Ministry of Trade and Industry (METI) and led by the Japan Oil, Gas and Metals National Oil Corporation (JOGMEC) and the National Institute of Advanced Industrial Science and Technology (AIST).
Intelligent Control and Health Monitoring. Chapter 3
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.
2009-01-01
Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.
Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines
NASA Astrophysics Data System (ADS)
Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.
2012-12-01
Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.
NASA Technical Reports Server (NTRS)
Bose, Deepak
2012-01-01
The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above
Application of the DART Code for the Assessment of Advanced Fuel Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Totev, T.
2007-07-01
The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO{sub 2}more » fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)« less
Chaohe, Yang; Xiaobo, Chen; Jinhong, Zhang; Chunyi, Li; Honghong, Shan
Two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process proposed by State Key Laboratory of Heavy oil Processing, China University of Petroleum, can remarkably enhance the propylene yield and minimize the dry gas and coke yields, and obtain high-quality light oils (gasoline and diesel). It has been commercialized since 2006. Up to now, three TMP commercial units have been put into production and other four commercial units are under design and construction. The commercial data showed that taking paraffinic based Daqing (China) atmospheric residue as the feedstock, the propylene yield reached 20.31 wt%, the liquid products yield (the total yield of liquefied petroleum gas, gasoline, and diesel) was 82.66 wt%, and the total yield of dry gas and coke was 14.28 wt%. Moreover, the research octane number of gasoline could be up to 96.
The line-emitting gas in active galaxies - A probe of the nuclear engine
NASA Technical Reports Server (NTRS)
Veilleux, Sylvain
1993-01-01
This paper reviews some of the basic questions regarding the structure of the engine powering active galactic nuclei (AGN), the nature of the interaction between the AGN and the host galaxy, and the origin and evolution of AGN. The study of the dynamics and physical characteristics of the line-emitting gas in these objects has proven fruitful in addressing many of these issues. Recent advances in optical and infrared detector technology combined with the development of superior ground-based instruments have produced efficient new tools for the study of the line-emitting gas on nuclear and Galactic scales. Programs which take advantage of two of these new techniques, Fabry-Perot imaging spectroscopy and infrared spectroscopy, are described in this paper. The origin of nuclear activity in galaxies is also addressed in a third project which aims at determining the nature of luminous infrared galaxies.
Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants
NASA Astrophysics Data System (ADS)
Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.
2017-12-01
Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the ratio of CH4 to CO2 in stack based emissions as it relates to our calculated emission rates and as compared to the same ratio for the emission factors.
Limited impact on decadal-scale climate change from increased use of natural gas.
McJeon, Haewon; Edmonds, Jae; Bauer, Nico; Clarke, Leon; Fisher, Brian; Flannery, Brian P; Hilaire, Jérôme; Krey, Volker; Marangoni, Giacomo; Mi, Raymond; Riahi, Keywan; Rogner, Holger; Tavoni, Massimo
2014-10-23
The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy-economy-climate systems, but the literature has been limited in either its geographic scope or its coverage of greenhouse gases. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models of energy-economy-climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from -0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy.
Development of ASTM Standard for SiC-SiC Joint Testing Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, George; Back, Christina
2015-10-30
As the nuclear industry moves to advanced ceramic based materials for cladding and core structural materials for a variety of advanced reactors, new standards and test methods are required for material development and licensing purposes. For example, General Atomics (GA) is actively developing silicon carbide (SiC) based composite cladding (SiC-SiC) for its Energy Multiplier Module (EM2), a high efficiency gas cooled fast reactor. Through DOE funding via the advanced reactor concept program, GA developed a new test method for the nominal joint strength of an endplug sealed to advanced ceramic tubes, Fig. 1-1, at ambient and elevated temperatures called themore » endplug pushout (EPPO) test. This test utilizes widely available universal mechanical testers coupled with clam shell heaters, and specimen size is relatively small, making it a viable post irradiation test method. The culmination of this effort was a draft of an ASTM test standard that will be submitted for approval to the ASTM C28 ceramic committee. Once the standard has been vetted by the ceramics test community, an industry wide standard methodology to test joined tubular ceramic components will be available for the entire nuclear materials community.« less
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1981-01-01
Compressor development, turbine, combustion, regenerator system, gearbox/transmission, ceramic material and component development, foil gas bearings, bearings and seals, rotor dynamics development, and controls and accessories are discussed.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.
Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary
NASA Technical Reports Server (NTRS)
Barna, G. J.; Burns, R. K.; Sagerman, G. D.
1980-01-01
Various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications were compared to provide information needed by DOE to establish research and development funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment as compared with purchasing electricity from a utility and providing process heat with an on-site boiler. Also included in the comparisons and evaluations are results extrapolated to the national level.
Cogeneration Technology Alternatives Study (CTAS). Volume 2: Comparison and evaluation of results
NASA Technical Reports Server (NTRS)
1984-01-01
CTAS compared and evaluated various advanced energy conversion systems that can use coal or coal-derived fuels for industrial cogeneration applications. The principal aim of the study was to provide information needed by DOE to establish research and development (R&D) funding priorities for advanced-technology systems that could significantly advance the use of coal or coal-derived fuels in industrial cogeneration. Steam turbines, diesel engines, open-cycle gas turbines, combined cycles, closed-cycle gas turbines, Stirling engines, phosphoric acid fuel cells, molten carbonate fuel cells, and thermionics were studied with technology advancements appropriate for the 1985-2000 time period. The various advanced systems were compared and evaluated for a wide diversity of representative industrial plants on the basis of fuel energy savings, annual energy cost savings, emissions savings, and rate of return on investment (ROI) as compared with purchasing electricity from a utility and providing process heat with an on-site boiler.
Refining of metallurgical-grade silicon
NASA Technical Reports Server (NTRS)
Dietl, J.
1986-01-01
A basic requirement of large scale solar cell fabrication is to provide low cost base material. Unconventional refining of metallurical grade silicon represents one of the most promising ways of silicon meltstock processing. The refining concept is based on an optimized combination of metallurgical treatments. Commercially available crude silicon, in this sequence, requires a first pyrometallurgical step by slagging, or, alternatively, solvent extraction by aluminum. After grinding and leaching, high purity qualtiy is gained as an advanced stage of refinement. To reach solar grade quality a final pyrometallurgical step is needed: liquid-gas extraction.
Absolute configuration of 2,2',3,3',6-pentachlorinatedbiphenyl (PCB 84) atropisomers.
Li, Xueshu; Parkin, Sean R; Lehmler, Hans-Joachim
2017-05-23
Nineteen polychlorinated biphenyl (PCB) congeners, such as 2,2',3,3',6-pentachlorobiphenyl (PCB 84), display axial chirality because they form stable rotational isomers, or atropisomers, that are non-superimposable mirror images of each other. Although chiral PCBs undergo atropselective biotransformation and atropselectively alter biological processes, the absolute structure of only a few PCB atropisomers has been determined experimentally. To help close this knowledge gap, pure PCB 84 atropisomers were obtained by semi-preparative liquid chromatography with two serially connected Nucleodex β-PM columns. The absolute configuration of both atropisomers was determined by X-ray single-crystal diffraction. The PCB 84 atropisomer eluting first and second on the Nucleodex β-PM column correspond to (aR)-(-)-PCB 84 and (aS)-(+)-PCB 84, respectively. Enantioselective gas chromatographic analysis with the β-cyclodextrin-based CP-Chirasil-Dex CB gas chromatography column showed the same elution order as the Nucleodex β-PM column. Based on earlier reports, the atropisomers eluting first and second on the BGB-172 gas chromatography column are (aR)-(-)-PCB 84 and (aS)-(+)-PCB 84, respectively. An inversion of the elution order is observed on the Cyclosil-B gas chromatography and Cellulose-3 liquid chromatography columns. These results advance the interpretation of environmental and human biomonitoring as well as toxicological studies.
NASA Technical Reports Server (NTRS)
Evans, D. G.; Miller, T. J.
1978-01-01
Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.
Gas turbine critical research and advanced technology (CRT) support project
NASA Technical Reports Server (NTRS)
Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.
1982-01-01
The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.
Ceramic Technology For Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-01
Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeff; Rylander, Matthew; Boemer, Jens
The fourth solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utilities Commission (CPUC) supported the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with data provided from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E) conducted research to determine optimal default settings for distributed energy resource advanced inverter controls. The inverter functions studied are aligned with those developed by the California Smart Inverter Working Group (SIWG) and those being considered by the IEEE 1547more » Working Group. The advanced inverter controls examined to improve the distribution system response included power factor, volt-var, and volt-watt. The advanced inverter controls examined to improve the transmission system response included frequency and voltage ride-through as well as Dynamic Voltage Support. This CSI RD&D project accomplished the task of developing methods to derive distribution focused advanced inverter control settings, selecting a diverse set of feeders to evaluate the methods through detailed analysis, and evaluating the effectiveness of each method developed. Inverter settings focused on the transmission system performance were also evaluated and verified. Based on the findings of this work, the suggested advanced inverter settings and methods to determine settings can be used to improve the accommodation of distributed energy resources (PV specifically). The voltage impact from PV can be mitigated using power factor, volt-var, or volt-watt control, while the bulk system impact can be improved with frequency/voltage ride-through.« less
The AGTSR consortium: An update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fant, D.B.; Golan, L.P.
1995-10-01
The Advanced Gas Turbine Systems Research (AGTSR) program is a collaborative University-Industry R&D Consortium that is managed and administered by the South Carolina Energy R&D Center. AGTSR is a nationwide consortium dedicated to advancing land-based gas turbine systems for improving future power generation capability. It directly supports the technology-research arm of the ATS program and targets industry-defined research needs in the areas of combustion, heat transfer, materials, aerodynamics, controls, alternative fuels, and advanced cycles. The consortium is organized to enhance U.S. competitiveness through close collaboration with universities, government, and industry at the R&D level. AGTSR is just finishing its thirdmore » year of operation and is sponsored by the U.S. DOE - Morgantown Energy Technology Center. The program is scheduled to continue past the year 2000. At present, there are 78 performing member universities representing 36 states, and six cost-sharing U.S. gas turbine corporations. Three RFP`s have been announced and the fourth RFP is expected to be released in December, 1995. There are 31 research subcontracts underway at performing member universities. AGTSR has also organized three workshops, two in combustion and one in heat transfer. A materials workshop is in planning and is scheduled for February, 1996. An industrial internship program was initiated this past summer, with one intern positioned at each of the sponsoring companies. The AGTSR consortium nurtures close industry-university-government collaboration to enhance synergism and the transition of research results, accelerate and promote evolutionary-revolutionary R&D, and strives to keep a prominent U.S. industry strong and on top well into the 21st century. This paper will present the objectives and benefits of the AGTSR program, progress achieved to date, and future planned activity in fiscal year 1996.« less
Advances in the Validation of Satellite-Based Maps of Volcanic Sulfur Dioxide Plumes
NASA Astrophysics Data System (ADS)
Realmuto, V. J.; Berk, A.; Acharya, P. K.; Kennett, R.
2013-12-01
The monitoring of volcanic gas emissions with gas cameras, spectrometer arrays, tethersondes, and UAVs presents new opportunities for the validation of satellite-based retrievals of gas concentrations. Gas cameras and spectrometer arrays provide instantaneous observations of the gas burden, or concentration along an optical path, over broad sections of a plume, similar to the observations acquired by nadir-viewing satellites. Tethersondes and UAVs provide us with direct measurements of the vertical profiles of gas concentrations within plumes. This presentation will focus on our current efforts to validate ASTER-based maps of sulfur dioxide plumes at Turrialba and Kilauea Volcanoes (located in Costa Rica and Hawaii, respectively). These volcanoes, which are the subjects of comprehensive monitoring programs, are challenging targets for thermal infrared (TIR) remote sensing due the warm and humid atmospheric conditions. The high spatial resolution of ASTER in the TIR (90 meters) allows us to map the plumes back to their source vents, but also requires us to pay close attention to the temperature and emissivity of the surfaces beneath the plumes. Our knowledge of the surface and atmospheric conditions is never perfect, and we employ interactive mapping techniques that allow us to evaluate the impact of these uncertainties on our estimates of plume composition. To accomplish this interactive mapping we have developed the Plume Tracker tool kit, which integrates retrieval procedures, visualization tools, and a customized version of the MODTRAN radiative transfer (RT) model under a single graphics user interface (GUI). We are in the process of porting the RT calculations to graphics processing units (GPUs) with the goal of achieving a 100-fold increase in the speed of computation relative to conventional CPU-based processing. We will report on our progress with this evolution of Plume Tracker. Portions of this research were conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a Single Downwind High-Frequency Gas Sensor With the tremendous advances in onshore oil and gas exploration and production (E&P) capability comes the realization that new tools are needed to support env...
