Modeling a Common-Source Amplifier Using a Ferroelectric Transistor
NASA Technical Reports Server (NTRS)
Sayyah, Rana; Hunt, Mitchell; MacLeond, Todd C.; Ho, Fat D.
2010-01-01
This paper presents a mathematical model characterizing the behavior of a common-source amplifier using a FeFET. The model is based on empirical data and incorporates several variables that affect the output, including frequency, load resistance, and gate-to-source voltage. Since the common-source amplifier is the most widely used amplifier in MOS technology, understanding and modeling the behavior of the FeFET-based common-source amplifier will help in the integration of FeFETs into many circuits.
A Mathematical Model of a Simple Amplifier Using a Ferroelectric Transistor
NASA Technical Reports Server (NTRS)
Sayyah, Rana; Hunt, Mitchell; MacLeod, Todd C.; Ho, Fat D.
2009-01-01
This paper presents a mathematical model characterizing the behavior of a simple amplifier using a FeFET. The model is based on empirical data and incorporates several variables that affect the output, including frequency, load resistance, and gate-to-source voltage. Since the amplifier is the basis of many circuit configurations, a mathematical model that describes the behavior of a FeFET-based amplifier will help in the integration of FeFETs into many other circuits.
Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model
NASA Astrophysics Data System (ADS)
Chen, Jinglong; Zhang, Chunlin; Xu, Minglong; Zi, Yanyang; Zhang, Xinong
2015-01-01
This paper proposes rhombic micro-displacement amplifier (RMDA) for piezoelectric actuator (PA). First, the geometric amplification relations are analyzed and linear model is built to analyze the mechanical and electrical properties of this amplifier. Next, the accurate modeling method of amplifier is studied for important application of precise servo control. The classical Preisach model (CPM) is generally implemented using a numerical technique based on the first-order reversal curves (FORCs). The accuracy of CPM mainly depends on the number of FORCs. However, it is generally difficult to achieve enough number of FORCs in practice. So, Support Vector Machine (SVM) is employed in the work to circumvent the deficiency of the CPM. Then the hybrid model, which is based on discrete CPM and SVM is developed to account for hysteresis and dynamic effects. Finally, experimental validation is carried out. The analyzed result shows that this amplifier with the hybrid model is suitable for control application.
Implementation of a digital evaluation platform to analyze bifurcation based nonlinear amplifiers
NASA Astrophysics Data System (ADS)
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2016-09-01
Recently, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have become a focus of attention, especially in the modeling of the mammalian hearing organ. In general, to gain deeper insights in the input-output behavior, the analysis of bifurcation based amplifiers requires a flexible framework to exchange equations and adjust certain parameters. A DSP implementation is presented which is capable to analyze various amplifier systems. Amplifiers based on the Andronov-Hopf and Neimark-Sacker bifurcations are implemented and compared exemplarily. It is shown that the Neimark-Sacker system remarkably outperforms the Andronov-Hopf amplifier regarding the CPU usage. Nevertheless, both show a similar input-output behavior over a wide parameter range. Combined with an USB-based control interface connected to a PC, the digital framework provides a powerful instrument to analyze bifurcation based amplifiers.
Gong, Mali; Yuan, Yanyang; Li, Chen; Yan, Ping; Zhang, Haitao; Liao, Suying
2007-03-19
A model based on propagation-rate equations with consideration of transverse gain distribution is built up to describe the transverse mode competition in strongly pumped multimode fiber lasers and amplifiers. An approximate practical numerical algorithm by multilayer method is presented. Based on the model and the numerical algorithm, the behaviors of multitransverse mode competition are demonstrated and individual transverse modes power distributions of output are simulated numerically for both fiber lasers and amplifiers under various conditions.
The generation of amplified spontaneous emission in high-power CPA laser systems.
Keppler, Sebastian; Sävert, Alexander; Körner, Jörg; Hornung, Marco; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte Christoph
2016-03-01
An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high-intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high-intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high-contrast front-end design are derived regarding the necessary contrast improvement and the amplified "clean" output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high-intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.
Simulation of energy buildups in solid-state regenerative amplifiers for 2-μm emitting lasers
NASA Astrophysics Data System (ADS)
Springer, Ramon; Alexeev, Ilya; Heberle, Johannes; Pflaum, Christoph
2018-02-01
A numerical model for solid-state regenerative amplifiers is presented, which is able to precisely simulate the quantitative energy buildup of stretched femtosecond pulses over passed roundtrips in the cavity. In detail, this model is experimentally validated with a Ti:Sapphire regenerative amplifier. Additionally, the simulation of a Ho:YAG based regenerative amplifier is conducted and compared to experimental data from literature. Furthermore, a bifurcation study of the investigated Ho:YAG system is performed, which leads to the identification of stable and instable operation regimes. The presented numerical model exhibits a well agreement to the experimental results from the Ti:Sapphire regenerative amplifier. Also, the gained pulse energy from the Ho:YAG system could be approximated closely, while the mismatch is explained with the monochromatic calculation of pulse amplification. Since the model is applicable to other solid-state gain media, it allows for the efficient design of future amplification systems based on regenerative amplification.
NASA Astrophysics Data System (ADS)
Jia, Xin-Hong; Wu, Zheng-Mao; Xia, Guang-Qiong
2006-12-01
It is well known that the gain-clamped semiconductor optical amplifier (GC-SOA) based on lasing effect is subject to transmission rate restriction because of relaxation oscillation. The GC-SOA based on compensating effect between signal light and amplified spontaneous emission by combined SOA and fiber Bragg grating (FBG) can be used to overcome this problem. In this paper, the theoretical model on GC-SOA based on compensating light has been constructed. The numerical simulations demonstrate that good gain and noise figure characteristics can be realized by selecting reasonably the FBG insertion position, the peak reflectivity of FBG and the biasing current of GC-SOA.
Optimisation of cascaded Yb fiber amplifier chains using numerical-modelling
NASA Astrophysics Data System (ADS)
He, F.; Price, J. H.; Vu, K. T.; Malinowski, A.; Sahu, J. K.; Richardson, D. J.
2006-12-01
We show that it is possible to adapt existing software packages developed originally for modeling telecommunication devices and systems to reliably predict and optimize the performance of high-power Ytterbium-doped fiber amplifier and laser systems. The ready availability of a flexible, user-friendly design tool should be of considerable practical interest to scientists and engineers working with this important new laser technology since Ytterbium amplifier and amplifier cascades are often difficult to optimize experimentally due to the three-level nature of the Ytterbium laser transition. As examples of the utility and accuracy of the software, as well as the complexity of the systems and amplifier properties that can be successfully modeled, we present a comparison of experimental and theoretical results for individual core and cladding pumped amplifiers, and also for an ultra-short pulse four-stage amplifier system optimized both to provide a broad gain bandwidth and to minimize nonlinear effects. We also show how high energy 100 ns pulses with complex user definable temporal profiles can be created in a gain-saturated amplifier by suitable pre-shaping of the low-energy input pulses. Furthermore, with appropriate modifications the same software package can be applied to fiber amplifiers based on other rare-earth elements and glass hosts.
Implantable neurotechnologies: a review of integrated circuit neural amplifiers.
Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V
2016-01-01
Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.
Implantable neurotechnologies: a review of integrated circuit neural amplifiers
Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V.
2016-01-01
Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification. PMID:26798055
High power diode laser Master Oscillator-Power Amplifier (MOPA)
NASA Technical Reports Server (NTRS)
Andrews, John R.; Mouroulis, P.; Wicks, G.
1994-01-01
High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.
1997 Technology Applications Report,
1997-01-01
handle high -power loads at microwave radio frequencies , microwave vacuum tubes remain the chosen technology to amplify high power. Aria Microwave...structure called the active RF cavity amplifier (ARFCA). With this design , the amplifier handles high -power loads at radio and microwave frequencies ...developed this technology using BMDO-funded modeling methods designed to simulate the dynamics of large space-based structures. Because it increases
Su, Hui; Kondratko, Piotr; Chuang, Shun L
2006-05-29
We investigate variable optical delay of a microwave modulated optical beam in semiconductor optical amplifier/absorber waveguides with population oscillation (PO) and nearly degenerate four-wave-mixing (NDFWM) effects. An optical delay variable between 0 and 160 ps with a 1.0 GHz bandwidth is achieved in an InGaAsP/InP semiconductor optical amplifier (SOA) and shown to be electrically and optically controllable. An analytical model of optical delay is developed and found to agree well with the experimental data. Based on this model, we obtain design criteria to optimize the delay-bandwidth product of the optical delay in semiconductor optical amplifiers and absorbers.
A practical model of thin disk regenerative amplifier based on analytical expression of ASE lifetime
NASA Astrophysics Data System (ADS)
Zhou, Huang; Chyla, Michal; Nagisetty, Siva Sankar; Chen, Liyuan; Endo, Akira; Smrz, Martin; Mocek, Tomas
2017-12-01
In this paper, a practical model of a thin disk regenerative amplifier has been developed based on an analytical approach, in which Drew A. Copeland [1] had evaluated the loss rate of the upper state laser level due to ASE and derived the analytical expression of the effective life-time of the upper-state laser level by taking the Lorentzian stimulated emission line-shape and total internal reflection into account. By adopting the analytical expression of effective life-time in the rate equations, we have developed a less numerically intensive model for predicting and analyzing the performance of a thin disk regenerative amplifier. Thanks to the model, optimized combination of various parameters can be obtained to avoid saturation, period-doubling bifurcation or first pulse suppression prior to experiments. The effective life-time due to ASE is also analyzed against various parameters. The simulated results fit well with experimental data. By fitting more experimental results with numerical model, we can improve the parameters of the model, such as reflective factor which is used to determine the weight of boundary reflection within the influence of ASE. This practical model will be used to explore the scaling limits imposed by ASE of the thin disk regenerative amplifier being developed in HiLASE Centre.
Polyanskiy, Mikhail N.
2015-01-01
We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.
Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.
Hammi, Oualid
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.
Linear control of oscillator and amplifier flows*
NASA Astrophysics Data System (ADS)
Schmid, Peter J.; Sipp, Denis
2016-08-01
Linear control applied to fluid systems near an equilibrium point has important applications for many flows of industrial or fundamental interest. In this article we give an exposition of tools and approaches for the design of control strategies for globally stable or unstable flows. For unstable oscillator flows a feedback configuration and a model-based approach is proposed, while for stable noise-amplifier flows a feedforward setup and an approach based on system identification is advocated. Model reduction and robustness issues are addressed for the oscillator case; statistical learning techniques are emphasized for the amplifier case. Effective suppression of global and convective instabilities could be demonstrated for either case, even though the system-identification approach results in a superior robustness to off-design conditions.
NASA Astrophysics Data System (ADS)
Song, Rui; Lei, Chengmin; Han, Kai; Chen, Zilun; Pu, Dongsheng; Hou, Jing
2017-05-01
Supercontinuum generation directly from a nonlinear fiber amplifier, especially from a nonlinear ytterbium-doped fiber amplifier, attracts more and more attention due to its all-fiber structure, high optical to optical conversion efficiency, and high power output potential. However, the modeling of supercontinuum generation from a nonlinear fiber amplifier has been rarely reported. In this paper, the modeling of a tapered Ytterbium-doped fiber amplifier for visible extended to infrared supercontinuum generation is proposed based on the combination of the laser rate equations and the generalized nonlinear Schrödinger equation. Ytterbium-doped fiber amplifier generally can not generate visible extended supercontinuum due to its pumping wavelength and zero-dispersion wavelength. However, appropriate tapering and four-wave mixing makes the visible extended supercontinuum generation from an ytterbium-doped fiber amplifier possible. Tapering makes the zero-dispersion wavelength of the ytterbium-doped fiber shift to the short wavelength and minimizes the dispersion matching. Four-wave mixing plays an important role in the visible spectrum generation. The influence of pulse width and pump power on the supercontinuum generation is calculated and analyzed. The simulation results imply that it is promising and possible to fabricate a visible-to-infrared supercontinuum with low pump power and flat spectrum by using the tapered ytterbium-doped fiber amplifier scheme as long as the related parameters are well-selected.
Is there a role for amplifiers in sexual selection?
Gualla, Filippo; Cermelli, Paolo; Castellano, Sergio
2008-05-21
The amplifier hypothesis states that selection could favour the evolution of traits in signallers that improve the ability of receivers to extract honest information from other signals or cues. We provide a formal definition of amplifiers based on the receiver's mechanisms of signal perception and we present a game-theoretical model in which males advertise their quality and females use sequential-sampling tactics to choose among prospective mates. The main effect of an amplifier on the female mating strategy is to increase her mating threshold, making the female more selective as the effectiveness of the amplifier increases. The effects of the amplifier on male advertising strategy depends both on the context and on the types of the amplifier involved. We consider two different contexts for the evolution of amplifiers (when the effect of amplifiers is on signals and when it is on cues) and two types of amplifiers (the 'neutral amplifier', when it improves quality assessment without altering male attractiveness, and the 'attractive amplifier', when it improves both quality assessment and male attractiveness). The game-theoretical model provides two main results. First, neutral and attractive amplifiers represent, respectively, a conditional and an unconditional signalling strategy. In fact, at the equilibrium, neutral amplifiers are displayed only by males whose advertising level lays above the female acceptance threshold, whereas attractive amplifiers are displayed by all signalling males, independent of their quality. Second, amplifiers of signals increase the differences in advertising levels between amplifying and not-amplifying males, but they decrease the differences within each group, so that the system converges towards an 'all-or-nothing' signalling strategy. By applying concepts from information theory, we show that the increase in information transfer at the perception level due to the amplifier of signals is contrasted by a decrease in information transfer at the emitter level due to the increased stereotypy of male advertising strategy.
Augmented Twin-Nonlinear Two-Box Behavioral Models for Multicarrier LTE Power Amplifiers
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients. PMID:24624047
Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.
Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C
2011-12-19
We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.
NASA Astrophysics Data System (ADS)
Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong
2018-06-01
A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.
NASA Astrophysics Data System (ADS)
Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong
2018-03-01
A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.
Ferroelectric Field-Effect Transistor Differential Amplifier Circuit Analysis
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat D.
2008-01-01
There has been considerable research investigating the Ferroelectric Field-Effect Transistor (FeFET) in memory circuits. However, very little research has been performed in applying the FeFET to analog circuits. This paper investigates the use of FeFETs in a common analog circuit, the differential amplifier. The two input Metal-Oxide-Semiconductor (MOS) transistors in a general MOS differential amplifier circuit are replaced with FeFETs. Resistors are used in place of the other three MOS transistors. The FeFET model used in the analysis has been previously reported and was based on experimental device data. Because of the FeFET hysteresis, the FeFET differential amplifier has four different operating modes depending on whether the FeFETs are positively or negatively polarized. The FeFET differential amplifier operation in the different modes was analyzed by calculating the amplifier voltage transfer and gain characteristics shown in figures 2 through 5. Comparisons were made between the FeFET differential amplifier and the standard MOS differential amplifier. Possible applications and benefits of the FeFET differential amplifier are discussed.
Finite element BPM fiber modal instability modeling
NASA Astrophysics Data System (ADS)
Ward, Benjamin G.
2018-02-01
Two approaches are presented for detailed analysis of transverse mode instability in fiber amplifiers based on a scalar finite element beam propagation method (BPM). The first employs two beams: one propagating at a fundamental frequency and one de-tuned to the middle of the stimulated thermal Rayleigh scattering (STRS) gain peak. This method was found to suffer from a computational artifact causing it to converge in some cases to an unphysical solution. The second was based on the steady periodic method. This required more computational resources but was found to be reliable and not susceptible to the artifact mentioned above. This method was used to simulate step-index fiber amplifiers, large pitch photonic crystal fiber amplifiers, and a hybrid large pitch photonic bandgap fiber amplifier with reduced symmetry. Results for reference step index fiber amplifiers were found to be consistent with those obtained by other methods. The simulated instability threshold values all fell between 200 and 310 Watts showing relatively little variation among designs. Some areas for improvement in the method are discussed.
Higher Order Modulation Intersymbol Interference Caused by Traveling-wave Tube Amplifiers
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Williams, W. D. (Technical Monitor)
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves, Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations, To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing, Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
NASA Astrophysics Data System (ADS)
Hussain, Kamal; Pratap Singh, Satya; Kumar Datta, Prasanta
2013-11-01
A numerical investigation is presented to show the dependence of patterning effect (PE) of an amplified signal in a bulk semiconductor optical amplifier (SOA) and an optical bandpass filter based amplifier on various input signal and filter parameters considering both the cases of including and excluding intraband effects in the SOA model. The simulation shows that the variation of PE with input energy has a characteristic nature which is similar for both the cases. However the variation of PE with pulse width is quite different for the two cases, PE being independent of the pulse width when intraband effects are neglected in the model. We find a simple relationship between the PE and the signal pulse width. Using a simple treatment we study the effect of the amplified spontaneous emission (ASE) on PE and find that the ASE has almost no effect on the PE in the range of energy considered here. The optimum filter parameters are determined to obtain an acceptable extinction ratio greater than 10 dB and a PE less than 1 dB for the amplified signal over a wide range of input signal energy and bit-rate.
Improved modeling of GaN HEMTs for predicting thermal and trapping-induced-kink effects
NASA Astrophysics Data System (ADS)
Jarndal, Anwar; Ghannouchi, Fadhel M.
2016-09-01
In this paper, an improved modeling approach has been developed and validated for GaN high electron mobility transistors (HEMTs). The proposed analytical model accurately simulates the drain current and its inherent trapping and thermal effects. Genetic-algorithm-based procedure is developed to automatically find the fitting parameters of the model. The developed modeling technique is implemented on a packaged GaN-on-Si HEMT and validated by DC and small-/large-signal RF measurements. The model is also employed for designing and realizing a switch-mode inverse class-F power amplifier. The amplifier simulations showed a very good agreement with RF large-signal measurements.
A CMOS-MEMS clamped–clamped beam displacement amplifier for resonant switch applications
NASA Astrophysics Data System (ADS)
Liu, Jia-Ren; Lu, Shih-Chuan; Tsai, Chun-Pu; Li, Wei-Chang
2018-06-01
This paper presents a micromechanical clamped–clamped beam (CC-beam) displacement amplifier based on a CMOS-MEMS fabrication process platform. In particular, a 2.0 MHz resonant displacement amplifier composed of two identical CC-beams coupled by a mechanical beam at locations where the two beams have mismatched velocities exhibits a larger displacement, up to 9.96×, on one beam than that of the other. The displacement amplification prevents unwanted input impacting—the structure switches only to the output but not the input—required by resonant switch-based mechanical circuits (Kim et al 2009 22nd IEEE Int. Conf. on Micro Electro Mechanical Systems; Lin et al 2009 15th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’09) Li et al 2013 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’13)). Compared to a single CC-beam displacement amplifier, theory predicts that the displacement amplifying CC-beam array yields a larger overall output displacement for displacement gain beyond 1.13 thanks to the preserved input driving force. A complete analytical model predicts the resultant stiffness and displacement gain of the coupled CC-beam displacement amplifier that match well with finite element analysis (FEA) prediction and measured results.
Noise in Charge Amplifiers— A gm/ID Approach
NASA Astrophysics Data System (ADS)
Alvarez, Enrique; Avila, Diego; Campillo, Hernan; Dragone, Angelo; Abusleme, Angel
2012-10-01
Charge amplifiers represent the standard solution to amplify signals from capacitive detectors in high energy physics experiments. In a typical front-end, the noise due to the charge amplifier, and particularly from its input transistor, limits the achievable resolution. The classic approach to attenuate noise effects in MOSFET charge amplifiers is to use the maximum power available, to use a minimum-length input device, and to establish the input transistor width in order to achieve the optimal capacitive matching at the input node. These conclusions, reached by analysis based on simple noise models, lead to sub-optimal results. In this work, a new approach on noise analysis for charge amplifiers based on an extension of the gm/ID methodology is presented. This method combines circuit equations and results from SPICE simulations, both valid for all operation regions and including all noise sources. The method, which allows to find the optimal operation point of the charge amplifier input device for maximum resolution, shows that the minimum device length is not necessarily the optimal, that flicker noise is responsible for the non-monotonic noise versus current function, and provides a deeper insight on the noise limits mechanism from an alternative and more design-oriented point of view.
Modeling of induction-linac based free-electron laser amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong, R.A.; Fawley, W.M.; Scharlemann, E.T.
We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multimegawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for free-electron laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal atmore » the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices. 17 refs., 4 figs.« less
NASA Astrophysics Data System (ADS)
Hou, X. Y.; Koh, C. G.; Kuang, K. S. C.; Lee, W. H.
2017-07-01
This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations.
On the stability and compressive nonlinearity of a physiologically based model of the cochlea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nankali, Amir; Grosh, Karl; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
Hearing relies on a series of coupled electrical, acoustical (fluidic) and mechanical interactions inside the cochlea that enable sound processing. A positive feedback mechanism within the cochlea, called the cochlear amplifier, provides amplitude and frequency selectivity in the mammalian auditory system. The cochlear amplifier and stability are studied using a nonlinear, micromechanical model of the Organ of Corti (OoC) coupled to the electrical potentials in the cochlear ducts. It is observed that the mechano-electrical transduction (MET) sensitivity and somatic motility of the outer hair cell (OHC), control the cochlear stability. Increasing MET sensitivity beyond a critical value, while electromechanical couplingmore » coefficient is within a specific range, causes instability. We show that instability in this model is generated through a supercritical Hopf bifurcation. A reduced order model of the system is approximated and it is shown that the tectorial membrane (TM) transverse mode effect on the dynamics is significant while the radial mode can be simplified from the equations. The cochlear amplifier in this model exhibits good agreement with the experimental data. A comprehensive 3-dimensional model based on the cross sectional model is simulated and the results are compared. It is indicated that the global model qualitatively inherits some characteristics of the local model, but the longitudinal coupling along the cochlea shifts the stability boundary (i.e., Hopf bifurcation point) and enhances stability.« less
NASA Technical Reports Server (NTRS)
Sullivan, Gerry
2001-01-01
For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.
Thermal lensing effects in rod-based Tm3+: YLF amplifiers versus pump and cooling conditions
NASA Astrophysics Data System (ADS)
Jolly, A.; Vidal, S.; Boullet, J.
2018-06-01
We report on a comprehensive study of the thermal-lensing penalties in rod-based, end-pumped amplifiers made of thulium-doped YLF. Aiming to optimize the beam quality under optimized pump and cooling conditions, this applies to the definition of highly efficient laser designs with operation up to the saturation of the gain. Single-pass and double-pass pump schemes are benchmarked by means of an innovative modeling process, to determine the appropriate rod’s length and the complete set of input data which determines the spatial transfer function of a given rod. This is done in the form of an equivalent, pump-dependent, thick GRIN lens. The characteristics of this highly astigmatic and basically divergent lens are computed thanks to complementary 3D-FEM thermo-mechanical modeling. To benchmark the different contributors to natural thermal-lensing phenomena, we refer to the situation of uniform side-cooling. The computational results are parameterized in a broad range of operating conditions. Then we suggest non-uniform side-cooling, as a possible option of interest for cancelling the astigmatism. The development of YLF-based amplifiers of a new generation taking advantage of a highly stable and easily controllable beam quality, either using rod-based or slab-based architectures, will be part of the potential applications of this fairly generic modeling approach.
Compact nanosecond laser system for the ignition of aeronautic combustion engines
NASA Astrophysics Data System (ADS)
Amiard-Hudebine, G.; Tison, G.; Freysz, E.
2016-12-01
We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.
NASA Astrophysics Data System (ADS)
Powolny, F.; Auffray, E.; Brunner, S. E.; Garutti, E.; Goettlich, M.; Hillemanns, H.; Jarron, P.; Lecoq, P.; Meyer, T.; Schultz-Coulon, H. C.; Shen, W.; Williams, M. C. S.
2011-06-01
Time of flight (TOF) measurements in positron emission tomography (PET) are very challenging in terms of timing performance, and should ideally achieve less than 100 ps FWHM precision. We present a time-based differential technique to read out silicon photomultipliers (SiPMs) which has less than 20 ps FWHM electronic jitter. The novel readout is a fast front end circuit (NINO) based on a first stage differential current mode amplifier with 20 Ω input resistance. Therefore the amplifier inputs are connected differentially to the SiPM's anode and cathode ports. The leading edge of the output signal provides the time information, while the trailing edge provides the energy information. Based on a Monte Carlo photon-generation model, HSPICE simulations were run with a 3 × 3 mm2 SiPM-model, read out with a differential current amplifier. The results of these simulations are presented here and compared with experimental data obtained with a 3 × 3 × 15 mm3 LSO crystal coupled to a SiPM. The measured time coincidence precision and the limitations in the overall timing accuracy are interpreted using Monte Carlo/SPICE simulation, Poisson statistics, and geometric effects of the crystal.
Phase noise in RF and microwave amplifiers.
Boudot, Rodolphe; Rubiola, Enrico
2012-12-01
Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and simulation. To conclude, this article is intended as a tutorial, a review, and a systematic treatise on the subject, supported by extensive experiments.
NASA Astrophysics Data System (ADS)
Chen, Jing; Qiu, Xiaojie; Yin, Cunyi; Jiang, Hao
2018-02-01
An efficient method to design the broadband gain-flattened Raman fiber amplifier with multiple pumps is proposed based on least squares support vector regression (LS-SVR). A multi-input multi-output LS-SVR model is introduced to replace the complicated solving process of the nonlinear coupled Raman amplification equation. The proposed approach contains two stages: offline training stage and online optimization stage. During the offline stage, the LS-SVR model is trained. Owing to the good generalization capability of LS-SVR, the net gain spectrum can be directly and accurately obtained when inputting any combination of the pump wavelength and power to the well-trained model. During the online stage, we incorporate the LS-SVR model into the particle swarm optimization algorithm to find the optimal pump configuration. The design results demonstrate that the proposed method greatly shortens the computation time and enhances the efficiency of the pump parameter optimization for Raman fiber amplifier design.
High power pulsed sources based on fiber amplifiers
NASA Astrophysics Data System (ADS)
Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre
2017-11-01
Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.
NASA Astrophysics Data System (ADS)
Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku
2014-12-01
Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.
An improved model to predict bandwidth enhancement in an inductively tuned common source amplifier.
Reza, Ashif; Misra, Anuraag; Das, Parnika
2016-05-01
This paper presents an improved model for the prediction of bandwidth enhancement factor (BWEF) in an inductively tuned common source amplifier. In this model, we have included the effect of drain-source channel resistance of field effect transistor along with load inductance and output capacitance on BWEF of the amplifier. A frequency domain analysis of the model is performed and a closed-form expression is derived for BWEF of the amplifier. A prototype common source amplifier is designed and tested. The BWEF of amplifier is obtained from the measured frequency response as a function of drain current and load inductance. In the present work, we have clearly demonstrated that inclusion of drain-source channel resistance in the proposed model helps to estimate the BWEF, which is accurate to less than 5% as compared to the measured results.
Design of high-capacity fiber-optic transport systems
NASA Astrophysics Data System (ADS)
Liao, Zhi Ming
2001-08-01
We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium-doped fiber laser was experimentally demonstrated. A numerical model has been developed using the Langevin rate equations and its predictions are in qualitative agreement with experimental data.
Markovian Dynamics of Josephson Parametric Amplification
NASA Astrophysics Data System (ADS)
Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian
2017-09-01
In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism
NASA Astrophysics Data System (ADS)
Su, J.; Liu, L.; Luo, B.; Wang, W.; Jing, F.; Wei, X.; Zhang, X.
2008-05-01
In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.
Heinz, M G; Colburn, H S; Carney, L H
2001-10-01
The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a monaural coincidence-based processor that uses a non-optimal combination of rate and temporal information. An analytical AN model included compressive magnitude and level-dependent-phase responses associated with the cochlear amplifier, and high-, medium-, and low-spontaneous-rate (SR) fibers with characteristic frequencies (CFs) spanning the AN population. The relative contributions of nonlinear magnitude and nonlinear phase responses to level encoding were compared by using four versions of the model, which included and excluded the nonlinear gain and phase responses in all possible combinations. Nonlinear basilar-membrane (BM) phase responses are robustly encoded in near-CF AN fibers at low frequencies. Strongly compressive BM responses at high frequencies near CF interact with the high thresholds of low-SR AN fibers to produce large dynamic ranges. Coincidence performance based on a narrow range of AN CFs was robust across a wide dynamic range at both low and high frequencies, and matched human performance levels. Coincidence performance based on all CFs demonstrated the "near-miss" to Weber's law at low frequencies and the high-frequency "mid-level bump." Monaural coincidence detection is a physiologically realistic mechanism that is extremely general in that it can utilize AN information (average-rate, synchrony, and nonlinear-phase cues) from all SR groups.
Starecki, Tomasz
2017-01-01
All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude. PMID:29099765
Starecki, Tomasz; Wieczorek, Piotr Z
2017-11-03
All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude.
NASA Astrophysics Data System (ADS)
Jia, Xin-Hong
2006-12-01
The theoretical model on gain-clamped semiconductor optical amplifiers (GC-SOAs) based on compensating light has been constructed. Using this model, the effects of insertion position and peak reflectivity of the fiber Bragg grating (FBG) on the gain clamping and noise figure (NF) characteristics of GC-SOA are analyzed. The results show that the effect of the FBG insertion position on gain clamping is slight, but the lower NF can be obtained for input FBG-type GC-SOA; when the FBG peak wavelength is designed to close the signal wavelength, the gain clamping and NF characteristics that can be reached are better. Further study shows that, with the increased peak reflectivity of the FBG, the critical input power is broadened and the gain tends to be varied slowly; the larger bias current is helpful to raise gain and decrease the noise figure but is harmful to a gain flatness characteristic.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, K. S.
1985-01-01
This semiannual progress report covers the period from April 1, 1985 to Sept. 30, 1985 under NASA grant NAS1-441 entitled direct solar pumped iodine laser amplifier. During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator was carried out before the amplifier studies. The amplifier studies are postponed to the extended period following completion of the parametric studies. In addition, the kinetic modeling of a solar pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) the radiation characteristics of solar simulator and the parametric characteristics of photodissociation iodine laser continuously pumped by a Vortek solar simulator; (2) kinetic modeling of a solar pumped iodine laser amplifier; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.
NASA Astrophysics Data System (ADS)
Krause, Sebastian M.; Börries, Stefan; Bornholdt, Stefan
2015-07-01
The average economic agent is often used to model the dynamics of simple markets, based on the assumption that the dynamics of a system of many agents can be averaged over in time and space. A popular idea that is based on this seemingly intuitive notion is to dampen electric power fluctuations from fluctuating sources (as, e.g., wind or solar) via a market mechanism, namely by variable power prices that adapt demand to supply. The standard model of an average economic agent predicts that fluctuations are reduced by such an adaptive pricing mechanism. However, the underlying assumption that the actions of all agents average out on the time axis is not always true in a market of many agents. We numerically study an econophysics agent model of an adaptive power market that does not assume averaging a priori. We find that when agents are exposed to source noise via correlated price fluctuations (as adaptive pricing schemes suggest), the market may amplify those fluctuations. In particular, small price changes may translate to large load fluctuations through catastrophic consumer synchronization. As a result, an adaptive power market may cause the opposite effect than intended: Power demand fluctuations are not dampened but amplified instead.
Cryogenic Amplifier Based Receivers at Submillimeter Wavelengths
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Reck, Theodore and; Schlecht, Erich; Lin, Robert; Deal, William
2012-01-01
The operating frequency of InP high electron mobility transistor (HEMT) based amplifiers has moved well in the submillimeter-wave frequencies over the last couple of years. Working amplifiers with usable gain in waveguide packages has been reported beyond 700 GHz. When cooled cryogenically, they have shown substantial improvement in their noise temperature. This has opened up the real possibility of cryogenic amplifier based heterodyne receivers at submillimeter wavelengths for ground-based, air-borne, and space-based instruments for astrophysics, planetary, and Earth science applications. This paper provides an overview of the science applications at submillimeter wavelengths that will benefit from this technology. It also describes the current state of the InP HEMT based cryogenic amplifier receivers at submillimeter wavelengths.
Modeling of the spectral evolution in a narrow-linewidth fiber amplifier
NASA Astrophysics Data System (ADS)
Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin
2016-03-01
Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lishanski, A.; Ostrander, E.A.; Rine, J.
1994-03-29
An experimental strategy for detecting heterozygosity in genomic DNA has been developed based on preferential binding of Escherichia coli MutS protein to DNA molecules containing mismatched bases. The binding was detected by a gel mobility-shift assay. This approach was tested by using as a model the most commonly occurring mutations within the cystic fibrosis (CFTR) gene. Genomic DNA samples were amplified with 5{prime}-end-labeled primers that bracket the site of the {Delta}F508 3-bp deletion in exon 10 of the CFTR gene. The renatured PCR products from homozygotes produced homoduplexes; the PCR products from heterozygotes produced heteroduplexes and homoduplexes (1:1). MutS proteinmore » bound more strongly to heteroduplexes that correspond to heterozygous carriers of {Delta}F508 and contain a CTT or a GAA loop in one of the strands than to homoduplexes corresponding to homozygotes. The ability of MutS protein to detect heteroduplexes in PCR-amplified DNA extended to fragments {approximately} 500 bp long. The method was also able to detect carriers of the point mutations in exon 11 of the CFTR gene by a preferential binding of MutS to single-base mismatches in PCR-amplified DNA.« less
Parasitic Parameters Extraction for InP DHBT Based on EM Method and Validation up to H-Band
NASA Astrophysics Data System (ADS)
Li, Oupeng; Zhang, Yong; Wang, Lei; Xu, Ruimin; Cheng, Wei; Wang, Yuan; Lu, Haiyan
2017-05-01
This paper presents a small-signal model for InGaAs/InP double heterojunction bipolar transistor (DHBT). Parasitic parameters of access via and electrode finger are extracted by 3-D electromagnetic (EM) simulation. By analyzing the equivalent circuit of seven special structures and using the EM simulation results, the parasitic parameters are extracted systematically. Compared with multi-port s-parameter EM model, the equivalent circuit model has clear physical intension and avoids the complex internal ports setting. The model is validated on a 0.5 × 7 μm2 InP DHBT up to 325 GHz. The model provides a good fitting result between measured and simulated multi-bias s-parameters in full band. At last, an H-band amplifier is designed and fabricated for further verification. The measured amplifier performance is highly agreed with the model prediction, which indicates the model has good accuracy in submillimeterwave band.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, K. S.
1986-01-01
During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator were carried out before amplifier studies. The amplifier studies are postponed to the extended period after completing the parametric studies. In addition, the kinetic modeling of a solar-pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) a 10 W CW iodine laser pumped by a Vortek solar simulator; (2) kinetic modeling to predict the time to lasing threshold, lasing time, and energy output of solar-pumped iodine laser; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.
