Science.gov

Sample records for based amorphous metallic

  1. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  2. Amorphous Ti-Zr; Base Metglas brazing filler metals

    SciTech Connect

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T. )

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low ({approximately}300{degrees} C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having (Ti(Zr)) (Cu(Ni)), intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers.

  3. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  4. Amorphous metallic foam

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Veazey, Chris; Johnson, William L.

    2003-01-01

    The bulk glass forming alloy Pd43Ni10Cu27P20 is processed into a low-density amorphous metallic foam. Pd43Ni10Cu27P20 is mixed with hydrated B2O3, which releases gas at elevated temperature and/or low pressure. Very homogeneous foams are achieved due to the high viscosity of the alloy even at its liquidus temperature. By processing at the liquidus temperature and decreasing the pressure to 10-2 mbar, well-distributed bubbles expand to foam the material. Foam densities as low as 1.4×103 kg/m3 were obtained, corresponding to a bubble volume fraction of 84%. The bubble diameter ranges between 2×10-4 and 1×10-3 m. Thermal analysis by differential scanning calorimetry confirms the amorphous nature of the foam. Furthermore, it reveals that the foam's thermal stability is comparable to the bulk material.

  5. Improved Photo-Induced Stability in Amorphous Metal-Oxide Based TFTs for Transparent Displays.

    PubMed

    Koo, Sang-Mo; Ha, Tae-Jun

    2015-10-01

    In this paper, we investigate the origin of photo-induced instability in amorphous metal-oxide based thin-film transistors (oxide-TFTs) by exploring threshold voltage (Vth) shift in transfer characteristics. The combination of photo irradiation and prolonged gate bias stress enhanced the shift in Vth in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs. Such results stem from the extended trapped charges at the localized defect states related to oxygen vacancy which play a role in a screening effect on the electric field induced by gate voltage. We also demonstrate the chemically clean interface in oxide-TFTs by employing oxygen annealing which reduces the density of trap states, thereby resulting in improved photo-induced stability. We believe that this work stimulates the research society of transparent electronics by providing a promising approach to suppress photo-induced instability in metal-oxide TFTs.

  6. Defects in Amorphous Metals.

    DTIC Science & Technology

    1982-07-01

    this map with a similar plot of the experimental data. An experimental deformation data map for Pd-based amorphous al- loys is shown in fig. 10. In the...Masumoto. I Mat. Sci. 12 (1977) 1927, [IgI T M Ha.es. J. W Allen. J. Tauc . B. C. Giessen and J. J. Hauser. Phys. Re. Lett. 41 i197s) 1282 [191 J

  7. Optical properties of surface layers of Co-based amorphous metallic alloys

    NASA Astrophysics Data System (ADS)

    Poperenko, L. V.; Kravets, V. G.; Lysenko, S. I.; Vinnichenko, K. L.

    2005-04-01

    The modification of roughness and structure of the surface layers of a cobalt-based amorphous metal alloy after thermal treatment at elevated and cryogenic temperatures and under the influence of an external magnetic field is studied by light scattering and atomic force microscopy. The parameters of the surface roughness were calculated from the measured indicatrices of light scattering. It is shown that heating of the metal ribbons to T=350-475 °C partially relieves stresses arising in the course of the ribbon preparation and increases the surface roughness compared to freshly prepared samples.

  8. Composition dependence of magnetic properties in amorphous rare-earth-metal-based alloys

    NASA Astrophysics Data System (ADS)

    Foldeaki, M.; Giguère, A.; Gopal, B. R.; Chahine, R.; Bose, T. K.; Liu, X. Y.; Barclay, J. A.

    1997-10-01

    Magnetic refrigeration is an emerging new technology for cooling and gas liquefaction. The proper selection of magnetic working materials plays a key role in any design of a magnetic refrigerator. Properly fabricated amorphous rare-earth-metal-based alloys may be promising candidates for magnetic refrigeration applications. Their advantages include tailorable composition, low eddy current and hysteresis losses, improved corrosion resistance, and large specific area. To optimize the composition, bulk magnetic properties of selected Re70M30-xTx (with Re = Gd, Dy, Er, Ho, Tb and M, T = Ni, Fe, Cu, Al) alloys have been investigated in the 5-350 K temperature and 0-7 T DC field range. Far above the magnetic transition, all investigated alloys display a Curie-Weiss behavior consistent with the effective atomic moment of the Re-atoms present. The composition dependence of the Weiss constant reveals that although influenced by the presence of transition metals, the Resbnd Re exchange plays the main role in magnetic interactions. Gd-based alloys display a tendency to form multiple phases, which is supported by the presence of Fe and suppressed by the addition of Al. Single-phase amorphous Re70M30-xTx alloys are characterized by transition temperatures below 200 K, and in spite of their inherently broad transitions, they often display a magnetic entropy change superior or comparable to that of crystalline alloys with similar transition temperatures. Consequently, rare-earth-based amorphous alloys are promising candidates for magnetic refrigeration applications.

  9. Amorphous metallic films in silicon metallization systems

    NASA Astrophysics Data System (ADS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-06-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  10. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  11. Corrosion Characterization of Iron-Based High-Performance Amorphous-Metal Thermal-Spray Coatings

    SciTech Connect

    Farmer, J C; Haslam, J J; Day, S D; Branagan, D J; Blue, C A; Rivard, J K; Aprigliano, L F; Yang, N; Perepezko, J H; Beardsley, M B

    2005-03-21

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. One of these compositions, SAM1651, is discussed in detail to illustrate the promise of this general class of materials.

  12. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear

  13. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    SciTech Connect

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  14. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    SciTech Connect

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  15. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  16. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  17. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  18. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  19. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  20. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    SciTech Connect

    Ha, Tae-Jun

    2014-10-15

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  1. Metal-based magnetic fluids with core-shell structure FeB@SiO2 amorphous particles.

    PubMed

    Yu, Mengchun; Bian, Xiufang; Wang, Tianqi; Wang, Junzhang

    2017-09-27

    FeB@SiO2 amorphous particles were firstly introduced into Ga85.8In14.2 alloys to prepare metal-based magnetic fluids. The morphology of the FeB amorphous particles is spherical with an average particle size of about 190 nm. The shape of the particles is regular and the particle size is homogeneous. Stable core-shell structure SiO2 modified FeB amorphous particles are obtained and the thickness of the SiO2 coatings is observed to be about 40 nm. The results of VSM confirm that the saturation magnetization of the FeB amorphous particles is 131.5 emu g(-1), which is almost two times higher than that of the Fe3O4 particles. The saturation magnetization of the FeB@SiO2 amorphous particles is 106.9 emu g(-1), an approximate decrease of 18.7% due to the non-magnetic SiO2 coatings. The results from the torsional oscillation viscometer show that the metal-based magnetic fluids with FeB amorphous particles exhibit a desirable high temperature performance and are ideal candidates for high temperature use.

  2. Deformation analysis of amorphous metals based on atomic elastic stiffness coefficients

    NASA Astrophysics Data System (ADS)

    Yashiro, K.; Nishimura, M.; Tomita, Y.

    2006-06-01

    The elastic limit of a crystal can be evaluated by the positiveness of elastic stiffness coefficients, Bijkl. We had demonstrated that the nucleation of lattice defects such as dislocation and cleavage cracking can be predicted by the atomic Bijkl at each atom point. Amorphous metals and bulk metallic glasses draw intense interest whether the criteria are applicable or not since they are regarded as the ultimate of lattice defects. In the present study, an amorphous Ni-Al binary alloy is made by a usual melt-quench simulation and subjected to tension by means of molecular dynamics simulation. During simulations, the positiveness of atomic Bijkl is discussed for all atoms. Contrary to an Ni-Al crystal, many atoms show negative value even in the initial equilibrium of the amorphous before loading. These unstable atoms turn out to be the non-clustered atom or the outer-shell of the local cluster such as 12(0, 0, 12, 0) icosahedron. On the other hand, the centre atoms of the local clusters show high stability resulting in the positive Bijkl of the whole system. It is also demonstrated that the change in the atomic Bijkl can reveal the collapse and re-configuration of local clusters during the deformation.

  3. Flexible amorphous metal films with high stability

    NASA Astrophysics Data System (ADS)

    Liu, M.; Cao, C. R.; Lu, Y. M.; Wang, W. H.; Bai, H. Y.

    2017-01-01

    We report the formation of amorphous Cu50Zr50 films with a large-area of more than 100 cm2. The films were fabricated by ion beam assisted deposition with a slow deposition rate at moderate temperature. The amorphous films have markedly enhanced thermal stability, excellent flexibility, and high reflectivity with atomic level smoothness. The multifunctional properties of the amorphous films are favorites in the promising applications of smart skin or wearable devices. The method of preparing highly stable amorphous metal films by tuning the deposition rate instead of deposition temperature could pave a way for exploring amorphous metal films with unique properties.

  4. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOEpatents

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  5. Method of making amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1982-01-01

    The process comprises placing an amorphous metal in particulate form and a low molecular weight (e.g., 1000-5000) thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  6. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    SciTech Connect

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  7. Indium (In)- and tin (Sn)-based metal induced crystallization (MIC) on amorphous germanium (α-Ge)

    SciTech Connect

    Kang, Dong-Ho; Park, Jin-Hong

    2014-12-15

    Highlights: • In- and Sn-based MIC phenomenon on amorphous (α)-Ge is newly reported. • The In- and Sn-MIC phenomenon respectively started at 250 °C and 400 °C. • The Sn-MIC process presents higher sheet resistance and bigger crystal grains. - Abstract: In this paper, metal-induced crystallization (MIC) phenomenon on α-Ge by indium (In) and tin (Sn) are thoroughly investigated. In- and Sn-MIC process respectively started at 250 °C and 400 °C. Compared to the previously reported MIC samples including In-MIC, Sn-MIC process presented higher sheet resistance (similar to that of SPC) and bigger crystal grains above 50 nm (slightly smaller than that of SPC). According to SIMS analysis, Sn atoms diffused more slowly into Ge than In at 400 °C, providing lower density of heterogeneous nuclei induced by metals and consequently larger crystal grains.

  8. Atomic-Scale Imprinting into Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo; Li, Rui; Simon, Georg; Kinser, Emely; Liu, Ze; Chen, Zheng; Zhou, Chao; Singer, Jonathan; Osuji, Chinedum; Schroers, Jan

    Nanoimprinting by thermoplastic forming (TPF) has attracted significant attention in recent years due to its promise of low-cost fabrication of nanostructured devices. Usually performed using polymers, amorphous metals have been identified as a material class that might be even better suited for nanoimprinting due to a combination of mechanical properties and processing ability. Commonly referred to as metallic glasses, their featureless atomic structure suggests that there may not be an intrinsic size limit to the material's ability to replicate a mold. To study this hypothesis, we demonstrate atomic-scale imprinting into amorphous metals by TPF under ambient conditions. Atomic step edges of a SrTiO3 (STO) single crystal used as mold were successfully imprinted into Pt-based bulk metallic glasses (BMGs) with high fidelity. Terraces on the BMG replicas possess atomic smoothness with sub-Angstrom roughness that is identical to the one measured on the STO mold. Systematic studies revealed that the quality of the replica depends on the loading rate during imprinting, that the same mold can be used multiple times without degradation of mold or replicas, and that the atomic-scale features on as-imprinted BMG surfaces has impressive long-term stability (months).

  9. CORROSION RESISTANCE OF STRUCTURAL AMORPHOUS METAL

    SciTech Connect

    Lian, T; Day, S D; Farmer, J C

    2006-04-10

    Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have been recognized for some time [Latanison 1985]. Iron-based corrosion-resistant, amorphous-metal coatings under development may prove important for maritime applications [Farmer et al. 2005]. Such materials could also be used to coat the entire outer surface of containers for the transportation and long-term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic coatings have also been investigated for such applications [Haslam et al. 2005]. This report focuses on the corrosion resistance of a yttrium-containing amorphous metal, SAM1651. SAM1651 has a glass transition temperature of {approx}584 C, a recrystallization temperature of {approx}653 C, and a melting point of {approx}1121 C. The measured critical cooling rate for SAM1651 is {le} 80 K per second, respectively. The yttrium addition to SAM1651 enhances glass formation, as reported by Guo and Poon [2003]. The corrosion behavior of SAM1651 was compared with nickel-based Alloy 22 in electrochemical polarization measurements performed in several highly

  10. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  11. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  12. Magnetron-Sputtered Amorphous Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Mehra, M.; Khanna, S. K.

    1985-01-01

    Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.

  13. CORROSION STUDY OF AMORPHOUS METAL RIBBONS

    SciTech Connect

    Lian, T; Day, S D; Farmer, J C

    2006-07-31

    Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have been recognized for some time [Latanison 1985]. Iron-based corrosion-resistant, amorphous-metal coatings under development may prove important for maritime applications [Farmer et al. 2005]. Such materials could also be used to coat the entire outer surface of containers for the transportation and long-term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic coatings have also been investigated for such applications [Haslam et al. 2005]. This report focuses on the corrosion resistance of iron-based melt-spun amorphous metal ribbons. Melt-Spun ribbon is made by rapid solidification--a stream of molten metal is dropped onto a spinning copper wheel, a process that enables the manufacture of amorphous metals which are unable to be manufactured by conventional cold or hot rolling techniques. The study of melt-spun ribbon allows quick evaluation of amorphous metals corrosion resistance. The melt-spun ribbons included in this study are DAR40, SAM7, and SAM8, SAM1X series, and SAM2X series. The SAM1X series ribbons have

  14. Microstructures and Tribological Properties of Fe-Based Amorphous Metallic Coatings Deposited via Supersonic Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhou, Yang-yang; Ma, Guo-zheng; Wang, Hai-dou; Li, Guo-lu; Chen, Shu-ying; Fu, Bin-guo

    2017-08-01

    The effects of the Ar flow rate and spraying power of a supersonic plasma spraying process on the microstructures and amorphous phase contents of Fe48Cr15Mo14C15B6Y2 amorphous coatings were systematically investigated. The tribological properties of the coatings were evaluated in pin-on-disk mode using a sliding tribometer. The results show that the amorphous phase content and microhardness initially increase with the Ar flow rate and then gradually decrease. However, the amorphous phase content and microhardness increase with the power. In particular, the amorphous phase content of the coating reaches 96.78% with a spraying power of 62 kW and a 110 L min-1 Ar flow rate. Tribological testing demonstrates that the coatings exhibit similar steady-state coefficients of friction (0.75-0.82) with a total test time of 20 min and an applied load of 20 N. However, the wear rates vary with the spraying parameters. In particular, the relative wear rate of the coating can be enhanced up to sixfold under optimal spraying conditions, resulting in excellent wear resistance. Detailed analysis of the coating wear surfaces indicates that the dominant wear mechanisms are abrasive and oxidative wear. Moreover, delamination may occur during the wear process.

  15. Helium-3 in nickel-base amorphous metals: Surface features, subsurface microstructure, migration, and release upon annealing

    SciTech Connect

    Uenleu, K.

    1989-01-01

    The amorphous alloys Ni{sub 75.1}Cr{sub 14}P{sub 10.1}C{sub 0.08}, Ni{sub 63.5}Zr{sub 36.5}, and Ni{sub 87.7}P{sub 12.3} have been implanted with 150 keV helium-3 ions with doses 1 {times} 10{sup 16} He{sup 3}/cm{sup 2} and 5 {times} 10{sup 16} He{sup 3}/cm{sup 2}. The samples were isochronally annealed at several consecutive stages up t their crystallization temperatures. The surface features were examined by scanning electron microscope, subsurface microstructural changes were investigated by electron diffraction using a scanning transmission electron microscope, and helium-3 depth profiles were measured by a thermal neutron induced nuclear reaction technique called neutron depth profiling (NDP). It was confirmed that for amorphous metals: (a) the helium-3 release is concentration dependent; (b) the migration and the release of helium-3 is controlled by detrapping mechanism; and (c) the crystallization temperatures obtained in this study are in agreement with the reported values. The penetration depth or the projected depth of helium-3 ions with an initial energy of 150 keV is measured here for the first time after obtaining the depth profiles by using the NDP technique. The most probable range values are: 320 nm for Ni{sub 75.1}Cr{sub 14}P{sub 10.1}C{sub 0.08}, 378 nm for Ni{sub 63.5}Zr{sub 36.5} and 375 nm for Ni{sub 87.7}P{sub 12.3}. No blisters, bubbles or pitting were observed on the samples when they were annealed up to their crystallization temperature. Some of the helium-3 trapped in amorphous metals seems not to be as strongly bound as in single crystal nickel. More helium-3 release was observed for the metal-metal amorphous metal samples than the metal-metalloid amorphous metal. For metal-metal amorphous alloy the helium-3 release behavior can be correlated with the partial or full crystallization. For metal-metalloid amorphous alloys this correlation may depend on the chemical composition.

  16. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    NASA Astrophysics Data System (ADS)

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; Ohodnicki, Paul; McHenry, Michael E.

    2017-07-01

    Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100-x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16-y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.

  17. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

    SciTech Connect

    Shan, X; Ha, H; Payer, J H

    2008-07-24

    The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl at 100 C with cyclic potentiodynamic polarization and constant potential tests. The corrosion damage morphologies, corrosion products and the compositions of corroded surfaces of these two alloys were studied with optical 3D reconstruction, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Auger Electron Spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant potential test. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys were corroded congruently.

  18. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  19. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  20. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  1. Laser surface treatment of amorphous metals

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  2. Atomic Bond Deficiency Defects in Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Zhu, Aiwu; Shiflet, Gary J.; Poon, S. Joseph

    2012-10-01

    Atomic bond deficiency (BD) is considered to be characteristic structural defects in amorphous metals. They are the necessary feature of local atomic configurations that facilitate various atomic transports under different driving forces. Compared with vacancies in crystalline solids, they are "small" in terms of their formation energies, volume costs, and elementary steps involved in atomic transport. This article reviews the authors' recent efforts made to analyze how various local configurations containing BD are related to amorphous metal's unique characteristics, such as glass transition, diffusion, shear flow, and structural relaxation.

  3. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  4. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  5. Plasma deposition of amorphous metal alloys

    DOEpatents

    Hays, Auda K.

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  6. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    SciTech Connect

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  7. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films. [FEPC; TIPC; TIBC; CR

    SciTech Connect

    DiStefano, S.; Ramesham, R.; Fitzgerald, D.J. )

    1991-07-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. We report some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique. The films were characterized using differential scanning calorimetry (DSC), stress analysis, scanning electron microscopy (SEM), x-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), electron microprobe, and potentiodynamic polarization technique.

  8. The influence of Sc addition on the welding microstructure of Zr-based bulk metallic glass: The stability of the amorphous phase

    NASA Astrophysics Data System (ADS)

    Wang, Shing Hoa; Kuo, Pei Hung; Tsang, Hsiao Tsung; Jeng, Rong Ruey; Lin, Yu Lon

    2007-10-01

    Pulsed direct current autogeneous tungsten inert gas arc welding was conducted on rods of bulk metallic glasses (BMGs) Zr55Cu30Ni5Al10 and (Zr55Cu30Ni5Al10)99.98Sc0.02 under two different cooling conditions. The crystalline precipitates in the fusion zone of BMG Zr55Cu30Ni5Al10 were confirmed by microfocused x-ray diffraction pattern analysis as Zr2Ni and Zr2(Cu,Al) intermetallic compounds. In contrast, BMG with Sc addition (Zr55Cu30Ni5Al10)99.98Sc0.02 shows an excellent stable glass forming ability. The fusion zone of BMG (Zr55Cu30Ni5Al10)99.98Sc0.02 remains in the same amorphous state as that of the amorphous base metal when the weld is cooled with accelerated cooling.

  9. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    DTIC Science & Technology

    2017-03-28

    amorphous (glassy) atomic structure as opposed to an ordered crystalline structure found in regular alloys.[1] These exciting new materials have received...crystallization kinetics when cooling from the molten state may be achieved topologically by having dense atomic packing configurations within the liquid...structure which jams or severely hinders atomic movement/diffusion.[4] DISTRIBUTION A. Approved for public release: distribution unlimited

  10. Preparation of Fe-Ni-Based Metal-Metalloid Amorphous Alloys by Mechanical Alloying and Mechanical Grinding Methods

    NASA Astrophysics Data System (ADS)

    Miura, Harumatsu; Isa, Shigeteru; Omuro, Keisuke

    1990-02-01

    Using a high energy ball mill, alloys of Fe40Ni40P14B6 and Fe40Ni40B20 were synthesized from crystalline, elemental iron and nickel metals and iron-metalloid alloys such as Fe-B and Fe-P by mechanical alloying (MA). Powders of the Fe40Ni40P14B6 alloy were also prepared from the cast ingot products by mechanical grinding (MG). Each of the MA and MG powder products showed a halo pattern typical of amorphous materials in the X-ray diffraction trace, and the crystallization enthalpy of the Fe40Ni40P14B6 MA powder, measured by differential scanning calorimetry, was almost the same as that of the melt-quenched sample of the same composition.

  11. Interference Function of Crystalline Embryo Model of Amorphous Metals. I

    NASA Astrophysics Data System (ADS)

    Hamada, Tadashi; Fujita, Francisco Eiichi

    1982-07-01

    A simple and possible structural model of amorphous metals based on the concept of crystalline embryos is proposed. The quasi-crystalline clusters are supposed to exist in the liquid state, be enhanced during supercooling, and be frozen as the crystalline embryos in the amorphous state by rapid quenching. A model assembly of atoms containing the crystalline embryos and the boundary regions is constructed, and the pair correlation function and the interference function are calculated. The interference function of the b.c.c. embryo model is in good agreement with experimental ones. It is concluded that the structure of the boundary connecting the embryos plays an essential role as well as the ordered part in the embryos in the diffraction phenomena of the amorphous structures. The importance of chemical clusters and metalloid atoms is also suggested and discussed.

  12. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  13. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  14. High-Performance Corrosion-Resistant Iron-Based Amorphous Metals: The Effects of Composition, Structure and Environment on Corrosion Resistance

    SciTech Connect

    Farmer, J; Choi, J S; Haslam, J; Lian, T; Day, S; Yang, N; Blue, C; Peters, W; Bayles, R; Lewandowski, J; Perepezko, J; Hildal, K; Lavernia, E; Ajdelsztajn, A; Grave, O; Aprigliano, L; Kaufman, L; Boudreau, J; Branagan, D J; Beardsley, B

    2006-04-11

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative thermal phase stability, microstructure, mechanical properties, damage tolerance, and corrosion resistance. Some alloy additions are known to promote glass formation and to lower the critical cooling rate [F. Guo, S. J. Poon, Applied Physics Letters, 83 (13) 2575-2577, 2003]. Other elements are known to enhance the corrosion resistance of conventional stainless steels and nickel-based alloys [A. I. Asphahani, Materials Performance, Vol. 19, No. 12, pp. 33-43, 1980] and have been found to provide similar benefits to iron-based amorphous metals. Many of these materials can be cast as relatively thick ingots, or applied as coatings with advanced thermal spray technology. A wide variety of thermal spray processes have been developed by industry, and can be used to apply these new materials as coatings. Any of these can be used for the deposition of the formulations discussed here, with varying degrees of residual porosity and crystalline structure. Thick protective coatings have now been made that are fully dense and completely amorphous in the as-sprayed condition. An overview of the High-Performance Corrosion Resistant Materials (HPCRM) Project will be given, with particular emphasis on the corrosion resistance of several different types of iron-based amorphous metals in various environments of interest. The salt fog test has been used to compare the performance of various wrought alloys, melt-spun ribbons, arc-melted drop-cast ingots, and thermal-spray coatings for their susceptibility to corrosion in marine environments. Electrochemical tests have also been performed in seawater. Spontaneous breakdown of the passive film and localized corrosion require that the open-circuit corrosion potential exceed the critical potential. The resistance to localized corrosion is seawater has been

  15. Robust hydrophobic Fe-based amorphous coating by thermal spraying

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, Y.; Liu, L.

    2012-09-01

    Metallic surface is intrinsically hydrophilic due to its high surface energy. In this work, we present a different picture that highly hydrophobic metallic coatings could be directly fabricated by thermal spraying of Fe-based amorphous powders through the surface roughness control. These hydrophobic coatings are amorphous, exhibiting super-high hardness and excellent corrosion resistance. With low surface energy modification, the coatings become superhydrophobic and exhibit clearly self-cleaning effect. The present work opens a window for the applications of the amorphous coatings.

  16. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-05

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers.

  17. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    SciTech Connect

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  18. Transmissive metallic contact for amorphous silicon solar cells

    DOEpatents

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  19. Amorphous Ternary Diffusion Barriers for Silicon Metallizations

    NASA Astrophysics Data System (ADS)

    Reid, Jason Sven

    1995-01-01

    Reactively sputtered from transition-metal silicide or boride targets in Ar/N_2 discharges, thin amorphous films of TM-Si-N (TM = Mo, Ta, Ti, or W) and W-B-N are investigated. Resistivity, density, stress, and structure are given as functions of composition, and in some cases, temperature. Transmission electron microscopy shows that most of the films are marginally amorphous with the scale of local order ranging from 0.5 to 1.5 nm. Small -angle scattering measurements reveal chemically dissimilary regions in the films. When fully nitrided, Si appears to be preferentially bonded to nitrogen in the form of Si_3N_4 in the TM-Si-N films, according to extended energy loss fine structure (EXELFS) measurements. By tests on shallow-junction diodes, 100-nm thick TM-Si-N barriers are able to prevent aluminum overlayers from spiking the Si substrate at temperatures above aluminum's melting point, 660^circC. The exceptional stability is partly attributable to a 3 nm, self-sealing AlN layer which grows at the TM-Si-N/Al interface. The performance of the TM-Si-N and W-B-N barriers with copper overlayers is equally impressive. At the proper compositions, 100-nm barriers prevent copper from diffusing into the junction at 800^circC or higher for a 30-min vacuum annealing. Diode failure typically corresponds to the crystallization temperature of the barrier, which can be reduced by the presence of copper. Preliminary diffusion measurements of Cu in Ta _{36}Si_ {14}N_{50} films by SIMS yield an approximate diffusivity constant of D_{CU} = (0.014 cm ^2/s) times exp(-2.7 eV/kT). A 10-nm-thick TM-Si-N barrier with a Cu overlayer on MOS capacitors reveals no penetration of Cu into SiO_2 during an 80 h bias-thermal-stress at 300^circ C and 1 MV/cm applied field. Through a microscopic four-point probe lithographically defined on a Cu/barrier/Cu trilayer stack, the specific contact resistances of barrier/Cu interfaces are determined for TM-Si-N, TiN, and W barriers. In all instances, the

  20. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  1. Origin of Magnetic Properties in Amorphous Metals.

    DTIC Science & Technology

    1979-12-01

    Magnetic Properties of Fe-Ni-B Amorphous Alloys," F. E. Luborsky, J. L. Walter, and H. H. Liebermann , IEEE Trans. on Magnetics MAG-15, 909 (1979). Also GE...Report 78CRD132. 2. "Formation and Magnetic Properties of Fe-B-Si Amorphous Alloys," F. E. Luborsky, J. J. Becker, J. L. Walter, and H. H. Liebermann ...Amorphous Alloys," F. E. Luborsky and H. H. Liebermann , J. Appl. Phys., to appear. Also GE Report 79CRD177. 4. "The Effect of Temperature on Magnetic

  2. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Technical Reports Server (NTRS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    1981-01-01

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  3. Amorphous metal distribution transformers: The energy-efficient alternative

    SciTech Connect

    Garrity, T.F.

    1994-12-31

    Amorphous metal distribution transformers have been commercially available for the past 13 years. During that time, they have realized the promise of exceptionally high core efficiency as compared to silicon steel transformer cores. Utility planners today must consider all options available to meet the requirements of load growth. While additional generation capacity will be added, many demand-side initiatives are being undertaken as complementary programs to generation expansion. The efficiency improvement provided by amorphous metal distribution transformers deserves to be among the demand-side options. The key to understanding the positive impact of amorphous metal transformer efficiency is to consider the aggregate contribution those transformers can make towards demand reduction. It is estimated that distribution transformer core losses comprise at least 1% of the utility`s peak demand. Because core losses are continuous, any significant reduction in their magnitude is of great significance to the planner. This paper describes the system-wide economic contributions amorphous metal distribution transformers can make to a utility and suggests evaluation techniques that can be used. As a conservation tool, the amorphous metal transformer contributes to reduced power plant emissions. Calibration of those emissions reductions is also discussed in the paper.

  4. Self-diffusion and macroscopic diffusion of hydrogen in amorphous metals from first-principles calculations.

    PubMed

    Hao, Shiqiang; Sholl, David S

    2009-06-28

    Diffusion of interstitial hydrogen plays a key role in potential uses for amorphous metals as membranes for hydrogen purification. We show how first principles-based methods can be used to characterize diffusion of interstitial H in amorphous metals using amorphous Fe(3)B as an example. Net transport of interstitial H is governed by the transport diffusion coefficient that appears in Fick's law. This diffusion coefficient is strongly dependent on the interstitial concentration, and is not equal to the self-diffusion coefficient except at dilute interstitial concentrations. Under conditions of practical interest, the concentrations of interstitial H in amorphous metals are nondilute so methods to determine the transport diffusion coefficient must be used if net mass transport is to be described. We show how kinetic Monte Carlo simulations of interstitial H diffusion that use rates derived from first-principles calculations can be used to assess both self- and transport diffusion coefficients of H in amorphous metals. These methods will be helpful in efforts to screen amorphous metal alloys as potential membranes for hydrogen purification.

  5. The Corrosion Resistance of Fe-Based Amorphous Metals: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 and Other Compositions

    SciTech Connect

    Farmer, J; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Rebak, R; Payer, J; Blue, C; Peters, W; Branagan, D

    2007-07-09

    Several Fe-based amorphous metals were developed with good corrosion resistance. These materials have been produced as melt-spun ribbons, ingots, and thermal-spray coatings. Cyclic polarization has been conducted in several aggressive environments, at ambient temperature, as well as temperatures approaching the boiling points of the test solutions. The hypothesis that the corrosion resistance of iron-based amorphous metals can be enhanced through application of heuristic principles related to the additions of chromium, molybdenum, tungsten has been tested and found to have merit. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature.

  6. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  7. Structure and properties of an amorphous metal-organic framework.

    PubMed

    Bennett, Thomas D; Goodwin, Andrew L; Dove, Martin T; Keen, David A; Tucker, Matthew G; Barney, Emma R; Soper, Alan K; Bithell, Erica G; Tan, Jin-Chong; Cheetham, Anthony K

    2010-03-19

    ZIF-4, a metal-organic framework (MOF) with a zeolitic structure, undergoes a crystal-amorphous transition on heating to 300 degrees C. The amorphous form, which we term a-ZIF, is recoverable to ambient conditions or may be converted to a dense crystalline phase of the same composition by heating to 400 degrees C. Neutron and x-ray total scattering data collected during the amorphization process are used as a basis for reverse Monte Carlo refinement of an atomistic model of the structure of a-ZIF. The structure is best understood in terms of a continuous random network analogous to that of a-SiO2. Optical microscopy, electron diffraction and nanoindentation measurements reveal a-ZIF to be an isotropic glasslike phase capable of plastic flow on its formation. Our results suggest an avenue for designing broad new families of amorphous and glasslike materials that exploit the chemical and structural diversity of MOFs.

  8. Structure and Properties of an Amorphous Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas D.; Goodwin, Andrew L.; Dove, Martin T.; Keen, David A.; Tucker, Matthew G.; Barney, Emma R.; Soper, Alan K.; Bithell, Erica G.; Tan, Jin-Chong; Cheetham, Anthony K.

    2010-03-01

    ZIF-4, a metal-organic framework (MOF) with a zeolitic structure, undergoes a crystal-amorphous transition on heating to 300°C. The amorphous form, which we term a-ZIF, is recoverable to ambient conditions or may be converted to a dense crystalline phase of the same composition by heating to 400°C. Neutron and x-ray total scattering data collected during the amorphization process are used as a basis for reverse Monte Carlo refinement of an atomistic model of the structure of a-ZIF. The structure is best understood in terms of a continuous random network analogous to that of a-SiO2. Optical microscopy, electron diffraction and nanoindentation measurements reveal a-ZIF to be an isotropic glasslike phase capable of plastic flow on its formation. Our results suggest an avenue for designing broad new families of amorphous and glasslike materials that exploit the chemical and structural diversity of MOFs.

  9. Improved amorphous metal materials for magnetic pulse compression

    SciTech Connect

    Smith, C.H. )

    1989-08-01

    This program was undertaken by Allied-Signal Inc., under contract from Sandia National Laboratories to examine methods to improve the performance of ferromagnetic amorphous metal alloys for magnetic pulse compression applications. The alloy studied was METGLAS{reg sign} alloy 2605CO, an alloy with maximum saturation induction used in magnetic pulse compression projects. In order to reduce losses under rapid pulse magnetization, the limits of casting thinner ribbons, both in air and in vacuum, were explored as well as methods of reducing thickness after casting. The magnetic properties of these ribbons were characterized as a function of thickness. The voltage hold off and the effects of conformal insulative coatings on magnetic properties were studied in an attempt to develop an annealable insulation capable of withstanding 100 volt pulses. Finally, recommendations were made based on this work for scaling up to larger quantities of thin ribbon. 17 refs., 17 figs., 9 tabs.

  10. Caltech Center for Structural and Amorphous Metals

    DTIC Science & Technology

    2005-05-10

    fracture resistance and subcritical-crack growth behavior in BMG’s and their composites. We have shown that hydrogen significantly increases the glass...Science des Materiaux , 2713], 2002 L. Shadowspeaker, M. B. Shah and R. Busch, "On the crystalline equilibrium phases of the Zr5 7 Nb 5 Cu 15 .4Ni12.6 A lI0...Lowhaphandu, L.A. Ludrosky, and J.J. Lewandowski "Fracture Resistance of Zr-Ti-Ni-Cu-Be Bulk Amorphous Alloy",, TMS-AIME Fall Meeting, Cincinnati, OH

  11. Investigation of limit state criteria for amorphous metals

    NASA Astrophysics Data System (ADS)

    Comanici, A. M.; Sandovici, A.; Barsanescu, P. D.

    2016-08-01

    The name of amorphous metals is assigned to metals that have a non-crystalline structure, but they are also very similar to glass if we look into their properties. A very distinguished feature is the fact that amorphous metals, also known as metallic glasses, show a good electrical conductivity. The extension of the limit state criteria for different materials makes this type of alloy a choice to validate the new criterions. Using a new criterion developed for biaxial and triaxial state of stress, the results are investigated in order to determine the applicability of the mathematical model for these amorphous metals. Especially for brittle materials, it is extremely important to find suitable fracture criterion. Mohr-Coulomb criterion, which is permitting a linear failure envelope, is often used for very brittle materials. But for metallic glasses this criterion is not consistent with the experimental determinations. For metallic glasses, and other high-strength materials, Rui Tao Qu and Zhe Feng Zhang proposed a failure envelope modeling with an ellipse in σ-τ coordinates. In this paper this model is being developed for principal stresses space. It is also proposed a method for transforming σ-τ coordinates in principal stresses coordinates and the theoretical results are consistent with the experimental ones.

  12. Unveiling the complex electronic structure of amorphous metal oxides

    PubMed Central

    Århammar, C.; Pietzsch, Annette; Bock, Nicolas; Holmström, Erik; Araujo, C. Moyses; Gråsjö, Johan; Zhao, Shuxi; Green, Sara; Peery, T.; Hennies, Franz; Amerioun, Shahrad; Föhlisch, Alexander; Schlappa, Justine; Schmitt, Thorsten; Strocov, Vladimir N.; Niklasson, Gunnar A.; Wallace, Duane C.; Rubensson, Jan-Erik; Johansson, Börje; Ahuja, Rajeev

    2011-01-01

    Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5–10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.

  13. Relationship between amorphous silica and precious metal in quartz veins

    NASA Astrophysics Data System (ADS)

    Harrichhausen, N.; Rowe, C. D.; Board, W. S.; Greig, C. J.

    2015-12-01

    Super-saturation of silica is common in fault fluids, due to pressure changes associated with fracture, fault slip, or temperature gradients in hydrothermal systems. These mechanisms lead to precipitation of amorphous silica, which will recrystallize to quartz under typical geologic conditions. These conditions may also promote the saturation of precious metals, such as gold, and the precipitation of nanoparticles. Previous experiments show that charged nanoparticles of gold can attach to the surface of amorphous silica nanoparticles. Thus, gold and silica may be transported as a colloid influencing mineralization textures during amorphous silica recrystallization to quartz. This may enrich quartz vein hosted gold deposits, but the instability of hydrous silica during subsequent deformation means that the microstructural record of precipitation of gold is lost. We investigate a recent, shallow auriferous hydrothermal system at Dixie Valley, Nevada to reveal the nano- to micro-scale relationships between gold and silica in fresh veins. Fault slip surfaces at Dixie Valley exhibit layers of amorphous silica with partial recrystallization to quartz. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) show amorphous silica can contain a few wt. % gold while areas recrystallized to quartz are barren. At the Jurassic Brucejack deposit in British Columbia, Canada we observe the cryptocrystalline quartz textures that may indicate recrystallization from amorphous silica within quartz-carbonate veins containing high grade gold. Comb quartz within syntaxial veins, vugs, and coating breccia clasts indicate structural dilation. Vein geometry is investigated to determine relative importance of fault slip in creating dilational sites. By comparing quartz-carbonate veins from the Dixie Valley to Brucejack, we can determine whether amorphous silica formed in different environments show similar potential to affect precious metal mineralization.

  14. Amorphous phase formation in mechanically alloyed iron-based systems

    NASA Astrophysics Data System (ADS)

    Sharma, Satyajeet

    Bulk metallic glasses have interesting combination of physical, chemical, mechanical, and magnetic properties which make them attractive for a variety of applications. Consequently there has been a lot of interest in understanding the structure and properties of these materials. More varied applications can be sought if one understands the reasons for glass formation and the methods to control them. The glass-forming ability (GFA) of alloys can be substantially increased by a proper selection of alloying elements and the chemical composition of the alloy. High GFA will enable in obtaining large section thickness of amorphous alloys. Ability to produce glassy alloys in larger section thicknesses enables exploitation of these advanced materials for a variety of different applications. The technique of mechanical alloying (MA) is a powerful non-equilibrium processing technique and is known to produce glassy (or amorphous) alloys in several alloy systems. Metallic amorphous alloys have been produced by MA starting from either blended elemental metal powders or pre-alloyed powders. Subsequently, these amorphous alloy powders could be consolidated to full density in the temperature range between the glass transition and crystallization temperatures, where the amorphous phase has a very low viscosity. This Dissertation focuses on identifying the various Fe-based multicomponent alloy systems that can be amorphized using the MA technique, studying the GFA of alloys with emphasis on improving it, and also on analyzing the effect of extended milling time on the constitution of the amorphous alloy powder produced at earlier times. The Dissertation contains seven chapters, where the lead chapter deals with the background, history and introduction to bulk metallic glasses. The following four chapters are the published/to be published work, where the criterion for predicting glass formation, effect of Niobium addition on glass-forming ability (GFA), lattice contraction on

  15. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    SciTech Connect

    Ganjeh, E.; Sarkhosh, H.; Bajgholi, M.E.; Khorsand, H.; Ghaffari, M.

    2012-09-15

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni and Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for brazing Ti

  16. Amorphous silicon based radiation detectors

    SciTech Connect

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D. ); Fujieda, I.; Street, R.A. )

    1991-07-01

    We describe the characteristics of thin(1 {mu}m) and thick (>30{mu}m) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and {gamma} rays. For x-ray, {gamma} ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs.

  17. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOEpatents

    Farmer, Joseph C [Tracy, CA

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  18. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOEpatents

    Farmer, Joseph C.

    2014-07-15

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  19. Controlled rejuvenation of amorphous metals with thermal processing.

    PubMed

    Wakeda, Masato; Saida, Junji; Li, Ju; Ogata, Shigenobu

    2015-05-26

    Rejuvenation is the configurational excitation of amorphous materials and is one of the more promising approaches for improving the deformability of amorphous metals that usually exhibit macroscopic brittle fracture modes. Here, we propose a method to control the level of rejuvenation through systematic thermal processing and clarify the crucial feasibility conditions by means of molecular dynamics simulations of annealing and quenching. We also experimentally demonstrate rejuvenation level control in Zr(55)Al(10)Ni(5)Cu(30) bulk metallic glass. Our local heat-treatment recipe (rising temperature above 1.1T(g), followed by a temperature quench rate exceeding the previous) opens avenue to modifying the glass properties after it has been cast and processed into near component shape, where a higher local cooling rate may be afforded by for example transient laser heating, adding spatial control and great flexibility to the processing.

  20. Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling

    NASA Technical Reports Server (NTRS)

    Lee, M. C. (Inventor)

    1985-01-01

    Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.

  1. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  2. Formation of amorphous metal alloys by chemical vapor deposition

    DOEpatents

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  3. Near-infrared-driven decomposition of metal precursors yields amorphous electrocatalytic films.

    PubMed

    Salvatore, Danielle A; Dettelbach, Kevan E; Hudkins, Jesse R; Berlinguette, Curtis P

    2015-03-01

    Amorphous metal-based films lacking long-range atomic order have found utility in applications ranging from electronics applications to heterogeneous catalysis. Notwithstanding, there is a limited set of fabrication methods available for making amorphous films, particularly in the absence of a conducting substrate. We introduce herein a scalable preparative method for accessing oxidized and reduced phases of amorphous films that involves the efficient decomposition of molecular precursors, including simple metal salts, by exposure to near-infrared (NIR) radiation. The NIR-driven decomposition process provides sufficient localized heating to trigger the liberation of the ligand from solution-deposited precursors on substrates, but insufficient thermal energy to form crystalline phases. This method provides access to state-of-the-art electrocatalyst films, as demonstrated herein for the electrolysis of water, and extends the scope of usable substrates to include nonconducting and temperature-sensitive platforms.

  4. Near-infrared–driven decomposition of metal precursors yields amorphous electrocatalytic films

    PubMed Central

    Salvatore, Danielle A.; Dettelbach, Kevan E.; Hudkins, Jesse R.; Berlinguette, Curtis P.

    2015-01-01

    Amorphous metal-based films lacking long-range atomic order have found utility in applications ranging from electronics applications to heterogeneous catalysis. Notwithstanding, there is a limited set of fabrication methods available for making amorphous films, particularly in the absence of a conducting substrate. We introduce herein a scalable preparative method for accessing oxidized and reduced phases of amorphous films that involves the efficient decomposition of molecular precursors, including simple metal salts, by exposure to near-infrared (NIR) radiation. The NIR-driven decomposition process provides sufficient localized heating to trigger the liberation of the ligand from solution-deposited precursors on substrates, but insufficient thermal energy to form crystalline phases. This method provides access to state-of-the-art electrocatalyst films, as demonstrated herein for the electrolysis of water, and extends the scope of usable substrates to include nonconducting and temperature-sensitive platforms. PMID:26601148

  5. In Situ Synthesis and Characterization of Zr-Based Amorphous Composite by Laser Direct Deposition

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang; Bae, Heehun; Shin, Yung C.; Stanciu, Lia A.

    2015-09-01

    Zr-based bulk metallic glasses have attracted extensive interest for structural applications due to their excellent glass-forming ability, superior mechanical properties, and unique thermal and corrosion properties. In this study, Zr65Al10Ni10Cu15 amorphous composites with a large fraction of amorphous phase were in situ synthesized by laser direct deposition. X-ray diffraction confirmed the existence of both amorphous and crystalline phases. Laser parameters were optimized in order to increase the fraction of amorphous phase. The microstructure analysis by scanning electron microscopy revealed the deposited structure was composed of periodically repeated amorphous and crystalline phases. Overlapping regions with nanoparticles aggregated were crystallized by laser reheating and remelting processes during subsequent laser scans. Vickers microhardness of the amorphous region showed around 35 pct higher than that of crystalline region. Average hardness obtained by a Rockwell macrohardness tester was very close to the microhardness of the amorphous region. The compression test showed that the fracture strain of Zr65Al10Ni10Cu15 amorphous composites was enhanced from less than 2 pct to as high as 5.7 pct, compared with fully amorphous metallic glass. Differential scanning calorimetry test results further revealed the amorphous structure and glass transition temperature T g was observed to be around 660 K (387 °C). In 3 mol/L NaCl solution, laser direct deposited amorphous composites exhibited distinctly improved corrosion resistance, compared with fully crystallized samples.

  6. Amorphous to amorphous insulator-metal transition in GeSe3:Ag glasses

    NASA Astrophysics Data System (ADS)

    Prasai, Kiran; Chen, Gang; Drabold, D. A.

    2017-06-01

    We study an insulator-metal transition in a ternary chalcogenide glass (GeSe3)1 -xAgx for x =0.15 and 0.25. The conducting phase of the glass is obtained by using gap sculpting [Prasai et al., Sci. Rep. 5, 15522 (2015), 10.1038/srep15522] and it is observed that the metallic and insulating phases have nearly identical density functional energies but have a conductivity contrast of ˜108 . As such, we demonstrate an example of polyamorphism for which energetically close phases exhibit dramatically different optical properties. The transition from insulator to metal involves growth of an Ag-rich phase accompanied by a depletion of tetrahedrally bonded Ge (Se1/2)4 in the host network. The relative fraction of the amorphous Ag2Se phase and GeSe2 phase is shown to be a critical determinant of dc conductivity.

  7. Advanced high-k dielectric amorphous LaGdO3 based high density metal-insulator-metal capacitors with sub-nanometer capacitance equivalent thickness

    NASA Astrophysics Data System (ADS)

    Pavunny, S. P.; Misra, P.; Scott, J. F.; Katiyar, R. S.

    2013-06-01

    Planar metal-insulator-metal (MIM) mono-dielectric layer stacks were fabricated using pulsed laser deposited thin films of high-k dielectric LaGdO3. These stacks showed high capacitance density ˜43.5 fF/μm2 with sub-nanometer capacitance equivalent thicknesses of ˜0.66 nm, large breakdown field of ˜6 MV/cm, greater energy storage density of ˜40 J/cm3, smaller voltage coefficient of capacitance, and lower dependence of it on layer thickness α ∝ d-1 and frequency. All these features make LaGdO3 a material of interest for next generation MIM structures for radio frequency, analog/mixed-signal, and dynamic random access memory applications.

  8. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    SciTech Connect

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  9. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    SciTech Connect

    Blink, J; Choi, J; Farmer, J

    2007-07-09

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Iron-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials.

  10. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Blink, J.; Farmer, J.; Choi, J.; Saw, C.

    2009-06-01

    Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.

  11. Excimer laser crystallization of amorphous silicon on metallic substrate

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Antoni, F.; Slaoui, A.; Cayron, C.; Ducros, C.; Lerat, J.-F.; Emeraud, T.; Negru, R.; Huet, K.; Reydet, P.-L.