Automotive gas turbine fuel control
NASA Technical Reports Server (NTRS)
Gold, H. (Inventor)
1978-01-01
A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.
2002-01-01
Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.
"Unresolved Complex Mixture" (UCM): A brief history of the term and moving beyond it.
Farrington, John W; Quinn, James G
2015-07-15
The term "Unresolved Complex Mixture" (UCM) has been used extensively for decades to describe a gas chromatographic characteristic indicative of the presence of fossil fuel hydrocarbons (mainly petroleum hydrocarbons) in hydrocarbons isolated from aquatic samples. We chronicle the origin of the term. While it is still a useful characteristic for screening samples, more modern higher resolution two dimensional gas chromatography and gas chromatography coupled with advanced mass spectrometry techniques (Time-of-Flight or Fourier Transform-Ion Cyclotron Resonance) should be employed for analyses of petroleum contaminated samples. This will facilitate advances in understanding of the origins, fates and effects of petroleum compounds in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David; ...
2016-10-13
In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David
In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less
THE ARMOUR DUST FUELED REACTOR (ADFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krucoff, D.
1958-01-01
The A-DFR is based on the use of a fissionable dust carried in a gas. This fuel ferm offers promise of a major economic advance through the use of 2,000 to 3,000 F operating temperatures and a low cost fuel cycle. The development program is described that was initiated to investigate experimentally the proposed fuel and study analytically other reactor characteristics. A brief review of the reactor concept is presented. (W.D.M.)
Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Per F. Peterson
2012-10-01
Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.
2016-09-01
An important advantage of solid oxide fuel cells (SOFC) as future systems for large scale power generation is the possibility of being efficiently integrated with processes for CO2 capture. Focusing on natural gas power generation, Part A of this work assessed the performances of advanced pressurised and atmospheric plant configurations (SOFC + GT and SOFC + ST, with fuel cell integration within a gas turbine or a steam turbine cycle) without CO2 separation. This Part B paper investigates such kind of power cycles when applied to CO2 capture, proposing two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs with internal reforming and low temperature CO2 separation process. The power plants are simulated at the 100 MW scale with a set of realistic assumptions about FC performances, main components and auxiliaries, and show the capability of exceeding 70% LHV efficiency with high CO2 capture (above 80%) and a low specific primary energy consumption for the CO2 avoided (1.1-2.4 MJ kg-1). Detailed results are presented in terms of energy and material balances, and a sensitivity analysis of plant performance is developed vs. FC voltage and fuel utilisation to investigate possible long-term improvements. Options for further improvement of the CO2 capture efficiency are also addressed.
STATUS REPORT: EVIDENCE BASED ADVANCES IN ...
This report summarizes the status of specific inhalation dosimetry procedures for gases as outlined in U.S. EPA’s 1994 Methods for Derivation of Inhalation Reference Concentrations and Applications of Inhalation Dosimetry (U.S. EPA 1994) and reviews recent scientific advances in gas dosimetry related to these procedures. These procedures are used predominately for interspecies extrapolation, typically from laboratory animal inhalation exposures to humans. The specific procedures addressed in this report are those used for the tracheobronchial (TB) and pulmonary (PU) regions of the respiratory tract and the procedure used for the systemic or extrarespiratory (ER) region. In addition, this report presents, reviews and discusses information and data on inhalation dosimetry in children and the adequacy of the procedures in the RfC Methods with regard to children. For the purposes of this report the scientific literature was searched from 1985 (about 10 years prior to the issuance of RfC Methods) to April 30, 2011. The studies identified in this update addressing overall concepts and approaches for portal-of-entry gas dosimetry in the TB and PU regions of the airways support the principles and procedures in RfC Methods. In some cases these studies suggest and provide examples of further refinement within the existing dosimetry modeling framework of the RfC Methods through development and application of mass transfer coefficients as regional measures of gas up
Characterization of the Paleoenvironmental Evolution of the Mallik Area From Gas Geochemistry Data
NASA Astrophysics Data System (ADS)
Wiersberg, T.; Erzinger, J.
2007-12-01
During drilling of the JAPEX/JNOC/GCS et al. Mallik Gas Hydrate Production Research wells (NWT, Canada), up to 35 vol-% CH4 were found in drill mud gas at 106 m depth within the permafrost. The carbon isotope composition of CH4 implies that this gas is of microbial origin (δ13C from -75‰ to - 77‰ PDB). Surprisingly, noble gas data suggest that at least some of this gas could be trapped in gas hydrates, at a depth distinctly shallower than the predicted gas hydrate stability field. Although microbes are capable of some metabolic activities at subzero temperatures, it is unlikely that production of methane under permafrost conditions can account for that amount of natural gas at this depth. Therefore, we suggest that the formation of this gas must have occurred under non-permafrost conditions. Furthermore, this gas reservoir was sealed from mixing with thermogenic gas, migrating from depth, which could be identified at the base of the permafrost at approx. 620m depth (δ13C=-42.5‰). We interpret the observed features by partially thawing of existing permafrost at least down to 106 m depth during a period of warming where the area was covered by a lake or by the ocean through inundation of the shoreline. Once the lake was drained or the shoreline was uplifted, the surface became again exposed to air and permafrost again developed on top of the unfrozen ground. As the permafrost gradually advanced downward, the water below was pressurized due to freezing and expansion of the newly formed ice, leading to pressure conditions that stabilize gas hydrates.
A Study on the Heat Flow Characteristics of IRSS
NASA Astrophysics Data System (ADS)
Cho, Yong-Jin; Ko, Dae-Eun
2017-11-01
The infrared signatures emitted from the hot waste gas generated by the combustion engine and generator of a naval ship and from the metal surface around the funnel are the targets of the enemy threatening weapon system, thereby reducing the survivability of the ship. Such infrared signatures are reduced by installing an infrared signature suppression system (IRSS) in the naval ship. An IRSS consists of three parts: an eductor that creates a turbulent flow in the waste gas, a mixing tube that mixes the waste gas with the ambient air, and a diffuser that forms an air film using the pressure difference between the waste gas and the outside air. This study analyzed the test model of the IRSS developed by an advanced company and, based on this, conducted heat flow analyses as a basic study to improve the performance of the IRSS. The results were compared and analyzed considering various turbulence models. As a result, the temperatures and velocities of the waste gas at the eductor inlet and the diffuser outlet as well as the temperature of the diffuser metal surface were obtained. It was confirmed that these results were in good agreement with the measurement results of the model test.
Morkötter, S; Jeon, N; Rudolph, D; Loitsch, B; Spirkoska, D; Hoffmann, E; Döblinger, M; Matich, S; Finley, J J; Lauhon, L J; Abstreiter, G; Koblmüller, G
2015-05-13
Strong surface and impurity scattering in III-V semiconductor-based nanowires (NW) degrade the performance of electronic devices, requiring refined concepts for controlling charge carrier conductivity. Here, we demonstrate remote Si delta (δ)-doping of radial GaAs-AlGaAs core-shell NWs that unambiguously exhibit a strongly confined electron gas with enhanced low-temperature field-effect mobilities up to 5 × 10(3) cm(2) V(-1) s(-1). The spatial separation between the high-mobility free electron gas at the NW core-shell interface and the Si dopants in the shell is directly verified by atom probe tomographic (APT) analysis, band-profile calculations, and transport characterization in advanced field-effect transistor (FET) geometries, demonstrating powerful control over the free electron gas density and conductivity. Multigated NW-FETs allow us to spatially resolve channel width- and crystal phase-dependent variations in electron gas density and mobility along single NW-FETs. Notably, dc output and transfer characteristics of these n-type depletion mode NW-FETs reveal excellent drain current saturation and record low subthreshold slopes of 70 mV/dec at on/off ratios >10(4)-10(5) at room temperature.
Sun, Zhibing; Yu, Shihang; Zhao, Lili; Wang, Jifeng; Li, Zifeng; Li, Gang
2018-05-22
This work reports on the design and fabrication of a proton conductive 2D MOF, [Cu(p-IPhHIDC)]n (1) (p-IPhH3IDC = 2-(p-N-imidazol-1-yl)-phenyl-1H-imidazole-4,5dicarboxylic acid) as an advanced ammonia impedance sensor at room temperature and 68-98% RHs. MOF 1 shows the optimized proton conductivity value of 1.51 × 10-3 S·cm-1 at 100 C and 98% RH. Its temperature-dependent and humidity-dependent proton conduction properties have been explored. The large amount of uncoordinated carboxylate groups between the layers play a vital role in the resultant conductivity. Distinctly, the fabricated MOF-based sensor displays the required stability to NH3, enhanced sensitivity and notable selectivity to NH3 gas. At room temperature and 68% RH, it indicates a remarkable gas response of 8620% to 130 ppm of NH3 gas and lower detection limit (2 ppm) towards NH3 gas. It is also found that the gas response of the ammonia sensor increases linearly with the increase of NH3 gas concentration under 68-98% RHs and room temperature. Moreover, the sensor indicates excellent reversibility and selectivity toward NH3 vs N2, H2, O2, CO, CO2, benzene and MeOH. Based on structural analyses, activation energy calculations, water and NH3 vapor absorptions, and PXRD determinations, the proton conduction and NH3 sensing mechanisms are suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alternative Fuels Data Center: Natural Gas Vehicle Availability
options for converting conventional vehicles to run on natural gas. Pre-Owned Vehicles Learn about buying and selling pre-owned alternative fuel and advanced technology vehicles. More Information For more
Progress in Evaluating Quantitative Optical Gas Imaging
Development of advanced fugitive emission detection and assessment technologies that facilitate cost effective leak and malfunction mitigation strategies is an ongoing goal shared by industry, regulators, and environmental groups. Optical gas imaging (OGI) represents an importan...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing processmore » that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.« less
Practical measures for reducing the risk of environmental contamination in shale energy production.
Ziemkiewicz, Paul; Quaranta, John D; McCawley, Michael
2014-07-01
Gas recovery from shale formations has been made possible by advances in horizontal drilling and hydraulic fracturing technology. Rapid adoption of these methods has created a surge in natural gas production in the United States and increased public concern about its environmental and human health effects. We surveyed the environmental literature relevant to shale gas development and studied over fifteen well sites and impoundments in West Virginia to evaluate pollution caused by air emissions, light and noise during drilling. Our study also characterized liquid and solid waste streams generated by drilling and hydraulic fracturing and evaluated the integrity of impoundments used to store fluids produced by hydraulic fracturing. While most shale gas wells are completed with little or no environmental contamination, we found that many of the problems associated with shale gas development resulted from inattention to accepted engineering practices such as impoundment construction, improper liner installation and a lack of institutional controls. Recommendations are provided based on the literature and our field studies. They will address not all but a great many of the deficiencies that result in environmental release of contaminants from shale gas development. We also identified areas where new technologies are needed to fully address contaminant releases to air and water.