Liu, Hao; Shao, Qi; Fang, Xuelin
2017-02-01
For the class-E amplifier in a wireless power transfer (WPT) system, the design parameters are always determined by the nominal model. However, this model neglects the conduction loss and voltage stress of MOSFET and cannot guarantee the highest efficiency in the WPT system for biomedical implants. To solve this problem, this paper proposes a novel circuit model of the subnominal class-E amplifier. On a WPT platform for capsule endoscope, the proposed model was validated to be effective and the relationship between the amplifier's design parameters and its characteristics was analyzed. At a given duty ratio, the design parameters with the highest efficiency and safe voltage stress are derived and the condition is called 'optimal subnominal condition.' The amplifier's efficiency can reach the highest of 99.3% at the 0.097 duty ratio. Furthermore, at the 0.5 duty ratio, the measured efficiency of the optimal subnominal condition can reach 90.8%, which is 15.2% higher than that of the nominal condition. Then, a WPT experiment with a receiving unit was carried out to validate the feasibility of the optimized amplifier. In general, the design parameters of class-E amplifier in a WPT system for biomedical implants can be determined with the proposed optimization method in this paper.
High-Efficiency Microwave Power Amplifier
NASA Technical Reports Server (NTRS)
Sims, Williams H.
2005-01-01
A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages
Thin disk lasers: history and prospects
NASA Astrophysics Data System (ADS)
Speiser, Jochen
2016-04-01
During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.
2012-03-22
Power Amplifier (7). A power amplifier was required to drive the actuators. For this research a Trek , Inc. Model PZD 700 Dual Channel Amplifier was used...while the flight test amplifier was being built. The Trek amplifier was capable of amplifying 32 Figure 3.19: dSpace MicroAutoBox II Digital...averaging of 25% was used to reduce the errors caused by noise but still maintain accuracy. For the laboratory Trek amplifier, a 100 millivolt input
Small-signal amplifier based on single-layer MoS2
NASA Astrophysics Data System (ADS)
Radisavljevic, Branimir; Whitwick, Michael B.; Kis, Andras
2012-07-01
In this letter we demonstrate the operation of an analog small-signal amplifier based on single-layer MoS2, a semiconducting analogue of graphene. Our device consists of two transistors integrated on the same piece of single-layer MoS2. The high intrinsic band gap of 1.8 eV allows MoS2-based amplifiers to operate with a room temperature gain of 4. The amplifier operation is demonstrated for the frequencies of input signal up to 2 kHz preserving the gain higher than 1. Our work shows that MoS2 can effectively amplify signals and that it could be used for advanced analog circuits based on two-dimensional materials.
NASA Astrophysics Data System (ADS)
Su, Rongtao; Tao, Rumao; Wang, Xiaolin; Zhang, Hanwei; Ma, Pengfei; Zhou, Pu; Xu, Xiaojun
2017-08-01
We demonstrate an experimental study on scaling mode instability (MI) threshold in fiber amplifiers based on fiber coiling. The experimental results show that coiling the active fiber in the cylindrical spiral shape is superior to the coiling in the plane spiral shape. When the polarization maintained Yb-doped fiber (PM YDF: with a core/inner-cladding diameter of 20/400 µm) is coiled on an aluminous plate with a bend diameter of 9-16 cm, the MI threshold is ~1.55 kW. When such a PM YDF is coiled on an aluminous cylinder with diameter of 9 cm, no MI is observed at the output power of 2.43 kW, which is limited by the available pump power. The spectral width and polarization extinction ratio is 0.255 nm and 18.3 dB, respectively, at 2.43 kW. To the best of our knowledge, this is the highest output power from a linear polarized narrow linewidth all-fiberized amplifier. By using a theoretical model, the potential MI-free scaling capability in such an amplifier is estimated to be 3.5 kW.
SQUID amplifiers for axion search experiments
NASA Astrophysics Data System (ADS)
Matlashov, Andrei; Schmelz, Matthias; Zakosarenko, Vyacheslav; Stolz, Ronny; Semertzidis, Yannis K.
2018-04-01
In the experiments for dark-matter QCD-axion searches, very weak microwave signals from a low-temperature High-Q resonant cavity should be detected using the highest sensitivity. The best commercial low-noise cryogenic semiconductor amplifiers based on high electron mobility transistors have a lowest noise temperature above 1.0 K, even if they are cooled well below 1 K. Superconducting quantum interference devices can work as microwave amplifiers with temperature noise close to the standard quantum limit. Previous SQUID-based RF amplifiers designed for axion search experiments have a microstrip resonant input coil and are thus called micro-strip SQUID amplifiers or MSAs. Due to the resonant input coupling they usually have narrow bandwidth. In this paper we report on a SQUID-based wideband microwave amplifier fabricated using sub-micron size Josephson junctions with very low capacitance. A single amplifier can be used in a frequency range of approximately 1-5 GHz.
Macromolecular Assemblage in the Design of a Synthetic AIDS Vaccine
NASA Astrophysics Data System (ADS)
Defoort, Jean-Philippe; Nardelli, Bernardetta; Huang, Wolin; Ho, David D.; Tam, James P.
1992-05-01
We describe a peptide vaccine model based on the mimicry of surface coat protein of a pathogen. This model used a macromolecular assemblage approach to amplify peptide antigens in liposomes or micelles. The key components of the model consisted of an oligomeric lysine scaffolding to amplify peptide antigens covalently 4-fold and a lipophilic membrane-anchoring group to further amplify noncovalently the antigens many-fold in liposomal or micellar form. A peptide antigen derived from the third variable domain of glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1), consisting of neutralizing, T-helper, and T-cytotoxic epitopes, was used in a macromolecular assemblage model (HIV-1 linear peptide amino acid sequence 308-331 in a tetravalent multiple antigen peptide system linked to tripalmitoyl-S-glycerylcysteine). The latter complex, in liposome or micelle, was used to immunize mice and guinea pigs without any adjuvant and found to induce gp120-specific antibodies that neutralize virus infectivity in vitro, elicit cytokine production, and prime CD8^+ cytotoxic T lymphocytes in vivo. Our results show that the macromolecular assemblage approach bears immunological mimicry of the gp120 of HIV virus and may lead to useful vaccines against HIV infection.
Predictors of remission in DSM hypochondriasis.
Barsky, A J; Bailey, E D; Fama, J M; Ahern, D K
2000-01-01
Although hypochondriasis is generally believed to be a chronic and refractory disorder, relatively little is known about its natural history and course. Based on a cognitive/perceptual model of hypochondriasis, we hypothesized that the disorder would be more chronic in patients who both amplify benign bodily symptoms and tend to attribute them to disease. Thirty-eight patients with DSM hypochondriasis were assessed with a structured, diagnostic interview and self-report questionnaire. A logistic regression model containing sociodemographic characteristics and a 3-way interaction term composed of the tendency to amplify bodily sensations, the tendency to attribute common symptoms to disease, and somatization (all measured at inception) correctly classified the remission status of 81.6% of the patients at follow-up 4 years later. These results suggest that patients who somatize, who are amplifiers of bodily sensation, and those who tend to attribute ambiguous symptoms to disease have more chronic and more refractory hypochondriasis. It is the co-occurrence of these cognitive and perceptual characteristics, rather than their occurrence individually, which predicts the persistence of this disorder.
Power Scaling Fiber Amplifiers Using Very-Large-Mode-Area Fibers
2016-02-23
fiber lasers are limited to below 1kW due to limited mode size and thermal issues, particularly thermal mode instability (TMI). Two comprehensive models...accurately modeling very- large-mode-area fiber amplifiers while simultaneously including thermal lensing and TMI. This model was applied to investigate...expected resilience to TMI. 15. SUBJECT TERMS Fiber amplifier, high power laser, thermal mode instability, large-mode-area fiber, ytterbium-doped
Transient self-amplified Cerenkov radiation with a short pulse electron beam
NASA Astrophysics Data System (ADS)
Poole, B. R.; Blackfield, D. T.; Camacho, J. F.
2009-08-01
An analytic and numerical examination of the slow wave Cerenkov free electron maser is presented. We consider the steady-state amplifier configuration as well as operation in the self-amplified spontaneous emission (SASE) regime. The linear theory is extended to include electron beams that have a parabolic radial density inhomogeneity. Closed form solutions for the dispersion relation and modal structure of the electromagnetic field are determined in this inhomogeneous case. To determine the steady-state response, a macroparticle approach is used to develop a set of coupled nonlinear ordinary differential equations for the amplitude and phase of the electromagnetic wave, which are solved in conjunction with the particle dynamical equations to determine the response when the system is driven as an amplifier with a time harmonic source. We then consider the case in which a fast rise time electron beam is injected into a dielectric loaded waveguide. In this case, radiation is generated by SASE, with the instability seeded by the leading edge of the electron beam. A pulse of radiation is produced, slipping behind the leading edge of the beam due to the disparity between the group velocity of the radiation and the beam velocity. Short pulses of microwave radiation are generated in the SASE regime and are investigated using particle-in-cell (PIC) simulations. The nonlinear dynamics are significantly more complicated in the transient SASE regime when compared with the steady-state amplifier model due to the slippage of the radiation with respect to the beam. As strong self-bunching of the electron beam develops due to SASE, short pulses of superradiant emission develop with peak powers significantly larger than the predicted saturated power based on the steady-state amplifier model. As these superradiant pulses grow, their pulse length decreases and forms a series of solitonlike pulses. Comparisons between the linear theory, macroparticle model, and PIC simulations are made in the appropriate regimes.
Study of complete interconnect reliability for a GaAs MMIC power amplifier
NASA Astrophysics Data System (ADS)
Lin, Qian; Wu, Haifeng; Chen, Shan-ji; Jia, Guoqing; Jiang, Wei; Chen, Chao
2018-05-01
By combining the finite element analysis (FEA) and artificial neural network (ANN) technique, the complete prediction of interconnect reliability for a monolithic microwave integrated circuit (MMIC) power amplifier (PA) at the both of direct current (DC) and alternating current (AC) operation conditions is achieved effectively in this article. As a example, a MMIC PA is modelled to study the electromigration failure of interconnect. This is the first time to study the interconnect reliability for an MMIC PA at the conditions of DC and AC operation simultaneously. By training the data from FEA, a high accuracy ANN model for PA reliability is constructed. Then, basing on the reliability database which is obtained from the ANN model, it can give important guidance for improving the reliability design for IC.
Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems
NASA Astrophysics Data System (ADS)
Ku, Walter H.
1989-05-01
The objectives of this research are to develop analytical and computer aided design techniques for monolithic microwave and millimeter wave integrated circuits (MMIC and MIMIC) and subsystems and to design and fabricate those ICs. Emphasis was placed on heterojunction-based devices, especially the High Electron Mobility Transition (HEMT), for both low noise and medium power microwave and millimeter wave applications. Circuits to be considered include monolithic low noise amplifiers, power amplifiers, and distributed and feedback amplifiers. Interactive computer aided design programs were developed, which include large signal models of InP MISFETs and InGaAs HEMTs. Further, a new unconstrained optimization algorithm POSM was developed and implemented in the general Analysis and Design program for Integrated Circuit (ADIC) for assistance in the design of largesignal nonlinear circuits.
Experimental realization of a feedback optical parametric amplifier with four-wave mixing
NASA Astrophysics Data System (ADS)
Pan, Xiaozhou; Chen, Hui; Wei, Tianxiang; Zhang, Jun; Marino, Alberto M.; Treps, Nicolas; Glasser, Ryan T.; Jing, Jietai
2018-04-01
Optical parametric amplifiers (OPAs) play a fundamental role in the generation of quantum correlation for quantum information processing and quantum metrology. In order to increase the communication fidelity of the quantum information protocol and the measurement precision of quantum metrology, it requires a high degree of quantum correlation. In this Rapid Communication we report a feedback optical parametric amplifier that employs a four-wave mixing (FWM) process as the underlying OPA and a beam splitter as the feedback controller. We first construct a theoretical model for this feedback-based FWM process and experimentally study the effect of the feedback control on the quantum properties of the system. Specifically, we find that the quantum correlation between the output fields can be enhanced by tuning the strength of the feedback.
Hysteretic Flux Response and Nondegenerate Gain of Flux-Driven Josephson Parametric Amplifiers
NASA Astrophysics Data System (ADS)
Pogorzalek, Stefan; Fedorov, Kirill G.; Zhong, Ling; Goetz, Jan; Wulschner, Friedrich; Fischer, Michael; Eder, Peter; Xie, Edwar; Inomata, Kunihiro; Yamamoto, Tsuyoshi; Nakamura, Yasunobu; Marx, Achim; Deppe, Frank; Gross, Rudolf
2017-08-01
Josephson parametric amplifiers (JPAs) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs exhibiting a hysteretic dependence of the resonant frequency on the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices, which provide the JPA nonlinearity for a nonzero screening parameter βL>0 and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier
NASA Astrophysics Data System (ADS)
Trikshev, A. I.; Kurkov, A. S.; Tsvetkov, V. B.; Filatova, S. A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Yu K.; Okhotnikov, O. G.
2013-06-01
We present a CW single-frequency laser at 1062 nm (linewidth <3 MHz) with 160 W of total output power based on a two stage fiber amplifier. A GTWave fiber is used for the first stage of the amplifier. A tapered double-clad fiber (T-DCF) is used for the second stage of the amplifier. The high output power is achieved due to the amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry.
Discretization analysis of bifurcation based nonlinear amplifiers
NASA Astrophysics Data System (ADS)
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2017-09-01
Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines
NASA Astrophysics Data System (ADS)
Chaudhuri, S.; Li, D.; Irwin, K. D.; Bockstiegel, C.; Hubmayr, J.; Ullom, J. N.; Vissers, M. R.; Gao, J.
2017-04-01
We present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. With a transmission line length of 20 cm, we have achieved gains of 15 dB over several GHz of bandwidth.
Phase-Locked Optical Generation of mmW/THz Signals
2009-11-01
22 6.2. TIA (Trans-Impedance Amplifier ...24 6.3. Variable gain Amplifier ...loop architectures. Generate models including detector impulse response, feedback amplifier impulse response and laser current tuning response
To identify candidate drugs targets for neuroblastoma with MYCN amplification we performed parallel siRNA screens with a druggable genome collection of ~6,700 genes comparing MYCN amplified and non-MYCN amplified cell lines: SK-N-BE2 (MYCN amplified) and SK-N-AS (non amplified). The Hits from each cell lines were determined based on their significance with respect to their differential activity in the presence or absence of RA within each cell line. Hits for each cell line were also ranked according to their P-value, based on the three replicates. Integration with gene exp
To identify candidate drugs targets for neuroblastoma with MYCN amplification we performed parallel siRNA screens with a druggable genome collection of ~6,700 genes comparing MYCN amplified and non-MYCN amplified cell lines: SK-N-BE2 (MYCN amplified) and SK-N-AS (non amplified). The Hits from each cell lines were determined based on their significance with respect to their differential activity in the presence or absence of RA within each cell line. Hits for each cell line were also ranked according to their P-value, based on the three replicates. Integration with gene expres
Optimized radiation-hardened erbium doped fiber amplifiers for long space missions
NASA Astrophysics Data System (ADS)
Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y.; Boukenter, A.
2017-04-01
In this work, we developed and exploited simulation tools to optimize the performances of rare earth doped fiber amplifiers (REDFAs) for space missions. To describe these systems, a state-of-the-art model based on the rate equations and the particle swarm optimization technique is developed in which we also consider the main radiation effect on REDFA: the radiation induced attenuation (RIA). After the validation of this tool set by confrontation between theoretical and experimental results, we investigate how the deleterious radiation effects on the amplifier performance can be mitigated following adequate strategies to conceive the REDFA architecture. The tool set was validated by comparing the calculated Erbium-doped fiber amplifier (EDFA) gain degradation under X-rays at ˜300 krad(SiO2) with the corresponding experimental results. Two versions of the same fibers were used in this work, a standard optical fiber and a radiation hardened fiber, obtained by loading the previous fiber with hydrogen gas. Based on these fibers, standard and radiation hardened EDFAs were manufactured and tested in different operating configurations, and the obtained data were compared with simulation data done considering the same EDFA structure and fiber properties. This comparison reveals a good agreement between simulated gain and experimental data (<10% as the maximum error for the highest doses). Compared to our previous results obtained on Er/Yb-amplifiers, these results reveal the importance of the photo-bleaching mechanism competing with the RIA that cannot be neglected for the modeling of the radiation-induced gain degradation of EDFAs. This implies to measure in representative conditions the RIA at the pump and signal wavelengths that are used as input parameters for the simulation. The validated numerical codes have then been used to evaluate the potential of some EDFA architecture evolutions in the amplifier performance during the space mission. Optimization of both the fiber length and the EDFA pumping scheme allows us to strongly reduce its radiation vulnerability in terms of gain. The presented approach is a complementary and effective tool for hardening by device techniques and opens new perspectives for the applications of REDFAs and lasers in harsh environments.
NASA Astrophysics Data System (ADS)
Seneviratne, Sashieka
With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are also presented. Overall, this thesis demonstrates the feasibility of an integrated HFET Doherty amplifier for LTE band 7 which entails the frequencies from 2.62-2.69GHz. The realization of the layout and various issues related to the PA design is discussed and attempted to be solved.
A model for phase noise generation in amplifiers.
Tomlin, T D; Fynn, K; Cantoni, A
2001-11-01
In this paper, a model is presented for predicting the phase modulation (PM) and amplitude modulation (AM) noise in bipolar junction transistor (BJT) amplifiers. The model correctly predicts the dependence of phase noise on the signal frequency (at a particular carrier offset frequency), explains the noise shaping of the phase noise about the signal frequency, and shows the functional dependence on the transistor parameters and the circuit parameters. Experimental studies on common emitter (CE) amplifiers have been used to validate the PM noise model at carrier frequencies between 10 and 100 MHz.
NASA Astrophysics Data System (ADS)
Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.
2012-07-01
In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.
Beev, Nikolai; Kiviranta, Mikko
2012-06-01
Silicon-germanium heterojunction bipolar transistors can be used to construct low-noise cryogenic amplifiers. We present a dc-coupled differential amplifier capable of operating down to 10 K. In this temperature regime it has bandwidth of 15 MHz and noise temperature as low as 1.3 K. When operated at liquid nitrogen temperature of 77 K, the measured noise temperature is lower than 3 K. The amplifier is based on the commercially available transistors NESG3031 and operational amplifier OPA836 and is capable of standalone operation without any additional stages at room temperature.
Theoretical study of mode evolution in active long tapered multimode fiber.
Shi, Chen; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng
2016-08-22
A concise and effective model based on coupled mode theory to describe mode evolution in long tapered active fiber is presented in this manuscript. The mode coupling due to variation of core radius and slight perturbation have been analyzed and local gain with transverse spatial hole burning (TSHB) effect, loss and curvature have been taken into consideration in our model. On the base of this model, the mode evolution behaviors under different factors have been numerically investigated. Our model and results can provide instructive suggestions when designing long tapered fiber based laser and amplifiers.
Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07
NASA Astrophysics Data System (ADS)
Yan, Liu; Wei, Chen; Shanchao, Yang; Xiaoming, Jin; Chaohui, He
2016-09-01
This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.
Quantum description of light propagation in generalized media
NASA Astrophysics Data System (ADS)
Häyrynen, Teppo; Oksanen, Jani
2016-02-01
Linear quantum input-output relation based models are widely applied to describe the light propagation in a lossy medium. The details of the interaction and the associated added noise depend on whether the device is configured to operate as an amplifier or an attenuator. Using the traveling wave (TW) approach, we generalize the linear material model to simultaneously account for both the emission and absorption processes and to have point-wise defined noise field statistics and intensity dependent interaction strengths. Thus, our approach describes the quantum input-output relations of linear media with net attenuation, amplification or transparency without pre-selection of the operation point. The TW approach is then applied to investigate materials at thermal equilibrium, inverted materials, the transparency limit where losses are compensated, and the saturating amplifiers. We also apply the approach to investigate media in nonuniform states which can be e.g. consequences of a temperature gradient over the medium or a position dependent inversion of the amplifier. Furthermore, by using the generalized model we investigate devices with intensity dependent interactions and show how an initial thermal field transforms to a field having coherent statistics due to gain saturation.
NASA Astrophysics Data System (ADS)
Wang, Shaofeng; Xiang, Xiao; Zhou, Conghua; Zhai, Yiwei; Quan, Runai; Wang, Mengmeng; Hou, Feiyan; Zhang, Shougang; Dong, Ruifang; Liu, Tao
2017-01-01
In this paper, a model for simulating the optical response and noise performances of photodetectors with L-C coupling and transimpedance amplification circuit is presented. To verify the simulation, two kinds of photodetectors, which are based on the same printed-circuit-board (PCB) designing and PIN photodiode but different operational amplifiers, are developed and experimentally investigated. Through the comparisons between the numerical simulation results and the experimentally obtained data, excellent agreements are achieved, which show that the model provides a highly efficient guide for the development of a high signal to noise ratio photodetector. Furthermore, the parasite capacitances on the developed PCB, which are always hardly measured but play a non-negligible influence on the photodetectors' performances, are estimated.
Wang, Shaofeng; Xiang, Xiao; Zhou, Conghua; Zhai, Yiwei; Quan, Runai; Wang, Mengmeng; Hou, Feiyan; Zhang, Shougang; Dong, Ruifang; Liu, Tao
2017-01-01
In this paper, a model for simulating the optical response and noise performances of photodetectors with L-C coupling and transimpedance amplification circuit is presented. To verify the simulation, two kinds of photodetectors, which are based on the same printed-circuit-board (PCB) designing and PIN photodiode but different operational amplifiers, are developed and experimentally investigated. Through the comparisons between the numerical simulation results and the experimentally obtained data, excellent agreements are achieved, which show that the model provides a highly efficient guide for the development of a high signal to noise ratio photodetector. Furthermore, the parasite capacitances on the developed PCB, which are always hardly measured but play a non-negligible influence on the photodetectors' performances, are estimated.
Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines
Chaudhuri, S.; Li, D.; Irwin, K. D.; ...
2017-04-10
Here, we present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. In conclusion, with a transmission line length of 20 cm, we have achieved gainsmore » of 15 dB over several GHz of bandwidth.« less
Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, S.; Li, D.; Irwin, K. D.
Here, we present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. In conclusion, with a transmission line length of 20 cm, we have achieved gainsmore » of 15 dB over several GHz of bandwidth.« less
Nonlinear system analysis in bipolar integrated circuits
NASA Astrophysics Data System (ADS)
Fang, T. F.; Whalen, J. J.
1980-01-01
Since analog bipolar integrated circuits (IC's) have become important components in modern communication systems, the study of the Radio Frequency Interference (RFI) effects in bipolar IC amplifiers is an important subject for electromagnetic compatibility (EMC) engineering. The investigation has focused on using the nonlinear circuit analysis program (NCAP) to predict RF demodulation effects in broadband bipolar IC amplifiers. The audio frequency (AF) voltage at the IC amplifier output terminal caused by an amplitude modulated (AM) RF signal at the IC amplifier input terminal was calculated and compared to measured values. Two broadband IC amplifiers were investigated: (1) a cascode circuit using a CA3026 dual differential pair; (2) a unity gain voltage follower circuit using a micro A741 operational amplifier (op amp). Before using NCAP for RFI analysis, the model parameters for each bipolar junction transistor (BJT) in the integrated circuit were determined. Probe measurement techniques, manufacturer's data, and other researcher's data were used to obtain the required NCAP BJT model parameter values. An important contribution included in this effort is a complete set of NCAP BJT model parameters for most of the transistor types used in linear IC's.
Multifrequency Raman amplifiers
NASA Astrophysics Data System (ADS)
Barth, Ido; Fisch, Nathaniel J.
2018-03-01
In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the total fluence is split between the different spectral components.
Isolated thermocouple amplifier system for stirred fixed-bed gasifier
Fasching, George E.
1992-01-01
A sensing system is provided for determining the bed temperature profile of the bed of a stirred, fixed-bed gasifier including a plurality of temperature sensors for sensing the bed temperature at different levels, a transmitter for transmitting data based on the outputs of the sensors to a remote operator's station, and a battery-based power supply. The system includes an isolation amplifier system comprising a plurality of isolation amplifier circuits for amplifying the outputs of the individual sensors. The isolation amplifier circuits each comprise an isolation operational amplifier connected to a sensor; a first "flying capacitor" circuit for, in operation, controlling the application of power from the power supply to the isolation amplifier; an output sample and hold circuit connected to the transmitter; a second "flying capacitor" circuit for, in operation, controlling the transfer of the output of the isolation amplifier to the sample and hold circuit; and a timing and control circuit for activating the first and second capacitor circuits in a predetermined timed sequence.
High-speed detection of DNA translocation in nanopipettes
NASA Astrophysics Data System (ADS)
Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim
2016-03-01
We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended model for the length dependence of τ. See DOI: 10.1039/c5nr08634e
Ultrasensitive low noise voltage amplifier for spectral analysis.
Giusi, G; Crupi, F; Pace, C
2008-08-01
Recently we have proposed several voltage noise measurement methods that allow, at least in principle, the complete elimination of the noise introduced by the measurement amplifier. The most severe drawback of these methods is that they require a multistep measurement procedure. Since environmental conditions may change in the different measurement steps, the final result could be affected by these changes. This problem is solved by the one-step voltage noise measurement methodology based on a novel amplifier topology proposed in this paper. Circuit implementations for the amplifier building blocks based on operational amplifiers are critically discussed. The proposed approach is validated through measurements performed on a prototype circuit.
EFQPSK Versus CERN: A Comparative Study
NASA Technical Reports Server (NTRS)
Borah, Deva K.; Horan, Stephen
2001-01-01
This report presents a comparative study on Enhanced Feher's Quadrature Phase Shift Keying (EFQPSK) and Constrained Envelope Root Nyquist (CERN) techniques. These two techniques have been developed in recent times to provide high spectral and power efficiencies under nonlinear amplifier environment. The purpose of this study is to gain insights into these techniques and to help system planners and designers with an appropriate set of guidelines for using these techniques. The comparative study presented in this report relies on effective simulation models and procedures. Therefore, a significant part of this report is devoted to understanding the mathematical and simulation models of the techniques and their set-up procedures. In particular, mathematical models of EFQPSK and CERN, effects of the sampling rate in discrete time signal representation, and modeling of nonlinear amplifiers and predistorters have been considered in detail. The results of this study show that both EFQPSK and CERN signals provide spectrally efficient communications compared to filtered conventional linear modulation techniques when a nonlinear power amplifier is used. However, there are important differences. The spectral efficiency of CERN signals, with a small amount of input backoff, is significantly better than that of EFQPSK signals if the nonlinear amplifier is an ideal clipper. However, to achieve such spectral efficiencies with a practical nonlinear amplifier, CERN processing requires a predistorter which effectively translates the amplifier's characteristics close to those of an ideal clipper. Thus, the spectral performance of CERN signals strongly depends on the predistorter. EFQPSK signals, on the other hand, do not need such predistorters since their spectra are almost unaffected by the nonlinear amplifier, Ibis report discusses several receiver structures for EFQPSK signals. It is observed that optimal receiver structures can be realized for both coded and uncoded EFQPSK signals with not too much increase in computational complexity. When a nonlinear amplifier is used, the bit error rate (BER) performance of the CERN signals with a matched filter receiver is found to be more than one decibel (dB) worse compared to the bit error performance of EFQPSK signals. Although channel coding is found to provide BER performance improvement for both EFQPSK and CERN signals, the performance of EFQPSK signals remains better than that of CERN. Optimal receiver structures for CERN signals with nonlinear equalization is left as a possible future work. Based on the numerical results, it is concluded that, in nonlinear channels, CERN processing leads towards better bandwidth efficiency with a compromise in power efficiency. Hence for bandwidth efficient communications needs, CERN is a good solution provided effective adaptive predistorters can be realized. On the other hand, EFQPSK signals provide a good power efficient solution with a compromise in band width efficiency.
Di Paola, Vieri; Marijuán, Pedro C; Lahoz-Beltra, Rafael
2004-01-01
Adaptive behavior in unicellular organisms (i.e., bacteria) depends on highly organized networks of proteins governing purposefully the myriad of molecular processes occurring within the cellular system. For instance, bacteria are able to explore the environment within which they develop by utilizing the motility of their flagellar system as well as a sophisticated biochemical navigation system that samples the environmental conditions surrounding the cell, searching for nutrients or moving away from toxic substances or dangerous physical conditions. In this paper we discuss how proteins of the intervening signal transduction network could be modeled as artificial neurons, simulating the dynamical aspects of the bacterial taxis. The model is based on the assumption that, in some important aspects, proteins can be considered as processing elements or McCulloch-Pitts artificial neurons that transfer and process information from the bacterium's membrane surface to the flagellar motor. This simulation of bacterial taxis has been carried out on a hardware realization of a McCulloch-Pitts artificial neuron using an operational amplifier. Based on the behavior of the operational amplifier we produce a model of the interaction between CheY and FliM, elements of the prokaryotic two component system controlling chemotaxis, as well as a simulation of learning and evolution processes in bacterial taxis. On the one side, our simulation results indicate that, computationally, these protein 'switches' are similar to McCulloch-Pitts artificial neurons, suggesting a bridge between evolution and learning in dynamical systems at cellular and molecular levels and the evolutive hardware approach. On the other side, important protein 'tactilizing' properties are not tapped by the model, and this suggests further complexity steps to explore in the approach to biological molecular computing.
Josephson junction microwave amplifier in self-organized noise compression mode
Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Seppä, Heikki; Hakonen, Pertti
2012-01-01
The fundamental noise limit of a phase-preserving amplifier at frequency is the standard quantum limit . In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, at 2.8 GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation. PMID:22355788
Multifrequency Raman amplifiers
Barth, Ido; Fisch, Nathaniel J.
2018-03-08
In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less
Multifrequency Raman amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Ido; Fisch, Nathaniel J.
In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less
Visual neurophysiology: a field-effect amplifier designed and built by R. L. De Valois.
Albrecht, Duane G; Creeger, Carl P; Crane, Alison M
2005-10-01
In the middle of the last century, R. L. De Valois designed and built a unique and effective amplifier based on the newly developed field-effect transistor (FET). This amplifier has many beneficial qualities for amplifying the signals of neurons with minimal disturbance. We have used this amplifier successfully for more than three decades. We describe the circuitry of the De Valois amplifier and provide performance specifications. The FET amplifier is one of De Valois's contributions to visual neurophysiology; we share the design in his honor, with the hope that it might prove useful to others.
Free electron lasers for transmission of energy in space
NASA Technical Reports Server (NTRS)
Segall, S. B.; Hiddleston, H. R.; Catella, G. C.
1981-01-01
A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.
Acoustic Excitation of Liquid Fuel Droplets and Coaxial Jets
2009-01-01
would also like to acknowledge the support of the NASA Microgravity Combustion program which made possible the completion of this research and Maj...fuels exposed to different acoustic excitation conditions in a laboratory environment and during free-fall (microgravity) conditions in a NASA drop tower...then sent to two amplifiers, one for each piezo-siren. The amplifiers were a Krohn-Hite (model 7500) and a Trek (model PZD2000A), which amplified the
Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.
2018-02-01
In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.
Gain and noise figure enhancement of Er+3/Yb+3 co-doped fiber/Raman hybrid amplifier
NASA Astrophysics Data System (ADS)
Mahran, O.
2016-02-01
An Er/Yb co-doped fiber/Raman hybrid amplifier (HA) is proposed and studied theoretically and analytically to improve the gain and noise figure of optical amplifiers. The calculations are performed under a uniform dopant and steady-state conditions. The initial energy transfer efficiency for Er/Yb co-doped fiber amplifier (EYDFA) is introduced, while the amplified spontaneous emission (ASE) is neglected. The glass fiber used for both Er/Yb and Raman amplifiers is phosphate. Different pump powers are used for both EYDFA and RA with 1 μW input signal power, 1 m length of Er/Yb amplifier and 25 km length of Raman amplifier (RA). The proposed model is validated for Er/Yb co-doped amplifier and Raman amplifier separately by comparing the calculating results with the experimental data. A high gain and low noise figure at 200 mW Raman pump power and 500 mW Er/Yb pump power are obtained for the proposed HA as compared with the experimental results of EYDFA, Raman amplifier and the EDFA/Raman hybrid amplifier.
NASA Astrophysics Data System (ADS)
Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Cheriaux, G.; Le, T. T. T.; Li, L.; Pitman, M.; Ros, D.; Sebban, S.; Velarde, P.
2012-07-01
By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of μJ. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings for maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitoun, Ph.; Oliva, E.; Fajardo, M.
2012-07-09
By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of {mu}J. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings formore » maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.« less
A 1-W, 30-ghz, CPW Amplifier for ACTS Small Terminal Uplink
NASA Technical Reports Server (NTRS)
Taub, Susan R.; Simons, Rainee N.
1992-01-01
The progress is described of the development of a 1 W, 30 GHz, coplanar waveguide (CPW) amplifier for the Advanced Communication Technology Satellite (ACTS)Small Terminal Uplink. The amplifier is based on Texas Instruments' monolithic microwave integrated circuit (MMIC) amplifiers; a three stage, low power amplifier, and a single stage, high power amplifier. The amplifiers have a power output of 190 mW and 0.710 W, gain of 23 and 4.2 dB, and efficiencies of 30.2 and 24 percent for the three stage and one stage amplifiers, respectively. The chips are to be combined via a CPW power divider/combiner circuit to yield the desired 1 W of output power.
93-133 GHz Band InP High-Electron-Mobility Transistor Amplifier with Gain-Enhanced Topology
NASA Astrophysics Data System (ADS)
Sato, Masaru; Shiba, Shoichi; Matsumura, Hiroshi; Takahashi, Tsuyoshi; Nakasha, Yasuhiro; Suzuki, Toshihide; Hara, Naoki
2013-04-01
In this study, we developed a new type of high-frequency amplifier topology using 75-nm-gate-length InP-based high-electron-mobility transistors (InP HEMTs). To enhance the gain for a wide frequency range, a common-source common-gate hybrid amplifier topology was proposed. A transformer-based balun placed at the input of the amplifier generates differential signals, which are fed to the gate and source terminals of the transistor. The amplified signal is outputted at the drain node. The simulation results show that the hybrid topology exhibits a higher gain from 90 to 140 GHz than that of the conventional common-source or common-gate amplifier. The two-stage amplifier fabricated using the topology exhibits a small signal gain of 12 dB and a 3-dB bandwidth of 40 GHz (93-133 GHz), which is the largest bandwidth and the second highest gain reported among those of published 120-GHz-band amplifiers. In addition, the measured noise figure was 5 dB from 90 to 100 GHz.
A third-order class-D amplifier with and without ripple compensation
NASA Astrophysics Data System (ADS)
Cox, Stephen M.; du Toit Mouton, H.
2018-06-01
We analyse the nonlinear behaviour of a third-order class-D amplifier, and demonstrate the remarkable effectiveness of the recently introduced ripple compensation (RC) technique in reducing the audio distortion of the device. The amplifier converts an input audio signal to a high-frequency train of rectangular pulses, whose widths are modulated according to the input signal (pulse-width modulation) and employs negative feedback. After determining the steady-state operating point for constant input and calculating its stability, we derive a small-signal model (SSM), which yields in closed form the transfer function relating (infinitesimal) input and output disturbances. This SSM shows how the RC technique is able to linearise the small-signal response of the device. We extend this SSM through a fully nonlinear perturbation calculation of the dynamics of the amplifier, based on the disparity in time scales between the pulse train and the audio signal. We obtain the nonlinear response of the amplifier to a general audio signal, avoiding the linearisation inherent in the SSM; we thereby more precisely quantify the reduction in distortion achieved through RC. Finally, simulations corroborate our theoretical predictions and illustrate the dramatic deterioration in performance that occurs when the amplifier is operated in an unstable regime. The perturbation calculation is rather general, and may be adapted to quantify the way in which other nonlinear negative-feedback pulse-modulated devices track a time-varying input signal that slowly modulates the system parameters.