    2013-06-01

    An attempt has been made to achieve the crystallization of silicon thin film on metallic foils by long pulse duration excimer laser processing. Amorphous silicon thin films (100 nm) were deposited by radiofrequency magnetron sputtering on a commercial metallic alloy (N42-FeNi made of 41 % of Ni) coated by a tantalum nitride (TaN) layer. The TaN coating acts as a barrier layer, preventing the diffusion of metallic impurities in the silicon thin film during the laser annealing. An energy density threshold of 0.3 J cm-2, necessary for surface melting and crystallization of the amorphous silicon, was predicted by a numerical simulation of laser-induced phase transitions and witnessed by Raman analysis. Beyond this fluence, the melt depth increases with the intensification of energy density. A complete crystallization of the layer is achieved for an energy density of 0.9 J cm-2. Scanning electron microscopy unveils the nanostructuring of the silicon after laser irradiation, while cross-sectional transmission electron microscopy reveals the crystallites' columnar growth.

  12. Bulk amorphous metallic alloys: Synthesis by fluxing techniques and properties

    SciTech Connect

    He, Yi; Shen, Tongde; Schwarz, R.B.

    1997-05-01

    Bulk amorphous alloys having dimensions of at least 1 cm diameter have been prepared in the Pd-Ni-P, Pd-Cu-P, Pd-Cu-Ni-P, and Pd-Ni-Fe-P systems using a fluxing and water quenching technique. The compositions for bulk glass formation have been determined in these systems. For these bulk metallic glasses, the difference between the crystallization temperature T{sub x}, and the glass transition temperature T{sub g}, {Delta}T = T{sub x} - T{sub g}, ranges from 60 to 1 10 K. These large values of {Delta}T open the possibility for the fabrication of amorphous near net-shape components using techniques such as injection molding. The thermal, elastic, and magnetic properties of these alloys have been studied, and we have found that bulk amorphous Pd{sub 40}Ni{sub 22.5}Fe{sub 17.5}P{sub 20} has spin glass behavior for temperatures below 30 K. 65 refs., 14 figs., 3 tabs.

  13. Ferrofluids based on Co-Fe-Si-B amorphous nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Bian, Xiufang; Yang, Chuncheng; Zhao, Shuchun; Yu, Mengchun

    2017-03-01

    Magnetic Co-Fe-Si-B amorphous nanoparticles were successfully synthesized by chemical reduction method. ICP, XRD, DSC, and TEM were used to investigate the composition, structure and morphology of Co-Fe-Si-B samples. The results show that the Co-Fe-Si-B samples are amorphous, which consist of nearly spherical nanoparticles with an average particle size about 23 nm. VSM results manifest that the saturation magnetization (Ms) of Co-Fe-Si-B samples ranges from 46.37 to 62.89 emu/g. Two kinds of ferrofluids (FFs) were prepared by dispersing Co-Fe-Si-B amorphous nanoparticles and CoFe2O4 nanoparticles in kerosene and silicone oil, respectively. The magnetic properties, stability and viscosity of the FFs were investigated. The FFs with Co-Fe-Si-B samples have a higher Ms and lower coercivity (Hc) than FFs with CoFe2O4 sample. Under magnetic field, the silicone oil-based FFs exhibit high stability. The viscosity of FFs under different applied magnetic fields was measured by a rotational viscometer, indicating that FFs with Co-Fe-Si-B particles present relative strong response to an external magnetic field. The metal-boride amorphous alloy nanoparticles have potential applications in the preparation of magnetic fluids with good stability and good magnetoviscous properties.

  14. Microstructure of Vacuum-Brazed Joints of Super-Ni/NiCr Laminated Composite Using Nickel-Based Amorphous Filler Metal

    NASA Astrophysics Data System (ADS)

    Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan

    2013-06-01

    Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.

  15. Enhanced thermoelectric performance of amorphous Nb based oxynitrides

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2015-12-01

    Using density functional theory, amorphous Nb0.27Ru0.06O0.56N0.10 was designed to facilitate a combination of an enhanced Seebeck coefficient and low electrical resistivity. Based on a positive Cauchy pressure, ductile behavior is expected. To verify these predictions, the transport and mechanical properties of amorphous thin films were evaluated. Metallic electrical resistivity and the Seebeck coefficient of -94 μV K-1 are obtained, which is consistent with our predictions. As there is no crack formation, these samples can be perceived as ductile. We demonstrate that the power factor can be increased by an order of magnitude, while keeping the thermal fatigue low.

  16. Amorphous liquid metal electrodes enabled conformable electrochemical therapy of tumors.

    PubMed

    Sun, Xuyang; Yuan, Bo; Rao, Wei; Liu, Jing

    2017-11-01

    Electrochemical treatment of tumors (EChT) has recently been identified as a very effective way for local tumor therapy. However, hindered by the limited effective area of a single rigid electrode, multiple electrodes are often recruited when tackling large tumors, where too many electrodes not only complicate the clinical procedures but also aggravate patients' pain. Here we present a new conceptual electric stimulation tumor therapy through introducing the injectable liquid metal electrodes, which can adapt to complex tumor shapes so as to achieve desired therapeutic performance. This approach can offer evident merits for dealing with the complex physiological situations, especially for those irregular body cavities like stomach, colon, rectum or even blood vessel etc., which are hard to tackle otherwise. As it was disclosed from the conceptual experiments that, Unlike traditional rigid and uncomfortable electrodes, liquid metal possesses high flexibility to attach to any crooked biological position to deliver and adjust targeted electric field to fulfill anticipated tumor destruction. And such amorphous electrodes exhibit rather enhanced treatment effect of tumors. Further, we also demonstrate that EChT with liquid metal electrodes produced more electrochemical products during electrolysis. Transformations with the shapes of liquid metal provided an easily regulatable strategy to improve EChT efficiency, which can conveniently aid to achieve better output compared to multiple electrodes. In vivo EChT of tumors further clarified the effect of liquid metal electrodes in retarding tumor growth and increasing life spans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ion-beam amorphization of semiconductors: A physical model based on the amorphous pocket population

    SciTech Connect

    Mok, K.R.C.; Jaraiz, M.; Martin-Bragado, I.; Rubio, J.E.; Castrillo, P.; Pinacho, R.; Barbolla, J.; Srinivasan, M.P.

    2005-08-15

    We introduce a model for damage accumulation up to amorphization, based on the ion-implant damage structures commonly known as amorphous pockets. The model is able to reproduce the silicon amorphous-crystalline transition temperature for C, Si, and Ge ion implants. Its use as an analysis tool reveals an unexpected bimodal distribution of the defect population around a characteristic size, which is larger for heavier ions. The defect population is split in both size and composition, with small, pure interstitial and vacancy clusters below the characteristic size, and amorphous pockets with a balanced mixture of interstitials and vacancies beyond that size.

  18. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass

    PubMed Central

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  19. Corrosion Resistances of Iron-Based Amorphous Metals with Yttrium and Tungsten Additions in Hot Calcium Chloride Brine & Natural Seawater: Fe48Mo14Cr15Y2C15B6 and W-Containing Variants

    SciTech Connect

    Farmer, J C; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Blue, C; Peter, W; Payer, J; Branagan, D J

    2006-10-20

    Yttrium-containing SAM1651 (Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0}), has a critical cooling rate (CCR) of approximately 80 Kelvin per second, while SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) with no yttrium has a higher critical cooling rate of approximately 600 Kelvin per second. SAM1651's low CCR enables it to be rendered as a completely amorphous material in practical materials processes. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The passive film stability of these Fe-based amorphous metal formulations have been found to be superior to that of conventional stainless steels, and comparable to that of Ni-based alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates.

  20. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    SciTech Connect

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  1. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates.

    PubMed

    Wolf, Stephan E; Müller, Lars; Barrea, Raul; Kampf, Christopher J; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten; Emmerling, Franziska; Tremel, Wolfgang

    2011-03-01

    During the mineralisation of metal carbonates MCO3 (M=Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed.

  2. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates†

    PubMed Central

    Wolf, Stephan E.; Müller, Lars; Barrea, Raul; Kampf, Christopher J.; Leiterer, Jork; Panne, Ulrich; Hoffmann, Thorsten

    2011-01-01

    During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PMID:21218241

  3. Corrosion Resistances of Iron-Based Amorphous Metals with Yttrium and Tungsten Additions in Hot Calcium Chloride Brine & Natural Seawater: Fe48Mo14CR15Y2C15B6 and Variants

    SciTech Connect

    Farmer, J; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Blue, C; Peter, W; Payer, J; Perepezko, J; Hildal, K; Branagan, D J; Beardsley, M B; Aprigliano, L

    2006-10-12

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of stainless steels and Ni-based Alloy C-22 (UNS No. N06022), based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Electrochemical studies of the passive film stability of SAM1651 are reported here. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Yttrium-containing SAM1651, also known as SAM7 (Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0}), has a critical cooling rate (CCR) of approximately 80 Kelvin per second, while yttrium-free SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) has a higher critical cooling rate of approximately 600 Kelvin per second. SAM1651's low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders have irregular shape, which makes pneumatic conveyance during thermal spray deposition difficult. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying, due to the formation of deleterious intermetallic phases which depletes the matrix of key alloy elements, whereas SAM1651 can be applied as coatings with the same corrosion resistance as a fully-dense completely amorphous melt-spun ribbon, provided that its amorphous

  4. PREFACE: 13th International Conference on Liquid and Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy; Son, Leonid; Sabirzjanov, Alexandre

    2007-06-01

    The state of the art in the field of liquid and amorphous metals and alloys is regularly updated through two series of complementary international conferences, the LAM (Liquid and Amorphous Metals) and the RQ (Rapidly Quenched Materials). The first series of the conferences started as LM-1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semi conductors, quasicrystals etc, were accepted as well. The conference tradition strongly encourages the participation of junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and Ural State Pedagogical University (USPU) and held on 8-13 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). There were 242 active and about 60 guest participants from 20 countries who attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale (25 min) and brief (15 min) oral reports. The program included 10 sessions, ranging from purely theoretical subjects to technological application of molten and amorphous alloys. The following sessions took place: A) Electronic structure and transport, magnetic properties; B) Phase transitions; C) Structure; D) Atomic dynamics and transport; E) Thermodynamics; F) Modelling, simulation; G) Surface and interface; H) Mechanical properties

  5. Magnetic sensors using amorphous metal materials: detection of premature ventricular magnetic waves

    PubMed Central

    Uchiyama, Tsuyoshi; Nakayama, Shinsuke

    2013-01-01

    The detection of magnetic activity enables noncontact and noninvasive evaluation of electrical activity in humans. We review the detection of biomagnetic fields using amorphous metal wire-based magnetic sensors with the sensitivity of a pico-Tesla (pT) level. We measured magnetic fields close to the thoracic wall in a healthy subject sitting on a chair. The magnetic sensor head was mounted perpendicularly against the thoracic wall. Simultaneous measurements with ECG showed that changes in the magnetic field were synchronized with the cardiac electric activity, and that the magnetic wave pattern changed reflecting electrical activity of the atrium and ventricle, despite a large variation. Furthermore, magnetic waves reflecting ventricular arrhythmia were recorded in the same healthy subject. These results suggest that this magnetic sensor technology is applicable to human physiology and pathophysiology research. We also discuss future applications of amorphous wire-based magnetic sensors as well as possible improvements. PMID:24303116

  6. Magnetic sensors using amorphous metal materials: detection of premature ventricular magnetic waves.

    PubMed

    Uchiyama, Tsuyoshi; Nakayama, Shinsuke

    2013-07-01

    The detection of magnetic activity enables noncontact and noninvasive evaluation of electrical activity in humans. We review the detection of biomagnetic fields using amorphous metal wire-based magnetic sensors with the sensitivity of a pico-Tesla (pT) level. We measured magnetic fields close to the thoracic wall in a healthy subject sitting on a chair. The magnetic sensor head was mounted perpendicularly against the thoracic wall. Simultaneous measurements with ECG showed that changes in the magnetic field were synchronized with the cardiac electric activity, and that the magnetic wave pattern changed reflecting electrical activity of the atrium and ventricle, despite a large variation. Furthermore, magnetic waves reflecting ventricular arrhythmia were recorded in the same healthy subject. These results suggest that this magnetic sensor technology is applicable to human physiology and pathophysiology research. We also discuss future applications of amorphous wire-based magnetic sensors as well as possible improvements.

  7. Experimental Investigation on Laser Impact Welding of Fe-Based Amorphous Alloys to Crystalline Copper.

    PubMed

    Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia

    2017-05-12

    Recently, amorphous alloys have attracted many researchers' attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil.

  8. Experimental Investigation on Laser Impact Welding of Fe-Based Amorphous Alloys to Crystalline Copper

    PubMed Central

    Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia

    2017-01-01

    Recently, amorphous alloys have attracted many researchers’ attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil. PMID:28772886

  9. Amorphous silicon-based microchannel plates

    NASA Astrophysics Data System (ADS)

    Franco, Andrea; Riesen, Yannick; Wyrsch, Nicolas; Dunand, Sylvain; Powolny, François; Jarron, Pierre; Ballif, Christophe

    2012-12-01

    Microchannel plates (MCP) based on hydrogenated amorphous silicon (a-Si:H) were recently introduced to overcome some of the limitations of crystalline silicon and glass MCP. The typical thickness of a-Si:H based MCPs (AMCP) ranges between 80 and 100 μm and the micromachining of the channels is realized by deep reactive ion etching (DRIE). Advantages and issues regarding the fabrication process are presented and discussed. Electron amplification is demonstrated and analyzed using Electron Beam Induced Current (EBIC) technique. The gain increases as a function of the bias voltage, limited to -340 V on account of high leakage currents across the structure. EBIC maps on 10° tilted samples confirm that the device active area extend to the entire channel opening. AMCP characterization with the electron beam shows gain saturation and signal quenching which depends on the effectiveness of the charge replenishment in the channel walls.

  10. Probing stochastic nano-scale inelastic events in stressed amorphous metal.

    PubMed

    Yang, Y; Fu, X L; Wang, S; Liu, Z Y; Ye, Y F; Sun, B A; Liu, C T

    2014-10-21

    One fundamental yet longstanding issue in materials science is how local inelasticity arises within an amorphous structure before yielding occurs. Although many possible scenarios were postulated or predicted by theories and simulations,however, direct experimental evidence has been lacking today due to the lack of a sensitive way to detect nano-scale inelasticity. Through the carefully designed microcompression method as coupled with the state-of-art nano-scale electric resistance measurement, we here unfold a stochastic inelastic deformation process in a Zr-based metallic glass, which takes place via the recurrence of two types of short-lived inelastic events causing structural damage and recovery, respectively, prior to yielding. Our current findings reveal that these stochastic events not only self-organize into sub-critical events due to elastic coupling, but also compete with each other in a way that enables the whole amorphous structure to self-heal as well as to sustain local damage.

  11. Evaluation of Amorphous Transformer by Optimum Capacity Selection based on the Load Curve Pattern of Customers

    NASA Astrophysics Data System (ADS)

    Takagi, Masaaki; Yamamoto, Hiromi; Yamaji, Kenji

    Energy loss in transformer is composed of no-load loss and load loss. No-load loss of amorphous transformer (i.e. amorphous metal-based transformer) is less by about 70% compared with traditional transformers (e.g. silicon steel-based transformer). However, amorphous transformers have disadvantages of high cost and high load loss parameter compared with traditional transformers. Furthermore, there are varieties of transformer capacities, and the customers who would buy new transformer have many choices. In this paper, the authors propose an algorithm for optimum transformer selection based on the load curve patterns of customers. It is possible to select the capacity that minimizes the total cost by measuring equivalent load Qe that is the root mean square of load. It becomes clear that amorphous transformer is effective in achieving substantial energy saving compared with traditional transformer.

  12. Application of amorphous filler metals in production of fusion reactor high heat flux components

    SciTech Connect

    Kalin, B.A.; Fedotov, V.T.; Grigoriev, A.E.

    1994-12-31

    The technology of Al-Si, Zr-Ti-Be and Ti-Zr-Cu-Ni amorphous filler metals for Be and graphite brazing with Cu, Mo and V was developed. The fusion reactor high heat flux components from Cu-Be, Cu-graphite, Mo-Be, Mo-graphite, V-Re and V-graphite materials were produced by brazing. Every component represents metallic base, to which Be or graphite plates are brazed. The distance between plates was equal 0.2 times the plate height. These components were irradiated by hydrogen plasma with 5 x 10{sup 6} W/m{sup 2} power. The microstructure and the element distribution in the brazed zone were investigated before and after heat plasma irradiation. Topography graphite plate surfaces and topography of metal surfaces between plates were also investigated after heat plasma irradiation. The results of microstructure investigation and material erosion are discussed.

  13. Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism.

    PubMed

    Pan, Bingcai; Zhang, Qingrui; Du, Wei; Zhang, Weiming; Pan, Bingjun; Zhang, Qingjian; Xu, Zhengwen; Zhang, Quanxing

    2007-07-01

    Selective removal of heavy metals from water has been of considerable concern for several decades. In the present study, the amorphous zirconium phosphate (ZrP) was synthesized and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron micrography (SEM), thermogravimetric analysis (TGA) as well as pH-titration experiments. Uptake of heavy metals including lead, cadmium, and zinc onto ZrP was studied by using a polystyrene sulfonic-acid exchanger D-001 as a reference sorbent and Ca(2+) as a competing cation due to its ubiquity in natural or industrial waters. The results indicated that the uptake of heavy metals onto ZrP is essentially an ion-exchange process and dependent upon solution pH. In comparison with D-001, ZrP exhibited more favorable sorption of heavy metals particularly in terms of high selectivity, as indicated by the distribution coefficients of ZrP even several orders higher than D-001 towards heavy metals when calcium ion coexisted at a high level in solution. The Fourier transform-infrared (FT-IR) spectroscopic investigation indicated that the uptake of calcium, cadmium, and zinc ions onto ZrP is only driven by the electrostatic interaction, while that of lead ion is possibly dependent upon the inner-sphere complex formation with ZrP. XPS results further elucidated that ZrP displays different sorption affinity towards heavy metals in the same order as selectivity sequence of Pb(2+)>Zn(2+) approximately Cd(2+)>Ca(2+), which can be explained by hard and soft acids and bases (HASB) theory. Moreover, uptake of heavy metals onto ZrP approached to equilibrium quickly and the used ZrP could be readily regenerated for reuse by the dilute HCl solution. Thus, all the results suggest that amorphous ZrP has excellent potential as a sorption material for water treatment.

  14. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  15. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  16. Stoichiometry determined exchange interactions in amorphous ternary transition metal oxides: Theory and experiment

    SciTech Connect

    Hu, Shu-jun; Yan, Shi-shen Zhang, Yun-peng; Zhao, Ming-wen; Kang, Shi-shou; Mei, Liang-mo

    2014-07-28

    Amorphous transition metal oxides exhibit exotic transport and magnetic properties, while the absence of periodic structure has long been a major obstacle for the understanding of their electronic structure and exchange interaction. In this paper, we have formulated a theoretical approach, which combines the melt-quench approach and the spin dynamic Monte-Carlo simulations, and based on it, we explored amorphous Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} ternary transition metal oxides. Our theoretical results reveal that the microstructure, the magnetic properties, and the exchange interactions of Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} are strongly determined by the oxygen stoichiometry. In the oxygen-deficient sample (y > 0), we have observed the long-range ferromagnetic spin ordering which is associated with the non-stoichiometric cobalt-rich region rather than metallic clusters. On the other hand, the microstructure of stoichiometric sample takes the form of continuous random networks, and no long-range ferromagnetism has been observed in it. Magnetization characterization of experimental synthesized Co{sub 0.61}Zn{sub 0.39}O{sub 1−y} films verifies the relation between the spin ordering and the oxygen stoichiometry. Furthermore, the temperature dependence of electrical transport shows a typical feature of semiconductors, in agreement with our theoretical results.

  17. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  18. Salt Fog Testing Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-07-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  19. Crystallization behavior of iron-based amorphous nanoparticles prepared sonochemically.

    PubMed

    Enomoto, Naoya; Hirata, Shingo; Inada, Miki; Hayashi, Katsuro

    2017-03-01

    In general, a rapid quenching is required to obtain an amorphous metal. It is known that an intensive ultrasonication generates a very high temperature within cavitation bubbles in a very short moment, which enables a rapid quenching process in a liquid phase synthesis. In this study, the sonochemically-derived "amorphous iron" from Fe(CO)5 was carefully examined by XRD, TEM, TG-DTA. The product was found to be an amorphous containing a certain amount (∼15%) of volatile component that can be removed by heating in a nitrogen flow. After annealed in the inert atmosphere at 600°C, cooled down to room temperature, and then exposed in air (oxygen), the sample showed a strong exotherm accompanied by a weight gain. This is due to oxidation of fine metallic iron. Experimental operations of such a reactive material were examined. Copyright © 2016. Published by Elsevier B.V.

  20. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Reistance FY05 HPCRM Annual Report # Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    SciTech Connect

    Farmer, J C; Haslam, J J; Day, S D

    2007-09-19

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  1. Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1985-01-01

    By using metallic glass compositions with a high relative glass transition temperature, such as Pd40Ni40P20, homogeneous nucleation also becomes negligible. Large (5g) masses of this alloys were obtained using a molten B2O3 flux. Presently, bulk glass formation in iron based glasses is being investigated. It is expected that if an undercooling of about 250K can be achieved in a Ge or Si melt, formation of the amorphous semiconductor phase (rather than the crystal) may be kinetically favored. The volumetric behavior of undercooled liquid Ga droplet dispersion is investigated by dilatometry. A theoretical model (both analytical and numerical) was developed for transient nucleation in glass forming melts. The model, originally designed for isothermal conditions, was extended to continuous quenching. It is being applied to glass formation in various metallic and oxide systems. A further refinement will be the inclusion of diffusion controlled interfacial rearrangements governing the growth of the crystal embryos.

  2. Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1985-01-01

    By using metallic glass compositions with a high relative glass transition temperature, such as Pd40Ni40P20, homogeneous nucleation also becomes negligible. Large (5g) masses of this alloys were obtained using a molten B2O3 flux. Presently, bulk glass formation in iron based glasses is being investigated. It is expected that if an undercooling of about 250K can be achieved in a Ge or Si melt, formation of the amorphous semiconductor phase (rather than the crystal) may be kinetically favored. The volumetric behavior of undercooled liquid Ga droplet dispersion is investigated by dilatometry. A theoretical model (both analytical and numerical) was developed for transient nucleation in glass forming melts. The model, originally designed for isothermal conditions, was extended to continuous quenching. It is being applied to glass formation in various metallic and oxide systems. A further refinement will be the inclusion of diffusion controlled interfacial rearrangements governing the growth of the crystal embryos.

  3. Cell growth on metallic glasses: the interaction of amorphous metal alloys with cultured neuronal, osteoblast, endothelial, and fibroblast cells.

    PubMed

    McAuslan, B R; Johnson, G; Delamore, G W; Gibson, M A; Steele, J G

    1988-10-01

    Ferrous based, corrosion resistant amorphous alloys supported the adhesion and growth of cultured chick neuronal cells, human marrow stromal cells (presumptive osteoblasts), bovine aortal endothelial cells, and hamster kidney fibroblasts. Alloys of compositions Fe60Ni10Cr10P13C7, Fe70Cr10P13C7, and Fe70Cr10P13B7 were found to be suitable. In contrast the crystalline form of these alloys was markedly less effective. Outgrowth of neurites from neuronal cells was promoted by precoating the metal surface with either laminin or neurite promotion factor. The adhesion of osteoblasts and fibroblasts suggests that corrosion resistant metal glasses should be considered as biomaterials useful for orthopedic applications. The adhesion of neuronal cells accompanied by neurite outgrowth indicates that the system might provide a functional interface between the neuromuscular system and an electromagnetic material that could be useful in bionic engineering.

  4. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOEpatents

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  5. Criticality-Control Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    SciTech Connect

    Farmer, J; Choi, J

    2007-07-18

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Iron-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. The high boron content of Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5) makes it an effective neutron absorber, and suitable for criticality control applications. Average measured values of the neutron absorption cross section in transmission ({Sigma}{sub t}) for Type 316L stainless steel, Alloy C-22, borated stainless steel, a Ni-Cr-Mo-Gd alloy, and SAM2X5 have been determined to be approximately 1.1, 1.3, 2.3, 3.8 and 7.1 cm{sup -1}, respectively.

  6. First-principles study of crystalline and amorphous AlMgB{sub 14}-based materials

    SciTech Connect

    Ivashchenko, V. I.; Shevchenko, V. I.; Turchi, P. E. A.; Veprek, S.; Leszczynski, Jerzy; Gorb, Leonid; Hill, Frances

    2016-05-28

    We report first-principles investigations of crystalline and amorphous boron and M1{sub x}M2{sub y}X{sub z}B{sub 14−z} (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm{sup −1}, whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm{sup −1}. The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B{sub 12} units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  7. First-principles study of crystalline and amorphous AlMgB14-based materials

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Turchi, P. E. A.; Veprek, S.; Shevchenko, V. I.; Leszczynski, Jerzy; Gorb, Leonid; Hill, Frances

    2016-05-01

    We report first-principles investigations of crystalline and amorphous boron and M1xM2yXzB14-z (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called "BAM" materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm-1, whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100-1250 cm-1. The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B12 units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  8. Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition.

    PubMed

    Xiao, Shifang; Li, Xiaofan; Deng, Huiqiu; Deng, Lei; Hu, Wangyu

    2015-03-07

    Despite an intensive investigation on bimetallic nanoparticles, little attention has been paid to their amorphization in the past few decades. The study of amorphization on a nanoscale is of considerable significance for the preparation of amorphous nanoparticles and bulk metallic glass. Herein, we pursue the amorphization process of Al-based nanoparticles with classic molecular dynamics simulations and local structural analysis techniques. By a comparative study of the amorphization of pure Al and Fe-doped Al-based nanodroplets in the course of rapid cooling, we find that Fe addition plays a very important role in the vitrification of Al-based nanodroplets. Owing to the subsurface segregated Fe atoms with their nearest neighbors tending to form relatively stable icosahedral (ICO) clusters, the Fe-centred cluster network near the surface effectively suppresses the crystallization of droplets from surface nucleation and growth as the concentration of Fe attains a certain value. The glass formation ability of nanodroplets is suggested to be enhanced by the high intrinsic inner pressure as a result of small size and surface tension, combined with the dopant-inhibited surface nucleation. In addition, the effect of the size and the added concentration of nanoparticles on amorphization and the thermal stability of the amorphous nanoparticles are discussed. Our findings reveal the amorphization mechanism in Fe-doped Al-based nanoparticles and provide a theoretical guidance for the design of amorphous materials.

  9. Embrittlement of Metal by Solute Segregation-Induced Amorphization

    SciTech Connect

    Chen, H.-P.; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya; Yuan, Zaoshi; Kaxiras, Efthimios; Lu, Gang; Duin, Adri C. T. van

    2010-04-16

    Impurities segregated to grain boundaries of a material essentially alter its fracture behavior. A prime example is sulfur segregation-induced embrittlement of nickel, where an observed relation between sulfur-induced amorphization of grain boundaries and embrittlement remains unexplained. Here, 48x10{sup 6}-atom reactive-force-field molecular dynamics simulations provide the missing link. Namely, an order-of-magnitude reduction of grain-boundary shear strength due to amorphization, combined with tensile-strength reduction, allows the crack tip to always find an easy propagation path.

  10. Solid-state crystal-to-amorphous transition in metal-metal multilayers and its thermodynamic and atomistic modelling

    NASA Astrophysics Data System (ADS)

    Liu, B. X.; Lai, W. S.; Zhang, Z. J.

    2001-06-01

    In this review article, first a brief summary is presented concerning the formation of amorphous alloys (or metallic glasses) in binary metal systems by solid-state reaction of metallic multilayers. Secondly, under the framework of Miedema's model, thermodynamic modelling of crystal-to-amorphous transition is developed with special consideration of the excess interfacial free energy in metallic multilayers. Thirdly, the results of molecular dynamics simulations in some representative systems are presented, revealing the detailed kinetics of the crystal-to-amorphous transition on the atomic scale, such as the temperature/time dependence of interfacial reactions, the asymmetric growth of amorphous interlayers, and the nucleation and/or presence of growth barriers resulting from the interfacial texture. Fourthly, the critical solid solubilities of some representative systems are directly determined from the inter-atomic potentials through molecular dynamics simulations and then correlated with the metallic-glass-forming ability of the systems as well as their asymmetric growth during solid-state amorphization observed in experiments and/or simulations.

  11. Improved permeability of Fe based amorphous magnetic powder cores by adding Permalloy

    NASA Astrophysics Data System (ADS)

    Li, B.; Zheng, Z. G.; Yu, H. Y.; Zeng, D. C.

    2017-09-01

    This paper focuses on improving the permeability of Fe-Si-B based amorphous magnetic powder cores by addition of micron-sized ferromagnetic crystalline metal particles (Permalloy). The effects of Permalloy content, size and the amount of insulation on magnetic properties and density were investigated. The results showed that the Fe based amorphous powder cores prepared with 15 wt.% Permalloy (<15 μm particle size) have higher permeability and relatively low core loss. Furthermore, compared with Fe-Si-B based amorphous powder, the saturation magnetization of mix powder increases by 60.7%, while the magnetic powder cores coated with 3 wt.% coating agent (DC805) have low core loss of 57 W/kg at 100 kHz for Bm = 500Oe.

  12. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  13. Characterization of interfaces of metal/amorphized (by implantation) Si/c-Si structures

    NASA Astrophysics Data System (ADS)

    Golan, A.; Fastow, R.; Eizenberg, M.

    1990-02-01

    The electrical properties of metal/implanted (amorphous) Si contacts were studied, emphasizing the effects of the doping level, of the metal type, and of the heat treatments applied prior to the metal deposition. The implantation was carried out using 60-keV Ar+ ions at a dose of 1016 cm-2, and resulted in the formation of a thin (1000-Å-thick) amorphous layer on top of the crystalline substrate. The doping level of the implanted Si affected the current-voltage (I-V) characteristics of the contacts mainly in the reverse bias (low doping-low currents), while the forward bias characteristics were quite independent of this parameter. The device characteristics were very sensitive to the metal type, Al, Ti-W, or Pt. Thermal treatments applied prior to the metal deposition affected the characteristics by lowering the device resistance in correspondence with the thinning of the amorphous layer as a result of epitaxial regrowth. The I-V characteristics, as well as their dependence on the different process parameters, are explained using a model of charge injection into a thin layer of trap rich amorphous Si bounded by a metal/a-Si interface on one side and by an a-Si/c-Si heterojunction on the other side.

  14. Magnetic Nanoparticles in "Amorphous Ferromagnetic Metal-Insulator" Nanogranular thin Films

    NASA Astrophysics Data System (ADS)

    Granovsky, A.; Kalinin, Yu.; Sitnikov, A.; Stognei, O.

    A lot of factors limit possible applications of magnetic nanoparticles in medicine for drug delivery and magnetic hyperthermia therefore it is of primary importance to understand influence of classical and quantum-size effects, surface layers, interparticle distance, shape of nanoparticles on their magnetic properties. Magnetic nanogranular thin films, known also as nanocomposites, can be considered as a convenient model for such investigations as it is possible to tune easily many of mentioned above parameters by varying of the fabrication conditions. The ion-beam sputtering technique has been developed to prepare "amorphous ferromagnetic metal-insulator" nanocomposites with different concentration and parameters simultaneously in one technological cycle. This feature is achieved by using of a composite target (consisting of a metal and dielectric parts) with an asymmetric arrangement of the dielectric parts on the metal base. Influence of sputtering conditions and post-fabrication treatment on structural, magnetic, electrical and magnetotransport properties of magnetic nanocomposites in a wide range of metal volume fraction and distance between magnetic nanoparticles is being discussed.

  15. Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Control

    SciTech Connect

    Choi, J

    2007-01-12

    This report describes the analysis and modeling approaches used in the evaluation for criticality-control applications of the neutron-absorbing structural-amorphous metal (SAM) coatings. The applications of boron-containing high-performance corrosion-resistant material (HPCRM)--amorphous metal as the neutron-absorbing coatings to the metallic support structure can enhance criticality safety controls for spent nuclear fuel in baskets inside storage containers, transportation casks, and disposal containers. The use of these advanced iron-based, corrosion-resistant materials to prevent nuclear criticality in transportation, aging, and disposal containers would be extremely beneficial to the nuclear waste management programs.

  16. Atomic mobility and strain localization in amorphous metals.

    PubMed

    Delogu, Francesco

    2008-02-22

    Molecular dynamics simulations are employed to investigate the atomic mobility in Ni(50)Zr(50) amorphous alloys under both static conditions and shearing. Diffusion occurs under static conditions via cooperative stringlike motion involving atoms with large volumes. Atomic mobility is instead governed by rearrangements localized in shear transformation zones (STZs) under shearing. Local atomic volume plays in both cases a key role, the atomic ensembles involved in diffusion and STZ activity being strongly correlated.

  17. Mechanics of Metals with Grain Sizes Approaching the Amorphous Limit

    DTIC Science & Technology

    2009-10-31

    technique employing reverse- pulse currents. This technique led to nanostructured alloys in bulk form, with grain sizes as large as 200 nm (which is...various concentrations of W to the structure. Employing Monte Carlo techniques , we evolved the structure to chemical equilibrium. We found that W...polycrystalline and amorphous states in this manner. With this model we rationalized our experimental data from electrodeposited specimens. 4. We

  18. Replication of surface features from a master model to an amorphous metallic article

    DOEpatents

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  19. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Liu, X. Y.; Yang, G. W.

    2016-02-01

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV

  20. Spinodal decomposition in amorphous metal-silicate thin films: Phase diagram analysis and interface effects on kinetics

    NASA Astrophysics Data System (ADS)

    Kim, H.; McIntyre, P. C.

    2002-11-01

    Among several metal silicate candidates for high permittivity gate dielectric applications, the mixing thermodynamics of the ZrO2-SiO2 system were analyzed, based on previously published experimental phase diagrams. The driving force for spinodal decomposition was investigated in an amorphous silicate that was treated as a supercooled liquid solution. A subregular model was used for the excess free energy of mixing of the liquid, and measured invariant points were adopted for the calculations. The resulting simulated ZrO2-SiO2 phase diagram matched the experimental results reasonably well and indicated that a driving force exists for amorphous Zr-silicate compositions between approx40 mol % and approx90 mol % SiO2 to decompose into a ZrO2-rich phase (approx20 mol % SiO2) and SiO2-rich phase (>98 mol % SiO2) through diffusional phase separation at a temperature of 900 degC. These predictions are consistent with recent experimental reports of phase separation in amorphous Zr-silicate thin films. Other metal-silicate systems were also investigated and composition ranges for phase separation in amorphous Hf, La, and Y silicates were identified from the published bulk phase diagrams. The kinetics of one-dimensional spinodal decomposition normal to the plane of the film were simulated for an initially homogeneous Zr-silicate dielectric layer. We examined the effects that local stresses and the capillary driving force for component segregation to the interface have on the rate of spinodal decomposition in amorphous metal-silicate thin films.

  1. Cluster model of amorphized particles formation by plasma spraying of metallic powder

    NASA Astrophysics Data System (ADS)

    Barakhtin, Boris K.; Nesterova, E. V.

    1999-05-01

    Multifunctional coatings from materials with amorphized microcrystalline or nano-phase structure cause a considerable scientific and practical interest. With their help it is to manufacture heat resistant neutralizers of harmful ejections, to produce ecologically clean sources of electric current, to design electromagnetic protective shields and to fabricate a lot of other technical products. The variety of application and a unique complex of operating characteristics (ductility, strength, magnetic and chemical properties) are governed by the basic peculiarity of material in amorphized state - its thermodynamic instability. In comparison with traditional thermodynamically equilibrium metallic alloys, the kinetics of structure changes in amorphous materials is quite different. Thus, it is suggested, that they have peculiar defects (phasonics) which are not typical of materials in crystalline state, they have no translational symmetry and elementary cells. In the process of coatings forming with non-equilibrium structure states can be realized in them, which are characterized by a fluctuation type of origin, entropy export, appearance of space or temporary symmetry uncertainty of the transition direction 'order $ARLR disorder' in bifurcation points. The aforesaid explains a great scientific (not only practical) interest in the structure study of disordered medium. Functional coatings with amorphized, nano- and microcrystalline structure components formed on copper substrate by plasma spraying of dispersed (to 50 mcm) Ni-Al powder. According to the constitutional diagram it was expected to obtain a mixture from equilibrium intermetallide phases NiAl3 + Ni2Al3. The experimental results and investigations performed by X-ray structure, X-ray spectrum and electron microscopy techniques have shown it is possible to obtain phases of variable composition (Ni)m(Al)n with Ni content from 25 to 75 vol.%, including NiAl. It turned out that in the process of spraying the

  2. Probing Stochastic Nano-Scale Inelastic Events in Stressed Amorphous Metal

    PubMed Central

    Yang, Y.; Fu, X. L.; Wang, S.; Liu, Z. Y.; Ye, Y. F.; Sun, B. A.; Liu, C. T.

    2014-01-01

    One fundamental yet longstanding issue in materials science is how local inelasticity arises within an amorphous structure before yielding occurs. Although many possible scenarios were postulated or predicted by theories and simulations,however, direct experimental evidence has been lacking today due to the lack of a sensitive way to detect nano-scale inelasticity. Through the carefully designed microcompression method as coupled with the state-of-art nano-scale electric resistance measurement, we here unfold a stochastic inelastic deformation process in a Zr-based metallic glass, which takes place via the recurrence of two types of short-lived inelastic events causing structural damage and recovery, respectively, prior to yielding. Our current findings reveal that these stochastic events not only self-organize into sub-critical events due to elastic coupling, but also compete with each other in a way that enables the whole amorphous structure to self-heal as well as to sustain local damage. PMID:25331932

  3. Real-time Measurement of Biomagnetic Vector Fields in Functional Syncytium Using Amorphous Metal

    PubMed Central

    Nakayama, Shinsuke; Uchiyama, Tusyoshi

    2015-01-01

    Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current. PMID:25744476

  4. Structural changes during high-energy ball milling of iron-based amorphous alloys: Is high-energy ball milling equivalent to a thermal process\\?

    NASA Astrophysics Data System (ADS)

    Trudeau, M. L.; Schulz, R.; Dussault, D.; van Neste, A.

    1990-01-01

    We report the first study of the effect of high-energy mechanical deformation on amorphous iron-based metallic alloys. The structural changes happening in amorphous iron-based materials containing Co or Ni during mechanical deformation show that the structural stability of an amorphous alloy against a thermal and a mechanical process are not related. Therefore, the concept of a high local effective temperature during the milling process cannot be singled out as the only reason for the observed structural transformations.

  5. Ion bombardment induced smoothing of amorphous metallic surfaces: Experiments versus computer simulations

    SciTech Connect

    Vauth, Sebastian; Mayr, S. G.

    2008-04-15

    Smoothing of rough amorphous metallic surfaces by bombardment with heavy ions in the low keV regime is investigated by a combined experimental-simulational study. Vapor deposited rough amorphous Zr{sub 65}Al{sub 7.5}Cu{sub 27.5} films are the basis for systematic in situ scanning tunneling microscopy measurements on the smoothing reaction due to 3 keV Kr{sup +} ion bombardment. The experimental results are directly compared to the predictions of a multiscale simulation approach, which incorporates stochastic rate equations of the Langevin type in combination with previously reported classical molecular dynamics simulations [Phys. Rev. B 75, 224107 (2007)] to model surface smoothing across length and time scales. The combined approach of experiments and simulations clearly corroborates a key role of ion induced viscous flow and ballistic effects in low keV heavy ion induced smoothing of amorphous metallic surfaces at ambient temperatures.

  6. Crystallization kinetics of Fe based amorphous alloy

    NASA Astrophysics Data System (ADS)

    Shanker Rao, T.; Lilly Shanker Rao, T.

    2015-02-01

    Differential Scanning Calorimetry(DSC) experimental data under non-isothermal conditions for Fe based Metglas 2605SA1 (wt% Fe=85-95, Si=5-10, B=1-5) metallic glass ribbons are reported and discussed. The DSC Scans performed at different heating rates showed two step crystallization processes and are interpreted in terms of different models like Kissinger, Ozawa, Boswell, Augis & Bennett and Gao & Wang. From the heating rate dependence of the onset temperature (To) and the crystallization peak temperature (Tp), the kinetic triplet, activation energy of crystallization (E), Avrami exponent (n) and the frequency factor (A) are determined. The determined E for peak I is 354.5 ± 2.5 kJ/mol and for the peak II is 348.2 ± 2.2 kJ/mol, respectively. The frequency factor for peak I is 1.1 × 1023sec-1 and for peak II is 6.1 × 1020sec-1.

  7. Bulk amorphous steels based on Fe alloys

    DOEpatents

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  8. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices.

    PubMed

    Lee, Dongwook; Bolton, Onas; Kim, Byoung Choul; Youk, Ji Ho; Takayama, Shuichi; Kim, Jinsang

    2013-04-24

    Developing metal-free organic phosphorescent materials is promising but challenging because achieving emissive triplet relaxation that outcompetes the vibrational loss of triplets, a key process to achieving phosphorescence, is difficult without heavy metal atoms. While recent studies reveal that bright room temperature phosphorescence can be realized in purely organic crystalline materials through directed halogen bonding, these organic phosphors still have limitations to practical applications due to the stringent requirement of high quality crystal formation. Here we report bright room temperature phosphorescence by embedding a purely organic phosphor into an amorphous glassy polymer matrix. Our study implies that the reduced beta (β)-relaxation of isotactic PMMA most efficiently suppresses vibrational triplet decay and allows the embedded organic phosphors to achieve a bright 7.5% phosphorescence quantum yield. We also demonstrate a microfluidic device integrated with a novel temperature sensor based on the metal-free purely organic phosphors in the temperature-sensitive polymer matrix. This unique system has many advantages: (i) simple device structures without feeding additional temperature sensing agents, (ii) bright phosphorescence emission, (iii) a reversible thermal response, and (iv) tunable temperature sensing ranges by using different polymers.

  9. Bacterial adhesion on amorphous and crystalline metal oxide coatings.

    PubMed

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical-chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO2>ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Bulk formation of metallic glasses and amorphous silicon from the melt

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1984-01-01

    Procedures and compositions for producing metallic glasses in bulk at slow cooling rates were investigated. An attempt was made to form the amorphous phase of the tetrahedrally coordinated elements (Si or Ge) by undercooling the melt. The crystal nucleation behavior of pure liquids and glass formers were examined.

  11. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.

    PubMed

    Gao, Y Q; Liu, X Y; Yang, G W

    2016-03-07

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm(-2) at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec(-1), while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.

  12. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  13. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Astrophysics Data System (ADS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-04-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  14. Electron beam-induced nanopatterning of multilayer graphene and amorphous carbon films with metal layers

    SciTech Connect

    Rodriguez-Manzo, Julio A.; Banhart, Florian

    2011-05-02

    Thin Co and Ni lamellae grow under electron irradiation of metal crystals supported on multilayer graphene or amorphous carbon films. The lateral growth of a lamella from a source crystal is achieved by directing an electron beam to the periphery of the metal crystal and moving the beam over the surrounding carbon. Patterns of linear, branched, or ringlike metal lamellae can be created. The patterning is carried out in situ in a transmission electron microscope, allowing simultaneous structuring and imaging. The process is driven by the metal-carbon interaction at a beam-activated carbon surface.

  15. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  16. Laser Processing of Fe-Based Bulk Amorphous Alloy Coatings on Titanium

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Himanshu; Dittrick, Stanley A.; Bandyopadhyay, Amit

    2013-11-01

    Laser Engineered Net Shaping (LENS™), a solid freeform fabrication technique, was employed for the processing of Fe-based bulk amorphous alloy (Fe BAA) powder on titanium. One and two layers of the Fe BAA were deposited with the same processing parameters. SEM and XRD analyses of the Fe BAA coatings revealed the retention of the feedstock powder's amorphous nature. The mixing of the feedstock powder in the titanium substrate was very small. A crystalline-amorphous composite microstructure evolved from the laser processing in all types of coatings. The coatings were further laser remelted. The amorphous character was found to increase and the crystallites were found to grow during remelting. The Fe BAA coatings showed higher hardness and smaller wear volume compared to the Ti substrate. A further increase in these properties was observed after laser remelting treatment. During the wear testing in NaCl solution, Ti substrate showed intergranular corrosion, whereas the Fe BAA coatings showed signs of low and localized fretting corrosion in a saline environment. Our results demonstrate that using LENS™, amorphous coatings can be deposited on metallic substrates.

  17. Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.

    2014-04-01

    Over centuries, structural glasses have been deemed as a strong yet inherently `brittle' material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2-4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses.

  18. Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure

    PubMed Central

    Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.

    2014-01-01

    Over centuries, structural glasses have been deemed as a strong yet inherently ‘brittle’ material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2–4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses. PMID:24755683

  19. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    NASA Astrophysics Data System (ADS)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  20. Ion-sculpting of nanopores in amorphous metals, semiconductors, and insulators

    SciTech Connect

    George, H. Bola; Madi, Charbel S.; Aziz, Michael J.; Hoogerheide, David P.; Bell, David C.; Golovchenko, Jene A.

    2010-06-28

    We report the closure of nanopores to single-digit nanometer dimensions by ion sculpting in a range of amorphous materials including insulators (SiO{sub 2} and SiN), semiconductors (a-Si), and metallic glasses (Pd{sub 80}Si{sub 20})--the building blocks of a single-digit nanometer electronic device. Ion irradiation of nanopores in crystalline materials (Pt and Ag) does not cause nanopore closure. Ion irradiation of c-Si pores below 100 deg. C and above 600 deg. C, straddling the amorphous-crystalline dynamic transition temperature, yields closure at the lower temperature but no mass transport at the higher temperature. Ion beam nanosculpting appears to be restricted to materials that either are or become amorphous during ion irradiation.

  1. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  2. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  3. High Density Amorphous Metal Matrix Composites for Kinetic Energy Penetrators

    DTIC Science & Technology

    2005-05-05

    Reznikov, A.E. Drbyshevskiy and V.L. Kopylov, Rus. Metall. Engl. Trans., 1, 115 (1981). 14. K.T. Hartwig, H. Zapata , A. Parasiris and S.N. Mathaudhu...in Powder Materials: Current Research and Practices, edited by F.D.S. Marquis, N.N. Thadhani and E.V. Barrera (TMS Publishing,Warrendale, PA, 2001

  4. Application of Laser Design of Amorphous Feco-Based Alloys for the Formation of Amorphous-Crystalline Composites

    NASA Astrophysics Data System (ADS)

    Permyakova, I. E.; Glezer, A. M.; Ivanov, A. A.; Shelyakov, A. V.

    2016-01-01

    Morphological and fractographic features of change of FeCo-based amorphous alloy surfaces after laser treatment are studied in detail. Regimes of laser treatment that allow various degrees of crystallization of the examined alloys to be obtained, including thin (<1 •m) crystal layers on amorphous alloy surfaces, amorphous-crystalline composites, and completely crystalline alloys are adjusted. The Vickers hardness is estimated in zones of selective laser irradiation. The structure of the examined alloys attendant to the change of their mechanical properties is analyzed.