Gas-solid fluidized bed reactors: Scale-up, flow regimes identification and hydrodynamics
NASA Astrophysics Data System (ADS)
Zaid, Faraj Muftah
This research studied the scale-up, flow regimes identification and hydrodynamics of fluidized beds using 6-inch and 18- inch diameter columns and different particles. One of the objectives was to advance the scale-up of gas-solid fluidized bed reactors by developing a new mechanistic methodology for hydrodynamic similarity based on matching the radial or diameter profile of gas phase holdup, since gas dynamics dictate the hydrodynamics of these reactors. This has been successfully achieved. However, the literature reported scale-up methodology based on matching selected dimensionless groups was examined and it was found that it was not easy to match the dimensionless groups and hence, there was some deviation in the hydrodynamics of the studied two different fluidized beds. A new technique based on gamma ray densitometry (GRD) was successfully developed and utilized to on-line monitor the implementation of scale-up, to identify the flow regime, and to measure the radial or diameter profiles of gas and solids holdups. CFD has been demonstrated as a valuable tool to enable the implementation of the newly developed scale-up methodology based on finding the conditions that provide similar or closer radial profile or cross sectional distribution of the gas holdup. As gas velocity increases, solids holdup in the center region of the column decreases in the fully developed region of both 6 inch and 18 inch diameter columns. Solids holdup increased with the increase in the particles size and density. Upflowing particles velocity increased with the gas velocity and became steeper at high superficial gas velocity at all axial heights where the center line velocity became higher than that in the wall region. Smaller particles size and lower density gave larger upflowing particles velocity. Minimum fluidization velocity and transition velocity from bubbly to churn turbulent flow regimes were found to be lower in 18 inch diameter column compared to those obtained in 6 inch diameter column. Also the absolute fluctuation of upflowing particles velocity multiplied by solids holdups vś 3ś as one of the terms for solids mass flux estimation was found to be larger in 18-inch diameter column than that in 6-inch diameter column using same particles size and density.
Burger, Jessica L; Lovestead, Tara M; Bruno, Thomas J
2016-03-17
As the sources of natural gas become more diverse, the trace constituents of the C 6 + fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C 6 + fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C 6 + fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C 6 + fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one "bundle," or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes.
Automotive technology status and projections. Volume 2: Assessment report
NASA Technical Reports Server (NTRS)
Dowdy, M.; Burke, A.; Schneider, H.; Edmiston, W.; Klose, G. J.; Heft, R.
1978-01-01
Current and advanced conventional engines, advanced alternative engines, advanced power train components, and other energy conserving automobile modifications which could be implemented by the end of this century are examined. Topics covered include gas turbine engines, Stirling engines, advanced automatic transmissions, alternative fuels, and metal and ceramic technology. Critical problems are examined and areas for future research are indicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debasisbanerjee, Debasis; Simon, Cory; Elsaidi, Sameh
The global demand for Xe, a noble gas with applications in electronics, lighting, and the medical industry, is expected to rise significantly over the coming decades. However, the low abundance of Xe in the earth’s atmosphere and the costly cryogenic distillation process that is used to obtain Xe commercially via air separation have limited the scale of applications of Xe. A physisorption-based separation using porous materials may be a viable and cost-effective alternative to cryogenic distillation. In particular, metal-organic frameworks (MOFs) have shown promise as highly Xe-selective, porous solids. In this review, we detail the recent advances of MOFs asmore » adsorbents for noble gas adsorption/separation and the role of computer simulation in finding optimal materials for Xe adsorption.« less
Static Chemistry in Disks or Clouds
NASA Astrophysics Data System (ADS)
Semenov, D.; Wiebe, D.
2006-11-01
This FORTRAN77 code can be used to model static, time-dependent chemistry in ISM and circumstellar disks. Current version is based on the OSU'06 gas-grain astrochemical network with all updates to the reaction rates, and includes surface chemistry from Hasegawa & Herbst (1993) and Hasegawa, Herbst, and Leung (1992). Surface chemistry can be modeled either with the standard rate equation approach or modified rate equation approach (useful in disks). Gas-grain interactions include sticking of neutral molecules to grains, dissociative recombination of ions on grains as well as thermal, UV, X-ray, and CRP-induced desorption of frozen species. An advanced X-ray chemistry and 3 grain sizes with power-law size distribution are also included. An deuterium extension to this chemical model is available.
NASA Technical Reports Server (NTRS)
Escher, W. J. D.; Donakowski, T. D.; Tison, R. R.
1975-01-01
An advanced nuclear-electrolytic hydrogen-production facility concept was synthesized at a conceptual level with the objective of minimizing estimated hydrogen-production costs. The concept is a closely-integrated, fully-dedicated (only hydrogen energy is produced) system whose components and subsystems are predicted on ''1985 technology.'' The principal components are: (1) a high-temperature gas-cooled reactor (HTGR) operating a helium-Brayton/ammonia-Rankine binary cycle with a helium reactor-core exit temperature of 980 C, (2) acyclic d-c generators, (3) high-pressure, high-current-density electrolyzers based on solid-polymer electrolyte technology. Based on an assumed 3,000 MWt HTGR the facility is capable of producing 8.7 million std cu m/day of hydrogen at pipeline conditions, 6,900 kPa. Coproduct oxygen is also available at pipeline conditions at one-half this volume. It has further been shown that the incorporation of advanced technology provides an overall efficiency of about 43 percent, as compared with 25 percent for a contemporary nuclear-electric plant powering close-coupled contemporary industrial electrolyzers.
Advanced structural analysis of nanoporous materials by thermal response measurements.
Oschatz, Martin; Leistner, Matthias; Nickel, Winfried; Kaskel, Stefan
2015-04-07
Thermal response measurements based on optical adsorption calorimetry are presented as a versatile tool for the time-saving and profound characterization of the pore structure of porous carbon-based materials. This technique measures the time-resolved temperature change of an adsorbent during adsorption of a test gas. Six carbide and carbon materials with well-defined nanopore architecture including micro- and/or mesopores are characterized by thermal response measurements based on n-butane and carbon dioxide as the test gases. With this tool, the pore systems of the model materials can be clearly distinguished and accurately analyzed. The obtained calorimetric data are correlated with the adsorption/desorption isotherms of the materials. The pore structures can be estimated from a single experiment due to different adsorption enthalpies/temperature increases in micro- and mesopores. Adsorption/desorption cycling of n-butane at 298 K/1 bar with increasing desorption time allows to determine the pore structure of the materials in more detail due to different equilibration times. Adsorption of the organic test gas at selected relative pressures reveals specific contributions of particular pore systems to the increase of the temperature of the samples and different adsorption mechanisms. The use of carbon dioxide as the test gas at 298 K/1 bar provides detailed insights into the ultramicropore structure of the materials because under these conditions the adsorption of this test gas is very sensitive to the presence of pores smaller than 0.7 nm.
Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung
2017-09-13
A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al 0.27 GaN 0.73 (∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO 2 , SO 2 , and HCHO gases exhibit high sensitivity (0.88-1.88 ppm -1 ), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.
Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.
Yang, Yiming; Li, Jian; He, Hong
2017-08-24
The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.
Structures, performance, benefit, cost study. [gas turbine engines
NASA Technical Reports Server (NTRS)
Feder, E.
1981-01-01
Aircraft engine structures were studied to identify the advanced structural technologies that would provide the most benefits to future aircraft operations. A series of studies identified engine systems with the greatest potential for improvements. Based on these studies, six advanced generic structural concepts were selected and conceptually designed. The benefits of each concept were quantitatively assessed in terms of thrust specific fuel consumption, weight, cost, maintenance cost, fuel burned and direct operating cost plus interest. The probability of success of each concept was also determined. The concepts were ranked and the three most promising were selected for further study which consisted of identifying and comprehensively outlining the advanced technologies required to develop these concepts for aircraft engine application. Analytic, fabrication, and test technology developments are required. The technology programs outlined emphasize the need to provide basic, fundamental understanding of technology to obtain the benefit goals.
Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development
NASA Technical Reports Server (NTRS)
Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber
2012-01-01
Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.
NASA Technical Reports Server (NTRS)
Corman, J. C.
1976-01-01
A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.
Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.
2009-01-01
Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.
Advanced ceramic materials for next-generation nuclear applications
NASA Astrophysics Data System (ADS)
Marra, John
2011-10-01
The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Striolo, Alberto; Cole, David R.
Because of a number of technological advancements, unconventional hydrocarbons, and in particular shale gas, have transformed the US economy. Much is being learned, as demonstrated by the reduced cost of extracting shale gas in the US over the past five years. However, a number of challenges still need to be addressed. Many of these challenges represent grand scientific and technological tasks, overcoming which will have a number of positive impacts, ranging from the reduction of the environmental footprint of shale gas production to improvements and leaps forward in diverse sectors, including chemical manufacturing and catalytic transformations. This review addresses recentmore » advancements in computational and experimental approaches, which led to improved understanding of, in particular, structure and transport of fluids, including hydrocarbons, electrolytes, water, and CO 2 in heterogeneous subsurface rocks such as those typically found in shale formations. Finally, the narrative is concluded with a suggestion of a few research directions that, by synergistically combining computational and experimental advances, could allow us to overcome some of the hurdles that currently hinder the production of hydrocarbons from shale formations.« less
Development of Improved Iron-Aluminide Filter Tubes and Elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkins, R.R.; Sutton, T.G.; Miller, C.J.
2008-01-14
The purpose of this Cooperative Research and Development Agreement (CRADA) was to explore and develop advanced manufacturing techniques to fabricate sintered iron-aluminide intermetallic porous bodies used for gas filtration so as to reduce production costs while maintaining or improving performance in advanced coal gasification and combustion systems. The use of a power turbine fired with coal-derived synthesis gas requires some form of gas cleaning in order to protect turbine and downstream components from degradation by erosion, corrosion, and/or deposition. Hot-gas filtration is one form of cleaning that offers the ability to remove particles from the gases produced by gasification processesmore » without having to substantially cool and, possibly, reheat them before their introduction into the turbine. This technology depends critically on materials durability and reliability, which have been the subject of study for a number of years.« less
Executive Summary Environmentally responsible development of oil and gas assets requires well-developed emissions inventories and measurement techniques to verify emissions and the effectiveness of control strategies. To accurately model the oil and gas sector impacts on air qual...
Environmentally responsible development of oil and gas assets in the United States is facilitated by advancement of sector-specific air pollution emission measurement and modeling tools. Emissions from upstream oil and gas production are complex in nature due to the variety of e...
Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research.
Mychaskiw, George
2011-09-06
Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology"Any sufficiently advanced technology is indistinguishable from magic".-Arthur C. Clarke.
Advanced Gas Turbine (AGT) Technology Project
NASA Technical Reports Server (NTRS)
1984-01-01
Technical work on the design and effort leading to the testing of a 74.5 kW (100 hp) automotive gas turbine engine is reviewed. Development of the engine compressor, gasifier turbine, power turbine, combustor, regenerator, and secondary system is discussed. Ceramic materials development and the application of such materials in the gas turbine engine components is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, Gokhan; Jayaraman, Ambalavanan; Dietz, Steven
In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO 2 from the flue gas. The sorbent exhibits a much higher affinity for CO 2 than N 2, H 2O or O 2, enabling effective CO 2 separation from the flue gas. We also carried out a detailed process design and analysis ofmore » the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO 2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO 2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO 2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO 2 captured for TDA’s VSA based system is $38.90 and $39.71 per tonne compared to $65.46 and $66.56 per tonne for amine based system on 2011 $ basis, providing 40% lower cost of CO 2 captured. In this analysis we have used a sorbent life of 4 years. If a longer sorbent life can be maintained (which is not unreasonable for fixed bed commercial PSA systems), this would lower the cost of CO 2 captured by $0.05 per tonne (e.g., to $38.85 and $39.66 per tonne at 5 years sorbent replacement). These system analysis results suggest that TDA’s VSA-based post-combustion capture technology can substantially improve the power plant’s thermal performance while achieving near zero emissions, including greater than 90% carbon capture. The higher net plant efficiency and lower capital and operating costs results in a substantial reduction in the cost of carbon capture and cost of electricity for the power plant equipped with TDA’s technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. J. Palmer; DC Haggard; J. W. Herter
High temperature gas reactor experiments create unique challenges for thermocouple based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B); and tungsten-rhenium thermocouples (Types C and W). For lower temperature applications, previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type Nmore » thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of these Nickel based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past ten years, three long-term Advanced Gas Reactor (AGR) experiments have been conducted with measured temperatures ranging from 700oC – 1200oC. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out of pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150oC and 1200oC for 2000 hours at each temperature, followed by 200 hours at 1250oC, and 200 hours at 1300oC. The standard Type N design utilizes high purity crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard fired alumina insulation and molybdenum sheath. The most current version of the High Temperature Irradiation Resistant Thermocouple (HTIR-TC) based on molybdenum/niobium alloys, and developed at Idaho National Laboratory, was also tested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, A. J.; Haggard, DC; Herter, J. W.
High temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time-dependent change in composition and, as a consequence, a time-dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B) and tungsten-rhenium thermocouples (Type C). For lower temperature applications, previous experiences with Type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly, Type N thermocouples are expected to bemore » only slightly affected by neutron fluence. Currently, the use of these nickel-based thermocouples is limited when the temperature exceeds 1000 deg. C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past 10 years, three long-term Advanced Gas Reactor experiments have been conducted with measured temperatures ranging from 700 deg. C - 1200 deg. C. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out-of-pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150 deg. C and 1200 deg. C for 2,000 hours at each temperature, followed by 200 hours at 1250 deg. C and 200 hours at 1300 deg. C. The standard Type N design utilizes high purity, crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including a Haynes 214 alloy sheath, spinel (MgAl{sub 2}O{sub 4}) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard-fired alumina insulation and a molybdenum sheath. The most current version of the High Temperature Irradiation Resistant Thermocouple, based on molybdenum/niobium alloys and developed at Idaho National Laboratory, was also tested. (authors)« less
Promises of advanced technology realized at Martin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanekamp, R.
1996-09-01
The 2,488-MW Martin station is a gas/oil-fired facility that embodies today`s demand for flexible operations, technological advances, and reduced production costs. Martin station first rose up from the Everglades in the early 1980s, with the construction of two 814-MW oil-fired steam plants, Units 1 and 2. Natural-gas-firing capability was added to the balanced-draft, natural-circulation boilers in 1986, increasing the station`s fuel flexibility. Martin then leaped into the headlines in the early 1990s when it added combined-cycle (CC) Units 3 and 4. With this 860-MW expansion, FP and L boldly became the fleet leader for the advanced, 2350F-class 7FA gas turbines.more » Further pushing he technology envelope, the CC includes a three-pressure reheat steam system that raises net plant efficiency for Units 3 and 4 to 54%, on a lower-heating-value (LHV) basis. Incorporating the reheat cycle required significant redesign of the gas-turbine/heat-recovery steam generator (HRSG) train, in order to maintain a rapid startup capability without exceeding metallurgical limits. Perhaps even more important than the technological achievements, Martin stands out from the crowd for its people power, which ensured that the promises of advanced technology actually came to fruition. This station`s aggressive, empowered O and M team shows that you can pioneer technology, reduce operating costs, and deliver high availability--all at the same time.« less
Technology for reducing aircraft engine pollution
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Kempke, E. E., Jr.
1975-01-01
Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA
2010-02-23
Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.
Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA
2011-03-01
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.
2013-09-03
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Thomas; Kataria, Atish; Soukri, Mustapha
It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less
1998 Technology Showcase. JOAP International Condition Monitoring Conference.
1998-04-01
Systems using Automated SEM/ EDX and New Diagnostic Routines 276 N. W Farrant & T. Luckhurst ADVANCED DIAGNOSTIC SYSTEMS Model-Based Diagnostics of Gas...Microscopy with Energy Dispersive X-Ray (SEM/ EDX ) micro analysis packages and Energy Dispersive X-Ray Fluorescence (EDXRF) analytical equipment. Therqfore...wear particles separated by ferrogram method. a- I WEAR PARTICLE A SLAS 97 (HOME PAGE) Fig I Home Page NONFE;RROUS MATERIAL A wW~ a48 -1, rV fr , ý b
Cold Flow Testing of a Modified Subscale Model Exhaust System for a Space Based Laser
2004-06-01
Abstract The aim of this research was a continued study of gas-dynamic phenomena that occurred in a set of stacked nozzles as reported by Captains...join the vacuum and test sections. The goals of this research were two fold; first, modify the original scale-model of the stacked cylindrical...Defense Advanced Research Projects Agency (DARPA), in conjunction with the Airborne Laser Laboratory, have studied the use of an Airborne Laser (ABL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fidler, Courtney, E-mail: crfidler@gmail.com; Noble, Bram, E-mail: b.noble@usask.ca
2012-04-15
Abstract: Strategic environmental assessment (SEA) for offshore oil and gas planning and development is utilized in select international jurisdictions, but the sector has received limited attention in the SEA literature. While the potential benefits of and rationale for SEA are well argued, there have been few empirical studies of SEA processes for the offshore sector. Hence, little is known about the efficacy of SEA offshore, in particular its influence on planning and development decisions. This paper examines SEA practice and influence in three international offshore systems: Norway, Atlantic Canada and the United Kingdom, with the intent to identify the challenges,more » lessons and opportunities for advancing SEA in offshore planning and impact assessment. Results demonstrate that SEA can help inform and improve the efficacy and efficiency of project-based assessment in the offshore sector, however weak coordination between higher and lower tiers limit SEA's ability to influence planning and development decisions in a broad regional environmental and socioeconomic context. - Highlights: Black-Right-Pointing-Pointer SEA can inform and improve the efficacy and efficiency of project EA offshore Black-Right-Pointing-Pointer Scope and deliverables of SEA offshore often differ from stakeholder expectations Black-Right-Pointing-Pointer Considerable variability in influence of SEA output beyond licensing decisions Black-Right-Pointing-Pointer Sector-based SEA offshore is often too restrictive to generate expected benefits.« less
Deep ultraviolet semiconductor light sources for sensing and security
NASA Astrophysics Data System (ADS)
Shatalov, Max; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis
2009-09-01
III-Nitride based deep ultraviolet (DUV) light emitting diodes (LEDs) rapidly penetrate into sensing market owing to several advantages over traditional UV sources (i.e. mercury, xenon and deuterium lamps). Small size, a wide choice of peak emission wavelengths, lower power consumption and reduced cost offer flexibility to system integrators. Short emission wavelength offer advantages for gas detection and optical sensing systems based on UV induced fluorescence. Large modulation bandwidth for these devices makes them attractive for frequency-domain spectroscopy. We will review present status of DUV LED technology and discuss recent advances in short wavelength emitters and high power LED lamps.
Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.
Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout
2012-03-15
Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.
Minnesota agripower project. Quarterly report, April--June 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baloun, J.
The Minnesota Valley Alfalfa Producers (MnVAP) propose to build an alfalfa processing plant integrated with an advanced power plant system at the Granite Falls, Minnesota Industrial Park to provide 75 MW of base load electric power and a competitively priced source of value added alfalfa based products. This project will utilize air blown fluidized bed gasification technology to process alfalfa stems and another biomass to produce a hot, clean, low heating value gas that will be used in a gas turbine. Exhaust heat from the gas turbine will be used to generate steam to power a steam turbine and providemore » steam for the processing of the alfalfa leaf into a wide range of products including alfalfa leaf meal, a protein source for livestock. The plant will demonstrate high efficiency and environmentally compatible electric power production, as well as increased economic yield from farm operations in the region. The initial phase of the Minnesota Agripower Project (MAP) will be to perform alfalfa feedstock testing, prepare preliminary designs, and develop detailed plans with estimated costs for project implementation. The second phase of MAP will include detailed engineering, construction, and startup. Full commercial operation will start in 2001.« less
Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Chandan; Sircar, Arpan; Ferreyro-Fernandez, Sebastian
Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for amore » full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.« less
Advanced secondary batteries: Their applications, technological status, market and opportunity
NASA Astrophysics Data System (ADS)
Yao, M.
1989-03-01
Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.
Burger, Jessica L.; Lovestead, Tara M.; Bruno, Thomas J.
2017-01-01
As the sources of natural gas become more diverse, the trace constituents of the C6+ fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C6+ fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C6+ fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C6+ fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one “bundle,” or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes. PMID:29332993
Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research
2011-01-01
Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology "Any sufficiently advanced technology is indistinguishable from magic". -Arthur C. Clarke PMID:22146602
Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio
2018-03-01
The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of an opsonophagocytic killing assay for group a streptococcus.
Jones, Scott; Moreland, Nicole J; Zancolli, Marta; Raynes, Jeremy; Loh, Jacelyn M S; Smeesters, Pierre R; Sriskandan, Shiranee; Carapetis, Jonathan R; Fraser, John D; Goldblatt, David
2018-05-15
Group A Streptococcus (GAS) or Streptococcus pyogenes is responsible for an estimated 500,000 deaths worldwide each year. Protection against GAS infection is thought to be mediated by phagocytosis, enhanced by bacteria-specific antibody. There are no licenced GAS vaccines, despite many promising candidates in preclinical and early stage clinical development, the most advanced of which are based on the GAS M-protein. Vaccine progress has been hindered, in part, by the lack of a standardised functional assay suitable for vaccine evaluation. Current assays, developed over 50 years ago, rely on non-immune human whole blood as a source of neutrophils and complement. Variations in complement and neutrophil activity between donors result in variable data that is difficult to interpret. We have developed an opsonophagocytic killing assay (OPKA) for GAS that utilises dimethylformamide (DMF)-differentiated human promyelocytic leukemia cells (HL-60) as a source of neutrophils and baby rabbit complement, thus removing the major sources of variation in current assays. We have standardised the OPKA for several clinically relevant GAS strain types (emm1, emm6 and emm12) and have shown antibody-specific killing for each emm-type using M-protein specific rabbit antisera. Specificity was demonstrated by pre-incubation of the antisera with homologous M-protein antigens that blocked antibody-specific killing. Additional qualifications of the GAS OPKA, including the assessment of the accuracy, precision, linearity and the lower limit of quantification, were also performed. This GAS OPKA assay has the potential to provide a robust and reproducible platform to accelerate GAS vaccine development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Turbulence modeling of gas-solid suspension flows
NASA Technical Reports Server (NTRS)
Chen, C. P.
1988-01-01
The purpose here is to discuss and review advances in two-phase turbulent modeling techniques and their applications in various gas-solid suspension flow situations. In addition to the turbulence closures, heat transfer effect, particle dispersion and wall effects are partially covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Michael; Petti, D. A.
The United States Department of Energy’s Advanced Reactor Technologies (ART) Program will irradiate up to six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments are being irradiated over an approximate eight year period to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Very High Temperature Gasmore » Reactor (VHTR), as well as other future gas reactors. The experiments each consist of a single capsule that contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens are not be subjected to a compressive load during irradiation. The six stacks have differing compressive loads applied to the top half of diametrically opposite pairs of specimen stacks. A seventh specimen stack in the center of the capsule does not have a compressive load. The specimens are being irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There are also samples taken of the sweep gas effluent to measure any oxidation or off-gassing of the specimens that may occur during initial start-up of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. The third experiment, AGC-3, started its irradiation in late November 2012 and completed in the April of 2014. AGC-4 is currently being irradiated in the ATR. This paper will briefly discuss the preliminary irradiation results of the AGC-4 experiment, as well as the design of AGC-5.« less
Johnson Noise Thermometry in the range 505 K to 933 K
NASA Astrophysics Data System (ADS)
Tew, Weston; Labenski, John; Nam, Sae Woo; Benz, Samuel; Dresselhaus, Paul; Martinis, John
2006-03-01
The International Temperature Scale of 1990 (ITS-90) is an artifact-based temperature scale, T90, designed to approximate thermodynamic temperature T. The thermodynamic errors of the ITS-90, characterized as the value of T-T90, only recently have been quantified by primary thermodynamic methods. Johnson Noise Thermometry (JNT) is a primary method which can be applied over wide temperature ranges, and NIST is currently using JNT to determine T-T90 in the range 505 K to 933 K, overlapping both acoustic gas-based and radiation-based thermometry. Advances in digital electronics have now made the computationally intensive processing required for JNT viable using noise voltage correlation in the frequency domain. We have also optimized the design of the 5-wire JNT temperature probes to minimize electromagnetic interference and transmission line effects. Statistical uncertainties under 50 μK/K are achievable using relatively modest bandwidths of ˜100 kHz. The NIST JNT system will provide critical data for T-T90 linking together the highly accurate acoustic gas-based data at lower temperatures with the higher-temperature radiation-based data, forming the basis for a new International Temperature Scale with greatly improved thermodynamic accuracy.