MMIC DHBT Common-Base Amplifier for 172 GHz
NASA Technical Reports Server (NTRS)
Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich
2006-01-01
Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this frequency band. The performance of the amplifier as measured in the aforementioned tests suggests that InP/InGaAs HBTs may be superior to high-electron-mobility (HEMT) transistors in that the HBTs may offer more gain per stage and more output power per transistor.
Theoretical studies of solar lasers and converters
NASA Technical Reports Server (NTRS)
Heinbockel, John H.
1990-01-01
The research described consisted of developing and refining the continuous flow laser model program including the creation of a working model. The mathematical development of a two pass amplifier for an iodine laser is summarized. A computer program for the amplifier's simulation is included with output from the simulation model.
Effective amplifier noise for an optical receiver based on linear mode avalanche photodiodes
NASA Technical Reports Server (NTRS)
Chen, C.-C.
1989-01-01
The rms noise charge induced by the amplifier for an optical receiver based on the linear-mode avalanche photodiode (APD) was analyzed. It is shown that for an amplifier with a 1-pF capacitor and a noise temperature of 100 K, the rms noise charge due to the amplifier is about 300. Since the noise charge must be small compared to the signal gain, APD gains on the order of 1000 will be required to operate the receiver in the linear mode.
NASA Astrophysics Data System (ADS)
Lu, Xiaoming; Leng, Yuxin; Sui, Zhan; Li, Yanyan; Zhang, Zongxin; Xu, Yi; Guo, Xiaoyang; Liu, Yanqi; Li, Ruxin; Xu, Zhizhan
2014-02-01
We demonstrate high amplified spontaneous emission (ASE) contrast pulses in a Nd:glass laser system based on the hybrid double chirped pulse amplification (double CPA) scheme. By an OPA temporal cleaning device, ~100 uJ/46 fs/ 1011 clean pulses are generated and amplified in the next Nd:glass laser. After compressor, >150 mJ/~0.5 ps/1 Hz pulses can be obtained. The ASE temporal contrast of amplified pulses is ~1011 with energy gain ~2.5×104 in the Nd:glass amplifiers.
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Dutta, Niloy K.
2018-01-01
We investigate all-optical logic operation in quantum-dot semiconductor optical amplifier (QD-SOA) based Mach-Zehnder interferometer considering the effects of two-photon absorption (TPA). TPA occurs during the propagation of sub-picosecond pulses in QD-SOA, which leads to a change in carrier recovery dynamics in quantum-dots. We utilize a rate equation model to take into account carrier refill through TPA and nonlinear dynamics including carrier heating and spectral hole burning in the QD-SOA. The simulation results show the TPA-induced pumping in the QD-SOA can reduce the pattern effect and increase the output quality of the all-optical logic operation. With TPA, this scheme is suitable for high-speed Boolean logic operation at 320 Gb/s.
A low-noise current-sensitive amplifier-discriminator system for beta particle counting.
Sephton, J P; Johansson, L C; Williams, J M
2008-01-01
NPL has developed a low-noise current amplifier/discriminator system for radionuclides that emit low-energy electrons and X-rays. The new beta amplifier is based on the low-noise Amptek A-250 operational amplifier. The design has been configured for optimum signal to noise ratio. The new amplifier is described and results obtained using primarily electron-capture decaying radionuclides are presented. The new amplifier gives rise to higher particle detection efficiency than the previously used Atomic Energy of Canada Limited-designed amplifier. This is shown by measurements of (54)Mn and (65)Zn. The counting plateaux are significantly longer and have reduced gradients.
Typing SNP based on the near-infrared spectroscopy and artificial neural network
NASA Astrophysics Data System (ADS)
Ren, Li; Wang, Wei-Peng; Gao, Yu-Zhen; Yu, Xiao-Wei; Xie, Hong-Ping
2009-07-01
Based on the near-infrared spectra (NIRS) of the measured samples as the discriminant variables of their genotypes, the genotype discriminant model of SNP has been established by using back-propagation artificial neural network (BP-ANN). Taking a SNP (857G > A) of N-acetyltransferase 2 (NAT2) as an example, DNA fragments containing the SNP site were amplified by the PCR method based on a pair of primers to obtain the three-genotype (GG, AA, and GA) modeling samples. The NIRS-s of the amplified samples were directly measured in transmission by using quartz cell. Based on the sample spectra measured, the two BP-ANN-s were combined to obtain the stronger ability of the three-genotype classification. One of them was established to compress the measured NIRS variables by using the resilient back-propagation algorithm, and another network established by Levenberg-Marquardt algorithm according to the compressed NIRS-s was used as the discriminant model of the three-genotype classification. For the established model, the root mean square error for the training and the prediction sample sets were 0.0135 and 0.0132, respectively. Certainly, this model could rightly predict the three genotypes (i.e. the accuracy of prediction samples was up to100%) and had a good robust for the prediction of unknown samples. Since the three genotypes of SNP could be directly determined by using the NIRS-s without any preprocessing for the analyzed samples after PCR, this method is simple, rapid and low-cost.
Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.
2010-07-07
Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths comparedmore » to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.« less
System Modeling of kJ-class Petawatt Lasers at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shverdin, M Y; Rushford, M; Henesian, M A
2010-04-14
Advanced Radiographic Capability (ARC) project at the National Ignition Facility (NIF) is designed to produce energetic, ultrafast x-rays in the range of 70-100 keV for backlighting NIF targets. The chirped pulse amplification (CPA) laser system will deliver kilo-Joule pulses at an adjustable pulse duration from 1 ps to 50 ps. System complexity requires sophisticated simulation and modeling tools for design, performance prediction, and comprehension of experimental results. We provide a brief overview of ARC, present our main modeling tools, and describe important performance predictions. The laser system (Fig. 1) consists of an all-fiber front end, including chirped-fiber Bragg grating (CFBG)more » stretchers. The beam after the final fiber amplifier is split into two apertures and spatially shaped. The split beam first seeds a regenerative amplifier and is then amplified in a multi-pass Nd:glass amplifier. Next, the preamplified chirped pulse is split in time into four identical replicas and injected into one NIF Quad. At the output of the NIF beamline, each of the eight amplified pulses is compressed in an individual, folded, four-grating compressor. Compressor grating pairs have slightly different groove densities to enable compact folding geometry and eliminate adjacent beam cross-talk. Pulse duration is adjustable with a small, rack-mounted compressor in the front-end. We use non-sequential ray-tracing software, FRED for design and layout of the optical system. Currently, our FRED model includes all of the optical components from the output of the fiber front end to the target center (Fig. 2). CAD designed opto-mechanical components are imported into our FRED model to provide a complete system description. In addition to incoherent ray tracing and scattering analysis, FRED uses Gaussian beam decomposition to model coherent beam propagation. Neglecting nonlinear effects, we can obtain a nearly complete frequency domain description of the ARC beam at different stages in the system. We employ 3D Fourier based propagation codes: MIRO, Virtual Beamline (VBL), and PROP for time-domain pulse analysis. These codes simulate nonlinear effects, calculate near and far field beam profiles, and account for amplifier gain. Verification of correct system set-up is a major difficulty to using these codes. VBL and PROP predictions have been extensively benchmarked to NIF experiments, and the verified descriptions of specific NIF beamlines are used for ARC. MIRO has the added capability of treating bandwidth specific effects of CPA. A sample MIRO model of the NIF beamline is shown in Fig. 3. MIRO models are benchmarked to VBL and PROP in the narrow bandwidth mode. Developing a variety of simulation tools allows us to cross-check predictions of different models and gain confidence in their fidelity. Preliminary experiments, currently in progress, are allowing us to validate and refine our models, and help guide future experimental campaigns.« less
Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messerly, M.; Cunningham, P.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.
Voltage Amplifier Based on Organic Electrochemical Transistor.
Braendlein, Marcel; Lonjaret, Thomas; Leleux, Pierre; Badier, Jean-Michel; Malliaras, George G
2017-01-01
Organic electrochemical transistors (OECTs) are receiving a great deal of attention as amplifying transducers for electrophysiology. A key limitation of this type of transistors, however, lies in the fact that their output is a current, while most electrophysiology equipment requires a voltage input. A simple circuit is built and modeled that uses a drain resistor to produce a voltage output. It is shown that operating the OECT in the saturation regime provides increased sensitivity while maintaining a linear signal transduction. It is demonstrated that this circuit provides high quality recordings of the human heart using readily available electrophysiology equipment, paving the way for the use of OECTs in the clinic.
Dandl, R.A.
1961-09-19
A transistor amplifier is designed for vyery small currents below 10/sup -8/ amperes. The filrst and second amplifier stages use unusual selected transistors in which the current amplification increases markedly for values of base current below 10/sup -6/ amperes.
Birefringent Fiber Devices and Lasers
NASA Astrophysics Data System (ADS)
Theimer, James Prentice
1995-01-01
This thesis presents the results of numerical simulations of mode-locked figure eight lasers and their components: fiber amplifiers and nonlinear optical loop mirrors (NOLMs). The computations were designed to study pulse evolution in optical amplifiers and NOLMs with periodic repetition of these elements. Since fiber laser systems also include birefringent fiber, the effects of fiber birefringence was incorporated into the simulations. My studies of pulse amplification in non-birefringent amplifiers show pulse breakup when their energies exceed 4.5 fundamental soliton energies. In birefringent fibers pulse breakup is also found, but the two orthogonally polarized pulses propagate together. I find that their behavior is related to the properties of a vector soliton. I found that vector waves have close to unity transmission through a birefringent NOLM, but the pulse shape is distorted. This shape distortion reduces subsequent transmissions through the NOLM. The energy required for peak transmission of the pulse is predicted by the theory based on vector solitons. The same theory also predicted the low intensity transmission. The performance of the NOLM with birefringent fiber could not be improved by altering the polarization state of the pulse from linear polarization; the polarization controller introduced pulse distortion that resulted in excessive loss. I found an instability in the steady-state operation of the figure eight laser, which is due to pulse reshaping during propagation in the amplifier section. To remove this instability I introduced the concept of dispersion balancing; by increasing the dispersion in the amplifier section, the pulse can propagate nearly as a fundamental soliton in both the amplifier and the NOLM sections of the laser. This eliminated a major source of dispersive wave shedding and allowed the laser operation to become independent of the amplifier length. Sidebands were found on the pulse spectrum and their maxima corresponded well with the periodic resonance model.
Advanced Concepts in Josephson Junction Reflection Amplifiers
NASA Astrophysics Data System (ADS)
Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti
2014-06-01
Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.
Equivalent circuit of radio frequency-plasma with the transformer model
NASA Astrophysics Data System (ADS)
Nishida, K.; Mochizuki, S.; Ohta, M.; Yasumoto, M.; Lettry, J.; Mattei, S.; Hatayama, A.
2014-02-01
LINAC4 H- source is radio frequency (RF) driven type source. In the RF system, it is required to match the load impedance, which includes H- source, to that of final amplifier. We model RF plasma inside the H- source as circuit elements using transformer model so that characteristics of the load impedance become calculable. It has been shown that the modeling based on the transformer model works well to predict the resistance and inductance of the plasma.
Towards a THz backward wave amplifier in European OPTHER project
NASA Astrophysics Data System (ADS)
Dispenza, M.; Brunetti, F.; Cojocaru, C.-S.; de Rossi, A.; Di Carlo, A.; Dolfi, D.; Durand, A.; Fiorello, A. M.; Gohier, A.; Guiset, P.; Kotiranta, M.; Krozer, V.; Legagneux, P.; Marchesin, R.; Megtert, S.; Bouamrane, F.; Mineo, M.; Paoloni, C.; Pham, K.; Schnell, J. P.; Secchi, A.; Tamburri, E.; Terranova, M. L.; Ulisse, G.; Zhurbenko, V.
2010-10-01
Within the EC funded international project OPTHER (OPtically Driven TeraHertz AmplifiERs) a considerable technological effort is being undertaken, in terms of technological development, THz device design and integration. The ultimate goal is to develop a miniaturised THz amplifier based on vacuum-tube principles The main target specifications of the OPTHER amplifier are the following: - Operating frequency: in the band 0.3 to 2 THz - Output power: > 10 mW ( 10 dBm ) - Gain: 10 to 20 dB. The project is in the middle of its duration. Design and simulations have shown that these targets can be met with a proper device configuration and careful optimization of the different parts of the amplifier. Two parallel schemes will be employed for amplifier realisation: THz Drive Signal Amplifier and Optically Modulated Beam THz Amplifier.
3D gain modeling of LMJ and NIF amplifiers
NASA Astrophysics Data System (ADS)
LeTouze, Geoffroy; Cabourdin, Olivier; Mengue, J. F.; Guenet, Mireille; Grebot, Eric; Seznec, Stephane E.; Jancaitis, Kenneth S.; Marshall, Christopher D.; Zapata, Luis E.; Erlandson, A. E.
1999-07-01
A 3D ray-trace model has been developed to predict the performance of flashlamp pumped laser amplifiers. The computer program, written in C++, includes a graphical display option using the Open Inventor library, as well as a parser and a loader allowing the user to easily model complex multi-segment amplifier systems. It runs both on a workstation cluster at LLNL, and on the T3E Cray at CEA. We will discuss how we have reduce the required computation time without changing precision by optimizing the parameters which set the discretization level of the calculation. As an example, the sample of calculation points is chosen to fit the pumping profile through the thickness of amplifier slabs. We will show the difference in pump rates with our latest model as opposed to those produced by our earlier 2.5D code AmpModel. We will also present the results of calculations which model surfaces and other 3D effects such as top and bottom refelcotr positions and reflectivity which could not be included in the 2.5D model. This new computer model also includes a full 3D calculation of the amplified spontaneous emission rate in the laser slab, as opposed to the 2.5D model which tracked only the variation in the gain across the transverse dimensions of the slab. We will present the impact of this evolution of the model on the predicted stimulated decay rate and the resulting gain distribution. Comparison with most recent AmpLab experimental result will be presented, in the different typical NIF and LMJ configurations.
InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz
NASA Technical Reports Server (NTRS)
Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard
2009-01-01
Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.
An automatic step adjustment method for average power analysis technique used in fiber amplifiers
NASA Astrophysics Data System (ADS)
Liu, Xue-Ming
2006-04-01
An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.
Investigation into the common mode rejection ratio of the physiological signal conditioner circuit
NASA Technical Reports Server (NTRS)
Obrien, Edward M.
1992-01-01
The common mode rejection ratio (CMRR) of the single operational amplifier (op amp) differential amplifier and of the three operational amplifier differential amplifier was investigated. The three op amp differential amplifier circuit is used in the signal conditioner circuit which amplifies signals such as the electromyograph or electrocardiogram. The investigation confirmed via SPICE modeling what has been observed by others in the recent literature that the CMRR for the circuit can be maximized without precision resistor values or precisely matched op amps. This can be done if one resistor in the final stage can be adjusted either by a potentiometer or by laser trimming in the case of hybrid circuit fabrication.
A Laser Interferometric Miniature Seismometer
2008-09-01
zero bias, convert the photodiode currents to voltages with transimpedance amplifiers based on operational amplifiers (op amps) and produce a...light is collected at the photodiodes and transimpedance amplifiers convert the photocurrent to a voltage, and the seismic signal is the difference... transimpedance amplifiers . CONCLUSIONS AND RECOMMENDATIONS Achieving LNM resolution in a seismic sensor is a very strong challenge. While we have built
Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2 amplified and TP53 wild-type glioblastomas
Verreault, Maite; Schmitt, Charlotte; Goldwirt, Lauriane; Pelton, Kristine; Haidar, Samer; Levasseur, Camille; Guehennec, Jeremy; Knoff, David; Labussiere, Marianne; Marie, Yannick; Ligon, Azra H.; Mokhtari, Karima; Hoang-Xuan, Khe; Sanson, Marc; Alexander, Brian M; Wen, Patrick Y.; Delattre, Jean-Yves; Ligon, Keith L.; Idbaih, Ahmed
2016-01-01
Rationale p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However, this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. Methods We performed a preclinical evaluation of RG7112 MDM2 inhibitor, across a panel of 36 patient-derived GBM cell lines (PDCLs), each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. Results MDM2-amplified PDCLs were 44 times more sensitive than TP53 mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 μM vs 21.9 μM). MDM4 amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 μM), whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 μM). In MDM2-amplified lines, RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly, treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth, was cytotoxic, and significantly increased survival. Conclusion These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover, significant efficacy in a subset of non-MDM2 amplified models suggests that additional markers of response to MDM2 inhibitors must be identified. PMID:26482041
A Simple Method for Amplifying RNA Targets (SMART)
McCalla, Stephanie E.; Ong, Carmichael; Sarma, Aartik; Opal, Steven M.; Artenstein, Andrew W.; Tripathi, Anubhav
2012-01-01
We present a novel and simple method for amplifying RNA targets (named by its acronym, SMART), and for detection, using engineered amplification probes that overcome existing limitations of current RNA-based technologies. This system amplifies and detects optimal engineered ssDNA probes that hybridize to target RNA. The amplifiable probe-target RNA complex is captured on magnetic beads using a sequence-specific capture probe and is separated from unbound probe using a novel microfluidic technique. Hybridization sequences are not constrained as they are in conventional target-amplification reactions such as nucleic acid sequence amplification (NASBA). Our engineered ssDNA probe was amplified both off-chip and in a microchip reservoir at the end of the separation microchannel using isothermal NASBA. Optimal solution conditions for ssDNA amplification were investigated. Although KCl and MgCl2 are typically found in NASBA reactions, replacing 70 mmol/L of the 82 mmol/L total chloride ions with acetate resulted in optimal reaction conditions, particularly for low but clinically relevant probe concentrations (≤100 fmol/L). With the optimal probe design and solution conditions, we also successfully removed the initial heating step of NASBA, thus achieving a true isothermal reaction. The SMART assay using a synthetic model influenza DNA target sequence served as a fundamental demonstration of the efficacy of the capture and microfluidic separation system, thus bridging our system to a clinically relevant detection problem. PMID:22691910
Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny
USDA-ARS?s Scientific Manuscript database
ß-tubulin, calmodulin, internal transcribed spacer and partial lsu-rDNA, RNA polymerase, DNA replication licensing factor Mcm7, and pre-rRNA processing protein Tsr1 were amplified and sequenced from 62 A. versicolor clade isolates and analyzed phylogenetically using the concordance model to establis...
Aspergillus section Versicolores, nine new species and multilocus DNA sequence based phylogeny
USDA-ARS?s Scientific Manuscript database
ß-tubulin, calmodulin, internal transcribed spacer and partial lsu-rDNA, RNA polymerase, DNA replication licensing factor Mcm7, and pre-rRNA processing protein Tsr1 were amplified and sequenced from 62 A. versicolor clade isolates and analyzed phylogenetically using the concordance model to establis...
X-Band, 17-Watt Solid-State Power Amplifier
NASA Technical Reports Server (NTRS)
Mittskus, Anthony; Stone, Ernest; Boger, William; Burgess, David; Honda, Richard; Nuckolls, Carl
2005-01-01
An advanced solid-state power amplifier that can generate an output power of as much as 17 W at a design operating frequency of 8.4 GHz has been designed and constructed as a smaller, lighter, less expensive alternative to traveling-wave-tube X-band amplifiers and to prior solid-state X-band power amplifiers of equivalent output power. This amplifier comprises a monolithic microwave integrated circuit (MMIC) amplifier module and a power-converter module integrated into a compact package (see Figure 1). The amplifier module contains an input variable-gain amplifier (VGA), an intermediate driver stage, a final power stage, and input and output power monitors (see Figure 2). The VGA and the driver amplifier are 0.5-m GaAs-based metal semiconductor field-effect transistors (MESFETs). The final power stage contains four parallel high-efficiency, GaAs-based pseudomorphic high-electron-mobility transistors (PHEMTs). The gain of the VGA is voltage-variable over a range of 10 to 24 dB. To provide for temperature compensation of the overall amplifier gain, the gain-control voltage is generated by an operational-amplifier circuit that includes a resistor/thermistor temperature-sensing network. The driver amplifier provides a gain of 14 dB to an output power of 27 dBm to drive the four parallel output PHEMTs, each of which is nominally capable of putting out as much as 5 W. The driver output is sent to the input terminals of the four parallel PHEMTs through microstrip power dividers; the outputs of these PHEMTs are combined by microstrip power combiners (which are similar to the microstrip power dividers) to obtain the final output power of 17 W.
Common base amplifier with 7 - dB gain at 176 GHz in InP mesa DHBT technology
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Paidi, V.; Griffith, Z.; Dahlstrom, M.; Wei, Y.; Urteaga, M.; Rodell, M. J. W.; Fung, A.
2004-01-01
We report a single stage tunded amplifier that exhibits 7 dB small signal gain at 176 GHz. Common Base topology is chosen as it has the best maximum stable gain (MSG) in this frequency band when compared to common emitter and common collector topologies. The amplifiers are designed and fabricated in InP mesa double heterojunction bipolar transistor (DHBT) technology.
Andrianov, Alexey; Anashkina, Elena; Kim, Arkady; Meyerov, Iosif; Lebedev, Sergey; Sergeev, Alexander; Mourou, Gerard
2014-11-17
We developed a three-dimensional numerical model of Large-Mode-Area chirped pulse fiber amplifiers which includes nonlinear beam propagation in nonuniform multimode waveguides as well as gain spectrum dynamics in quasi-three-level active ions. We used our model in tapered Yb-doped fiber amplifiers and showed that single-mode propagation is maintained along the taper even in the presence of strong Kerr nonlinearity and saturated gain, allowing extraction of up to 3 mJ of output energy in 1 ns pulse. Energy scaling and its limitation as well as the influence of fiber taper bending and core irregularities on the amplifier performance were studied. We also investigated numerically the capabilities for compression and coherent combining of up to 36 perturbed amplifying channels and showed more than 70% combining efficiency, even with up to 11% of high-order modes in individual channels.
Ultrasensitive lateral-flow assays based on quantum dot encapsulations with signal amplification
NASA Astrophysics Data System (ADS)
Li, Xue; Gong, Xiaoqun; Zhang, Bo; Liu, Yajuan; Chang, Jin; Zhang, Xuening
2018-05-01
Lateral-flow assays (LFAs), with its convenience and low cost, promise to become the in-home test format for early diagnosis and monitoring of tumor marker. However, the insufficient signal intensity was generated by signal reporters reducing the sensitivity of this format. In this study, a novel nanoscale signal reporter capable of amplifying the fluorescence signal is fabricated by encapsulating quantum dots (QDs) into modified tri-copolymer (poly(tert-butyl acrylate-co-ethyl acrylate-co-methacrylic acid)) (ODA- g-tri-copolymer). The amplified signal varied by simply adjusting the ratio of QDs to the ODA- g-tri-copolymer for obtaining QD nanospheres with high QD loading. They exhibits outstanding stability compared to the individual QDs both in the biological buffer and strong acid solutions. Here, human chorionic gonadotrophin (HCG) is employed as the model protein of LFAs. The results show that the detection limit of the QD nanospheres is pushed down to 0.016 IU/L, which is about 38.5 times enhanced compared to the individual QD-based LFAs without any signal amplifying. The ultrasensitive LFAs were attributed to the signal amplification strategy, and their efficiency and robustness demonstrated the great potential in clinical applications. [Figure not available: see fulltext.
Can Outer Hair Cells Actively Pump Fluid into the Tunnel of Corti?
NASA Astrophysics Data System (ADS)
Zagadou, Brissi Franck; Mountain, David C.
2011-11-01
Non-classical models of the cochlear traveling wave have been introduced in attempt to capture the unique features of the cochlear amplifier (CA). These models include multiple modes of longitudinal coupling. In one approach, it is hypothesized that two wave modes can add their energies to create amplification such as that desired in the CA. The tunnel of Corti (ToC) was later used to represent the second wave mode for the proposed traveling wave amplifier model, and was incorporated in a multi-compartment cochlea model. The results led to the hypothesis that the CA functions as a fluid pump. However, this hypothesis must be consistent with the anatomical structure of the organ of Corti (OC). The fluid must pass between the outer pillar cells before reaching the ToC, and the ToC fluid and the underlying basilar membrane must constitute an appropriate waveguide. We have analyzed an anatomically based 3D finite element model of the ToC of the gerbil. Our results demonstrate that the OC structure is consistent with the hypothesis.
Digital lock-in amplifier based on soundcard interface for physics laboratory
NASA Astrophysics Data System (ADS)
Sinlapanuntakul, J.; Kijamnajsuk, P.; Jetjamnong, C.; Chotikaprakhan, S.
2017-09-01
The purpose of this paper is to develop a digital lock-in amplifier based on soundcard interface for undergraduate physics laboratory. Both series and parallel RLC circuit laboratory are tested because of its well-known, easy to understand and simple confirm. The sinusoidal signal at the frequency of 10 Hz - 15 kHz is generated to the circuits. The amplitude and phase of the voltage drop across the resistor, R are measured in 10 step decade. The signals from soundcard interface and lock-in amplifier are compared. The results give a good correlation. It indicates that the design digital lock-in amplifier is promising for undergraduate physic laboratory.
Microwave power amplifiers based on AlGaN/GaN transistors with a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Vendik, O. G.; Vendik, I. B.; Tural'chuk, P. A.; Parnes, Ya. M.; Parnes, M. D.
2016-11-01
A technique for synthesis of microwave power amplifiers based on transistors with a AlGaN/GaN heterojunction is discussed. Special focus is on the development of a technique for synthesis of transformation circuits of the power amplifier to increase efficiency with a retained high output power. The use of independent matching at the harmonic frequencies and fundamental frequency makes it possible to control the attainable efficiency in a wide frequency band along with the total suppression of harmonics beyond the operational band. Microwave power amplifiers for operation at 4 and 9 GHz have been developed and experimentally investigated.
A microwave cryogenic low-noise amplifier based on sige heterostructures
NASA Astrophysics Data System (ADS)
Ivanov, B. I.; Grajcar, M.; Novikov, I. L.; Vostretsov, A. G.; Il'ichev, E.
2016-04-01
A low-noise cryogenic amplifier for the measurement of weak microwave signals at sub-Kelvin temperatures is constructed. The amplifier has five stages based on SiGe bipolar heterostructure transistors and has a gain factor of 35 dB in the frequency band from 100 MHz to 4 GHz at an operating temperature of 800 mK. The parameters of a superconducting quantum bit measured with this amplifier in the ultralow-power mode are presented as an application example. The amplitude-frequency response of the "supercon-ducting qubit-coplanar cavity" structure is demonstrated. The ground state of the qubit is characterized in the quasi-dispersive measurement mode.
Wideband pulse amplifiers for the NECTAr chip
NASA Astrophysics Data System (ADS)
Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribó, M.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.
2012-12-01
The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.
Gao, Jiangang; Wang, Xiang; Wu, Xudong; Aguinaga, Sal; Huynh, Kristin; Jia, Shuping; Matsuda, Keiji; Patel, Manish; Zheng, Jing; Cheatham, MaryAnn; He, David Z.; Dallos, Peter; Zuo, Jian
2007-01-01
The remarkable sensitivity and frequency selectivity of the mammalian cochlea is attributed to a unique amplification process that resides in outer hair cells (OHCs). Although the mammalian-specific somatic motility is considered a substrate of cochlear amplification, it has also been proposed that somatic motility in mammals simply acts as an operating-point adjustment for the ubiquitous stereocilia-based amplifier. To address this issue, we created a mouse model in which a mutation (C1) was introduced into the OHC motor protein prestin, based on previous results in transfected cells. In C1/C1 knockin mice, localization of C1-prestin, as well as the length and number of OHCs, were all normal. In OHCs isolated from C1/C1 mice, nonlinear capacitance and somatic motility were both shifted toward hyperpolarization, so that, compared with WT controls, the amplitude of cycle-by-cycle (alternating, or AC) somatic motility remained the same, but the unidirectional (DC) component reversed polarity near the OHC's presumed in vivo resting membrane potential. No physiological defects in cochlear sensitivity or frequency selectivity were detected in C1/C1 or C1/+ mice. Hence, our results do not support the idea that OHC somatic motility adjusts the operating point of a stereocilia-based amplifier. However, they are consistent with the notion that the AC component of OHC somatic motility plays a dominant role in mammalian cochlear amplification. PMID:17640919
Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers.
Hammani, Kamal; Finot, Christophe; Dudley, John M; Millot, Guy
2008-10-13
We report experimental observation and characterization of rogue wave-like extreme value statistics arising from pump-signal noise transfer in a fiber Raman amplifier. Specifically, by exploiting Raman amplification with an incoherent pump, the amplified signal is shown to develop a series of temporal intensity spikes whose peak power follows a power-law probability distribution. The results are interpreted using a numerical model of the Raman gain process using coupled nonlinear Schrödinger equations, and the numerical model predicts results in good agreement with experiment.
NASA Astrophysics Data System (ADS)
Kotb, Amer
2015-06-01
The modeling of all-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is simulated by using Mach-Zehnder interferometers (MZIs) utilizing quantum-dots semiconductor optical amplifiers (QDs-SOAs). The study is carried out when the effect of amplified spontaneous emission (ASE) is included. The dependence of the output quality factor ( Q-factor) on signals and QDs-SOAs' parameters is also investigated and discussed. The simulation is conducted under a repetition rate of ˜1 Tb/s.
Room-temperature electron spin amplifier based on Ga(In)NAs alloys.
Puttisong, Yuttapoom; Buyanova, Irina A; Ptak, Aaron J; Tu, Charles W; Geelhaar, Lutz; Riechert, Henning; Chen, Weimin M
2013-02-06
The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On-Ramp: Improving students' understanding of lock-in amplifiers
NASA Astrophysics Data System (ADS)
DeVore, Seth; Singh, Chandralekha; Levy, Jeremy
2013-03-01
A lock-in amplifier is a powerful and versatile instrument which is used frequently in condensed matter physics research. However, many students struggle with the basics of a lock-in amplifier and they have difficulty in interpreting the data obtained with this device in diverse applications. To improve students' understanding, we are developing an ``On-Ramp'' tutorial based on physics education research which makes use of a computer simulation of a lock-in amplifier. During the development of the tutorial we interviewed several faculty members and graduate students. The tutorial is based on a field-tested approach in which students realize their difficulties after predicting the outcome of experiments that use a lock-in amplifier; students can check their predictions using simulations. The tutorial then guides students toward a coherent understanding of the basics of a lock-in amplifier. This poster will discuss the development and assessment process. This work is supported by NSF NEB (DMR-1124131) and NSF (PHY-1202909).
Low noise parametric amplifiers for radio astronomy observations at 18-21 cm wavelength
NASA Technical Reports Server (NTRS)
Kanevskiy, B. Z.; Veselov, V. M.; Strukov, I. A.; Etkin, V. S.
1974-01-01
The principle characteristics and use of SHF parametric amplifiers for radiometer input devices are explored. Balanced parametric amplifiers (BPA) are considered as the SHF signal amplifiers allowing production of the amplifier circuit without a special filter to achieve decoupling. Formulas to calculate the basic parameters of a BPA are given. A modulator based on coaxial lines is discussed as the input element of the SHF. Results of laboratory tests of the receiver section and long-term stability studies of the SHF sector are presented.
Mixing Under Transcritical Flow Conditions
2011-03-01
between them. The signals were then sent to two amplifiers (Krohn-Hite model 7500 and a Trek model PZD2000A), one for each piezo-siren. The amplified...In Annual Research Briefs, pages 73–84. Center for Turbulence Research, NASA Ames/Stanford Univ., 1999. [61] C. Segal and SA Polikhov. Subcritical to
Accuracy of Noninvasive Estimation Techniques for the State of the Cochlear Amplifier
NASA Astrophysics Data System (ADS)
Dalhoff, Ernst; Gummer, Anthony W.
2011-11-01
Estimation of the function of the cochlea in human is possible only by deduction from indirect measurements, which may be subjective or objective. Therefore, for basic research as well as diagnostic purposes, it is important to develop methods to deduce and analyse error sources of cochlear-state estimation techniques. Here, we present a model of technical and physiologic error sources contributing to the estimation accuracy of hearing threshold and the state of the cochlear amplifier and deduce from measurements of human that the estimated standard deviation can be considerably below 6 dB. Experimental evidence is drawn from two partly independent objective estimation techniques for the auditory signal chain based on measurements of otoacoustic emissions.
Frequency-Offset Cartesian Feedback Based on Polyphase Difference Amplifiers
Zanchi, Marta G.; Pauly, John M.; Scott, Greig C.
2010-01-01
A modified Cartesian feedback method called “frequency-offset Cartesian feedback” and based on polyphase difference amplifiers is described that significantly reduces the problems associated with quadrature errors and DC-offsets in classic Cartesian feedback power amplifier control systems. In this method, the reference input and feedback signals are down-converted and compared at a low intermediate frequency (IF) instead of at DC. The polyphase difference amplifiers create a complex control bandwidth centered at this low IF, which is typically offset from DC by 200–1500 kHz. Consequently, the loop gain peak does not overlap DC where voltage offsets, drift, and local oscillator leakage create errors. Moreover, quadrature mismatch errors are significantly attenuated in the control bandwidth. Since the polyphase amplifiers selectively amplify the complex signals characterized by a +90° phase relationship representing positive frequency signals, the control system operates somewhat like single sideband (SSB) modulation. However, the approach still allows the same modulation bandwidth control as classic Cartesian feedback. In this paper, the behavior of the polyphase difference amplifier is described through both the results of simulations, based on a theoretical analysis of their architecture, and experiments. We then describe our first printed circuit board prototype of a frequency-offset Cartesian feedback transmitter and its performance in open and closed loop configuration. This approach should be especially useful in magnetic resonance imaging transmit array systems. PMID:20814450
Addressing Institutional Amplifiers in the Dynamics and Control of Tuberculosis Epidemics
Basu, Sanjay; Stuckler, David; McKee, Martin
2011-01-01
Tuberculosis outbreaks originating in prisons, mines, or hospital wards can spread to the larger community. Recent proposals have targeted these high-transmission institutional amplifiers by improving case detection, treatment, or reducing the size of the exposed population. However, what effects these alternative proposals may have is unclear. We mathematically modeled these control strategies and found case detection and treatment methods insufficient in addressing epidemics involving common types of institutional amplifiers. Movement of persons in and out of amplifiers fundamentally altered the transmission dynamics of tuberculosis in a manner not effectively mitigated by detection or treatment alone. Policies increasing the population size exposed to amplifiers or the per-person duration of exposure within amplifiers potentially worsened incidence, even in settings with high rates of detection and treatment success. However, reducing the total population size entering institutional amplifiers significantly lowered tuberculosis incidence and the risk of propagating new drug-resistant tuberculosis strains. PMID:21212197
Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers
NASA Astrophysics Data System (ADS)
Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2018-05-01
Taking into account the beam radii of pump light and seed laser along the entire length of the cell and their intensities in the cross section, a physical model with ordinary differential equation methods for alkali vapor amplifiers is established. Applied to the reported optically pumped Rb and diode-pumped Cs vapor amplifiers, the model shows good agreement between the calculated and measured dependence of amplified power on the seed power. A larger width of the spontaneous emission region as compared to the widths of pump absorption and laser emission regions, which will result in very high energy losses, is observed in the cell. Influence of pump and seed beam waists on output performance is calculated, showing that the pump and seed beam should match each other not only in shape but also in size, thus an optimal combination of beam radii is very important for efficient operation of alkali vapor amplifiers.