  5. Machine learning based interatomic potential for amorphous carbon

    NASA Astrophysics Data System (ADS)

    Deringer, Volker L.; Csányi, Gábor

    2017-03-01

    We introduce a Gaussian approximation potential (GAP) for atomistic simulations of liquid and amorphous elemental carbon. Based on a machine learning representation of the density-functional theory (DFT) potential-energy surface, such interatomic potentials enable materials simulations with close-to DFT accuracy but at much lower computational cost. We first determine the maximum accuracy that any finite-range potential can achieve in carbon structures; then, using a hierarchical set of two-, three-, and many-body structural descriptors, we construct a GAP model that can indeed reach the target accuracy. The potential yields accurate energetic and structural properties over a wide range of densities; it also correctly captures the structure of the liquid phases, at variance with a state-of-the-art empirical potential. Exemplary applications of the GAP model to surfaces of "diamondlike" tetrahedral amorphous carbon (ta -C) are presented, including an estimate of the amorphous material's surface energy and simulations of high-temperature surface reconstructions ("graphitization"). The presented interatomic potential appears to be promising for realistic and accurate simulations of nanoscale amorphous carbon structures.

  6. Anomalous small angle x-ray scattering studies of amorphous metal-germanium alloys

    SciTech Connect

    Rice, Marybeth

    1993-12-01

    This dissertation addresses the issue of composition modulation in sputtered amorphous metal-germanium thin films with the aim of understanding the intermediate range structure of these films as a function of composition. The investigative tool used in this work is anomalous small-angle X-ray scattering (ASAXS). The primary focus of this investigation is the amorphous iron-germanium (a-FexGe100-x) system with particular emphasis on the semiconductor-rich regime. Brief excursions are made into the amorphous tungsten-germanium (a-WxGe100-x) and the amorphous molybdenum-germanium (a-MoxGe100-x) systems. All three systems exhibit an amorphous structure over a broad composition range extending from pure amorphous germanium to approximately 70 atomic percent metal when prepared as sputtered films. Across this composition range the structures change from the open, covalently bonded, tetrahedral network of pure a-Ge to densely packed metals. The structural changes are accompanied by a semiconductor-metal transition in all three systems as well as a ferromagnetic transition in the a-FexGe100-x system and a superconducting transition in the a-MoxGe100-x system. A long standing question, particularly in the a-FexGe100-x and the a-MoxGe100-x systems, has been whether the structural changes (and therefore the accompanying electrical and magnetic transitions) are accomplished by homogeneous alloy formation or phase separation. The application of ASAXS to this problem proves unambiguously that fine scale composition modulations, as distinct from the simple density fluctuations that arise from cracks and voids, are present in the a-FexGe100-x, a-WxGe100-x, and a-MoxGe100-x systems in the semiconductor-metal transition region. Furthermore, ASAXS shows that germanium

  7. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.

    PubMed

    Palanchoke, Ujwol; Jovanov, Vladislav; Kurz, Henning; Obermeyer, Philipp; Stiebig, Helmut; Knipp, Dietmar

    2012-03-12

    Plasmonic effects in amorphous silicon thin film solar cells with randomly textured metal back contact were investigated experimentally and numerically. The influence of different metal back contacts with and without ZnO interlayer was studied and losses in the individual layers of the solar cell were quantified. The amorphous silicon thin film solar cells were prepared on randomly textured substrates using large area production equipment and exhibit conversion efficiencies approaching 10%. The optical wave propagation within the solar cells was studied by Finite Difference Time Domain simulations. The quantum efficiency of solar cells with and without ZnO interlayer was simulated and the interplay between the reflection, quantum efficiency and absorption in the back contact will be discussed.

  8. Properties and applications of heavy rare earth-transition metal amorphous films

    SciTech Connect

    Lachowicz, H.K.

    1984-09-01

    Properties of amorphous heavy rare earth-transition metal films are presented. Attention is concentrated on the properties which are important from the point of view of possible applications, namely: magnetic structure, perpendicular anisotropy, linear magnetostriction, and coercivity as well as the spontaneous Hall effect. Possible applications of the films considered are shown, in particular, applications as the information storage media in digital memories, as well as in surface acoustic wave devices and in devices which utilize the Hall effect are examined.

  9. Mechanical contact induced transformation from the amorphous to the crystalline state in metallic glass

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear tests were conducted with 3.2- and 6.4-millimeter-diameter aluminum oxide spheres sliding, in reciprocating motion, on a Fe67Co18B14Si1 metallic foil. Crystallites with a size range of 10 to 150 nanometers were produced on the wear surface of the amorphous alloy. A strong interaction between transition metals and metalloids such as silicon and boron results in strong segregation during repeated sliding, provides preferential transition metal-metalloid clustering in the amorphous alloy, and subsequently produces the diffused honeycomb structure formed by dark grey bands and primary crystals, that is, alpha-Fe in the matrix. Large plastic flow occurs on an amorphous alloy surface with sliding and the flow film of the alloy transfers to the aluminum oxide pin surface. Multiple slip bands due to shear deformation are observed on the side of the wear track. Two distinct types of wear debris were observed as a result of sliding: an alloy wear debris, and/or powdery-whiskery oxide debris.

  10. Mechanical-contact-induced transformation from the amorphous to the partially crystalline state in metallic glass

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear tests were conducted with 3.2- and 6.4-millimeter-diameter aluminum oxide spheres sliding, in reciprocating motion, on a Fe67Co18B14Si1 metallic foil. Crystallites with a size range of 10 to 150 nanometers were produced on the wear surface of the amorphous alloy. A strong interaction between transition metals and metalloids such as silicon and boron results in strong segregation during repeated sliding, provides preferential transition metal-metalloid clustering in the amorphous alloy, and subsequently produces the diffused honeycomb structure formed by dark grey bands and primary crystals, that is, alpha-Fe in the matrix. Large plastic flow occurs on an amorphous alloy surface with sliding and the flow film of the alloy transfers to the aluminum oxide pin surface. Multiple slip bands due to shear deformation are observed on the side of the wear track. Two distinct types of wear debris were observed as a result of sliding: an alloy wear debris, and/or powdery-whiskery oxide debris.

  11. Plasmonic glasses: optical properties of amorphous metal-dielectric composites.

    PubMed

    Antosiewicz, Tomasz J; Apell, S Peter

    2014-01-27

    Plasmonic glasses composed of metallic inclusions in a host dielectric medium are investigated for their optical properties. Such structures characterized by short-range order can be easily fabricated using bottom-up, self-organization methods and may be utilized in a number of applications, thus, quantification of their properties is important. We show, using T-Matrix calculations of 1D, 2D, and 3D plasmonic glasses, that their plasmon resonance position oscillates as a function of the particle spacing yielding blue- and redshifts up to 0.3 eV in the visible range with respect to the single particle surface plasmon. Their properties are discussed in light of an analytical model of an average particle's polarizability that originates from a coupled dipole methodology.

  12. Amorphous formation on metal surfaces by an intense pulsed ion beam irradiation

    SciTech Connect

    Yatsuzuka, M.; Yamasaki, T.; Uchida, H.; Hashimoto, Y.

    1995-12-31

    Recently, intense pulsed ion beams (PIBs) have been interested as a tool for surface modification of metals, because irradiation of PIBs to metals leads to rapid heating of the near surface which is immediately followed by rapid cooling and resolidification. In this paper formation of an amorphous layer on a Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy by a PIB irradiation is successfully demonstrated. A shot of the mixed carbon and fluorine PIB was irradiated on a Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy to make amorphous structure. The amorphous nature of the PIB-processed surface was examined by the X-ray diffractometry. The diffraction pattern of the non-processed substrate reveals the crystalline phase which is characterized by the narrow spectrum. On the other hand, the PIB-processed Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy surface exhibit the typical diffraction pattern of the amorphous structure, when the maximum X-ray diffraction depth is within 0.66 {micro}m. Assuming that a single species of carbon of fluorine ions is injected into the nickel target, ion range, heating temperature and cooling rate for a nickel substrate are estimated to be 0.23 {micro}m, 3,150 K and 3.8 {times} 10{sup 5}K/sec, respectively. The cooling rate estimated above is enough for producing amorphous structure of nickel alloys.

  13. Mg-based amorphous alloys for decolorization of azo dyes

    NASA Astrophysics Data System (ADS)

    Zhang, Changqin; Zhu, Zhengwang; Zhang, Haifeng

    The authors recently found that Mg-based amorphous ribbons had a prominent effect on the decolorization of azo dyes. Direct Blue 2B and Acid Orange II solutions of 100 mg/L could be decolorized nearly completely by the ribbons within 30 min. Decolorization mechanism was discussed briefly, and kinetic analysis based on the experimental data indicated that physical adsorption and reductive degradation for the azo dye solutions mediated by Mg63Cu16.8Ag11.2Er9 amorphous ribbons could proceed in an elegant and rapid manner. This new finding seems attractive, valuable and promising for the raw effluent generated by textile dye manufacturing company in the future.

  14. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    NASA Astrophysics Data System (ADS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-11-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO2). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer etal . [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kho≪1, where k is the wavenumber of the perturbation and ho is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface

  15. Switching mechanism in Co based amorphous wire

    NASA Astrophysics Data System (ADS)

    Nderu, J. N.; Yamasaki, J.; Humphrey, F. B.

    1997-04-01

    To get a deeper insight into the mechanism involved in the flux reversal of Co based wire we have tickled the wire with an ac field of smaller amplitude than the switching field, H*, and observed the signal induced in a pancake coil moved along the wire, vibrated a small coil along the wire and observed the induced signal, and taken the temperature dependence of normalized saturation magnetization, Ms, and H*. No signal was observed in the pancake coil in the tickling experiment. A signal that has peak values close to the wire ends, but practically zero in the central region, was observed in the vibrating coil. The variations of Ms and H* with temperature only show a correlation. The results of the above experiments suggest that for Co based wire the most reasonable mechanism for the flux switching is nucleation of a free wall other than the depinning of residual reverse domains at the wire ends.

  16. Tungsten metal film formed by spin-coating amorphous peroxopolytungstic acid

    SciTech Connect

    Okamoto, H.; Ishikawa, A. )

    1989-10-30

    A homogeneous, amorphous peroxopolytungstic acid film can be formed easily with the spin-coating method. The film is found to provide a homogeneous tungsten metal film after reduction with hydrogen at {similar to}400 {degree}C. Although the electric resistivity ({similar to}450 {mu}{Omega} cm) is higher than that for the bulk (5.65 {mu}{Omega} cm), this method has an advantage in addition to spin coatability: tungsten metal films with fine patterns can be easily obtained because the starting material is photosensitive.

  17. Capillary flow of amorphous metal for high performance electrode.

    PubMed

    Kim, Se Yun; Kim, Suk Jun; Jee, Sang Soo; Park, Jin Man; Park, Keum Hwan; Park, Sung Chan; Cho, Eun Ae; Lee, Jun Ho; Song, In Yong; Lee, Sang Mock; Han, In Taek; Lim, Ka Ram; Kim, Won Tae; Park, Ju Cheol; Eckert, Jürgen; Kim, Do Hyang; Lee, Eun-Sung

    2013-01-01

    Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computational fluid dynamics and density funtional theory simulation. Also, we suggest the formation mechanism of the Ag electrodes, and demonstrate the criteria of MG for higher electrode performance. Consequently, when Al85Ni5Y8Co2 MG is added in the Ag electrodes, cell efficiency is enhanced up to 20.30% which is the highest efficiency reported so far for screen-printed interdigitated back contact solar cells. These results show the possibility for the replacement of electroplating process to screen-printing process.

  18. Capillary flow of amorphous metal for high performance electrode

    NASA Astrophysics Data System (ADS)

    Kim, Se Yun; Kim, Suk Jun; Jee, Sang Soo; Park, Jin Man; Park, Keum Hwan; Park, Sung Chan; Cho, Eun Ae; Lee, Jun Ho; Song, In Yong; Lee, Sang Mock; Han, In Taek; Lim, Ka Ram; Kim, Won Tae; Park, Ju Cheol; Eckert, Jürgen; Kim, Do Hyang; Lee, Eun-Sung

    2013-07-01

    Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computational fluid dynamics and density funtional theory simulation. Also, we suggest the formation mechanism of the Ag electrodes, and demonstrate the criteria of MG for higher electrode performance. Consequently, when Al85Ni5Y8Co2 MG is added in the Ag electrodes, cell efficiency is enhanced up to 20.30% which is the highest efficiency reported so far for screen-printed interdigitated back contact solar cells. These results show the possibility for the replacement of electroplating process to screen-printing process.

  19. Polyimide based amorphous silicon solar modules

    NASA Technical Reports Server (NTRS)

    Jeffrey, Frank R.; Grimmer, Derrick P.; Martens, Steven A.; Abudagga, Khaled; Thomas, Michael L.; Noak, Max

    1993-01-01

    Requirements for space power are increasingly emphasizing lower costs and higher specific powers. This results from new fiscal constraints, higher power requirements for larger applications, and the evolution toward longer distance missions such as a Lunar or Mars base. The polyimide based a-Si modules described are being developed to meet these needs. The modules consist of tandem a-Si solar cell material deposited directly on a roll of polyimide. A laser scribing/printing process subdivides the deposition into discrete cell strips which are series connected to produce the required voltage without cutting the polymer backing. The result is a large, monolithic, blanket type module approximately 30 cm wide and variable in length depending on demand. Current production modules have a specific power slightly over 500 W/Kg with room for significant improvement. Costs for the full blanket modules range from $30/Watt to $150/Watt depending on quantity and engineering requirements. Work to date focused on the modules themselves and adjusting them for the AMO spectrum. Work is needed yet to insure that the modules are suitable for the space environment.

  20. Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles.

    PubMed

    Tan, Chee Leong; Karar, Ayman; Alameh, Kamal; Lee, Yong Tak

    2013-01-28

    We propose and numerically demonstrate a high absorption hybrid-plasmonic-based metal semiconductor metal photodetector (MSM-PD) comprising metal nanogratings, a subwavelength slit and amorphous silicon or germanium embedded metal nanoparticles (NPs). Simulation results show that by optimizing the metal nanograting parameters, the subwavelength slit and the embedded metal NPs, a 1.3 order of magnitude increase in electric field is attained, leading to 28-fold absorption enhancement, in comparison with conventional MSM-PD structures. This is 3.5 times better than the absorption of surface plasmon polariton (SPP) based MSM-PD structures employing metal nanogratings and a subwavelength slit. This absorption enhancement is due to the ability of the embedded metal NPs to enhance their optical absorption and scattering properties through light-stimulated resonance aided by the conduction electrons of the NPs.

  1. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    NASA Astrophysics Data System (ADS)

    Nemla, Fatima; Cherrad, Djellal

    2016-07-01

    Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98-2.9 μm) and of moderate surface roughness RMS (∼47-58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  2. Corrosion-resistant amorphous metallic coatings: Engineering development: Progress report, October 1, 1985-October 1, 1986

    SciTech Connect

    Fitzgerald, D.J.; DiStefano, S.; Rameshan, R.

    1986-12-01

    Objective is to use sputter-deposited amorphous metallic coatings on alloys in heat recovery systems in power plants. It was found that chromium could be used as a substitute for ruthenium in MoRuB. The new alloy, MoCrB, has corrosion current two orders of magnitude lower than MoRuB. The effort to develop the parameters for depositing FeCrPC on steel was frustrated by a persistent pinhole problem. Two titanium-based alloys were developed which are equal to or better than the optimized FeCrPC alloy in terms of corrosion resistance. The potentiodynamic polarization characteristics of MoCrB and TiCrBC were measured over a range in temperature from 25 to 100/sup 0/C. The corrosion current increased with temperature as predicted by theory. The corrosion characteristics of MoCrB and TiCrPC were also tested in 1.0N HC1. Cost analysis of the magnetron sputtering coating process indicates that the process cost is in the range of $2.50 to $3.00 per square foot steel.

  3. Physiologically Based Absorption Modeling for Amorphous Solid Dispersion Formulations.

    PubMed

    Mitra, Amitava; Zhu, Wei; Kesisoglou, Filippos

    2016-09-06

    Amorphous solid dispersion (ASD) formulations are routinely used to enable the delivery of poorly soluble compounds. This type of formulations can enhance bioavailability due to higher kinetic solubility of the drug substance and increased dissolution rate of the formulation, by the virtue of the fact that the drug molecule exists in the formulation in a high energy amorphous state. In this article we report the application of physiologically based absorption models to mechanistically understand the clinical pharmacokinetics of solid dispersion formulations. Three case studies are shown here to cover a wide range of ASD bioperformance in human and modeling to retrospectively understand their in vivo behavior. Case study 1 is an example of fairly linear PK observed with dose escalation and the use of amorphous solubility to predict bioperformance. Case study 2 demonstrates the development of a model that was able to accurately predict the decrease in fraction absorbed (%Fa) with dose escalation thus demonstrating that such model can be used to predict the clinical bioperformance in the scenario where saturation of absorption is observed. Finally, case study 3 shows the development of an absorption model with the intent to describe the observed incomplete and low absorption in clinic with dose escalation. These case studies highlight the utility of physiologically based absorption modeling in gaining a thorough understanding of ASD performance and the critical factors impacting performance to drive design of a robust drug product that would deliver the optimal benefit to the patients.

  4. Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites

    NASA Astrophysics Data System (ADS)

    Semirov, A. V.; Derevyanko, M. S.; Bukreev, D. A.; Moiseev, A. A.; Kudryavtsev, V. O.; Safronov, A. P.

    2016-10-01

    The combined influence of the temperature, the elastic tensile stress and the external magnetic field on the total impedance and impedance components were studied for rapidly quenched amorphous Co75Fe5Si4B16 ribbons. Both as-cast amorphous ribbons and Co75Fe5Si4B16/polymer amorphous ribbon based composites were considered. Following polymer coverings were studied: modified rubber solution in o-xylene, solution of butyl methacrylate and methacrylic acid copolymer in isopropanol and solution of polymethylphenylsiloxane resin in toluene. All selected composites showed very good adhesion of the coverings and allowed to provide temperature measurements from 163 K up to 383 K under the applied deforming tensile force up to 30 N. The dependence of the modulus of the impedance and its components on the external magnetic field was influenced by the elastic tensile stresses and was affected by the temperature of the samples. It was shown that maximal sensitivity of the impedance and its components to the external magnetic field was observed at minimal temperature and maximal deforming force depended on the frequency of an alternating current.

  5. Oxidation induced amorphous stabilization of the subsurface region in Zr-Cu metallic glass

    SciTech Connect

    Lim, K. R.; Park, J. M.; Park, S. H.; Na, M. Y.; Kim, K. C.; Kim, D. H.; Kim, W. T.

    2014-01-20

    In the present study, we demonstrate that selective surface oxidation of Zr{sub 70}Cu{sub 30} metallic glass can stabilize the amorphous structure in the subsurface region of the matrix. The oxidation proceeds by selective oxidation of Zr, forming monoclinic ZrO{sub 2} layer on the surface, and the subsurface layer becomes Cu-enriched due to back diffusion of Cu atoms from the oxide layer. Interestingly, in this system, the composition change in the subsurface region leads to enhancement of glass stability, forming of a double layered surface structure consisted of inner amorphous layer and outer monoclinic ZrO{sub 2} layer even when the remaining matrix is completely crystallized.

  6. High-Performance Corrosion-Resistant Iron-Based Amorphous Metals - The Effects of Composition, Structure and Environment: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    SciTech Connect

    Farmer, J; Haslam, J; Day, S; Lian, T; Saw, C; Hailey, P; Choi, J; Yang, N; Bayles, R; Aprigliano, L; Payer, J; Perepezko, J; Hildal, K; Lavernia, E; Ajdelsztajn, L; Branagan, D J; Beardsely, M B

    2006-10-20

    Several Fe-based amorphous metal formulations have been identified that appear to have corrosion resistance comparable to (or better than) that of Ni-based Alloy C-22 (UNS No. N06022), based on measurements of breakdown potential and corrosion rate in seawater. Both chromium (Cr) and molybdenum (Mo) provide corrosion resistance, boron (B) enables glass formation, and rare earths such as yttrium (Y) lower critical cooling rate (CCR). SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) has no yttrium, and is characterized by relatively high critical cooling rates of approximately 600 Kelvin per second. Data for the SAM2X5 formulation is reported here. In contrast to yttrium-containing iron-based amorphous metals, SAM2X5 can be readily gas atomized to produce spherical powders which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. SAM2X5 also experiences crevice corrosion under sufficiently harsh conditions. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying, due to the formation of deleterious intermetallic phases which depletes the matrix of key alloy elements, whereas SAM2X5 can be applied as coatings with the same corrosion resistance as a fully-dense completely amorphous melt-spun ribbon, provided that its amorphous nature is preserved during thermal spraying. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN [MRS12-13]. Such hardness makes these materials particularly attractive for applications where corrosion-erosion and wear are also issues. Since SAM2X5 has high boron content, it can absorb neutrons efficiently, and may therefore find

  7. Quantification of corrosion resistance of a new-class of criticality control materials: thermal-spray coatings of high-boron iron-based amorphous metals - Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4

    SciTech Connect

    Farmer, J C; Choi, J S; Shaw, C K; Rebak, R; Day, S D; Lian, T; Hailey, P; Payer, J H; Branagan, D J; Aprigliano, L F

    2007-03-28

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was produced as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. Earlier studies have shown that ingots and melt-spun ribbons of these materials have good passive film stability in these environments. Thermal spray coatings of these materials have now been produced, and have undergone a variety of corrosion testing, including both atmospheric and long-term immersion testing. The modes and rates of corrosion have been determined in the various environments, and are reported here.

  8. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-05-02

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility.

  9. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    NASA Astrophysics Data System (ADS)

    Lan, S.; Ren, Y.; Wei, X. Y.; Wang, B.; Gilbert, E. P.; Shibayama, T.; Watanabe, S.; Ohnuma, M.; Wang, X.-L.

    2017-03-01

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment.

  10. Ohmic contact formation of metal/amorphous-Ge/n-Ge junctions with an anomalous modulation of Schottky barrier height

    SciTech Connect

    Liu, Hanhui; Wang, Peng; Qi, Dongfeng; Li, Xin; Han, Xiang; Wang, Chen; Chen, Songyan Li, Cheng; Huang, Wei

    2014-11-10

    The modulation of Schottky barrier height of metal/Ge inserting an amorphous Ge layer has been demonstrated. It is interested that the Schottky barrier height of Al/amorphous-Ge/n-Ge junctions is oscillated with increase of the a-Ge thickness from 0 to 10 nm, and when the thickness reaches above 10 nm, the Al/amorphous-Ge/n-Ge shows ohmic characteristics. Electron hopping through localized states of a-Ge layer, the alleviation of metal induced gap states, as well as the termination of dangling bonds at the amorphous-Ge/n-Ge interface are proposed to explain the anomalous modulation of Schottky barrier height.

  11. Structure of Cu-Ti brazing filler metal in amorphous and crystalline states

    NASA Astrophysics Data System (ADS)

    Maksymova, S.; Khorunov, V.; Zelinskaya, G.

    2008-02-01

    Structure, chemical homogeneity and phase composition of rapidly quenched ribbons of brazing filler metal Ti57Cu43 were investigated. The ribbons were found to be amorphous. The alloy components are uniformly distributed along the thickness of the strip. High-temperature differential thermal analysis was used to determine temperature ranges of the ribbons crystallization. X-ray diffraction analysis was performed to study phase composition of the rapidly quenched ribbons in the initial state and after their isothermal annealing. Two crystalline phases - γ-CuTi and CuTi3 being identified in the latter case.

  12. Constructing Multifunctional Metallic Ni Interface Layers in the g-C3N4 Nanosheets/Amorphous NiS Heterojunctions for Efficient Photocatalytic H2 Generation.

    PubMed

    Wen, Jiuqing; Xie, Jun; Zhang, Hongdan; Zhang, Aiping; Liu, Yingju; Chen, Xiaobo; Li, Xin

    2017-04-26

    The construction of exceptionally robust and high-quality semiconductor-cocatalyst heterojunctions remains a grand challenge toward highly efficient and durable solar-to-fuel conversion. Herein, novel graphitic carbon nitride (g-C3N4) nanosheets decorated with multifunctional metallic Ni interface layers and amorphous NiS cocatalysts were fabricated via a facile three-step process: the loading of Ni(OH)2 nanosheets, high-temperature H2 reduction, and further deposition of amorphous NiS nanosheets. The results demonstrated that both robust metallic Ni interface layers and amorphous NiS can be utilized as electron cocatalysts to markedly boost the visible-light H2 evolution over g-C3N4 semiconductor. The optimized g-C3N4-based photocatalyst containing 0.5 wt % Ni and 1.0 wt % NiS presented the highest hydrogen evolution of 515 μmol g(-1) h(-1), which was about 2.8 and 4.6 times as much as those obtained on binary g-C3N4-1.0%NiS and g-C3N4-0.5%Ni, respectively. Apparently, the metallic Ni interface layers play multifunctional roles in enhancing the visible-light H2 evolution, which could first collect the photogenerated electrons from g-C3N4, and then accelerate the surface H2-evolution reaction kinetics over amorphous NiS cocatalysts. More interestingly, the synergetic effects of metallic Ni and amorphous NiS dual-layer electron cocatalysts could also improve the TEOA-oxidation capacity through upshifting the VB levels of g-C3N4. Comparatively speaking, the multifunctional metallic Ni layers are dominantly favorable for separating and transferring photoexcited charge carriers from g-C3N4 to amorphous NiS cocatalysts owing to the formation of Schottky junctions, whereas the amorphous NiS nanosheets are mainly advantageous for decreasing the thermodynamic overpotentials for surface H2-evolution reactions. It is hoped that the implantation of multifunctional metallic interface layers can provide a versatile approach to enhance the photocatalytic H2 generation over

  13. Electron-irradiation-induced crystallization at metallic amorphous/silicon oxide interfaces caused by electronic excitation

    SciTech Connect

    Nagase, Takeshi; Yamashita, Ryo; Lee, Jung-Goo

    2016-04-28

    Irradiation-induced crystallization of an amorphous phase was stimulated at a Pd-Si amorphous/silicon oxide (a(Pd-Si)/SiO{sub x}) interface at 298 K by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Under irradiation, a Pd-Si amorphous phase was initially formed at the crystalline face-centered cubic palladium/silicon oxide (Pd/SiO{sub x}) interface, followed by the formation of a Pd{sub 2}Si intermetallic compound through irradiation-induced crystallization. The irradiation-induced crystallization can be considered to be stimulated not by defect introduction through the electron knock-on effects and electron-beam heating, but by the electronic excitation mechanism. The observed irradiation-induced structural change at the a(Pd-Si)/SiO{sub x} and Pd/SiO{sub x} interfaces indicates multiple structural modifications at the metal/silicon oxide interfaces through electronic excitation induced by the electron-beam processes.

  14. High Speed Cinematography of Cracks Spreading under Failure of Amorphous Metallic Alloys

    NASA Astrophysics Data System (ADS)

    Tabachnikova, Elena

    2000-03-01

    Amorphous metallic alloys are unique high strength materials that under low temperature straining (300 - 77 K) are absolutely thermomechanically unstable against the catastrophic plastic shear. Its velocity is close to the transverse sound velocity ct. That is why experimental studying of shear crack propagation in amorphous alloy ribbons at low temperatures needs high-speed methods of observations. Samples of the NI78Si8B14 and Fe70Ni10B20 amorphous alloys ribbons were tensile tested in a pulse testing mashine. The motion of the main crack front during ductile shear failure was studied by means of a high-speed film camera (SFR-2M) with a frame frequency of 2x106 s-1. Loading of the sample was synchronized with both the pulse light source and the high-speed camera. Results of observations: a) the velocity of of shear crack propagation is close to the maximum theoretical limit 0.9 ct; b) a pulsating motion of of the crack is observed with a retardation of crack motion at the moment of branching or changing the orientation of the crack surface that became faceted; the process of shear crack propagation is step-like.

  15. Synchrotron radiation photoemission study of metal overlayers on hydrogenated amorphous silicon at room temperature

    SciTech Connect

    Pi, J.

    1990-09-21

    In this dissertation, metals deposited on a hydrogenated amorphous silicon (a-Si:H) film at room temperature are studied. The purpose of this work is mainly understanding the electronic properties of the interface, using high-resolution synchrotron radiation photoemission techniques as a probe. Atomic hydrogen plays an important role in passivating dangling bonds of a-Si:H films, thus reducing the gap-state distribution. In addition, singly bonded hydrogen also reduces states at the top of the valence band which are now replaced by deeper Si-H bonding states. The interface is formed by evaporating metal on an a-Si:H film in successive accumulations at room temperature. Au, Ag, and Cr were chosen as the deposited metals. Undoped films were used as substrates. Since some unique features can be found in a-Si:H, such as surface enrichment of hydrogen diffused from the bulk and instability of the free surface, we do not expect the metals/a-Si:H interface to behave exactly as its crystalline counterpart. Metal deposits, at low coverages, are found to gather preferentially around regions deficient in hydrogen. As the thickness is increased, some Si atoms in those regions are likely to leave their sites to intermix with metal overlayers like Au and Cr. 129 refs., 30 figs.

  16. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells

    NASA Astrophysics Data System (ADS)

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-01

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  17. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells.

    PubMed

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-24

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  18. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  19. Disentangling the intricate atomic short-range order and electronic properties in amorphous transition metal oxides.

    PubMed

    Triana, C A; Araujo, C Moyses; Ahuja, R; Niklasson, G A; Edvinsson, T

    2017-05-17

    Solid state materials with crystalline order have been well-known and characterized for almost a century while the description of disordered materials still bears significant challenges. Among these are the atomic short-range order and electronic properties of amorphous transition metal oxides [aTMOs], that have emerged as novel multifunctional materials due to their optical switching properties and high-capacity to intercalate alkali metal ions at low voltages. For decades, research on aTMOs has dealt with technological optimization. However, it remains challenging to unveil their intricate atomic short-range order. Currently, no systematic and broadly applicable methods exist to assess atomic-size structure, and since electronic localization is structure-dependent, still there are not well-established optical and electronic mechanisms for modelling the properties of aTMOs. We present state-of-the-art systematic procedures involving theory and experiment in a self-consistent computational framework to unveil the atomic short-range order and its role for the electronic properties. The scheme is applied to amorphous tungsten trioxide aWO3, which is the most studied electrochromic aTMO in spite of its unidentified atomic-size structure. Our approach provides a one-to-one matching of experimental data and corresponding model structure from which electronic properties can be directly calculated in agreement with the electronic transitions observed in the XANES spectra.

  20. Direct observation of small cluster mobility and ripening. [during annealing of metal films on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1975-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single crystalline thin graphite substrates were studied by in-situ transmission electron microscopy (TEM) under controlled environmental conditions (residual gas pressure of 10 to the minus 9th power torr) in the temperature range from 25 to 450 C. Sputter cleaning of the substrate surface, metal deposition, and annealing were monitored by TEM observation. Pseudostereographic presentation of micrographs in different annealing stages, the observation of the annealing behavior at cast shadow edges, and measurements with an electronic image analyzing system were employed to aid the visual perception and the analysis of changes in deposit structure recorded during annealing. Slow Ostwald ripening was found to occur in the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility.

  1. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    SciTech Connect

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Ovchinnikova, Olga S.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistor can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.

  2. Carrier Transport at Metal/Amorphous Hafnium-Indium-Zinc Oxide Interfaces.

    PubMed

    Kim, Seoungjun; Gil, Youngun; Choi, Youngran; Kim, Kyoung-Kook; Yun, Hyung Joong; Son, Byoungchul; Choi, Chel-Jong; Kim, Hyunsoo

    2015-10-14

    In this paper, the carrier transport mechanism at the metal/amorphous hafnium-indium-zinc oxide (a-HIZO) interface was investigated. The contact properties were found to be predominantly affected by the degree of interfacial reaction between the metals and a-HIZO; that is, a higher tendency to form metal oxide phases leads to excellent Ohmic contact via tunneling, which is associated with the generated donor-like oxygen vacancies. In this case, the Schottky-Mott theory is not applicable. Meanwhile, metals that do not form interfacial metal oxide, such as Pd, follow the Schottky-Mott theory, which results in rectifying Schottky behavior. The Schottky characteristics of the Pd contact to a-HIZO can be explained in terms of the barrier inhomogeneity model, which yields a mean barrier height of 1.40 eV and a standard deviation of 0.14 eV. The work function of a-HIZO could therefore be estimated as 3.7 eV, which is in good agreement with the ultraviolet photoelectron spectroscopy (3.68 eV). Our findings will be useful for establishing a strategy to form Ohmic or Schottky contacts to a-HIZO films, which will be essential for fabricating reliable high-performance electronic devices.

  3. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    PubMed

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-11-11

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  4. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    PubMed Central

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  5. Field Performance of Three-Phase Amorphous Metal Core Distribution Transformers at Pearl Harbor, Hawaii

    DTIC Science & Technology

    1990-08-01

    37 Waste water management and sanitary engineering Airfields and pavements 38 O1 pollution removal and recovery3 Air polution ADVANCED BASE AND...utility systems at Ford Island, Barbers Point Naval Air Station, the Naval Shipyard, and the Naval Supply Center at Pearl Harbor, Hawaii. The main...Power Meter connected to a three-phase 4-wire amorphous core transformer under test at Barbers Point Naval Air Station. This testing procedure was

  6. Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films.

    PubMed

    Shang, Jie; Xue, Wuhong; Ji, Zhenghui; Liu, Gang; Niu, Xuhong; Yi, Xiaohui; Pan, Liang; Zhan, Qingfeng; Xu, Xiao-Hong; Li, Run-Wei

    2017-06-01

    Flexible and transparent resistive switching memories are highly desired for the construction of portable and even wearable electronics. Upon optimization of the microstructure wherein an amorphous-nanocrystalline hafnium oxide thin film is fabricated, an all-oxide based transparent RRAM device with stable resistive switching behavior that can withstand a mechanical tensile stress of up to 2.12% is obtained. It is demonstrated that the superior electrical, thermal and mechanical performance of the ITO/HfOx/ITO device can be ascribed to the formation of pseudo-straight metallic hafnium conductive filaments in the switching layer, and is only limited by the choice of electrode materials. When the ITO bottom electrode is replaced with platinum metal, the mechanical failure threshold of the device can be further extended.

  7. Semiconducting properties of amorphous GaZnSnO thin film based on combinatorial electronic structures

    SciTech Connect

    Kim, B. K.; Park, J. S.; Kim, D. H.; Chung, K. B.

    2014-05-05

    Semiconducting properties and electronic structures of amorphous GaZnSnO (GZTO) thin films are investigated with respect to metal cationic composition. An increase of the cationic Sn ratio resulted in an increase of the carrier concentration and a decrease of the mobility of the films. Combinatorial analysis revealed that the electrical characteristics of GZTO films are strongly correlated to changes in electronic structure. The increase in carrier concentration is related to the generation of vacancies by the changes of oxygen coordination around the cationic metal and the shallow band edge state below the conduction band. On the other hand, the decrease of mobility can be explained by the deep band edge state, and the difference between the experimental conduction band and simulated conduction band by the combinatorial electronic structure based on the chemical composition.

  8. Electronic structure and conductivity of nanocomposite metal (Au,Ag,Cu,Mo)-containing amorphous carbon films

    SciTech Connect

    Endrino, Jose L.; Horwat, David; Gago, Raul; Andersson, Joakim; Liu, Y.S.; Guo, Jinghua; Anders, Andre

    2008-05-14

    In this work, we study the influence of the incorporation of different metals (Me = Au, Ag, Cu, Mo) on the electronic structure of amorphous carbon (a-C:Me) films. The films were produced at room temperature using a novel pulsed dual-cathode arc deposition technique. Compositional analysis was performed with secondary neutral mass spectroscopy whereas X-ray diffraction was used to identify the formation of metal nanoclusters in the carbon matrix. The metal content incorporated in the nanocomposite films induces a drastic increase in the conductivity, in parallel with a decrease in the band gap corrected from Urbach energy. The electronic structure as a function of the Me content has been monitored by x-ray absorption near edge structure (XANES) at the C K-edge. XANES showed that the C host matrix has a dominant graphitic character and that it is not affected significantly by the incorporation of metal impurities, except for the case of Mo, where the modifications in the lineshape spectra indicated the formation of a carbide phase. Subtle modifications of the spectral lineshape are discussed in terms of nanocomposite formation.

  9. Absorption Amelioration of Amorphous Si Film by Introducing Metal Silicide Nanoparticles.

    PubMed

    Sun, Hui; Wu, Hsuan-Chung; Chen, Sheng-Chi; Ma Lee, Che-Wei; Wang, Xin

    2017-12-01

    Amorphous Si (a-Si) films with metal silicide are expected to enhance the absorption ability of pure a-Si films. In this present study, NiSi (20 nm)/Si (40 nm) and AlSi (20 nm)/Si (40 nm) bilayer thin films are deposited through radio frequency (RF) sputtering at room temperature. The influence of the film's composition and the annealing temperature on the film's optical absorption is investigated. The results show that all the NiSi/Si films and AlSi/Si films possess higher absorption ability compared to a pure a-Si film (60 nm). After annealing from 400 to 600 °C under vacuum for 1 h, the Si layer remains amorphous in both NiSi/Si films and AlSi/Si films, while the NiSi layer crystallizes into NiSi2 phase, whereas Al atoms diffuse through the whole film during the annealing process. Consequently, with increasing the annealing temperature, the optical absorption of NiSi/Si films increases, while that of AlSi/Si films obviously degrades.

  10. Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid

    NASA Astrophysics Data System (ADS)

    Kim, Minseob; Dias, Ranga; Ohishi, Yasuo; Matsuoka, Takehiro; Chen, Jing-Yin; Yoo, Choong-Shik

    2016-08-01

    The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2.

  11. Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.; Giles, R. C.; Patterson, G.

    1991-01-01

    Computer simulations of a two dimensional lattice of magnetic dipoles are performed on the Connection Machine. The lattice is a discrete model for thin films of amorphous rare-earth transition metal alloys, which have application as the storage media in erasable optical data storage systems. In these simulations, the dipoles follow the dynamic Landau-Lifshitz-Gilbert equation under the influence of an effective field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally applied field. Various sources of coercivity, such as defects and/or inhomogeneities in the lattice, are introduced and the subsequent motion of domain walls in response to external fields is investigated.

  12. What Can Plasticity of Amorphous Silicon Tell Us about Plasticity of Metallic Glasses?

    NASA Astrophysics Data System (ADS)

    Argon, A. S.; Demkowicz, M. J.

    2008-08-01

    In a recent set of computer simulations, we have analyzed the atomic-level kinematics and kinetics of the plastic relaxations that constitute shear transformations (STs) responsible for plasticity in amorphous silicon (a-Si). Here, we summarize the rich mechanistic details of the triggering of these transformations from “fertile” sites having a slight excess of liquidlike atomic environments and develop analytical models for the evolution of liquidlike material with plastic strain, leading to a unique flow state. Furthermore, a kinetic model of flow is developed, which accounts for the stress-strain curves with broad yield phenomena as well as for the temperature dependence of the plastic resistance found in the simulations. While the details of these findings apply specifically to network glasses of a-Si, we find far-reaching parallels to the flow mechanisms in metallic and polymeric glasses.

  13. Digital image processing of nanometer-size metal particles on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  14. Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid

    PubMed Central

    Kim, Minseob; Dias, Ranga; Ohishi, Yasuo; Matsuoka, Takehiro; Chen, Jing-Yin; Yoo, Choong-Shik

    2016-01-01

    The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa; an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2. PMID:27527241

  15. Digital image processing of nanometer-size metal particles on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  16. Domain observations of Fe and Co based amorphous wires

    SciTech Connect

    Takajo, M.; Yamasaki, J. . Dept. of Electrical Engineering); Humphrey, F.B. )

    1993-11-01

    Domain observations were made on Fe and Co based amorphous magnetic wires that exhibit a large Barkhausen discontinuity during flux reversal. Domain patterns observed on the wire surface were compared with those found on a polished section through the center of the wire. It was confirmed that the Fe based wire consists of a shell and core region as previously proposed, however, there is a third region between them. This fairly thick transition region made up of domains at an angle of about 45[degree] to the wire axis clearly lacking the closure domains of the previous model. The Co based wire does not have a clear core and shell domain structure. The center of the wire had a classic domain structure expected of uniaxial anisotropy with the easy axis normal to the wire axis. When a model for the residual stress quenched-in during cooling of large Fe bars is applied to the wire, the expected anisotropy is consistent with the domain patterns in the Fe based wire, however, shape anisotropy still plays a dominant role in defining the wire core in the Co based wire.

  17. Fabrication and characterization of monolithically integrated microchannel plates based on amorphous silicon.

    PubMed

    Franco, Andrea; Geissbühler, Jonas; Wyrsch, Nicolas; Ballif, Christophe

    2014-04-04

    Microchannel plates are vacuum-based electron multipliers for particle--in particular, photon--detection, with applications ranging from image intensifiers to single-photon detectors. Their key strengths are large signal amplification, large active area, micrometric spatial resolution and picosecond temporal resolution. Here, we present the first microchannel plate made of hydrogenated amorphous silicon (a-Si:H) instead of lead glass. The breakthrough lies in the possibility of realizing amorphous silicon-based microchannel plates (AMCPs) on any kind of substrate. This achievement is based on mastering the deposition of an ultra-thick (80-120 μm) stress-controlled a-Si:H layer from the gas phase at temperatures of about 200 °C and micromachining the channels by dry etching. We fabricated AMCPs that are vertically integrated on metallic anodes of test structures, proving the feasibility of monolithic integration of, for instance, AMCPs on application-specific integrated circuits for signal processing. We show an electron multiplication factor exceeding 30 for an aspect ratio, namely channel length over aperture, of 12.5:1. This result was achieved for input photoelectron currents up to 100 pA, in the continuous illumination regime, which provides a first evidence of the a-Si:H effectiveness in replenishing the electrons dispensed in the multiplication process.

  18. Fabrication and characterization of monolithically integrated microchannel plates based on amorphous silicon

    PubMed Central

    Franco, Andrea; Geissbühler, Jonas; Wyrsch, Nicolas; Ballif, Christophe

    2014-01-01

    Microchannel plates are vacuum-based electron multipliers for particle—in particular, photon— detection, with applications ranging from image intensifiers to single-photon detectors. Their key strengths are large signal amplification, large active area, micrometric spatial resolution and picosecond temporal resolution. Here, we present the first microchannel plate made of hydrogenated amorphous silicon (a-Si:H) instead of lead glass. The breakthrough lies in the possibility of realizing amorphous silicon-based microchannel plates (AMCPs) on any kind of substrate. This achievement is based on mastering the deposition of an ultra-thick (80–120 μm) stress-controlled a-Si:H layer from the gas phase at temperatures of about 200°C and micromachining the channels by dry etching. We fabricated AMCPs that are vertically integrated on metallic anodes of test structures, proving the feasibility of monolithic integration of, for instance, AMCPs on application-specific integrated circuits for signal processing. We show an electron multiplication factor exceeding 30 for an aspect ratio, namely channel length over aperture, of 12.5:1. This result was achieved for input photoelectron currents up to 100 pA, in the continuous illumination regime, which provides a first evidence of the a-Si:H effectiveness in replenishing the electrons dispensed in the multiplication process. PMID:24698955

  19. Amorphous carbon enriched with pyridinic nitrogen as an efficient metal-free electrocatalyst for oxygen reduction reaction.

    PubMed

    Chen, Jingyan; Wang, Xin; Cui, Xiaoqiang; Yang, Guangmin; Zheng, Weitao

    2014-01-18

    An amorphous metal-free N-doped carbon film prepared by sputtering and annealing exhibits comparable electrocatalytic activity and superior stability and methanol tolerance to the commercial Pt/C catalyst via a four-electron pathway for oxygen reduction reaction (ORR). Pyridinic nitrogen in films plays a key role in electrocatalytic activity for ORR.

  20. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    PubMed Central

    Lan, S.; Ren, Y.; Wei, X. Y.; Wang, B.; Gilbert, E. P.; Shibayama, T.; Watanabe, S.; Ohnuma, M.; Wang, X. -L.

    2017-01-01

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment. PMID:28303882

  1. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    DOE PAGES

    Lan, S.; Ren, Y.; Wei, X. Y.; ...

    2017-03-17

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in-situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clustersmore » over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase which forms the room-temperature glass phase upon quenching. Finally, the outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat-treatment.« less

  2. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses.

    PubMed

    Lan, S; Ren, Y; Wei, X Y; Wang, B; Gilbert, E P; Shibayama, T; Watanabe, S; Ohnuma, M; Wang, X-L

    2017-03-17

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment.

  3. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution.

  4. A possible method for the characterization of amorphous slags: Recovery of refractory metal oxides from tin slags

    NASA Astrophysics Data System (ADS)

    Gaballah, I.; Allain, E.; Meyer-Joly, M.-Ch.; Malau, K.

    1992-06-01

    As X-ray, neutron scattering, and vibrational spectroscopy are not useful for amorphous solids characterization, microprobe analysis is used in determining the composition of these materials. The correlation coefficient matrix between the slag’s elements is obtained by a simple computer program which is commercially available. This matrix is employed for the constitution of the neighborhood of an element, which may be called the “pseudo-structure” (PS). The proposed method is a statistical view of the probable associations between the elements. It gives an insight into the amorphous solids' structure. The lixiviation of tin slags in order to recover the refractory metals they contain is used to illustrate the importance of the PS. A multistage acid-basic (AB) leaching leads to the dissolution of the matrix composed of Ca, Al, Fe, Mn, Si, ... oxides and the concentration of refractory metal oxides in the residues. The optimum tantalum and niobium recovery rates are 93 and 78 pct, respectively. The results of this research indicate that the leaching of the amorphous tin slag is a structure-sensitive operation. However, one may emphasize that the PS of amorphous solids is a simplification of the real neighborhood of ele-ments. It may be considered as a complement to other methods of investigation of the amorphous solids and may facilitate the hydrometallurgical process planning.

  5. Electron Irradiation Induced Phase Transition of an Amorphous Phase and Face-Centered Cubic Solid Solutions in Zr66.7Pd33.3 Metallic Glass

    NASA Astrophysics Data System (ADS)

    Nagase, Takeshi; Hosokawa, Takashi; Umakoshi, Yukichi

    2007-02-01

    Both amorphization and crystallization were observed in Zr66.7Pd33.3 metallic glass under electron irradiation. The melt-spun amorphous phase was not stable under 2.0 MV electron irradiation and two kinds of fcc-solid solution were precipitated through electron irradiation induced crystallization at 103 and 298 K. The fcc-solid solution obtained by electron irradiation induced crystallization at 298 K transformed to an amorphous phase during irradiation at 103 K. Electron irradiation induced phase transformation behavior in Zr66.7Pd33.3 metallic glass can be explained by phase stability of an amorphous phase and crystalline phases against electron irradiation.