A review of NASA's propulsion programs for aviation
NASA Technical Reports Server (NTRS)
Stewart, W. L.; Johnson, H. W.; Weber, R. J.
1978-01-01
A review of five NASA engine-oriented propulsion programs of major importance to civil aviation are presented and discussed. Included are programs directed at exploring propulsion system concepts for (1) energy conservation subsonic aircraft (improved current turbofans, advanced turbofans, and advanced turboprops); (2) supersonic cruise aircraft (variable cycle engines); (3) general aviation aircraft (improved reciprocating engines and small gas turbines); (4) powered lift aircraft (advanced turbofans); and (5) advanced rotorcraft.
Optimize Flue Gas Settings to Promote Microalgae Growth in Photobioreactors via Computer Simulations
He, Lian; Chen, Amelia B; Yu, Yi; Kucera, Leah; Tang, Yinjie
2013-01-01
Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions1. Microalgae not only capture solar energy more efficiently than plants3, but also synthesize advanced biofuels2-4. Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth5. On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient “flue gas to algae” system. Researchers have proposed different photobioreactor configurations4,6 and cultivation strategies7,8 with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation. PMID:24121788
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
SiC Recession Due to SiO2 Scale Volatility Under Combustor Conditions
NASA Technical Reports Server (NTRS)
Robinson, Raymond Craig
1997-01-01
One of today's most important and challenging technological problems is the development of advanced materials and processes required to design and build a fleet of supersonic High Speed Civil Transport (HSCT) airliners, a follow-up to the Concorde SST. The innovative combustor designs required for HSCT engines will need high-temperature materials with long-term environmental stability. Higher combustor liner temperatures than today's engines and the need for lightweight materials will require the use of advanced ceramic-matrix composites (CMC's) in hot-section components. The HSCT is just one example being used to demonstrate the need for such materials. This thesis evaluates silicon carbide (SiC) as a potential base material for HSCT and other similar applications. Key issues are the environmental durability for the materials of interest. One of the leading combustor design schemes leads to an environment which will contain both oxidizing and reducing gas mixtures. The concern is that these environments may affect the stability of the silica (SiO2) scale on which SiC depends for environmental protection. A unique High Pressure Burner Rig (HPBR) was developed to simulate the combustor conditions of future gas turbine engines, and a series of tests were conducted on commercially available SiC material. These tests are intended as a feasibility study for the use of these materials in applications such as the HSCT. Linear weight loss and surface recession of the SiC is observed as a result of SiO2 volatility for both fuel-lean and fuel-rich gas mixtures. These observations are compared and agree well with thermogravimetric analysis (TGA) experiments. A strong Arrhenius-type temperature dependence exists. In addition, the secondary dependencies of pressure and gas velocity are defined. As a result, a model is developed to enable extrapolation to points outside the experimental space of the burner rig, and in particular, to potential gas turbine engine conditions.
Handheld hyperspectral imager for standoff detection of chemical and biological aerosols
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele; Jensen, James O.; McAnally, Gerard
2004-08-01
Pacific Advanced Technology has developed a small hand held imaging spectrometer, Sherlock, for gas leak and aerosol detection and imaging. The system is based on a patented technique, (IMSS Image Multi-spectral Sensing), that uses diffractive optics and image processing algorithms to detect spectral information about objects in the scene of the camera. This cameras technology has been tested at Dugway Proving Ground and Dstl Porton Down facilities looking at Chemical and Biological agent simulants. In addition to Chemical and Biological detection, the camera has been used for environmental monitoring of green house gases and is currently undergoing extensive laboratory and field testing by the Gas Technology Institute, British Petroleum and Shell Oil for applications for gas leak detection and repair. In this paper we will present some of the results from the data collection at the TRE test at Dugway Proving Ground during the summer of 2002 and laboratory testing at the Dstl facility at Porton Down in the UK in the fall of 2002.
Ionic Liquid/Metal-Organic Framework Composites: From Synthesis to Applications.
Kinik, Fatma Pelin; Uzun, Alper; Keskin, Seda
2017-07-21
Metal-organic frameworks (MOFs) have been widely studied for different applications owing to their fascinating properties such as large surface areas, high porosities, tunable pore sizes, and acceptable thermal and chemical stabilities. Ionic liquids (ILs) have been recently incorporated into the pores of MOFs as cavity occupants to change the physicochemical properties and gas affinities of MOFs. Several recent studies have shown that IL/MOF composites show superior performances compared with pristine MOFs in various fields, such as gas storage, adsorption and membrane-based gas separation, catalysis, and ionic conductivity. In this review, we address the recent advances in syntheses of IL/MOF composites and provide a comprehensive overview of their applications. Opportunities and challenges of using IL/MOF composites in many applications are reviewed and the requirements for the utilization of these composite materials in real industrial processes are discussed to define the future directions in this field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exploring for oil with nuclear physics
NASA Astrophysics Data System (ADS)
Mauborgne, Marie-Laure; Allioli, Françoise; Stoller, Chris; Evans, Mike; Manclossi, Mauro; Nicoletti, Luisa
2017-09-01
Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.
Cogeneration Technology Alternatives Study (CTAS). Volume 4: Energy conversion systems
NASA Technical Reports Server (NTRS)
Brown, D. H.; Gerlaugh, H. E.; Priestley, R. R.
1980-01-01
Industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. The advanced and commercially available cogeneration energy conversion systems studied in CTAS are fined together with their performance, capital costs, and the research and developments required to bring them to this level of performance.
The physical chemistry of Criegee intermediates in the gas phase
Osborn, David L.; Taatjes, Craig A.
2015-07-24
Here, carbonyl oxides, also known as Criegee intermediates, are key intermediates in both gas phase ozonolysis of unsaturated hydrocarbons in the troposphere and solution phase organic synthesis via ozonolysis. Although the study of Criegee intermediates in both arenas has a long history, direct studies in the gas phase have only recently become possible through new methods of generating stabilised Criegee intermediates in sufficient quantities. This advance has catalysed a large number of new experimental and theoretical investigations of Criegee intermediate chemistry. In this article we review the physical chemistry of Criegee intermediates, focusing on their molecular structure, spectroscopy, unimolecular andmore » bimolecular reactions. These recent results have overturned conclusions from some previous studies, while confirming others, and have clarified areas of investigation that will be critical targets for future studies. In addition to expanding our fundamental understanding of Criegee intermediates, the rapidly expanding knowledge base will support increasingly predictive models of their impacts on society.« less
Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2015-01-01
Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.
Diode laser absorption sensors for gas-dynamic and combustion flows
NASA Technical Reports Server (NTRS)
Allen, M. G.
1998-01-01
Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room-temperature mid-IR materials and broadly tunable multisection devices is reviewed to suggest new sensor possibilities.
Gas Analysis and Control Methods for Thermal Batteries
2013-09-01
THERMAL BATTERIES (PDFS) INC DOUG BRISCOE JEFFREY REINIG 3 ENERSYS ADVANCED SYSTEMS (PDFS) PAUL SCHISSELBAUER ANDREW SEIDEL TIM...MGMT ATTN RDRL CIO LL TECHL LIB 3 SANDIA NATIONAL LABORATORIES (PDFS) DANIEL WESOLOWSKI EDWARD PIEKOS ANNE GRILLET 2 ADVANCED
Next Generation Source Measuments: CRADA partner communication sheet
Partnerships to Advance Next Gen. Source MeasurementsA growing number of government, academic, and industry groups are recognizing the revolution in air pollution and greenhouse gas source measurement science enabled by the rapid advances in sensors, communications, data integrat...
NASA Astrophysics Data System (ADS)
Steyn, Gideon; Vermeulen, Christiaan
2018-05-01
An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.
Temperature correction of arterial blood-gas parameters: A comparative review of methodology.
Andritsch, R F; Muravchick, S; Gold, M I
1981-09-01
The need for accurate clinical diagnosis and appropriate intervention requires that a modern blood-gas laboratory have the means to correct for significant discrepancies between patient temperature and the temperature at which in vitro blood samples are analyzed. Recent advances in mini- and microcomputer technology permit application of any or all of the correction formulas above at modest cost and minimal inconvenience (See the Appendix). An expanded program for a TI-59 desk-top calculator and P-100C printer which gives labeled hard-copy readout of temperature-corrected pH, PCO2, PO2, and hemoglobin saturation values, as well as bicarbonate concentration and in vivo base excess is in daily clinical use in our operating room and is available from the authors upon request.
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1981-01-01
An automotive gas turbine powertrain system which, when installed in a 1985 production vehicle (3000 pounds inertia weight), is being developed with a CFDC fuel economy of 42.8 miles per gallon based on Environmental Protection Agency (EPA) test procedures and diesel No. 2 fuel. The AGT-powered vehicle shall give substantially the same overall vehicle driveability and performance as a comparable 1985 production vehicle powered by a conventional spark ignition powertrain system (baseline system). Gaseous emissions and particulate levels less than: NOx = 0.4 gm/mile, HC = 0.41 gm/mile, and CO = 3.4 gm/mile, and a total particulate of 0.2 gm/mile, using the same fuel as used for fuel economy measurements is expected, along with the ability to use a variety of alternate fuels.
High Density Methane Storage in Nanoporous Carbon
NASA Astrophysics Data System (ADS)
Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team
2014-03-01
Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.
A ballistic two-dimensional-electron-gas Andreev interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amado, M., E-mail: mario.amadomontero@sns.it; Fornieri, A.; Sorba, L.
2014-06-16
We report the realization and investigation of a ballistic Andreev interferometer based on an InAs two dimensional electron gas coupled to a superconducting Nb loop. We observe strong magnetic modulations in the voltage drop across the device due to quasiparticle interference within the weak-link. The interferometer exhibits flux noise down to ∼80 μΦ{sub 0}/√(Hz) and a robust behavior in temperature with voltage oscillations surviving up to ∼7 K. Besides this remarkable performance, the device represents a crucial first step for the realization of a fully-tunable ballistic superconducting magnetometer and embodies a potential advanced platform for the investigation of Majorana bound states, non-localmore » entanglement of Cooper pairs, as well as the manipulation and control of spin triplet correlations.« less
Advanced EMU electrochemically regenerable CO2 and moisture absorber module breadboard
NASA Technical Reports Server (NTRS)
Lee, M. C.; Sudar, M.; Chang, B. J.
1988-01-01
The applicability of the Electrochemically Regenerable Carbon Dioxide and Moisture Absorption Technology to the advanced extravehicular mobility unit was demonstrated by designing, fabricating, and testing a breadboard Absorber Module and an Electrochemical Regenerator. Test results indicated that the absorber module meets or exceeds the carbon dioxide removal requirements specified for the design and can meet the moisture removal requirement when proper cooling is provided. CO2 concentration in the vent gas stream was reduced from 0.52 to 0.027 kPa (3.9 to 0.20 mm Hg) for the full five hour test period. Vent gas dew point was reduced from inlet values of 294 K (69 F) to 278 K (41 F) at the outlet. The regeneration of expended absorbent was achieved by the electrochemical method employed in the testing. An absorbent bed using microporous hydrophobic membrane sheets with circulating absorbent is shown to be the best approach to the design of an Absorber Module based on sizing and performance. Absorber Module safety design, comparison of various absorbents and their characteristics, moisture absorption and cooling study and subsystem design and operation time-lining study were also performed.