Angle amplifier based on multiplexed volume holographic gratings
NASA Astrophysics Data System (ADS)
Cao, Liangcai; Zhao, Yifei; He, Qingsheng; Jin, Guofan
2008-03-01
Angle amplifier of laser beam scanner is a widely used device in optical systems. Volume holographic optical elements can be applied in the angle amplifier. Compared with the traditional angle amplifier, it has the advantages of high angle resolution, high diffraction efficiency, small size, and high angle magnification and flexible design. Bragg anglewavelength- compensating recording method is introduced. Because of the Bragg compensatory relation between angle and wavelength, this device could be recorded at another wavelength. The design of the angle amplifier recording at the wavelength of 514.2nm for the working wavelength of 632.8nm is described. An optical setup for recording the angle amplifier device is designed and discussed. Experimental results in the photorefractive crystal Fe:LiNbO 3 demonstrate the feasibility of the angle amplifier scheme.
NASA Astrophysics Data System (ADS)
Dua, Puneit
Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced channels has been carried out to show that crosstalk can occur due to the four-wave mixing products generated inside the high power Er/Yb DCFA. A model for parametric amplification due to four-wave mixing has been developed and used to analyze its application for short pulse generation and high speed optical time division multiplexing.
NASA Astrophysics Data System (ADS)
Feng, R.; Otto-Bliesner, B. L.; Fletcher, T.; Ballantyne, A.; Brady, E. C.
2016-12-01
Changing atmosphere chemistry in the past has been hypothesized to have altered the earth's radiation budget, and hence the climate. Here, we use an advanced climate model to test whether this hypothesis can help explain the amplified warming in the northern high latitudes during the mid-Pliocene warm period (mPWP, 3.0 - 3.3 Ma). The amplified warming, suggested by terrestrial proxy records of northern high latitudes, is underestimated in previous climate simulations. This mismatch between observations and models may be partially due to proxy uncertainties, but also to insufficient model sensitivity, or incomplete knowledge of mPWP climate forcings. To explore the latter aspect, we conducted three coupled simulations using the same mPWP geography and topography, vegetation and CO2 level according to the PRISM3 reconstructions, but alternating emission scenarios among clean, polluted, and clean plus forest fire case. In the clean and polluted case, year-1850 emission and year-1850 natural plus year-2000 industrial emission are prescribed respectively. For the clean-plus-forest fire simulation, emissions from mPWP forest fire are constrained with a process-based prognostic fire model using fixed proxy SSTs. Preliminary results suggest that mPWP Arctic warmth is largely attributable to the removal of anthropogenic aerosols and enhanced deposition of the black carbon on snow and ice emitted from northern high latitude forest fires. Cloud radiative responses are shown to accelerate the summer sea ice melting from the continental margins, triggering the positive surface albedo and water vapor feedback that maintain a low perennial sea ice state in the Arctic Ocean. These results identify the important role that changes in aerosol chemistry may play in amplifying arctic surface temperatures of mPWP and insights on the role that aerosols may play in amplifying future Arctic temperatures.
In order to identify candidate drugs targets that exhibit lethality only in the context of MYCN amplification, we carried out a set of siRNA screens focused on the kinome, targeting ~713 kinases, utilizing human neuroblastoma cells lines with or without MYCN amplification. The neuroblastoma cell lines were: SK-N-BE2 (MYCN amplified) and SK-N-AS (non-amplified). The kinase Hits for the MYCN amplified cell line were selected using a combination of their differential activity when compared to the non-MYCN amplified cells and also ranked by P-values, based on the replicates.
In order to identify candidate drugs targets that exhibit lethality only in the context of MYCN amplification, we carried out a set of siRNA screens focused on the kinome, targeting ~713 kinases, utilizing human neuroblastoma cells lines with or without MYCN amplification. The neuroblastoma cell lines were: SK-N-BE2 (MYCN amplified) and SK-N-AS (non-amplified). The kinase Hits for the MYCN amplified cell line were selected using a combination of their differential activity when compared to the non-MYCN amplified cells and also ranked by P-values, based on the replicates.
[Preparation of O/W ginseng saponins-based nanoemulsion and its amplified immune response].
Cao, Fahao; Ouyang, Wuqing; Wang, Yanping
2010-02-01
To prepare an O/W ginseng saponins-based nanoemulsion and investigate its amplified immune response. The formulation of ginseng saponins-based nanoemulsion was optimized via the range of nanoemulsion zone in phase diagrams and the solubility of ginseng saponins. Its physicochemical properties were investigated, including morphology, particle size distribution, pH, viscosity and stability. Ginseng saponins-based nanoemulsion as adjuvant was co-administrated with a model antigen ovalbumin (OVA) in mice. Two weeks after the boosting, the serum levels of OVA-specific antibody and its isotypes were determined. The optimized ginseng saponins-based nanoemulsion formulation consisted of ginseng saponins, IPM, Cremophor RH 40, glycerol and water (with the weight ratio of 2 : 4 : 17.8 : 17.8 : 58.4), which was a light yellow fluid. The shape of droplets was spherical under transmission electron microscopy with an average diameter of 72.20 nm and a polydispersity index of 0.052. The viscosity and pH value of it were 4.20 s and 6.02, respectively. And it showed good stability. When co-administered with OVA, no obvious side effects were observed in the mice immunized with ginseng saponin-based nanoemulsion. The serum levels of IgG, IgG1 and IgG2a antibody in the group of ginseng saponin-based nanoemulsion immunized mice was significantly increased compared to the groups of OVA and the saline solution of ginseng saponin. Compared with the adjuvant aluminium hydroxide, the serum levels of IgG and IgG1 antibodys in the groups of ginseng saponins-based nanoemulsion had no significant difference, but the level of IgG2a was obviously higher. ginseng saponin-based nanoemulsion could amplify the Th1 and Th2 immune responses, and can be used as the vaccine adjuvant.
Broadband laser amplifier based on gas-phase dimer molecules pumped by the Sun.
Pe'er, I; Vishnevitsky, I; Naftali, N; Yogev, A
2001-09-01
We report the design and experimental realization of a solar-pumped dimer gas-laser amplifier. The amplifying medium is Te(2) gas, which is capable of amplifying laser signals over a broad spectral range. A gain of 42% was measured at a wavelength of 632.8 nm. We also present studies of the material characteristics and a brief review of the study of other candidate materials for solar pumping.
Solid-state X-band Combiner Study
NASA Technical Reports Server (NTRS)
Pitzalis, O., Jr.; Russell, K. J.
1979-01-01
The feasibility of developing solid-state amplifiers at 4 and 10 GHz for application in spacecraft altimeters was studied. Bipolar-transistor, field-effect-transistor, and Impatt-diode amplifier designs based on 1980 solid-state technology are investigated. Several output power levels of the pulsed, low-duty-factor amplifiers are considered at each frequency. Proposed transistor and diode amplifier designs are illustrated in block diagrams. Projections of size, weight, and primary power requirements are given for each design.
A Graphical Approach to Teaching Amplifier Design at the Undergraduate Level
ERIC Educational Resources Information Center
Assaad, R. S.; Silva-Martinez, J.
2009-01-01
Current methods of teaching basic amplifier design at the undergraduate level need further development to match today's technological advances. The general class approach to amplifier design is analytical and heavily based on mathematical manipulations. However, the students mathematical abilities are generally modest, creating a void in which…
Parametric traveling wave amplifier with a low pump frequency
NASA Astrophysics Data System (ADS)
Marchenko, V. F.; Streltsov, A. M.; Zhmurov, S. E.
1983-01-01
Consideration is given to the model of a parametric traveling wave amplifier with a cubic nonlinearity in the form of an LF filter with MOS varactors. The operation of the amplifier is analyzed with allowance for wave damping and nonlinearity saturation, and the nonlinear mode of operation is examined. Experimental results are discussed, with emphasis on the amplitude-frequency response characteristics.
Digital Distortion Caused by Traveling- Wave-Tube Amplifiers Simulated
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty
2002-01-01
Future NASA missions demand increased data rates in satellite communications for near real-time transmission of large volumes of remote data. Increased data rates necessitate higher order digital modulation schemes and larger system bandwidth, which place stricter requirements on the allowable distortion caused by the high-power amplifier, or the traveling-wave-tube amplifier (TWTA). In particular, intersymbol interference caused by the TWTA becomes a major consideration for accurate data detection at the receiver. Experimentally investigating the effects of the physical TWTA on intersymbol interference would be prohibitively expensive, as it would require manufacturing numerous amplifiers in addition to acquiring the required digital hardware. Thus, an accurate computational model is essential to predict the effects of the TWTA on system-level performance when a communication system is being designed with adequate digital integrity for high data rates. A fully three-dimensional, time-dependent, TWT interaction model has been developed using the electromagnetic particle-in-cell code MAFIA (Solution of Maxwell's equations by the Finite-Integration-Algorithm). It comprehensively takes into account the effects of frequency-dependent AM (amplitude modulation)/AM and AM/PM (phase modulation) conversion, gain and phase ripple due to reflections, drive-induced oscillations, harmonic generation, intermodulation products, and backward waves. This physics-based TWT model can be used to give a direct description of the effects of the nonlinear TWT on the operational signal as a function of the physical device. Users can define arbitrary excitation functions so that higher order modulated digital signals can be used as input and that computations can directly correlate intersymbol interference with TWT parameters. Standard practice involves using communication-system-level software packages, such as SPW, to predict if adequate signal detection will be achieved. These models use a nonlinear, black-box model to represent the TWTA. The models vary in complexity, but most make several assumptions regarding the operation of the high-power amplifier. When the MAFIA TWT interaction model was used, these assumptions were found to be in significant error. In addition, digital signal performance, including intersymbol interference, was compared using direct data input into the MAFIA model and using the system-level analysis tool SPW for several higher order modulation schemes. Results show significant differences in predicted degradation between SPW and MAFIA simulations, demonstrating the significance of the TWTA approximations made in the SPW model on digital signal performance. For example, a comparison of the SPW and MAFIA output constellation diagrams for a 16-ary quadrature amplitude modulation (16-QAM) signal (data shown only for second and fourth quadrants) is shown. The upper-bound degradation was calculated from the corresponding eye diagrams. In comparison to SPW simulations, the MAFIA data resulted in a 3.6-dB larger degradation.
A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojeda-Guillén, D., E-mail: dojedag@ipn.mx; Mota, R. D.; Granados, V. D.
2016-06-15
We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.
Landauer-Datta-Lundstrom model for terahertz transistor amplifier based on graphene
NASA Astrophysics Data System (ADS)
Davidovich, M. V.
2017-08-01
A transistor has been considered in the form of three electrodes connected by graphene ribbons or by metal quantum wires (nanowires) that operate on the principle of the current control by the changing voltage at the central electrode (gate). The analysis has been carried out according to the Landauer-Datta-Lundstrom model in equilibrium approximation for electrodes while fixing their potentials. We have obtained linear models and nonlinear terms in the determining current, and calculated the nonlinear current-voltage performances of graphene nanoribbons.
NASA Astrophysics Data System (ADS)
de O. Rocha, Helder R.; Castellani, Carlos E. S.; Silva, Jair A. L.; Pontes, Maria J.; Segatto, Marcelo E. V.
2015-01-01
We report a simple budget heuristic for a fast optimization of multipump Raman amplifiers based on the reallocation of the pump wavelengths and the optical powers. A set of different optical fibers are analyzed as the Raman gain medium, and a four-pump amplifier setup is optimized for each of them in order to achieve ripples close to 1 dB and gains up to 20 dB in the C band. Later, a comparison between our proposed heuristic and a multiobjective optimization based on a nondominated sorting genetic algorithm is made, highlighting the fact that our new approach can give similar solutions after at least an order of magnitude fewer iterations. The results shown in this paper can potentially pave the way for real-time optimization of multipump Raman amplifier systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurkin, S. A., E-mail: KurkinSA@gmail.com; Koronovskii, A. A.; Saratov State Technical University, Politechnicheskaja 77, Saratov 410028
2015-04-13
The high-power scheme for the amplification of powerful microwave signals based on the overcritical electron beam with a virtual cathode (virtual cathode amplifier) has been proposed and investigated numerically. General output characteristics of the virtual cathode amplifier including the dependencies of the power gain on the input signal frequency and amplitude have been obtained and analyzed. The possibility of the geometrical working frequency tuning over the range about 8%–10% has been shown. The obtained results demonstrate that the proposed virtual cathode amplifier scheme may be considered as the perspective high-power microwave amplifier with gain up to 18 dB, and with themore » following important advantages: the absence of external magnetic field, the simplicity of construction, the possibility of geometrical frequency tuning, and the amplification of relatively powerful microwave signals.« less
A high efficiency PWM CMOS class-D audio power amplifier
NASA Astrophysics Data System (ADS)
Zhangming, Zhu; Lianxi, Liu; Yintang, Yang; Han, Lei
2009-02-01
Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 × 1.52 mm2. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.
NASA Astrophysics Data System (ADS)
McCulloch, Mark A.; Melhuish, Simon J.; Piccirillo, Lucio
2015-01-01
An approach to enhancing the noise performance of an InP monolithic microwave integrated circuit (MMIC)-based low noise amplifiers (LNA) through the use of a discrete 100-nm gate length InP high electron mobility transistor is outlined. This LNA, known as a transistor in front of MMIC (T + MMIC) LNA, possesses a gain in excess of 40 dB and an average noise temperature of 9.4 K across the band 27 to 33 GHz at a physical temperature of 8 K. This compares favorably with 14.5 K for an LNA containing an equivalent MMIC. A simple advanced design system model offering further insights into the operation of the LNA is also presented and the LNA is compared with the current state-of-the-art Planck LFI LNAs.
Sahu, P P
2008-02-10
A thermally tunable erbium-doped fiber amplifier (EDFA) gain equalizer filter based on compact point symmetric cascaded Mach-Zehnder (CMZ) coupler is presented with its mathematical model and is found to be polarization dependent due to stress anisotropy caused by local heating for thermo-optic phase change from its mathematical analysis. A thermo-optic delay line structure with a stress releasing groove is proposed and designed for the reduction of polarization dependent characteristics of the high index contrast point symmetric delay line structure of the device. It is found from thermal analysis by using an implicit finite difference method that temperature gradients of the proposed structure, which mainly causes the release of stress anisotropy, is approximately nine times more than that of the conventional structure. It is also seen that the EDFA gain equalized spectrum by using the point symmetric CMZ device based on the proposed structure is almost polarization independent.
Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon
NASA Astrophysics Data System (ADS)
Arneodo, F.; Benabderrahmane, M. L.; Bruno, G.; Conicella, V.; Di Giovanni, A.; Fawwaz, O.; Messina, M.; Candela, A.; Franchi, G.
2018-06-01
We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (∼ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 × 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN.
Cladding pumped Yb-doped HOM power amplifier with high gain
NASA Astrophysics Data System (ADS)
Abedin, Kazi S.; Ahmad, Raja; DeSantolo, Anthony M.; Nicholson, Jeffrey W.; Westbrook, Paul S.; Headley, Clifford; DiGiovanni, David J.
2018-02-01
Higher-order mode (HOM) fibers have been engineered to allow propagation of linearly polarized symmetric modes LP0,N in a robust way. Compared with the fundamental mode LP(0,1), HOMs exhibits an effective area that can be larger by over two order magnitude, and thus propagating light in these modes could greatly suppress the effect of nonlinear effects. HOM fibers could also be doped with rare earth ions in order to amplify light propagating in these modes, which offers the enormous potential for generating high-intensity pulses. Excitation of HOM gain fiber using cladding pumping with multimode pump source is attractive for ytterbium based amplifiers, because of the availability of low-cost multimode pump diodes in the 975nm wavelength range. One problem associated with cladding pumping which leads to excitation of the large doped core (over 100 μm diameter) is that it could result in a large amount of amplifiedspontaneous- emission (ASE) noise, particularly when the input signal is weak. Optimization of amplifier design is critical in order to suppress ASE and achieve high gain and pump-to-signal conversion efficiency. We conducted numerical modeling of a cladding pumped HOM-amplifier, which revealed that this problem could be mitigated by using a relatively long gain-fiber that allowed reabsorption of the forward propagating ASE resulting in a further amplification of the signal. We demonstrate efficient amplification of a LP0,10 mode with an effective area 3140μm2 in an Yb-doped HOM amplifier cladding pumped at 975nm. We have successfully obtained a 20.2dB gain for 0.95 W 1064 nm input seed signal to more than 105W.
Gao, Xiang; Ouyang, Wei; Hao, Zengchao; Shi, Yandan; Wei, Peng; Hao, Fanghua
2017-02-01
Although climate warming and agricultural land use changes are two of the primary instigators of increased diffuse pollution, they are usually considered separately or additively. This likely lead to poor decisions regarding climate adaptation. Climate warming and farmland responses have synergistic consequences for diffuse nitrogen pollution, which are hypothesized to present different spatio-temporal patterns. In this study, we propose a modeling framework to simulate the synergistic impacts of climate warming and warming-induced farmland shifts on diffuse pollution. Active accumulated temperature response for latitudinal and altitudinal directions was predicted based on a simple agro-climate model under different temperature increments (△T 0 is from 0.8°C to 1.4°C at an interval of 0.2°C). Spatial distributions of dryland shift to paddy land were determined by considering accumulated temperature. Different temperature increments and crop distributions were inserted into Soil and Water Assessment Tool model, which quantified the spatio-temporal changes of nitrogen. Warming led to a decrease of the annual total nitrogen loading (2.6%-14.2%) in the low latitudes compared with baseline, which was larger than the decrease (0.8%-6.2%) in the high latitudes. The synergistic impacts amplified the decrease of the loading in the low and high latitudes at the sub-basin scale. Warming led to a decrease of the loading at a rate of 0.35kg/ha/°C, which was lower than the synergistic impacts (3.67kg/ha/°C) at the watershed level. However, warming led to the slight increase of the annual averaged NO3 (LAT) (0.16kg/ha/°C), which was amplified by the synergistic impacts (0.22kg/ha/°C). Expansion of paddy fields led to a decrease in the monthly total nitrogen loading throughout the year, but amplified an increase in the loading in August and September. The decreased response in spatio-temporal nitrogen patterns is substantially amplified by farmland-atmosphere feedbacks associated with farmland shifts in response to warming. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Elgamri, Abdelghafor
The increased demand from IP traffic, video application and cell backhaul has placed fiber routes under severe stains. The high demands for large bandwidth from enormous numbers from cell sites on a network made the capacity of yesterday's networks not adequate for today's bandwidth demand. Carries considered Dense Wavelength Division Multiplexing (DWDM) network to overcome this issue. Recently, there has been growing interest in fiber Raman amplifiers due to their capability to upgrade the wavelength-division-multiplexing bandwidth, arbitrary gain bandwidth. In addition, photonic crystal fibers have been widely modeled, studied, and fabricated due to their peculiar properties that cannot be achieved with conventional fibers. The focus of this thesis is to develop a low-noise broadband Raman amplification system based on photonic crystal Fiber that can be implemented in high capacity DWDM network successfully. The design a module of photonic crystal fiber Raman amplifier is based on the knowledge of the fiber cross-sectional characteristics i.e. the geometric parameters and the Germania concentration in the dope area. The module allows to study different air-hole dimension and disposition, with or without a central doped area. In addition the design integrates distributed Raman amplifier and nonlinear optical loop mirror to improve the signal to noise ratio and overall gain in large capacity DWDM networks.
Wei, Heming; Krishnaswamy, Sridhar
2017-05-01
Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.
NASA Astrophysics Data System (ADS)
Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua
2016-03-01
Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.
Zhang, J; Zhang, L G
2014-02-14
Chinese kale is an original Chinese vegetable of the Cruciferae family. To select suitable parents for hybrid breeding, we thoroughly analyzed the genetic diversity of Chinese kale. Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) molecular markers were used to evaluate the genetic diversity across 21 Chinese kale accessions from AVRDC and Guangzhou in China. A total of 104 bands were detected by 11 RAPD primers, of which 66 (63.5%) were polymorphic, and 229 polymorphic bands (68.4%) were observed in 335 bands amplified by 17 SRAP primer combinations. The dendrogram showed the grouping of the 21 accessions into 4 main clusters based on RAPD data, and into 6 clusters based on SRAP and combined data (RAPD + SRAP). The clustering of accessions based on SRAP data was consistent with petal colors. The Mantel test indicated a poor fit for the RAPD and SRAP data (r = 0.16). These results have an important implication for Chinese kale germplasm characterization and improvement.
Patterned Roughness for Cross-flow Transition Control at Mach 6
NASA Astrophysics Data System (ADS)
Arndt, Alexander; Matlis, Eric; Semper, Michael; Corke, Thomas
2017-11-01
Experiments are performed to investigate patterned discrete roughness for transition control on a sharp right-circular cone at an angle of attack at Mach 6.0. The approach to transition control is based on exciting less-amplified (subcritical) stationary cross-flow (CF) modes that suppress the growth of the more-amplified (critical) CF modes, and thereby delay transition. The experiments were performed in the Air Force Academy Ludwieg Tube which is a conventional (noisy) design. The cone model is equipped with a motorized 3-D traversing mechanism that mounts on the support sting. The traversing mechanism held a closely-spaced pair of fast-response total pressure Pitot probes. The model utilized a removable tip to exchange between different tip-roughness conditions. Mean flow distortion x-development indicated that the transition Reynolds number increased by 25% with the addition of the subcritical roughness. The energy in traveling disturbances was centered in the band of most amplified traveling CF modes predicted by linear theory. The spatial pattern in the amplitude of the traveling CF modes indicated a nonlinear (sum and difference) interaction between the stationary and traveling CF modes that might explain differences in Retrans between noisy and quiet environments. Air Force Grant FA9550-15-1-0278.
C.D. Nelson; Thomas L. Kubisiak; M. Stine; W.L. Nance
1994-01-01
Eight megagametophyte DNA samples from a single longleaf pine (Pinus palustris Mill.) tree were used to screen 576 oligonucleotide primers for random amplified polymorphic DNA (RAPD) fragments. Primers amplifying repeatable polymorphic fragments were further characterized within a sample of 72 megagametophytes from the same tree. Fragments...
Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.
Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus
2016-09-19
We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.45 nJ. The energy of generated 1064 nm pulses is 0.15 nJ, which is sufficient for the efficient seeding of high-contrast Nd:YVO chirped pulse regenerative amplifier/post amplifier systems generating 9 mJ pulses compressible to 16 ps duration. The power amplification stages, based on Nd:YAG crystals, provide 62 mJ pulses compressible to 20 ps pulse duration at a repetition rate of 1 kHz. Further energy scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.
Ming Gu; Chakrabartty, Shantanu
2014-06-01
This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μm CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/°C (27 °C- 57°C), while consuming less than 100 nW of power.
Power-Amplifier Module for 145 to 165 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Peralta, Alejandro
2007-01-01
A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.
Triantis, Iasonas F; Demosthenous, Andreas
2008-06-01
Ideally, interference in neural measurements due to signals from nearby muscles can be completely eliminated with the use of tripolar cuffs, in combination with appropriate amplifier configurations, such as the quasi-tripole (QT) and the true-tripole (TT). The operation of these amplifiers, is based on the theoretical property of the nerve cuff to produce a linear relationship of potential versus distance along its length, internally, when external potentials appear between its ends. Thus, in principle, electroneurogram (ENG) recordings from an ideal tripolar cuff would be free from electromyogram (EMG) interference generated by nearby muscles. However, in practice the cuff exhibits non-ideal behaviour leading to "cuff imbalance". The main focus of this paper is to investigate the causes of cuff imbalance, to demonstrate that it should be incorporated as a main parameter in the theoretical ENG-recording cuff electrode model. In addition to cuff asymmetry and tissue growth, the proximity of the interference source to the cuff is shown to result in cuff imbalance. The influence of proximity imbalance on the performance of the QT and TT amplifiers is also considered. Proximity imbalance is studied using bioelectric field simulations and saline-bath experiments. Variation is observed with both distance (40 mm and 70 mm was examined) and orientation (0-180 degrees), with the latter causing a more severe effect especially when the source dipole and the cuff are vertical to each other. The simulations and measurements are in close agreement. Tissue growth imbalance and asymmetry imbalance are also investigated in vitro. Finally, the signal-to-interference ratio (SIR; ENG/EMG) of the QT and TT amplifiers is examined in the presence of cuff imbalance. It is shown that proximity imbalance results in their SIR to peak only at certain cuff orientation values. This important finding offers an insight as to why in practice ENG recordings using these amplifiers have been widely reported to be degraded by EMG interference.
Design of an amplifier model accounting for thermal effect in fully aperiodic large pitch fibers
NASA Astrophysics Data System (ADS)
Tragni, K.; Molardi, C.; Poli, F.; Dauliat, R.; Leconte, B.; Darwich, D.; du Jeu, R.; Malleville, M. A.; Jamier, R.; Selleri, S.; Roy, P.; Cucinotta, A.
2018-02-01
Yb-doped Photonic Crystal Fibers (PCFs) have triggered a significant power scaling into fiber-based lasers. However thermally-induced effects, like mode instability, can compromise the output beam quality. PCF design with improved Higher Order Mode (HOM) delocalization and effective thermal resilience can contain the problem. In particular, Fully- Aperiodic Large-Pitch Fibers (FA-LPFs) have shown interesting properties in terms of resilience to thermal effects. In this paper the performances of a Yb-doped FA-LPF amplifier are experimentally and numerically investigated. Modal properties and gain competition between Fundamental Mode (FM) and first HOM have been calculated, in presence of thermal effects. The main doped fiber characteristics have been derived by comparison between experimental and numerical results.
THz semiconductor-based front-end receiver technology for space applications
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Siegel, Peter
2004-01-01
Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.
Adaptive amplifier for probe diagnostics of charged-particle temperature in the upper atmosphere
NASA Astrophysics Data System (ADS)
Chkalov, V. G.
An amplifier for probe experiments in the upper atmosphere is described which is based on a linear current-voltage converter design. Specifically, the amplifier is used as the input unit in a rocket-borne ionospheric probe for the measurement of electron temperature. The range of measured currents is from 10 to the -10th to 10 to the -6th A; the amplifier current range can be shifted up or down depending on the requirements of the experiment.
A small signal amplifier based on ionic liquid gated black phosphorous field effect transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Zhang, Wei; Thoutam, Laxman Raju
2015-04-10
In this article we report an analog small signal amplifier based on semiconducting black phosphorus (BP), the most recent addition to the family of two dimensional crystals. The amplifier, consisting of a BP load resistor and a BP field effect transistor (FET) was integrated on a single flake. The gain of the amplifier was found to be ~9 and it remained undistorted for input signal frequencies up to 15 kHz. In addition, we also report record high ON current of 200 µA/µm at V DD = -0.5V in BP FETs. Our results demonstrates the possibility for the implementation of BPmore » in the future generations of analog devices.« less
Enhancement of linear/nonlinear optical responses of molecular vibrations using metal nanoantennas
NASA Astrophysics Data System (ADS)
Morichika, Ikki; Kusa, Fumiya; Takegami, Akinobu; Ashihara, Satoshi
2017-04-01
Plasmonic enhancements of optical near-fields with metal nanostructures offer extensive potential for amplifying lightmatter interactions. We analytically formulate the enhancement of linear and nonlinear optical responses of molecular vibrations through resonant nanoantennas, based on a coupled-dipole model. We apply the formulae to evaluation of signal enhancement factors in the antenna-enhanced vibrational spectroscopy.
NASA Astrophysics Data System (ADS)
Krzempek, Karol; Sobon, Grzegorz; Sotor, Jaroslaw; Dudzik, Grzegorz; Abramski, Krzysztof M.
2014-10-01
We present a difference frequency generation based (DFG) mid-infrared (mid-IR) laser source using an all-polarization-maintaining-fiber (all-PM) amplifier capable of simultaneous amplification of 1064 nm and 1550 nm signals. The amplifier incorporates a single piece of a standard erbium:ytterbium (Er:Yb) co-doped double-clad (DC) active fiber and a limited number of off-the-shelf fiber-based components. Excited by a single 9 W multimode pump, the amplifier delivered over 12.1 dB and 17.8 dB gain at 1 µm and 1.55 µm, respectively. Due to an all-PM configuration, the amplifier was exceptionally convenient for DFG of mid-IR radiation in periodically polled lithium niobate (PPLN) crystal, yielding an output power of ~200 µW in a wide spectral range spanning from 3300 to 3470 nm.
A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications
NASA Astrophysics Data System (ADS)
Gaspar, M.; Pedrozzi, M.; Ferreira, L. F. R.; Garvey, T.
2011-05-01
We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.
NASA Technical Reports Server (NTRS)
Benet, James
1994-01-01
This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.
Charge-sensitive front-end electronics with operational amplifiers for CdZnTe detectors
NASA Astrophysics Data System (ADS)
Födisch, P.; Berthel, M.; Lange, B.; Kirschke, T.; Enghardt, W.; Kaever, P.
2016-09-01
Cadmium zinc telluride (CdZnTe, CZT) radiation detectors are suitable for a variety of applications, due to their high spatial resolution and spectroscopic energy performance at room temperature. However, state-of-the-art detector systems require high-performance readout electronics. Though an application-specific integrated circuit (ASIC) is an adequate solution for the readout, requirements of high dynamic range and high throughput are not available in any commercial circuit. Consequently, the present study develops the analog front-end electronics with operational amplifiers for an 8×8 pixelated CZT detector. For this purpose, we modeled an electrical equivalent circuit of the CZT detector with the associated charge-sensitive amplifier (CSA). Based on a detailed network analysis, the circuit design is completed by numerical values for various features such as ballistic deficit, charge-to-voltage gain, rise time, and noise level. A verification of the performance is carried out by synthetic detector signals and a pixel detector. The experimental results with the pixel detector assembly and a 22Na radioactive source emphasize the depth dependence of the measured energy. After pulse processing with depth correction based on the fit of the weighting potential, the energy resolution is 2.2% (FWHM) for the 511 keV photopeak.
A velocity-amplified electromagnetic energy harvester for small amplitude vibration
NASA Astrophysics Data System (ADS)
Klein, J.; Zuo, L.
2017-09-01
Dedicated, self-powered wireless sensors are widely being studied for use throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. To enable sensors to power themselves, harvesting energy from machine vibration has been studied, however, its overall effectiveness can be hampered due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester architecture in which a compliant mechanism and proof mass system is used to amplify the vibrational velocity of machine vibration for a linear electromagnetic generator. A prototype has been fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 inch (25.4 μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. This method of locally increasing the machine vibrational velocity has been shown to be a viable option for increasing the potential power output of an energy harvester. In addition, a mathematical model is created based on pseudo-rigid-body dynamics and the analysis matches closely with experiments.
High dynamic range charge measurements
De Geronimo, Gianluigi
2012-09-04
A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.
Construction, Calibration, and Validation of a Simple Patch-Clamp Amplifier for Physiology Education
ERIC Educational Resources Information Center
Rouzrokh, Ali; Ebrahimi, Soltan Ahmed; Mahmoudian, Massoud
2009-01-01
A modular patch-clamp amplifier was constructed based on the Strickholm design, which was initially published in 1995. Various parts of the amplifier such as the power supply, input circuit, headstage, feedback circuit, output and nulling circuits were redesigned to use recent software advances and fabricated using the common lithographic printed…
Jiang, Ling; Qian, Jing; Yang, Xingwang; Yan, Yuting; Liu, Qian; Wang, Kan; Wang, Kun
2014-01-02
An amplified electrochemical impedimetric aptasensor for ochratoxin A (OTA) was developed with picomolar sensitivity. A facile route to fabricate gold nanoparticles covalently bound reduced graphene oxide (AuNPs-rGO) resulted in a large number of well-dispersed AuNPs on graphene sheets with tremendous binding sites for DNA, since the single rGO sheet and each AuNP can be loaded with hundreds of DNA strands. An aptasensor with sandwich model was fabricated which involved thiolated capture DNA immobilized on a gold electrode to capture the aptamer, then the sensing interface was incubated with OTA at a desired concentration, followed by AuNPs-rGO functionalized reporter DNA hybridized with the residual aptamers. By exploiting the AuNPs-rGO as an excellent signal amplified platform, a single hybridization event between aptamer and reporter DNA was translated into more than 10(7) redox events, leading to a substantial increase in charge-transfer resistance (Rct) by 7~ orders of magnitude compared with that of the free aptamer modified electrode. Such designed aptasensor showed a decreased response of Rct to the increase of OTA concentrations over a wide range of 1 pg mL(-1)-50 ng mL(-1) and could detect extremely low OTA concentration, namely, 0.3 pg mL(-1) or 0.74 pM, which was much lower than that of most other existed impedimetric aptasensors. The signal amplification platform presented here would provide a promising model for the aptamer-based detection with a direct impedimetric method. Copyright © 2013 Elsevier B.V. All rights reserved.
Pr3 + -doped GeSx-based glasses for fiber amplifiers at 1.3 µm
NASA Astrophysics Data System (ADS)
Simons, D. R.; Faber, A. J.; de Waal, H.
1995-03-01
The photoluminescence properties of Pr3+ -doped GeS x -based glasses are studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-containing glasses in the telecommunications window at 1.3 mu m is discussed.
Characterization of a measurement-based noiseless linear amplifier and its applications
NASA Astrophysics Data System (ADS)
Zhao, Jie; Haw, Jing Yan; Symul, Thomas; Lam, Ping Koy; Assad, Syed M.
2017-07-01
A noiseless linear amplifier (NLA) adds no noise to the signals it processes, which works only in a probabilistic way. It can be realized approximately with either a physical implementation that truncates the working space of the NLA on a photon-number basis or a measurement-based implementation that realizes the truncation virtually by a bounded postselection filter. To examine the relationship between these two approximate NLAs, we characterize in detail the measurement-based NLA and compare it with its physical counterpart in terms of their abilities to preserve the state Gaussianity and their probability of success. The link between these amplifiers is further clarified by integrating them into a measure-and-prepare setup. We stress the equivalence between the physical and the measurement-based approaches holds only when the effective parameters, the amplification gain, the cutoff, and the amplitude of the input state, are taken into account. Finally, we construct a 1-to-infinity cloner using the two amplifiers and show that a fidelity surpassing the no-cloning limit is achievable with the measurement-based NLA.
Power source selection for neutral particle beam systems
NASA Astrophysics Data System (ADS)
Silverman, Sidney W.; Chi, John W. H.; Hill, Gregory
Space based neutral particle beams (NPB) are being considered for use as an SDI weapon as well as a mid-course discriminator. These systems require a radio frequency (RF) power source. Five types of amplifiers were considered for the RF power source: the klystron, the klystrode, the tetrode, the cross field amplifier, and the solid state amplifier. A number of different types of power source systems (nuclear and non-nuclear) were considered for integration with these amplifiers. The most attractive amplifier power system concepts were identified through comparative evaluations that took into account the total masses of integrated amplifier power source systems as well as a number of other factors that consisted of development cost, technology risk, vulnerability, survivability, reliability, and impacts on spacecraft stabilization. These concepts are described and conclusions drawn.