  6. New Cu-Free Ti-Based Composites with Residual Amorphous Matrix

    PubMed Central

    Nicoara, Mircea; Locovei, Cosmin; Șerban, Viorel Aurel; Parthiban, R.; Calin, Mariana; Stoica, Mihai

    2016-01-01

    Titanium-based bulk metallic glasses (BMGs) are considered to have potential for biomedical applications because they combine favorable mechanical properties and good biocompatibility. Copper represents the most common alloying element, which provides high amorphization capacity, but reports emphasizing cytotoxic effects of this element have risen concerns about possible effects on human health. A new copper-free alloy with atomic composition Ti42Zr10Pd14Ag26Sn8, in which Cu is completely replaced by Ag, was formulated based on Morinaga’s d-electron alloy design theory. Following this theory, the actual amount of alloying elements, which defines the values of covalent bond strength Bo and d-orbital energy Md, situates the newly designed alloy inside the BMG domain. By mean of centrifugal casting, cylindrical rods with diameters between 2 and 5 mm were fabricated from this new alloy. Differential scanning calorimetry (DSC) and X-rays diffraction (XRD), as well as microstructural analyses using optical and scanning electron microscopy (OM/SEM) revealed an interesting structure characterized by liquid phase-separated formation of crystalline Ag, as well as metastable intermetallic phases embedded in residual amorphous phases. PMID:28773455

  7. Thin metal layer as transparent electrode in n-i-p amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Theuring, Martin; Geissendörfer, Stefan; Vehse, Martin; von Maydell, Karsten; Agert, Carsten

    2014-07-01

    In this paper, transparent electrodes, based on a thin silver film and a capping layer, are investigated. Low deposition temperature, flexibility and low material costs are the advantages of this type of electrode. Their applicability in structured n-i-p amorphous silicon solar cells is demonstrated in simulation and experiment. The influence of the individual layer thicknesses on the solar cell performance is discussed and approaches for further improvements are given. For the silver film/capping layer electrode, a higher solar cell efficiency could be achieved compared to a reference ZnO:Al front contact.

  8. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  9. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  10. Investigation of Amorphous/Nanocrystalline Iron-Based Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Königstein, T.

    2017-02-01

    Because of their favorable thermophysical properties, good machinability and low material costs, iron-based coatings which exhibit a highly amorphous/nanocrystalline microstructure are currently in the focus of research. Considering the crystallization temperature of the material, iron-based coatings might be the next generation of thermal barrier coatings (TBCs) for low-temperature systems, reducing thermal losses. The objective of this research project is the development of highly amorphous, iron-based coatings. For this purpose, amorphous feedstock materials with different chromium contents have been developed and characterized regarding their microstructures, phase compositions, crystallization temperatures and amorphous content. The results show that the amorphous content is reduced with increasing particle size and chromium content. The coatings were deposited by air plasma spraying (APS) and high-velocity oxygen fuel spraying (HVOF). It is shown that all coatings exhibit amorphous structures. HVOF coatings show a smaller amount of amorphous content compared to the feedstock materials, indicating crystallization occurring in not fully melted particles or insufficient rapid cooling. The APS process can increase the amount of amorphous content compared to the feedstock material, as shown for x Cr = 15%. All coatings proof good thermal shock behavior. Lowest thermal diffusivity values were determined for APS coatings, which confirms the potential of iron-based TBCs.

  11. Reduction experiment of FeO-bearing amorphous silicate: application to origin of metallic iron in GEMS

    SciTech Connect

    Matsuno, Junya; Tsuchiyama, Akira; Miyake, Akira; Noguchi, Ryo; Ichikawa, Satoshi

    2014-09-10

    Glass with embedded metal and sulfides (GEMS) are amorphous silicates included in anhydrous interplanetary dust particles (IDPs) and can provide information about material evolution in our early solar system. Several formation processes for GEMS have been proposed so far, but these theories are still being debated. To investigate a possible GEMS origin by reduction of interstellar silicates, we synthesized amorphous silicates with a mean GEMS composition and performed heating experiments in a reducing atmosphere. FeO-bearing amorphous silicates were heated at 923 K and 973 K for 3 hr, and at 1023 K for 1-48 hr at ambient pressure in a reducing atmosphere. Fe grains formed at the interface between the silicate and the reducing gas through a reduction. In contrast, TEM observations of natural GEMS show that metallic grains are uniformly embedded in amorphous silicates. Therefore, the present study suggests that metallic inclusions in GEMS could not form as reduction products and that other formation process such as condensation or irradiation are more likely.

  12. Amorphous and crystalline silicon based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Schüttauf, J. A.

    2011-10-01

    In this thesis, research on amorphous and crystalline silicon heterojunction (SHJ) solar cells is described. Probably the most important feature of SHJ solar cells is a thin intrinsic amorphous silicion (a-Si:H) layer that is deposited before depositing the doped emitter and back surface field. The passivation properties of such intrinsic layers made by three different chemical vapor deposition (CVD) techniques have been investigated. For layers deposited at 130°C, all techniques show a strong reduction in surface recombination velocity (SRV) after annealing. Modelling indicates that dangling bond saturation by atomic hydrogen is the predominant mechanism. We obtain outstanding carrier lifetimes of 10.3 ms, corresponding to SRVs of 0.56 cm/s. For a-Si:H films made at 250°C, an as-deposited minority carrier lifetime of 2.0 ms is observed. In contrast to a-Si:H films fabricated at 130°C, however, no change in passivation quality upon thermal annealing is observed. These films were fabricated for the first time using a continuous in-line HWCVD mode. Wafer cleaning before a-Si:H deposition is a crucial step for c-Si surface passivation. We tested the influence of an atomic hydrogen treatment before a-Si:H deposition on the c-Si surface. The treatments were performed in a new virgin chamber to exclude Si deposition from the chamber walls. Subsequently, we deposited a-Si:H layers onto the c-Si wafers and measured the lifetime for different H treatment times. We found that increasing hydrogen treatment times led to lower effective lifetimes. Modelling of the measured minority carrier lifetime data shows that the decreased passivation quality is caused by an increased defect density at the amorphous-crystalline interface. Furtheremore, the passivation of different a-Si:H containing layers have been tested. For intrinsic films and intrinsic/n-type stacks, an improvement in passivation up to 255°C and 270°C is observed. This improvement is attributed to dangling bond

  13. Lateral amorphous selenium metal-insulator-semiconductor-insulator-metal photodetectors using ultrathin dielectric blocking layers for dark current suppression

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Yi; Pan, Fu-Ming; Lin, Jian-Siang; Yu, Tung-Yuan; Li, Yi-Ming; Chen, Chieh-Yang

    2016-12-01

    We fabricated amorphous selenium (a-Se) photodetectors with a lateral metal-insulator-semiconductor-insulator-metal (MISIM) device structure. Thermal aluminum oxide, plasma-enhanced chemical vapor deposited silicon nitride, and thermal atomic layer deposited (ALD) aluminum oxide and hafnium oxide (ALD-HfO2) were used as the electron and hole blocking layers of the MISIM photodetectors for dark current suppression. A reduction in the dark current by three orders of magnitude can be achieved at electric fields between 10 and 30 V/μm. The effective dark current suppression is primarily ascribed to electric field lowering in the dielectric layers as a result of charge trapping in deep levels. Photogenerated carriers in the a-Se layer can be transported across the blocking layers to the Al electrodes via Fowler-Nordheim tunneling because a high electric field develops in the ultrathin dielectric layers under illumination. Since the a-Se MISIM photodetectors have a very low dark current without significant degradation in the photoresponse, the signal contrast is greatly improved. The MISIM photodetector with the ALD-HfO2 blocking layer has an optimal signal contrast more than 500 times the contrast of the photodetector without a blocking layer at 15 V/μm.

  14. Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon.

    PubMed

    Sun, Baoquan; Findikoglu, Alp T; Sykora, Milan; Werder, Donald J; Klimov, Victor I

    2009-03-01

    Semiconductor nanocrystals (NCs) are promising materials for applications in photovoltaic (PV) structures that could benefit from size-controlled tunability of absorption spectra, the ease of realization of various tandem architectures, and, perhaps, increased conversion efficiency in the ultraviolet region through carrier multiplication. The first practical step toward utilization of the unique properties of NCs in PV technologies could be through their integration into traditional silicon-based solar cells. Here, we demonstrate an example of such hybrid PV structures that combine colloidal NCs with amorphous silicon. In these structures, NCs and silicon are electronically coupled, and the regime of this coupling can be tuned by altering the alignment of NC energy states with regard to silicon band edges. For example, using wide-gap CdSe NCs we demonstrate a photoresponse which is exclusively due to the NCs. On the other hand, in devices comprising narrow-gap PbS NCs, both the NCs and silicon contribute to photocurrent, which results in PV response extending from the visible to the near-infrared region. The hybrid silicon/PbS NC solar cells show external quantum efficiencies of approximately 7% at infrared energies and 50% in the visible and a power conversion efficiency of up to 0.9%. This work demonstrates the feasibility of hybrid PV devices that combine advantages of mature silicon fabrication technologies with the unique electronic properties of semiconductor NCs.

  15. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO2 with transition metal additions

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2016-07-01

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO2 with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m-1 K-2 for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO2 and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  16. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO{sub 2} with transition metal additions

    SciTech Connect

    Music, Denis Geyer, Richard W.; Hans, Marcus

    2016-07-28

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO{sub 2} with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m{sup −1} K{sup −2} for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO{sub 2} and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  17. Synthesis and characterization of Mg-based amorphous alloys and their use for decolorization of Azo dyes

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wang, W. H.

    2014-06-01

    Mg-based alloys are light weight and have wide range of applications in the automotive industry. These alloys are widely used because of their very attractive physical and mechanical properties and corrosion resistance. The properties and applications can be further improved by changing the nature of materials from crystalline to amorphous. In this study, melt spun ribbons (MSRs) of Mg70Zn25Ca5 Mg68Zn27Ca5 alloys were prepared by melt spinning technique by using 3-4N pure metals. Characterization of the samples was done by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and energy dispersive x-ray analyzer (EDAX). Microstructural investigations were conducted by using scanning electron microscopy (SEM), atomic force microscopy (AFM) as well as optical and stereo scan microscopy techniques. DSC results showed multistage crystallization. Activation energy was found to be 225 kJ/mol by Kissinger method indicating good thermal stability against crystallization. XRD, DSC, SEM and EDS (energy dispersive spectroscopy) results are agreed very well. In order to study decolorization, the MSRs of Mg70Zn25Ca5 Mg68Zn27Ca5 alloys were treated repeatedly with various azo dyes at room temperature. In order to compare the results, MSRs of amorphous Zr- and Ni-based metallic glasses were also treated. Reaction of MSRs with azo dyes results in their decolorization in a few hours. Decolorization of azo dyes takes place by introducing amorphous MSRs which results in breaking the -N=N- bonds that exist in dye contents. It is concluded that Mg-based alloys are useful for paint and dye industries and will be beneficial to control water pollution. Comparison of results showed that Mg-based alloys are more efficient than Zr- and Ni-based amorphous alloys for decolorization of azo dyes.

  18. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE PAGES

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  19. Manufacture of iron-based, amorphous coatings with high fracture toughness

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Königstein, T.

    2017-03-01

    Amorphous iron-based material have excellent corrosion behaviour, show good tribological performances and exhibit interesting thermophysical properties. The deposition as a coating system by thermal spraying technology is an innovative approach to manufacture these materials. In this study, the mechanical properties of three iron-based amorphous coatings with different chromium content xCr = 0, 5 and 15 at.% are presented deposited by means of High Velocity Oxygen Fuel Spraying. For the determination of the amorphous content the linear relationship between crystallization energy and amount of amorphous structures is used. Comparing the crystallization energies of amorphous ribbons manufactured by melt spinning to those of feedstock materials and free standing coatings, assumptions regarding the amorphous contents are drawn. The results show that the amorphous content in the feedstock material is influenced by the amount of chromium content. Furthermore, the amorphous content of all coatings do not exceed those of the feedstock materials. Powder xCr = 15 at.% and the corresponding coating exhibit smallest amount of amorphous structure, presumably due to a not fully melted state of the impacting particles. The values of fracture toughness of the coatings are determined by means of indentation and subsequent measurement of the crack lengths. Furthermore, values of indentation modulus and hardness are measured and compared to each other. While length of indentation cracks decreases with increasing chromium content, an increase in indention modulus and hardness is observed. In comparison to ceramic reference YSZ and the steel reference 1.4404, all amorphous coatings show promising properties such as low indentation crack lengths and high hardness.

  20. Corrosion-resistant amorphous metallic films of Mo/sub 49/Cr/sub 33/B/sub 18/ alloy

    SciTech Connect

    Ramesham, R.; DiStefano, S.; Fitzgerald, D.; Thakoor, A.P.; Khanna, S.K.

    1987-09-01

    Amorphous metallic films of Mo/sub 49/Cr/sub 33/B/sub 18/ have been deposited onto glass and quartz substrates by the magnetron sputter quenching technique. The amorphous nature of the as-deposited films was confirmed by their diffuse x-ray diffraction patterns. The crystallization temperature of the as-deposited films was 590/sup 0/C, according to the differential scanning calorimetry studies. Surface texture and cross-sectional features of the coatings were examined by scanning electron microscopy. Electron microprobe analysis was used to determine the chemical composition of the films. Chemical compositional uniformity of the as-deposited amorphous metallic films was verified by secondary ion mass spectrometry. As-deposited films exhibited microhardness of the order of 600-850 HV. Kinetics of corrosion of the alloy films in H/sub 2/SO/sub 4/ (1N) solution has been studied by potentiodynamic and galvanostatic techniques. As-deposited amorphous films exhibited corrosion current density three orders of magnitude less than the corrosion current density of 304 stainless steel in H/sub 2/SO/sub 4/ (1N) solution. A reaction mechanism at the corrosion potential is proposed.

  1. Triphenylamine-based amorphous polymers for bulk-heterojunction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yasuda, Takeshi

    2014-03-01

    In this paper, the recent research progress on triphenylamine (TPA)-based donor-acceptor (D-A) amorphous polymers including our developed polymers is reviewed. TPA has three-dimensional branched structures and can provide D-A polymers containing D and A units in the main chain or side chain. The use of TPA-based amorphous polymers in the fabrication of organic photovoltaics (OPVs) offers great advantages over the use of a polycrystalline film in terms of high reproducibility of the OPV performance. The amorphous polymer design using TPA, therefore, indicates a promising direction for the development of new donor materials in OPVs.

  2. Effect of patch borders on coercivity in amorphous rare earth-transition metal thin films

    NASA Technical Reports Server (NTRS)

    Patterson, G.; Fu, H.; Giles, R. C.; Mansuripur, M.

    1991-01-01

    The coercivity at the micron scale is a very important property of magneto-optical media. It is a key factor that determines the magnetic domain wall movement and domain reversal. How the coercivity is influenced by a special type of patch borders is discussed. Patch formation is a general phenomenon in growth processes of amorphous rare earth transition metal thin films. Different patches may stem from different seeds and the patch borders are formed when they merge. Though little is known about the exact properties of the borders, we may expect that the exchange interaction at the patch border is weaker than that within a patch, since there is usually a spatial gap between two patches. Computer simulations were performed on a 2-D hexagonal lattice consisting of 37 complete patches with random shape and size. From the series of simulations we may conclude that the domain in the patch with borders of 30 percent exchange strength can expand most easily to the whole lattice, because the exchange strength can expand most easily to the whole lattice, because the exchange strength of the border is not too high to prevent the domain from growing within the patch and it is not too low to prevent the domain from expanding beyond the patch.

  3. Tunneling Spectroscopy of Amorphous Magnetic Rare Earth-Si Alloys near the Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Xiong, P.; Zink, B. L.; Tran, M. Q.; Gebala, A. E.; Wilcox, E. M.; Hellman, F.; Dynes, R. C.

    1997-03-01

    Amorphous dilute magnetic semiconductors exhibit striking differences in the electrical and magneto-transport behavior from their crystalline or nonmagnetic analogs.(F. Hellman et al., Phys. Rev. Lett. 77, 4652 (1996).) Magnetic impurities cause a large suppression of conductivity below 50 K in a-Si_xGd_1-x and a-Si_xTb_1-x relative to the nonmagnetic a-Si_xY_1-x (x ~ 0.85-0.9). Application of a magnetic field increases the conductivity by orders of magnitude. We have fabricated good quality tunnel junctions on a-Si:Gd and the nonmagnetic a-Si:Y to probe the electronic density of states in these two systems. We present the results of the tunneling spectroscopy and its magnetic field dependence for a series of the two alloys at different compositions. We will discuss the correlation between the tunneling spectra and the transport properties and its implications on the possible origin of the magnetic field tuned insulator-metal transition in a-Si:Gd. Research Supported by ONR Grant No. N000149151320 and NSF Grant No. DMR-9208599.

  4. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing

    NASA Astrophysics Data System (ADS)

    Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A.; Henkelman, Graeme; Milliron, Delia J.

    2016-12-01

    Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and `nanocrystal-in-glass’ composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

  5. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing.

    PubMed

    Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A; Henkelman, Graeme; Milliron, Delia J

    2016-12-01

    Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and 'nanocrystal-in-glass' composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

  6. Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components

    SciTech Connect

    Wang, Aiyong; Lin, Bo; Zhang, Hanlei; Engelhard, Mark H.; Guo, Yanglong; Lu, Guanzhong; Peden, Charles H. F.; Gao, Feng

    2017-01-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures were synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. The best performing catalysts achieve 100% NO conversion for ~30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure was found to be critical for these catalysts to maintain high activity and durability. Control of Cr/M (M=Co, Fe and Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature was key to the synthesis of these highly active catalysts.

  7. Refractory amorphous metallic (W/0.6/ Re/0.4/)76B24 coatings on steel substrates

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Khanna, S. K.; Mehra, M.; Johnson, W. L.

    1985-01-01

    Refractory metallic coatings of (W/0.6/ Re/0.4/)76B24 (WReB) have been deposited onto glass, quartz, and heat-treated AISI 52100 bearing steel substrates by dc magnetron sputtering. As-deposited WReB films are amorphous, as shown by their diffuse X-ray diffraction patterns; chemically homogeneous, according to secondary ion mass spectrometry (SIMS) analysis; and they exhibit a very high (approximately 1000 C) crystallization temperature. Adhesion strength of these coatings on heat-treated AISI 52100 steel is in excess of approximately 20,000 psi and they possess high microhardness (approximately 2400 HV50). Unlubricated wear resistance of such hard and adherent amorphous metallic coatings on AISI 52100 steel is studied using the pin-on-disc method under various loading conditions. Amorphous metallic WReB coatings, about 4 microns thick, exhibit an improvement of more than two and a half orders of magnitude in the unlubricated wear resistance over that of the uncoated AISI 52100 steel.

  8. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    PubMed

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  9. Magnetoresistance and magnetic properties in amorphous Fe-based wires

    NASA Astrophysics Data System (ADS)

    Bordin, G.; Buttino, G.; Cecchetti, A.; Poppi, M.

    2001-06-01

    The longitudinal and transverse magnetoresistances in amorphous Fe 77.5Si 7.5B 15 wires are studied at different values of the DC-bias currents in order to clarify the mechanism of the magnetization according to a 'core-shell' domain model. The role of closure domain structures in the magnetization process of the wires is analysed. Moreover, the effects of the Joule heating on the internal stresses, introduced during the rapid quenching in the sample preparation, are examined.

  10. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  11. Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials.

    PubMed

    Dong, Xiaodan; Zhao, Qun; Xiao, Liying; Lu, Qiang; Kaplan, David L

    2016-09-12

    As a functional material, silk has been widely used in tissue engineering, drug release, and tissue regeneration. Increasing subtle control of silk hierarchical structures and thus specific functional performance is required for these applications but remains a challenge. Here, we report a novel silk nanofiber solution achieved through tuning solvent systems used to generate the material. Unlike the β-sheet rich silk nanofibers reported previously, these new silk nanofibers are mainly composed of amorphous structures and maintain a solution state in aqueous environments. The amorphous silk nanofibers are stable enough for storage and also metastable, making them easy to use in the further fabrication of materials through various processes. Silk scaffolds, hydrogels, and films were prepared from these silk nanofiber solutions. These silk materials from amorphous nanofiber solutions show different properties and tunable performance features. Therefore, these amorphous silk nanofibers are suitable units or building blocks for designing silk-based materials.

  12. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    SciTech Connect

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  13. Amorphization and Directional Crystallization of Metals Confined in Carbon Nanotubes Investigated by in Situ Transmission Electron Microscopy.

    PubMed

    Tang, Dai-Ming; Ren, Cui-Lan; Lv, Ruitao; Yu, Wan-Jing; Hou, Peng-Xiang; Wang, Ming-Sheng; Wei, Xianlong; Xu, Zhi; Kawamoto, Naoyuki; Bando, Yoshio; Mitome, Masanori; Liu, Chang; Cheng, Hui-Ming; Golberg, Dmitri

    2015-08-12

    The hollow core of a carbon nanotube (CNT) provides a unique opportunity to explore the physics, chemistry, biology, and metallurgy of different materials confined in such nanospace. Here, we investigate the nonequilibrium metallurgical processes taking place inside CNTs by in situ transmission electron microscopy using CNTs as nanoscale resistively heated crucibles having encapsulated metal nanowires/crystals in their channels. Because of nanometer size of the system and intimate contact between the CNTs and confined metals, an efficient heat transfer and high cooling rates (∼10(13) K/s) were achieved as a result of a flash bias pulse followed by system natural quenching, leading to the formation of disordered amorphous-like structures in iron, cobalt, and gold. An intermediate state between crystalline and amorphous phases was discovered, revealing a memory effect of local short-to-medium range order during these phase transitions. Furthermore, subsequent directional crystallization of an amorphous iron nanowire formed by this method was realized under controlled Joule heating. High-density crystalline defects were generated during crystallization due to a confinement effect from the CNT and severe plastic deformation involved.

  14. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

    SciTech Connect

    Regan, Michael J.

    1993-12-01

    Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous FexGe1-x and MoxGe1-x are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x<0.2), no films appear isotropic nor homogeneous through the metal/insulator transition. The results indicate that fluctuations in the growth direction play a pivotal role in preventing simple growth models of a columnar structure or one that evolves systematically as it grows. The anomalous scattering measurements identify the metal atoms (Fe or Mo) as the source of the anisotropy, with the Ge atoms distributed homogeneously. The author has developed a method for using these measurements to determine the compositions of the phase-separating species. The results indicate phase separation into an amorphous Ge and an intermetallic phase of stoichiometry close to FeGe2or MoGe3. Finally, by manipulating the deposited power flux and rates of growth, FexGe1-x films which have the same Fe composition x can be grown to different states of phase separation. These results may help explain the difficulty workers have had in isolating the metal/insulator transition for these and other vapor-deposited amorphous alloys.

  15. Transparent ferromagnetic and semiconducting behavior in Fe-Dy-Tb based amorphous oxide films

    PubMed Central

    Taz, H.; Sakthivel, T.; Yamoah, N. K.; Carr, C.; Kumar, D.; Seal, S.; Kalyanaraman, R.

    2016-01-01

    We report a class of amorphous thin film material comprising of transition (Fe) and Lanthanide metals (Dy and Tb) that show unique combination of functional properties. Films were deposited with different atomic weight ratio (R) of Fe to Lanthanide (Dy + Tb) using electron beam co-evaporation at room temperature. The films were found to be amorphous, with grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies indicating that the films were largely oxidized with a majority of the metal being in higher oxidation states. Films with R = 0.6 were semiconducting with visible light transmission due to a direct optical band-gap (2.49 eV), had low resistivity and sheet resistance (7.15 × 10−4 Ω-cm and ~200 Ω/sq respectively), and showed room temperature ferromagnetism. A metal to semiconductor transition with composition (for R < 11.9) also correlated well with the absence of any metallic Fe0 oxidation state in the R = 0.6 case as well as a significantly higher fraction of oxidized Dy. The combination of amorphous microstructure and room temperature electronic and magnetic properties could lead to the use of the material in multiple applications, including as a transparent conductor, active material in thin film transistors for display devices, and in spin-dependent electronics. PMID:27298196

  16. Transparent ferromagnetic and semiconducting behavior in Fe-Dy-Tb based amorphous oxide films

    NASA Astrophysics Data System (ADS)

    Taz, H.; Sakthivel, T.; Yamoah, N. K.; Carr, C.; Kumar, D.; Seal, S.; Kalyanaraman, R.

    2016-06-01

    We report a class of amorphous thin film material comprising of transition (Fe) and Lanthanide metals (Dy and Tb) that show unique combination of functional properties. Films were deposited with different atomic weight ratio (R) of Fe to Lanthanide (Dy + Tb) using electron beam co-evaporation at room temperature. The films were found to be amorphous, with grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy studies indicating that the films were largely oxidized with a majority of the metal being in higher oxidation states. Films with R = 0.6 were semiconducting with visible light transmission due to a direct optical band-gap (2.49 eV), had low resistivity and sheet resistance (7.15 × 10‑4 Ω-cm and ~200 Ω/sq respectively), and showed room temperature ferromagnetism. A metal to semiconductor transition with composition (for R < 11.9) also correlated well with the absence of any metallic Fe0 oxidation state in the R = 0.6 case as well as a significantly higher fraction of oxidized Dy. The combination of amorphous microstructure and room temperature electronic and magnetic properties could lead to the use of the material in multiple applications, including as a transparent conductor, active material in thin film transistors for display devices, and in spin-dependent electronics.

  17. Magnetoimpedance effect in current annealed Co-based amorphous wires

    NASA Astrophysics Data System (ADS)

    Ghanaatshoar, M.; Tehranchi, M. M.; Mohseni, S. M.; Parhizkari, M.; Roozmeh, S. E.; Jazayeri Gharehbagh, A.

    2006-09-01

    Current-annealing of Co68.15Fe4.35Si12.5B15 amorphous wires has been studied at various vacuum orders. Structure-sensitive properties such as the electrical resistance during Joule heating treatment have been monitored to investigate the structural changes. Different driving currents have been flowed through the samples at different vacuums between 6×10-2 and 6×10-5 mbar. Regarding the giant magnetoimpedance (GMI) effect, annealing at different vacuums but with the same current can lead to various responses.

  18. Metal transport and remobilisation in a basin affected by acid mine drainage: the role of ochreous amorphous precipitates.

    PubMed

    Consani, Sirio; Carbone, Cristina; Dinelli, Enrico; Balić-Žunić, Tonci; Cutroneo, Laura; Capello, Marco; Salviulo, Gabriella; Lucchetti, Gabriella

    2017-06-01

    Metal-polluted mine waters represent a major threat to the quality of waters and sediments in a downstream basin. At the confluence between acidic mine waters and the unpolluted waters of the Gromolo Torrent (Liguria, North-West Italy), the massive formation of an ochreous amorphous precipitate takes place. This precipitate forms a soft blanket that covers the torrent bed and can be observed down to its mouth in the sea. The aim of this work is to evaluate the dispersion of metals in the Gromolo Torrent basin from the abandoned Cu-Fe sulphide mine of Libiola to the Ligurian Sea and to assess the metal remobilisation from the amorphous precipitates. The mineralogy of the superficial sediments collected in the torrent bed and the concentrations of different elements of environmental concern (Cu, Zn, Cd, Co, Cr, Mn, Ni, Pb, As, and Sb) were therefore analysed. The results showed that the precipitates contain high concentration of Fe, Al, Cu, and Zn, significantly modifying the bulk chemistry of the Gromolo Torrent sediments. In order to evaluate the possible remobilisation of ecotoxic elements from the amorphous precipitates, bulk leaching tests were performed with both deionised and seawater. Bulk leaching tests with deionised water mobilised primarily high Pb amounts, but also relatively high concentrations of Fe, Al, Cu, and Zn are released in the leachate. In seawater tests, Fe, Al, Cu, and Zn were released in smaller amounts, while other elements like Mn, Cd, Co, and Ni increased in the released fraction. Pb was still strongly released as in deionised water experiments. The results show that the interaction of precipitates and seawater can remobilise high concentrations of metals, thus affecting the surrounding environment.

  19. Investigation on the crystallization mechanism difference between FINEMET and NANOMET type Fe-based soft magnetic amorphous alloys

    NASA Astrophysics Data System (ADS)

    Wang, Yaocen; Zhang, Yan; Takeuchi, Akira; Makino, Akihiro; Kawazoe, Yoshiyuki

    2016-10-01

    In this article, the atomic behaviors of Nb and P in Fe-based amorphous alloys during nano-crystallization process were studied by the combination of ab initio molecular dynamics simulations and experimental measurements. The inclusion of Nb is found to be tightly bonded with B, resulting in the formation of diffusion barrier that could prevent the over-growth of α-(Fe, Si) grains and the promotion of larger amount of α-(Fe, Si) participation. The P inclusion could delay the diffusion of the metalloids that have to be expelled from the α-(Fe, Si) crystallization region so that the grain growth could be reduced with fast but practically achievable heating rates. The combined addition of P and Nb in high Fe content amorphous alloys failed in exhibiting the potential of good magnetic softness with slow heating (10 K/min) annealing at various temperatures. The sample with optimum crystallization process with confined grain size was annealed at 653 K, with the grain size of 31 nm and a coercivity of ˜120 A/m, much too large to meet the application requirements and to be compared with the currently well-studied alloy systems. This attempt suggests that the inclusion of early transition metal elements might not be effective enough to suppress grain growth in crystallizing high Fe content amorphous alloys.

  20. Back-channel-etch amorphous indium-gallium-zinc oxide thin-film transistors: The impact of source/drain metal etch and final passivation

    NASA Astrophysics Data System (ADS)

    Nag, Manoj; Bhoolokam, Ajay; Steudel, Soeren; Chasin, Adrian; Myny, Kris; Maas, Joris; Groeseneken, Guido; Heremans, Paul

    2014-11-01

    We report on the impact of source/drain (S/D) metal (molybdenum) etch and the final passivation (SiO2) layer on the bias-stress stability of back-channel-etch (BCE) configuration based amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). It is observed that the BCE configurations TFTs suffer poor bias-stability in comparison to etch-stop-layer (ESL) TFTs. By analysis with transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), as well as by a comparative analysis of contacts formed by other metals, we infer that this poor bias-stability for BCE transistors having Mo S/D contacts is associated with contamination of the back channel interface, which occurs by Mo-containing deposits on the back channel during the final plasma process of the physical vapor deposited SiO2 passivation.

  1. THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Hoffmann, M. C.; Sher, M.-J.; Chen, Z.; Yang, S.-H.; Samant, M. G.; Parkin, S. S. P.; Dürr, H. A.

    2016-08-01

    We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (˜30 fs ). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering.

  2. Ultra-Flexible, Invisible Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends

    DTIC Science & Technology

    2015-02-25

    2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2390 wileyonlinelibrary.com C O M M U N IC A TI O N Ultra-Flexible, “ Invisible ” Thin-Film...enable fully trans- parent thin-fi lm transistors (TFTs), which are essential for the fabrication of “ invisible ” circuits and to increase the...4. TITLE AND SUBTITLE Ultra-Flexible, ’ Invisible ’ Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends 5a. CONTRACT

  3. Densification behavior, nanocrystallization, and mechanical properties of spark plasma sintered Fe-based bulk amorphous alloys

    NASA Astrophysics Data System (ADS)

    Singh, Ashish Kumar

    Fe-based amorphous alloys are gaining increasing attention due to their exceptional wear and corrosion resistance for potential structural applications. Two major challenges that are hindering the commercialization of these amorphous alloys are difficulty in processing of bulk shapes (diameter > 10 mm) and lack of ductility. Spark plasma sintering (SPS) is evolving as a promising technique for processing bulk shapes of amorphous and nanocrystalline materials. The objective of this work is to investigate densification behavior, nanocrystallization, and mechanical properties of SPS sintered Fe-based amorphous alloys of composition Fe48Cr15Mo14Y2C15B6. SPS processing was performed in three distinct temperature ranges of amorphous alloys: (a) below glass transition temperature (Tg), (b) between Tg and crystallization temperature (Tx), and (c) above Tx. Punch displacement data obtained during SPS sintering was correlated with the SPS processing parameters such as temperature, pressure, and sintering time. Powder rearrangement, plastic deformation below T g, and viscous flow of the material between Tg and Tx were observed as the main densification stages during SPS sintering. Micro-scale temperature distributions at the point of contact and macro-scale temperature distribution throughout the sample during SPS of amorphous alloys were modeled. The bulk amorphous alloys are expected to undergo structural relaxation and nanocrystallization during SPS sintering. X-ray diffraction (XRD), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) was performed to investigate the evolution of nanocrystallites in SPS sintered Fe-based bulk amorphous alloys. The SANS analysis showed significant scattering for the samples sintered in the supercooled region indicating local structural and compositional changes with the profuse nucleation of nano-clusters (~4 nm). Compression tests and microhardness were performed on the samples sintered at different

  4. Spall Fracture Morphologies and Mechanisms of Zr-based Bulk Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Gupta, Y. M.; Escobedo, J. P.

    2011-06-01

    Plate impact experiments were conducted to examine the dynamic tensile response of Zr-based bulk amorphous alloys (BAAs). Tensile loading was preceded by elastic compressive loading (3.6 to 6.0 GPa). Microscopy results revealed that the BAA samples exhibit brittle behavior (glass like) macroscopically and ductile behavior (metal like) microscopically; corrugations and bumps are observed at the nanoscale. The observed fracture morphologies are related to three key features of our spall experiments and the free volume content of the BAAs. With increasing compressive stress, the available free volume decreases causing a suppression of shear stresses during tension, resulting in brittle cleavage at higher stresses. The high tensile loading rate likely causes cracking by multiple shear band propagation and interception, rendering a serrated surface morphology. Finally, the corrugations are likely created due to a succession of arrest and propagation of mode I cracks. A subsequent dilatation, an effect of the tensile mean stress, caused the corrugations to evolve to bump-type features (10-100 nm). Work supported by DOE/NNSA.

  5. Refractive-index change caused by electrons in amorphous AsS and AsSe thin films doped with different metals by photodiffusion

    SciTech Connect

    Nordman, Olli; Nordman, Nina; Pashkevich, Valfrid

    2001-08-01

    The refractive-index change caused by electrons was measured in amorphous AsS and AsSe thin films. Films were coated with different metals. Diffraction gratings were written by electron-beam lithography. The interactions of electrons in films with and without the photodiffusion of overcoated metal were compared. Incoming electrons caused metal atom and ion diffusion in both investigated cases. The metal diffusion was dependent on the metal and it was found to influence the refractive index. In some cases lateral diffusion of the metal was noticed. The conditions for applications were verified. {copyright} 2001 Optical Society of America

  6. Mechanism of Dissolution-Induced Nanoparticle Formation from a Copovidone-Based Amorphous Solid Dispersion.

    PubMed

    Harmon, Paul; Galipeau, Kendra; Xu, Wei; Brown, Chad; Wuelfing, W Peter

    2016-05-02

    Amorphous solid dispersions (ASDs) have been increasingly used to maximize human exposures from poorly soluble drug candidates. One well-studied advantage of ASDs is the increased amorphous drug solubility compared to crystalline forms. This provides more rapid dissolution rates. An additional advantage of ASDs is that the dissolution process of the ASD particle may also rapidly transform much of the drug present in the ASD particle to small (<1 μm) amorphous drug nanoparticles which will have fast dissolution rates. This work examines the mechanism by which this nanoparticle formation occurs by studying an ASD consisting of 70-80% copovidone, 20% anacetrapib (a low solubility lipophilic drug), and 0-10% TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate, a surfactant). Nanoparticle formation is found to derive from a rapid amorphous drug domain formation within the ASD particle, driven by copovidone dissolution from the particle. The role of surfactant in the ASD particle is to prevent an otherwise rapid, local drug domain aggregation event, which we term "hydrophobic capture". Surfactant thus allows the amorphous drug domains to escape hydrophobic capture and diffuse to bulk solution, where they are reported as nanoparticles. This view of surfactant and nanoparticle formation is compared to the prevailing view in the literature. The work here clarifies the different roles that surfactant might play in increasing nanoparticle yields and extending the useful drug loading ranges in copovidone-based ASDs.

  7. Modeling Physical Stability of Amorphous Solids Based on Temperature and Moisture Stresses.

    PubMed

    Zhu, Donghua Alan; Zografi, George; Gao, Ping; Gong, Yuchuan; Zhang, Geoff G Z

    2016-09-01

    Isothermal microcalorimetry was utilized to monitor the crystallization process of amorphous ritonavir (RTV) and its hydroxypropylmethylcellulose acetate succinate-based amorphous solid dispersion under various stressed conditions. An empirical model was developed: ln(τ)=ln(A)+EaRT-b⋅wc, where τ is the crystallization induction period, A is a pre-exponential factor, Ea is the apparent activation energy, b is the moisture sensitivity parameter, and wc is water content. To minimize the propagation of errors associated with the estimates, a nonlinear approach was used to calculate mean estimates and confidence intervals. The physical stability of neat amorphous RTV and RTV in hydroxypropylmethylcellulose acetate succinate solid dispersions was found to be mainly governed by the nucleation kinetic process. The impact of polymers and moisture on the crystallization process can be quantitatively described by Ea and b in this Arrhenius-type model. The good agreement between the measured values under some less stressful test conditions and those predicted, reflected by the slope and R(2) of the correlation plot of these 2 sets of data on a natural logarithm scale, indicates its predictability of long-term physical stability of amorphous RTV in solid dispersions. To further improve the model, more understanding of the impact of temperature and moisture on the amorphous physical stability and fundamentals regarding nucleation and crystallization is needed.

  8. Thick amorphous hums of Ni base alloys using high energy (MeV) ion beam mixing

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R. S.; Pronko, P. P.; Rai, A. K.; McCormick, A. W.; Raffoul, C.

    1985-03-01

    This work investigates the potential for applying ion beam mixing techniques to the fabrication of amorphous metallic alloy coatings of MoNi and TiNi on metal substrates to improve their corrosion resistant properties. Alternating layers of 100 Å Mo and 70 Å Ni with total thicknesses of 1450 Å and 2900 Å were prepared by e-beam evaporation on Ni substrates. Similarly, 80 A Ti and 50 Å Ni alternate layers with total thicknesses of 900 Å and 1560 Å were deposited on Ni. A batch of alternating films of total thickness 5200 Å of TiNi with individual thicknesses of 160 Å Ti and 100 Å Ni were also prepared on Ni substrates. The thicknesses of individual films were adjusted in this way to obtain an overall composition of Ni 50Mo 50 and Ni 50Ti 50 after mixing. The films were irradiated with 1 and 2 MeV Au + and 1.5 MeV Ni + ions depending on the total thickness. The ion beam mixing and nucrostructure of these films have been studied as a function of dose using RBS and TEM. Amorphous layers have been tested for their corrosion behavior by potentiodynamic polarization techniques. Measurements carried out in nitric acid solution reveal that both NiMo and NiTi amorphous layers are more resistant to corrosive attack than the polycrystalline multiphased alloys. NiTi exhibited much superior corrosion resistant properties than NiMo.

  9. Helium-3 behavior in some nickel-based amorphous alloys

    SciTech Connect

    Unlu, K.; Vincent, D.H. )

    1992-04-01

    In this paper, helium trapping and release are studied for the nickel-rich amorphous alloys Ni{sub 75.1}Cr{sub 14.0}P{sub 10.1}C{sub 0.08}, Ni{sub 63.5}Zr{sub 36.5}, and Ni{sub 87.7}P{sub 12.3}. Helium-3 is introduced into the samples by implantation at 150-kev energy. The depth distribution of the implanted helium is observed by neutron depth profiling employing he reaction {sup 3}He(n,p){sup 3}H. Two implantation doses are used: 1 {times} 10{sup 16} and 5 {times} 10{sup 16} {sup 3}He/cm{sup 2}. Both implantation doses were chosen to be low enough to avoid blistering or flaking of the surface of the samples. The helium release behavior of the samples is studied by taking depth profiles after each annealing stage. At the same time, electron diffraction is used on parallel samples to observe the microstructure of the samples as a function of annealing. The annealing sequence for each material is broken off when electron diffraction indicated the existence of relatively large crystals in a sample. Only a small fraction of the implanted helium is released in most cases, and a clear correlation between helium release and recrystallization can be found in only one case.

  10. Study the formation of metastable crystalline phases from amorphous metallic systems with an integrated approach

    NASA Astrophysics Data System (ADS)

    Ye, Zhuo; Zhang, Feng; Sun, Yang; Mendelev, Mikhail; Ott, Ryan; Park, Eun-Soo; Besser, Matt; Kramer, Matt; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-03-01

    An efficient genetic algorithm (GA) is integrated with experimental diffraction data to solve a metastable Al20Sm4 phase that evolves during rapid solidification of an amorphous Al-10%Sm alloy produced by magnetron sputtering. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of the alloy. We discover the strong similarity of the underlying atomic structure between the amorphous alloy and this phase. Both phases share the same Sm-centered motif, providing a low-barrier pathway to form this Al20Sm4phase in the glass matrix at low temperatures. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered anti-site defects in the devitrified crystal.

  11. P-type conductive amorphous oxides of transition metals from solution processing

    NASA Astrophysics Data System (ADS)

    Li, Jinwang; Kaneda, Toshihiko; Tokumitsu, Eisuke; Koyano, Mikio; Mitani, Tadaoki; Shimoda, Tatsuya

    2012-07-01

    We report a series of solution-processed p-type conductive amorphous Ln-M-O (a-Ln-M-O, where M = Ru, Ir, and Ln is a lanthanide element except Ce) having low resistivities (10-3 to 10-2 Ω cm). These oxides are thermally stable to a high degree, being amorphous up to 800 °C, and processable below 400 °C. Their film surfaces are smooth on the atomic scale, and the process allows patterning simply by direct imprinting without distortion of the pattern after annealing. These properties have high potential for use in printed electronics. The electron configurations of these oxides are apparently different from existing p-type oxides.

  12. Dynamic tensile response of Zr-based bulk amorphous alloys: Fracture morphologies and mechanisms

    NASA Astrophysics Data System (ADS)

    Escobedo, J. P.; Gupta, Y. M.

    2010-06-01

    Plate impact experiments were conducted to examine the dynamic tensile response of Zr-based bulk amorphous alloys (BAAs) having a nominal composition of Zr56.7Cu15.3Ni12.5Nb5.0Al10.0Y0.5. The experimental configuration used in our work permitted soft recovery of the samples to allow a careful examination of the fractured samples along with real-time measurements of the sample free-surface velocity (FSV) histories. Tensile loading was preceded by elastic compressive loading to peak stresses in the 3.6 to 6.0 GPa range. Tensile damage in the recovered samples was examined using optical and electron microscopy. The microscopy results showed that the BAA samples exhibit a brittle behavior (as a glass) at the macroscopic level and a ductile behavior (as a metal) at the microscopic level; in addition, corrugations and bumps are observed at the nanoscale. The observed fracture morphologies are related to three key features present in our spall experiments: preceding compressive stress (3.6-6.0 GPa), high tensile loading rate (˜106/s), high mean tensile stress (˜2.3 GPa); and are intrinsically related to the amorphous glassy structure of the BAAs (free volume content). We propose that the compressive stress depletes the free volume content. With increasing compressive stress, the available free volume decreases causing a suppression of shear stresses during tension. Thus, the mean tensile component becomes more dominant at higher stresses. Consequently, the observed surface morphology results from brittle cleavage, causing an increased damage localization in the recovered samples spalled at higher stresses. These observations support the inferences made from measurements of FSV histories. The high tensile loading rate is proposed to be responsible for cracking by multiple shear band propagation and interception, rendering the observed serrated surface morphology. Finally, we proposed that the corrugations are created due to a succession of arrest and propagation of mode

  13. Metal-induced crystallization of amorphous Si thin films assisted by atomic layer deposition of nickel oxide layers.

    PubMed

    So, Byung-Soo; Bae, Seung-Muk; You, Yil-Hwan; Jo, DaiHui; Lee, Sun Sook; Chung, Taek-Mo; Kim, Chang Gyoun; An, Ki-Seok; Hwang, Jin-Ha

    2011-08-01

    Atomic layer deposition (ALD) of nickel oxide was applied to the nickel-induced crystallization of amorphous Si thin films. The nickel-induced crystallization was monitored as a function of annealing temperature and time using Raman spectroscopy. Since Raman spectroscopy allows for the numerical quantification of structural components, the incubation time and the crystallization rates were estimated as functions of the annealing temperature. The spatial locations of a nickel-based species, probably NiSi2, were investigated using X-ray photoelectron spectrometry. The formed NiSi2 seeds appeared to accelerate the crystallization kinetics in amorphous Si thin films deposited onto glass substrates. The ramifications of the atomic layer deposition are discussed with regard to large-panel displays, with special emphasis on the sophisticated control of the catalytic elements, especially nickel.

  14. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  15. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  16. Selective wet etch of a TaN metal gate with an amorphous-silicon hard mask

    NASA Astrophysics Data System (ADS)

    Yongliang, Li; Qiuxia, Xu

    2010-11-01

    The appropriate wet etch process for the selective removal of TaN on the HfSiON dielectric with an amorphous-silicon (a-Si) hardmask is presented. SC1 (NH4OH: H2O2: H2O), which can achieve reasonable etch rates for metal gates and very high selectivity to high-k dielectrics and hardmask materials, is chosen as the TaN etchant. Compared with the photoresist mask and the tetraethyl orthosilicate (TEOS) hardmask, the a-Si hardmask is a better choice to achieve selective removal of TaN on the HfSiON dielectric because it is impervious to the SC1 etchant and can be readily etched with NH4OH solution without attacking the TaN and the HfSiON film. In addition, the surface of the HfSiON dielectric is smooth after the wet etching of the TaN metal gate and a-Si hardmask removal, which could prevent device performance degradation. Therefore, the wet etching of TaN with the a-Si hardmask can be applied to dual metal gate integration for the selective removal of the first TaN metal gate deposition.

  17. Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal

    NASA Astrophysics Data System (ADS)

    Homer, Eric R.; Rodney, David; Schuh, Christopher A.

    2010-02-01

    Shear transformation zone (STZ) dynamics simulations, which are based on the kinetic Monte Carlo algorithm, are used to model the mechanical response of amorphous metals and provide insight into the collective aspects of the microscopic events underlying deformation. The present analysis details the activated states of STZs in such a model, as well as the statistics of their activation and how these are affected by imposed conditions of stress and temperature. The analysis sheds light on the spatial and temporal correlations between the individual STZ activations that lead to different macroscopic modes of deformation. Three basic STZ correlation behaviors are observed: uncorrelated activity, nearest-neighbor correlation, and self-reactivating STZs. These three behaviors correspond well with the macroscopic deformation modes of homogeneous flow, inhomogeneous deformation, and elastic behavior, respectively. The effect of pre-existing stresses in the simulation cell is also studied and found to have a homogenizing effect on STZ correlations, suppressing the tendency for localization.

  18. Advanced high-k gate dielectric amorphous LaGdO3 gated metal-oxide-semiconductor devices with sub-nanometer equivalent oxide thickness

    NASA Astrophysics Data System (ADS)

    Pavunny, S. P.; Misra, P.; Thomas, R.; Kumar, A.; Schubert, J.; Scott, J. F.; Katiyar, R. S.