Mass Producing Targets for Nuclear Fusion
NASA Technical Reports Server (NTRS)
Wang, T. G.; Elleman, D. D.; Kendall, J. M.
1983-01-01
Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.
PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION - NEW ORLEANS, MARCH 1976, VOLUME I
The proceedings document the presentation made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, nonregenerable, and advanced processes; process costs; and by-produc...
PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION-NEW ORLEANS, MARCH 1976. VOLUME II
The proceedings document the presentations made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, non-regenerable, and advanced processes; process costs; and by-prod...
Advanced Oxygen Systems for Aircraft (Systemes d’Oxygene Avances)
1996-04-01
This purge gas sweeps out the nitrogen and at the same time fills the micro- pore structure of the molecular sieve with the product gas. When the...electrochemical (amperometry, voltametry , polarography, coulometry), (c) spectrometry (mass spectrometry, ultraviolet spectrometry), (d) solid-state
Near-field production pad assessment with GMAP-REQ
Environmentally responsible development of oil and gas assets in the United States is facilitated by advancement of sector-specific air pollution emission measurement and modeling tools. Emissions from upstream oil and gas production are complex in nature due to the variety of e...
Membrane-based systems for carbon capture and hydrogen purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berchtold, Kathryn A
2010-11-24
This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services.more » Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.« less
Bioconversion of natural gas to liquid fuel: opportunities and challenges.
Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T
2014-01-01
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Qiang; Guarnieri, Michael T.; Tao, Ling
2014-05-01
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of convertingmore » methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.« less
Bioconversion of natural gas to liquid fuel: Opportunities and challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Q; Guarnieri, MT; Tao, L
2014-05-01
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methanemore » into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.« less
NASA Technical Reports Server (NTRS)
Raju, M. S.
1998-01-01
The state of the art in multidimensional combustor modeling as evidenced by the level of sophistication employed in terms of modeling and numerical accuracy considerations, is also dictated by the available computer memory and turnaround times afforded by present-day computers. With the aim of advancing the current multi-dimensional computational tools used in the design of advanced technology combustors, a solution procedure is developed that combines the novelty of the coupled CFD/spray/scalar Monte Carlo PDF (Probability Density Function) computations on unstructured grids with the ability to run on parallel architectures. In this approach, the mean gas-phase velocity and turbulence fields are determined from a standard turbulence model, the joint composition of species and enthalpy from the solution of a modeled PDF transport equation, and a Lagrangian-based dilute spray model is used for the liquid-phase representation. The gas-turbine combustor flows are often characterized by a complex interaction between various physical processes associated with the interaction between the liquid and gas phases, droplet vaporization, turbulent mixing, heat release associated with chemical kinetics, radiative heat transfer associated with highly absorbing and radiating species, among others. The rate controlling processes often interact with each other at various disparate time 1 and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and liquid phase evaporation in many practical combustion devices.
Assessment of advanced coal gasification processes
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.
1981-01-01
A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul Imhoff; Ramin Yazdani; Don Augenstein
Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by aboutmore » 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).« less
JPRS Report, Science & Technology, China: Energy
1988-11-30
most electric power plants there have flue gas desulfuring (FGD) facilities, and 40 units (still in the design, demonstration program or experimental... control , the production of industrial substitute fuels (for petroleum and natural gas ) and other areas. The advanced character of new technologies, in...OIL, GAS Problems Facing Petroleum Industry Analyzed [Yang Wanli; JINGJI GUANLI, No 7, 1988] 64 Prospects for Petrochemical Industry in the 1990’s
NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task
NASA Astrophysics Data System (ADS)
Kennedy, Cheryl
2010-03-01
Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.
Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E
2017-01-03
Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm 2 ) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.
NASA Technical Reports Server (NTRS)
Alvarado, D. R.; Bortner, M. H.; Grenda, R. N.; Frippel, G. G.; Halsey, H.; Neste, S. L.; Kritikos, H.; Keafer, L. S.; Deryder, L. J.
1982-01-01
The technology advancements needed to implement the atmospheric observation satellite systems for air quality research were identified. Tropospheric measurements are considered. The measurements and sensors are based on a model of knowledge objectives in atmospheric science. A set of potential missions and attendant spacecraft and sensors is postulated. The results show that the predominant technology needs will be in passive and active sensors for accurate and frequent global measurements of trace gas concentration profiles.
Current and emerging laser sensors for greenhouse gas sensing and leak detection
NASA Astrophysics Data System (ADS)
Frish, Michael B.
2014-05-01
To reduce atmospheric accumulation of the greenhouse gases methane and carbon dioxide, networks of continuously operating sensors that monitor and map their sources are desirable. In this paper, we discuss advances in laser-based open-path leak detectors, as well as technical and economic challenges inhibiting widespread sensor deployment for "ubiquitous monitoring". We describe permanently-installed, wireless, solar-powered sensors that overcome previous installation and maintenance difficulties while providing autonomous real-time leak reporting without false alarms.
1994-01-01
0 The Mission of AGARD 0 According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the...advances in the aerospace sciences relevant to strengthening the common defence posture; • - Improving the co-operation among member nations in aerospace...for the physical principles. To construct the relevant equations for fluid gas consisting of pseudo particles, 10 is the internal energy due motion it
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.
Trends in increasing gas-turbine units efficiency
NASA Astrophysics Data System (ADS)
Lebedev, A. S.; Kostennikov, S. V.
2008-06-01
A review of the latest models of gas-turbine units (GTUs) manufactured by leading firms of the world is given. With the example of units made by General Electric, Siemens, and Alstom, modern approaches to the problem of increasing the efficiency of gas-turbine units are dealt with. Basic principles of designing of moderate-size capacity gas turbine units are discussed, and comparison between characteristics of foreign-made GTUs belonging to this class and the advanced domestic GTE-65 unit is made.
Understanding the Potential of WO₃ Based Sensors for Breath Analysis.
Staerz, Anna; Weimar, Udo; Barsan, Nicolae
2016-10-29
Tungsten trioxide is the second most commonly used semiconducting metal oxide in gas sensors. Semiconducting metal oxide (SMOX)-based sensors are small, robust, inexpensive and sensitive, making them highly attractive for handheld portable medical diagnostic detectors. WO₃ is reported to show high sensor responses to several biomarkers found in breath, e.g., acetone, ammonia, carbon monoxide, hydrogen sulfide, toluene, and nitric oxide. Modern material science allows WO₃ samples to be tailored to address certain sensing needs. Utilizing recent advances in breath sampling it will be possible in the future to test WO₃-based sensors in application conditions and to compare the sensing results to those obtained using more expensive analytical methods.
Understanding the Potential of WO3 Based Sensors for Breath Analysis
Staerz, Anna; Weimar, Udo; Barsan, Nicolae
2016-01-01
Tungsten trioxide is the second most commonly used semiconducting metal oxide in gas sensors. Semiconducting metal oxide (SMOX)-based sensors are small, robust, inexpensive and sensitive, making them highly attractive for handheld portable medical diagnostic detectors. WO3 is reported to show high sensor responses to several biomarkers found in breath, e.g., acetone, ammonia, carbon monoxide, hydrogen sulfide, toluene, and nitric oxide. Modern material science allows WO3 samples to be tailored to address certain sensing needs. Utilizing recent advances in breath sampling it will be possible in the future to test WO3-based sensors in application conditions and to compare the sensing results to those obtained using more expensive analytical methods. PMID:27801881
Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines
NASA Technical Reports Server (NTRS)
Bisset, J. W.
1976-01-01
The cost/benefits of advance commercial gas turbine materials are described. Development costs, estimated payoffs and probabilities of success are discussed. The materials technologies investigated are: (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
NASA Technical Reports Server (NTRS)
Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.
1984-01-01
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
NASA Astrophysics Data System (ADS)
Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.
1984-06-01
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.
Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion
NASA Technical Reports Server (NTRS)
Hanley, David; Carella, John
1999-01-01
This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2014-01-01
This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.
NASA Astrophysics Data System (ADS)
Gupta, Sunay; Guédez, Rafael; Laumert, Björn
2017-06-01
Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil fields. The model was developed for steam flooding requirements in Issaran oil field using DYESOPT, KTH's in-house tool for techno-economic modelling in CSP.
Open-Path Hydrocarbon Laser Sensor for Oil and Gas Facility Monitoring
This poster reports on an experimental prototype open-path laser absorption sensor for measurement of unspeciated hydrocarbons for oil and gas production facility fence-line monitoring. Such measurements may be useful to meet certain state regulations, and enable advanced leak d...
The proceedings document presentations made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, non-regenerable, and advanced processes; process costs; and by-product ...
The proceedings document presentations made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, non-regenerable, and advanced processes; process costs; and by-product ...
76 FR 70953 - Pipeline Safety: Safety of Gas Transmission Pipelines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket ID PHMSA-2011-0023] RIN 2137-AE72 Pipeline Safety: Safety of Gas Transmission Pipelines AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Advance notice of...
Designing advanced biochar products for maximizing greenhouse gas mitigation potential
USDA-ARS?s Scientific Manuscript database
Greenhouse gas (GHG) emissions from agricultural operations continue to increase. Carbon enriched char materials like biochar have been described as a mitigation strategy. Utilization of biochar material as a soil amendment has been demonstrated to provide potentially further soil GHG suppression du...
a Dosimetry Assessment for the Core Restraint of AN Advanced Gas Cooled Reactor
NASA Astrophysics Data System (ADS)
Thornton, D. A.; Allen, D. A.; Tyrrell, R. J.; Meese, T. C.; Huggon, A. P.; Whiley, G. S.; Mossop, J. R.
2009-08-01
This paper describes calculations of neutron damage rates within the core restraint structures of Advanced Gas Cooled Reactors (AGRs). Using advanced features of the Monte Carlo radiation transport code MCBEND, and neutron source data from core follow calculations performed with the reactor physics code PANTHER, a detailed model of the reactor cores of two of British Energy's AGR power plants has been developed for this purpose. Because there are no relevant neutron fluence measurements directly supporting this assessment, results of benchmark comparisons and successful validation of MCBEND for Magnox reactors have been used to estimate systematic and random uncertainties on the predictions. In particular, it has been necessary to address the known under-prediction of lower energy fast neutron responses associated with the penetration of large thicknesses of graphite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynatt, F.R.
1987-03-18
This report provides a description of the statements submitted for the record to the committee on Science, Space, and Technology of the United States House of Representatives. These statements describe three principal areas of activity of the Advanced Reactor Technology Program of the Department of Energy (DOE). These areas are advanced fuel cycle technology, modular high-temperature gas-cooled reactor technology, and liquid metal-cooled reactor. The areas of automated reactor control systems, robotics, materials and structural design shielding and international cooperation were included in these statements describing the Oak Ridge National Laboratory's efforts in these areas. (FI)
NASA Astrophysics Data System (ADS)
Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D.; Hartmann, J.
2017-01-01
The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics are semi-transparent in the near and short wavelength infrared spectral region. Fortunately the applied ceramic materials are non-transparent in the long wavelength infrared and additionally exhibit a high emittance in this wavelength region. Therefore, a LWIR pyrometer can be used for non-contact temperature measurements of the surfaces of TBCs as such pyrometers overcome the described limitation of existing techniques. For performing non-contact temperature measurements in gas turbines one has to know the infrared-optical properties of the applied TBCs as well as of the hot combustion gas in order to properly analyse the measurement data. For reaching a low uncertainty on the one hand the emittance of the TBC should be high (>0.9) in order to reduce reflections from the hot surrounding and on the other hand the absorbance of the hot combustion gas should be low (<0.1) in order to decrease the influence of the gas on the measured signal. This paper presents the results of the work performed by the authors with focus on the implementation of the LWIR pyrometer and the selection of the optimal wavelength band where the detector should be sensitive. Besides determining the spectral infrared-optical properties (emittance, transmittance and absorbance) of the TBCs and the hot combustion gas at high temperatures up to 1700 K, the wavelength specification of the developed LWIR pyrometer is defined. Also an overview of the LWIR radiation thermometer is given and the preliminary results for different temperatures and environmental conditions are presented. Finally the measurement uncertainty of the LWIR-pyrometer is deduced.