Four-wave-mixing suppression in Er 3+-fiber amplifiers by backward pumping
NASA Astrophysics Data System (ADS)
Adel, P.; Engelbrecht, M.; Wandt, D.; Fallnich, C.
2007-03-01
Amplification of chirped fs-pulses in an Erbium doped fiber amplifier upto 0.8 μJ resulted in an additional peak in the spectrum at 1584 nm. This peak, attributable to four-wave-mixing between the signal centered at 1559 nm and amplified spontaneous emission at 1534 nm, hinders the temporal recompression of the amplified chirped pulse. Compared to the forward pumping configuration, this four-wave-mixing in the amplifier was largely reduced in a backward pumping configuration. Based on simulations, explanations for the observed influence of the pump direction on the four-wave-mixing efficiency are presented. The results pointed out that the gain spectrum distribution along the fiber strongly influences four-wave-mixing effects in fiber amplifiers even for constant overall gain spectrum.
NASA Astrophysics Data System (ADS)
Mallick, S.; Kar, R.; Mandal, D.; Ghoshal, S. P.
2016-07-01
This paper proposes a novel hybrid optimisation algorithm which combines the recently proposed evolutionary algorithm Backtracking Search Algorithm (BSA) with another widely accepted evolutionary algorithm, namely, Differential Evolution (DE). The proposed algorithm called BSA-DE is employed for the optimal designs of two commonly used analogue circuits, namely Complementary Metal Oxide Semiconductor (CMOS) differential amplifier circuit with current mirror load and CMOS two-stage operational amplifier (op-amp) circuit. BSA has a simple structure that is effective, fast and capable of solving multimodal problems. DE is a stochastic, population-based heuristic approach, having the capability to solve global optimisation problems. In this paper, the transistors' sizes are optimised using the proposed BSA-DE to minimise the areas occupied by the circuits and to improve the performances of the circuits. The simulation results justify the superiority of BSA-DE in global convergence properties and fine tuning ability, and prove it to be a promising candidate for the optimal design of the analogue CMOS amplifier circuits. The simulation results obtained for both the amplifier circuits prove the effectiveness of the proposed BSA-DE-based approach over DE, harmony search (HS), artificial bee colony (ABC) and PSO in terms of convergence speed, design specifications and design parameters of the optimal design of the analogue CMOS amplifier circuits. It is shown that BSA-DE-based design technique for each amplifier circuit yields the least MOS transistor area, and each designed circuit is shown to have the best performance parameters such as gain, power dissipation, etc., as compared with those of other recently reported literature.
Modulation instability in high power laser amplifiers.
Rubenchik, Alexander M; Turitsyn, Sergey K; Fedoruk, Michail P
2010-01-18
The modulation instability (MI) is one of the main factors responsible for the degradation of beam quality in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI control in passive optics devices. For amplifiers the adiabatic model, assuming locally the Bespalov-Talanov expression for MI growth, is commonly used to estimate the destructive impact of the instability. We present here the exact solution of MI development in amplifiers. We determine the parameters which control the effect of MI in amplifiers and calculate the MI growth rate as a function of those parameters. The safety range of operational parameters is presented. The results of the exact calculations are compared with the adiabatic model, and the range of validity of the latest is determined. We demonstrate that for practical situations the adiabatic approximation noticeably overestimates MI. The additional margin of laser system design is quantified.
Distributed phased array architecture study
NASA Technical Reports Server (NTRS)
Bourgeois, Brian
1987-01-01
Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.
Ham, Jungoh; Costa, Carlotta; Sano, Renata; Lochmann, Timothy L.; Sennott, Erin M.; Patel, Neha U.; Dastur, Anahita; Gomez-Caraballo, Maria; Krytska, Kateryna; Hata, Aaron N.; Floros, Konstantinos V.; Hughes, Mark T.; Jakubik, Charles T.; Heisey, Daniel A.R.; Ferrell, Justin T.; Bristol, Molly L.; March, Ryan J.; Yates, Craig; Hicks, Mark A.; Nakajima, Wataru; Gowda, Madhu; Windle, Brad E.; Dozmorov, Mikhail G.; Garnett, Mathew J.; McDermott, Ultan; Harada, Hisashi; Taylor, Shirley M.; Morgan, Iain M.; Benes, Cyril H.; Engelman, Jeffrey A.; Mossé, Yael P.; Faber, Anthony C.
2016-01-01
Summary Fewer than half of children with high-risk neuroblastoma survive. Many of these tumors harbor high-level amplification of MYCN, which correlates with poor disease outcome. Using data from our large drug screen we predicted, and subsequently demonstrated, that MYCN-amplified neuroblastomas are sensitive to the BCL-2 inhibitor ABT-199. This sensitivity occurs in part through low anti-apoptotic BCL-xL expression, high pro-apoptotic NOXA expression, and paradoxical, MYCN-driven upregulation of NOXA. Screening for enhancers of ABT-199 sensitivity in MYCN-amplified neuroblastomas, we demonstrate that the Aurora Kinase A inhibitor MLN8237 combines with ABT-199 to induce widespread apoptosis. In diverse models of MYCN-amplified neuroblastoma, including a patient-derived xenograft model, this combination uniformly induced tumor shrinkage, and in multiple instances led to complete tumor regression. PMID:26859456
Monolithic integrated circuit charge amplifier and comparator for MAMA readout
NASA Technical Reports Server (NTRS)
Cole, Edward H.; Smeins, Larry G.
1991-01-01
Prototype ICs for the Solar Heliospheric Observatory's Multi-Anode Microchannel Array (MAMA) have been developed; these ICs' charge-amplifier and comparator components were then tested with a view to pulse response and noise performance. All model performance predictions have been exceeded. Electrostatic discharge protection has been included on all IC connections; device operation over temperature has been consistent with model predictions.
Quantum Treatment of Two Coupled Oscillators in Interaction with a Two-Level Atom:
NASA Astrophysics Data System (ADS)
Khalil, E. M.; Abdalla, M. Sebawe; Obada, A. S.-F.
In this communication we handle a modified model representing the interaction between a two-level atom and two modes of the electromagnetic field in a cavity. The interaction between the modes is assumed to be of a parametric amplifier type. The model consists of two different systems, one represents the Jaynes-Cummings model (atom-field interaction) and the other represents the two mode parametric amplifier model (field-field interaction). After some canonical transformations the constants of the motion have been obtained and used to derive the time evolution operator. The wave function in the Schrödinger picture is constructed and employed to discuss some statistical properties related to the system. Further discussion related to the statistical properties of some physical quantities is given where we have taken into account an initial correlated pair-coherent state for the modes. We concentrate in our examination on the system behavior that occurred as a result of the variation of the parametric amplifier coupling parameter as well as the detuning parameter. It has been shown that the interaction of the parametric amplifier term increases the revival period and consequently longer period of strong interaction between the atom and the fields.
Chen, Chang Hao; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Klug, Achim; Lei, Tim C.
2014-01-01
Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments. PMID:25133158
Study and Modeling of the Impact of TID on the ATREE Response in LM124 Operational Amplifier
NASA Astrophysics Data System (ADS)
Roig, Fabien; Dusseau, L.; Ribeiro, P.; Auriel, G.; Roche, N. J.-H.; Privat, A.; Vaillé, J.-R.; Boch, J.; Saigné, F.; Marec, R.; Calvel, P.; Bezerra, F.; Ecoffet, R.; Azais, B.
2014-08-01
Shapes of ATREEs (Analog Transient Radiation Effects on Electronics) in a bipolar integrated circuit change with exposure to Total Ionizing Dose (TID) radiation. The impact of TID on ATREEs is investigated in the LM124 operational amplifier (opamp) from three different manufacturers. Significant variations are observed on the ATREE responsesfrom different manufacturers. The ATREEs are produced by pulsed X-ray experiments. ASET laser mappings are performed to highlight the sensitive bipolar transistors, explaining the ATREE phenomena variations from one manufacturer to another one. ATREE modeling results are presented using a previously developed simulation tool. A good agreement is observed between experimental ATREE responses and model outputs whatever the TID level, the prompt dose level, the amplifier configuration and the device manufacturer.
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2009-04-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.
Steinmetz, A; Jansen, F; Stutzki, F; Lehneis, R; Limpert, J; Tünnermann, A
2012-07-01
We report on high-energy picosecond pulse generation from a passively Q-switched and fiber-amplified microchip laser system. Initially, the utilized microchip lasers produce pulses with durations of around 100 ps at 1064 nm central wavelength. These pulses are amplified to energies exceeding 100 μJ, simultaneously chirped and spectrally broadened by self-phase modulation using a double stage amplifier based on single-mode LMA photonic crystal fibers at repetition rates of up to 1 MHz. Subsequently, the pulse duration of chirped pulses is reduced by means of nonlinear pulse compression to durations of 2.7 ps employing a conventional grating compressor and 4.7 ps using a compact compressor based on a chirped volume Bragg grating.
Development and Evaluation of a Tutorial to Improve Students' Understanding of a Lock-in Amplifier
ERIC Educational Resources Information Center
DeVore, Seth; Gauthier, Alexandre; Levy, Jeremy; Singh, Chandralekha
2016-01-01
A lock-in amplifier is a versatile instrument frequently used in physics research. However, many students struggle with the basic operating principles of a lock-in amplifier which can lead to a variety of difficulties. To improve students' understanding, we have been developing and evaluating a research-based tutorial which makes use of a computer…
Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu
2018-03-01
In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.
Li, Xa; Zhou, Bo; Zhao, Zilong; Hu, Zixi; Zhou, Sufang; Yang, Nuo; Huang, Yong; Zhang, Zhenghua; Su, Jing; Lan, Dan; Qin, Xue; Meng, Jinyu; Zheng, Duo; He, Jian; Huang, Xianing; Zhao, Jing; Zhang, Zhiyong; Tan, Weihong; Lu, Xiaoling; Zhao, Yongxiang
2016-12-01
It is a major clinical challenge for clinicians how to early find out minimal residual diseases (MRD) of leukemia. Here, we developed a smart detection system for MRD involving magnetic aptamer sgc8 probe (M-sgc8 probe) to capture CEM cells and rolling cycle amplification probe (RCA-sgc8 probe) to initiate RCA, producing a single-stranded tandem repeated copy of the circular template. The DNA products were hybridized with molecular beacon to generate the amplified fluorescence signal. An in vitro model to mimic MRD was established to evaluate the sensitivity of the smart detection system. The smart detection system was used to detect MRD in patients with T-ALL peri-chemotherapy, which could not only specifically captured T-ALL cells, but also significantly amplified fluorescence signals on them. The sensitivity was 1/20,000. These results indicate that the smart detection system with high specificity and sensitivity could more efficiently monitor the progress of T-ALL peri-chemotherapy.
NASA Technical Reports Server (NTRS)
Schuele, Chan Yong
2011-01-01
Spanwise-periodic roughness designed to excite selected wavelengths of stationary cross- ow modes was investigated in a 3-D boundary layer at Mach 3.5. The test model was a sharp-tipped 14deg right-circular cone. The model and integrated sensor traversing system were placed in the Mach 3.5 Supersonic Low Disturbance Tunnel (SLDT) equipped with a "quiet design" nozzle at the NASA Langley Research Center. The model was oriented at a 4:2deg angle of attack to produce a mean cross-fl ow velocity component in the boundary layer over the cone. Five removable cone tips have been investigated. One has a smooth surface that is used to document the baseline ("natural") conditions. Two had minute (20 - 40 micron) "dimples" that are equally spaced around the circumference, at a streamwise location that is just upstream of the linear stability neutral growth branch for cross- ow modes. The azimuthal mode numbers of the dimpled tips were selected to either enhance the most amplified wave numbers, or to suppress the growth of the most amplified wave numbers. Two of the cone tips had an array of plasma streamwise vortex generators that were designed to simulate the disturbances produced by the passive patterned roughness. The results indicate that the stationary cross-fl ow modes were highly receptive to the patterned roughness of both passive and active types. The patterned passive roughness that was designed to suppress the growth of the most amplified modes had an azimuthal wavelength that was 66% smaller that that of the most amplified stationary cross- ow mode. This had the effect to increase the transition Reynolds number from 25% to 50% depending on the measurement technique. The application of the research is on turbulent transition control on swept wings of supersonic aircraft. The plasma-based roughness has the advantage over the passive roughness of being able to be adaptable to different conditions that would occur during a flight mission.
Circuit for Communication over DC Power Line Using High Temperature Electronics
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)
2014-01-01
A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.
Korolev, A M; Shnyrkov, V I; Shulga, V M
2011-01-01
We have presented theory and experimentally demonstrated an efficient method for drastically reducing the power consumption of the rf/microwave amplifiers based on HEMT in unsaturated dc regime. Conceptual one-stage 10 dB-gain amplifier showed submicrowatt level of the power consumption (0.95 μW at frequency of 0.5 GHz) when cooled down to 300 mK. Proposed technique has a great potential to design the readout amplifiers for ultra-deep-cooled cryoelectronic quantum devices.
NASA Astrophysics Data System (ADS)
Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui
2015-10-01
In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.
Capacities of quantum amplifier channels
NASA Astrophysics Data System (ADS)
Qi, Haoyu; Wilde, Mark M.
2017-01-01
Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.
Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers.
Jiang, Chun
2009-04-13
The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.
Modeling of Semiconductor Optical Amplifier Gain Characteristics for Amplification and Switching
NASA Astrophysics Data System (ADS)
Mahad, Farah Diana; Sahmah, Abu; Supa'at, M.; Idrus, Sevia Mahdaliza; Forsyth, David
2011-05-01
The Semiconductor Optical Amplifier (SOA) is presently commonly used as a booster or pre-amplifier in some communication networks. However, SOAs are also a strong candidate for utilization as multi-functional elements in future all-optical switching, regeneration and also wavelength conversion schemes. With this in mind, the purpose of this paper is to simulate the performance of the SOA for improved amplification and switching functions. The SOA is modeled and simulated using OptSim software. In order to verify the simulated results, a MATLAB mathematical model is also used to aid the design of the SOA. Using the model, the gain difference between simulated and mathematical results in the unsaturated region is <1dB. The mathematical analysis is in good agreement with the simulation result, with only a small offset due to inherent software limitations in matching the gain dynamics of the SOA.
ERIC Educational Resources Information Center
Kelly, Aoife C.; Boyd, Sara M.; Henehan, Gary T. M.
2015-01-01
Objective: It is a legal requirement for employees in noisy workplaces such as nightclubs to be provided with suitable information regarding their noise exposure risks, used a focus group approach to examine employees' attitudes to workplace noise and to hearing protection use. The subsequent analysis was based on an adapted Health Belief Model.…
STABILIZED TRANSISTOR AMPLIFIER
Noe, J.B.
1963-05-01
A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)
Cost-Benefit Arbitration Between Multiple Reinforcement-Learning Systems.
Kool, Wouter; Gershman, Samuel J; Cushman, Fiery A
2017-09-01
Human behavior is sometimes determined by habit and other times by goal-directed planning. Modern reinforcement-learning theories formalize this distinction as a competition between a computationally cheap but inaccurate model-free system that gives rise to habits and a computationally expensive but accurate model-based system that implements planning. It is unclear, however, how people choose to allocate control between these systems. Here, we propose that arbitration occurs by comparing each system's task-specific costs and benefits. To investigate this proposal, we conducted two experiments showing that people increase model-based control when it achieves greater accuracy than model-free control, and especially when the rewards of accurate performance are amplified. In contrast, they are insensitive to reward amplification when model-based and model-free control yield equivalent accuracy. This suggests that humans adaptively balance habitual and planned action through on-line cost-benefit analysis.
Li, Zhaoyang; Kurita, Takashi; Miyanaga, Noriaki
2017-10-20
Zigzag and non-zigzag beam waist shifts in a multiple-pass zigzag slab amplifier are investigated based on the propagation of a Gaussian beam. Different incident angles in the zigzag and non-zigzag planes would introduce a direction-dependent waist-shift-difference, which distorts the beam quality in both the near- and far-fields. The theoretical model and analytical expressions of this phenomenon are presented, and intensity distributions in the two orthogonal planes are simulated and compared. A geometrical optics compensation method by a beam with 90° rotation is proposed, which not only could correct the direction-dependent waist-shift-difference but also possibly average the traditional thermally induced wavefront-distortion-difference between the horizontal and vertical beam directions.
Optimized design of Yb3+/Er3+-codoped cross-coupled integrated microring resonator arrays
NASA Astrophysics Data System (ADS)
Gǎlǎtus, Ramona; Vallés, Juan A.
2014-09-01
In this work the analytical model of the scattering response of a highly Yb3+/Er3+-codoped phosphate glass microring resonator array is developed. The microscopic statistical formalism is used to simulate its performance as a wavelengthselective amplifier. The performance of the integrated add-drop filter was investigated based on the signal transfer functions for Through and Drop ports, correlated the with gain coefficient and its dependence on pump power, signal power and Yb3+/Er3+- dopants concentration. In consequence, microring arrays with gain operating in the near infrared spectral range and, in particular, in the 1.5-mm wavelength band (emission band of Er-doped fiber amplifiers and lasers, already used in several bio/chemical sensing tasks) are highly attractive.
NASA Astrophysics Data System (ADS)
Peng, Xuefeng; Wu, Pinghui; Han, Yinxia; Hu, Guoqiang
2014-11-01
The properties of amplified spontaneous emission (ASE) in CdSe/ZnS quantum dot (QD) doped step-index polymer optical fibers (POFs) were computationally analyzed in this paper. A theoretical model based on the rate equations between two main energy levels of CdSe/ZnS QD was built in terms of time (t), distance traveled by light (z) and wavelength (λ), which can describe the ASE successfully. Through analyzing the spectral evolution with distance of the pulses propagating along the CdSe/ZnS QD doped POFs, dependences of the ASE threshold and the slope efficiency on the numerical aperture were obtained. Compared to the ASE in common dye-doped POFs, the pump threshold was just about 1/1000, but the slope efficiency was much higher.
NASA Astrophysics Data System (ADS)
Ji, Jianhua; Huang, Qian; Wang, Ke; Xu, Ming; Jiang, Chun
2018-01-01
In this paper transmission performance of Allwave fiber WDM systems cascaded by bismuth-doped phosphate glass fiber amplifiers pumped by 808 nm lasers is analyzed for the first time, to the best of our knowledge. The rate and power propagation equations of a three-level system are used to model the signal amplification and noise figure in the doped fibers. The simulation results show that the channels in the 1460-1470 nm wavelength region in 32 × 40 Gbit/s WDM system with 10 nm channel space can reach a BER less than 1 × 10-9 with the transmission distance more than 600 km, but when the channel space is reduced to 1 nm, the performance of the system is degraded greatly.
Efficient EM Simulation of GCPW Structures Applied to a 200-GHz mHEMT Power Amplifier MMIC
NASA Astrophysics Data System (ADS)
Campos-Roca, Yolanda; Amado-Rey, Belén; Wagner, Sandrine; Leuther, Arnulf; Bangert, Axel; Gómez-Alcalá, Rafael; Tessmann, Axel
2017-05-01
The behaviour of grounded coplanar waveguide (GCPW) structures in the upper millimeter-wave range is analyzed by using full-wave electromagnetic (EM) simulations. A methodological approach to develop reliable and time-efficient simulations is proposed by investigating the impact of different simplifications in the EM modelling and simulation conditions. After experimental validation with measurements on test structures, this approach has been used to model the most critical passive structures involved in the layout of a state-of-the-art 200-GHz power amplifier based on metamorphic high electron mobility transistors (mHEMTs). This millimeter-wave monolithic integrated circuit (MMIC) has demonstrated a measured output power of 8.7 dBm for an input power of 0 dBm at 200 GHz. The measured output power density and power-added efficiency (PAE) are 46.3 mW/mm and 4.5 %, respectively. The peak measured small-signal gain is 12.7 dB (obtained at 196 GHz). A good agreement has been obtained between measurements and simulation results.
Global water cycle amplifying at less than the Clausius-Clapeyron rate
Skliris, Nikolaos; Zika, Jan D.; Nurser, George; Josey, Simon A.; Marsh, Robert
2016-01-01
A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7% °C−1). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for inferring changes in the water cycle from changes in three-dimensional salinity. Using full depth salinity observations we infer a water cycle amplification of 3.0 ± 1.6% °C−1 over 1950–2010. Climate models agree with observations in terms of a water cycle amplification (4.3 ± 2.0% °C−1) substantially less than CC adding confidence to projections of total water cycle change under greenhouse gas emission scenarios. PMID:27934946
Global water cycle amplifying at less than the Clausius-Clapeyron rate.
Skliris, Nikolaos; Zika, Jan D; Nurser, George; Josey, Simon A; Marsh, Robert
2016-12-09
A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7% °C -1 ). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for inferring changes in the water cycle from changes in three-dimensional salinity. Using full depth salinity observations we infer a water cycle amplification of 3.0 ± 1.6% °C -1 over 1950-2010. Climate models agree with observations in terms of a water cycle amplification (4.3 ± 2.0% °C -1 ) substantially less than CC adding confidence to projections of total water cycle change under greenhouse gas emission scenarios.
Amarillo, Yimy; Mato, Germán; Nadal, Marcela S
2015-01-01
Thalamocortical neurons are involved in the generation and maintenance of brain rhythms associated with global functional states. The repetitive burst firing of TC neurons at delta frequencies (1-4 Hz) has been linked to the oscillations recorded during deep sleep and during episodes of absence seizures. To get insight into the biophysical properties that are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation analysis of a minimal conductance-based thalamocortical neuron model including only the IT channel and the sodium and potassium leak channels. This analysis unveils the dynamics of repetitive burst firing of TC neurons, and describes how the interplay between the amplifying variable mT and the recovering variable hT of the calcium channel IT is sufficient to generate low threshold oscillations in the delta band. We also explored the role of the hyperpolarization activated cationic current Ih in this reduced model and determine that, albeit not required, Ih amplifies and stabilizes the oscillation.
Global water cycle amplifying at less than the Clausius-Clapeyron rate
NASA Astrophysics Data System (ADS)
Skliris, Nikolaos; Zika, Jan D.; Nurser, George; Josey, Simon A.; Marsh, Robert
2016-12-01
A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7% °C-1). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for inferring changes in the water cycle from changes in three-dimensional salinity. Using full depth salinity observations we infer a water cycle amplification of 3.0 ± 1.6% °C-1 over 1950-2010. Climate models agree with observations in terms of a water cycle amplification (4.3 ± 2.0% °C-1) substantially less than CC adding confidence to projections of total water cycle change under greenhouse gas emission scenarios.
NASA Astrophysics Data System (ADS)
Thakur, S. K.; Kumar, Y.
2018-05-01
This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.
USDA-ARS?s Scientific Manuscript database
The PCR-based Escherichia coli O157 (O157) strain typing system, Polymorphic Amplified Typing Sequences (PATS), targets insertions-deletions (Indels) and single nucleotide polymorphisms (SNPs) at the XbaI and AvrII(BlnI) restriction enzyme sites, respectively, besides amplifying four known virulenc...
Cryogenic, high-resolution x-ray detector with high count rate capability
Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.
2003-03-04
A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.
Kinetics of the Active Medium of a Copper Vapor Brightness Amplifier
NASA Astrophysics Data System (ADS)
Kulagin, A. E.; Torgaev, S. N.; Evtushenko, G. S.; Trigub, M. V.
2018-03-01
A spatiotemporal kinetics of the active medium of a copper vapor brightness amplifier is described that allows gain characteristics to be investigated during the pump pulse. Model calculations show that changing the discharge parameters allows the radial gain profiles to be improved significantly, as well as the gain and the inversion duration to be increased. The data obtained will be used to choose the operating conditions for the active medium in the brightness amplifier mode.
NASA Astrophysics Data System (ADS)
Iezekiel, Stavros; Christou, Andreas
2015-03-01
Equivalent circuit models of a transistor laser are used to investigate the suitability of this relatively new device for analog microwave photonic links. The three-terminal nature of the device enables transistor-based circuit design techniques to be applied to optoelectronic transmitter design. To this end, we investigate the application of balanced microwave amplifier topologies in order to enable low-noise links to be realized with reduced intermodulation distortion and improved RF impedance matching compared to conventional microwave photonic links.
NASA Astrophysics Data System (ADS)
Maneechote, T.; Luangpaiboon, P.
2010-10-01
A manufacturing process of erbium doped fibre amplifiers is complicated. It needs to meet the customers' requirements under a present economic status that products need to be shipped to customers as soon as possible after purchasing orders. This research aims to study and improve processes and production lines of erbium doped fibre amplifiers using lean manufacturing systems via an application of computer simulation. Three scenarios of lean tooled box systems are selected via the expert system. Firstly, the production schedule based on shipment date is combined with a first in first out control system. The second scenario focuses on a designed flow process plant layout. Finally, the previous flow process plant layout combines with production schedule based on shipment date including the first in first out control systems. The computer simulation with the limited data via an expected value is used to observe the performance of all scenarios. The most preferable resulted lean tooled box systems from a computer simulation are selected to implement in the real process of a production of erbium doped fibre amplifiers. A comparison is carried out to determine the actual performance measures via an analysis of variance of the response or the production time per unit achieved in each scenario. The goodness of an adequacy of the linear statistical model via experimental errors or residuals is also performed to check the normality, constant variance and independence of the residuals. The results show that a hybrid scenario of lean manufacturing system with the first in first out control and flow process plant lay out statistically leads to better performance in terms of the mean and variance of production times.
Multi-model ensemble simulations of low flows in Europe under a 1.5, 2, and 3 degree global warming
NASA Astrophysics Data System (ADS)
Marx, A.; Kumar, R.; Thober, S.; Zink, M.; Wanders, N.; Wood, E. F.; Pan, M.; Sheffield, J.; Samaniego, L. E.
2017-12-01
There is growing evidence that climate change will alter water availability in Europe. Here, we investigate how hydrological low flows are affected under different levels of future global warming (i.e., 1.5, 2 and 3 K). The analysis is based on a multi-model ensemble of 45 hydrological simulations based on three RCPs (rcp2p6, rcp6p0, rcp8p5), five CMIP5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) and three state-of-the-art hydrological models (HMs: mHM, Noah-MP, and PCR-GLOBWB). High resolution model results are available at the unprecedented spatial resolution of 5 km across the pan-European domain at daily temporal resolution. Low river flow is described as the percentile of daily streamflow that is exceeded 90% of the time. It is determined separately for each GCM/HM combinations and the warming scenarios. The results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean, while they increase in the Alpine and Northern regions. In the Mediterranean, the level of warming amplifies the signal from -12% under 1.5 K to -35% under 3 K global warming largely due to the projected decreases in annual precipitation. In contrast, the signal is amplified from +22% (1.5 K) to +45% (3 K) because of the reduced snow melt contribution. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Nevertheless, it is not possible to distinguish climate induced differences in low flows between 1.5 and 2 K warming because of the large variability inherent in the multi-model ensemble. The contribution by the GCMs to the uncertainty in the Alpine and Northern region as well as the Mediterranean, the uncertainty contribution by the HMs is partly higher than those by the GCMs due to different representations of processes such as snow, soil moisture and evapotranspiration.
Improved Signal Chains for Readout of CMOS Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Hancock, Bruce; Cunningham, Thomas
2009-01-01
An improved generic design has been devised for implementing signal chains involved in readout from complementary metal oxide/semiconductor (CMOS) image sensors and for other readout integrated circuits (ICs) that perform equivalent functions. The design applies to any such IC in which output signal charges from the pixels in a given row are transferred simultaneously into sampling capacitors at the bottoms of the columns, then voltages representing individual pixel charges are read out in sequence by sequentially turning on column-selecting field-effect transistors (FETs) in synchronism with source-follower- or operational-amplifier-based amplifier circuits. The improved design affords the best features of prior source-follower-and operational- amplifier-based designs while overcoming the major limitations of those designs. The limitations can be summarized as follows: a) For a source-follower-based signal chain, the ohmic voltage drop associated with DC bias current flowing through the column-selection FET causes unacceptable voltage offset, nonlinearity, and reduced small-signal gain. b) For an operational-amplifier-based signal chain, the required bias current and the output noise increase superlinearly with size of the pixel array because of a corresponding increase in the effective capacitance of the row bus used to couple the sampled column charges to the operational amplifier. The effect of the bus capacitance is to simultaneously slow down the readout circuit and increase noise through the Miller effect.
Liposome-mediated amplified detection of cell-secreted matrix metalloproteinase-9†
Banerjee, Jayati; Hanson, Andrea J.; Nyren-Erickson, Erin K.; Ganguli, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku
2018-01-01
A liposome-based amplified detection system is presented for the cancer cell secreted pathogenic enzyme matrix metalloproteinase-9 which does not require the use of biological antibodies. PMID:20424776
NASA Astrophysics Data System (ADS)
Butkowski, Łukasz; Vogel, Vladimir; Schlarb, Holger; Szabatin, Jerzy
2017-06-01
The driving engine of the superconducting accelerator of the European X-ray free electron laser (XFEL) is a set of 27 radio frequency (RF) stations. Each of the underground RF stations consists of a multibeam horizontal klystron that can provide up to 10 MW of power at 1.3 GHz. Klystrons are sensitive devices with a limited lifetime and a high mean time between failures. In real operation, the lifetime of the tube can be significantly reduced because of failures. The special fast protection klystron lifetime management (KLM) system has been developed to minimize the influence of service conditions on the lifetime of klystrons. The main task of this system is to detect all events which can destroy the tube as quickly as possible, and switch off the driving RF signal or the high voltage. Detection of events is based on a comparison of the value of the real signal obtained at the system output with the value estimated on the basis of a high-power RF amplifier model and input signals. The KLM system has been realized in field-programmable gate array (FPGA) and implemented in XFEL. Implementation is based on the standard low-level RF micro telecommunications computing architecture (MTCA.4 or xTCA). The main part of the paper focuses on an estimation of the klystron model and the implementation of KLM in FPGA. The results of the performance of the KLM system will also be presented.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Kim, K. H.; Stock, L. V.
1986-01-01
In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.
1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier
NASA Astrophysics Data System (ADS)
Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi
2018-01-01
A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.
Up-converted 1/f PM and AM noise in linear HBT amplifiers.
Ferre-Pikal, Eva S; Savage, Frederick H
2008-08-01
In this paper we describe a technique to predict the 1/f phase modulation (PM) and 1/f amplitude modulation (AM) noise due to up-conversion of 1/f baseband current noise in microwave heterojunction bipolar transistor (HBT) amplifiers. We obtain an accurate model for the amplifier and find the expression for voltage gain in terms of DC bias, transistor parameters, and circuit components. Theoretical 1/f PM and AM noise sensitivities to 1/f baseband current noise are then found by applying the definitions of PM and AM noise to the gain expression of the amplifier. Measurements of PM and AM sensitivities at 500 MHz and 1 GHz were in good agreement with the values predicted by theory, verifying the validity of this technique. This method can be used to optimize amplifier design for low PM and AM noise. We show that the amplifier PM noise can be reduced by 9 dB by adjusting the value of the input coupling capacitor.
NASA Astrophysics Data System (ADS)
Chen, G. K. C.
1981-06-01
A nonlinear macromodel for the bipolar transistor integrated circuit operational amplifier is derived from the macromodel proposed by Boyle. The nonlinear macromodel contains only two nonlinear transistors in the input stage in a differential amplifier configuration. Parasitic capacitance effects are represented by capacitors placed at the collectors and emitters of the input transistors. The nonlinear macromodel is effective in predicting the second order intermodulation effect of operational amplifiers in a unity gain buffer amplifier configuration. The nonlinear analysis computer program NCAP is used for the analysis. Accurate prediction of demodulation of amplitude modulated RF signals with RF carrier frequencies in the 0.05 to 100 MHz range is achieved. The macromodel predicted results, presented in the form of second order nonlinear transfer function, come to within 6 dB of the full model predictions for the 741 type of operational amplifiers for values of the second order transfer function greater than -40 dB.
Simulation of double-pass stimulated Raman backscattering
NASA Astrophysics Data System (ADS)
Wu, Z.; Chen, Q.; Morozov, A.; Suckewer, S.
2018-04-01
Experiments on Stimulated Raman Backscattering (SRBS) in plasma have demonstrated significantly higher energy conversion in a double-pass amplifier where the laser pulses go through the plasma twice compared with a single-pass amplifier with double the plasma length of a single pass. In this paper, the improvement in understanding recent experimental results is presented by considering quite in detail the effects of plasma heating on the modeling of SRBS. Our simulation results show that the low efficiency of single-pass amplifiers can be attributed to Landau damping and the frequency shift of Langmuir waves. In double-pass amplifiers, these issues can be avoided, to some degree, because pump-induced heating could be reduced, while the plasma cools down between the passes. Therefore, double-pass amplifiers yield considerably enhanced energy transfer from the pump to the seed, hence the output pulse intensity.
Amplified OTDR systems for multipoint corrosion monitoring.
Nascimento, Jehan F; Silva, Marcionilo J; Coêlho, Isnaldo J S; Cipriano, Eliel; Martins-Filho, Joaquim F
2012-01-01
We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.
Amplified OTDR Systems for Multipoint Corrosion Monitoring
Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.
2012-01-01
We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017
NASA Astrophysics Data System (ADS)
Papior, Sidsel R.; Weirich, Johannes; Johansen, Mette M.; Jakobsen, Christian; Michieletto, Mattia; Triches, Marco; Kristensen, Torben; Olesen, Anders S.; Petersen, Christian; Andersen, Thomas V.; Maack, Martin D.; Alkeskjold, Thomas T.
2018-02-01
Photonic crystal fiber (PCF) technology for ultrafast fiber amplifiers traditionally uses air holes as key elements for large mode area (LMA) fiber designs. These air holes are crucial for the performance of high-end LMA PCFs, but makes splicing and interfacing more complex. To reduce this complexity in mid-range amplifiers, we present single-mode polarization-maintaining Yb-doped LMA PCFs without air holes for easier splicing into monolithic all-fiber amplifier designs. A 30 μm core all-solid spliceable PCF is presented, and amplification of 1064 nm light above 50 W with an optical to optical efficiency of 80 % is demonstrated. Furthermore, to demonstrate the excellent reliability of PCF based monolithic amplifiers, we demonstrate ultra-longterm performance data of > 35 khrs on a 14 μm core step-index type PCF amplifier with low long-term power degradation slope of < 1.5 % / 10,000 h.
10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE
NASA Astrophysics Data System (ADS)
Sobon, G.; Sliwinska, D.; Abramski, K. M.; Kaczmarek, P.
2014-02-01
In this work we demonstrate a single-frequency, single-mode all-fiber master oscillator power amplifier (MOPA) source, based on erbium-ytterbium co-doped double-clad fiber emitting 10 W of continuous wave power at 1565 nm. In the power amplifier stage, the amplified spontaneous emission from Yb3+ ions (Yb-ASE) is forced to recirculate in a loop resonator in order to provide stable lasing at 1060 nm. The generated signal acts as an additional pump source for the amplifier and is reabsorbed by the Yb3+ ions in the active fiber, allowing an increase in the efficiency and boosting the output power. The feedback loop also protects the amplifier from parasitic lasing or self-pulsing at a wavelength of 1 μm. This allows one to significantly scale the output power in comparison to a conventional setup without any Yb-ASE control.