    2013-05-01

    Careful selection of pulsed laser deposition conditions was executed to achieve sub-nanometer EOT (equivalent oxide thickness) in amorphous LaGdO3 based high-k/metal gate stacks. The lowest EOTs attained were ˜5.4 Å and 8.4 Å with and without quantum mechanical correction, respectively. The electrical measurements yielded a high permittivity of 20.5 ± 2.4, a thin bottom interfacial layer of thickness 4.5 ± 1 Å, and interface (cm-2 eV-1) and fixed (cm-2) charge densities of ˜1012. Analysis of temperature dependent leakage currents revealed that gate injection current was dominated by Schottky emission below 1.2 MV/cm and quantum mechanical tunneling above this field. The physical origin of substrate injection was found to be a combination of Schottky emission and trap assisted tunneling.

  19. Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators

    NASA Astrophysics Data System (ADS)

    Gostimirovic, Dusan; Ye, Winnie N.

    2016-03-01

    For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.

  20. The effect of environment on the fatigue behavior of the amorphous metal, zirconium(41.2)titanium(13.8)copper(12.5)nickel(10)beryllium(22.5)

    NASA Astrophysics Data System (ADS)

    Schroeder, Valeska

    Electrochemical and mechanical experiments were conducted to analyze the environmentally influenced fatigue and fracture behavior of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be 22.5 (at%), This study was motivated by a scientific interest in the mechanisms of fatigue crack propagation in an amorphous metal, and by a practical interest in the use of this amorphous metal in applications that take advantage of its unique properties, including high specific strength, large elastic strains and low damping. The objective of this work was to determine the rate and mechanism of fatigue-crack growth in this zirconium-based amorphous metal in an aggressive environment. To meet this objective, the synergism between mechanical loading and chemical environment was investigated experimentally. Specifically, fatigue crack propagation behavior was investigated at a range of stress intensities in representative service environments: ambient air, de-ionized water, and aerated aqueous sodium chloride solution. Based on these fatigue experiments, it was apparent that although water minimally increased growth rates compared to behavior in air, aerated 0.5 M sodium chloride solution dramatically increased growth rates by over two orders of magnitude near the fatigue threshold. In addition, values of crack velocity under sustained load (stress-corrosion) conditions in sodium chloride solution were comparable to crack-growth rates under cyclic loading in the same solution. Moreover, the effects of potential, concentration, stress intensity, anion type, and aeration on fatigue-crack growth, suggested that crack growth in sodium chloride solution was driven by a strain-assisted anodic reaction at the crack tip. Furthermore, the rate determining step appeared to differ near the fatigue threshold compared to that at higher stress intensities.

  1. Crystallization in Fe- and Co-Based Amorphous Alloys Studied by In-Situ X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Zhang, L. J.; Yu, P. F.; Cheng, H.; Zhang, M. D.; Liu, D. J.; Zhou, Z.; Jin, Q.; Liaw, P. K.; Li, G.; Liu, R. P.

    2016-12-01

    The amorphous alloys, Fe80Si20, Fe78Si9B13, and Fe4Co67Mo1.5Si16.5B11, were prepared by the spinning method in pure argon. The crystallization behaviors of the three amorphous alloys were researched by in-situ X-ray diffraction (XRD), and the crystallization activation energy was calculated, based on the results of differential scanning calorimetry. The crystallization mechanism of the Fe- and Co-based alloys was analyzed, based on the experimental data. The transformation kinetics was described in terms of Johnson-Mehl-Avrami kinetics, except that the Avrami exponent of the Fe78Si9B13 amorphous alloy annealed at 753 K (480 °C) was 4.12; the obtained values for the overall Avrami exponents of the other three amorphous alloys were below 1, as usually found for the Fe-Si amorphous alloys.

  2. Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Wang, Qingji; Jia, Weishang; Chen, Shulin; Gao, Peng; Li, Jingze

    2017-02-01

    Lithium metal with high theoretical capacity (3860 mAh/g) and low operational voltage (-3.04 V vs. standard hydrogen electrode) reflects to be one of the most high energy density anodes for energy storage devices. While, its high chemical activity to continuously react with electrolytes causing low coulombic efficiency and formation of lithium dendrites leading safety concern limits practical applications. To conquer these challenges, amorphous Li3PO4 thin films with thickness of 0-200 nm are directly coated on the surface of Li metal foil via magnetron sputtering. The as-prepared Li3PO4 has almost insulated property with electronic conductivity of 1.4 × 10-10 S/cm and ionic conductivity of 2.8 × 10-8 S/cm. The conformal coating layer Li3PO4 can successfully suppress the lithium dendrites growth and improve its life span. The remarkable improvements of the Li3PO4-coated Li electrodes are mainly attributed to high chemical stability as well as amorphous nature of Li3PO4, which leads layer-by-layer growth Li film rather than islands form dendrites.

  3. Surface oxidation studies of rare earth--transition metal amorphous magnetic films

    SciTech Connect

    Shen, D.F.; Yu, X.Y. ); Shan, Z.S. )

    1990-05-01

    Gd-Tb-Fe amorphous films were prepared in an rf sputtering system. Torque measurements were performed systematically on samples which were as-deposited or annealed at 160 {degree}C up to 98 h in air. The torque curves showed additional peaks near 0{degree} and 180{degree}, which increased in amplitude with annealing time. The origin of the anomalous torque curves was investigated with computer simulation, Auger analysis, Kerr rotation and magnetization measurements, and chemical etching. It is concluded that the additional peaks on the torque curve arise from the surface oxidation layer which can be characterized with parameters determined by the computer simulation.

  4. Connecting defects and amorphization in UiO-66 and MIL-140 metal-organic frameworks: a combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas D.; Todorova, Tanya K.; Baxter, Emma F.; Reid, David G.; Gervais, Christel; Bueken, Bart; Van de Voorde, B.; De Vos, Dirk; Keen, David A.; Mellot-Draznieks, Caroline

    The mechanism and products of the structural collapse of the metal-organic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphization to proceed by the breaking of a fraction of metal-ligand bonding in each case. The amorphous products contain inorganic-organic bonding motifs reminiscent of the crystalline phases. Whilst the inorganic Zr6O4(OH)4 clusters of UiO-66 remain intact upon structural collapse, the ZrO backbone of the MIL-140 frameworks undergoes substantial distortion. Density functional theory calculations have been performed to investigate defective models of MIL-140B and show, through comparison of calculated and experimental 13C NMR spectra, that amorphization and defects in the materials are linked.

  5. Examination of Galvanic Action between Fe-Based Bulk Metallic Glass and Crystalline Alloys

    NASA Astrophysics Data System (ADS)

    Ha, Hung M.; Payer, Joe H.

    2009-06-01

    Fe-based bulk metallic glasses (amorphous metals) have been developed, and several compositions are shown to have excellent corrosion resistance in chloride solutions. Further, thermal-spray amorphous metals are being developed for use as a barrier coating layer, to protect substrate materials from corrosion. Galvanic action between dissimilar metals and the coating/substrate for the amorphous-alloy coatings is of practical interest for a number of applications. The mixed-potential theory provides a useful approach for examining the corrosion behavior of the component materials in the galvanic couple and is applied in this study. Galvanic action was studied for an Fe-based structurally amorphous metal (SAM) 1651 and several crystalline alloys that included 1018 C-steel, stainless steel (SS) 316L, and alloy 22. Anodic and cathodic polarization curves of each of the metals were measured by potentiodynamic polarization. Based on the mixed-potential theory, the behavior of the component materials in a galvanic cell was predicted. The predictions are compared to the measured behavior of galvanic couples with the crystalline alloys.

  6. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders

    NASA Astrophysics Data System (ADS)

    He, Jinghua; Wang, Wei; Wang, Aimin; Guan, Jianguo

    2012-09-01

    Fe74Ni3Si13Cr6W4 amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 °C or more are composed of lots of ultra-fine α-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 °C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 °C. Thus the powder samples annealed at 650 °C show optimal reflection loss under -10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T.

  7. Polarized electroabsorption spectra and light soaking of solar cells based on hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Wang, Qi; Schiff, E. A.; Guha, S.; Yang, J.

    1998-03-01

    We present grazing-incidence measurements of polarized electroabsorption spectra in p-i-n solar cells based on hydrogenated amorphous silicon (a-Si:H). We find a significantly stronger polarization dependence in the present measurements compared with earlier work based on electroabsorption detected using coplanar electrodes on a-Si:H thin films. We do not find any significant dependence of the polarized electroabsorption upon light soaking, although this effect was found in previous work with coplanar electrodes.

  8. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  9. Modification of semiconductor or metal nanoparticle lattices in amorphous alumina by MeV heavy ions

    NASA Astrophysics Data System (ADS)

    Bogdanović Radović, I.; Buljan, M.; Karlušić, M.; Jerčinović, M.; Dražič, G.; Bernstorff, S.; Boettger, R.

    2016-09-01

    In the present work we investigate effects of MeV heavy ions (from 0.4 MeV Xe to 15 MeV Si) on regularly ordered nanoparticle (NP) lattices embedded in amorphous alumina matrix. These nanostructures were produced by self-assembling growth using magnetron-sputtering deposition. From grazing incidence small-angle x-ray scattering measurements we have found that the used MeV heavy ions do not change the NP sizes, shapes or distances among them. However, ions cause a tilt of the entire NP lattice in the direction parallel to the surface. The tilt angle depends on the incident ion energy, type and the applied fluence and a nearly linear increase of the tilt angle with the ion fluence and irradiation angle was found. This way, MeV heavy ion irradiation can be used to design custom-made NP lattices. In addition, grazing incidence small-angle x-ray scattering can be effectively used as a method for the determination of material redistribution/shift caused by the ion hammering effect. For the first time, the deformation yield in amorphous alumina was determined for irradiation performed at the room temperature.

  10. Preface: Proceedings of the 13th Conference on Liquid and Amorphous Metals (LAM13) (Ekaterinburg, Russia, 8 14 July 2007)

    NASA Astrophysics Data System (ADS)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy

    2008-03-01

    The most recent developments in the field of liquid and amorphous metals and alloys are regularly updated through two complementary international conferences: the liquid and amorphous metals conference (LAM) and the rapidly quenched materials (RQ) conference. The first series of conferences started as LM1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semiconductors, quasicrystals etc, are also accepted. The conference tradition strongly encourages participation from junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and the Ural State Pedagogical University (USPU), and held from 8-14 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). Two hundred and forty two active participants and about 60 guest participants from 20 countries attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale oral reports (25 min), and brief oral reports (15 min). The program included ten sessions, ranging from purely theoretical subjects to the technological application of molten and amorphous alloys. The following sessions took place: A: Electronic structure and transport, magnetic properties; B: Phase transitions; C: Structure; D: Atomic dynamics and transport; E: Thermodynamics; F: Modelling

  11. Acid-base characteristics of bromophenol blue-citrate buffer systems in the amorphous state.

    PubMed

    Li, Jinjiang; Chatterjee, Koustuv; Medek, Ales; Shalaev, Evgenyi; Zografi, George

    2004-03-01

    In this study, we have examined the acid-base characteristics of various citrate buffer systems alone and in the presence of the pH indicator dye, bromophenol blue, in aqueous solution, and after lyophilization to produce amorphous material. Fourier transform Raman and solid-state nuclear magnetic resonance spectroscopy have been used to monitor the ratio of ionized to un-ionized citric acid under various conditions, as a function of initial pH in the range of 2.65-4.28. Ultraviolet-visible spectrophotometry was used to probe the extent of proton transfer of bromophenol blue in the citrate buffer systems in solution and the amorphous state. Spectroscopic studies indicated greater ionization of citric acid and bromophenol blue in solution and the solid state with increasing initial solution pH, as expected. Fourier transform Raman measurements indicated the same ratio of ionized to un-ionized citrate species in solution, frozen solution, and the amorphous state. It is shown that the ratio of species at any particular initial pH is primarily determined by the amount of sodium ion present so as to maintain electroneutrality and not necessarily to the fact that pH and pK(a) remain unchanged during freezing and freeze drying. Indeed, for bromophenol blue, the relative ultraviolet-visible intensities for ionized and un-ionized species in the amorphous sample were different from those in solution indicating that the extent of protonation of bromophenol blue was significantly lower in the solid samples. It is concluded that under certain conditions there can be significant differences in the apparent hydrogen activity of molecules in amorphous systems. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  12. A MHO-based magnetic hysteresis model for amorphous materials

    NASA Astrophysics Data System (ADS)

    Ma, Lianwei; Shen, Yu; Li, Jinrong; Zhao, Xinlong

    2014-12-01

    A magnetic hysteretic operator (MHO) is proposed in this paper. Based on the constructed MHO, the input space of neural networks is expanded from one-dimension to two-dimension using the expanded space method so that the one-to-multiple mapping of magnetic hysteresis is transformed into one-to-one mapping. Based on the expanded input space, a neural network is employed to identify magnetic hysteresis. The result of an experimental example suggests the proposed approach is effective.

  13. Friction and surface chemistry of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  14. JOINING OF MOLYBDENUM DISILICIDE TO STAINLESS STEEL USING AMORPHOUS METAL BRAZES-RESIDUAL STRESS ANALYSIS

    SciTech Connect

    VAIDYA, RAJENDRA U; KAUTZ, DOUGLAS D.; GALLEGOS, DAVID E.

    2007-01-30

    Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L jOints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS{trademark} 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainiess steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses In the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze).

  15. Graphene as a transparent electrode for amorphous silicon-based solar cells

    SciTech Connect

    Vaianella, F. Rosolen, G.; Maes, B.

    2015-06-28

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  16. Large Barkhausen discontinuities in Co-based amorphous wires with negative magnetostriction

    SciTech Connect

    Yamasaki, J.; Humphrey, F.B.; Mohri, K.; Kawamura, H.; Takamure, H.; Maelmhaell, R.

    1988-04-15

    Magnetic properties, such as domain patterns and anisotropy, were measured for negative magnetostrictive Co-Si-B amorphous wires exhibiting large Barkhausen discontinuities and the results are compared to those of Fe-Si-B wires with positive magnetostriction. The Co-based wire was found to have a bamboolike domain structure at the wire surface. It was also shown that the amorphous wires prepared by the in-water quenching technique store tensile stress in the radial direction. The magnetostrictive anisotropy due to residual stress will produce an axial component of magnetization in conjunction with the two-dimensional geometry of wires making both Co- and Fe-based wires exhibit large Barkhausen discontinuities along the axis of the wire.

  17. Permanent optical doping of amorphous metal oxide semiconductors by deep ultraviolet irradiation at room temperature

    SciTech Connect

    Seo, Hyungtak; Cho, Young-Je; Bobade, Santosh M.; Park, Kyoung-Youn; Choi, Duck-Kyun; Kim, Jinwoo; Lee, Jaegab

    2010-05-31

    We report an investigation of two photon ultraviolet (UV) irradiation induced permanent n-type doping of amorphous InGaZnO (a-IGZO) at room temperature. The photoinduced excess electrons were donated to change the Fermi-level to a conduction band edge under the UV irradiation, owing to the hole scavenging process at the oxide interface. The use of optically n-doped a-IGZO channel increased the carrier density to approx10{sup 18} cm{sup -3} from the background level of 10{sup 16} cm{sup -3}, as well as the comprehensive enhancement upon UV irradiation of a-IGZO thin film transistor parameters, such as an on-off current ratio at approx10{sup 8} and field-effect mobility at 22.7 cm{sup 2}/V s.

  18. Influence of laser irradiation on change properties of bulk amorphous Zr-Pd metallic alloys

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.; Yakovlev, A. V.; Pluzhnikova, T. N.; Shlikova, A. A.; Berezner, A. D.

    2017-01-01

    We study the morphological features of laser irradiation zones formed on the surface of the bulk metallic glasses. We use the nanoindentation method for estimation alloys properties caused by impulse heating during irradiation.

  19. SYNTHESIS AND PERFORMANCE OF FE-BASED AMORPHOUS ALLOYS FOR NUCLEAR WASTE REPOSITORY APPLICATIONS

    SciTech Connect

    Kaufman, L; Perepezko, J; Hildal, K

    2007-02-08

    In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s that exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. Moreover, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys with increased cross-section for thermal neutron capture will be outlined to demonstrate that through careful design of alloy composition it is possible to tailor the material properties of the thermally spray-formed amorphous coating to accommodate the challenges anticipated in typical nuclear waste storage applications over tens of thousands of years in a variety of corrosive environments.

  20. Anti-biofouling function of amorphous nano-Ta2O5 coating for VO2-based intelligent windows.

    PubMed

    Li, Jinhua; Guo, Geyong; Wang, Jiaxing; Zhou, Huaijuan; Shen, Hao; Yeung, Kelvin W K

    2017-04-28

    From environmental and health perspectives, the acquisition of a surface anti-biofouling property holds important significance for the usability of VO2 intelligent windows. Herein, we firstly deposited amorphous Ta2O5 nanoparticles on VO2 film by the magnetron sputtering method. It was found that the amorphous nano-Ta2O5 coating possessed a favorable anti-biofouling capability against Pseudomonas aeruginosa as an environmental microorganism model, behind which lay the mechanism that the amorphous nano-Ta2O5 could interrupt the microbial membrane electron transport chain and significantly elevate the intracellular reactive oxygen species (ROS) level. A plausible relationship was established between the anti-biofouling activity and physicochemical nature of amorphous Ta2O5 nanoparticles from the perspective of defect chemistry. ROS-induced oxidative damage gave rise to microbial viability loss. In addition, the amorphous nano-Ta2O5 coating can endow VO2 with favorable cytocompatibility with human skin fibroblasts. This study may provide new insights into understanding the anti-biofouling and antimicrobial actions of amorphous transition metal oxide nanoparticles, which is conducive to expanding their potential applications in environmental fields.

  1. Anti-biofouling function of amorphous nano-Ta2O5 coating for VO2-based intelligent windows

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Guo, Geyong; Wang, Jiaxing; Zhou, Huaijuan; Shen, Hao; Yeung, Kelvin W. K.

    2017-04-01

    From environmental and health perspectives, the acquisition of a surface anti-biofouling property holds important significance for the usability of VO2 intelligent windows. Herein, we firstly deposited amorphous Ta2O5 nanoparticles on VO2 film by the magnetron sputtering method. It was found that the amorphous nano-Ta2O5 coating possessed a favorable anti-biofouling capability against Pseudomonas aeruginosa as an environmental microorganism model, behind which lay the mechanism that the amorphous nano-Ta2O5 could interrupt the microbial membrane electron transport chain and significantly elevate the intracellular reactive oxygen species (ROS) level. A plausible relationship was established between the anti-biofouling activity and physicochemical nature of amorphous Ta2O5 nanoparticles from the perspective of defect chemistry. ROS-induced oxidative damage gave rise to microbial viability loss. In addition, the amorphous nano-Ta2O5 coating can endow VO2 with favorable cytocompatibility with human skin fibroblasts. This study may provide new insights into understanding the anti-biofouling and antimicrobial actions of amorphous transition metal oxide nanoparticles, which is conducive to expanding their potential applications in environmental fields.

  2. An alternative system for mycotoxin detection based on amorphous silicon sensors

    NASA Astrophysics Data System (ADS)

    Caputo, D.; de Cesare, G.; De Rossi, P.; Fanelli, C.; Nascetti, A.; Ricelli, A.; Scipinotti, R.

    2007-05-01

    In this work we investigate, for the first time, the performances of a system based on hydrogenated amorphous silicon photosensors for the detection of Ochratoxin A. The sensor is a n-type/intrinsic/p-type amorphous silicon stacked structure deposited on a glass substrate. The mycotoxin is deposited on a thin layer chromatographic plate and aligned with the sensor. An ultraviolet radiation excites the ochratoxin A, whose fluorescence produces a photocurrent in the sensor. The photocurrent value is proportional to the deposited mycotoxin quantity. An excellent linearity of the detector response over more than two orders of magnitude of ochratoxin A amount is observed. The minimum detected mycotoxin quantity is equal to 0.1ng, suggesting that the presented detection system could be a good candidate to perform rapid and analytical ochratoxin A analysis in different kind of samples.

  3. A New Approach to the Computer Modeling of Amorphous Nanoporous Structures of Semiconducting and Metallic Materials: A Review

    PubMed Central

    Romero, Cristina; Noyola, Juan C.; Santiago, Ulises; Valladares, Renela M.; Valladares, Alexander; Valladares, Ariel A.

    2010-01-01

    We review our approach to the generation of nanoporous materials, both semiconducting and metallic, which leads to the existence of nanopores within the bulk structure. This method, which we have named as the expanding lattice method, is a novel transferable approach which consists first of constructing crystalline supercells with a large number of atoms and a density close to the real value and then lowering the density by increasing the volume. The resulting supercells are subjected to either ab initio or parameterized—Tersoff-based—molecular dynamics processes at various temperatures, all below the corresponding bulk melting points, followed by geometry relaxations. The resulting samples are essentially amorphous and display pores along some of the “crystallographic” directions without the need of incorporating ad hoc semiconducting atomic structural elements such as graphene-like sheets and/or chain-like patterns (reconstructive simulations) or of reproducing the experimental processes (mimetic simulations). We report radial (pair) distribution functions, nanoporous structures of C and Si, and some computational predictions for their vibrational density of states. We present numerical estimates and discuss possible applications of semiconducting materials for hydrogen storage in potential fuel tanks. Nanopore structures for metallic elements like Al and Au also obtained through the expanding lattice method are reported.

  4. Semiconductor to metallic transition in bulk accumulated amorphous indium-gallium-zinc-oxide dual gate thin-film transistor

    SciTech Connect

    Chun, Minkyu; Chowdhury, Md Delwar Hossain; Jang, Jin

    2015-05-15

    We investigated the effects of top gate voltage (V{sub TG}) and temperature (in the range of 25 to 70 {sup o}C) on dual-gate (DG) back-channel-etched (BCE) amorphous-indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) characteristics. The increment of V{sub TG} from -20V to +20V, decreases the threshold voltage (V{sub TH}) from 19.6V to 3.8V and increases the electron density to 8.8 x 10{sup 18}cm{sup −3}. Temperature dependent field-effect mobility in saturation regime, extracted from bottom gate sweep, show a critical dependency on V{sub TG}. At V{sub TG} of 20V, the mobility decreases from 19.1 to 15.4 cm{sup 2}/V ⋅ s with increasing temperature, showing a metallic conduction. On the other hand, at V{sub TG} of - 20V, the mobility increases from 6.4 to 7.5cm{sup 2}/V ⋅ s with increasing temperature. Since the top gate bias controls the position of Fermi level, the temperature dependent mobility shows metallic conduction when the Fermi level is above the conduction band edge, by applying high positive bias to the top gate.

  5. UV-visible spectroscopic analysis of electrical properties in alkali metal-doped amorphous zinc tin oxide thin-film transistors.

    PubMed

    Lim, Keon-Hee; Kim, Kyongjun; Kim, Seonjo; Park, Si Yun; Kim, Hyungjun; Kim, Youn Sang

    2013-06-04

    Solution-processed and alkali metals, such as Li and Na, are introduced in doped amorphous zinc tin oxide (ZTO) semiconductor TFTs, which show better electrical performance, such as improved field effect mobility, than intrinsic amorphous ZTO semiconductor TFTs. Furthermore, by using spectroscopic UV-visible analysis we propose a comprehensive technique for monitoring the improved electrical performance induced by alkali metal doping in terms of the change in optical properties. The change in the optical bandgap supported by the Burstein-Moss theory could successfully show a mobility increase that is related to interstitial doping of alkali metal in ZTO semiconductors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Granular magnetic composites employing cobalt based amorphous alloys in a polymeric host

    NASA Astrophysics Data System (ADS)

    Göktürk, Halit S.; Fiske, Thomas J.; Kalyon, Dilhan M.

    1993-05-01

    Cobalt based soft ferromagnetic amorphous alloys have unique properties which make these materials good candidates to be employed in magnetic composites prepared by dispersing granules of the alloy in a polymeric host. These alloys have excellent soft magnetic properties which are minimally affected by external stresses induced during the processing operations involved in the preparation of such a composite. Continuous ribbons of a cobalt based amorphous alloy, Metglas 2705M, were cut into large aspect ratio flakes and blended into a polyethylene host in volume fractions ranging from 0.001 to 0.15. The relative magnetic permeability values of the composites increased with increasing volume fraction of the amorphous alloy, reaching a value of 26 at the volume fraction 0.15. The magnetic properties of the composites exhibited two distinguishing features: The permeability values of these composite samples were found to vary only slightly, about 10%, as a function of frequency in the range 10 Hz-100 kHz; the samples remained unsaturated up to magnetic fields of 5800 A/m. These features are believed to be a result of the magnetic properties of the composite being heavily influenced by the polymeric gaps between the magnetic filler particles.

  7. Industrial Environmental Testing of Coupons and Prototype Cylinders Coated With Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, R B; Aprigliano, L F; Day, S D; Lian, T; Farmer, J C

    2007-03-06

    Iron-based amorphous alloys are desirable for many industrial applications due to their dual capacity to resist corrosion and wear. These alloys may also contain a significant amount of boron which makes them candidates for criticality control, for example, in high-level nuclear waste disposition applications. The Fe-based amorphous alloys can be produced in powder form and then deposited using a HVOF thermal spray process on any surface that needs to be protected. For the current testing coupons of 316L stainless steels were coated with the amorphous alloy SAM2X5 and then tested for corrosion resistance in the salt-fog chamber and in other industrial environments. Prototype cylinders were also prepared and environmentally tested. One cylinder was 30-inch diameter, 88-inch long, and 3/8-inch thick. The coating thickness was 0.015 to 0.019-inch thick. The cylinder was in good condition after the test. Along the body of the cylinder only two pinpoint spot sized signs of rust were seen. Test results will be compared with the behavior of witness materials under the same tested conditions.

  8. On the structural-optical properties of Al-containing amorphous Si thin films and the metal-induced crystallization phenomenon

    SciTech Connect

    Zanatta, A. R.; Kordesch, M. E.

    2014-08-21

    Amorphous (a-)Si-based materials always attracted attention of the scientific community, especially after their use in commercial devices like solar cells and thin film transistors in the 1980s. In addition to their technological importance, the study of a-Si-based materials also present some interesting theoretical-practical challenges. Their crystallization as induced by metal species is one example, which is expected to influence the development of electronic-photovoltaic devices. In fact, the amorphous-to-crystalline transformation of the a-SiAl system has been successfully applied to produce solar cells suggesting that further improvements can be achieved. Stimulated by these facts, this work presents a comprehensive study of the a-SiAl system. The samples, with Al contents in the ∼0−15 at. % range, were made in the form of thin films and were characterized by different spectroscopic techniques. The experimental results indicated that: (a) increasing amounts of Al changed both the atomic structure and the optical properties of the samples; (b) thermal annealing induced the crystallization of the samples at temperatures that depend on the Al concentration; and (c) the crystallization process was also influenced by the annealing duration and the structural disorder of the samples. All of these aspects were addressed in view of the existing models of the a-Si crystallization, which were also discussed to some extent. Finally, the ensemble of experimental results suggest an alternative method to produce cost-effective crystalline Si films with tunable structural-optical properties.

  9. High-strength and high-ductility nanostructured and amorphous metallic materials.

    PubMed

    Kou, Hongning; Lu, Jian; Li, Ying

    2014-08-20

    The development of materials with dual properties of high strength and high ductility has been a constant challenge since the foundation of the materials science discipline. The rapid progress of nanotechnology in recent decades has further brought this challenge to a new era. This Research News highlights a few newly developed strategies to optimize advanced nanomaterials and metallic glasses with exceptional dual mechanical properties of high strength and high ductility. A general concept of strain non-localization is presented to describe the role of multiscale (i.e., macroscale, microscale, nanoscale, and atomic scale) heterogeneities in the ductility enhancement of materials reputed to be intrinsically brittle, such as nanostructured metallic materials and bulk metallic glasses. These nanomaterials clearly form a new group of materials that display an extraordinary relationship between yield strength and the uniform elongation with the same chemical composition. Several other examples of nanomaterials such as those reinforced by nanoprecipitates will also be described.

  10. Corrosion behavior of magnetron sputter-deposited (Mo/0.6/Ru/0.4/)82B18 and Mo82B18 amorphous metal films

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Thakoor, A. P.; Khanna, S. K.; Johnson, W. L.

    1984-01-01

    Amorphous metallic films of Mo49Ru33B18 and Mo82B18 have been prepared by magnetron sputtering, and their corrosion behavior was investigated and compared with amorphous liquid-quenched Mo49Ru33B18 and crystalline Mo i acidic and basic solutions. Sputtered Mo49Ru33B18 showed lower corrosion rates compared with liquid-quenched Mo49Ru33B18, owing to the superior surface smoothness and uniformity of the former. Amorphous Mo82B18 showed low corrosion rates in both acidic and basic aqueous solutions. Comparison of the corrosion properties of Mo49Ru33B18 with Mo82B18 and Mo demonstrates the roles of the alloys' constituents. Ru significantly extends the passive region to high-anodic potentials, but, at less-anodic potentials, Mo82B18 has the lowest corrosion rate.

  11. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2013-05-01

    Field induced magnetic anisotropy in two Fe-based amorphous alloys with different saturation induction levels (1.56 T and 1.64 T) was investigated by varying magnetic field strength and annealing temperature and domain images were taken on these samples. Residual strain was evaluated by measuring coercivities of the materials after stress-relief annealing. These results are discussed, clarifying the difference between the two Fe-based amorphous alloys.

  12. Broadband absorption enhancement in amorphous Si solar cells using metal gratings and surface texturing

    NASA Astrophysics Data System (ADS)

    Magdi, Sara; Swillam, Mohamed A.

    2017-02-01

    The efficiencies of thin film amorphous silicon (a-Si) solar cells are restricted by the small thickness required for efficient carrier collection. This thickness limitations result in poor light absorption. In this work, broadband absorption enhancement is theoretically achieved in a-Si solar cells by using nanostructured back electrode along with surface texturing. The back electrode is formed of Au nanogratings and the surface texturing consists of Si nanocones. The results were then compared to random texturing surfaces. Three dimensional finite difference time domain (FDTD) simulations are used to design and optimize the structure. The Au nanogratings achieved absorption enhancement in the long wavelengths due to sunlight coupling to surface plasmon polaritons (SPP) modes. High absorption enhancement was achieved at short wavelengths due to the decreased reflection and enhanced scattering inside the a-Si absorbing layer. Optimizations have been performed to obtain the optimal geometrical parameters for both the nanogratings and the periodic texturing. In addition, an enhancement factor (i.e. absorbed power in nanostructured device/absorbed power in reference device) was calculated to evaluate the enhancement obtained due to the incorporation of each nanostructure.

  13. An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process

    NASA Astrophysics Data System (ADS)

    Yan, Lujiang; Yu, Yugang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Raihan Miah, Mohammad Abu; Liu, Yu-Hsin; Lo, Yu-Hwa

    2017-09-01

    Since impact ionization was observed in semiconductors over half a century ago, avalanche photodiodes (APDs) using impact ionization in a fashion of chain reaction have been the most sensitive semiconductor photodetectors. However, APDs have relatively high excess noise, a limited gain-bandwidth product, and high operation voltage, presenting a need for alternative signal amplification mechanisms of superior properties. As an amplification mechanism, the cycling excitation process (CEP) was recently reported in a silicon p-n junction with subtle control and balance of the impurity levels and profiles. Realizing that CEP effect depends on Auger excitation involving localized states, we made the counter intuitive hypothesis that disordered materials, such as amorphous silicon, with their abundant localized states, can produce strong CEP effects with high gain and speed at low noise, despite their extremely low mobility and large number of defects. Here, we demonstrate an amorphous silicon low noise photodiode with gain-bandwidth product of over 2 THz, based on a very simple structure. This work will impact a wide range of applications involving optical detection because amorphous silicon, as the primary gain medium, is a low-cost, easy-to-process material that can be formed on many kinds of rigid or flexible substrates.

  14. Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    da Silva, D. S.; Côrtes, A. D. S.; Oliveira, M. H.; Motta, E. F.; Viana, G. A.; Mei, P. R.; Marques, F. C.

    2011-08-01

    We report on the investigation of the potential application of different forms of amorphous carbon (a-C and a-C:H) as an antireflective coating for crystalline silicon solar cells. Polymeric-like carbon (PLC) and hydrogenated diamond-like carbon films were deposited by plasma enhanced chemical vapor deposition. Tetrahedral amorphous carbon (ta-C) was deposited by the filtered cathodic vacuum arc technique. Those three different amorphous carbon structures were individually applied as single antireflective coatings on conventional (polished and texturized) p-n junction crystalline silicon solar cells. Due to their optical properties, good results were also obtained for double-layer antireflective coatings based on PLC or ta-C films combined with different materials. The results are compared with a conventional tin dioxide (SnO2) single-layer antireflective coating and zinc sulfide/magnesium fluoride (ZnS/MgF2) double-layer antireflective coatings. An increase of 23.7% in the short-circuit current density, Jsc, was obtained using PLC as an antireflective coating and 31.7% was achieved using a double-layer of PLC with a layer of magnesium fluoride (MgF2). An additional increase of 10.8% was obtained in texturized silicon, representing a total increase (texturization + double-layer) of about 40% in the short-circuit current density. The potential use of these materials are critically addressed considering their refractive index, optical bandgap, absorption coefficient, hardness, chemical inertness, and mechanical stability.

  15. Irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Kim, Il-Hyun; Motta, Arthur T.; Ulmer, Christopher J.; Kirk, Marquis A.; Ryan, Edward A.; Baldo, Peter M.

    2015-12-01

    An in situ ion-irradiation study, simultaneously examined using transmission electron microscopy, was performed to investigate irradiation-induced disordering and amorphization of Al3Ti-based intermetallic compounds. Thin foil samples of two crystalline structures: D022-structured Al3Ti and L12-structured (Al,Cr)3Ti were irradiated using 1.0 MeV Kr ions at a temperature range from 40 K to 573 K to doses up to 4.06 × 1015 ions/cm2. The results showed that both the compounds underwent an order-disorder transformation under irradiation, where both Al3Ti and (Al,Cr)3Ti ordered structures were fully transformed to the disordered face-centered cubic (FCC) structure except at the highest irradiation temperature of 573 K. A slightly higher irradiation dose was required for order-disorder transformation in case of Al3Ti as compared to (Al,Cr)3Ti at a given temperature. However, their amorphization resistances were different: while the disordered FCC (Al,Cr)3Ti amorphized at the irradiation dose of 6.25 × 1014 ions/cm2 (0.92 dpa) at 40 K and 100 K, the Al3Ti compound with the same disordered FCC structure maintained crystallinity up to 4.06 × 1015 ions/cm2 (5.62 dpa) at 40 K. The critical temperature for amorphization of (Al,Cr)3Ti under Kr ion irradiation is likely between 100 K and room temperature and the critical temperature for disordering between room temperature and 573 K.

  16. Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate

    SciTech Connect

    Palneedi, Haribabu; Maurya, Deepam; Priya, Shashank; Kim, Gi-Yeop; Choi, Si-Young; Kang, Suk-Joong L.; Kim, Kwang-Ho; Ryu, Jungho

    2015-07-06

    A highly dense, 4 μm-thick Pb(Zr,Ti)O{sub 3} (PZT) film is deposited on amorphous magnetostrictive Metglas foil (FeBSi) by granule spray in vacuum process at room temperature, followed by its localized annealing with a continuous-wave 560 nm ytterbium fiber laser radiation. This longer-wavelength laser radiation is able to anneal the whole of thick PZT film layer without any deteriorative effects, such as chemical reaction and/or atomic diffusion, at the interface and crystallization of amorphous Metglas substrate. Greatly enhanced dielectric and ferroelectric properties of the annealed PZT are attributed to its better crystallinity and grain growth induced by laser irradiation. As a result, a colossal off-resonance magnetoelectric (ME) voltage coefficient that is two orders of magnitude larger than previously reported output from PZT/Metglas film-composites is achieved. The present work addresses the problems involved in the fabrication of PZT/Metglas film-composites and opens up emerging possibilities in employing piezoelectric materials with low thermal budget substrates (suitable for integrated electronics) and designing laminate composites for ME based devices.

  17. Similarities in the Cp/T3 peaks in amorphous and crystalline metals.

    PubMed

    Safarik, D J; Schwarz, R B; Hundley, M F

    2006-05-19

    A low-temperature peak in C(p)/T(3) vs is ubiquitous to glasses. It arises from an abundance of low-frequency vibrations, the origin of which remains unclear. A comparable C(p)/T(3) vs peak is observed in crystals due to the dispersion of acoustic phonons and/or the excitation of optical phonons. We compared the C(p)/T(3) vs peaks in metallic and oxide glasses to elemental crystals by analyzing specific heat, phonon density of states, and elastic constant data. We observe no clear distinction in the peak temperature or amplitude between metallic glasses and crystals. Surprisingly, the peak is larger in single crystal Pd(40)Cu(40)P(20) than in glassy Pd(40)Cu(40)P(20).

  18. The corrosion resistance and neutron-absorbing properties of coatings based on amorphous alloys

    NASA Astrophysics Data System (ADS)

    Sevryukov, O. N.; Polyansky, A. A.

    2016-04-01

    The object of the present study was the corrosion-resistant amorphizing alloys with an increased content of boron for cladding the surface of metals, rapidly quenched alloys without boron for protective coatings on a high-boron cladding layer, as well as steel samples with a protective coating with a high content of boron and without boron. The aim of the work is to investigate the corrosion resistance of a coating in water at the temperature of 40 °C in conditions of an open access of oxygen for 1000 h, as well as the features of the microstructure of clad samples before and after the corrosion tests. New data on the corrosion resistance of Cr18Ni10Ti steel samples with a protective layer from a rapidly quenched alloy Ni-19Cr-10Si (in wt.%) on a high-boron coating have been obtained.

  19. Dark current in multilayer stabilized amorphous selenium based photoconductive x-ray detectors

    SciTech Connect

    Frey, Joel B.; Belev, George; Kasap, Safa O.; Tousignant, Olivier; Mani, Habib; Laperriere, Luc

    2012-07-01

    We report on experimental results which show that the dark current in n-i-p structured, amorphous selenium films is independent of i-layer thickness in samples with consistently thick blocking layers. We have observed, however, a strong dependence on the n-layer thickness and positive contact metal chosen. These results indicate that the dominant source of the dark current is carrier injection from the contacts and any contribution from carriers thermally generated in the bulk of the photoconductive layer is negligible. This conclusion is supported by a description of the dark current transients at different applied fields by a model which assumes only carrier emission over a Schottky barrier. This model also predicts that while hole injection is initially dominant, some time after the application of the bias, electron injection may become the dominant source of dark current.

  20. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bullock, J.; Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-01

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n+ and p+ surfaces are passivated with SiO2/a-Si:H and Al2O3/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n+) contacts, with SiO2 thicknesses of ˜1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρc of ˜3 mΩ cm2 and a recombination current density J0c of ˜40 fA/cm2. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p+) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  1. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    DOE PAGES

    Malasi, A.; Taz, H.; Farah, A.; ...

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergentmore » semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.« less

  2. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    PubMed Central

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, B.; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-01-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned. PMID:26670421

  3. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    NASA Astrophysics Data System (ADS)

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, B.; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  4. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    SciTech Connect

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, Benjamin; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  5. Structural modeling of amorphous conducting carbon film

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Somnath; Pati, Swapan K.; Subramanyam, S. V.

    1998-04-01

    Amorphous conducting carbon films are prepared using plasma assisted polymerization process. SEM and TEM shows random aggregate of globular clusters of micron size inside the samples. Electrical measurements indicate a near metallic nature. A tendency of saturation of resistivity at low temperature is observed. From spectroscopic analysis we find some unusual features. Based on these observations a structural model of this carbon is proposed.

  6. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect

    Bullock, J. Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-28

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ∼1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρ{sub c} of ∼3 mΩ cm{sup 2} and a recombination current density J{sub 0c} of ∼40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  7. Low-temperature processed Schottky-gated field-effect transistors based on amorphous gallium-indium-zinc-oxide thin films

    NASA Astrophysics Data System (ADS)

    Lorenz, M.; Lajn, A.; Frenzel, H.; v. Wenckstern, H.; Grundmann, M.; Barquinha, P.; Martins, R.; Fortunato, E.

    2010-12-01

    We have investigated the electrical properties of metal-semiconductor field-effect transistors (MESFET) based on amorphous oxide semiconductor channels. All functional parts of the devices were sputter-deposited at room temperature. The influence on the electrical properties of a 150 °C annealing step of the gallium-indium-zinc-oxide channel is investigated. The MESFET technology offers a simple route for processing of the transistors with excellent electrical properties such as low subthreshold swing of 112 mV/decade, gate sweep voltages of 2.5 V, and channel mobilities up to 15 cm2/V s.

  8. Electrochemical Studies of Passive Film Stability on Fe48Mo14Cr15Y2C15B Amorphous Metal in Seawater at 90oC and 5M CaCl2 at 105oC

    SciTech Connect

    Farmer, J C; Day, S D; Lian, T; Saw, C K; Hailey, P D; Blue, C A; Peters, W; Payer, J H; Perepezko, J H; Hildal, K; Branagan, D J; Buffa, E J; Aprigliano, L

    2007-04-25

    Several Fe-based amorphous metal formulations have been identified that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22 (UNS N06022), based on measurements of breakdown potential and corrosion rate in seawater. Both chromium (Cr) and molybdenum (Mo) provide corrosion resistance, boron (B) enables glass formation, and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Amorphous Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0} (SAM1651) has a low critical cooling rate (CCR) of less than 80 Kelvin per second, due to the addition of yttrium. The low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders produced thus far have had irregular shape, which had made pneumatic conveyance during thermal spray deposition difficult.

  9. Properties of microstructure on amorphous film of rare earth-transition metal alloy for ultrahigh density recording

    NASA Astrophysics Data System (ADS)

    Murakami, Motoyoshi

    2007-05-01

    Controlling the microstructure of amorphous rare earth-transition metal films via the sputtering process was found to be an effective way of controlling their magnetic properties for applications as magneto-optical storage media. This paper describes how the relationship between a TbFeCo film's magnetic properties and its microcolumnar structure depends on the sputtering conditions. An enhancement of electric resistance value was observed for the devices with a constriction columnar width in the 5-20nm range. The measured electrical resistance was over 1.0×10-5Ωm in this case. It is believed that the change of electrical resistance on the thin film is due to fluctuations in the density on the arranged microstructure or constriction of current induced by scattering because the film structure contains impurities. These same impurities are believed to be associated with the restriction of the trapped domain wall's mobility. Furthermore, we observed a significant resistance change subsequent to the application of lower Xe pressure sputtering. This paper also serves as a feasibility study for high-density magneto-optical recording on these media materials.

  10. Variable-range hopping conduction and metal-insulator transition in amorphous RexSi1-x thin films

    NASA Astrophysics Data System (ADS)

    Lisunov, K. G.; Vinzelberg, H.; Arushanov, E.; Schumann, J.

    2011-09-01

    Resistivity, ρ(T), of the amorphous RexSi1-x thin films with x = 0.285-0.351 is investigated in the interval of T ~ 300-0.03 K. At x = 0.285-0.324 the activated behavior of ρ(T) is governed by the Mott and the Shklovskii-Efros variable-range hopping (VRH) conduction mechanisms in different temperature intervals and the three-dimensional regime of the hopping. Between x = 0.328 and 0.351 the activationless dependence of ρ(T) takes place. The critical behavior of the characteristic VRH temperatures and of the Coulomb gap, Δ, pertinent to proximity to the metal-insulator transition at the critical value of xc ≈ 0.327, is observed. The analysis of the critical behavior of Δ yields directly the critical exponent of the dielectric permittivity, η = 2.1 ± 0.2, in agreement with the theoretical prediction, η = 2. On the other hand, the values of the critical exponent of the correlation length ν ~ 0.8-1.1 close to the expected value of unity can be obtained from the analysis of the critical behavior of the VRH characteristic temperatures under an additional assumption of a strong underbarrier scattering of hopping charge carriers in conditions, when the concentration of scattering centers considerably exceeds the concentration of sites involved in the hopping.

  11. Localized surface plasmon-enhanced photoluminescence of amorphous silicon quantum dots through plasmonic subwavelength crossed metallic gratings

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Lin, Ming-Yi; Hsiao, Li-Jen; Choi, Wing-Kit; Lin, Hoang Yan

    2016-04-01

    We investigate experimentally the enhancing effect of plasmonic subwavelength crossed Ag gratings on photoluminescence (PL) from the amorphous silicon quantum dots (a-Si QDs) embedded in a central silicon-rich SiO x film of the Ag/SiO x :a-Si QDs/Ag sandwich nanostructures. The use of the crossed Ag grating structure as the top layer in the sandwich nanostructures results in a 2-fold increase in the PL peak intensity and a 1.34-fold increase in the integrated emission intensity compared with the use of a one-dimensional (1D) Ag grating top layer, and a 1.53-fold peak intensity increase compared with that of a SiO x :a-Si QDs/Ag structure without a Ag top layer. These significant PL enhancements can be attributed to the high light-extraction efficiency of the polarization-independent crossed metallic grating structure, the strong out-coupling of localized surface plasmons (LSPs), and the strong a-Si QD-LSP coupling.

  12. Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data.

    PubMed

    Falk, M L; Langer, J S; Pechenik, L

    2004-07-01

    We extend our earlier shear-transformation-zone theory of amorphous plasticity to include the effects of thermally assisted molecular rearrangements. This version of our theory is a substantial revision and generalization of conventional theories of flow in noncrystalline solids. As in our earlier work, it predicts a dynamic transition between jammed and flowing states at a yield stress. Below that yield stress, it now describes thermally assisted creep. We show that this theory accounts for the experimentally observed strain-rate dependence of the viscosity of metallic glasses, and that it also captures many of the details of the transient stress-strain behavior of those materials during loading. In particular, it explains the apparent onset of superplasticity at sufficiently high stress as a transition between creep at low stresses and plastic flow near the yield stress. We also argue that there are internal inconsistencies in the conventional theories of these deformation processes, and suggest ways in which further experimentation as well as theoretical analysis may lead to better understanding of a broad range of nonequilibrium phenomena.

  13. Development of a low loss magnetic composite utilizing amorphous metal flake. Third semi-annual progress report, 19 September 1979-18 March 1980

    SciTech Connect

    Johnson, L.

    1980-04-01

    The objective of this project is to determine the feasibility of casting amorphous metal ribbon in the shape of a helix with properties suitable for motor applications. The tasks include (1) determination of the casting parameters required to produce a helical ribbon, (2) evaluation of magnetic properties and methods for bonding, and (3) developing methods for patterning a wheel for producing motor slots in as-cast ribbon.

  14. Itinerant magnetic properties of amorphous metallic systems II: Magnetic moment distribution in the Fe-B alloys and the magnetism of amorphous Fe

    NASA Astrophysics Data System (ADS)

    Krompiewski, S.; Krey, U.; Krauss, U.; Ostermeier, H.