Gas Sensing Properties of ZnO-SnO2 Nanostructures.
Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen
2015-02-01
One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.
An efficient liner cooling scheme for advanced small gas turbine combustors
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Mongia, Hukam C.; Acosta, Waldo A.
1993-01-01
A joint Army/NASA program was conducted to design, fabricate, and test an advanced, small gas turbine, reverse-flow combustor utilizing a compliant metal/ceramic (CMC) wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CMC cooling technique and then demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F burner outlet temperature. The CMC concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefits of improved efficiency, reduced emissions, and lower smoke levels. The program was divided into four tasks. Task 1 defined component materials and localized design of the composite wall structure in conjunction with development of basic design models for the analysis of flow and heat transfer through the wall. Task 2 included implementation of the selected materials and validated design models during combustor preliminary design. Detail design of the selected combustor concept and its refinement with 3D aerothermal analysis were completed in Task 3. Task 4 covered detail drawings, process development and fabrication, and a series of burner rig tests. The purpose of this paper is to provide details of the investigation into the fundamental flow and heat transfer characteristics of the CMC wall structure as well as implementation of the fundamental analysis method for full-scale combustor design.
Schrock, Alexa B.; Anderson, Peter M.; Morris, John C.; Heilmann, Andreas M.; Holmes, Oliver; Wang, Kai; Johnson, Adrienne; Waguespack, Steven G.; Ou, Sai‐Hong Ignatius; Khan, Saad; Fung, Kar‐Ming; Stephens, Philip J.; Erlich, Rachel L.; Miller, Vincent A.; Ross, Jeffrey S.; Ali, Siraj M.
2017-01-01
Background. Thyroid carcinoma, which is rare in pediatric patients (age 0–18 years) but more common in adolescent and young adult (AYA) patients (age 15–39 years), carries the potential for morbidity and mortality. Methods. Hybrid‐capture‐based comprehensive genomic profiling (CGP) was performed prospectively on 512 consecutively submitted thyroid carcinomas, including 58 from pediatric and AYA (PAYA) patients, to identify genomic alterations (GAs), including base substitutions, insertions/deletions, copy number alterations, and rearrangements. This PAYA data series includes 41 patients with papillary thyroid carcinoma (PTC), 3 with anaplastic thyroid carcinoma (ATC), and 14 with medullary thyroid carcinoma (MTC). Results. GAs were detected in 93% (54/58) of PAYA cases, with a mean of 1.4 GAs per case. In addition to BRAF V600E mutations, detected in 46% (19/41) of PAYA PTC cases and in 1 of 3 AYA ATC cases, oncogenic fusions involving RET, NTRK1, NTRK3, and ALK were detected in 37% (15/41) of PAYA PTC and 33% (1/3) of AYA ATC cases. Ninety‐three percent (13/14) of MTC patients harbored RET alterations, including 3 novel insertions/deletions in exons 6 and 11. Two of these MTC patients with novel alterations in RET experienced clinical benefit from vandetanib treatment. Conclusion. CGP identified diverse clinically relevant GAs in PAYA patients with thyroid carcinoma, including 83% (34/41) of PTC cases harboring activating kinase mutations or activating kinase rearrangements. These genomic observations and index cases exhibiting clinical benefit from targeted therapy suggest that young patients with advanced thyroid carcinoma can benefit from CGP and rationally matched targeted therapy. Implications for Practice. The detection of diverse clinically relevant genomic alterations in the majority of pediatric, adolescent, and young adult patients with thyroid carcinoma in this study suggests that comprehensive genomic profiling may be beneficial for young patients with papillary, anaplastic, or medullary thyroid carcinoma, particularly for advanced or refractory cases for which clinical trials involving molecularly targeted therapies may be appropriate. PMID:28209747
Advances in SiC/SiC Composites for Aerospace Applications
NASA Technical Reports Server (NTRS)
DiCarlo, James A.
2006-01-01
In recent years, supported by a variety of materials development programs, NASA Glenn Research Center has significantly increased the thermostructural capability of SiC/SiC composite materials for high-temperature aerospace applications. These state-of-the-art advances have occurred in every key constituent of the composite: fiber, fiber coating, matrix, and environmental barrier coating, as well as processes for forming the fiber architectures needed for complex-shaped components such as turbine vanes for gas turbine engines. This presentation will briefly elaborate on the nature of these advances in terms of performance data and underlying mechanisms. Based on a list of first-order property goals for typical high-temperature applications, key data from a variety of laboratory tests are presented which demonstrate that the NASA-developed constituent materials and processes do indeed result in SiC/SiC systems with the desired thermal and structural capabilities. Remaining process and microstructural issues for further property enhancement are discussed, as well as on-going approaches at NASA to solve these issues. NASA efforts to develop physics-based property models that can be used not only for component design and life modeling, but also for constituent material and process improvement will also be discussed.
Development of advanced generator of singlet oxygen for a COIL
NASA Astrophysics Data System (ADS)
Kodymová, Jarmila; Špalek, Otomar; Jirásek, Vít; Čenský, Miroslav; Hrubý, Jan
2006-05-01
The generator of singlet oxygen (SOG) remains still a challenge for a chemical oxygen-iodine laser (COIL). Hitherto, only chemical generators based on the gas-liquid reaction system (chlorine-basic hydrogen peroxide) can supply singlet oxygen, O II(1Δ), in enough high yields and at pressures to maintain operation of the high power supersonic COIL facilities. Employing conventional generators of jet-type or rotating disc-type makes often problems resulting mainly from liquid droplets entrained by an O II (1Δ) stream into the laser cavity, and a limited scalability of these generators. Advanced generator concepts investigated currently are based on two different approaches: (i)O II(1Δ) generation by the electrical discharge in various configurations, eliminating thus a liquid chemistry, and (ii) O II(1Δ) generation by the conventional chemistry in novel configurations offering the SOG efficiency increase and eliminating drawbacks of existing devices. One of the advanced concepts of chemical generator - a spray SOG with centrifugal separation of gasliquid phases - has been proposed and investigated in our laboratory. In this paper we present a description of the generator principle, some essential results of theoretical estimations, and interim experimental results obtained with the spray SOG.
Advances of zeolite based membrane for hydrogen production via water gas shift reaction
NASA Astrophysics Data System (ADS)
Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.
2017-07-01
Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Wang, Yifeng
Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2more » when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.« less
Cogeneration Technology Alternatives Study (CTAS) Volume 5: Analytical approach and results
NASA Technical Reports Server (NTRS)
1980-01-01
Data and information in the area of advanced energy conversion systems for industrial cogeneration applications in the 1985 to 2000 time period are provided. Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasification systems.
Advanced technology gas-fired commercial clothes dryer. Final report, April 1985-December 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topping, R.F.
1991-04-01
The objective of this effort was to demonstrate the technical feasibility of an advanced technology commercial clothes dryer (ATD) which could provide improved fuel efficiency and reduced drying time without burning or otherwise damaging the clothes load.
Advanced Gas Turbine (AGT) Technology Development Project annual report
NASA Technical Reports Server (NTRS)
1986-01-01
This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carborundum Company, and AiResearch Casting Company. The Project is administered by Mr. Thomas N. Strom, Project Manager, NASA-Lewis Research Center, Cleveland, Ohio. This report covers plans and progress for the period July 1, 1984 through June 30, 1985.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Byrnes; Robert Cluff; John Webb
2008-06-30
Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS aremore » estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.« less
From ice-binding proteins to bio-inspired antifreeze materials.
Voets, I K
2017-07-19
Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented.
Pulsed discharges produced by high-power surface waves
NASA Astrophysics Data System (ADS)
Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.
1996-02-01
The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.
Segregation of impurities at γ' (L12) / γ (fcc) interfaces in a Ni-based superalloy
NASA Astrophysics Data System (ADS)
Tafen, De Nyago; Gao, Michael
2011-03-01
One of the most technologically advanced energy conversion devices is the gas turbine used in aerospace jet engines and gas- fired land-based turbines for electricity generation, fabricated from Ni-based superalloys. However, these materials lack of long- term mechanical and microstructure stability, which is largely due to an excessive coarsening of γ ' that can cause substantial loss of creep resistance and mechanical instability at high temperatures. Theoretical prediction of the creep rate of these important compounds is very imperative, but yet is extremely challenging. Interfacial energy is one of the most important factors that control the coarsening kinetics of these important phases. It indirectly determines the creep resistance of the alloy through the coarsening rate of the strengthening precipitate phase. In this talk, we will present the results of various γ ' / γ interfaces of a Ni-based superalloy obtained using DFT calculations. Then, we will discuss the segregation of impurities at these interfaces. Minor alloying elements in superalloys can alter the interfacial energy between γ and γ ' , and change the strength behavior of the alloy. Alloying elements or impurity species can segregate to interfaces. A favorable segregation would result in enhancing the interfacial cohesion and thus lower the energy.
Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites
NASA Technical Reports Server (NTRS)
Lee, Kang N.
2004-01-01
The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.
Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.
Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes
2017-03-01
Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.
ERIC Educational Resources Information Center
Rogers, Violet C.; Ethridge, Jack R.
2016-01-01
In 2009, four of the top ten Fortune 500 companies were classified within the oil and gas industry. Organizations of this size typically have an advanced Enterprise Risk Management system in place to mitigate risk and to achieve their corporations' objectives. The companies and the article utilize the Enterprise Risk Management Integrated…
ERIC Educational Resources Information Center
Gosink, Thomas A.
1975-01-01
Gas chromatography can be used to quantitate various gases, complex organic molecules, metals, anions, and pesticides in the lab or in the field. Important advances in gas chromatography and how they directly apply to environmental analyses plus suggestions where they will be of importance to environmental chemists are discussed. (BT)
THE IMPACT OF MUNICIPAL SOLID WASTE MANAGEMENT ON GREENHOUSE GAS EMISSIONS IN THE UNITED STATES
Technological advancements in United States (U.S.) municipal solid waste (MSW) disposal and a focus on the environmental advantages of integrated MSW management have greatly reduced the environmental impacts of MSW management, including greenhouse gas (GHG) emissions. This study ...
Position sensitive radioactivity detection for gas and liquid chromatography
Cochran, Joseph L.; McCarthy, John F.; Palumbo, Anthony V.; Phelps, Tommy J.
2001-01-01
A method and apparatus are provided for the position sensitive detection of radioactivity in a fluid stream, particularly in the effluent fluid stream from a gas or liquid chromatographic instrument. The invention represents a significant advance in efficiency and cost reduction compared with current efforts.
Nguyen, Trinh-Don; Faraldos, Juan A; Vardakou, Maria; Salmon, Melissa; O'Maille, Paul E; Ro, Dae-Kyun
2016-10-28
The Andes-endemic Barnadesioideae lineage is the oldest surviving and phylogenetically basal subfamily of the Asteraceae (Compositae), a prolific group of flowering plants with world-wide distribution (∼24,000 species) marked by a rich diversity of sesquiterpene lactones (STLs). Intriguingly, there is no evidence that members of the Barnadesioideae produce STLs, specialized metabolites thought to have contributed to the adaptive success of the Asteraceae family outside South America. The biosynthesis of STLs requires the intimate expression and functional integration of germacrene A synthase (GAS) and germacrene A oxidase (GAO) to sequentially cyclize and oxidize farnesyl diphosphate into the advanced intermediate germacrene A acid leading to diverse STLs. Our previous discovery of GAO activity conserved across all major subfamilies of Asteraceae, including the phylogenetically basal lineage of Barnadesioideae, prompted further investigation of the presence of the gateway GAS in Barnadesioideae. Herein we isolated two terpene synthases (BsGAS1/BsGAS2) from the basal Barnadesia spinosa (Barnadesioideae) that displayed robust GAS activity when reconstituted in yeast and characterized in vitro. Despite the apparent lack of STLs in the Barnadesioideae, this work unambiguously confirms the presence of GAS in the basal genera of the Asteraceae. Phylogenetic analysis reveals that the two BsGASs fall into two distinct clades of the Asteraceae's GASs, and BsGAS1 clade is only retained in the evolutionary closer Cichorioideae subfamily, implicating BsGAS2 is likely the ancestral base of most GASs found in the lineages outside the Barnadesioideae. Taken together, these results show the enzymatic capacities of GAS and GAO emerged prior to the subsequent radiation of STL-producing Asteraceae subfamilies. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.