Zhan, Lei; Wu, Wen Bi; Yang, Lin; Huang, Cheng Zhi
2017-04-15
The timely detection of infectious pathogen is critical in clinical early diagnosis and treatment of infectious diseases. Plasmonic enzyme-linked immunosorbent assay (ELISA), by means of enzyme-mediated growth or aggregation of AuNPs, has received considerable attention because it allows a naked-eye detection of target in very low numbers. In this work, a dual-signal amplified plasmonic ELISA combined the high loading capacity of magnetic beads with the establishing stimulation effect of zinc ion has been developed to detect RSV as a model pathogen based on alkaline phosphatase-triggered dispersion of aggregated AuNPs. In ideal conditions, the proposed immunoassay can conveniently distinguish the concentration of RSV in a range of 0.1-30 pg/mL. In addition, the limit of detection of RSV of this immunoassay exceeds that of conventional ELISA by about 50 times. The high sensitivity makes this approach a good alternative to existing colorimetric immunoassays for pathogen detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Frequency stabilization in nonlinear MEMS and NEMS oscillators
Lopez, Omar Daniel; Antonio, Dario
2014-09-16
An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.
Yin, Shupeng; Yan, Ping; Gong, Mali
2008-10-27
An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.
Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang
2015-02-09
We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.
Development of a 670 GHz Extended Interaction Klystron Power Amplifier
2011-03-01
Klystron Power Amplifier 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...avelengths,” /40/EIK%20Tec W%20Wavelen oyski, R. Dobbs, act, High Power ction Klystron ,” Conf., Montere opments to the M or Modeling Cod 2005). ic...Research Projects Agency or the Department of Defense. Development of a 670 GHz Extended Interaction Klystron Power Amplifier David Chernin Science
Microelectromechanical Systems; A DoD Dual Use Technology Industrial Assessment.
1995-12-01
systems, • embedded sensors and actuators for condition-based maintenance of machines and vehicles, on-demand amplified structural strength in...will transmit temperature, pressure, and number-of- rotations information to a hand-held receiver used by the maintenance and service personnel. This...automobile industry being the major driver for most micro- machined sensors (pressure, acceleration and oxygen). In 1994 model year Projected Growth
Upgrading a high-throughput spectrometer for high-frequency (<400 kHz) measurements
NASA Astrophysics Data System (ADS)
Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Craig, D.
2016-11-01
The upgraded spectrometer used for charge exchange recombination spectroscopy on the Madison Symmetric Torus resolves emission fluctuations up to 400 kHz. The transimpedance amplifier's cutoff frequency was increased based upon simulations comparing the change in the measured photon counts for time-dynamic signals. We modeled each signal-processing stage of the diagnostic and scanned the filtering frequency to quantify the uncertainty in the photon counting rate. This modeling showed that uncertainties can be calculated based on assuming each amplification stage is a Poisson process and by calibrating the photon counting rate with a DC light source to address additional variation.
NASA Astrophysics Data System (ADS)
Arai, Yukiko; Aoki, Hitoshi; Abe, Fumitaka; Todoroki, Shunichiro; Khatami, Ramin; Kazumi, Masaki; Totsuka, Takuya; Wang, Taifeng; Kobayashi, Haruo
2015-04-01
1/f noise is one of the most important characteristics for designing analog/RF circuits including operational amplifiers and oscillators. We have analyzed and developed a novel 1/f noise model in the strong inversion, saturation, and sub-threshold regions based on SPICE2 type model used in any public metal-oxide-semiconductor field-effect transistor (MOSFET) models developed by the University of California, Berkeley. Our model contains two noise generation mechanisms that are mobility and interface trap number fluctuations. Noise variability dependent on gate voltage is also newly implemented in our model. The proposed model has been implemented in BSIM4 model of a SPICE3 compatible circuit simulator. Parameters of the proposed model are extracted with 1/f noise measurements for simulation verifications. The simulation results show excellent agreements between measurement and simulations.
Analysis and design of continuous class-E power amplifier at sub-nominal condition
NASA Astrophysics Data System (ADS)
Chen, Peng; Yang, Kai; Zhang, Tianliang
2017-12-01
The continuous class-E power amplifier at sub-nominal condition is proposed in this paper. The class-E power amplifier at continuous mode means it can be high efficient on a series matching networks while at sub-nominal condition means it only requires the zero-voltage-switching condition. Comparing with the classical class-E power amplifier, the proposed design method releases two additional design freedoms, which increase the class-E power amplifier's design flexibility. Also, the proposed continuous class-E power amplifier at sub-nominal condition can perform high efficiency over a broad bandwidth. The performance study of the continuous class-E power amplifier at sub-nominal condition is derived and the design procedure is summarised. The normalised switch voltage and current waveforms are investigated. Furthermore, the influences of different sub-nominal conditions on the power losses of the switch-on resistor and the output power capability are also discussed. A broadband continuous class-E power amplifier based on a Gallium Nitride (GaN) transistor is designed and testified to verify the proposed design methodology. The measurement results show, it can deliver 10-15 W output power with 64-73% power-added efficiency over 1.4-2.8 GHz.
Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Koshino, K.; Nakamura, Y.
While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.
A Kinetics Model for KrF Laser Amplifiers
NASA Astrophysics Data System (ADS)
Giuliani, J. L.; Kepple, P.; Lehmberg, R.; Obenschain, S. P.; Petrov, G.
1999-11-01
A computer kinetics code has been developed to model the temporal and spatial behavior of an e-beam pumped KrF laser amplifier. The deposition of the primary beam electrons is assumed to be spatially uniform and the energy distribution function of the nascent electron population is calculated to be near Maxwellian below 10 eV. For an initial Kr/Ar/F2 composition, the code calculates the densities of 24 species subject to over 100 reactions with 1-D spatial resolution (typically 16 zones) along the longitudinal lasing axis. Enthalpy accounting for each process is performed to partition the energy into internal, thermal, and radiative components. The electron as well as the heavy particle temperatures are followed for energy conservation and excitation rates. Transport of the lasing photons is performed along the axis on a dense subgrid using the method of characteristics. Amplified spontaneous emission is calculated using a discrete ordinates approach and includes contributions to the local intensity from the whole amplifier volume. Specular reflection off side walls and the rear mirror are included. Results of the model will be compared with data from the NRL NIKE laser and other published results.
MYCN induces neuroblastoma in primary neural crest cells.
Olsen, R R; Otero, J H; García-López, J; Wallace, K; Finkelstein, D; Rehg, J E; Yin, Z; Wang, Y-D; Freeman, K W
2017-08-31
Neuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS), which causes 15% of pediatric cancer deaths. High-risk NBL is characterized by N-Myc amplification and segmental chromosomal gains and losses. Owing to limited disease models, the etiology of NBL is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying NBL based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc, to generate phenotypically and molecularly accurate tumors that closely model human MYCN-amplified NBL. Using comparative genomic hybridization, we found that NCC-derived NBL tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN-amplified NBL including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc, we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human NBL and establishes a new system with potential to study early stages of NBL oncogenesis, to functionally assess NBL oncogenic drivers and to characterize NBL metastasis.
W-band InP based HEMT MMIC low noise amplifiers
NASA Technical Reports Server (NTRS)
Lin, K. Y.; Tang, Y. L.; Wang, H.; Gaier, T.; Gough, R. G.; Sinclair, M.
2002-01-01
This paper presents the designs and measurement results of a three-stage and a four-stage W-band monolithic microwave integrated circuits (MMIC) including a three-stage and a four-stage low noise amplifiers.
NASA Astrophysics Data System (ADS)
Jelínek, M.; Kubeček, V.; Čech, M.; Hiršl, P.
2011-03-01
A quasi-continuously pumped picosecond oscillator-amplifier laser system based on two identical 2.4% Nd:YAG slabs in a single bounce geometry was developed and investigated. The oscillator was passively mode locked by the multiple quantum well saturable absorber inserted into the resonator in transmission mode. Output train containing 7 pulses with total energy of 900 μJ was generated directly from the oscillator. Single pulse with energy of 75 μJ, duration of 113 ps and Gaussian spatial profile was cavity dumped from the resonator and amplified by the single pass amplifier to the energy of 830 μJ. Comparison with our previously reported data obtained with similar system based on Nd:GdVO4 shows advantage of using highly doped Nd:YAG for generation of sub-millijoule pulses in one hundred picoseconds range, which might be interesting in many applications.
Investigation of Fiber Optics Based Phased Locked Diode Lasers
NASA Technical Reports Server (NTRS)
Burke, Paul D.; Gregory, Don A.
1997-01-01
Optical power beaming requires a high intensity source and a system to address beam phase and location. A synthetic aperture array of phased locked sources can provide the necessary power levels as well as a means to correct for phase errors. A fiber optic phase modulator with a master oscillator and power amplifier (MOPA) using an injection-locking semiconductor optical amplifier has proven to be effective in correcting phase errors as large as 4pi in an interferometer system. Phase corrections with the piezoelectric fiber stretcher were made from 0 - 10 kHz, with most application oriented corrections requiring only 1 kHz. The amplifier did not lose locked power output while the phase was changed, however its performance was below expectation. Results of this investigation indicate fiber stretchers and amplifiers can be incorporated into a MOPA system to achieve successful earth based power beaming.
Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states
Haw, Jing Yan; Zhao, Jie; Dias, Josephine; Assad, Syed M.; Bradshaw, Mark; Blandino, Rémi; Symul, Thomas; Ralph, Timothy C.; Lam, Ping Koy
2016-01-01
The no-cloning theorem states that an unknown quantum state cannot be cloned exactly and deterministically due to the linearity of quantum mechanics. Associated with this theorem is the quantitative no-cloning limit that sets an upper bound to the quality of the generated clones. However, this limit can be circumvented by abandoning determinism and using probabilistic methods. Here, we report an experimental demonstration of probabilistic cloning of arbitrary coherent states that clearly surpasses the no-cloning limit. Our scheme is based on a hybrid linear amplifier that combines an ideal deterministic linear amplifier with a heralded measurement-based noiseless amplifier. We demonstrate the production of up to five clones with the fidelity of each clone clearly exceeding the corresponding no-cloning limit. Moreover, since successful cloning events are heralded, our scheme has the potential to be adopted in quantum repeater, teleportation and computing applications. PMID:27782135
NASA Astrophysics Data System (ADS)
Jolly, A.; Vinçont, C.; Pierre, Ch.; Boullet, J.
2017-08-01
We propose an innovative, fully space-time model to take into account the seed-dependent nature of ageing penalties in high-power ytterbium-doped fibre amplifiers. Ageing is shown to be based on the on-going competition between photo-darkening and photo-bleaching phenomena. Our approach is based on the natural interplay between the excited states of co-existing ytterbium pairs and colour centres in highly doped fibres, in the presence of thermal coupling between the closely spaced excited states. As initiated from IR photons, the excitation of colour centres up to the UV band is supposed to be governed by multi-photon absorption. The interactions of interest in the kinetics of photo-bleaching then take the form of highly efficient charge transfers, which imply the reduction of some fraction of the basically trivalent ions to their divalent state. Due to the activation of ytterbium pairs by means of energy transfer up-conversion, these interactions get more and more effective at elevated operating powers. Computational results using these principles actually help to fit our experimental data regarding seeding effects, as well as fully generic trends already evidenced in the literature. This gives a fine demonstration for the need to discriminate co-active pump and signal contributions. Our self-consistent, still simplified model then consists of a valuable tool to help for a deeper understanding of the ageing issues. Furthermore, considering higher-order ytterbium aggregates, this should open new routes towards more comprehensive models.
Rogers, III, C. E.; Gould, P. L.
2016-02-01
Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
A wide bandwidth free-electron laser with mode locking using current modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kur, E.; Dunning, D. J.; McNeil, B. W. J.
2011-01-20
A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.
Rogers, C E; Gould, P L
2016-02-08
We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.
Spontaneous emission in semiconductor laser amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnaud, J.; Coste, F.; Fesqueet, J.
1985-06-01
In a mode matched configuration, spontaneous emission in semiconductor laser amplifiers is enhanced by a factor which is larger than unity but which is significantly smaller than the K-factor calculated by Petermann. Using thin-slab model, we find that in typical situations, the factor is about K/2.
NASA Technical Reports Server (NTRS)
Thrivikraman, Tushar; Hoffman, James
2012-01-01
This work presents a new measurement technique, mixed-signal active harmonic load-pull (MSALP) developed by Anterverta-mw in partnership with Maury Microwave, that allows for wide-band ultra-high efficiency amplifiers to be designed using GaN technology. An overview of the theory behind active load-pull is presented and why load-pull is important for high-power device characterization. In addition, an example procedure is presented that outlines a methodology for amplifier design using this measurement system. Lastly, measured results of a 10W GaN amplifier are presented. This work aims to highlight the benefit of using this sophisticated measurement systems for to optimize amplifier design for real radar waveforms that in turn will simplify implementation of space-based radar systems
Numerical Analysis of Modeling Based on Improved Elman Neural Network
Jie, Shao
2014-01-01
A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance. PMID:25054172
Metting van Rijn, A C; Peper, A; Grimbergen, C A
1991-07-01
A multichannel instrumentation amplifier, developed to be used in a miniature universal eight-channel amplifier module, is described. After discussing the specific properties of a bioelectric recording, the difficulties of meeting the demanded specifications with a design based on operational amplifiers are reviewed. Because it proved impossible to achieve the demanded combination of low noise and low power consumption using commercially available operational amplifiers, an amplifier equipped with an input stage with discrete transistors was developed. A new design concept was used to expand the design to a multichannel version with an equivalent input noise voltage of 0.35 microV RMS in a bandwidth of 0.1-100 Hz and a power consumption of 0.6 mW per channel. The results of this study are applied to miniature, universal, eight-channel amplifier modules, manufactured with thick-film production techniques. The modules can be coupled to satisfy the demand for a multiple of eight channels. The low power consumption enables the modules to be used in all kinds of portable and telemetry measurement systems and simplifies the power supply in stationary measurement systems.
High-efficiency S-band harmonic tuning GaN amplifier
NASA Astrophysics Data System (ADS)
Cao, Meng-Yi; Zhang, Kai; Chen, Yong-He; Zhang, Jin-Cheng; Ma, Xiao-Hua; Hao, Yue
2014-03-01
In this paper, we present a high-efficiency S-band gallium nitride (GaN) power amplifier (PA). This amplifier is fabricated based on a self-developed GaN high-electron-mobility transistor (HEMT) with 10 mm gate width on SiC substrate. Harmonic manipulation circuits are presented in the amplifier. The matching networks consist of microstrip lines and discrete components. Open-circuited stub lines in both input and output are used to tune the 2nd harmonic wave and match the GaN HEMT to the highest efficiency condition. The developed amplifier delivers an output power of 48.5 dBm (~70 W) with a power-added efficiency (PAE) of 72.2% at 2 GHz in pulse condition. When operating at 1.8-2.2 GHz (20% relative bandwidth), the amplifier provides an output power higher than 48 dBm (~ 65 W), with a PAE over 70% and a power gain above 15 dB. When operating in continuous-wave (CW) operating conditions, the amplifier gives an output power over 46 dBm (40 W) with PAE beyond 60% over the whole operation frequency range.
Ngounou, Guy Merlin; Kom, Martin
2014-12-01
In this paper we present an instrumentation amplifier with discrete elements and optimized noise for the amplification of very low signals. In amplifying signals of very weak amplitude, the noise can completely absorb these signals if the used amplifier does not present the optimal guarantee to minimize the noise. Based on related research and re-viewing of recent patents Journal of Medical Systems, 30:205-209, 2006, we suggest an approach of noise reduction in amplification much more thoroughly than re-viewing of recent patents and we deduce from it the general criteria necessary and essential to achieve this optimization. The comparison of these criteria with the provisions adopted in practice leads to the inadequacy of conventional amplifiers for effective noise reduction. The amplifier we propose is an instrumentation amplifier with active negative feedback and optimized noise for the amplification of signals with very low amplitude. The application of this method in the case of electro cardio graphic signals (ECG) provides simulation results fully in line with forecasts.
NBIT Program Phase I (2007-2010). Part 1, Chapters 1 Through 4
2009-08-27
2 schematically shows the sample prepared before hydrothermal synthesis . The thin layer of Zn was convered to ZnO nanowires during hydrothermal ... Nanoparticle -Based Magnetically Amplified Surface Plasmon Resonance (Mag-SPR) Techniques; Jinwoo Cheon (Yonsei University, Korea) and A. Paul...Ion; Chapter 3 ? Ultra-Sensitive Biological Detection via Nanoparticle -Based Magnetically Amplified Surface Plasmon Resonance (Mag-SPR) Techniques
Damodar R. Kethidi; David B. Roden; Tim R. Ladd; Peter J. Krell; Arthur Ratnakaran; Qili Feng
2003-01-01
DNA markers were identified for the molecular detection of the Asian long-horned beetle (ALB), Anoplophora glabripennis (Mot.), based on sequence charaterized amplified regions (SCARS) derived from random amplified polymorphic DNA (RAPD) fragments. A 2,740-bp DNA fragment that was present only in ALB and not in other Cerambycids was identified after...
HEMT Amplifiers and Equipment for their On-Wafer Testing
NASA Technical Reports Server (NTRS)
Fung, King man; Gaier, Todd; Samoska, Lorene; Deal, William; Radisic, Vesna; Mei, Xiaobing; Lai, Richard
2008-01-01
Power amplifiers comprising InP-based high-electron-mobility transistors (HEMTs) in coplanar-waveguide (CPW) circuits designed for operation at frequencies of hundreds of gigahertz, and a test set for onwafer measurement of their power levels have been developed. These amplifiers utilize an advanced 35-nm HEMT monolithic microwave integrated-circuit (MMIC) technology and have potential utility as local-oscillator drivers and power sources in future submillimeter-wavelength heterodyne receivers and imaging systems. The test set can reduce development time by enabling rapid output power characterization, not only of these and similar amplifiers, but also of other coplanar-waveguide power circuits, without the necessity of packaging the circuits.
Broadband linearisation of high-efficiency power amplifiers
NASA Technical Reports Server (NTRS)
Kenington, Peter B.; Parsons, Kieran J.; Bennett, David W.
1993-01-01
A feedforward-based amplifier linearization technique is presented which is capable of yielding significant improvements in both linearity and power efficiency over conventional amplifier classes (e.g. class-A or class-AB). Theoretical and practical results are presented showing that class-C stages may be used for both the main and error amplifiers yielding practical efficiencies well in excess of 30 percent, with theoretical efficiencies of much greater than 40 percent being possible. The levels of linearity which may be achieved are required for most satellite systems, however if greater linearity is required, the technique may be used in addition to conventional pre-distortion techniques.
NASA Astrophysics Data System (ADS)
Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.
2010-12-01
A nanofield-effect transistor (nano-FET) is coupled to a massive piezoelectricity based electromechanical resonator integrated with a parametric amplifier. The mechanical parametric amplifier can enhance the resonator's displacement and the resulting electrical signal is further amplified by the nano-FET. This hybrid amplification scheme yields an increase in the mechanical displacement signal by 70 dB resulting in a force sensitivity of 200 aN Hz-1/2 at 3 K. The mechanical parametric amplifier can also squeeze the displacement noise in one oscillation phase by 5 dB enabling a factor of 4 reduction in the thermomechanical noise force level.
NASA Technical Reports Server (NTRS)
Valley, G. C.; Wright, M.
2001-01-01
Simulations of 1-50 kHz repetition rate, pulsed Yb-fiber amplifiers show peak powers to 10 kW with half-widths < 30 ns, consistent with commercial amplifier performance. This device is a potential source for deep space-communication.
Mather, Mara; Clewett, David; Sakaki, Michiko; Harley, Carolyn W.
2018-01-01
Long Abstract Existing brain-based emotion-cognition theories fail to explain arousal’s ability to both enhance and impair cognitive processing. In the Glutamate Amplifies Noradrenergic Effects (GANE) model outlined in this paper, we propose that arousal-induced norepinephrine (NE) released from the locus coeruleus (LC) biases perception and memory in favor of salient, high priority representations at the expense of lower priority representations. This increase in gain under phasic arousal occurs via synaptic self-regulation of NE based on glutamate levels. When the LC is phasically active, elevated levels of glutamate at the site of prioritized representations increase local NE release, creating “NE hot spots.” At these local hot spots, glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. This excitatory effect contrasts with widespread NE suppression of weaker representations via lateral and auto-inhibitory processes. On a broader scale, hot spots increase oscillatory synchronization across neural ensembles transmitting high priority information. Furthermore, key brain structures that detect or pre-determine stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during or after encoding enhances synaptic plasticity at sites of high glutamate activity, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms increase perceptual and memory selectivity under arousal. Beyond explaining discrepancies in the emotion-cognition literature, GANE reconciles and extends previous influential theories of LC neuromodulation by highlighting how NE can produce such different outcomes in processing based on priority. PMID:26126507
Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier.
Cheng, Jingchi; Tang, Ming; Lau, Alan Pak Tao; Lu, Chao; Wang, Liang; Dong, Zhenhua; Bilal, Syed Muhammad; Fu, Songnian; Shum, Perry Ping; Liu, Deming
2015-05-04
High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments.
kW picosecond thin-disk regenerative amplifier
NASA Astrophysics Data System (ADS)
Michel, Knut; Wandt, Christoph; Klingebiel, Sandro; Schultze, Marcel; Prinz, Stephan; Teisset, Catherine Y.; Stark, Sebastian; Grebing, Christian; Bessing, Robert; Herzig, Tobias; Häfner, Matthias; Budnicki, Aleksander; Sutter, Dirk; Metzger, Thomas
2018-02-01
TRUMPF Scientific Lasers provides ultrafast laser sources for the scientific community with high pulse energies and high average power. All systems are based on the industrialized TRUMPF thin-disk technology. Regenerative amplifiers systems with multi-millijoule pulses, kilohertz repetition rates and picosecond pulse durations are available. Record values of 220mJ at 1kHz could be demonstrated originally developed for pumping optical parametric amplifiers. The ultimate goal is to combine high energies, <100mJ per pulse, with average powers of several hundred watts to a kilowatt. Based on a regenerative amplifier containing two Ytterbium doped thin-disks operated at ambient temperature pulses with picosecond duration and more than 100mJ could be generated at a repetition rate of 10kHz reaching 1kW of average output power. This system is designed to operate at different repetition rates from 100kHz down to 5kHz so that even higher pulse energies can be reached. This type of ultrafast sources uncover new application fields in science. Laser based lightning rods, X-ray lasers and Compton backscatter sources are among them.
NASA Astrophysics Data System (ADS)
Latorre-Rey, Alvaro D.; Sabatti, Flavio F. M.; Albrecht, John D.; Saraniti, Marco
2017-07-01
In order to assess the underlying physical mechanisms of hot carrier-related degradation such as defect generation in millimeter-wave GaN power amplifiers, we have simulated the electron energy distribution function under large-signal radio frequency conditions in AlGaN/GaN high-electron-mobility transistors. Our results are obtained through a full band Monte Carlo particle-based simulator self-consistently coupled to a harmonic balance circuit solver. At lower frequency, simulations of a Class AB power amplifier at 10 GHz show that the peak hot electron generation is up to 43% lower under RF drive than it is under DC conditions, regardless of the input power or temperature of operation. However, at millimeter-wave operation up to 40 GHz, RF hot carrier generation reaches that from DC biasing and even exceeds it up to 75% as the amplifier is driven into compression. Increasing the temperature of operation also shows that degradation of DC and RF characteristics are tightly correlated and mainly caused by increased phonon scattering. The accurate determination of the electron energy mapping is demonstrated to be a powerful tool for the extraction of compact models used in lifetime and reliability analysis.
Design of a CMOS integrated on-chip oscilloscope for spin wave characterization
NASA Astrophysics Data System (ADS)
Egel, Eugen; Meier, Christian; Csaba, György; Breitkreutz-von Gamm, Stephan
2017-05-01
Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF) receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz) signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA). Then, it is down-converted by a mixer to Intermediate Frequency (IF). Finally, an Operational Amplifier (OpAmp) brings the IF signal to higher voltages (50-300 mV). The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO) is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.
Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping
NASA Astrophysics Data System (ADS)
Selleri, S.; Poli, F.; Passaro, D.; Cucinotta, A.; Lægsgaard, J.; Broeng, J.
2009-05-01
Rod-type photonic crystal fibers are large mode area double-cladding fibers with an outer diameter of few millimeters which can provide important advantages for high-power lasers and amplifiers. Numerical studies have recently demonstrated the guidance of higher-order modes in these fibers, which can worsen the output beam quality of lasers and amplifiers. In the present analysis a sectioned core doping has been proposed for Ybdoped rod-type photonic crystal fibers, with the aim to improve the higher-order mode suppression. A full-vector modal solver based on the finite element method has been applied to properly design the low refractive index ring in the fiber core, which can provide an increase of the differential overlap between the fundamental and the higher-order mode. Then, the gain competition among the guided modes along the Yb-doped rod-type fibers has been investigated with a spatial and spectral amplifier model. Simulation results have shown the effectiveness of the sectioned core doping in worsening the higher-order mode overlap on the doped area, thus providing an effective single-mode behavior of the Yb-doped rod-type photonic crystal fibers.
Thermal and dynamic range characterization of a photonics-based RF amplifier
NASA Astrophysics Data System (ADS)
Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.
2018-05-01
This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.
FEL amplifier performance in the Compton regime
NASA Astrophysics Data System (ADS)
Cover, R. A.; Bhowmik, A.
1984-01-01
The Kroll-Morton-Rosenbluth equations of motion for electrons in a linearly polarized, tapered wiggler are utilized to describe gain in free-electron laser amplifiers. The three-dimensional amplifier model includes the effects of density variation in the electron beam, off-axis variations in the wiggler magnetic field, and betatron oscillations. The input electromagnetic field is injected and subsequently propagated within the wiggler by computing the Fresnel-Kirchhoff diffraction integral using the Gardner-Fresnel-Kirchhoff algorithm. The injected optical beam used in evaluating amplifier performance is initially a Gaussian which in general may be astigmatic. The importance of the above effects on extraction efficiency is computed both with rigorous three-dimensional electromagnetic wave propagation and a Gaussian treatment of the field.
Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance
NASA Astrophysics Data System (ADS)
Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald
2008-11-01
As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.
Cochems, P; Kirk, A; Zimmermann, S
2014-12-01
Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design.
Refinement of Er3+-doped hole-assisted optical fiber amplifier.
D'Orazio, A; De Sario, M; Mescia, L; Petruzzelli, V; Prudenzano, F
2005-12-12
This paper deals with design and refinement criteria of erbium doped hole-assisted optical fiber amplifiers for applications in the third band of fiber optical communication. The amplifier performance is simulated via a model which takes into account the ion population rate equations and the optical power propagation. The electromagnetic field profile of the propagating modes is carried out by a finite element method solver. The effects of the number of cladding air holes on the amplifier performance are investigated. To this aim, four different erbium doped hole-assisted lightguide fiber amplifiers having a different number of cladding air holes are designed and compared. The simulated optimal gain, optimal length, and optimal noise fig. are discussed. The numerical results highlight that, by increasing the number of air holes, the gain can be improved, thus obtaining a shorter amplifier length. For the erbium concentration NEr=1.8x1024 ions/m3, the optimal gain G(Lopt) increases up to ~2dB by increasing the number of the air holes from M=4 to M=10.
A Mixed Mode Cochlear Amplifier Including Neural Feedback
NASA Astrophysics Data System (ADS)
Flax, Matthew R.; Holmes, W. Harvey
2011-11-01
The mixed mode cochlear amplifier (MMCA) model is derived from the physiology of the cochlea. It is comprised of three main elements of the peripheral hearing system: the cochlear mechanics, hair cell motility, and neurophysiology. This model expresses both active compression wave and active traveling wave modes of operation. The inclusion of a neural loop with a time delay, and a new paradigm for the mechanical response of the outer hair cells, are believed to be unique features of the MMCA. These elements combine to form an active feedback loop to constitute the cochlear amplifier, whose input is a passive traveling wave vibration. The result is a cycle-by-cycle amplifier with nonlinear response. This system can assume an infinite number of different operating states. The stable state and the first few amplitude-limited unstable (Hopf-bifurcated) states are significant in describing the operation of the peripheral hearing system. A hierarchy of models can be constructed from this concept, depending on the amount of detail included. The simplest model of the MMCA is a nonlinear delay line resonator. It was found that even this simple MMCA version can explain a large number of hearing phenomena, at least qualitatively. This paper concentrates on explaining the fractional octave shift from the living to postmortem response in terms of the new model. Other mechanical, hair cell and neurological phenomena can also be accounted for by the MMCA, including two-tone suppression behavior, distortion product responses, otoacoustic emissions and neural spontaneous rates.
NASA Astrophysics Data System (ADS)
Kajita, Masashi K.; Aihara, Kazuyuki; Kobayashi, Tetsuya J.
2017-07-01
Specific interactions between receptors and their target ligands in the presence of nontarget ligands are crucial for biological processes such as T cell ligand discrimination. To discriminate between the target and nontarget ligands, cells have to increase specificity to the target ligands by amplifying the small differences in affinity among ligands. In addition, sensitivity to the ligand concentration and quick discrimination are also important to detect low amounts of target ligands and facilitate fast cellular decision making after ligand recognition. In this work we propose a mechanism for nonlinear specificity amplification (ultraspecificity) based on zero-order saturating reactions, which was originally proposed to explain nonlinear sensitivity amplification (ultrasensitivity) to the ligand concentration. In contrast to the previously proposed proofreading mechanisms that amplify the specificity by a multistep reaction, our model can produce an optimal balance of specificity, sensitivity, and quick discrimination. Furthermore, we show that a model for insensitivity to a large number of nontarget ligands can be naturally derived from a model with the zero-order ultraspecificity. The zero-order ultraspecificity, therefore, may provide an alternative way to understand ligand discrimination from the viewpoint of nonlinear properties in biochemical reactions.
NASA Astrophysics Data System (ADS)
Kawanishi, S.; Takara, H.; Saruwatari, M.; Kitoh, T.
1993-09-01
Successful operation of a phase-locked loop is demonstrated using a traveling-wave laser-diode amplifier as a 50 GHz phase detector. Optical gain modulation in the laser diode amplifier and an all-optical clock multiplication technique using a silica-based guided-wave optical circuit are used to achieve the extremely high-speed operation. Also discussed is the possibility of more than 100 GHz operation.
2013-03-01
beam tunnel [5,6] for a high - power , wideband W- band traveling-wave tube (TWT) amplifier. UV-LIGA is also a promising technique at higher...wide- band , high - power operation of the amplifier [7, 8]. The interaction circuit consists of two traveling-wave stages separated by a power ...technique produces monolithic all-copper circuits, integrated with electron beam tunnel, suitable for high - power continuous-wave operation [1]. We
Characterization of a multimode coplanar waveguide parametric amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoen, M., E-mail: simoen@chalmers.se; Krantz, P.; Bylander, Jonas
2015-10-21
We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.
Investigating Holey Metamaterial Effects in Terahertz Traveling-Wave Tube Amplifier
NASA Technical Reports Server (NTRS)
Starinshak, David P.; Wilson, Jeffrey D.; Chevalier, Christine T.
2007-01-01
Applying subwavelength holes to a novel traveling-wave tube amplifier is investigated. Plans to increase the on-axis impedance are discussed as well as optimization schemes to achieve this goal. Results suggest that an array of holes alone cannot significantly change the on-axis electric field in the vicinity of the electron beam. However, models of a beam tunnel with corrugated walls show promise in maximizing the amplifier s on-axis impedance. Additional work is required on the subject, and suggestions are made to determine research directions.
A Master-Oscillator-Power-Amplifier 2-micron Laser Using Fiber Phase-conjugate Mirror
NASA Technical Reports Server (NTRS)
Yu, Jirong; Bai, Yingxin; Shkunov, V.; Rockwell, D.; Betin, A.; Wang, J.; Petros, M.; Petzar, Paul; Trieu, Bo
2007-01-01
For the first time, a 2-micron master-oscillator-power-amplifier laser using a fiber based phase conjugation mirror has been demonstrated. The beam quality improvement and 56% of the PCM reflectivity have been achieved.
Thermal refraction focusing in planar index-antiguided lasers.
Casperson, Lee W; Dittli, Adam; Her, Tsing-Hua
2013-03-15
Thermal refraction focusing in planar index-antiguided lasers is investigated both theoretically and experimentally. An analytical model based on zero-field approximation is presented for treating the combined effects of index antiguiding and thermal focusing. At very low pumping power, the mode is antiguided by the amplifier boundary, whereas at high pumping power it narrows due to thermal focusing. Theoretical results are in reasonable agreement with experimental data.
NASA Tech Briefs, December 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics include: Coherent Frequency Reference System for the NASA Deep Space Network; Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers; 180-GHz I-Q Second Harmonic Resistive Mixer MMIC; Ultra-Low-Noise W-Band MMIC Detector Modules; 338-GHz Semiconductor Amplifier Module; Power Amplifier Module with 734-mW Continuous Wave Output Power; Multiple Differential-Amplifier MMICs Embedded in Waveguides; Rapid Corner Detection Using FPGAs; Special Component Designs for Differential-Amplifier MMICs; Multi-Stage System for Automatic Target Recognition; Single-Receiver GPS Phase Bias Resolution; Ultra-Wideband Angle-of-Arrival Tracking Systems; Update on Waveguide-Embedded Differential MMIC Amplifiers; Automation Framework for Flight Dynamics Products Generation; Product Operations Status Summary Metrics; Mars Terrain Generation; Application-Controlled Parallel Asynchronous Input/Output Utility; Planetary Image Geometry Library; Propulsion Design With Freeform Fabrication (PDFF); Economical Fabrication of Thick-Section Ceramic Matrix Composites; Process for Making a Noble Metal on Tin Oxide Catalyst; Stacked Corrugated Horn Rings; Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator; Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator; Strain System for the Motion Base Shuttle Mission Simulator; Ko Displacement Theory for Structural Shape Predictions; Pyrotechnic Actuator for Retracting Tubes Between MSL Subsystems; Surface-Enhanced X-Ray Fluorescence; Infrared Sensor on Unmanned Aircraft Transmits Time-Critical Wildfire Data; and Slopes To Prevent Trapping of Bubbles in Microfluidic Channels.
NASA Astrophysics Data System (ADS)
Tang, Renyong; Voss, Paul L.; Lasri, Jacob; Devgan, Preetpaul; Kumar, Prem
2004-10-01
Recent theoretical work predicts that the quantum-limited noise figure of a chi(3)-based fiber-optical parametric amplifier operating as a phase-insensitive in-line amplifier or as a wavelength converter exceeds the standard 3-dB limit at high gain. The degradation of the noise figure is caused by the excess noise added by the unavoidable Raman gain and loss occurring at the signal and the converted wavelengths. We present detailed experimental evidence in support of this theory through measurements of the gain and noise-figure spectra for phase-insensitive parametric amplification and wavelength conversion in a continuous-wave amplifier made from 4.4 km of dispersion-shifted fiber. The theory is also extended to include the effect of distributed linear loss on the noise figure of such a long-length parametric amplifier and wavelength converter.