    1988-05-01

    For realistic structural models of amorphous Fe 1- xB x with 0.2⩽x⩽0.6 and for the fictitious case of x = 0 (amorphous iron, a-Fe), we calculate the distribution function p( ml) of the local magnetic moments ml by means of a self-consistent itinerant electron approach. Generally, p( ml) is rather broad and agrees with experimental hyperfine field distributions. For x→0 and x > 0.5, even negative moments appear, although overlinem remains positive. Additionally we find that for a-Fe a rather drastic transition from paramagnetic behaviour at densities ρ<ρ c(≈8.3 g/cm 3) to ferromagnetism at ρ > ρ c would happen, if the magnetization could be forced to remain homogeneous. However, if the ml are allowed to relax to their local values, no such transition happens. Finally, we study the question whether the spread of the local moments is important for the density of states and find that this is the case except for 0.2⩽x⩽0.35.

  15. Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.

  16. Omni-directional selective shielding material based on amorphous glass coated microwires

    NASA Astrophysics Data System (ADS)

    Ababei, G.; Chiriac, H.; David, V.; Dafinescu, V.; Nica, I.

    2012-01-01

    The shielding effectiveness of the omni-directional selective shielding material based on CoFe-glass coated amorphous wires in 0.8 GHz-3 GHz microwave frequency range is investigated. The measurements were done in a controlled medium using a TEM cell and in the free space using horn antennas, respectively. Experimental results indicate that the composite shielding material can be developed with desired shielding effectiveness and selective absorption of the microwave frequency range by controlling the number of the layers and the length of microwires.

  17. Conditions for a carrier multiplication in amorphous-selenium based photodetector

    SciTech Connect

    Masuzawa, Tomoaki; Kuniyoshi, Shingo; Onishi, Masanori; Kato, Richika; Saito, Ichitaro; Okano, Ken; Yamada, Takatoshi; Koh, Angel T. T.; Chua, Daniel H. C.; Shimosawa, Tatsuo

    2013-02-18

    Amorphous selenium is a promising candidate for high sensitivity photodetector due to its unique carrier multiplication phenomenon. More than 10 carriers can be generated per incident photon, which leads to high photo-conversion efficiency of 1000% that allows real-time imaging in dark ambient. However, application of this effect has been limited to specific devices due to the lack in material characterization. In this article, mechanism of carrier multiplication has been clarified using time-of-flight secondary ion mass spectroscopy and Raman spectroscopy. A prototype photodetector achieved photo conversion efficiency of 4000%, which explains the signal enhancement mechanism in a-Se based photodetector.

  18. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  19. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  20. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  1. Super-cooled and amorphous lipid-based colloidal dispersions for the delivery of phytosterols.

    PubMed

    Ribeiro, H S; Gupta, R; Smith, K W; van Malssen, K F; Popp, A K; Velikov, K P

    2016-07-06

    Super-cooled and amorphous lipid-based colloids are highly desirable delivery systems because of their ability to encapsulate compounds in a soluble or in a non-crystalline state. In this study, we demonstrate the preparation and characterization of super-cooled and amorphous lipid-based nanoscale colloidal dispersions containing high concentrations of phytosterols (PSs). PSs are highly hydrophobic natural bioactive compounds that are known to significantly reduce blood cholesterol levels in humans, but are insoluble in water and are poorly soluble in common lipids such as triacylglycerols (TAGs). Using the ultrahigh pressure homogenization of pre-heated dispersions, followed by temperature quenching, colloidal dispersions with varying concentrations of PSs in the lipid phase are prepared. Long and medium chain TAGs in combination with a non-ionic surfactant are used. The particle size, morphology and stability are analysed by dynamic and static light scattering, electron microscopy, and X-ray diffraction. Rapid temperature quenching enables the formation of stable colloidal dispersions of 10 wt% PSs, more than five times the equilibrium solubility at room temperature. Super-cooled emulsions are formed using liquid TAG, whereas amorphous particles are formed in the case of solid TAG. In both cases, the complete suppression of the crystallization of both PSs and lipids is observed due to the nanoscale confinement. The colloidal dispersions are stable for at least four months. The insights of this work will help understand the colloid formation and particle morphology control in the development of delivery systems for hydrophobic bio-actives such as drugs, cosmeceuticals, nutraceuticals, nutritional and agricultural nanoscale formulations.

  2. Photosensor application of amorphous InZnO-based thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Chou, Yi-Teh; Teng, Li-Feng

    2010-03-01

    Thin film transistor (TFT) device structure with transparent conductive oxide semiconductor is proposed for the photosensor application. The adoption of TFT-based photosensor device also is promising to be integrated with pixel-array circuits in a flat panel display and realize the system-on-panel (SoP) concept. The photosensitive TFT device can be applied to sense the ambient light brightness and then give the feedback to the backlight system adjusting the backlight intensity for the power-saving green displays. In this work, we studied the photosensitivity of amorphous indium zinc oxide (a-IZO) TFT to ultraviolet light. The a-IZO-based semiconductors have been paid much attention due to their uniform amorphous phase and high field-effect carrier mobility characteristics. The obvious threshold voltage shift was observed after light illumination, and exhibited slow recovery while returning to initial status after removing the light source. This mechanism for the photoreaction is well explained by the dynamic equilibrium of charge exchange reaction between O2(g) and O2- in the backchannel region of IZO-based films. An electrical trigger using charge pumping method is used to confirm the proposed mechanism and accelerate photoreaction recoverability for the first time. Using knowledge of photoreaction behavior, an operation scheme of photosensing elements consist of a-IZO TFTs is also demonstrated in this paper.

  3. Comparison of the corrosion behavior of a bulk amorphous metal, Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5}, with its crystallized form

    SciTech Connect

    Schroeder, V.; Gilbert, C.J.; Ritchie, R.O.

    1998-04-14

    Amorphous metals have generated much interest, both in basic research and for structural applications, because of their near-theoretical strength to stiffness ratio and extremely low damping characteristics. In addition, a number of amorphous metals exhibit excellent corrosion resistance, which has been explained in terms of their structural homogeneity. Since amorphous metals are in principle structurally and chemically homogeneous and thus lack any microstructure, such as grain boundaries, which could act as local electrochemically-active sites, many researchers attribute good corrosion resistance to the entire class of amorphous metals. It is this point, whether the amorphous condition itself confers improved corrosion resistance, that the authors examine in the present note.

  4. XRD technique: a way to discriminate structural changes in iron-based amorphous materials [An Alternative Method of Synthesizing Iron-based Amorphous Alloys

    SciTech Connect

    Saw, Cheng K.; Day, Dan; Farmer, Joe C.; Bauer, William

    2008-02-06

    Prevention of corrosion is a vital goal for the Department of Defense when billions of dollars are spent every year. Corrosion resistant materials have applications in all sort of military vehicles, and more importantly in naval vessels and submarines which come in contact with the seawater. It is known that corrosion resistance property can be improved by the used of structurally designed materials in the amorphous state where the atoms are arranged in a non-periodic fashion and specific atoms, tailored to the required properties can be interjected into the matrix for specific application. The XRD techniques reported here is to demonstrate the optimal conditions for characterization of these materials. The samples, which normally contain different compositions of Fe, Cr, B, Mo, Y, Mn, Si and W, are in the form of powders, ribbons and coatings. These results will be compared for the different forms of the sample which appears to correlate to the cooling rate during sample processing. In most cases, the materials are amorphous or amorphous with very small amount of crystallinity. In the ribbon samples for different compositions we observed that the materials are essentially amorphous. In most cases, starting from an amorphous powder sample, the coatings are also observed to be amorphous with a small amount of iron oxide on the surface, probably due to exposure to air.

  5. Disordered electronic and magnetic systems - Transition metal (manganese) and rare earth (gadolinium) doped amorphous group IV semiconductors (carbon, silicon, germanium)

    NASA Astrophysics Data System (ADS)

    Zeng, Li

    2007-12-01

    While the physics of electrical doping of semiconductors has been well understood for decades, magnetic doping and the interactions between the carriers and the magnetic moments in semiconductors are still under active investigation for various applications, such as spintronics and quantum computing. Our systematic studies on transition-metal-doped (TM-doped) and rare-earth-doped (RE-doped) amorphous group IV elemental semiconductors provide unique insight into the rich physics of this type of materials. Our model system is the e-beam coevaporated a-GdxSi1-x films. Magnetron cosputtered a-GdxSi 1-x films, despite having very different film morphology at the 10-nm scale from the e-beam coevaporated films, are demonstrated to possess almost the same physical properties. Cosputtered a-GdxC1-x (:Hy) and Gd ion-implanted ta-C (ta-C1-x:Gd x) films are studied for Gd in different a-C matrices with different sp2/sp 3 ratio. All doped a-C films are on the insulating side of the metal-insulator transition. Very similar to a-Gd xSi1-x films, Gd possesses a large magnetic moment in a-C. The moment-moment and moment-carrier interactions lead to a spin-glass ground state and large negative magnetoresistance (MR) below a crossover temperature T' in both a-Gd xC1-x<(:Hy) and ta-C1-x:Gdx films. A small positive MR is found above T'. Transition metal Mn has always been believed to possess a large local moment in Si or Ge. However, e-beam coevaporated a-MnxSi1-x films are found to show a quenched local moment for Mn concentration as low as x=0.005 and up to x=0.175. All films are purely paramagnetic and have very small saturation moments. Unlike Gd, which provides both carriers and local moment, Mn only provides electrical carriers in a-Si. These results suggest an itinerant non-magnetic Mn states in a-Si; the insulating behavior is a result of the strong structural disorder. This quenching of the local Mn moment has not been predicted by any existing theory. Consistent with the

  6. Amorphous thieno[3,2-b]thiophene and benzothiadiazole based copolymers for organic photovoltaics.

    PubMed

    Lee, Wonho; Cha, Hyojung; Kim, Yu Jin; Jeong, Ji-Eun; Hwang, Sungu; Park, Chan Eon; Woo, Han Young

    2014-11-26

    Three types of amorphous thienothiophene (TT)-benzothiadiazole (BT) based copolymers (PFTTBT) were synthesized by incorporating alkyl-substituted fluorene moieties as a third component in the polymer backbone. Their optical, electrochemical, morphological, and photovoltaic properties were examined by a comparison with those of a crystalline TT-BT derivative (PTTBT14). PTTBT14 was reported to have a high hole mobility (0.26 cm(2)/(V s)) due to the pronounced interchain ordering but poor photovoltaic power conversion efficiency (PCE) of 2.4-2.6% was reported due to excessively strong self-interactions with poor miscibility with fullerene structures. By incorporating fluorene units, the UV-vis spectra showed an increased bandgap (∼1.9 eV) with the disappearance of the packing-originated shoulder peak, and the valence band decreased compared to crystalline PTTBT14. The amorphous PFTTBT polymers showed substantially improved photovoltaic properties compared to PTTBT14, even though they showed poor hole mobility (∼10(-6) cm2/(V s)) and fill factor. The optimal devices were achieved by blending with excess PC71BM (polymer:PC71BM=1:4 by weight), showing little improvement in the thermal and additive treatments. Under simulated solar illumination of AM 1.5 G, the best PCE of 6.6% was achieved for a PFehTTBT:PC71BM device with an open-circuit voltage of 0.92 V, a short-circuit current of 15.1 mA/cm2, and a fill factor of 0.48. These results suggest that it is useful to disrupt partially the interchain organizations of excessively crystalline polymers, enabling fine-control of intermolecular ordering and the morphological properties (i.e., miscibility with fullerene derivatives, etc.) to utilize the advantages of both crystalline and amorphous materials for further improving PCE of polymer solar cells.

  7. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    NASA Astrophysics Data System (ADS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  8. Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls

    SciTech Connect

    Choi, J; Lee, C; Day, D; Wall, M; Saw, C; MoberlyChan, W; Farmer, J; Boussoufl, M; Liu, B; Egbert, H; Branagan, D; D'Amato, A

    2006-11-13

    Spent nuclear fuel contains fissionable materials ({sup 235}U, {sup 239}Pu, {sup 241}Pu, etc.). Neutron multiplication and the potential for criticality are enhanced by the presence of a moderator during cask loading in water, water incursion in accidents conditions during spent fuel storage or transport. To prevent nuclear criticality in spent fuel storage, transportation, and during disposal, neutron-absorbing materials (or neutron poisons, such as borated stainless steel, Boral{trademark}, Metamic{trademark}, Ni-Gd, and others) would have to be applied. The success in demonstrating that the High-Performance Corrosion-Resistant material (HPCRM) can be thermally applied as coating onto base metal to provide for corrosion resistance for many naval applications raises the interest in applying the HPCRM to USDOE/OCRWM spent fuel management program. The fact that the HPCRM relies on the high content of boron to make the material amorphous--an essential property for corrosion resistance--and that the boron has to be homogeneously distributed in the HPCRM qualify the material to be a neutron poison.

  9. Superconducting nanowire single photon detectors based on amorphous superconductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Korzh, Boris; Caloz, Misael; Renema, Jelmer; Warburton, Richard J.; Schönenberger, Christian; Zbinden, Hugo; Bussières, Félix

    2017-05-01

    Superconducting nanowire single photon detectors (SNSPD) made from amorphous superconductors have showed great promise for achieving high fabrication yields, due to the highly uniform nature of the films. We present progress on the development of SNSPD based on amorphous MoSi with a critical temperature of around 5 K, which is ideal for detector operation at temperatures of 1 - 2.5 K, accessible with widely available cryogenic systems. First generation devices have achieved a saturated internal efficiency from visible to near-infrared wavelengths, which is the first requirement for high overall system efficiency. The broadband response has allowed us to make a robust study the energy-current relation in these devices, which defines the current required for a saturated internal detection efficiency for a given incident photon energy. Contrary to previous studies with other material systems, we find a nonlinear energy-current relation, which is an important insight into the detection mechanism in SNSPDs. The latest generation devices have been embedded into an micro-cavity structure in order to increase the system detection efficiency, which has increased to over 65% at 1550 nm. The efficiency is believed to be limited by fabrication imperfections and we present ongoing progress towards improving this characteristic as well as the yield of the devices. Efforts are also being made towards increasing the maximum operating temperature of the devices.

  10. Specific energy yield comparison between crystalline silicon and amorphous silicon based PV modules

    NASA Astrophysics Data System (ADS)

    Ferenczi, Toby; Stern, Omar; Hartung, Marianne; Mueggenburg, Eike; Lynass, Mark; Bernal, Eva; Mayer, Oliver; Zettl, Marcus

    2009-08-01

    As emerging thin-film PV technologies continue to penetrate the market and the number of utility scale installations substantially increase, detailed understanding of the performance of the various PV technologies becomes more important. An accurate database for each technology is essential for precise project planning, energy yield prediction and project financing. However recent publications showed that it is very difficult to get accurate and reliable performance data of theses technologies. This paper evaluates previously reported claims the amorphous silicon based PV modules have a higher annual energy yield compared to crystalline silicon modules relative to their rated performance. In order to acquire a detailed understanding of this effect, outdoor module tests were performed at GE Global Research Center in Munich. In this study we examine closely two of the five reported factors that contribute to enhanced energy yield of amorphous silicon modules. We find evidence to support each of these factors and evaluate their relative significance. We discuss aspects for improvement in how PV modules are sold and identify areas for further study further study.

  11. Field and temperature dependence of magnetization in FeCu-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Crespo, P.; Multigner, M.; Castaño, F. J.; Casero, R.; Hernando, A.; García Escorial, A.; Schultz, L.; Kaul, S. N.

    2000-06-01

    In this paper, the production of FeCu-based FeCuZr amorphous alloys by ball milling is reported. The thermal dependence of magnetization for the (Fe0.5Cu0.5)85Zr15 (at. %) amorphous alloy has been found to show a dramatic field dependence of the kink point of the magnetization. This kink corresponds to a temperature different from the Curie temperature, above 400 K, of the ferromagnetic phase, which, according to spin waves fitting, can be induced by applying external fields. Just above 235 K, the thermoremanence increases sharply, and this feature strongly suggests an increase of the ferromagnetic ordering under zero field heating. Neutron diffraction experiments seem to confirm the enhancement of spin alignment. The thermal expansion above the compensation temperature is proposed to be the origin of the thermoremanence enhancement through the anti-Invar effect as might be explained within the framework of recent ab initio calculations [M. van Schilfgaarde et al., Nature (London) 400, 46 (1999)].

  12. Wear Resistant Amorphous and Nanocomposite Steel Coatings

    SciTech Connect

    Branagan, Daniel James; Swank, William David; Haggard, Delon C; Fincke, James Russell; Sordelet, D.

    2001-10-01

    In this article, amorphous and nanocomposite thermally deposited steel coatings have been formed by using both plasma and high-velocity oxy-fuel (HVOF) spraying techniques. This was accomplished by developing a specialized iron-based composition with a low critical cooling rate (?104 K/s) for metallic glass formation, processing the alloy by inert gas atomization to form micron-sized amorphous spherical powders, and then spraying the classified powder to form coatings. A primarily amorphous structure was formed in the as-sprayed coatings, independent of coating thickness. After a heat treatment above the crystallization temperature (568°C), the structure of the coatings self-assembled (i.e., devitrified) into a multiphase nanocomposite microstructure with 75 to 125 nm grains containing a distribution of 20 nm second-phase grain-boundary precipitates. Vickers microhardness testing revealed that the amorphous coatings were very hard (10.2 to 10.7 GPa), with further increases in hardness after devitrification (11.4 to 12.8 GPa). The wear characteristics of the amorphous and nanocomposite coatings were determined using both two-body pin-on-disk and three-body rubber wheel wet-slurry sand tests. The results indicate that the amorphous and nanocomposite steel coatings are candidates for a wide variety of wear-resistant applications.

  13. Development of an Amorphous Selenium-Based Photodetector Driven by a Diamond Cold Cathode

    PubMed Central

    Masuzawa, Tomoaki; Saito, Ichitaro; Yamada, Takatoshi; Onishi, Masanori; Yamaguchi, Hisato; Suzuki, Yu; Oonuki, Kousuke; Kato, Nanako; Ogawa, Shuichi; Takakuwa, Yuji; Koh, Angel T. T.; Chua, Daniel H. C.; Mori, Yusuke; Shimosawa, Tatsuo; Okano, Ken

    2013-01-01

    Amorphous-selenium (a-Se) based photodetectors are promising candidates for imaging devices, due to their high spatial resolution and response speed, as well as extremely high sensitivity enhanced by an internal carrier multiplication. In addition, a-Se is reported to show sensitivity against wide variety of wavelengths, including visible, UV and X-ray, where a-Se based flat-panel X-ray detector was proposed. In order to develop an ultra high-sensitivity photodetector with a wide detectable wavelength range, a photodetector was fabricated using a-Se photoconductor and a nitrogen-doped diamond cold cathode. In the study, a prototype photodetector has been developed, and its response to visible and ultraviolet light are characterized. PMID:24152932

  14. Self-Climbed Amorphous Carbon Nanotubes Filled with Transition Metal Oxide Nanoparticles for Large Rate and Long Lifespan Anode Materials in Lithium Ion Batteries.

    PubMed

    Li, Shuoyu; Liu, Yuyi; Guo, Peisheng; Wang, Chengxin

    2017-08-16

    A composed material of amorphous carbon nanotubes (ACNTs) and encapsulated transition metal oxide (TMOs) nanoparticles was prepared by a common thermophysics effect, which is named the Marangoni effect, and a simple anneal process. The prepared ropy solution would form a Marangoni convection and climb into the channel of anodic aluminum oxide template (AAO) spontaneously. The ingenious design of the preparation method determined a distinctive structure of TMOs nanoparticles with a size of ∼5 nm and amorphous carbon coated outside full in the ACNTs. Here we prepared the ferric oxide (Fe2O3) nanoparticles and Fe2O3 mixed with manganic oxide (Fe2O3&Mn2O3) nanoparticles encapsulated in ACNTs as two anode materials of lithium ion batteries' the TMOs-filled ACNTs presented an evolutionary electrochemical performance in some respects of highly reversible capacity and excellent cycling stability (880 mA h g(-1) after 150 cycles).

  15. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    PubMed

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations.

  16. Microcavity effects in the photoluminescence of hydrogenated amorphous silicon nitride

    NASA Astrophysics Data System (ADS)

    Serpenguzel, Ali; Aydinli, Atilla; Bek, Alpan

    1998-07-01

    Fabry-Perot microcavities are used for the alteration of photoluminescence in hydrogenated amorphous silicon nitride grown with and without ammonia. The photoluminescence is red-near-infrared for the samples grown without ammonia, and blue-green for the samples grown with ammonia. In the Fabry- Perot microcavities, the amplitude of the photoluminescence is enhanced, while its linewidth is reduced with respect to the bulk hydrogenated amorphous silicon nitride. The microcavity was realized by a metallic back mirror and a hydrogenated amorphous silicon nitride--air or a metallic front mirror. The transmittance, reflectance, and absorbance spectra were also measured and calculated. The calculated spectra agree well with the experimental spectra. The hydrogenated amorphous silicon nitride microcavity has potential for becoming a versatile silicon based optoelectronic device such as a color flat panel display, a resonant cavity enhanced light emitting diode, or a laser.

  17. Reduction of Photoluminescence Quenching by Deuteration of Ytterbium-Doped Amorphous Carbon-Based Photonic Materials.

    PubMed

    Hsu, Hui-Lin; Leong, Keith R; Teng, I-Ju; Halamicek, Michael; Juang, Jenh-Yih; Jian, Sheng-Rui; Qian, Li; Kherani, Nazir P

    2014-08-06

    In situ Yb-doped amorphous carbon thin films were grown on Si substrates at low temperatures (<200 °C) by a simple one-step RF-PEMOCVD system as a potential photonic material for direct integration with Si CMOS back end-of-line processing. Room temperature photoluminescence around 1 µm was observed via direct incorporation of optically active Yb(3+) ions from the selected Yb(fod)₃ metal-organic compound. The partially fluorinated Yb(fod)₃ compound assists the suppression of photoluminescence quenching by substitution of C-H with C-F bonds. A four-fold enhancement of Yb photoluminescence was demonstrated via deuteration of the a-C host. The substrate temperature greatly influences the relative deposition rate of the plasma dissociated metal-organic species, and hence the concentration of the various elements. Yb and F incorporation are promoted at lower substrate temperatures, and suppressed at higher substrate temperatures. O concentration is slightly elevated at higher substrate temperatures. Photoluminescence was limited by the concentration of Yb within the film, the concentration of Yb ions in the +3 state, and the relative amount of quenching due to the various de-excitation pathways associated with the vibrational modes of the host a-C network. The observed wide full-width-at-half-maximum photoluminescence signal is a result of the variety of local bonding environments due to the a-C matrix, and the bonding of the Yb(3+) ions to O and/or F ions as observed in the X-ray photoelectron spectroscopy analyses.

  18. Reduction of Photoluminescence Quenching by Deuteration of Ytterbium-Doped Amorphous Carbon-Based Photonic Materials

    PubMed Central

    Hsu, Hui-Lin; Leong, Keith R.; Teng, I-Ju; Halamicek, Michael; Juang, Jenh-Yih; Jian, Sheng-Rui; Qian, Li; Kherani, Nazir P.

    2014-01-01

    In situ Yb-doped amorphous carbon thin films were grown on Si substrates at low temperatures (<200 °C) by a simple one-step RF-PEMOCVD system as a potential photonic material for direct integration with Si CMOS back end-of-line processing. Room temperature photoluminescence around 1 µm was observed via direct incorporation of optically active Yb3+ ions from the selected Yb(fod)3 metal-organic compound. The partially fluorinated Yb(fod)3 compound assists the suppression of photoluminescence quenching by substitution of C–H with C–F bonds. A four-fold enhancement of Yb photoluminescence was demonstrated via deuteration of the a-C host. The substrate temperature greatly influences the relative deposition rate of the plasma dissociated metal-organic species, and hence the concentration of the various elements. Yb and F incorporation are promoted at lower substrate temperatures, and suppressed at higher substrate temperatures. O concentration is slightly elevated at higher substrate temperatures. Photoluminescence was limited by the concentration of Yb within the film, the concentration of Yb ions in the +3 state, and the relative amount of quenching due to the various de-excitation pathways associated with the vibrational modes of the host a-C network. The observed wide full-width-at-half-maximum photoluminescence signal is a result of the variety of local bonding environments due to the a-C matrix, and the bonding of the Yb3+ ions to O and/or F ions as observed in the X-ray photoelectron spectroscopy analyses. PMID:28788152

  19. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    SciTech Connect

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence (.about.75.degree.) and for relatively short nanoneedle lengths (.about.1 .mu.m). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of .about.1 eV. The reported black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  20. Microprocessor-based controller for automatic amorphous silicon solar cells characterization

    SciTech Connect

    Cibils, R.M.; Buitrago, R.H.

    1984-07-01

    This work describes an innovation of traditional systems used in C--V and G--V curve measurements. Although this system has been specifically developed to be used in the characterization of hydrogenated amorphous silicon (a-Si:H), it is useful when information about conductance (G) or capacitance (C) frequency dependence is needed. The highlights of the new system are signal heterodination and microprocessor-based digital control over current range and modulation frequency. The outstanding advantages of this system are significant reduction of operation time and more reliable measurements. Additionally, there is no waste of computer time in the control of data-acquisition operations. The system has an excellent signal-to-noise ratio, a nearly infinite line signal rejection, and a broad frequency range of operation (20 to 10/sup 5/ Hz).

  1. Erbium-Doped Amorphous Carbon-Based Thin Films: A Photonic Material Prepared by Low-Temperature RF-PEMOCVD

    PubMed Central

    Hsu, Hui-Lin; Leong, Keith R.; Teng, I-Ju; Halamicek, Michael; Juang, Jenh-Yih; Jian, Sheng-Rui; Qian, Li; Kherani, Nazir P.

    2014-01-01

    The integration of photonic materials into CMOS processing involves the use of new materials. A simple one-step metal-organic radio frequency plasma enhanced chemical vapor deposition system (RF-PEMOCVD) was deployed to grow erbium-doped amorphous carbon thin films (a-C:(Er)) on Si substrates at low temperatures (<200 °C). A partially fluorinated metal-organic compound, tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) Erbium(+III) or abbreviated Er(fod)3, was incorporated in situ into a-C based host. Six-fold enhancement of Er room-temperature photoluminescence at 1.54 μm was demonstrated by deuteration of the a-C host. Furthermore, the effect of RF power and substrate temperature on the photoluminescence of a-C:D(Er) films was investigated and analyzed in terms of the film structure. Photoluminescence signal increases with increasing RF power, which is the result of an increase in [O]/[Er] ratio and the respective erbium-oxygen coordination number. Moreover, photoluminescence intensity decreases with increasing substrate temperature, which is attributed to an increased desorption rate or a lower sticking coefficient of the fluorinated fragments during film growth and hence [Er] decreases. In addition, it is observed that Er concentration quenching begins at ~2.2 at% and continues to increase until 5.5 at% in the studied a-C:D(Er) matrix. This technique provides the capability of doping Er in a vertically uniform profile. PMID:28788530

  2. A Hydrogen-Deuterium Exchange Study on Nickel-based Binary-Ternary Amorphous and Crystalline Membranes

    NASA Astrophysics Data System (ADS)

    Adibhatla, Anasuya

    Hydrogen is a major role player in current global sustainable energy scenario. Research around the world is carried out to harness hydrogen from all possible sources. One of these sources is water gas shift reaction after the coal gasification process. Sustainable infrastructure can be viable in countries like USA and Australia, making this process viable. Various methods are used to harness this hydrogen from the water gas. One of these methods is the use of inorganic membranes based on Pd, Ag, Ni, Zr and other transition metals. Pd addition to the membranes makes the membranes more expensive for commercial use. Various bulk properties like hydrogen permeation and absorption are studied on Pd and Pd-based alloys. Alternate alloys based on Ni, V, Ta etc are being studied to substitute the use of Pd making this technology more cost efficient. A current balance in research in this area is fund to exist by coating the non-precious metal membranes with Pd to improve the surface interaction with hydrogen. The nature of membranes used for hydrogen separation is important aspect for the overall performance. Crystalline materials provide better bulk properties, however, are not durable under high temperature and hydrogen pressure. In this research, non-Pd coated Ni-based amorphous membranes were made by melt spin technique, which have been studied for their surface properties. Gas phase H2-D2 exchange reaction has been carried out on the membrane surface. This provides a measure of catalytic activity of the above mentioned membranes. More studies included the crystallographic phase change determination, bulk hydrogen solubility measurements, surface conduction measurements and surface morphological studies. During this research, it has been observed that crystalline materials provide more surface activity for hydrogen than their amorphous counterparts. Ni64Zr36 alloy has been shown to exhibit similar kinetic rates as metallic Ni. Also, microkinetic analysis was performed

  3. Research on stable, high-efficiency, large-area, amorphous-silicon-based submodules

    SciTech Connect

    Delahoy, A.E.; Tonon, T.; Macneil, J. )

    1991-06-01

    The primary objective of this subcontract is to develop the technology for same bandgap, amorphous silicon tandem junction photovoltaic modules having an area of at least 900 cm{sup 2} with the goal of achieving an aperture area efficiency of 9%. A further objective is to demonstrate modules that retain 95% of their under standard light soaking conditions. Our approach to the attainment of these objective is based on the following distinctive technologies: (a) in-house deposition of SiO{sub 2}/SnO{sub 2}:F onto soda lime glass by APCVD to provide a textured, transparent electrode, (b) single chamber r.f. flow discharge deposition of the a-Si:H layers onto vertical substrates contained with high package density in a box carrier'' to which the discharge is confined (c) sputter deposition of highly reflecting, ZnO-based back contacts, and (d) laser scribing of the a-Si:H and electrodes with real-time scribe tracking to minimize area loss. Continued development of single junction amorphous silicon was aggressively pursued as proving ground for various optical enhancement schemes, new p-layers, and i-layers quality. We have rigorously demonstrated that the introduction of a transitional i-layer does not impair stability and that the initial gain in performance is retained. We have demonstrated a small improvement in cell stability through a post-fabrication treatment consisting of multiple, intense light flashes followed by sufficient annealing. Finally, several experiments have indicated that long term stability can be improved by overcoating the SnO{sub 2} with ZnO. 25 refs., 17 figs.

  4. Solid state amorphization of Fe- and Co-based alloys and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoshi; Diao, Zitao; Sugimoto, Toshiharu; Narita, Kenji

    1992-07-01

    Magnetic powders of FeSiB and CoFeSiB were prepared using a rotational or vibrational ball-mill. The characterization of the magnetic powders was mainly done by DTA and VSM. FeSiB powders were found not to become amorphous. However, CoFeSiB powders may be considered to become partially amorphous.

  5. Metal-Based PSMA Radioligands.

    PubMed

    Gourni, Eleni; Henriksen, Gjermund

    2017-03-24

    Prostate cancer is one of the most common malignancies for which great progress has been made in identifying appropriate molecular targets that would enable efficient in vivo targeting for imaging and therapy. The type II integral membrane protein, prostate specific membrane antigen (PSMA) is overexpressed on prostate cancer cells in proportion to the stage and grade of the tumor progression, especially in androgen-independent, advanced and metastatic disease, rendering it a promising diagnostic and/or therapeutic target. From the perspective of nuclear medicine, PSMA-based radioligands may significantly impact the management of patients who suffer from prostate cancer. For that purpose, chelating-based PSMA-specific ligands have been labeled with various diagnostic and/or therapeutic radiometals for single-photon-emission tomography (SPECT), positron-emission-tomography (PET), radionuclide targeted therapy as well as intraoperative applications. This review focuses on the development and further applications of metal-based PSMA radioligands.

  6. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.

    PubMed

    Yunsheng, Zhang; Wei, Sun; Qianli, Chen; Lin, Chen

    2007-05-08

    In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.

  7. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.

    2015-03-01

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  8. Carboxyl and negative charge-functionalized superparamagnetic nanochains with amorphous carbon shell and magnetic core: synthesis and their application in removal of heavy metal ions.

    PubMed

    Wang, Hui; Chen, Qian-Wang; Chen, Jian; Yu, Bin-Xing; Hu, Xian-Yi

    2011-11-01

    This communication describes carboxyl-functionalized nanochains with amorphous carbon shell (18 nm) and magnetic core using ferrocene as a single reactant under the induction of an external magnetic field (0.40 T), which shows a superparamagnetic behavior and magnetization saturation of 38.6 emu g(-1). Because of mesoporous structure (3.8 nm) and surface negative charge (-35.18 mV), the nanochains can be used as adsorbent for removing the heavy metal ions (90%) from aqueous solution.

  9. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts.

    PubMed

    Zimnyakov, D A; Sevrugin, A V; Yuvchenko, S A; Fedorov, F S; Tretyachenko, E V; Vikulova, M A; Kovaleva, D S; Krugova, E Y; Gorokhovsky, A V

    2016-06-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka-Munk function reveals a presence of local maxima in the regions 0.5-1.5 eV and 1.6-3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction.

  10. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    SciTech Connect

    Gelinck, G. H.; Breemen, A. J. J. M. van; Cobb, B.

    2015-03-02

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  11. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    SciTech Connect

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  12. In vitro metal ion release and biocompatibility of amorphous Mg67Zn28Ca5 alloy with/without gelatin coating.

    PubMed

    Chan, W Y; Chian, K S; Tan, M J

    2013-12-01

    Amorphous zinc-rich Mg-Zn-Ca alloys have exhibited good tissue compatibility and low hydrogen evolution in vivo. However, suboptimal cell-surface interaction on magnesium alloy surface observed in vitro could lead to reduced integration with host tissue for regenerative purpose. This study aims to improve cell-surface interaction of amorphous Mg67Zn28Ca5 alloy by coating a gelatin layer by electrospinning. Coated/uncoated alloys were immersed and extracted for 3 days under different CO2. The immersion results showed that pH and metal ion release in the alloy extracts were affected by gelatin coating and CO2, suggesting their roles in alloy biocorrosion and a mechanism has been proposed for the alloy-CO2 system with/without coating. Cytotoxicity results are evident that gelatin-coated alloy with 2-day crosslinking not only exhibited no indirect cytotoxicity, but also supported attachment of L929 and MG63 cell lines around/on the alloy with high viability. Therefore, amorphous Mg67Zn28Ca5 alloy coated with gelatin by electrospinning technique provides a useful method to improve alloy biocompatibility.

  13. Optical and structural properties of microcrystalline GaN on an amorphous substrate prepared by a combination of molecular beam epitaxy and metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  14. Spectroscopic Ellipsometry Studies of n-i-p Hydrogenated Amorphous Silicon Based Photovoltaic Devices

    PubMed Central

    Karki Gautam, Laxmi; Junda, Maxwell M.; Haneef, Hamna F.; Collins, Robert W.; Podraza, Nikolas J.

    2016-01-01

    Optimization of thin film photovoltaics (PV) relies on characterizing the optoelectronic and structural properties of each layer and correlating these properties with device performance. Growth evolution diagrams have been used to guide production of materials with good optoelectronic properties in the full hydrogenated amorphous silicon (a-Si:H) PV device configuration. The nucleation and evolution of crystallites forming from the amorphous phase were studied using in situ near-infrared to ultraviolet spectroscopic ellipsometry during growth of films prepared as a function of hydrogen to reactive gas flow ratio R = [H2]/[SiH4]. In conjunction with higher photon energy measurements, the presence and relative absorption strength of silicon-hydrogen infrared modes were measured by infrared extended ellipsometry measurements to gain insight into chemical bonding. Structural and optical models have been developed for the back reflector (BR) structure consisting of sputtered undoped zinc oxide (ZnO) on top of silver (Ag) coated glass substrates. Characterization of the free-carrier absorption properties in Ag and the ZnO + Ag interface as well as phonon modes in ZnO were also studied by spectroscopic ellipsometry. Measurements ranging from 0.04 to 5 eV were used to extract layer thicknesses, composition, and optical response in the form of complex dielectric function spectra (ε = ε1 + iε2) for Ag, ZnO, the ZnO + Ag interface, and undoped a-Si:H layer in a substrate n-i-p a-Si:H based PV device structure. PMID:28773255

  15. Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Liu, Jiu Rong; Itoh, Masahiro; Horikawa, Takashi; Machida, Ken-Ichi; Sugimoto, Satoshi; Maeda, Toru

    2005-09-01

    Nanocomposite magnetic materials α-Fe/C(a), Fe2B/C(a), and Fe1.4Co0.6B/C(a) were prepared by mechanically grinding α-Fe, Fe2B, or Fe1.4Co0.6B with amorphous carbon [C(a)] powders. Complex permittivity, permeability, and electromagnetic wave absorption properties of resin compacts containing 40-vol % composite powders of α-Fe/C(a), Fe2B/C(a), and Fe1.4Co0.6B/C(a) were characterized according to a conventional reflection/transmission technique. The real part (ɛr') and imaginary part (Vr'') of the relative permittivity are low and almost independent of frequency between 0.05 and 40 GHz. The Imaginary part (μr'') of the relative permeability exhibited wide peaks in the 1-9-GHz range for α-Fe/C(a), in the 2-18-GHz range for Fe2B/C(a), and in the 18-40-GHz range for Fe1.4Co0.6B/C(a) owing to their different magnetocrystalline anisotropy field (HA) values. Consequently, the resin compacts of 40-vol % α-Fe/C(a), Fe2B/C(a), and Fe1.4Co0.6B/C(a) powders provided good electromagnetic (em) wave absorption performances (reflection loss<-20 dB) in ranges of 4.3-8.2 GHz (G band), 7.5-16.0 GHz (X band), and 26.5-40 GHz (Q band) over absorber thicknesses of 1.8-3.3, 1.2-2.2, and 0.63-0.82 mm, respectively. Our experimental results demonstrate that the amorphous-carbon-based magnetic nanocomposites are promising for the application to produce thin and light EM wave absorbers.

  16. Transport Properties Of PbI2 Doped Silver Oxysalt Based Amorphous Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Shrisanjaykumar Jayswal, Manishkumar

    Solid electrolytes are a class of materials that conduct electricity by means of motion of ions like Ag+, Na+, Li +, Cu+, H+, F-, O -2 etc. in solid phase. The host materials include crystalline, polycrystalline, glasses, polymers and composites. Ion conducting glasses are one of the most sought after solid electrolytes that are useful in various electrochemical applications like solid state batteries, gas sensors, supercapacitors, electrochromic devices, to name a few. Since the discovery of fast silver ion transport in silver oxyhalide glasses at the end of the 1960s, many glasses showing large ionic conductivity up to 10-4 10-2 S/cm at room temperature have been developed, chiefly silver and copper ion conductors. The silver ion conducting glasses owe their high ionic conductivity mainly to stabilized alpha-AgI. AgI, as we know, undergoes a structural phase transition from wurtzite (beta phase) at room temperature to body centered cubic (alpha phase) structure at temperatures higher than 146 °C. The alpha-AgI possesses approximately six order of higher ionic conductivity than beta-AgI. The high ionic conductivity of alpha-AgI is attributed to its molten sublattice type of structure, which facilitates easy Ag+ ion migration, like a liquid. And hence, several attempts have been made to stabilize it at room temperature in crystalline as well as non-crystalline hosts like oxide and non-oxide glasses. Recently, in order to stabilize AgI in glasses, instead of directly doping it, indirect routes have also been explored. Where, a metal iodide salt along with silver oxide or silver phosphate is taken and an exchange reaction permitted by Hard and Soft, Acid and Base (HSAB) principle occurs between the two and AgI and metal oxide form in the glass forming melt. Work done in the present thesis has been organized in seven chapters as follows: Chapter 1: A review and background information of different solid electrolyte materials and their development is presented. Along

  17. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    SciTech Connect

    Kalay, Yunus Eren

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  18. Amorphous and Ultradisperse Crystalline Materials,

    DTIC Science & Technology

    The book sums up experimental and theoretical findings on amorphous and ultradisperse crystalline materials , massive and film types. Present-day... crystalline materials of metallic systems are presented. Emphasis is placed on inorganic film materials.

  19. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  20. Acoustic Emission Analysis of Damage during Compressive Deformation of Amorphous Zr-Based Foams with Aligned, Elongated Pores

    NASA Astrophysics Data System (ADS)

    Cox, Marie E.; Dunand, David C.

    2013-07-01

    Acoustic emission methods are used to investigate the evolution of internal microfractural damage during uniaxial compression of amorphous Zr-based foams with aligned, elongated pores. The foams are fabricated by means of densifying a blend of crystalline W powders and amorphous Zr-based powders with two oxygen contents (0.078 and 0.144 wt pct) by warm equal channel angular extrusion, followed by dissolution of the elongated W phase from the fully densified amorphous matrix. For the high-oxygen foams, prior powder boundaries in the amorphous struts promote damage that accumulates during compression, resulting in energy-absorbing properties comparable with the low-oxygen foams without stress-concentrating powder boundaries. The influence of pore orientation on the evolution of microfracture damage and the ability of the foams to accumulate damage without catastrophic failure is also investigated: pores oriented from 24 to 68 deg to the loading direction promote wall bending, resulting in foams with more diffuse damage and better energy-absorbing properties.

  1. Fe-based bulk amorphous alloys with iron contents as high as 82 at%

    NASA Astrophysics Data System (ADS)

    Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu; Yao, Ke-Fu

    2015-07-01

    Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe81P8.5C5.5B2Si3 BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe82Mo1P6.5C5.5B2Si3 BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications.

  2. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

    PubMed

    Kim, Hyungki; Song, Intek; Park, Chibeom; Son, Minhyeok; Hong, Misun; Kim, Youngwook; Kim, Jun Sung; Shin, Hyun-Joon; Baik, Jaeyoon; Choi, Hee Cheul

    2013-08-27

    We report that high-quality single-layer graphene (SLG) has been successfully synthesized directly on various dielectric substrates including amorphous SiO2/Si by a Cu-vapor-assisted chemical vapor deposition (CVD) process. The Cu vapors produced by the sublimation of Cu foil that is suspended above target substrates without physical contact catalyze the pyrolysis of methane gas and assist nucleation of graphene on the substrates. Raman spectra and mapping images reveal that the graphene formed on a SiO2/Si substrate is almost defect-free and homogeneous single layer. The overall quality of graphene grown by Cu-vapor-assisted CVD is comparable to that of the graphene grown by regular metal-catalyzed CVD on a Cu foil. While Cu vapor induces the nucleation and growth of SLG on an amorphous substrate, the resulting SLG is confirmed to be Cu-free by synchrotron X-ray photoelectron spectroscopy. The SLG grown by Cu-vapor-assisted CVD is fabricated into field effect transistor devices without transfer steps that are generally required when SLG is grown by regular CVD process on metal catalyst substrates. This method has overcome two important hurdles previously present when the catalyst-free CVD process is used for the growth of SLG on fused quartz and hexagonal boron nitride substrates, that is, high degree of structural defects and limited size of resulting graphene, respectively.

  3. Facile Routes To Improve Performance of Solution-Processed Amorphous Metal Oxide Thin Film Transistors by Water Vapor Annealing.

    PubMed

    Park, Won-Tae; Son, Inyoung; Park, Hyun-Woo; Chung, Kwun-Bum; Xu, Yong; Lee, Taegweon; Noh, Yong-Young

    2015-06-24

    Here, we report on a simple and high-rate oxidization method for producing solution-based compound mixtures of indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO) metal-oxide semiconductors (MOS) for thin-film transistor (TFT) applications. One of the issues for solution-based MOS fabrication is how to sufficiently oxidize the precursor in order to achieve high performance. As the oxidation rate of solution processing is lower than vacuum-based deposition such as sputtering, devices using solution-processed MOS exhibit relatively poorer performance. Therefore, we propose a method to prepare the metal-oxide precursor upon exposure to saturated water vapor in a closed volume for increasing the oxidization efficiency without requiring additional oxidizing agent. We found that the hydroxide rate of the MOS film exposed to water vapor is lower than when unexposed (≤18%). Hence, we successfully fabricated oxide TFTs with high electron mobility (27.9 cm(2)/V·s) and established a rapid process (annealing at 400 °C for 5 min) that is much shorter than the conventional as-deposited long-duration annealing (at 400 °C for 1 h) whose corresponding mobility is even lower (19.2 cm(2)/V·s).

  4. High pressure die casting of Fe-based metallic glass

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  5. High pressure die casting of Fe-based metallic glass.

    PubMed

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  6. High pressure die casting of Fe-based metallic glass

    PubMed Central

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  7. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations.

    PubMed

    Démuth, B; Nagy, Z K; Balogh, A; Vigh, T; Marosi, G; Verreck, G; Van Assche, I; Brewster, M E

    2015-01-01

    Application of amorphous solid dispersions (ASDs) is considered one of the most promising approaches to increase the dissolution rate and extent of bioavailability of poorly water soluble drugs. Such intervention is often required for new drug candidates in that enablement, bioavailability is not sufficient to generate a useful product. Importantly, tableting of ASDs is often complicated by a number of pharmaceutical and technological challenges including poor flowability and compressibility of the powders, compression-induced phase changes or phase separation and slow disintegration due to the formation of a gelling polymer network (GPN). The design principles of an ASD-based system include its ability to generate supersaturated systems of the drug of interest during dissolution. These metastable solutions can be prone to precipitation and crystallization reducing the biopharmaceutical performance of the dosage form. The main aim of the research in this area is to maintain the supersaturated state and optimally enhance bioavailability, meaning that crystallization should be delayed or inhibited during dissolution, as well as in solid phase (e.g., during manufacturing and storage). Based on the expanding use of ASD technology as well as their downstream processing, there is an acute need to summarize the results achieved to this point to better understand progress and future risks. The aim of this review is to focus on the conversion of ASDs into tablets highlighting results from various viewpoints.

  8. Investigation of itraconazole ternary amorphous solid dispersions based on povidone and Carbopol.

    PubMed

    Meng, Fan; Meckel, Jordan; Zhang, Feng

    2017-08-30

    We investigate a ternary system that consists of itraconazole (ITZ) and two polymers: povidone K12 and Carbopol 907. The interactions between these two polymers and their effects on the properties of ternary ITZ amorphous solid dispersions (ASDs) are studied. These two polymers can form a water-insoluble complex in acidic aqueous media. The critical pH is determined to be 4.17. The weight percentage of Carbopol 907 in the interpolymer complex range from 59 to 70%, depending on the initial ratios between these two polymers in the starting solutions. This complexation is driven by a negative enthalpy change from the H-bonding between the two polymers and a positive entropy change from the freed water molecules. Due to the slow precipitation of the interpolymer complex in aqueous media, the attempt to prepare ternary ASD using solvent-controlled coprecipitation is not successful. Melt extrusion is identified to be the only viable method to prepare this ternary ASD. We find that interpolymer complex-based ASDs are physically less stable and demonstrate the poorest drug-release properties when compared to individual polymer-based binary ASDs. This study illustrates that the too strong interaction between polymers in ternary ASDs is detrimental to their performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. XRD Technique: A way to disseminate structural changes in iron-based amorphous materials

    SciTech Connect

    Saw, C K; Lian, T; Day, D; Farmer, J

    2007-05-24

    Prevention of corrosion is a vital goal for the Department of Defense when billions of dollars are spent every year. Corrosion resistant materials have applications in all sort of military vehicles, and more importantly in naval vessels and submarines which come in contact with the seawater. It is known that corrosion resistance property can be improved by the used of structurally designed materials in the amorphous state where the atoms are arranged in a non-periodic fashion and specific atoms, tailored to the required properties can be interjected into the matrix for specific application. The XRD techniques reported here is to demonstrate the optimal conditions for characterization of these materials. The samples, which normally contain different compositions of Fe, Cr, B, Mo, Y, Mn, Si and W, are in the form of powders, ribbons and coatings. These results will be compared for the different forms of the sample which appears to correlate to the cooling rate during sample processing. In most cases, the materials are amorphous or amorphous with very small amount of crystallinity. In the ribbon samples for different compositions we observed that the materials are essentially amorphous. In most cases, starting from an amorphous powder sample, the coatings are also observed to be amorphous with a small amount of iron oxide on the surface, probably due to exposure to air.