1976-01-01
A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.
NASA Astrophysics Data System (ADS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-09-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
Status review of NASA programs for reducing aircraft gas turbine engine emissions
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1976-01-01
Programs initiated by NASA to develop and demonstrate low emission advanced technology combustors for reducing aircraft gas turbine engine pollution are reviewed. Program goals are consistent with urban emission level requirements as specified by the U. S. Environmental Protection Agency and with upper atmosphere cruise emission levels as recommended by the U. S. Climatic Impact Assessment Program and National Research Council. Preliminary tests of advanced technology combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft gas turbine engines without adverse effects on fuel consumption. Preliminary test results from fundamental studies indicate that extremely low emission combustion systems may be possible for future generation jet aircraft. The emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.
NASA Technical Reports Server (NTRS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-01-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
Development of an Advanced Computational Model for OMCVD of Indium Nitride
NASA Technical Reports Server (NTRS)
Cardelino, Carlos A.; Moore, Craig E.; Cardelino, Beatriz H.; Zhou, Ning; Lowry, Sam; Krishnan, Anantha; Frazier, Donald O.; Bachmann, Klaus J.
1999-01-01
An advanced computational model is being developed to predict the formation of indium nitride (InN) film from the reaction of trimethylindium (In(CH3)3) with ammonia (NH3). The components are introduced into the reactor in the gas phase within a background of molecular nitrogen (N2). Organometallic chemical vapor deposition occurs on a heated sapphire surface. The model simulates heat and mass transport with gas and surface chemistry under steady state and pulsed conditions. The development and validation of an accurate model for the interactions between the diffusion of gas phase species and surface kinetics is essential to enable the regulation of the process in order to produce a low defect material. The validation of the model will be performed in concert with a NASA-North Carolina State University project.
Development of braided rope seals for hypersonic engine applications: Flow modeling
NASA Technical Reports Server (NTRS)
Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Du, Guang-Wu; Ko, Frank
1992-01-01
A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures new analytical flow models are required. Two such models based on the Kozeny-Carman equations are developed herein and are compared to experimental leakage measurements for simulated pressure and seal gap conditions. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal. The first model treats the seal as a homogeneous fiber bed. The second model divides the seal into two homogeneous fiber beds identified as the core and the sheath of the seal. Flow resistances of each of the main seal elements are combined to determine the total flow resistance. Comparisons between measured leakage rates and model predictions for seal structures covering a wide range of braid architectures show good agreement. Within the experimental range, the second model provides a prediction within 6 to 13 percent of the flow for many of the cases examined. Areas where future model refinements are required are identified.
West, John B.
2005-01-01
The 1952 Copenhagen poliomyelitis epidemic provided extraordinary challenges in applied physiology. Over 300 patients developed respiratory paralysis within a few weeks, and the ventilator facilities at the infectious disease hospital were completely overwhelmed. The heroic solution was to call upon 200 medical students to provide round-the-clock manual ventilation using a rubber bag attached to a tracheostomy tube. Some patients were ventilated in this way for several weeks. A second challenge was to understand the gas exchange and acid-base status of these patients. At the onset of the epidemic, the only measurement routinely available in the hospital was the carbon dioxide concentration in the blood, and the high values were initially misinterpreted as a mysterious “alkalosis.” However, pH measurements were quickly instituted, the PCO2 was shown to be high, and modern clinical respiratory acid-base physiology was born. Taking a broader view, the problems highlighted by the epidemic underscored the gap between recent advances made by physiologists and their application to the clinical environment. However, the 1950s ushered in a renaissance in clinical respiratory physiology. In 1950 the coverage of respiratory physiology in textbooks was often woefully inadequate, but the decade saw major advances in topics such as mechanics and gas exchange. An important development was the translation of the new knowledge from departments of physiology to the clinical setting. In many respects, this period was therefore the beginning of modern clinical respiratory physiology. PMID:16020437
The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics
NASA Astrophysics Data System (ADS)
Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration
2010-03-01
The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.
Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2005-01-01
Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Corman; Krishan Luthra; Jill Jonkowski
2011-01-07
This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000more » hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.« less
NASA Astrophysics Data System (ADS)
McCarthy, J. Howard, Jr.; Reimer, G. Michael
1986-11-01
Field studies have demonstrated that gas anomalies are found over buried mineral deposits. Abnormally high concentrations of sulfur gases and carbon dioxide and abnormally low concentrations of oxygen are commonly found over sulfide ore deposits. Helium anomalies are commonly associated with uranium deposits and geothermal areas. Helium and hydrocarbon gas anomalies have been detected over oil and gas deposits. Gases are sampled by extracting them from the pore space of soil, by degassing soil or rock, or by adsorbing them on artificial collectors. The two most widely used techniques for gas analysis are gas chromatography and mass spectrometry. The detection of gas anomalies at or near the surface may be an effective method to locate buried mineral deposits.
Polybrominated Diphenyl Ethers in Dryer Lint: An Advanced Analysis Laboratory
ERIC Educational Resources Information Center
Thompson, Robert Q.
2008-01-01
An advanced analytical chemistry laboratory experiment is described that involves environmental analysis and gas chromatography-mass spectrometry. Students analyze lint from clothes dryers for traces of flame retardant chemicals, polybrominated diphenylethers (PBDEs), compounds receiving much attention recently. In a typical experiment, ng/g…
Kulkarni, Tejaswini; Aikawa, Chihiro; Nozawa, Takashi; Murase, Kazunori; Maruyama, Fumito; Nakagawa, Ichiro
2016-10-11
Group A Streptococcus (GAS; Streptococcus pyogenes) causes a range of mild to severe infections in humans. It can also colonize healthy persons asymptomatically. Therefore, it is important to study GAS carriage in healthy populations, as carriage of it might lead to subsequent disease manifestation, clonal spread in the community, and/or diversification of the organism. Throat swab culture is the gold standard method for GAS detection. Advanced culture-independent methods provide rapid and efficient detection of microorganisms directly from clinical samples. We investigated the presence of GAS in throat swab samples from healthy adults in Japan using culture-dependent and culture-independent methods. Two throat swab samples were collected from 148 healthy volunteers. One was cultured on selective medium, while total DNA extracted from the other was polymerase chain reaction (PCR) amplified with two GAS-specific primer pairs: one was a newly designed 16S rRNA-specific primer pair, the other a previously described V-Na + -ATPase primer pair. Although only 5 (3.4 %) of the 148 samples were GAS-positive by the culture-dependent method, 146 (98.6 %) were positive for the presence of GAS DNA by the culture-independent method. To obtain serotype information by emm typing, we performed nested PCR using newly designed emm primers. We detected the four different emm types in 25 (16.9 %) samples, and these differed from the common emm types associated with GAS associated diseases in Japan. The different emm types detected in the healthy volunteers indicate that the presence of unique emm types might be associated with GAS carriage. Our results suggest that culture-independent methods should be considered for profiling GAS in the healthy hosts, with a view to obtaining better understanding of these organisms. The GAS-specific primers (16S rRNA and V-Na + -ATPase) used in this study can be used to estimate the maximum potential GAS carriage in people.
AN ADVANCED FLUE GAS MONITOR FOR SO2 - PHASE I
The development of an instrument for continuously monitoring SO2 levels in flue gas is proposed. The SO2 will be detected by means of an electrochemical sensor cell, which operates in a three-electrode potentiostatic mode. The proposed innovation is develop-ment of an advan...
Advanced Gas Turbine (AGT) powertrain system development for automotive applications
NASA Technical Reports Server (NTRS)
1982-01-01
Topics covered include the AGT 101 engine test; compressor design modification; cold air turbine testing; Mod 1 alloy turbine rotor fabrication; combustion aspects; regenerator development; and thermal screening tests for ceramic materials. The foil gas bearings, rotor dynamics, and AGT controls and accessories are also considered.
DOT National Transportation Integrated Search
1998-11-15
At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation G...
The reports describe an exploratory development program to identify, evaluate, and demonstrate dry techniques for significantly reducing NOx from thermal and fuel-bound sources in stationary gas turbine engines. Volume 1 covers Phase I of the four-phase effort. In Phase I, duty c...
Advances in light-gas gun technology
NASA Technical Reports Server (NTRS)
Cowan, P. L.; Murphy, J. R.
1968-01-01
Constant-area accelerator used with light-gas guns increases the velocity of accelerating projectiles. A disposable accelerator on the muzzle of the gun uses the energy and momentum of a primary projectile, launched by the gun, to achieve high velocities of a light secondary projectile accelerated from rest in the accelerator.
Statistical and Microscopic Approach to Gas Phase Chemical Kinetics.
ERIC Educational Resources Information Center
Perez, J. M.; Quereda, R.
1983-01-01
Describes advanced undergraduate laboratory exercise examining the dependence of the rate constants and the instantaneous concentrations with the nature and energy content in a gas-phase complex reaction. Computer program (with instructions and computation flow charts) used with the exercise is available from the author. (Author/JN)
Estimating the greenhouse gas benefits of forestry projects: A Costa Rican Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busch, Christopher; Sathaye, Jayant; Sanchez Azofeifa, G. Arturo
If the Clean Development Mechanism proposed under the Kyoto Protocol is to serve as an effective means for combating global climate change, it will depend upon reliable estimates of greenhouse gas benefits. This paper sketches the theoretical basis for estimating the greenhouse gas benefits of forestry projects and suggests lessons learned based on a case study of Costa Rica's Protected Areas Project, which is a 500,000 hectare effort to reduce deforestation and enhance reforestation. The Protected Areas Project in many senses advances the state of the art for Clean Development Mechanism-type forestry projects, as does the third-party verification work ofmore » SGS International Certification Services on the project. Nonetheless, sensitivity analysis shows that carbon benefit estimates for the project vary widely based on the imputed deforestation rate in the baseline scenario, e.g. the deforestation rate expected if the project were not implemented. This, along with a newly available national dataset that confirms other research showing a slower rate of deforestation in Costa Rica, suggests that the use of the 1979--1992 forest cover data originally as the basis for estimating carbon savings should be reconsidered. When the newly available data is substituted, carbon savings amount to 8.9 Mt (million tones) of carbon, down from the original estimate of 15.7 Mt. The primary general conclusion is that project developers should give more attention to the forecasting land use and land cover change scenarios underlying estimates of greenhouse gas benefits.« less
Operando characterization of catalysts through use of a portable microreactor
Zhao, Shen; Li, Yuanyuan; Stavitski, Eli; ...
2015-10-09
To provide new understandings of the mechanisms of catalytic reactions, improved methods are needed than can monitor changes in the electronic, structural and chemical properties of catalysts, doing so in the operando conditions in which catalysts work. We describe here a microreactor-based approach that integrates the capabilities of advanced x-ray, electron, optical and gas-phase compositional analysis techniques in operando conditions. For several exemplary catalytic systems, we demonstrate how this approach enables characterization of three major factors contributing to structure-property correlations evidenced in heterogeneously catalyzed reactions, namely: the atomic structure and elemental compositions of nanocatalysts; the physiochemical properties of the supportmore » and catalyst-support interfaces; and the gas and surface-phase chemistry occurring under operando conditions. We highlight the generality of the approach as well as outline opportunities for future developments.« less