High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures.
Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng; Zhou, Peng
2018-04-01
2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field-effect transistors. However, 2DLM-based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS 2 /GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM-based integrated circuits based on amplifier circuits.
High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures
Yan, Xiao; Zhang, David Wei; Liu, Chunsen; Bao, Wenzhong; Wang, Shuiyuan; Ding, Shijin; Zheng, Gengfeng
2018-01-01
Abstract 2D layered materials (2DLMs), together with their heterostructures, have been attracting tremendous research interest in recent years because of their unique physical and electrical properties. A variety of circuit elements have been made using mechanically exfoliated 2DLMs recently, including hard drives, detectors, sensors, and complementary metal oxide semiconductor field‐effect transistors. However, 2DLM‐based amplifier circuit elements are rarely studied. Here, the integration of 2DLMs with 3D bulk materials to fabricate vertical junction transistors with current amplification based on a MoS2/GaTe heterostructure is reported. Vertical junction transistors exhibit the typical current amplification characteristics of conventional bulk bipolar junction transistors while having good current transmission coefficients (α ∼ 0.95) and current gain coefficient (β ∼ 7) at room temperature. The devices provide new attractive prospects in the investigation of 2DLM‐based integrated circuits based on amplifier circuits. PMID:29721428
Origin of 1/f PM and AM noise in bipolar junction transistor amplifiers.
Walls, F L; Ferre-Pikal, E S; Jefferts, S R
1997-01-01
In this paper we report the results of extensive research on phase modulation (PM) and amplitude modulation (AM) noise in linear bipolar junction transistor (BJT) amplifiers. BJT amplifiers exhibit 1/f PM and AM noise about a carrier signal that is much larger than the amplifiers thermal noise at those frequencies in the absence of the carrier signal. Our work shows that the 1/f PM noise of a BJT based amplifier is accompanied by 1/f AM noise which can be higher, lower, or nearly equal, depending on the circuit implementation. The 1/f AM and PM noise in BJTs is primarily the result of 1/f fluctuations in transistor current, transistor capacitance, circuit supply voltages, circuit impedances, and circuit configuration. We discuss the theory and present experimental data in reference to common emitter amplifiers, but the analysis can be applied to other configurations as well. This study provides the functional dependence of 1/f AM and PM noise on transistor parameters, circuit parameters, and signal frequency, thereby laying the groundwork for a comprehensive theory of 1/f AM and PM noise in BJT amplifiers. We show that in many cases the 1/f PM and AM noise can be reduced below the thermal noise of the amplifier.
NASA Astrophysics Data System (ADS)
Jose, Tony; Narayanan, Vijayakumar
2018-03-01
Radio over fiber (RoF) systems use a large number of base stations (BSs) and a number of central stations (CSs), which are interlinked together to form the network. RoF systems use multiple wavelengths for communication between CSs or between CSs and BSs to facilitate the huge amount of data traffic due to the multiple services for a large number of users. When erbium-doped fiber amplifiers (EDFAs) are used as amplifiers in such wavelength-division multiplexed systems, the nonuniform gain spectrum of EDFAs causes instability to some of the channels while providing faithful amplification to other channels. To avoid this inconsistency, the gain spectrum of the amplifier needs to be uniform along the whole usable range of wavelengths. A gain contouring technique is proposed to provide uniform gain to all channels irrespective of wavelength. Optical add/drop multiplexers (OADMs) and different lengths of erbium-doped fibers are used to create such a gain contouring mechanism in the optical domain itself. The effect of a cascade of nonuniform gain amplifiers is studied, and the proposed system mitigates the adverse effects caused due to nonuniform gain-induced channel instability effectively.
NASA Astrophysics Data System (ADS)
Coetzee, R. S.; Zheng, X.; Fregnani, L.; Laurell, F.; Pasiskevicius, V.
2018-06-01
A high-energy, ns, narrow-linewidth optical parametric oscillator and amplifier system based on large-aperture periodically poled Rb:KTP is presented. The 2 µm seed source is a singly resonant OPO locked with a transversely chirped volume Bragg grating, allowing a wavelength tuning of 21 nm and output linewidth of 0.56 nm. A maximum output energy of 52 mJ and conversion efficiency of 36% was obtained from the amplifier for a pump energy of 140 mJ. The high-energy and the robust and narrow dual-wavelength spectra obtained make this system an ideal pump source for difference frequency generation-based THz generation schemes.
NASA Technical Reports Server (NTRS)
Hunt, Mitchell; Sayyah, Rana; Mitchell, Cody; Laws, Crystal; MacLeod, Todd C.; Ho, Fat D.
2013-01-01
Mathematical models of the common-source and common-gate amplifiers using metal-ferroelectric- semiconductor field effect transistors (MOSFETs) are developed in this paper. The models are compared against data collected with MOSFETs of varying channel lengths and widths, and circuit parameters such as biasing conditions are varied as well. Considerations are made for the capacitance formed by the ferroelectric layer present between the gate and substrate of the transistors. Comparisons between the modeled and measured data are presented in depth as well as differences and advantages as compared to the performance of each circuit using a MOSFET.
Single mode terahertz quantum cascade amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Y., E-mail: yr235@cam.ac.uk; Wallis, R.; Shah, Y. D.
2014-10-06
A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-modemore » radiation output is demonstrated.« less
Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier
Zhao, Zhi; Sheehy, Brian; Minty, Michiko
2017-03-29
Here, we report on the generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. In an Yb-doped fiber master-oscillator-power-amplifier system, 2.3-ps 704 MHz pulses are first amplified in small-core fibers and then in large-mode-area rod fibers to produce 270 W average infrared power with a high polarization extinction ratio and diffraction-limited beam quality. By carrying out frequency doubling in a lithium triborate (LBO) crystal, 180 W average green power is generated. To the best of our knowledge, this is the highest average green power achieved in fiber-based laser systems.
Amarillo, Yimy; Mato, Germán; Nadal, Marcela S.
2015-01-01
Thalamocortical neurons are involved in the generation and maintenance of brain rhythms associated with global functional states. The repetitive burst firing of TC neurons at delta frequencies (1–4 Hz) has been linked to the oscillations recorded during deep sleep and during episodes of absence seizures. To get insight into the biophysical properties that are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation analysis of a minimal conductance-based thalamocortical neuron model including only the IT channel and the sodium and potassium leak channels. This analysis unveils the dynamics of repetitive burst firing of TC neurons, and describes how the interplay between the amplifying variable mT and the recovering variable hT of the calcium channel IT is sufficient to generate low threshold oscillations in the delta band. We also explored the role of the hyperpolarization activated cationic current Ih in this reduced model and determine that, albeit not required, Ih amplifies and stabilizes the oscillation. PMID:25999847
'Soft' amplifier circuits based on field-effect ionic transistors.
Boon, Niels; Olvera de la Cruz, Monica
2015-06-28
Soft materials can be used as the building blocks for electronic devices with extraordinary properties. We introduce a theoretical model for a field-effect transistor in which ions are the gated species instead of electrons. Our model incorporates readily-available soft materials, such as conductive porous membranes and polymer-electrolytes to represent a device that regulates ion currents and can be integrated as a component in larger circuits. By means of Nernst-Planck numerical simulations as well as an analytical description of the steady-state current we find that the responses of the system to various input voltages can be categorized into ohmic, sub-threshold, and active modes. This is fully analogous to what is known for the electronic field-effect transistor (FET). Pivotal FET properties such as the threshold voltage and the transconductance crucially depend on the half-cell redox potentials of the source and drain electrodes as well as on the polyelectrolyte charge density and the gate material work function. We confirm the analogy with the electronic FETs through numerical simulations of elementary amplifier circuits in which we successfully substitute the electronic transistor by an ionic transistor.
Broadband 1.2- and 2.4-mm Gallium Nitride (GaN) Power Amplifier Designs
2017-10-01
showing double the power of a single 1.2-mm HEMT with 55% PAE at a comparable gain compression level. 3. Summary and Conclusion A preliminary design of...combined, 2.4-mm HEMT power amplifier should achieve comparable performance based on a preliminary design using ideal, lossless matching elements. For...ARL-TR-8180 ● OCT 2017 US Army Research Laboratory Broadband 1.2- and 2.4-mm Gallium Nitride (GaN) Power Amplifier Designs by
Direct carrier-envelope phase control of an amplified laser system.
Balčiūnas, Tadas; Flöry, Tobias; Baltuška, Andrius; Stanislauskas, Tomas; Antipenkov, Roman; Varanavičius, Arūnas; Steinmeyer, Günter
2014-03-15
Direct carrier-envelope phase stabilization of an Yb:KGW MOPA laser system is demonstrated with a residual phase jitter reduced to below 100 mrad, which compares favorably with previous stabilization reports, both of amplified laser systems as well as of ytterbium-based oscillators. This novel stabilization scheme relies on a frequency synthesis scheme and a feed-forward approach. The direct stabilization of a sub-MHz frequency comb from a CPA amplifier not only reduces the phase noise but also greatly simplifies the stabilization setup.
NASA Astrophysics Data System (ADS)
Miller, Joseph D.; Jiang, Naibo; Slipchenko, Mikhail N.; Mance, Jason G.; Meyer, Terrence R.; Roy, Sukesh; Gord, James R.
2016-12-01
100-kHz particle image velocimetry (PIV) is demonstrated using a double-pulsed, burst-mode laser with a burst duration up to 100 ms. This enables up to 10,000 time-sequential vector fields for capturing a temporal dynamic range spanning over three orders of magnitude in high-speed turbulent flows. Pulse doublets with inter-pulse spacing of 2 µs and repetition rate of 100 kHz are generated using a fiber-based oscillator and amplified through an all-diode-pumped, burst-mode amplifier. A physics-based model of pulse doublet amplification in the burst-mode amplifier is developed and used to accurately predict oscillator pulse width and pulse intensity inputs required to generate equal-energy pulse doublets at 532 nm for velocity measurements. The effect of PIV particle response and high-speed-detector limitations on the spatial and temporal resolution are estimated in subsonic turbulent jets. An effective spatial resolution of 266-275 µm and temporal resolution of 10 µs are estimated from the 8 × 8 pixel correlation window and inter-doublet time spacing, respectively. This spatiotemporal resolution is sufficient for quantitative assessment of integral time and length scales in highly turbulent jets with Reynolds numbers in the range 15,000-50,000. The temporal dynamic range of the burst-mode PIV measurement is 1200, limited by the 85-ms high-energy portion of the burst and 30-kHz high-frequency noise limit.
Design and experimental study of a velocity amplified electromagnetic vibration energy harvester
NASA Astrophysics Data System (ADS)
Klein, Jackson A.; Zuo, Lei
2017-04-01
Dedicated sensors are widely used throughout many industries to monitor everyday operations, maintain safety and report performance characteristics. In order to adopt a more sustainable solution, intensive research is being conducted for self-powered sensing. To enable sensors to power themselves, harvesting energy from environmental vibration has been widely studied, however, its overall effectiveness remains questionable due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester in which a metal compliant mechanism frame is used to house both a linear electromagnetic generator and proof mass. Due to the compliant mechanism, the proposed energy harvester is capable of amplifying machine vibration velocity for a dedicated electromagnetic generator, largely increasing the energy density. The harvester prototype is also fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 in (25.4μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. In addition, a mathematical model is created based on the pseudo-rigid-body dynamics and the analysis matches closely with experiments. The proposed harvester was designed using vibration data from nuclear power plants. Further steps for improving such a design are given for broader applications.
Fiber Lasers and Amplifiers for Space-based Science and Exploration
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.;
2012-01-01
We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.
Post-Fragmentation Whole Genome Amplification-Based Method
NASA Technical Reports Server (NTRS)
Benardini, James; LaDuc, Myron T.; Langmore, John
2011-01-01
This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (<400 bp) constitute a library of DNA fragments with defined 3 and 5 termini. Specific primers to these termini are then used to isothermally amplify this library into potentially unlimited quantities that can be used immediately for multiple downstream applications including gel eletrophoresis, quantitative polymerase chain reaction (QPCR), comparative genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have inherent sample loss issues at practically every step, particularly nucleic acid extraction. In engineering a molecular means of amplifying nucleic acids directly from single cells in their native state within the sample matrix, this innovation has circumvented entirely the need for DNA extraction regimes in the sample processing scheme.
Input-output Transfer Function Analysis of a Photometer Circuit Based on an Operational Amplifier.
Hernandez, Wilmar
2008-01-09
In this paper an input-output transfer function analysis based on the frequencyresponse of a photometer circuit based on operational amplifier (op amp) is carried out. Opamps are universally used in monitoring photodetectors and there are a variety of amplifierconnections for this purpose. However, the electronic circuits that are usually used to carryout the signal treatment in photometer circuits introduce some limitations in theperformance of the photometers that influence the selection of the op amps and otherelectronic devices. For example, the bandwidth, slew-rate, noise, input impedance and gain,among other characteristics of the op amp, are often the performance limiting factors ofphotometer circuits. For this reason, in this paper a comparative analysis between twophotodiode amplifier circuits is carried out. One circuit is based on a conventional currentto-voltage converter connection and the other circuit is based on a robust current-to-voltageconverter connection. The results are satisfactory and show that the photodiode amplifierperformance can be improved by using robust control techniques.
Magnetic Amplifier-Based Power-Flow Controller
Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak
2015-02-05
The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can bemore » regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baca, A.G.; Hietala, V.M.; Greenway, D.
1998-05-01
In this work the authors report results of narrowband amplifiers designed for milliwatt and submilliwatt power consumption using JFET and pseudomorphic high electron mobility transistors (PHEMT) GaAs-based technologies. Enhancement-mode JFETs were used to design both a hybrid amplifier with off-chip matching as well as a monolithic microwave integrated circuit (MMIC) with on-chip matching. The hybrid amplifier achieved 8--10 dB of gain at 2.4 GHz and 1 mW. The MMIC achieved 10 dB of gain at 2.4 GHz and 2 mW. Submilliwatt circuits were also explored by using 0.25 {micro}m PHEMTs. 25 {micro}W power levels were achieved with 5 dB ofmore » gain for a 215 MHz hybrid amplifier. These results significantly reduce power consumption levels achievable with the JFETs or prior MESFET, heterostructure field effect transistor (HFET), or Si bipolar results from other laboratories.« less
First demonstration of high-order QAM signal amplification in PPLN-based phase sensitive amplifier.
Umeki, T; Tadanaga, O; Asobe, M; Miyamoto, Y; Takenouchi, H
2014-02-10
We demonstrate the phase sensitive amplification of a high-order quadrature amplitude modulation (QAM) signal using non-degenerate parametric amplification in a periodically poled lithium niobate (PPLN) waveguide. The interaction between the pump, signal, and phase-conjugated idler enables us to amplify arbitrary phase components of the signal. The 16QAM signals are amplified without distortion because of the high gain linearity of the PPLN-based phase sensitive amplifier (PSA). Both the phase and amplitude noise reduction capabilities of the PSA are ensured. Phase noise cancellation is achieved by using the interaction with the phase-conjugated idler. A degraded signal-to-noise ratio (SNR) is restored by using the gain difference between a phase-correlated signal-idler pair and uncorrelated excess noise. The applicability of the simultaneous amplification of multi-carrier signals and the amplification of two independent polarization signals are also confirmed with a view to realizing ultra-high spectrally efficient signal amplification.
MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength
NASA Astrophysics Data System (ADS)
Han, Seongheum; Jang, Heesuk; Kim, Seungman; Kim, Young-Jin; Kim, Seung-Woo
2017-08-01
An erbium (Er)/ytterbium (Yb) co-doped double-clad fiber is configured to amplify single-mode pulses with a high average power of 10 W at a 1.5 µm center wavelength. The pulse duration at the exit of the Er/Yb fiber amplifier is measured to be ~440 fs after grating-based compression. The whole single-mode operation of the amplifier system permits the M 2-value of the output beam quality to be evaluated better than 1.05. By tuning the repetition rate from 100 MHz down to 600 kHz, the pulse peak power is scaled up to 19.1 MW to be the highest ever reported using an Er/Yb single-mode fiber. The proposed amplifier system is well suited for strong-power applications such as free-space LIDAR, non-thermal machining and medical surgery.
Common source cascode amplifiers for integrating IR-FPA applications
NASA Technical Reports Server (NTRS)
Woolaway, James T.; Young, Erick T.
1989-01-01
Space based astronomical infrared measurements present stringent performance requirements on the infrared detector arrays and their associated readout circuitry. To evaluate the usefulness of commercial CMOS technology for astronomical readout applications a theoretical and experimental evaluation was performed on source follower and common-source cascode integrating amplifiers. Theoretical analysis indicates that for conditions where the input amplifier integration capacitance is limited by the detectors capacitance the input referred rms noise electrons of each amplifier should be equivalent. For conditions of input gate limited capacitance the source follower should provide lower noise. Measurements of test circuits containing both source follower and common source cascode circuits showed substantially lower input referred noise for the common-source cascode input circuits. Noise measurements yielded 4.8 input referred rms noise electrons for an 8.5 minute integration. The signal and noise gain of the common-source cascode amplifier appears to offer substantial advantages in acheiving predicted noise levels.
Design of a lock-amplifier circuit
NASA Astrophysics Data System (ADS)
Liu, H.; Huang, W. J.; Song, X.; Zhang, W. Y.; Sa, L. B.
2017-01-01
The lock-in amplifier is recovered by phase sensitive detection technique for the weak signal submerged in the noise background. This design is based on the TI ultra low power LM358, INA129, OPA227, OP07 and other chips as the core design and production of the lock-in amplifier. Signal generator by 10m ohms /1K ohm resistance points pressure network 10 mu V 1mV adjustable sine wave signal s (T). The concomitant interference signal together through the AC amplifier and band-pass filter signal x (T), on the other hand reference signal R (T) driven by square wave phase shift etc. steps to get the signal R (T), two signals and by phase sensitive detector are a DC full wave, again through its low pass filter and a DC amplifier to be measured signal more accurate detection, the final circuit through the AD conversion and the use of single-chip will display the output.
Fast terahertz imaging using a quantum cascade amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Yuan, E-mail: yr235@cam.ac.uk; Wallis, Robert; Jessop, David Stephen
2015-07-06
A terahertz (THz) imaging scheme based on the effect of self-mixing in a 2.9 THz quantum cascade (QC) amplifier has been demonstrated. By coupling an antireflective-coated silicon lens to the facet of a QC laser, with no external optical feedback, the laser mirror losses are enhanced to fully suppress lasing action, creating a THz QC amplifier. The addition of reflection from an external target to the amplifier creates enough optical feedback to initiate lasing action and the resulting emission enhances photon-assisted transport, which in turn reduces the voltage across the device. At the peak gain point, the maximum photon densitymore » coupled back leads to a prominent self-mixing effect in the QC amplifier, leading to a high sensitivity, with a signal to noise ratio up to 55 dB, along with a fast data acquisition speed of 20 000 points per second.« less
Directional amplifier in an optomechanical system with optical gain
NASA Astrophysics Data System (ADS)
Jiang, Cheng; Song, L. N.; Li, Yong
2018-05-01
Directional amplifiers are crucial nonreciprocal devices in both classical and quantum information processing. Here we propose a scheme for realizing a directional amplifier between optical and microwave fields based on an optomechanical system with optical gain, where an active optical cavity and two passive microwave cavities are coupled to a common mechanical resonator via radiation pressure. The two passive cavities are coupled via hopping interaction to facilitate the directional amplification between the active and passive cavities. We obtain the condition of achieving optical directional amplification and find that the direction of amplification can be controlled by the phase differences between the effective optomechanical couplings. The effects of the gain rate of the active cavity and the effective coupling strengths on the maximum gain of the amplifier are discussed. We show that the noise added to this amplifier can be greatly suppressed in the large cooperativity limit.
Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark
2005-01-01
We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.
Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia
2016-04-07
A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.
A Low Noise Amplifier for Neural Spike Recording Interfaces
Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel
2015-01-01
This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models. PMID:26437411
A Low Noise Amplifier for Neural Spike Recording Interfaces.
Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel
2015-09-30
This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz-7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models.
Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels
NASA Astrophysics Data System (ADS)
De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio
2017-04-01
We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p →q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.
Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels.
De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio
2017-04-21
We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Melissa; Bolovan-Fritts, Cynthia; Dar, Roy D.
Signal transduction circuits have long been known to differentiate between signals by amplifying inputs to different levels. Here, we describe a novel transcriptional circuitry that dynamically converts greater input levels into faster rates, without increasing the final equilibrium level (i.e. a rate amplifier). We utilize time-lapse microscopy to study human herpesvirus (cytomegalovirus) infection of live cells in real time. Strikingly, our results show that transcriptional activators accelerate viral gene expression in single cells without amplifying the steady-state levels of gene products in these cells. Experiment and modeling show that rate amplification operates by dynamically manipulating the traditional gain-bandwidth feedback relationshipmore » from electrical circuit theory to convert greater input levels into faster rates, and is driven by highly self-cooperative transcriptional feedback encoded by the virus s essential transactivator, IE2. This transcriptional rate-amplifier provides a significant fitness advantage for the virus and for minimal synthetic circuits. In general, rate-amplifiers may provide a mechanism for signal-transduction circuits to respond quickly to external signals without increasing steady-state levels of potentially cytotoxic molecules.« less
Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge
NASA Astrophysics Data System (ADS)
Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.
2017-01-01
Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.
Gain drift compensation with no-feedback-loop developed for the X-IFU/ATHENA readout chain
NASA Astrophysics Data System (ADS)
Prêle, D.; Voisin, F.; Beillimaz, C.; Chen, S.; Goldwurm, A.
2016-07-01
The focal plane of the X-ray Integral Field Unit (X-IFU) instrument of the Athena observatory is composed of about 4000 micro-calorimeters. These sensors, based on superconducting Transition Edge Sensors, are read out through a frequency multiplexer and a base-band feedback to linearize SQUIDs. However, the loop gain of this feedback is lower than 10 in the modulated TES signal bandwidth, which is not enough to fix the gain of the full readout chain. Calibration of the instrument is planned to be done at a time scale larger than a dozen minutes and the challenging energy resolution goal of 2.5 eV at 6 keV will probably require a gain stability larger than 10-4 over a long duration. A large part of this gain is provided by a Low-Noise Amplifier (LNA) in the Warm Front-End Electronics (WFEE). To reach such gain stability over more than a dozen minutes, this non-cooled amplifier has to cope with the temperature and supply voltage variations. Moreover, mainly for noise reasons, common large loop gain with feedback can not be used. We propose a new amplifier topology using diodes as loads of a differential amplifier to provide a fixed voltage gain, independent of the temperature and of the bias fluctuations. This amplifier is designed using a 350 nm SiGe BiCMOS technology and is part of an integrated circuit developed for the WFEE. Our simulations provide the expected gain drift and noise performances of such structure. Comparison with standard resistive loaded differential pair clearly shows the advantages of the proposed amplifier topology with a gain drift decreasing by more than an order of magnitude. Performances of this diode loaded amplifier are discussed in the context of the X-IFU requirements.
NASA Astrophysics Data System (ADS)
Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.
2015-03-01
Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.
Developing an active artificial hair cell using nonlinear feedback control
NASA Astrophysics Data System (ADS)
Joyce, Bryan S.; Tarazaga, Pablo A.
2015-09-01
The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.
Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array
NASA Technical Reports Server (NTRS)
Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.
1990-01-01
The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.
Dynamics of functional failures and recovery in complex road networks
NASA Astrophysics Data System (ADS)
Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.
2017-11-01
We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.
Adiabatic Quantum Transistors (Open Access, Publisher’s Version)
2013-06-14
states are the entangled states originally used to perform measurement-based quantum computation [9,19]. To de- fine the Hamiltonian of our system, we need...carries over to our model. Note that fault-tolerant QC requires expunging entropy (usually via measurement), but this can always be placed at the end... entropy of quantum er- rors, and the latter is important for building architectures that are modular and synchronous. A. Adiabatic measurement amplifier
Burton, Harry; Debardelaben, Christopher; Amir, Wafa; Planchon, Thomas A
2017-03-20
The fluorescence spectra of titanium doped sapphire (Ti:Sapphire) crystals were measured for temperature ranging from 300K to 77K. The resulting gain cross-section line shapes were calculated and used in a three-dimensional amplification model to illustrate the importance of the precise knowledge of these fluorescence spectra for the design of cryogenic cooled Ti:Sapphire based chirped-pulse laser amplifiers.
NASA Astrophysics Data System (ADS)
Bandurkin, I. V.; Donets, D. E.; Kaminsky, A. K.; Kuzikov, S. V.; Perel'shteyn, E. A.; Peskov, N. Yu.; Savilov, A. V.; Sedykh, S. N.
2017-01-01
We develop a high-power wideband amplifier based on a free-electron maser for particle acceleration, which will be operated in the 30 GHz frequency band, on the basis of the LIU-3000 linear induction accelerator forming an electron beam with an electron energy of 0.8 MeV, a current of 250 A, and a pulse duration of 200 ns. As the operating regime, we chose the regime of grazing of dispersion curves, since, according to the modeling performed, it allows one to ensure an instantaneous amplification band of about 5-7% in an undulator with regular winding for an output radiation power at a level of 20 MW and a gain of 30-35 dB. The results of the first experiments studying this FEM-based scheme are presented, in which the specified power level is achieved in the range around 30 GHz, and fast tuning of ±0.5 GHz in the band of variations in the frequency of the master magnetron is demonstrated. Modeling shows that the use of the non-resonance trapping/braking regime, which is realized in an undulator with profiled parameters, allows one to expect an increase in the radiation power of up to 35-40 MW with simultaneous widening of the amplification band up to 30% under the conditions of the LIU-3000 experiments.
MYCN induces neuroblastoma in primary neural crest cells
Olsen, R R; Otero, J H; García-López, J; Wallace, K; Finkelstein, D; Rehg, J E; Yin, Z; Wang, Y-D; Freeman, K W
2017-01-01
Neuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS), which causes 15% of pediatric cancer deaths. High-risk NBL is characterized by N-Myc amplification and segmental chromosomal gains and losses. Owing to limited disease models, the etiology of NBL is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying NBL based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc, to generate phenotypically and molecularly accurate tumors that closely model human MYCN-amplified NBL. Using comparative genomic hybridization, we found that NCC-derived NBL tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN-amplified NBL including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc, we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human NBL and establishes a new system with potential to study early stages of NBL oncogenesis, to functionally assess NBL oncogenic drivers and to characterize NBL metastasis. PMID:28459463
Canuto, Enrico; Acuña-Bravo, Wilber; Agostani, Marco; Bonadei, Marco
2014-07-01
Solenoid current regulation is well-known and standard in any proportional electro-hydraulic valve. The goal is to provide a wide-band transfer function from the reference to the measured current, thus making the solenoid a fast and ideal force actuator within the limits of the power supplier. The power supplier is usually a Pulse Width Modulation (PWM) amplifier fixing the voltage bound and the Nyquist frequency of the regulator. Typical analog regulators include three main terms: a feedforward channel, a proportional feedback channel and the electromotive force compensation. The latter compensation may be accomplished by integrative feedback. Here the problem is faced through a model-based design (Embedded Model Control), on the basis of a wide-band embedded model of the solenoid which includes the effect of eddy currents. To this end model parameters must be identified. The embedded model includes a stochastic disturbance dynamics capable of estimating and correcting the electromotive contribution together with parametric uncertainty, variability and state dependence. The embedded model which is fed by the measured current and the supplied voltage becomes a state predictor of the controllable and disturbance dynamics. The control law combines reference generator, state feedback and disturbance rejection to dispatch the PWM amplifier with the appropriate duty cycle. Modeling, identification and control design are outlined together with experimental result. Comparison with an existing analog regulator is also provided. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
20 mJ, 1 ps Yb:YAG Thin-disk Regenerative Amplifier
Alismail, Ayman; Wang, Haochuan; Brons, Jonathan; Fattahi, Hanieh
2017-01-01
This is a report on a 100 W, 20 mJ, 1 ps Yb:YAG thin-disk regenerative amplifier. A homemade Yb:YAG thin-disk, Kerr-lens mode-locked oscillator with turn-key performance and microjoule-level pulse energy is used to seed the regenerative chirped-pulse amplifier. The amplifier is placed in airtight housing. It operates at room temperature and exhibits stable operation at a 5 kHz repetition rate, with a pulse-to-pulse stability less than 1%. By employing a 1.5 mm-thick beta barium borate crystal, the frequency of the laser output is doubled to 515 nm, with an average power of 70 W, which corresponds to an optical-to-optical efficiency of 70%. This superior performance makes the system an attractive pump source for optical parametric chirped-pulse amplifiers in the near-infrared and mid-infrared spectral range. Combining the turn-key performance and the superior stability of the regenerative amplifier, the system facilitates the generation of a broadband, CEP-stable seed. Providing the seed and pump of the optical parametric chirped-pulse amplification (OPCPA) from one laser source eliminates the demand of active temporal synchronization between these pulses. This work presents a detailed guide to set up and operate a Yb:YAG thin-disk regenerative amplifier, based on chirped-pulse amplification (CPA), as a pump source for an optical parametric chirped-pulse amplifier. PMID:28745636
NASA Astrophysics Data System (ADS)
Jiang, Chunsheng; Liang, Renrong; Wang, Jing; Xu, Jun
2015-09-01
A carrier-based analytical drain current model for negative capacitance symmetric double-gate field effect transistors (NC-SDG FETs) is proposed by solving the differential equation of the carrier, the Pao-Sah current formulation, and the Landau-Khalatnikov equation. The carrier equation is derived from Poisson’s equation and the Boltzmann distribution law. According to the model, an amplified semiconductor surface potential and a steeper subthreshold slope could be obtained with suitable thicknesses of the ferroelectric film and insulator layer at room temperature. Results predicted by the analytical model agree well with those of the numerical simulation from a 2D simulator without any fitting parameters. The analytical model is valid for all operation regions and captures the transitions between them without any auxiliary variables or functions. This model can be used to explore the operating mechanisms of NC-SDG FETs and to optimize device performance.
Noise spectra in balanced optical detectors based on transimpedance amplifiers.
Masalov, A V; Kuzhamuratov, A; Lvovsky, A I
2017-11-01
We present a thorough theoretical analysis and experimental study of the shot and electronic noise spectra of a balanced optical detector based on an operational amplifier connected in a transimpedance scheme. We identify and quantify the primary parameters responsible for the limitations of the circuit, in particular, the bandwidth and shot-to-electronic noise clearance. We find that the shot noise spectrum can be made consistent with the second-order Butterworth filter, while the electronic noise grows linearly with the second power of the frequency. Good agreement between the theory and experiment is observed; however, the capacitances of the operational amplifier input and the photodiodes appear significantly higher than those specified in manufacturers' datasheets. This observation is confirmed by independent tests.
Noise spectra in balanced optical detectors based on transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Masalov, A. V.; Kuzhamuratov, A.; Lvovsky, A. I.
2017-11-01
We present a thorough theoretical analysis and experimental study of the shot and electronic noise spectra of a balanced optical detector based on an operational amplifier connected in a transimpedance scheme. We identify and quantify the primary parameters responsible for the limitations of the circuit, in particular, the bandwidth and shot-to-electronic noise clearance. We find that the shot noise spectrum can be made consistent with the second-order Butterworth filter, while the electronic noise grows linearly with the second power of the frequency. Good agreement between the theory and experiment is observed; however, the capacitances of the operational amplifier input and the photodiodes appear significantly higher than those specified in manufacturers' datasheets. This observation is confirmed by independent tests.
Note: A simple multi-channel optical system for modulation spectroscopies.
Solís-Macías, J; Sánchez-López, J D; Castro-García, R; Flores-Camacho, J M; Flores-Rangel, G; Ciou, Jian-Jhih; Chen, Kai-Wei; Chen, Chang-Hsiao; Lastras-Martínez, L F; Balderas-Navarro, R E
2017-12-01
Photoreflectance-difference (PR/PRD) and reflectance-difference (RD) spectroscopies employ synchronic detection usually with lock-in amplifiers operating at moderate (200-1000 Hz) and high (50-100 KHz) modulation frequencies, respectively. Here, we report a measurement system for these spectroscopies based on a multichannel CCD spectrometer without a lock-in amplifier. In the proposed scheme, a typical PRD or RD spectrum consists of numerical subtractions between a thousand CCD captures recorded, while a photoelastic modulator is either operating or inhibited. This is advantageous and fits the slow response of CCD detectors to high modulation frequencies. The resulting spectra are processed with Savitzky-Golay filtering and compared well with those measured with conventional scanning systems based on lock-in amplifiers.
Optically pre-amplified lidar-radar
NASA Astrophysics Data System (ADS)
Morvan, Loic; Dolfi, Daniel; Huignard, Jean-Pierre
2001-09-01
We present the concept of an optically pre-amplified intensity modulated lidar, where the modulation frequency is in the microwave domain (1-10 GHz). Such a system permits to combine directivity of laser beams with mature radar processing. As an intensity modulated or dual-frequency laser beam is directed on a target, the backscattered intensity is collected by an optical system, pass through an optical preamplifier, and is detected on a high speed photodiode in a direct detection scheme. A radar type processing permits then to extract range, speed and identification information. The association of spatially multimode amplifier and direct detection allows low sensitivity to atmospheric turbulence and large field of view. We demonstrated theoretically that optical pre-amplification can greatly enhance sensitivity, even in spatially multimode amplifiers, such as free-space amplifier or multimode doped fiber. Computed range estimates based on this concept are presented. Laboratory demonstrations using 1 to 3 GHz modulated laser sources and >20 dB gain in multimode amplifiers are detailed. Preliminary experimental results on range and speed measurements and possible use for large amplitude vibrometry will be presented.
NASA Astrophysics Data System (ADS)
Wen, Pengyue; Sanchez, Michael; Gross, Matthias; Esener, Sadik C.
2003-05-01
In this paper, the noise properties of vertical cavity semiconductor optical amplifiers (VCSOAs) operated in reflection mode are studied. Expressions for noise sources contributing to the total noise detected at amplifier output are derived, based on the photon statistics master equations. The noise figure, defined as the degradation of signal-to-noise ratio (SNR), is analyzed using the assumption that spontaneous emission-signal beat noise dominates. The analysis shows that the noise figure of reflection mode VCSOAs has the same values as that in transmission mode as long as amplifier gain is high (G>>1). Furthermore, simulations depict the dependence of noise figure on device parameters and bias conditions, as well as reveal the importance of the low reflectivity front mirror and the high reflectivity rear mirror for low noise operation. In addition, the noise figure analysis results are compared with experimental measurements, in which amplified spontaneous emission (ASE) power is measured by an optical spectrum analyzer and the noise figure is obtained from the ASE power and the amplifier gain. The measured data are in good agreement with the theoretical predictions.
NASA Astrophysics Data System (ADS)
Sotner, R.; Kartci, A.; Jerabek, J.; Herencsar, N.; Dostal, T.; Vrba, K.