  10. Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering

    NASA Astrophysics Data System (ADS)

    Shon, Jeong Woo; Ohta, Jitsuo; Ueno, Kohei; Kobayashi, Atsushi; Fujioka, Hiroshi

    2014-06-01

    InGaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient light sources capable of replacing incandescent bulbs. However, applications of InGaN LEDs are limited to small devices because their fabrication process involves expensive epitaxial growth of InGaN by metalorganic vapor phase epitaxy on single-crystal wafers. If we can utilize a low-cost epitaxial growth process, such as sputtering on large-area substrates, we can fabricate large-area InGaN light-emitting displays. Here, we report the growth of GaN (0001) and InGaN (0001) films on amorphous SiO2 by pulsed sputtering deposition. We found that using multilayer graphene buffer layers allows the growth of highly c-axis-oriented GaN films even on amorphous substrates. We fabricated red, green, and blue InGaN LEDs and confirmed their successful operation. This successful fabrication of full-color InGaN LEDs on amorphous substrates by sputtering indicates that the technique is quite promising for future large-area light-emitting displays on amorphous substrates.

  11. In-Situ Fracture Observation and Fracture Toughness Analysis of Zr-Based Amorphous Alloys Containing Ductile Dendrites

    NASA Astrophysics Data System (ADS)

    Jeon, Changwoo; Kim, Choongnyun Paul; Lee, Sunghak

    2012-10-01

    Effects of dendrite size on fracture properties of Zr-based amorphous alloys containing ductile β dendrites were explained by directly observing microfracture processes using an in-situ loading stage installed inside a scanning electron microscope (SEM) chamber. Three amorphous alloy plates having different thicknesses were fabricated by varying cooling rates after vacuum arc melting. The effective size of β dendrites was varied from 14.7 to 30.1 μm in the alloy plates, while their volume fraction was almost constant. According to microfracture observation of the alloy containing fine β dendrites, shear bands initiated at the amorphous matrix were connected with the notch tip as they were deepened through dendrites, which led to abrupt crack propagation. In the alloy containing coarser β dendrites, shear bands were initiated at the amorphous matrix to form a crack near the notch tip region and were expanded over large matrix areas. The crack propagation was frequently blocked by β dendrites, and many shear bands are formed near or in front of the propagating crack, thereby resulting in stable crack growth, which could be confirmed by the fracture resistance curve ( R-curve) behavior. This increase in fracture resistance with increasing crack length could be explained by mechanisms of blocking of crack growth, multiple shear band formation, and crack blunting.

  12. Dynamic tensile deformation behavior of Zr-based amorphous alloy matrix composites reinforced with tungsten or tantalum fibers

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Kim, Gyeong Su; Jeon, Changwoo; Sohn, Seok Su; Lee, Sang-Bok; Lee, Sang-Kwan; Kim, Hyoung Seop; Lee, Sunghak

    2016-07-01

    Zr-based amorphous alloy matrix composites reinforced with tungsten (W) or tantalum (Ta) continuous fibers were fabricated by liquid pressing process. Their dynamic tensile properties were investigated in relation with microstructures and deformation mechanisms by using a split Hopkinson tension bar. The dynamic tensile test results indicated that the maximum strength of the W-fiber-reinforced composite (757 MPa) was much lower than the quasi-statically measured strength, whereas the Ta-fiber-reinforced composite showed very high maximum strength (2129 MPa). In the W-fiber-reinforced composite, the fracture abruptly occurred in perpendicular to the tensile direction because W fibers did not play a role in blocking cracks propagated from the amorphous matrix, thereby resulting in abrupt fracture within elastic range and consequent low tensile strength. The very high dynamic tensile strength of the Ta-fiber-reinforced composite could be explained by the presence of ductile Ta fibers in terms of mechanisms such as (1) interrupted propagation of cracks initiated in the amorphous matrix, (2) formation of lots of cracks in the amorphous matrix, and (3) sharing of loads and severe deformation (necking) of Ta fibers in cracked regions.

  13. Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering.

    PubMed

    Shon, Jeong Woo; Ohta, Jitsuo; Ueno, Kohei; Kobayashi, Atsushi; Fujioka, Hiroshi

    2014-06-23

    InGaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient light sources capable of replacing incandescent bulbs. However, applications of InGaN LEDs are limited to small devices because their fabrication process involves expensive epitaxial growth of InGaN by metalorganic vapor phase epitaxy on single-crystal wafers. If we can utilize a low-cost epitaxial growth process, such as sputtering on large-area substrates, we can fabricate large-area InGaN light-emitting displays. Here, we report the growth of GaN (0001) and InGaN (0001) films on amorphous SiO2 by pulsed sputtering deposition. We found that using multilayer graphene buffer layers allows the growth of highly c-axis-oriented GaN films even on amorphous substrates. We fabricated red, green, and blue InGaN LEDs and confirmed their successful operation. This successful fabrication of full-color InGaN LEDs on amorphous substrates by sputtering indicates that the technique is quite promising for future large-area light-emitting displays on amorphous substrates.

  14. Electrochemical Studies of Passive Film Stability on Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 Amorphous Metal in Seawater at 90oCElectrochemical Studies of Passive Film Stability on Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4 Amorphous Metal in Seawater at 9

    SciTech Connect

    Farmer, J C; Haslam, J; Day, S D; Lian, T; Saw, C K; Hailey, P D; Choi, J S; Rebak, R B; Yang, N; Payer, J H; Perepezko, J H; Hildal, K; Lavernia, E J; Ajdelsztajn, L; Branagan, D J; Buffa, E J; Aprigliano, L F

    2007-04-25

    An iron-based amorphous metal, Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4} (SAM2X5), with very good corrosion resistance was developed. This material was prepared as a melt-spun ribbon, as well as gas atomized powder and a thermal-spray coating. During electrochemical testing in several environments, including seawater at 90 C, the passive film stability was found to be comparable to that of high-performance nickel-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. This material also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. This material and its parent alloy maintained corrosion resistance up to the glass transition temperature, and remained in the amorphous state during exposure to relatively high neutron doses.

  15. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders.

    PubMed

    Wang, Jun-Qiang; Liu, Yan-Hui; Chen, Ming-Wei; Louzguine-Luzgin, Dmitri V; Inoue, Akihisa; Perepezko, John H

    2012-01-01

    The lack of new functional applications for metallic glasses hampers further development of these fascinating materials. In this letter, we report for the first time that the MgZn-based metallic glass powders have excellent functional ability in degrading azo dyes which are typical organic water pollutants. Their azo dye degradation efficiency is about 1000 times higher than that of commercial crystalline Fe powders, and 20 times higher than the Mg-Zn alloy crystalline counterparts. The high Zn content in the amorphous Mg-based alloy enables a greater corrosion resistance in water and higher reaction efficiency with azo dye compared to crystalline Mg. Even under complex environmental conditions, the MgZn-based metallic glass powders retain high reaction efficiency. Our work opens up a new opportunity for functional applications of metallic glasses.

  16. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders

    PubMed Central

    Wang, Jun-Qiang; Liu, Yan-Hui; Chen, Ming-Wei; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa; Perepezko, John H.

    2012-01-01

    The lack of new functional applications for metallic glasses hampers further development of these fascinating materials. In this letter, we report for the first time that the MgZn-based metallic glass powders have excellent functional ability in degrading azo dyes which are typical organic water pollutants. Their azo dye degradation efficiency is about 1000 times higher than that of commercial crystalline Fe powders, and 20 times higher than the Mg-Zn alloy crystalline counterparts. The high Zn content in the amorphous Mg-based alloy enables a greater corrosion resistance in water and higher reaction efficiency with azo dye compared to crystalline Mg. Even under complex environmental conditions, the MgZn-based metallic glass powders retain high reaction efficiency. Our work opens up a new opportunity for functional applications of metallic glasses. PMID:22639726

  17. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  18. Applications of an amorphous silicon-based area detector for high resolution, high sensitivity and fast time-resolved pair distribution function measurements.

    SciTech Connect

    Chupas, P. J.; Chapman, K. W.; Lee, P. L.; X-Ray Science Division

    2007-01-01

    The application of a large-area (41 x 41 cm, 2048 x 2048 or 1024 x 1024 pixel) high-sensitivity (detective quantum efficiency > 65%) fast-readout (up to 7.5 or 30 Hz) flat-panel detector based on an amorphous silicon array system to the collection of high-energy X-ray scattering data for quantitative pair distribution function (PDF) analysis is evaluated and discussed. Data were collected over a range of exposure times (0.13 s-7 min) for benchmark PDF samples: crystalline nickel metal and amorphous silica (SiO2). The high real-space resolution of the resultant PDFs (with Q{sub max} up to {approx} 40 Angstroms{sup -1})and the high quality of fits to data [RNi(0.13s) = 10.5%, RNi(1.3s) = 6.3%] obtained in short measurement times indicate that this detector is well suited to studies of materials disorder. Further applications of the detector to locate weakly scattering H2 molecules within the porous Prussian blue system, Mn{sup II}{sub 3}[CoIII(CN)6]2 x xH2, and to follow the in situ reduction of PtIVO2 to Pt0 at 30 Hz, confirm the high sensitivity of the detector and demonstrate a new potential for fast time-resolved studies.

  19. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  20. Amorphous Calcium Phosphate-Based Bioactive Polymeric Composites for Mineralized Tissue Regeneration

    PubMed Central

    Skrtic, D.; Antonucci, J. M.; Eanes, E. D.

    2003-01-01

    Amorphous calcium phosphate (ACP), a postulated precursor in the formation of biological hydroxyapatite, has been evaluated as a filler phase in bioactive polymeric composites that utilize dental monomers to form the matrix phase on polymerization. In addition to excellent biocompatibility, these composites provided sustained release of calcium and phosphate ions into simulated saliva milieus. In an effort to enhance the physicochemical and mechanical properties and extend the utility of remineralizing ACP composites to a greater variety of dental applications, we have focused on: a) hybridizing ACP by introducing silica and/or zirconia, b) assessing the efficacy of potential coupling agents, c) investigating the effects of chemical structure and compositional variation of the resin matrices on the mechanical strength and ion-releasing properties of the composites, and d) improving the intrinsic adhesiveness of composites by using bifunctional monomers with an affinity for tooth structure in resin formulations. Si- and Zr-modified ACPs along with several monomer systems are found useful in formulating composites with improved mechanical and remineralizing properties. Structure-property studies have proven helpful in advancing our understanding of the remineralizing behavior of these bioactive composites. It is expected that this knowledge base will direct future research and lead to clinically valuable products, especially therapeutic materials appropriate for the healing or even regeneration of defective teeth and bone structures. PMID:27413603

  1. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; van Lare, M. C.; Veldhuizen, L. W.; Polman, A.; Rath, J. K.; Schropp, R. E. I.

    2015-11-01

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  2. Scaling of slip avalanches in sheared amorphous materials based on large-scale atomistic simulations.

    PubMed

    Zhang, Dansong; Dahmen, Karin A; Ostoja-Starzewski, Martin

    2017-03-01

    Atomistic simulations of binary amorphous systems with over 4 million atoms are performed. Systems of two interatomic potentials of the Lennard-Jones type, LJ12-6 and LJ9-6, are simulated. The athermal quasistatic shearing protocol is adopted, where the shear strain is applied in a stepwise fashion with each step followed by energy minimization. For each avalanche event, the shear stress drop (Δσ), the hydrostatic pressure drop (Δσ_{h}), and the potential energy drop (ΔE) are computed. It is found that, with the avalanche size increasing, the three become proportional to each other asymptotically. The probability distributions of avalanche sizes are obtained and values of scaling exponents fitted. In particular, the distributions follow a power law, P(ΔU)∼ΔU^{-τ}, where ΔU is a measure of avalanche sizes defined based on shear stress drops. The exponent τ is 1.25±0.1 for the LJ12-6 systems, and 1.15±0.1 for the LJ9-6 systems. The value of τ for the LJ12-6 systems is consistent with that from an earlier atomistic simulation study by Robbins et al. [Phys. Rev. Lett. 109, 105703 (2012)]PRLTAO0031-900710.1103/PhysRevLett.109.105703, but the fitted values of other scaling exponents differ, which may be because the shearing protocol used here differs from that in their study.

  3. Test environments and mechanical properties of Zr-base bulk amorphous alloys

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Easton, D.S.

    1998-07-01

    The mechanical properties of two Zr-base bulk amorphous alloys (BAA), Zr-10Al-30Cu-5Ni (BAA-10) and Zr-10Al-5Ti-17.9Cu-14.6Ni (BAA-11), were studied by both tensile and compressive tests at room temperature in various test environments. The BAA ingots up to 7 mm in diameter were successfully produced by both arc melting and drop casting and induction melting and injection casting. The BAA specimens deformed mainly elastically, followed by catastrophic failure along shear bands. Examination of the fracture region revealed ductile fracture features resulting from a substantial increase in temperature, which was attributable to the conversion of the stored elastic strain energy to heat. Surprisingly, liquid droplets located at major shear-band cracks adjacent to the fracture section were observed, indicating the occurrence of local melting during fracture. The angle orientation of shear bands, shear-band cracks, and fracture surfaces relative to the stress axis is quite different for BAA specimens tested in tension and compression. This suggests that both shear stress and normal stress may play a role in developing shear bands during plastic deformation. The tensile properties of BAAs were found to be insensitive to the test environment at room temperature. However, the reaction of BAAs with distilled water and heavy water was detected by laser desorption mass spectrometry (LDMS). These results suggest that moisture-induced hydrogen embrittlement in BAAs may be masked by catastrophic fracture following shear bands.

  4. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements.

    PubMed

    Babaie, Elham; Lin, Boren; Goel, Vijay K; Bhaduri, Sarit B

    2016-10-07

    This paper reports for the first time the development of a biodegradable, non-exothermic, self-setting orthopedic cement composition based on amorphous magnesium phosphate (AMP). The occurrence of undesirable exothermic reactions was avoided through using AMP as the solid precursor. The phenomenon of self-setting with optimum rheology is achieved by incorporating a water soluble biocompatible/biodegradable polymer, polyvinyl alcohol (PVA). Additionally, PVA enables a controlled growth of the final phase via a biomimetic process. The AMP powder was synthesized using a precipitation method. The powder, when in contact with the aqueous PVA solution, forms a putty resulting in a nanocrystalline magnesium phosphate phase of cattiite. The as-prepared cement compositions were evaluated for setting times, exothermicity, compressive strength, biodegradation, and microstructural features before and after soaking in SBF, and in vitro cytocompatibility. Since cattiite is relatively unexplored in the literature, a first time evaluation reveals that it is cytocompatible, just like the other phases in the MgO-P2O5 (Mg-P) system. The cement composition prepared with 15% PVA in an aqueous medium achieved clinically relevant setting times, mechanical properties, and biodegradation. Simulated body fluid (SBF) soaking resulted in coating of bobierrite onto the cement particle surfaces.

  5. A physics-based model of threshold voltage for amorphous oxide semiconductor thin-film transistors

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Le; Chen, Wei-Feng; Zhou, Lei; Wu, Wei-Jing; Xu, Miao; Wang, Lei; Peng, Jun-Biao

    2016-03-01

    In the application of the Lambert W function, the surface potential for amorphous oxide semiconductor thin-film transistors (AOS TFTs) under the subthreshold region is approximated by an asymptotic equation only considering the tail states. While the surface potential under the above-threshold region is approximated by another asymptotic equation only considering the free carriers. The intersection point between these two asymptotic equations represents the transition from the weak accumulation to the strong accumulation. Therefore, the gate voltage corresponding to the intersection point is defined as threshold voltage of AOS TFTs. As a result, an analytical expression for the threshold voltage is derived from this novel definition. It is shown that the threshold voltage achieved by the proposed physics-based model is agreeable with that extracted by the conventional linear extrapolation method. Furthermore, we find that the free charge per unit area in the channel starts increasing sharply from the threshold voltage point, where the concentration of the free carriers is a little larger than that of the localized carriers. The proposed model for the threshold voltage of AOS TFTs is not only physically meaningful but also mathematically convenient, so it is expected to be useful for characterizing and modeling AOS TFTs.

  6. Feasibility of Amorphous Selenium Based Photon Counting Detectors for Digital Breast Tomosynthesis

    SciTech Connect

    Chen, J.; O'Connor, P.; Lehnert, J., De Geronimo, G., Dolazza, E., Tousignant, O., Laperriere, L., Greenspan, J., Zhao, W.

    2009-02-27

    Amorphous selenium (a-Se) has been incorporated successfully in direct conversion flat panel x-ray detectors, and has demonstrated superior image quality in screening mammography and digital breast tomosynthesis (DBT) under energy integration mode. The present work explores the potential of a-Se for photon counting detectors in DBT. We investigated major factors contributing to the variation in the charge collected by a pixel upon absorption of each x-ray photon. These factors included x-ray photon interaction, detector geometry, charge transport, and the pulse shaping and noise properties of the photon counting readout circuit. Experimental measurements were performed on a linear array test structure constructed by evaporating an a-Se layer onto an array of 100 {mu}m pitch strip electrodes, which are connected to a 32 channel low noise photon counting integrated circuit. The measured pulse height spectrum (PHS) under polychromatic xray exposure was interpreted quantitatively using the factors identified. Based on the understanding of a-Se photon counting performance, design parameters were proposed for a 2D detector with high quantum efficiency and count rate that could meet the requirements of photon counting detector for DBT.

  7. Scaling of slip avalanches in sheared amorphous materials based on large-scale atomistic simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Dansong; Dahmen, Karin A.; Ostoja-Starzewski, Martin

    2017-03-01

    Atomistic simulations of binary amorphous systems with over 4 million atoms are performed. Systems of two interatomic potentials of the Lennard-Jones type, LJ12-6 and LJ9-6, are simulated. The athermal quasistatic shearing protocol is adopted, where the shear strain is applied in a stepwise fashion with each step followed by energy minimization. For each avalanche event, the shear stress drop (Δ σ ), the hydrostatic pressure drop (Δ σh ), and the potential energy drop (Δ E ) are computed. It is found that, with the avalanche size increasing, the three become proportional to each other asymptotically. The probability distributions of avalanche sizes are obtained and values of scaling exponents fitted. In particular, the distributions follow a power law, P (Δ U )˜Δ U-τ , where Δ U is a measure of avalanche sizes defined based on shear stress drops. The exponent τ is 1.25 ±0.1 for the LJ12-6 systems, and 1.15 ±0.1 for the LJ9-6 systems. The value of τ for the LJ12-6 systems is consistent with that from an earlier atomistic simulation study by Robbins et al. [Phys. Rev. Lett. 109, 105703 (2012)], 10.1103/PhysRevLett.109.105703, but the fitted values of other scaling exponents differ, which may be because the shearing protocol used here differs from that in their study.

  8. Performances of amorphous silicon photodiodes integrated in chemiluminescence based μ-TAS

    NASA Astrophysics Data System (ADS)

    Caputo, Domenico; Nardini, Massimo; Scipinotti, Riccardo; de Cesare, Giampiero; Mirasoli, Mara; Zangheri, Martina; Roda, Aldo; Nascetti, Augusto

    2013-05-01

    A detailed characterization of the performances of amorphous silicon photodiodes in the detection of chemiluminescent signal is carried out. Comparison with commercial CCD acquisition system has been done as benchmark. The underlying idea is the development of stand-alone and compact micro-total-analysys-systems (μ-TAS) that do not need bulky and expensive equipment for their operation as external focusing optics and excitation sources. The photosensor is p-i-n structures deposited by Plasma Enhanced Chemical Vapour Deposition on a glass substrate covered with a transparent conductive oxide that acts as bottom electrode and window layer for the light impinging through the glass. A PDMS layer with wells has been fabricated using an aluminum mold and bonded on the glass substrate with a well aligned with a photosensor. The experiments have been performed by filling a well with solutions containing different quantities of horseradish peroxidase. A good linearity of the photosensor response is observed across the entire measurement range that spans over three orders of magnitude. The system detection limit is 70 fg/μL. A very good agreement between results achieved with conventional off-chip CCD detection and the on-chip photodiode has been observed. Experiments with target molecules immobilized on a functionalized glass surface have been also performed in microfluidic regime, confirming the validity of the proposed integrated approach based on a-Si:H technology.

  9. Performance improvement in amorphous silicon based uncooled microbolometers through pixel design and materials development

    NASA Astrophysics Data System (ADS)

    Ajmera, Sameer; Brady, John; Hanson, Charles; Schimert, Tom; Syllaios, A. J.; Taylor, Michael

    2011-06-01

    Uncooled amorphous silicon microbolometers have been established as a field-worthy technology for a broad range of applications where performance and form factor are paramount, such as soldier-borne systems. Recent developments in both bolometer materials and pixel design at L-3 in the 17μm pixel node have further advanced the state-of-the-art. Increasing the a-Si material temperature coefficient of resistance (TCR) has the impact of improving NETD sensitivity without increasing thermal time constant (TTC), leading to an improvement in the NETD×TTC product. By tuning the amorphous silicon thin-film microstructure using hydrogen dilution during deposition, films with high TCR have been developed. The electrical properties of these films have been shown to be stable even after thermal cycling to temperatures greater than 300oC enabling wafer-level vacuum packaging currently performed at L-3 to reduce the size and weight of the vacuum packaged unit. Through appropriate selection of conditions during deposition, amorphous silicon of ~3.4% TCR has been integrated into the L-3 microbolometer manufacturing flow. By combining pixel design enhancements with improvements to amorphous silicon thin-film technology, L-3's amorphous silicon microbolometer technology will continue to provide the performance required to meet the needs to tomorrow's war-fighter.

  10. Property of Amorphous/Nanocrystalline Hybrid Wires of TiNi-Base Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Koichi; Koike, Tadahiro

    2011-07-01

    The microstructures and mechanical properties of amorphous/nanocrystalline hybrid TiNi wires produced by severe cold drawing were investigated. Annealed wires of Ti-50.9 mol%Ni and Ti-41 mol%Ni-8.5 mol%Cu were subjected to severe cold drawing of 50-70% reduction. The as-drawn TiNi wires were composed of the mixture of amorphous phase and predominantly B2 nanocrystalline phase. Young's modulus increased with the drawing reduction which can be attributed to the increase in the amount of amorphous phase. For the binary TiNi wires, the volume fraction of amorphous phase was estimated to be about 60% from Young's modulus and electrical resistivity. The wires drawn over 60% exhibited peculiar large linear elastic strain which is quite different from superelasticity. Aging at 573 K led to an increase in tensile elongation as well as in the recoverable strain. The amorphization by cold drawing was also confirmed for Ti-41 mol%Ni-8.5 mol%Cu in 62% drawn wires.

  11. Metallic Nanostructures Based on DNA Nanoshapes.

    PubMed

    Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A; Toppari, Jari Jussi

    2016-08-10

    Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects.

  12. Metallic Nanostructures Based on DNA Nanoshapes

    PubMed Central

    Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A.; Toppari, Jari Jussi

    2016-01-01

    Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects. PMID:28335274

  13. GMI field sensitivity near a zero external field in Co-based amorphous alloy ribbons: experiments and model

    NASA Astrophysics Data System (ADS)

    Zhao, Chenbo; Zhang, Xinlei; Liu, Qingfang; Wang, Jianbo

    2016-02-01

    The giant magnetoimpedance (GMI) effect in Co66Fe4Ni1Si15B14 amorphous ribbons was investigated, and the obvious blunt peaks of GMI curves were observed in a weak external magnetic field (0~3 Oe). The shape of the blunt peaks could be changed by different treatments, such as changing the aspect ratio of the ribbons, premagnetization before magnetoimpedance measurement, and rapid heat-treatment, and the GMI sensitivity is improved. Based on the experimental results, a model in view of magnetostrictive energy is proposed to analyze the bluntness of the peak of the GMI curve and the process of transverse permeability varying with the external field near zero-field in the Co-based amorphous ribbons, and all the experimental results have good agreement with our model.

  14. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    PubMed Central

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  15. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    PubMed

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  16. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites†

    PubMed Central

    O’Donnell, Justin N.R.; Schumacher, Gary E.; Antonucci, Joseph M.; Skrtic, Drago

    2009-01-01

    Our studies of amorphous calcium phosphate (ACP)-based materials over the last decade have yielded bioactive polymeric composites capable of protecting teeth from demineralization or even regenerating lost tooth mineral. The anti-cariogenic/re-mineralizing potential of these ACP composites originates from their propensity, when exposed to the oral environment, to release in a sustained manner sufficient levels of mineral-forming calcium and phosphate ions to promote formation of stable apatitic tooth mineral. However, the less than optimal ACP filler/resin matrix cohesion, excessive polymerization shrinkage and water sorption of these experimental materials can adversely affect their physicochemical and mechanical properties, and, ultimately, limit their lifespan. This study demonstrates the effects of chemical structure and composition of the methacrylate monomers used to form the matrix phase of composites on degree of vinyl conversion (DVC) and water sorption of both copolymers and composites and the release of mineral ions from the composites. Modification of ACP surface via introducing cations and/or polymers ab initio during filler synthesis failed to yield mechanically improved composites. However, moderate improvement in composite’s mechanical stability without compromising its remineralization potential was achieved by silanization and/or milling of ACP filler. Using ethoxylated bisphenol A dimethacrylate or urethane dimethacrylate as base monomers and adding moderate amounts of hydrophilic 2-hydroxyethyl methacrylate or its isomer ethyl-α-hydroxymethacrylate appears to be a promising route to maximize the remineralizing ability of the filler while maintaining high DVC. Exploration of the structure/composition/property relationships of ACP fillers and polymer matrices is complex but essential for achieving a better understanding of the fundamental mechanisms that govern dissolution/re-precipitation of bioactive ACP fillers, and, ultimately, the

  17. Research on defects and transport in amorphous-silicon-based semiconductors

    NASA Astrophysics Data System (ADS)

    Schiff, E. A.; Antoniadis, H.; Gu, Q.; Lee, J. K.; Wang, Q.; Zafar, S.

    1994-09-01

    This report describes work on three individual tasks as follows. (1) Electron and hole drift measurements in a-Si(1-x)Ge(x):H and a-Si(1-x)C(x):H p-i-n solar cells: Multijunction solar cells incorporating modified band gap a-Si:H in a triple-junction structure are generally viewed as the most promising avenue for achieving an amorphous silicon-based solar cell with 15% stabilized conversion efficiency. The specific objective of this task was to document the mobilities and deep-trapping mobility-lifetime products for electrons and holes in a-Si(1-x)Ge(x):H and a-Si(1-x)C(x):H alloys materials. (2) Electroabsorption measurements and built-in potential (V(sub bi)) in solar cells: V(sub bi) in a p-i-n solar cell may be limiting the open-circuit voltage (V(sub oc)) in wide-band-gap cells (E(sub g) greater than 1.8 eV) currently under investigation as the top cell for 15% triple junction devices. The research addressed four issues that need to be resolved before the method can yield an error less than 0.1 V for V(sub bi). (3) Defect relaxation and Shockley-Read kinetics in a-Si:H: Quantitative modeling of solar cells is usually based on Shockley-Read kinetics. An important assumption of this approach is that the rate of emission of a photocarrier trapped on a defect is independent of quasi-Fermi level location.

  18. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    SciTech Connect

    Kim, Junghwan Miyokawa, Norihiko; Ide, Keisuke; Toda, Yoshitake; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-15

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  19. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    NASA Technical Reports Server (NTRS)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  20. Magnetization reversal, coercivity, and the process of thermomagnetic recording in thin films of amorphous rare earth--transition metal alloys

    SciTech Connect

    Mansuripur, M.

    1987-02-15

    A model is proposed for the mechanism of magnetization reversal in thin films of amorphous alloys with perpendicular magnetic anisotropy. Examples of these alloys are TbFe, GdCo, DyFe, and GdTbFeCo, which are currently under investigation as storage media for erasable optical recording applications. The model exhibits the observed behavior of the media such as nucleation and growth of reverse-magnetized domains under external magnetic fields; square hysteresis loops; temperature dependence of coercivity; formation and stability of domains under conditions of thermomagnetic recording; and incomplete erasure with insufficient applied fields.

  1. METHOD OF JOINING CARBIDES TO BASE METALS

    DOEpatents

    Krikorian, N.H.; Farr, J.D.; Witteman, W.G.

    1962-02-13

    A method is described for joining a refractory metal carbide such as UC or ZrC to a refractory metal base such as Ta or Nb. The method comprises carburizing the surface of the metal base and then sintering the base and carbide at temperatures of about 2000 deg C in a non-oxidizing atmosphere, the base and carbide being held in contact during the sintering step. To reduce the sintering temperature and time, a sintering aid such as iron, nickel, or cobait is added to the carbide, not to exceed 5 wt%. (AEC)

  2. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    SciTech Connect

    Jing, Tao

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ~20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 {micro}s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  3. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    SciTech Connect

    Kuang, Y.; Lare, M. C. van; Polman, A.; Veldhuizen, L. W.; Schropp, R. E. I.; Rath, J. K.

    2015-11-14

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  4. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts

    PubMed Central

    Zimnyakov, D.A.; Sevrugin, A.V.; Yuvchenko, S.A.; Fedorov, F.S.; Tretyachenko, E.V.; Vikulova, M.A.; Kovaleva, D.S.; Krugova, E.Y.; Gorokhovsky, A.V.

    2016-01-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka–Munk function reveals a presence of local maxima in the regions 0.5–1.5 eV and 1.6–3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  5. Microwave properties of /Fe(0.82)B(0.18)/(0.90)La(0.05)R(0.05) amorphous metal alloys

    NASA Astrophysics Data System (ADS)

    Vittoria, C.; Koon, N. C.; Lubitz, P.; Geohegan, J. A.

    1984-03-01

    Microwave properties of amorphous metal alloys of /Fe(0.82)B(0.18)/(0.90)La(0.05)R(0.05), where R = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er, are reported. The microwave measurements consisted of fixed (9 GHz) and swept (0.01-18 GHz) frequency magnetic resonance experiments. The ferromagnetic resonance linewidth, Delta H, and g factor were measured. Delta H has a minimum for R = Gd and is equal to 100 Oe. Delta H appears to scale with the product of the spin and orbital angular momentum operators of the R ion. The measured g factor obeys the Wangsness relation as R is varied.

  6. Interpretation of viscous deformation of Zr-based bulk metallic glass alloys based on Nabarro-Herring creep model

    NASA Astrophysics Data System (ADS)

    Na, Young-Sang; Lee, Jong-Hoon

    2006-04-01

    Superplastic-like viscous deformation of bulk metallic glass alloys around the glass transition temperature (Tg) was analyzed based on the Nabarro-Herring creep model, a classical creep model, where the diffusional motion of atoms or vacancies through the lattice (atomic configuration) is considered. The amorphous matrix of bulk metallic glasses that has a randomly-packed atomic configuration was assumed to behave in a manner similar to the grain boundary in polycrystalline metals so as to approximate the diffusivity of the major constituent element. In spite of rough approximation of the parameters in the Nabarro-Herring creep equation, a reasonable value of the diffusion path (d) could be obtained from the experimentally-obtained metal flow data, including the steady state stress and the strain rate. Due to the absence of vacancy sources such as grain boundaries in homogeneous metallic glasses, the diffusion path, which, in polycrystalline materials, generally is the average distance between vacancy sources such as grain boundaries, was considered in this work as the average distance between tunneling centers in bulk metallic glass alloys. The calculated diffusion path was comparable to the density of tunneling centers around Tg, proposed by M. H. Cohen and G. S. Grest based on free volume theory. The calculated diffusion path showed monotonous decrease with temperature over Tg for Zr-based bulk metallic glass alloys. Based on this analysis, a schematic model for viscous deformation of bulk metallic glass was proposed.

  7. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  8. Containerless processing of amorphous ceramics

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    1990-01-01

    The absence of gravity allows containerless processing of materials which could not otherwise be processed. High melting point, hard materials such as borides, nitrides, and refractory metals are usually brittle in their crystalline form. The absence of dislocations in amorphous materials frequently endows them with flexibility and toughness. Systematic studies of the properties of many amorphous materials have not been carried out. The requirements for their production is that they can be processed in a controlled way without container interaction. Containerless processing in microgravity could permit the control necessary to produce amorphous forms of hard materials.

  9. Accuracy of Small Base Metal Dental Castings,

    DTIC Science & Technology

    1980-07-10

    aCCURACY OF SMALL BASE METAL DENTAL CASTINGS,(U) M JUL 80 E A HUBET, S 6 VERMILYEA, M .J KUFFLER UNCLASSIFIED NE7 hhhhh *EN UN~CLASSIFIED SECURITY...TPCCSI70NO. 3. RECIPIENT’S .CATALOG NUMBER I _% dSutte 5. TYPE OF REPORT & PERIOD COVERED Accuracy of Small Base Metal Dental Castings Manuscript S...base metal- alloys is countered by their inadequate casting accuracy . Until this problem can be overcome, the acceptance of such alloys for routine use

  10. High-Velocity Oxygen Fuel Thermal Spray of Fe-Based Amorphous Alloy: a Numerical and Experimental Study

    NASA Astrophysics Data System (ADS)

    Ajdelsztajn, L.; Dannenberg, J.; Lopez, J.; Yang, N.; Farmer, J.; Lavernia, E. J.

    2009-09-01

    The fabrication of dense coatings with appropriate properties using a high velocity oxygen fuel (HVOF) spray process requires an in-depth understanding of the complete gas flow field and particle behavior during the process. A computational fluid dynamics (CFD) model is implemented to investigate the gas flow behavior that occurs during the HVOF process and a simplified one-dimensional decoupled model of the in-flight thermal behavior of the amorphous Fe-based powder particles was developed and applied for three different spray conditions. The numerical results were used to rationalize the different coating microstructures described in the experimental results. Low porosity and amorphous coatings were produced using two different particle size distributions (16 to 25 μm and 25 to 53 μm). The amorphous characteristics of the powder were retained in the coating due to melting and rapid solidification in the case of very fine powder or ligaments (<16 μm) and to the fact that the crystallization temperature was not reached in the case of the large particles (16 to 53 μm).

  11. Metal-induced crystallization of amorphous zinc tin oxide semiconductors for high mobility thin-film transistors

    SciTech Connect

    Hwang, Ah Young; Ji, Hyuk; Kim, Sang Tae; Shin, Yeonwoo; Jeong, Jae Kyeong

    2016-04-11

    Transition tantalum induced crystallization of amorphous zinc tin oxide (a-ZTO) was observed at low temperature annealing of 300 °C. Thin-film transistors (TFTs) with an a-ZTO channel layer exhibited a reasonable field-effect mobility of 12.4 cm{sup 2}/V s, subthreshold swing (SS) of 0.39 V/decade, threshold voltage (V{sub TH}) of 1.5 V, and I{sub ON/OFF} ratio of ∼10{sup 7}. A significant improvement in the field-effect mobility (up to ∼33.5 cm{sup 2}/V s) was achieved for crystallized ZTO TFTs: this improvement was accomplished without compromising the SS, V{sub TH}, or I{sub ON/OFF} ratio due to the presence of a highly ordered microstructure.

  12. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    NASA Astrophysics Data System (ADS)

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-04-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (~4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (~5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing.

  13. Carbon-based metal-free catalysts

    NASA Astrophysics Data System (ADS)

    Liu, Xien; Dai, Liming

    2016-11-01

    Metals and metal oxides are widely used as catalysts for materials production, clean energy generation and storage, and many other important industrial processes. However, metal-based catalysts suffer from high cost, low selectivity, poor durability, susceptibility to gas poisoning and have a detrimental environmental impact. In 2009, a new class of catalyst based on earth-abundant carbon materials was discovered as an efficient, low-cost, metal-free alternative to platinum for oxygen reduction in fuel cells. Since then, tremendous progress has been made, and carbon-based metal-free catalysts have been demonstrated to be effective for an increasing number of catalytic processes. This Review provides a critical overview of this rapidly developing field, including the molecular design of efficient carbon-based metal-free catalysts, with special emphasis on heteroatom-doped carbon nanotubes and graphene. We also discuss recent advances in the development of carbon-based metal-free catalysts for clean energy conversion and storage, environmental protection and important industrial production, and outline the key challenges and future opportunities in this exciting field.

  14. Plastic Deformation in Zirconium Based Metallic Glasses via Nanoindentation

    NASA Astrophysics Data System (ADS)

    Melgarejo-Pinto, Zenon Humberto

    Since the discovery in 1960 of Au-Si amorphous alloy by rapidly quenching with cooling rates up to 106 K/s metallic glasses became as an important research topic in the materials science community because of their intriguing processing routes, structure and properties. Recently, new multicomponent glassy- alloy systems, bulk metallic glasses (BMGs), appeared with lower critical cooling rates (103 to 1 K/s) and superlative properties, such as corrosion resistance, biocompatibility, and high strength/modulus ratio. Nevertheless, low temperature brittleness remains a concern. This brittleness comes from the tendency of plastic deformation to concentrate into extremely narrow shear bands. The present research pursues a better understanding of plastic deformation in metallic glasses (MGs) by studying, via nanoindentation, the effect of thermal history, composition, and loading paths on the mechanical behavior of Zr-based MGs. Differential scanning calorimeter (DSC) analysis helps to assess structural relaxation near glass transition temperature (T g). Broadband nanoindentation creep (BNC) and load transient nanoindentation experiments contribute to characterize the hardness-strain rate behavior and indentation size effects, respectively. As-cast Zr 50Cu45Al5 (at. %) metallic glasses evidenced hardness-strain rate loading path dependence, which gradually disappears by effect of the annealing treatments. Back-stresses effect is theorized as the cause of load path dependence behavior. Relaxation effect at low and high strain rates in BNC traces and load ramps "overshoots" in transient experiments enabled to confirm structural changes during mechanical deformation, which is not considered by thermal activation models of deformation. Most of the Zr-based metallic glasses exhibited measurable overshoot indentation size effect. Nonetheless, creep fraction size effect was observed just in as-cast Zr50Cu45Al5 alloys. Rheological mechanical model helps to both characterize the

  15. Inverted amorphous silicon solar cell utilizing cermet layers

    DOEpatents

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  16. Molecular orbital calculations on atomic structures of Si-based covalent amorphous ceramics

    SciTech Connect

    Matsunaga, K.; Matsubara, H.

    1999-07-01

    The authors have performed ab-initio Hartree-Fock molecular orbital calculations of local atomic structures and chemical bonding states in Si-N covalent amorphous ceramics. Solute elements such as boron, carbon and oxygen were considered in the Si-N network, and the bonding characteristics around the solute elements were analyzed. When a nitrogen atom is substituted by a carbon atom, it was found that Si-C bonds reinforce the Si-N network due to strong covalency.

  17. Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions.

    PubMed

    LaFountaine, Justin S; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; McGinity, James W; Williams, Robert O

    2016-02-01

    Thermal processing technologies continue to gain interest in pharmaceutical manufacturing. However, the types and grades of polymers that can be utilized in common thermal processing technologies, such as hot-melt extrusion (HME), are often limited by thermal or rheological factors. The objectives of the present study were to compare and contrast two thermal processing methods, HME and KinetiSol® Dispersing (KSD), and investigate the influence of polymer type, polymer molecular weight, and drug loading on the ability to produce amorphous solid dispersions (ASDs) containing the model compound griseofulvin (GRIS). Dispersions were analyzed by a variety of imaging, solid-state, thermal, and solution-state techniques. Dispersions were prepared by both HME and KSD using polyvinylpyrrolidone (PVP) K17 or hydroxypropyl methylcellulose (HPMC) E5. Dispersions were only prepared by KSD using higher molecular weight grades of HPMC and PVP, as these could not be extruded under the conditions selected. Powder X-ray diffraction (PXRD) analysis showed that dispersions prepared by HME were amorphous at 10% and 20% drug load; however, it showed significant crystallinity at 40% drug load. PXRD analysis of KSD samples showed all formulations and drug loads to be amorphous with the exception of trace crystallinity seen in PVP K17 and PVP K30 samples at 40% drug load. These results were further supported by other analytical techniques. KSD produced amorphous dispersions at higher drug loads than could be prepared by HME, as well as with higher molecular weight polymers that were not processable by HME, due to its higher rate of shear and torque output.

  18. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics.

    PubMed

    Sen, Sabyasachi; Widgeon, Scarlett

    2015-03-17

    The intermediate-range packing of SiNxC4-x (0 ≤ x ≤ 4) tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using (29)Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR) spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN₄ tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si₃N₄ clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiNxC4-x tetrahedra that are inefficiently packed with a mass fractal dimension of Df ~2.5 that is significantly lower than the embedding Euclidean dimension (D = 3). This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiCxN4-x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems.

  19. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics

    PubMed Central

    Sen, Sabyasachi; Widgeon, Scarlett

    2015-01-01

    The intermediate-range packing of SiNxC4−x (0 ≤ x ≤ 4) tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using 29Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR) spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN4 tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si3N4 clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiNxC4−x tetrahedra that are inefficiently packed with a mass fractal dimension of Df ~2.5 that is significantly lower than the embedding Euclidean dimension (D = 3). This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiCxN4−x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems.

  20. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    DOEpatents

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  1. Effect of annealing treatment on the crystallisation and leaching of dumped base metal smelter slags.

    PubMed

    Maweja, Kasonde; Mukongo, Tshikele; Mbaya, Richard K; Mochubele, Emela A

    2010-11-15

    Leaching tests of base metals contained in two smelter slags were undertaken in ammonia and nitric acid solutions aiming to recover Co, Cu and Zn. Leaching tests were conducted at 25 and 60°C at pH=0 and 3 in HNO(3) and pH=12 in NH(4)OH media. XRD analysis revealed that the dumped slags were amorphous. Annealing these slags at 1180°C produced crystalline phases comprising diopside, magnetite and fayalite. SEM and EDS analysis revealed that Cu and Pb compounds have concentrated in the magnetite phase, whereas another phase rich in Zn and Cu was located in the diopside matrix. ICP-OES analysis of the pregnant leaching solutions (PLS) showed that 30-60% of Co, Cu and Zn were released from the amorphous slags treated in HNO(3) at pH=0, and lesser in ammonia. However, the contamination by Fe and Pb was higher at pH=0. The contamination of the PLS obtained by leaching of the crystallised slags remained low. The low Fe and Pb contamination was attributed in this case to the chemical stability of the crystalline phases formed upon annealing treatment. The higher solubilisation of metals contained in amorphous slags was attributed to the collapse of silicate structures during nitric acid leaching at pH∼0. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Hierarchical densification and negative thermal expansion in Ce-based metallic glass under high pressure.

    PubMed

    Luo, Qiang; Garbarino, Gaston; Sun, Baoan; Fan, Dawei; Zhang, Yue; Wang, Zhi; Sun, Yajuan; Jiao, Jin; Li, Xiaodong; Li, Pengshan; Mattern, Norbert; Eckert, Jürgen; Shen, Jun

    2015-02-02

    The polyamorphsim in amorphous materials is one of the most fascinating topics in condensed matter physics. In amorphous metals, the nature of polyamorphic transformation is poorly understood. Here we investigate the structural evolution of a Ce-based metallic glass (MG) with pressure at room temperature (RT) and near the glass transition temperature by synchrotron X-ray diffraction, uncovering novel behaviours. The MG shows hierarchical densification processes at both temperatures, arising from the hierarchy of interatomic interactions. In contrast with a continuous and smooth process for the low- to medium-density amorphous state transformation at RT, a relatively abrupt and discontinuous transformation around 5.5 GPa is observed at 390 K, suggesting a possible weak first-order nature. Furthermore, both positive and abnormal-negative thermal expansion behaviours on medium-range order are observed in different pressure windows, which could be related to the low-energy vibrational motions and relaxation of the weakly linked solute-centred clusters.

  3. Microstructural Analysis of a Laser-Processed Zr-Based Bulk Metallic Glass

    NASA Astrophysics Data System (ADS)

    Sun, H.; Flores, K. M.

    2010-07-01

    Laser processing is a precision manufacturing technique capable of producing materials with highly nonequilibrium microstructures. Due to the localized heat input and high cooling rate inherent to the process, this technology is attractive for the production of metallic glasses. In the present work, we use a laser deposition process to deposit a Zr-based metallic glass forming powder on both amorphous and crystalline substrates of the same nominal composition. Amorphous melt zones are observed surrounded by distinct crystalline heat-affected zones (HAZs). Detailed examination of the HAZ in the glassy substrates reveals the formation of microscale spherulites, in contrast to the nanocrystalline phases observed following crystallization by isothermal annealing of the glass at the crystallization temperature as well as in the HAZ of the crystalline substrates. The spherulites have a different crystal morphology and structure from the nanocrystalline phases, indicating that the more stable nanocrystalline phases are completely bypassed when the glass is devitrified at the higher heating rate. Reducing the heat input during laser processing results in the near elimination of the crystalline HAZ in the amorphous substrates, suggesting that a critical heating rate range is required to avoid devitrification.

  4. Microstructural characterization of Mg-based bulk metallic glass and nanocomposite

    SciTech Connect

    Babilas, Rafał; Nowosielski, Ryszard; Pawlyta, Mirosława; Fitch, Andy; Burian, Andrzej

    2015-04-15

    New magnesium-based bulk metallic glasses Mg{sub 60}Cu{sub 30}Y{sub 10} have been prepared by pressure casting. Glassy alloys were successfully annealed to become nanocomposite containing 200 nm crystallites in an amorphous matrix. The microstructure of bulk glassy alloy and nanocomposite obtained during heat treatment was examined by X-ray diffraction and scanning and high-resolution electron microscopy. Metallic glass has been also studied to explain the structural characteristics by the reverse Monte Carlo (RMC) modeling based on the diffraction data. The HRTEM images allow to indicate some medium-range order (MRO) regions about 2–3 nm in size and formation of local atomic clusters. The RMC modeling results confirmed some kinds of short range order (SRO) structures. It was found that the structure of bulk metallic glass formed by the pressure casting is homogeneous. The composite material contained very small particles in the amorphous matrix. Homogeneous glassy alloy had better corrosion resistance than a composite containing nanocrystalline particles in a glassy matrix. - Highlights: • RMC modeling demonstrates some kinds of SRO structures in Mg-based BMGs. • HRTEM indicated MRO regions about 2–3 nm and SRO regions about 0.5 nm in size. • Mg-based glassy alloys were successfully annealed to become nanocomposite material. • Crystalline particles have spherical morphology with an average diameter of 200 nm. • Glassy alloy had higher corrosion resistance than a nanocomposite sample.

  5. Tunable color filters based on metal-insulator-metal resonators.

    PubMed

    Diest, Kenneth; Dionne, Jennifer A; Spain, Merrielle; Atwater, Harry A

    2009-07-01

    We report a method for filtering white light into individual colors using metal-insulator-metal resonators. The resonators are designed to support photonic modes at visible frequencies, and dispersion relations are developed for realistic experimental configurations. Experimental results indicate that passive Ag/Si(3)N(4)/Au resonators exhibit color filtering across the entire visible spectrum. Full field electromagnetic simulations were performed on active resonators for which the resonator length was varied from 1-3 microm and the output slit depth was systematically varied throughout the thickness of the dielectric layer. These resonators are shown to filter colors based on interference between the optical modes within the dielectric layer. By careful design of the output coupling, the resonator can selectively couple to intensity maxima of different photonic modes and, as a result, preferentially select any of the primary colors. We also illustrate how refractive index modulation in metal-insulator-metal resonators can yield actively tunable color filters. Simulations using lithium niobate as the dielectric layer and the top and bottom Ag layers as electrodes, indicate that the output color can be tuned over the visible spectrum with an applied field.

  6. Synthesis methods and character of iron-based mixed-anion superconductor with suppression of the amorphous FeAs impurity phase

    NASA Astrophysics Data System (ADS)

    Fujioka, Masaya; Ozaki, Toshinori; Okazaki, Hiroyuki; Saleem, Denholme; Deguchi, Keita; Demura, Satoshi; Hara, Hiroshi; Watanabe, Tohru; Takeya, Hiroyuki; Yamaguchi, Takahide; Kumakura, Hiroaki; Takano, Yoshihiko

    2013-03-01

    To obtain the high superconducting properties of polycrystalline SmFeAsO1-xFx, we investigated the following three synthesis methods: a high pressure synthesis, a low temperature synthesis with gradual cooling and a metal added synthesis. Generally, polycrystalline SmFeAsO1-xFx is composed of superconducting grains and a little amorphous FeAs compounds. These areas randomly co-exist and amorphous areas are located between the superconducting grains. Therefore, we suggest that the superconducting current is prevented by the amorphous areas. In fact, although the single crystal of this material shows a large critical current density of 106 A/cm2, polycrystalline SmFeAsO1-xFx shows a significant depression of critical current density due to this grain boundary blocking effect. To obtain a high global critical current density, it is important to investigate how to remove the amorphous FeAs. It is found that the impurity phase of amorphous FeAs is decreased by using the above three synthesis methods.

  7. Tribocorrosion Behavior of Fe-Based Amorphous Composite Coating Reinforced by Al2O3 in 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Yasir, Muhammad; Zhang, Cheng; Wang, Wei; Zhang, Zhi-Wei; Liu, Lin

    2016-12-01

    Although corrosion and friction/wear behavior of Fe-based amorphous coatings and their composites has been extensively studied during the past decade, there is very limited work related to tribocorrosion behavior. In this paper, the tribocorrosion behavior of a Fe-based amorphous composite coating reinforced with 20 wt.% Al2O3 particles was investigated in a 3.5% NaCl solution on a ball-on-disk tester and was compared to the monolithic amorphous coating and 316L stainless steel (SS). The results showed that the amorphous composite coating exhibited the highest tribocorrosion resistance among the three materials tested, as evidenced by the lowest coefficient of friction ( 0.3) and tribocorrosion wear rate ( 1.2 × 10-5 mm3/N·m). In addition, potentiodynamic polarization measurements before and during tribocorrosion testing demonstrated that corrosion resistance of the amorphous composite coating was not influenced so much by mechanical loading compared to the amorphous coating and the 316L SS. Observations on the worn surface revealed a corrosion-wear- and oxidational-wear-dominated tribocorrosion mechanism for the composite coatings. The excellent tribocorrosion resistance of the composite coating results from the effect of chemically stable Al2O3 phase which resists oxidation and delamination during sliding, along with poor wettability with corrosive NaCl droplets.

  8. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  9. Design of Cu8Zr5-based bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Yang, L.; Xia, J. H.; Wang, Q.; Dong, C.; Chen, L. Y.; Ou, X.; Liu, J. F.; Jiang, J. Z.; Klementiev, K.; Saksl, K.; Franz, H.; Schneider, J. R.; Gerward, L.

    2006-06-01

    Basic polyhedral clusters have been derived from intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, bulk metallic glasses can be formed. This strategy was verified in the Cu-Zr binary system, where we have demonstrated the existence of Cu8Zr5 icosahedral clusters in Cu61.8Zr38.2, Cu64Zr36, and Cu64.5Zr35.5 amorphous alloys. Furthermore, ternary bulk metallic glasses can be developed by doping the basic Cu-Zr alloy with a minority element. This hypothesis was confirmed in systems (Cu0.618Zr0.382)100-xNbx, where x =1.5 and 2.5at.%, and (Cu0.618Zr0.382)98Sn2. The present results may open a route to prepare amorphous alloys with improved glass forming ability.

  10. Investigating the Correlation between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques.

    PubMed

    Tian, Bin; Tang, Xing; Taylor, Lynne S

    2016-11-07

    The purpose of this study was to investigate the feasibility of using a fluorescence-based technique to evaluate drug-polymer miscibility and to probe the correlation between miscibility and physical stability of amorphous solid dispersions (ASDs). Indomethacin-hydroxypropyl methylcellulose (IDM-HPMC), indomethacin-hydroxypropyl methylcellulose acetate succinate, and indomethacin-polyvinylpyrrolidone (IDM-PVP) were used as model systems. The miscibility of the IDM-polymer systems was evaluated by fluorescence spectroscopy, fluorescence imaging, differential scanning calorimetry (DSC), and infrared (IR) spectroscopy. The physical stability of IDM-polymer ASDs stored at 40 °C was evaluated using fluorescence imaging and X-ray diffraction (XRD). The experimentally determined miscibility limit of IDM with the polymers was 50-60%, 20-30%, and 70-80% drug loading for HPMC, HPMCAS, and PVP, respectively. The X-ray results showed that for IDM-HPMC ASDs, samples with a drug loading of less than 50% were maintained in amorphous form during the study period, while samples with drug loadings higher than 50% crystallized within 15 days. For IDM-HPMCAS ASDs, samples with drug loading less than 30% remained amorphous, while samples with drug loadings higher than 30% crystallized within 10 days. IDM-PVP ASDs were found to be resistant to crystallization for all compositions. Thus, a good correlation was observed between phase separation and reduced physical stability, suggesting that miscibility is indeed an important ASDs characteristic. In addition, fluorescence-based techniques show promise in the evaluation of drug-polymer miscibility.

  11. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    SciTech Connect

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  12. Left handed material based on amorphous ferromagnetic microwires tunable by dc current

    NASA Astrophysics Data System (ADS)

    García-Miquel, H.; Carbonell, J.; Sánchez-Dehesa, J.

    2010-08-01

    Tuning of the transmission characteristics of amorphous ferromagnetic microwires through a dc current is demonstrated. These structures are studied in the frequency region where they present double negative behavior. It is found that their frequency response shifts with small dc currents circulating along the wires. It is observed that the dc current tends to compensate and even cancels the resonant peak associated to the static magnetic field applied along the wire axis. The phenomenon behind these findings is discussed in terms of the torque exerted by the field created by the current on the plane perpendicular to the wire axis.

  13. Photoelectrochemical and photovoltaic characteristics of amorphous-silicon-based tandem cells as photocathodes for water splitting.

    PubMed

    Ziegler, Jürgen; Kaiser, Bernhard; Jaegermann, Wolfram; Urbain, Félix; Becker, Jan-Philipp; Smirnov, Vladimir; Finger, Friedhelm

    2014-12-15

    In this study amorphous silicon tandem solar cells are successfully utilized as photoelectrodes in a photoelectrochemical cell for water electrolysis. The tandem cells are modified with various amounts of platinum and are combined with a ruthenium oxide counter electrode. In a two-electrode arrangement this system is capable of splitting water without external bias with a short-circuit current of 4.50 mA cm(-2). On the assumption that no faradaic losses occur, a solar-to-hydrogen efficiency of 5.54% is achieved. In order to identify the relevant loss processes, additional three-electrode measurements were performed for each involved half-cell.

  14. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  15. Preliminary study of a metal/a-Se-based portal detector.

    PubMed

    Falco, T; Wang, H; Fallone, B G

    1998-06-01

    A feasibility study has been performed on metal/amorphous selenium detectors for megavoltage portal imaging. The metal plates of the detectors were positioned facing the incident 6 MV and Co-60 photon spectra. The detectors consist of various thicknesses (0.15 mm, 0.30 mm, and 0.50 mm) of amorphous selenium (a-Se) deposited on metal plates of varying thicknesses: aluminum (2.0 mm), copper (1.0 mm and 1.5 mm), stainless steel (0.9 mm), or glass (1.1 mm). The detectors were charged prior to irradiation by corona methods, and the portal images were subsequently digitized after irradiation with a noncontact electrostatic probe. The sensitivity of the detectors to dose, electric field across the a-Se layer, metal plate type and a-Se thickness, was studied. The electrostatic voltage remaining on the a-Se layer was found, both theoretically and experimentally, to exhibit a cubic relationship with respect to dose. An increase in electric field increases the sensitivity (gradient of the a-Se surface voltage vs dose curve) and dynamic range of the resultant image. An increase in a-Se thickness, however, although also increasing the sensitivity, decreases the dynamic range. The metal plate types and thicknesses within the range studied do not have a significant effect on detector sensitivity. Image quality and contrast resolution of the detector were evaluated with a contrast-detail phantom and compared to commercially available film based and electronic portal imaging devices. Image quality of the metal/a-Se detector as a function of dose was studied by discharging the a-Se to various fractions of its initial charge, and as expected, increases with dose due to a decrease in quantum noise. Contrast-detail images obtained by metal/a-Se detectors are superior to those obtained at higher dose levels by other commercial systems.

  16. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    PubMed

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-09-12

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g(-1) and attractive rate performance (220 mAh g(-1) ) under the current density of up to 2 A g(-1) . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structure and Properties of Amorphous Transparent Conducting Oxides

    NASA Astrophysics Data System (ADS)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  18. Amorphous phase separation in crystallizable polymer blends based on poly (aryl ether ketones) and poly (ether imide)

    SciTech Connect

    Kalika, D.S.; Bristow, J.F.

    1996-12-31

    The morphology of a series of miscible crystallizable blends based on poly (aryl ether ketones) [PAEK] and poly (ether imide) [PEI] has been investigated as a function of blend composition and crystallization condition by dielectric relaxation spectroscopy. For blends of poly (ether ether ketone) [PEEK] and PEI, dielectric scans of the crystallized samples reveal two glass-rubber relaxations corresponding to the coexistence of a mixed interlamellar amorphous phase, and a pure PEI phase located in interfibrillar/interspherulitic regions. The exclusion of a significant fraction of PEI outside of the crystal lamellae reflects a fundamental change in the nature of interaction between the interlamellar PEEK segments and the PEI chains owing to the constraints imposed on the PEEK segments by the crystal surfaces. The degree of PEI exclusion is dependent upon kinetic factors, i.e. the rate of PEEK crystallization relative to the rate of PEI diffusion away from the advancing crystal front. As a result, lower crystallization temperatures lead to an increase in the amount of PEI trapped in the interlamellar regions. In this work, the morphological characteristics of the PEEK/PEI blends are compared with those of blends comprised of poly (ether ketone ketone) [PEKK] and PEI. The introduction of the {open_quotes}kinked{close_quote} isophthalate moiety in the PEKK backbone has been shown to disrupt the persistence of order at the crystal-amorphous interface, and thereby leads to a reduction in the degree of constraint imposed by the crystal lamellae on the amorphous (interlamellar) PEKK segments. The impact of this reduction in crystalline constraint on the nature of the PEKK/PEI intersegmental interactions and the corresponding PEI segregation is discussed.

  19. Neutron irradiation and high temperature effects on amorphous Fe-based nano-coatings on steel - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, N.; Zhong, Z.; Dooryhee, E.; Ghose, S.; Gill, S.; Camino, F.; Şavklıyıldız, İ.; Akdoğan, E. K.

    2017-06-01

    The study revealed that loss of ductility in an amorphous Fe-alloy coating on a steel substrate composite structure was essentially prevented from occurring, following radiation with modest neutron doses of ∼2 × 1018 n/cm2. At the higher neutron dose of ∼2 × 1019, macroscopic stress-strain analysis showed that the amorphous Fe-alloy nanostructured coating, while still amorphous, experienced radiation-induced embrittlement, no longer offering protection against ductility loss in the coating-substrate composite structure. Neutron irradiation in a corrosive environment revealed exemplary oxidation/corrosion resistance of the amorphous Fe-alloy coating, which is attributed to the formation of the Fe2B phase in the coating. To establish the impact of elevated temperatures on the amorphous-to-crystalline transition in the amorphous Fe-alloy, electron microscopy was carried out which confirmed the radiation-induced suppression of crystallization in the amorphous Fe-alloy nanostructured coating.

  20. Anisotropic etching of amorphous perfluoropolymer films in oxygen-based inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Ono, Takao; Akagi, Takanori; Ichiki, Takanori

    2009-01-01

    An amorphous perfluoropolymer, "Cytop™" (Asahi Glass Co., Ltd.), is a preferable material for the fabrication of micro total analysis system devices because of its superior optical transparency over a wide wavelength range and low refractive index of 1.34, which is almost the same as that of water, as well as excellent chemical stability. To establish the precise microfabrication technology for this unique resin, the dry etching of the amorphous perfluoropolymer in Ar/O2 low-pressure inductively coupled plasma has been studied. A relatively high etch rate of approximately 6.3 μm/min at maximum and highly anisotropic etched features was attained. Plasma measurements by a single Langmuir probe technique and actinometry revealed that etching is dominated by ion-assisted surface desorption above a 10% O2 mixing ratio, whereas the supply of active oxygen species is the rate-limiting process below 10%. Moreover, angled x-ray photoelectron spectroscopy measurements of an etched trench pattern revealed that a high anisotropy is attributed to the formation of a carbon-rich sidewall protection layer.

  1. Effects of graphene/silver nanohybrid additives on electrochemical properties of magnesium-based amorphous alloy

    NASA Astrophysics Data System (ADS)

    Lin-jun, Huang; Yan-xin, Wang; Zhen, Huang; Jian-guo, Tang; Yao, Wang; Ji-xian, Liu; Ji-qing, Jiao; Jing-quan, Liu; Belfiore, Laurence A.

    2014-12-01

    Amorphous Mg-Ni-La alloys for hydrogen storage are prepared by rapid solidification. Ag nanoparticles have been deposited onto graphene sheets to form graphene/Ag (G/A) nanocomposite through solvothermal method using ethylene glycol as solvent and reducing agent. The effects of surface modification of amorphous Mg-Ni-La alloy by introduction of different contents of G/A are systematically investigated by XRD, FT-IR, SEM, TEM and conventional electrochemical tests. The results show that the discharge capacity, cycle life, discharge potential characteristics and electrochemical kinetics of the electrodes are all improved. The surface modification enhances the electrocatalytic activity of the alloy and reduces the contact resistance of the electrodes. The Mg65Ni27La8 with 20 wt.% G/A electrode has the largest discharge capacity of 814.8 mAh g-1, which is 1.33 times that of the electrode without G/A, and the best electrochemical kinetics. Further increasing of G/A content will lead to the increase of contact resistance of the electrode, resulting in the degradation of electrode performance.

  2. Diameter Dependence of Giant Magneto-Impedance Effect in Co-BASED Melt Extracted Amorphous Wires

    NASA Astrophysics Data System (ADS)

    Zhang, Shuling; Xing, Dawei; Sun, Jianfei

    2011-06-01

    Naked Co68.25Fe4.5Si12.25B15 amorphous wires of 67μm, 56μm, 52μm, 47μm and 31μm in diameter are produced by melt extraction method. Their giant magneto impedance (GMI) effect is investigated at frequencies from 0.1MHz to13MHz. Significant diameter dependence of GMI effect is studied. Thicker wires exhibit strong GMI effect and have clear characteristic frequencies at which their impedance ratio ΔZ/Z are largest. Largest impedance response is obtained in 67μm wires with the ΔZ/Z of 442% and field sensitivity of 71.5%/Oe. Wires of 31μm in diameter show increasing ΔZ/Z as frequency and have a steady field sensitivity of 30.7-33.6%/Oe in a wide frequency range from 3MHz to 13MHz. The different frequency dependence of GMI effect is discussed in the light of the skin effect. These amorphous wires are suitable for applications in high performance field sensors and can fit different demand.

  3. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images.

    PubMed

    Ueda, Hiroshi; Ida, Yasuo; Kadota, Kazunori; Tozuka, Yuichi

    2014-02-28

    The feasibility of Raman mapping for understanding the crystallization mechanism of an amorphous drug was investigated using described images. The crystallization tendency of amorphous indomethacin under dry condition at 30 °C was kinetically evaluated by means of Raman mapping and X-ray powder diffraction (XRPD) with change in the calculated crystallinities. Raman images directly revealed the occurrence of particle size-dependent non-uniform crystallization; slow crystallization of large particles, but fast crystallization of small particles. Kinetic analysis by fitting to the Kolmogorov-Johnson-Mehl-Avrami equation was performed for the crystallization profiles of both Raman mapping and XRPD data. For the Raman mapping data, the distribution of large particles was characterized and examined. The kinetic parameters calculated from the whole Raman image area agreed well with those of XRPD, suggesting accurate prediction of both techniques for the entire crystallization. Raman images revealed the change in the crystallization mechanism for the focused area; the large particles showed a reduced crystallization rate constant and an increase in the dimensional crystal growth exponent. Raman mapping is an attractive tool for quantitative and kinetic investigation of the crystallization mechanism with distributional images. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Amorphous SiC layers for electrically conductive Rugate filters in silicon based solar cells

    NASA Astrophysics Data System (ADS)

    Janz, S.; Peters, M.; Künle, M.; Gradmann, R.; Suwito, D.

    2010-05-01

    The subject of this work is the development of an electrically conductive Rugate filter for photovoltaic applications. We think that the optical as well as the electrical performance of the filter can be adapted especially to the requirements of crystalline Si thin-film and amorphous/crystalline silicon tandem solar cells. We have deposited amorphous hydrogenated Silicon Carbide layers (a-SixC1-x:H) with the precursor gases methane (CH4), silane (SiH4) and diborane (B2H6) applying Plasma Enhanced Chemical Vapour Deposition (PECVD). Through changing just the precursor flows a floating refractive index n from 1.9 to 3.5 (at 633 nm) could be achieved quite accurately. Different complex layer stacks (up to 200 layers) with a sinusoidal refractive index variation normal to the incident light were deposited in just 80 min on 100x100 mm2. Transmission measurements show good agreement between simulation and experiment which proofs our ability to control the deposition process, the good knowledge of the optical behaviour of the different SiC single layers and the advanced stage of our simulation model. The doped single layers show lateral conductivities which were extremely dependent on the Si/C ratio.

  5. White light emission from heterojunction diodes based on surface-oxidized porous Si nanowire arrays and amorphous In-Ga-Zn-O capping

    NASA Astrophysics Data System (ADS)

    Moon, Kyeong-Ju; Lee, Tae Il; Lee, Woong; Myoung, Jae-Min

    2014-03-01

    A novel heterojunction white light emitting diode (LED) structure based on an array of vertically aligned surface-passivated p-type porous Si nanowires (PSiNWs) with n-type amorphous In-Ga-Zn-O (a-IGZO) capping is introduced. PSiNWs were initially synthesized by electroless etching of p-type Si (100) wafers assisted by Ag nanoparticle catalysts and then surface-passivated by thermal oxidation. The nanowires synthesized by metal-assisted electroless etching were found to have longitudinally varying nanoporous morphologies due to differences in the duration of exposure to etching environment. These PSiNWs were optically active with orange red photoluminescence consisting of dark red to yellow emissions attributable to quantum confinement effects and to modified band structures. The LED structures emitted visible white light while exhibiting rectifying current-voltage characteristics. The white light emission was found to be the result of the combination of dark red to yellow emissions originating from the quantum confinement effect within the PSiNWs and green to blue emissions due to the oxygen-deficiency-related recombination centers introduced during the surface oxidation.A novel heterojunction white light emitting diode (LED) structure based on an array of vertically aligned surface-passivated p-type porous Si nanowires (PSiNWs) with n-type amorphous In-Ga-Zn-O (a-IGZO) capping is introduced. PSiNWs were initially synthesized by electroless etching of p-type Si (100) wafers assisted by Ag nanoparticle catalysts and then surface-passivated by thermal oxidation. The nanowires synthesized by metal-assisted electroless etching were found to have longitudinally varying nanoporous morphologies due to differences in the duration of exposure to etching environment. These PSiNWs were optically active with orange red photoluminescence consisting of dark red to yellow emissions attributable to quantum confinement effects and to modified band structures. The LED structures

  6. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  7. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  8. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  9. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  10. 21 CFR 872.3710 - Base metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  11. The Role of Partial Crystallinity on Hydrogen Permeation in Fe–Ni–B–Mo Based Metallic Glass Membranes

    SciTech Connect

    Brinkman, K.; Su, D.; Fox, E.; Korinko, P.; Missimer, D.; Adams, T.

    2011-08-15

    A potentially exciting material for membrane separations are metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen embrittlement as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. This study reports on the investigation of time and temperature dependent crystalline phase formation in conjunction with in situ crystallization/hydrogen permeation experiments at elevated temperatures. At temperatures near 400 C a FeNi crystalline phase appears as 22 vol.% inside the host amorphous matrix and the resulting composite structure remains stable over 3 h at temperature. The hydrogen permeation at 400 C of the partially crystalline material is similar to the fully amorphous material near 5 x 10{sup -9} mol H{sub 2}/m s Pa{sup 1/2}, while ambient temperature electrochemical permeation at 25 C revealed an order of magnitude decrease in the permeation of partially crystalline materials due to differences in the amorphous versus crystalline phase activation energy for hydrogen permeation.

  12. Antimicrobial metal-based thiophene derived compounds.

    PubMed

    Yasmeen, Shakeela; Sumrra, Sajjad Hussain; Akram, Muhammad Safwan; Chohan, Zahid H

    2017-12-01

    A novel series of thiophene derived Schiff bases and their transition metal- [Co(II), Cu(II), Zn(II), Ni(II)] based compounds are reported. The Schiff bases act as tridentate ligands toward metal ions via azomethine-N, deprotonated-N of ammine substituents and S-atom of thienyl moiety. The synthesized ligands along with their metal complexes were screened for their in vitro antibacterial activity against six bacterial pathogens (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal pathogens (Trichophytonlongifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata). The results of antimicrobial studies revealed the free ligands to possess potential activity which significantly increased upon chelation.

  13. Alternative DNA base pairing through metal coordination.

    PubMed

    Clever, Guido H; Shionoya, Mitsuhiko

    2012-01-01

    Base-pairing in the naturally occurring DNA and RNA oligonucleotide duplexes is based on π-stacking, hydrogen bonding, and shape complementarity between the nucleobases adenine, thymine, guanine, and cytosine as well as on the hydrophobic-hydrophilic balance in aqueous media. This complex system of multiple supramolecular interactions is the product of a long-term evolutionary process and thus highly optimized to serve its biological functions such as information storage and processing. After the successful implementation of automated DNA synthesis, chemists have begun to introduce artificial modifications inside the core of the DNA double helix in order to study various aspects of base pairing, generate new base pairs orthogonal to the natural ones, and equip the biopolymer with entirely new functions. The idea to replace the hydrogen bonding interactions with metal coordination between ligand-like nucleosides and suitable transition metal ions culminated in the development of a plethora of artificial base-pairing systems termed "metal base-pairs" which were shown to strongly enhance the DNA duplex stability. Furthermore, they show great potential for the use of DNA as a molecular wire in nanoscale electronic architectures. Although single electrons have proven to be transmitted by natural DNA over a distance of several base pairs, the high ohmic resistance of unmodified oligonucleotides was identified as a serious obstacle. By exchanging some or all of the Watson-Crick base pairs in DNA with metal complexes, this problem may be solved. In the future, these research efforts are supposed to lead to DNA-like materials with superior conductivity for nano-electronic applications. Other fields of potential application such as DNA-based supramolecular architecture and catalysis may be strongly influenced by these developments as well. This text is meant to illustrate the basic concepts of metal-base pairing and give an outline over recent developments in this field.

  14. Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting

    NASA Astrophysics Data System (ADS)

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco

    2016-01-01

    We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ~20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics.

  15. Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting.

    PubMed

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco

    2016-02-07

    We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ∼20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics.

  16. Transition metal based borohydrides for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Jayanthi, Chakram; Liu, Jianjun; Wei, Suhuai; Zhao, Yufeng

    2010-03-01

    Using ab-initio studies based on the density-functional theory, we have calculated binding energies per hydrogen molecule for decomposition reactions of transition metal borohydrides MHxB12H12 to MB12 structures, where M corresponds to Sc, Ti, or V. Depending on the valence of the transition metal, x can be 1, 2, or 3. Crystal structures considered for MB12 included both hypothetical and those found in the international crystallographic structural database. On the other hand, the crystal structure considered for MHxB12H12 belongs to C2/c (space group 15) structure as reported in a previous study [V. Ozolins et al. JACS, 131, 230 (2009)]. Among the structures investigated, Titanium-based metal borohydride structure has the lowest binding energy per hydrogen molecule relative to the cubic TiB12 structure (˜0.37 eV/H2). Our finding should be contrasted with the binding energy/H2 for simple metal based borohydrides (e.g., CaB12H12 ), which has a value of ˜ 1.5 eV/H2, suggesting that transition metals play a significant role in lowering the H2 binding energy in borohydrides.

  17. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids.

    PubMed

    Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana

    2015-04-09

    An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Al/AlN/InP Metal-Insulator-Semiconductor-Diode Characteristics with Amorphous AlN Films Deposited by Electron-Cyclotron-Resonance Sputtering

    NASA Astrophysics Data System (ADS)

    Saito, Kunio; Ono, Toshiro; Shimada, Masaru; Shigekawa, Naoteru; Enoki, Takatomo

    2005-01-01

    Amorphous AlN films deposited by sputtering using electron cyclotron resonance (ECR) plasma were used to form AlN/n-InP metal-insulator-semiconductor diodes. The AlN films were deposited without substrate heating. Capacitance-voltage (C-V) measurements showed a small hysteresis window of ˜35 mV for a 2-nm-thick AlN film, and frequency dispersion was much improved by post-deposition annealing at 200°C in an H2 gas atmosphere. We estimated the interface-trap density to be 3× 1012 cm-2eV-1 by comparing 10-kHz and 1-MHz C-V curves. Small leakage currents of less than 2 mA/cm2 at a bias voltage of 1 V were obtained for the 2-nm-thick film. To clarify the effect of the deposition methods, AlN films were deposited by conventional magnetron sputtering. ECR sputtering provided better C-V and current-voltage characteristics than magnetron sputtering for as-deposited AlN films, showing that good metal-insulator-semiconductor (MIS) properties arise because of the suitable deposition method and the good combination of materials. An analysis of surface atoms on the InP substrate by secondary ion mass spectrometry showed a large oxygen concentration on the order of 1022 cm-3, which is not preferable for MIS diode properties. Surface cleaning using dilute HF reduced oxygen and carbon concentrations to less than half.

  19. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating.

    PubMed

    Solano, Manuel; Faryad, Muhammad; Hall, Anthony S; Mallouk, Thomas E; Monk, Peter B; Lakhtakia, Akhlesh

    2013-02-10

    The rigorous coupled-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic surface-relief grating as its back reflector. The absorptance is a function of the angle of incidence and the polarization state of incident light; the free-space wavelength; and the period, duty cycle, the corrugation height, and the shape of the unit cell of the surface-relief grating. The solar cell was assumed to be made of hydrogenated amorphous-silicon alloys and the back reflector of bulk aluminum. The incidence and the grating planes were taken to be identical. The AM1.5 solar irradiance spectrum was used for computations in the 400-1100 nm wavelength range. Inspection of parametric plots of the solar-spectrum-integrated (SSI) absorption efficiency and numerical optimization using the differential evolution algorithm were employed to determine the optimal surface-relief grating. For direct insolation, the SSI absorption efficiency is maximizable by appropriate choices of the period, the duty cycle, and the corrugation height, regardless of the shape of the corrugation in each unit cell of the grating. A similar conclusion also holds for diffuse insolation, but the maximum efficiency for diffuse insolation is about 20% smaller than for direct insolation. Although a tin-doped indium-oxide layer at the front and an aluminum-doped zinc-oxide layer between the semiconductor material and the backing metallic layer change the optimal depth of the periodic corrugations, the optimal period of the corrugations does not significantly change.

  20. H+-induced irradiation damage resistance in Fe- and Ni-based metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Hongran; Mei, Xianxiu; Zhang, Xiaonan; Li, Xiaona; Wang, Yingmin; Sun, Jianrong; Wang, Younian

    2016-05-01

    In this study, use of 40-keV H+ ion for irradiating metallic glass Fe80Si7.43B12.57 and Ni62Ta38 as well as metallic tungsten (W) at fluences of 1 × 1018 and 3 × 1018 ions/cm2, respectively, was investigated. At the fluence of 1 × 1018 ions/cm2, a crystalline layer appeared in metallic glass Fe80Si7.43B12.57, with α-Fe as the major crystalline phase, coupled with a little Fe2B, Fe3B, and metastable β-Mn-type phase. Fe80Si7.43B12.57 exhibited good soft magnetic properties after irradiation. At the fluence of 3 × 1018 ions/cm2, Ni62Ta38 was found to be amorphous-based, with a little μ-NiTa and Ni3Ta phases. No significant irradiation damage phenomenon appeared in metallic glasses Fe80Si7.43B12.57 and Ni62Ta38. Blistering, flaking, and other damage occurred on the surface of metallic W, and the root-mean-square (RMS) roughness increased with the increase of fluence. Metallic glass Ni62Ta38 exhibited better resistance to H+ irradiation than Fe80Si7.43B12.57, both of which were superior to the metallic W.

  1. Full breast digital mammography with an amorphous silicon-based flat panel detector: physical characteristics of a clinical prototype.

    PubMed

    Vedantham, S; Karellas, A; Suryanarayanan, S; Albagli, D; Han, S; Tkaczyk, E J; Landberg, C E; Opsahl-Ong, B; Granfors, P R; Levis, I; D'Orsi, C J; Hendrick, R E

    2000-03-01

    The physical characteristics of a clinical prototype amorphous silicon-based flat panel imager for full-breast digital mammography have been investigated. The imager employs a thin thallium doped CsI scintillator on an amorphous silicon matrix of detector elements with a pixel pitch of 100 microm. Objective criteria such as modulation transfer function (MTF), noise power spectrum, detective quantum efficiency (DQE), and noise equivalent quanta were employed for this evaluation. The presampling MTF was found to be 0.73, 0.42, and 0.28 at 2, 4, and 5 cycles/mm, respectively. The measured DQE of the current prototype utilizing a 28 kVp, Mo-Mo spectrum beam hardened with 4.5 cm Lucite is approximately 55% at close to zero spatial frequency at an exposure of 32.8 mR, and decreases to approximately 40% at a low exposure of 1.3 mR. Detector element nonuniformity and electronic gain variations were not significant after appropriate calibration and software corrections. The response of the imager was linear and did not exhibit signal saturation under tested exposure conditions.

  2. Effects of Changes in Chemistry on Flex Bending Fatigue Behavior of Al-Based Amorphous Alloy Ribbons

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Kuo; Lewandowski, John J.

    2012-08-01

    The effects of changes in composition on the flow behavior and flex bending fatigue behavior of a series of Al-Gd-Ni- X ( X = Fe or Co) amorphous alloy ribbons have been determined at 1 Hz at room temperature. It has been shown that the addition of Fe, Co, and Fe/Co combination into these materials increases the strength, T g, and T x1 in addition to the activation energy for crystallization. The lowest strength ( i.e., 880 MPa) base alloy Al87Gd6Ni7 exhibited the best low-cycle fatigue (LCF) and worst high-cycle fatigue (HCF) behavior, whereas the higher strength alloys (~1100 MPa) Al85Gd6Ni7Fe2 and Al85Gd6Ni7Fe1Co1 exhibited worse LCF and better HCF behavior. The ratio of the stress amplitude at the fatigue limit at 1 × 106 cycles to uniaxial failure strength ranged from 0.25 to 0.37 (240 to 397 MPa), much higher than conventional aluminum alloys. These results are also compared with those obtained on other amorphous alloy ribbons.

  3. Hydrogenated amorphous silicon based p-i-n structures with Si and Ge nanocrystals in i-layers

    NASA Astrophysics Data System (ADS)

    Volodin, V. A.; Krivyakin, G. K.; Shklyaev, A. A.; Kochubei, S. A.; Kamaev, G. N.; Dvurechendkii, A. V.; Purkrt, A.; Remes, Z.; Fajgar, R.; Stuchliková, T. H.; Stuchlik, J.

    2016-12-01

    Silicon nanocrystals and germanium nanolayers and nanocrystals were created into i-layers of p-i-n structures based on thin hydrogenated amorphous silicon films. The nanocrystals were formed using pulsed laser annealing with an excimer XeCl laser generating pulses with the wavelength of 308 nm and the duration of 15 ns. The laser fluence was varied from 100 (that is below the melting threshold) to 250 mJ/cm2 (above the threshold). The laser treatment allowed the formation of the nanoscrystals with the average size from 2 to 5 nm, depending on the laser-annealing parameters. The size of nanocrystals (in Si and Ge layers) and their Si-Ge composition (in GeSi alloy structures) was estimated through Raman spectra analysis. The structural parameters of Si, Ge and GeSi nanocrystals were also studied using electron microscopy and atomic force microscopy. Current-voltage measurements showed that the p-i-n structures exhibit diode characteristics. The diodes with Si nanocrystals produced the electroluminescence peak in the infrared range (0.9-1.0 eV), which spectral position was dependent on the laser annealing conditions. It was suggested that radiative transitions are related to the nanocrystal/amorphous silicon matrix interface states. The proposed approach can be used for producing of solar cells or light-emitting diodes on non-refractory substrates.

  4. Characterization of oxide layers on amorphous Mg-based alloys by Auger electron spectroscopy with sputter depth profiling.

    PubMed

    Baunack, S; Subba Rao, R V; Wolff, U

    2003-04-01

    Amorphous ribbons of Mg-Y-TM-[Ag] (TM: Cu, Ni), prepared by melt spinning, were subjected to electrochemical investigations. Oxide layers formed anodically under potentiostatic control in different electrolytes were investigated by AES and sputter depth profiling. Problems and specific features of characterization of the composition of oxide layers and amorphous ternary or quaternary Mg-based alloys have been investigated. In the alloys the Mg(KL(23)L(23)) peak exhibits a different shape compared to that in the pure element. Analysis of the peak of elastically scattered electrons proved the absence of plasmon loss features, characteristic of pure Mg, in the alloy. A different loss feature emerges in Mg(KL(23)L(23)) and Cu(L(23)VV). The system Mg-Y-TM-[Ag] suffers preferential sputtering. Depletion of Mg and enrichment of TM and Y are found. This is attributed mainly to the preferential sputtering of Mg. Thickness and composition of the formed oxide layer depend on the electrochemical treatment. After removing the oxide by sputtering the concentration of the underlying alloy was found to be affected by the treatment.

  5. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide.

    PubMed

    Noviyana, Imas; Lestari, Annisa Dwi; Putri, Maryane; Won, Mi-Sook; Bae, Jong-Seong; Heo, Young-Woo; Lee, Hee Young

    2017-06-26

    Top-contact bottom-gate thin film transistors (TFTs) with zinc-rich indium zinc tin oxide (IZTO) active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C.

  6. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    PubMed Central

    Noviyana, Imas; Lestari, Annisa Dwi; Putri, Maryane; Won, Mi-Sook; Bae, Jong-Seong; Heo, Young-Woo; Lee, Hee Young

    2017-01-01

    Top-contact bottom-gate thin film transistors (TFTs) with zinc-rich indium zinc tin oxide (IZTO) active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C. PMID:28773058

  7. New Order-Parameter-Based Method for Characterizing Radiation Damage in Amorphous Materials.

    PubMed

    Galanakis, Nikolaos; Travis, Karl P

    2017-10-02

    We present a new method of characterizing damage arising from α-recoil cascades in amorphous materials including glasses. The approach taken is topological, yielding information on atom connectivity and utilizing complete sets of orthogonal functions (spherical harmonics and Hermite functions) to compute order parameters. The utility of our new approach is demonstrated by first applying it to models of radiation-damaged crystalline zircon, enabling validation against the standard defect counting method (Wigner-Seitz). We then apply it to a simple model of a glass, obtained by supercooling a Lennard-Jones liquid, for which defect counting methods are inapplicable. The method shows great promise for use in characterizing damage in more complicated glasses, particularly those of interest in the immobilization of nuclear waste, and when used in conjunction with nonequilibrium computer simulation could be a powerful tool to elucidate experimental data on the radiation tolerance of such wasteforms.

  8. Numerical simulation of offset-drain amorphous oxide-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Jeong, Jaewook

    2016-11-01

    In this study, we analyzed the electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with an offset-drain structure by technology computer aided design (TCAD) simulation. When operating in a linear region, an enhancement-type TFT shows poor field-effect mobility because most conduction electrons are trapped in acceptor-like defects in an offset region when the offset length (L off) exceeds 0.5 µm, whereas a depletion-type TFT shows superior field-effect mobility owing to the high free electron density in the offset region compared with the trapped electron density. When operating in the saturation region, both types of TFTs show good field-effect mobility comparable to that of a reference TFT with a large gate overlap. The underlying physics of the depletion and enhancement types of offset-drain TFTs are systematically analyzed.

  9. Bio-Based Bisfuran: Synthesis, Crystal Structure and Low Molecular Weight Amorphous Polyester.

    PubMed

    Gaitonde, Vishwanath; Lee, Kyunghee; Kirschbaum, Kristin; Sucheck, Steven J

    2014-07-23

    Discovery of renewable monomer feedstocks for fabrication of polymeric demand is critical in achieving sustainable materials. In the present work we have synthesized bisfuran diol (BFD) monomer from furfural, over four steps. BFD was examined via X-ray crystallography to understand the molecular arrangement in space, hydrogen bonding and packing of the molecules. This data was further used to compare BFD with structurally related Bisphenol A (BPA), and its known derivatives to predict the potential estrogenic or anti-estrogenic activities in BFD. Further, BFD was reacted with succinic acid to generate polyester material, bisfuran polyester (BFPE-1). MALDI characterization of BFPE-1 indicates low molecular weight polyester and thermal analysis reveals amorphous nature of the material.

  10. Giant magnetoimpedance of Fe- and Co-based amorphous wires up to 2 GHz

    NASA Astrophysics Data System (ADS)

    da Silva, R. B.; de Andrade, A. M. H.; Severino, A. M.; Viegas, A. D. C.; Sommer, R. L.

    2002-08-01

    In this work, results on the magnetoimpedance (MI) of magnetic amorphous wires with nominal compositions Fe 77.5Si 7.5B 15, Co 68.15Fe 4.35Si 12.5B 15 and Co 72.5Si 12.5B 15 are presented. The impedance Z= R+ iX has been investigated as function of frequency (from 100 kHz up to 1.8 GHz) and magnetic field, using a HP4396B impedance analyzer and an appropriate coaxial microwave cavity. The effects of the length of the samples (from 7 to 80 mm) and of thermal treatments for anisotropy induction (Joule heating, 600 mA for 30 min) have been investigated.

  11. A novel composite material based on antimony(III) oxide and amorphous silica

    SciTech Connect

    Zemnukhova, Ludmila A.; Panasenko, Alexander E.

    2013-05-01

    The composite material nSb₂O₃·mSiO₂·xH₂O was prepared by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. It has been shown that the composition of the material is influenced by the ratio of the initial components and the acidity of the reaction medium. The morphology of the material particles and its specific surface area have been determined. The thermal and optic properties were also investigated. - Graphical abstract: Novel composite material containing amorphous silica and crystal antimony(III) oxide has been synthesized by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. Highlights: • The composite material nSb₂O₃·mSiO₂·xH₂O was prepared in an aqueous medium. • The composition of the material is controllable by a synthesis conditions. • The morphology of the material and its optic properties have been determined.

  12. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production.

    PubMed

    Lin, Yongjing; Battaglia, Corsin; Boccard, Mathieu; Hettick, Mark; Yu, Zhibin; Ballif, Christophe; Ager, Joel W; Javey, Ali

    2013-01-01

    An amorphous Si thin film with TiO2 encapsulation layer is demonstrated as a highly promising and stable photocathode for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0.93 V vs RHE and saturation photocurrent of 11.6 mA/cm(2) are measured. Importantly, the a-Si photocathodes exhibit impressive photocurrent of ~6.1 mA/cm(2) at a large positive bias of 0.8 V vs RHE, which is the highest for all reported photocathodes at such positive potential. Ni-Mo alloy is demonstrated as an alternative low-cost catalyst with onset potential and saturation current similar to those obtained with platinum. This low-cost photocathode with high photovoltage and current is a highly promising photocathode for solar hydrogen production.

  13. Near-surface magnetic properties of Co-based amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Shalyguina, E. E.; Ganshina, E. A.; Rheem, Young-Woo; Kim, Cheol Gi; Kim, Chong-Oh

    2003-04-01

    The near-surface magnetic properties of as-cast and annealed (for various times in open air at a temperature T=380°C) Co 66Fe 4B 15Si 15 amorphous ribbons were studied by using a magneto-optical magnetometer. The effect of etching of the annealed samples on their near-surface magnetic properties was investigated. The annealed samples exhibit the presence of a hard near-surface magnetic layer. The hysteresis loops of the etched ribbons change strongly. For etching times ( tetch) larger than 50 s, an influence of the ribbon core on the near-surface magnetic properties of the sample was observed. For tetch>120 s, the hysteresis loops and other magnetic properties of the etched and as-cast samples were practically identical.

  14. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    PubMed

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.

  15. Surface patterning for brittle amorphous material using nanoindenter-based mechanochemical nanofabrication.

    PubMed

    Park, Jeong Woo; Lee, Chae Moon; Choi, Soo Chang; Kim, Yong Woo; Lee, Deug Woo

    2008-02-27

    This paper demonstrates a micro/nanoscale surface patterning technology for brittle material using mechanical and chemical processes. Fused silica was scratched with a Berkovich tip under various normal loads from several mN to several tens of mN with various tip rotations. The scratched substrate was then chemically etched in hydrofluoric solution to evaluate the chemical properties of the different deformed layers produced under various mechanical scratching conditions. Our results showed that either protruding or depressed patterns could be generated on the scratched surface after chemical etching by controlling the tip rotation, the normal load and the etching condition. In addition, the mask effect of amorphous material after mechanical scratching was controlled by conventional mechanical machining conditions such as contact area, chip formation, plastic flow and material removal.

  16. On the Tendency of the Co-, Ni-, and Fe-Based Melts to the Bulk Amorphization

    NASA Astrophysics Data System (ADS)

    Sterkhova, Irina V.; Lad'yanov, Vladimir I.; Kamaeva, Larisa V.; Umnova, Nadezhda V.; Umnov, Pavel P.

    2016-11-01

    In this article, the influence of the liquid phase state on the glass-forming ability and solidification processes of the Co65.5Fe6.5Si18B10, Ni64.4Fe4Cr4.9Mn2B16.2C0.5Si8, and Fe50Cr15Mo14C15B6 alloys was studied. It was shown that in conditions of quenching from the melt at ~103 K/s, the largest fraction of the amorphous phase is achieved by cooling from a narrow temperature range near 1573 K (1300 °C) for Co65.5Fe6.5Si18B10, 1503 K (1230 °C) for Ni64.4Fe4Cr4.9Mn2B16.2C0.5Si8, and 1653 K (1380 °C) for Fe50Cr15Mo14C15B6. It was found that at these temperatures, there are anomalies in the viscosity and undercooling polytherms caused by changes in short-range ordering in these melts. Overheating the Co65.5Fe6.5Si18B10, Ni64.4Fe4Cr4.9Mn2B16.2C0.5Si8, and Fe50Cr15Mo14C15B6 melts above these temperatures is accompanied by changing the nature of their crystallization. It was shown that the analysis of the temperature dependences of undercooling and kinematic viscosity can be used to determine the optimum temperatures of the melts quenching to achieve their best bulk amorphization.

  17. Thulium-based bulk metallic glass

    SciTech Connect

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-04-07

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs.

  18. On amorphization and nanocomposite formation in Al-Ni-Ti system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Das, N.; Dey, G. K.; Murty, B. S.; Pabi, S. K.

    2005-11-01

    Amorphous structure generated by mechanical alloying (MA) is often used as a precursor for generating nanocomposites through controlled devitrification. The amorphous forming composition range of ternary Al-Ni-Ti system was calculated using the extended Miedema's semi-empirical model. Eleven compositions of this system showing a wide range of negative enthalpy of mixing (-Delta H^mix) and amorphization (-Delta H^amor) of the constituent elements were selected for synthesis by MA. The Al_{88}Ni_{6}Ti_{6 } alloy with relatively small negative Delta H^mix (-0.4 kJ/mol) and Delta H^amor (-14.8 kJ/mol) became completely amorphous after 120 h of milling, which is possibly the first report of complete amorphization of an Al-based rare earth element free Al-TM-TM system (TM = transition metal) by MA. The alloys of other compositions selected had much more negative Delta H^mix and H^amor; but they yielded either nanocomposites of partial amorphous and crystalline structure or no amorphous phase at all in the as-milled condition, evidencing a high degree of stability of the intermetallic phases under the MA environment. Hence, the negative Delta H^mix and Delta H^amor are not so reliable for predicting the amorphization in the present system by MA.

  19. Phase transformations and thermodynamics of aluminum-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  20. Model of thermally activated magnetization reversal in thin films of amorphous rare-earth-transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Lyberatos, A.; Earl, J.; Chantrell, R. W.

    1996-03-01

    Monte Carlo simulations on a two-dimensional lattice of magnetic dipoles have been performed to investigate the magnetic reversal by thermal activation in rare-earth-transition-metal (RE-TM) alloys. Three mechanisms of magnetization reversal were observed: nucleation dominated growth, nucleation followed by the growth of magnetic domains containing no seeds of unreversed magnetization, and nucleation followed by dendritic domain growth by successive branching in the motion of the domain walls. The domain structures are not fractal; however, the fractal dimension of the domain wall was found to be a good measure of the jaggedness of the domain boundary surface during the growth process. The effects of the demagnetizing field on the hysteretic and time-dependent properties of the thin films were studied and some limitations in the application of the Fatuzzo model on magneto-optic media are identified.