2012-12-01
Several behavioral models of current active elements for experimental purposes are introduced in this paper. These models are based on commercially available devices. They are suitable for experimental tests of current- and mixed-mode filters, oscillators, and other circuits (employing current-mode active elements) frequently used in analog signal processing without necessity of onchip fabrication of proper active element. Several methods of electronic control of intrinsic resistance in the proposed behavioral models are discussed. All predictions and theoretical assumptions are supported by simulations and experiments. This contribution helps to find a cheaper and more effective way to preliminary laboratory tests without expensive on-chip fabrication of special active elements.
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.
2017-12-01
Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, Claude; Martinis, John M.; Clarke, John
1986-01-01
A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Hwang, In Heon; Stock, Larry V.
1989-01-01
This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.
Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco
2016-05-19
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.
A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording
Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco
2016-01-01
High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382
Tan, Lu; Ge, Junjun; Jiao, Meng; Jie, Guifen; Niu, Shuyan
2018-06-01
In the present work, we designed a unique enzyme-aided multiple amplification strategy for sensitive electrochemiluminescence (ECL) detection of DNA by using the amplified gold nanoparticles (GNPS)-polyamidoamine (PAMAM)-CdSe quantum dots (QDs) signal probe. Firstly, the novel GNPS-PAMAM dendrimers nanostructure with good biocompatibility and electroconductibility contains many amino groups, which can load a large number of CdSe QDs to develop amplified ECL signal probe. Then, the presence of target DNA activated the enzyme-assisted polymerization strand-displacement cycling reaction, and a large number of the hairpin template was opened. Subsequently, the opened stem further interacted with the capture hairpin (HP) DNA on the electrode, and the GNPS-PAMAM-CdSe signal probe hybridized with the exposed stem of the HP to trigger the second new polymerization reaction. Meanwhile, the first cycle was generating abundant DNA triggers which could directly open the template. As a result of the cascade amplification technique, a large number of CdSe QDs signal probe could be assembled on the electrode, generating much amplified ECL signal for sensitive detection of target DNA. Thus, this novel QDs-based amplified ECL strategy holds great promise for DNA detection and can be further exploited for sensing applications in clinical diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark
2016-03-01
A cladding-pumped, LMA ErYb fiber-based, amplifier is presented for use in a LIDAR transmitter for remote sensing of atmospheric CO2 from space. The amplifier is optimized for high peak power, high efficiency, and narrow linewidth operation at 1572.3nm. Using highly reliable COTS components, the amplifier achieves 0.5kW peak power (440uJ pulse energy), 3.3W average power with transform limited (TL) linewidth and M2<1.3. The power amplifier supports a 30% increase in pulse energy when linewidth is increased to 100MHz. A preliminary conductively cooled laser optical module (LOM) concept has size 9x10x1.25 in (113 in3) and estimated weight of 7.2lb (3.2 kg). Energy scaling with pulse width up to 645uJ, 1.5usec is demonstrated. A novel doubleclad ErYb LMA fiber (30/250um) with high pump absorption (6 dB/m at 915nm) was designed, fabricated, and characterized for power scaling. The upgraded power amplifier achieves 0.8kW peak power (720uJ pulse energy) 5.4W average power with TL linewidth and M2<1.5.
High temperature current mirror amplifier
Patterson, III, Raymond B.
1984-05-22
A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.
Sun, Gongchen; Senapati, Satyajyoti
2016-01-01
A microfluidic-ion exchange membrane hybrid chip is fabricated by polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (> 100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems. PMID:26960551
Optimal packing for cascaded regenerative transmission based on phase sensitive amplifiers.
Sorokina, Mariia; Sygletos, Stylianos; Ellis, Andrew D; Turitsyn, Sergei
2013-12-16
We investigate the transmission performance of advanced modulation formats in nonlinear regenerative channels based on cascaded phase sensitive amplifiers. We identify the impact of amplitude and phase noise dynamics along the transmission line and show that after a cascade of regenerators, densely packed single ring PSK constellations outperform multi-ring constellations. The results of this study will greatly simplify the design of future nonlinear regenerative channels for ultra-high capacity transmission.
NASA Astrophysics Data System (ADS)
Kleinbaum, Ethan; Shingla, Vidhi; Csáthy, G. A.
2017-03-01
We present a dc Superconducting QUantum Interference Device (SQUID)-based current amplifier with an estimated input referred noise of only 2.3 fA/√{Hz}. Because of such a low amplifier noise, the circuit is useful for Johnson noise thermometry of quantum resistors in the kΩ range down to mK temperatures. In particular, we demonstrate that our circuit does not contribute appreciable noise to the Johnson noise of a 3.25 kΩ resistor down to 16 mK. Our circuit is a useful alternative to the commonly used High Electron Mobility Transistor-based amplifiers, but in contrast to the latter, it offers a much reduced 1/f noise. In comparison to SQUIDs interfaced with cryogenic current comparators, our circuit has similar low noise levels, but it is easier to build and to shield from magnetic pickup.
Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.
Yan, Kun; Liu, Yi; Guan, Yongguang; Bhokisham, Narendranath; Tsao, Chen-Yu; Kim, Eunkyoung; Shi, Xiao-Wen; Wang, Qin; Bentley, William E; Payne, Gregory F
2018-05-22
Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication. Copyright © 2018 Elsevier B.V. All rights reserved.
Highly efficient X-range AlGaN/GaN power amplifier
NASA Astrophysics Data System (ADS)
Tural'chuk, P. A.; Kirillov, V. V.; Osipov, P. E.; Vendik, I. B.; Vendik, O. G.; Parnes, M. D.
2017-09-01
The development of microwave power amplifiers (PAs) based on transistors with an AlGaN/GaN heterojunction are discussed in terms of the possible enhancement of their efficiency. The main focus is on the synthesis of the transforming circuits, which ensure the reactive load at the second- and third-harmonic frequencies and complex impedance at the fundamental frequency. This makes it possible to optimize the complex operation mode of a PA; i.e., to reduce the scattering power and enhance the efficiency. A microwave PA based on the Schottky-barrier-gate field-effect transistor with 80 electrodes based on the GaN pHEMT transistor with a gate length of 0.25 nm and a gate width of 125 nm is experimentally investigated. The amplifier has a pulse output power of 35 W and a power-added efficiency of at least 50% at a working frequency of 9 GHz.
Low-frequency switching in a transistor amplifier.
Carroll, T L
2003-04-01
It is known from extensive work with the diode resonator that the nonlinear properties of a P-N junction can lead to period doubling, chaos, and other complicated behaviors in a driven circuit. There has been very little work on what happens when more than one P-N junction is present. In this work, the first step towards multiple P-N junction circuits is taken by doing both experiments and simulations with a single-transistor amplifier using a bipolar transistor. Period doubling and chaos are seen when the amplifier is driven with signals between 100 kHz and 1 MHz, and they coincide with a very low frequency switching between different period doubled (or chaotic) wave forms. The switching frequencies are between 5 and 10 Hz. The switching behavior was confirmed in a simplified model of the transistor amplifier.
NASA Astrophysics Data System (ADS)
Korolev, A. M.; Shulga, V. M.; Gritsenko, I. A.; Sheshin, G. A.
2015-04-01
In this work, high electron mobility transistor (HEMT) was studied as a circuit element for amplifiers operating at temperatures of the order of 10-100 mK. To characterize the HEMT, the relative parameters are proposed to be used. HEMT characteristics were measured at a temperature of 50 mK for the first time. It follows from the reported studies that the power consumption of high-impedance HEMT-based amplifiers can be reduced down to hundreds of nanowatt or even lower.
Enhancement of High-Speed Infrared Array Electronics (Center Director's Discretionary Fund)
NASA Technical Reports Server (NTRS)
Sutherland, W. T.
1996-01-01
A state-of-the-art infrared detector was to be used as the sensor in a new spectrometer-camera for astronomical observations. The sensitivity of the detector required the use of low-noise, high-speed electronics in the system design. The key component in the electronic system was the pre-amplifier that amplified the low voltage signal coming from the detector. The system was designed based on the selection of the amplifier and that was driven by the maximum noise level, which would yield the desired sensitivity for the telescope system.
SQUID-based microwave cavity search for dark-matter axions.
Asztalos, S J; Carosi, G; Hagmann, C; Kinion, D; van Bibber, K; Hotz, M; Rosenberg, L J; Rybka, G; Hoskins, J; Hwang, J; Sikivie, P; Tanner, D B; Bradley, R; Clarke, J
2010-01-29
Axions in the microeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 microeV and 3.53 microeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.
Erbium-doped fiber amplifier elements for structural analysis sensors
NASA Technical Reports Server (NTRS)
Hanna-Hawver, P.; Kamdar, K. D.; Mehta, S.; Nagarajan, S.; Nasta, M. H.; Claus, R. O.
1992-01-01
The use of erbium-doped fiber amplifiers (EDFA's) in optical fiber sensor systems for structural analysis is described. EDFA's were developed for primary applications as periodic regenerator amplifiers in long-distance fiber-based communication systems. Their in-line amplification performance also makes them attractive for optical fiber sensor systems which require long effective lengths or the synthesis of special length-dependent signal processing functions. Sensor geometries incorporating EDFA's in recirculating and multiple loop sensors are discussed. Noise and polarization birefringence are also considered, and the experimental development of system components is discussed.
Gudino, Natalia; Duan, Qi; de Zwart, Jacco A; Murphy-Boesch, Joe; Dodd, Stephen J; Merkle, Hellmut; van Gelderen, Peter; Duyn, Jeff H
2015-01-01
Purpose We tested the feasibility of implementing parallel transmission (pTX) for high field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of a RF transmit coil. Method We designed a current-source switch-mode amplifier based on miniaturized, non-magnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7 T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring inter-channel coupling and phase adjustment in a 2-channel setup. Results The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between 2 coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. Conclusion An optically controlled miniaturized RF amplifier for on-coil implementation at high field is demonstrated that should facilitate implementation of high-density pTX arrays. PMID:26256671
Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm
NASA Astrophysics Data System (ADS)
Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad
2016-03-01
Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 < 1.2) with no sign of modal instability. To the best of our knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.
Fiber-based laser MOPA transmitter packaging for space environment
NASA Astrophysics Data System (ADS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian
2018-02-01
NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.
Schorstein, Kai; Popescu, Alexandru; Göbel, Marco; Walther, Thomas
2008-01-01
Temperature profiles of the ocean are of interest for weather forecasts, climate studies and oceanography in general. Currently, mostly in situ techniques such as fixed buoys or bathythermographs deliver oceanic temperature profiles. A LIDAR method based on Brillouin scattering is an attractive alternative for remote sensing of such water temperature profiles. It makes it possible to deliver cost-effective on-line data covering an extended region of the ocean. The temperature measurement is based on spontaneous Brillouin scattering in water. In this contribution, we present the first water temperature measurements using a Yb:doped pulsed fiber amplifier. The fiber amplifier is a custom designed device which can be operated in a vibrational environment while emitting narrow bandwidth laser pulses. The device shows promising performance and demonstrates the feasibility of this approach. Furthermore, the current status of the receiver is briefly discussed; it is based on an excited state Faraday anomalous dispersion optical filter. PMID:27873842
High-energy ultra-short pulse thin-disk lasers: new developments and applications
NASA Astrophysics Data System (ADS)
Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas
2016-03-01
We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.
A fully dynamic model of a multi-layer piezoelectric actuator incorporating the power amplifier
NASA Astrophysics Data System (ADS)
Zhu, Wei; Yang, Fufeng; Rui, Xiaoting
2017-12-01
The dynamic input-output characteristics of the multi-layer piezoelectric actuator (PA) are intrinsically rate-dependent and hysteresis. Meanwhile, aiming at the strong capacitive impedance of multi-layer PA, the power amplifier of the actuator can greatly affect the dynamic performances of the actuator. In this paper, a novel dynamic model that includes a model of the electric circuit providing voltage to the actuator, an inverse piezoelectric effect model describing the hysteresis and creep behavior of the actuator, and a mechanical model, in which the vibration characteristics of the multi-layer PA is described, is put forward. Validation experimental tests are conducted. Experimental results show that the proposed dynamic model can accurately predict the fully dynamic behavior of the multi-layer PA with different driving power.
Black, Jonathan D; Lopez, Salvatore; Cocco, Emiliano; Bellone, Stefania; Altwerger, Gary; Schwab, Carlton L; English, Diana P; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D
2015-01-01
Objectives: We evaluated the role of PIK3CA-mutations as mechanism of resistance to trastuzumab in primary HER2/neu-amplified uterine-serous-carcinoma (USC) cell lines. Methods: Fifteen whole-exome-sequenced USC cell lines were tested for HER2/neu-amplification and PIK3CA-mutations. Four HER2/neu-amplified USC (2-harbouring wild-type-PIK3CA-genes and 2-harbouring oncogenic-PIK3CA-mutations) were evaluated in in vitro dose-titration-proliferation-assays, cell-viability and HER2 and S6-protein-phosphorylation after exposure to trastuzumab. USC harbouring wild-type-PIK3CA were transfected with plasmids encoding oncogenic PIK3CA-mutations (i.e., H1047R/R93Q) and exposed to trastuzumab. Finally, trastuzumab efficacy was tested by using two USC xenograft mouse models. Results: Seven out of fifteen (46%) of the USC cell lines were HER2/neu-amplified by fluorescence in situ hybridisation. Within these tumours four out of seven (57%) were found to harbour oncogenic PIK3CA-mutations vs two out of eight (25%) of the HER2/neu not amplified cell lines (P=0.01). HER2/neu-amplified/PIK3CA-mutated USC were highly resistant to trastuzumab when compared with HER2/neu-amplified/wild-type-PIK3CA cell lines (P=0.02). HER2/neu-amplified/PIK3CA wild-type cell lines transfected with oncogenic PIK3CA-mutations increased their resistance to trastuzumab (P<0.0001). Trastuzumab was effective in reducing tumour growth (P=0.001) and improved survival (P=0.0001) in mouse xenografts harbouring HER2-amplified/PIK3CA wild-type USC but not in HER2-amplified/PIK3CA-mutated tumours. Conclusions: Oncogenic PIK3CA mutations are common in HER2/neu-amplified USC and may constitute a major mechanism of resistance to trastuzumab treatment. PMID:26325104
Black, Jonathan D; Lopez, Salvatore; Cocco, Emiliano; Bellone, Stefania; Altwerger, Gary; Schwab, Carlton L; English, Diana P; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D
2015-09-29
We evaluated the role of PIK3CA-mutations as mechanism of resistance to trastuzumab in primary HER2/neu-amplified uterine-serous-carcinoma (USC) cell lines. Fifteen whole-exome-sequenced USC cell lines were tested for HER2/neu-amplification and PIK3CA-mutations. Four HER2/neu-amplified USC (2-harbouring wild-type-PIK3CA-genes and 2-harbouring oncogenic-PIK3CA-mutations) were evaluated in in vitro dose-titration-proliferation-assays, cell-viability and HER2 and S6-protein-phosphorylation after exposure to trastuzumab. USC harbouring wild-type-PIK3CA were transfected with plasmids encoding oncogenic PIK3CA-mutations (i.e., H1047R/R93Q) and exposed to trastuzumab. Finally, trastuzumab efficacy was tested by using two USC xenograft mouse models. Seven out of fifteen (46%) of the USC cell lines were HER2/neu-amplified by fluorescence in situ hybridisation. Within these tumours four out of seven (57%) were found to harbour oncogenic PIK3CA-mutations vs two out of eight (25%) of the HER2/neu not amplified cell lines (P=0.01). HER2/neu-amplified/PIK3CA-mutated USC were highly resistant to trastuzumab when compared with HER2/neu-amplified/wild-type-PIK3CA cell lines (P=0.02). HER2/neu-amplified/PIK3CA wild-type cell lines transfected with oncogenic PIK3CA-mutations increased their resistance to trastuzumab (P<0.0001). Trastuzumab was effective in reducing tumour growth (P=0.001) and improved survival (P=0.0001) in mouse xenografts harbouring HER2-amplified/PIK3CA wild-type USC but not in HER2-amplified/PIK3CA-mutated tumours. Oncogenic PIK3CA mutations are common in HER2/neu-amplified USC and may constitute a major mechanism of resistance to trastuzumab treatment.
The spontaneous emission factor for lasers with gain induced waveguiding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newstein, M.
1984-11-01
The expression for the spontaneous emission factor for lasers with gain induced waveguiding has a factor K, called by Petermann ''the astigmatism parameter.'' This factor has been invoked to explain spectral and dynamic characteristics of this class of lasers. We contend that the widely accepted form of the K factor is based on a derivation which is not appropriate for the typical laser situation where the spontaneous emission factor is much smaller than unity. An alternative derivation is presented which leads to a different form for the K factor. The new expression predicts much smaller values under conditions where themore » previous theory gave values large compared to unity. Petermann's form for the K factor is shown to be relevant to large gain linear amplifiers where the power is amplified spontaneous emission noise. The expression for the power output has Petermann's value of K as a factor. The difference in the two situations is that in the laser oscillator the typical atom of interest couples a small portion of its incoherent spontaneous emission into the dominant mode, whereas in the amplifier only the atoms at the input end are important as sources and their output is converted to a greater degree into the dominant mode through the propagation process. In this analysis the authors use a classical model of radiating point dipoles in a continuous medium characterized by a complex permittivity. Since uncritical use of this model will lead to infinite radiation resistance they address the problem of its self-consistency.« less
Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.
Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José
2012-05-07
We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed.
Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor.
Majidzadeh, V; Schmid, A; Leblebici, Y
2011-06-01
This paper presents a neural recording amplifier array suitable for large-scale integration with multielectrode arrays in very low-power microelectronic cortical implants. The proposed amplifier is one of the most energy-efficient structures reported to date, which theoretically achieves an effective noise efficiency factor (NEF) smaller than the limit that can be achieved by any existing amplifier topology, which utilizes a differential pair input stage. The proposed architecture, which is referred to as a partial operational transconductance amplifier sharing architecture, results in a significant reduction of power dissipation as well as silicon area, in addition to the very low NEF. The effect of mismatch on crosstalk between channels and the tradeoff between noise and crosstalk are theoretically analyzed. Moreover, a mathematical model of the nonlinearity of the amplifier is derived, and its accuracy is confirmed by simulations and measurements. For an array of four neural amplifiers, measurement results show a midband gain of 39.4 dB and a -3-dB bandwidth ranging from 10 Hz to 7.2 kHz. The input-referred noise integrated from 10 Hz to 100 kHz is measured at 3.5 μVrms and the power consumption is 7.92 μW from a 1.8-V supply, which corresponds to NEF = 3.35. The worst-case crosstalk and common-mode rejection ratio within the desired bandwidth are - 43.5 dB and 70.1 dB, respectively, and the active silicon area of each amplifier is 256 μm × 256 μm in 0.18-μm complementary metal-oxide semiconductor technology.
Hu, Kun; Liu, Jinwen; Chen, Jia; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Zhang, Guohai
2013-04-15
An amplified graphene oxide (GO) based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling is developed for bioassays. The dye-labeled single-strand DNA (aptamer hairpin) was adsorbed on the surface of GO, which result in the fluorescence quenching of dye, and exhibiting minimal background fluorescence. Upon the target, primer and polymerase, the stem of the aptamer hairpin was opened, and binds with the primer to triggers the circular target strand-displacement polymerization reaction, which produces huge amounts of duplex helixes DNA and lead to strong fluorescence emission due to shielding of nucelobases within its double-helix structure. During the polymerization reaction, the primer was extended, and target was displaced. And the displaced target recognizes and hybridizes with another hairpin probe, triggering the next round of polymerization reaction, and the circle process induces fluorescence signal amplification for the detection of analyte. To test the feasibility of the aptasensor systems, interferon-gamma (IFN-γ) was employed as a model analyte. A detection limit as low as 1.5 fM is obtained based on the GO aptasensor with a linear range of three orders of magnitude. The present method was successfully applied for the detection of IFN-γ in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.
2008-12-09
as an antenna followed by an analog signal processing chain ( filters , RF amplifiers) followed by an analog-to- digital converter (ADC) followed by a...Figure 2.3 Block diagram of a DSP- based superheterodyne receiver. ADC RF Filter LNA IF Filter IF Amplifier Tunable Local Oscillator ADC...some band limiting filtering and amplification. In a more realistic architecture (Figure 2.3) that we call the DSP- based superheterodyne receiver, a
High temperature current mirror amplifier
Patterson, R.B. III.
1984-05-22
Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, Martin
Chirped quasi-phase-matched (QPM) gratings offer essentially constant gain over wide bandwidths, making them promising candidates for short-pulse optical parametric amplifiers. However, experiments have shown that high-gain non-collinear processes exist in spite of the dephasing caused by the non-uniformity of the QPM grating and compete with the desired collinear broadband gain of the amplifier. In this paper, these non-collinear gain-guided modes are investigated numerically and analytically in a model that includes longitudinal non-uniformity of the phase-matching profile, lateral localization of the pump beam and non-collinear propagation of the interacting waves.
The 30-GHz monolithic receive module
NASA Technical Reports Server (NTRS)
Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.
1988-01-01
The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.
Gadolinium-based nanoparticles to improve the hadrontherapy performances.
Porcel, Erika; Tillement, Olivier; Lux, François; Mowat, Pierre; Usami, Noriko; Kobayashi, Katsumi; Furusawa, Yoshiya; Le Sech, Claude; Li, Sha; Lacombe, Sandrine
2014-11-01
Nanomedicine is proposed as a novel strategy to improve the performance of radiotherapy. High-Z nanoparticles are known to enhance the effects of ionizing radiation. Recently, multimodal nanoparticles such as gadolinium-based nanoagents were proposed to amplify the effects of x-rays and g-rays and to improve MRI diagnosis. For tumors sited in sensitive tissues, childhood cases and radioresistant cancers, hadrontherapy is considered superior to x-rays and g-rays. Hadrontherapy, based on fast ion radiation, has the advantage of avoiding damage to the tissues behind the tumor; however, the damage caused in front of the tumor is its major limitation. Here, we demonstrate that multimodal gadolinium-based nanoparticles amplify cell death with fast ions used as radiation. Molecular scale experiments give insights into the mechanisms underlying the amplification of radiation effects. This proof-of-concept opens up novel perspectives for multimodal nanomedicine in hadrontherapy, ultimately reducing negative radiation effects in healthy tissues in front of the tumor. Gadolinium-chelating polysiloxane nanoparticles were previously reported to amplify the anti-tumor effects of x-rays and g-rays and to serve as MRI contrast agents. Fast ion radiation-based hadrontherapy avoids damage to the tissues behind the tumor, with a major limitation of tissue damage in front of the tumor. This study demonstrates a potential role for the above nanoagents in optimizing hadrontherapy with preventive effects in healthy tissue and amplified cell death in the tumor. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishii, Nobuhisa; Kaneshima, Keisuke; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro
2018-01-01
An optical parametric chirped-pulse amplifier (OPCPA) based on bismuth triborate (BiB3O6, BIBO) crystals has been developed to deliver 1.5 mJ, 10.1 fs optical pulses around 1.6 μm with a repetition rate of 1 kHz and a stable carrier-envelope phase. The seed and pump pulses of the BIBO-based OPCPA are provided from two Ti:sapphire chirped-pulse amplification (CPA) systems. In both CPA systems, transmission gratings are used in the stretchers and compressors that result in a high throughput and robust operation without causing any thermal problem and optical damage. The seed pulses of the OPCPA are generated by intrapulse frequency mixing of a spectrally broadened continuum, temporally stretched to approximately 5 ps then, and amplified to more than 1.5 mJ. The amplified pulses are compressed in a fused silica block down to 10.1 fs. This BIBO-based OPCPA has been applied to high-flux high harmonic generation beyond the carbon K edge at 284 eV. The high-flux soft-x-ray continuum allows measuring the x-ray absorption near-edge structure of the carbon K edge within 2 min, which is shorter than a typical measurement time using synchrotron-based light sources. This laser-based table-top soft-x-ray source is a promising candidate for ultrafast soft x-ray spectroscopy with femtosecond to attosecond time resolution.
In flight auscultation: comparison of electronic and conventional stethoscopes.
Tourtier, Jean P; Fontaine, Emmamuelle; Coste, Sébastien; Ramsang, Solange; Schiano, Patrick; Viaggi, Marie; Libert, Nicolas; Durand, Xavier; Chargari, Cyrus; Borne, Marc
2011-10-01
The ability to auscultate during air medical transport is compromised by high ambient noise levels. The aim of this study was to assess the capabilities of a traditional and an amplified stethoscope (which is expected to reduce background and ambient noise) to assess heart and breath sounds during medical transport in a Falcon 50 plane. A prospective, double-blind, randomized study was performed. We tested 1 model of traditional stethoscope (Littman cardiology III) and 1 model of amplified stethoscope (Littman 3100). We studied heart and lung auscultation during real medical evacuations aboard Falcon 50 (medically configured). For each, the quality of auscultation was described using a numeric rating scale (ranging from 0 to 10, with 0 corresponding to "I hear nothing" and 10 corresponding to "I hear perfectly"). Comparisons were accomplished using a t test for paired values. A total of 32 comparative evaluations were performed. For cardiac auscultation, the value of the rating scale was 5.8 ± 1.5 and 6.4 ± 1.9, respectively, for the traditional and amplified stethoscope (P = .018). For lung sounds, quality of auscultation was estimated at 3.3 ± 2.4 for traditional stethoscope and at 3.7 ± 2.9 for amplified stethoscope (P = .15). Practicians in Falcon 50 are more able to hear cardiac sounds with an amplified than with a traditional stethoscope, whereas there is no significant difference concerning breath sounds auscultation. Copyright © 2011 Elsevier Inc. All rights reserved.
Model-Based Anomaly Detection for a Transparent Optical Transmission System
NASA Astrophysics Data System (ADS)
Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.
In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.
Compact, Single-Stage MMIC InP HEMT Amplifier
NASA Technical Reports Server (NTRS)
Pukala, David; Samoska, Lorene; Fung, King Man; Gaier, Todd; Deal, W. R.; Mei, Gerry; Radisic, Vesna; Lai, Richard
2008-01-01
A monolithic micro - wave integrated-circuit (MMIC) singlestage amplifier containing an InP-based high-electron-mobility transistor (HEMT) plus coplanar-waveguide (CPW) transmission lines for impedance matching and input and output coupling, all in a highly miniaturized layout as needed for high performance at operating frequencies of hundreds of gigahertz is described.
Loblolly pine SSR markers for shortleaf pine genetics
C. Dana Nelson; Sedley Josserand; Craig S. Echt; Jeff Koppelman
2007-01-01
Simple sequence repeats (SSR) are highly informative DNA-based markers widely used in population genetic and linkage mapping studies. We have been developing PCR primer pairs for amplifying SSR markers for loblolly pine (Pinus taeda L.) using loblolly pine DNA and EST sequence data as starting materials. Fifty primer pairs known to reliably amplify...
Temporal-contrast measurements of a white-light-seeded noncollinear optical parametric amplifier
Bromage, J.; Dorrer, C.; Zuegel, J. D.
2015-09-01
Ultra-intense optical parametric chirped-pulse systems require front ends with broad bandwidth and high temporal contrast. Temporal cross-correlation measurements of a white-light–seeded noncollinear optical parametric amplifier (NOPA) show that its prepulse contrast exceeds the 120 dB dynamic range of the broadband NOPA-based cross-correlator.
Nd : glass rod laser with an output energy of 500 J
NASA Astrophysics Data System (ADS)
Shaykin, A. A.; Kuzmin, A. A.; Shaikin, I. A.; Burdonov, K. F.; Khazanov, E. A.
2016-04-01
The energy of two orthogonally polarised pulses injected into an available multistage amplifier based on neodymium phosphate glass rods was increased from 300 to 500 J (in both pulses). The second output pulse with an energy of 200 J will be used to pump an additional parametric amplifier of a petawatt laser.
Continuous-time ΣΔ ADC with implicit variable gain amplifier for CMOS image sensor.
Tang, Fang; Bermak, Amine; Abbes, Amira; Benammar, Mohieddine Amor
2014-01-01
This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency.
Qian, Chunqi; Duan, Qi; Dodd, Steve; Koretsky, Alan; Murphy-Boesch, Joe
2015-01-01
Purpose To improve the signal transmission efficiency and sensitivity of a local detection coil that is weakly inductively coupled to a larger receive coil. Methods The resonant detection coil is connected in parallel with the gate of a HEMT transistor without impedance matching. When the drain of the transistor is capacitively shunted to ground, current amplification occurs in the resonator by feedback that transforms a capacitive impedance on the transistor’s source to a negative resistance on its gate. Results High resolution images were obtained from a mouse brain using a small, 11 mm diameter surface coil that was inductively coupled to a commercial, phased array chest coil. Although the power consumption of the amplifier was only 88 µW, 14 dB gain was obtained with excellent noise performance. Conclusion An integrated current amplifier based on a High Electron Mobility Transistor (HEMT) can enhance the sensitivity of inductively coupled local detectors when weakly coupled. This amplifier enables efficient signal transmission between customized user coils and commercial clinical coils, without the need for a specialized signal interface. PMID:26192998
Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions.
Girard, S; Laurent, A; Pinsard, E; Robin, T; Cadier, B; Boutillier, M; Marcandella, C; Boukenter, A; Ouerdane, Y
2014-05-01
We present a new structure for erbium-doped optical fibers [hole-assisted carbon-coated, (HACC)] that, combined with an appropriate choice of codopants in the core, strongly enhances their radiation tolerance. We built an erbium-doped fiber amplifier based on this HACC fiber and characterize its degradation under γ-ray doses up to 315 krad (SiO2) in the ON mode. The 31 dB amplifier is practically radiation insensitive, with a gain change of merely -2.2×10(-3) dB/krad. These performances authorize the use of HACC doped fibers and amplifiers for various applications in environments associated with today's missions (of doses up to 50 krad) and even for future space missions associated with higher dose constraints.
NASA Astrophysics Data System (ADS)
Paik, Daehwa; Miyahara, Masaya; Matsuzawa, Akira
This paper analyzes a pseudo-differential dynamic comparator with a dynamic pre-amplifier. The transient gain of a dynamic pre-amplifier is derived and applied to equations of the thermal noise and the regeneration time of a comparator. This analysis enhances understanding of the roles of transistor's parameters in pre-amplifier's gain. Based on the calculated gain, two calibration methods are also analyzed. One is calibration of a load capacitance and the other is calibration of a bypass current. The analysis helps designers' estimation for the accuracy of calibration, dead-zone of a comparator with a calibration circuit, and the influence of PVT variation. The analyzed comparator uses 90-nm CMOS technology as an example and each estimation is compared with simulation results.
Analog CMOS design for optical coherence tomography signal detection and processing.
Xu, Wei; Mathine, David L; Barton, Jennifer K
2008-02-01
A CMOS circuit was designed and fabricated for optical coherence tomography (OCT) signal detection and processing. The circuit includes a photoreceiver, differential gain stage and lock-in amplifier based demodulator. The photoreceiver consists of a CMOS photodetector and low noise differential transimpedance amplifier which converts the optical interference signal into a voltage. The differential gain stage further amplifies the signal. The in-phase and quadrature channels of the lock-in amplifier each include an analog mixer and switched-capacitor low-pass filter with an external mixer reference signal. The interferogram envelope and phase can be extracted with this configuration, enabling Doppler OCT measurements. A sensitivity of -80 dB is achieved with faithful reproduction of the interferometric signal envelope. A sample image of finger tip is presented.
A Low-Noise, Wideband Preamplifier for a Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer
Mathur, Raman; Knepper, Ronald W.; O'Connor, Peter B.
2009-01-01
FTMS performance parameters such as limits of detection, dynamic range, sensitivity, and even mass accuracy and resolution can be greatly improved by enhancing its detection circuit. An extended investigation of significant design considerations for optimal signal-to-noise ratio in an FTMS detection circuit are presented. A low noise amplifier for an FTMS is developed based on the discussed design rules. The amplifier has a gain of ≈ 3500 and a bandwidth of 10 kHz - 1 MHz corresponding to m/z range of 100 Da to 10 kDa (at 7 Tesla). The performance of the amplifier was tested on a MALDI-FTMS, and has demonstrated a 25-fold reduction in noise in a mass spectrum of C60 compared to that of a commercial amplifier. PMID:18029195
Experimental Implementation of a Quantum Optical State Comparison Amplifier
NASA Astrophysics Data System (ADS)
Donaldson, Ross J.; Collins, Robert J.; Eleftheriadou, Electra; Barnett, Stephen M.; Jeffers, John; Buller, Gerald S.
2015-03-01
We present an experimental demonstration of a practical nondeterministic quantum optical amplification scheme that employs two mature technologies, state comparison and photon subtraction, to achieve amplification of known sets of coherent states with high fidelity. The amplifier uses coherent states as a resource rather than single photons, which allows for a relatively simple light source, such as a diode laser, providing an increased rate of amplification. The amplifier is not restricted to low amplitude states. With respect to the two key parameters, fidelity and the amplified state production rate, we demonstrate significant improvements over previous experimental implementations, without the requirement of complex photonic components. Such a system may form the basis of trusted quantum repeaters in nonentanglement-based quantum communications systems with known phase alphabets, such as quantum key distribution or quantum digital signatures.
An ultra-high gain and efficient amplifier based on Raman amplification in plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieux, G.; Cipiccia, S.; Grant, D. W.
Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr -1, and net gainsmore » of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm -1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr -1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.« less
An ultra-high gain and efficient amplifier based on Raman amplification in plasma
Vieux, G.; Cipiccia, S.; Grant, D. W.; ...
2017-05-25
Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1–100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from “noise”, arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr -1, and net gainsmore » of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm -1, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr -1 directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.« less
A simplified digital lock-in amplifier for the scanning grating spectrometer.
Wang, Jingru; Wang, Zhihong; Ji, Xufei; Liu, Jie; Liu, Guangda
2017-02-01
For the common measurement and control system of a scanning grating spectrometer, the use of an analog lock-in amplifier requires complex circuitry and sophisticated debugging, whereas the use of a digital lock-in amplifier places a high demand on the calculation capability and storage space. In this paper, a simplified digital lock-in amplifier based on averaging the absolute values within a complete period is presented and applied to a scanning grating spectrometer. The simplified digital lock-in amplifier was implemented on a low-cost microcontroller without multipliers, and got rid of the reference signal and specific configuration of the sampling frequency. Two positive zero-crossing detections were used to lock the phase of the measured signal. However, measurement method errors were introduced by the following factors: frequency fluctuation, sampling interval, and integer restriction of the sampling number. The theoretical calculation and experimental results of the signal-to-noise ratio of the proposed measurement method were 2055 and 2403, respectively.
A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer
NASA Astrophysics Data System (ADS)
Sitnikov, A.; Kalabukhova, E.; Oliynyk, V.; Kolisnichenko, M.
2017-05-01
We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.
A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer.
Sitnikov, A; Kalabukhova, E; Oliynyk, V; Kolisnichenko, M
2017-05-01
We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.
NASA Astrophysics Data System (ADS)
de Waal, D. J.; Schoeman, J.
2014-06-01
The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.
Pérez-Mitta, Gonzalo; Peinetti, Ana S; Cortez, M Lorena; Toimil-Molares, María Eugenia; Trautmann, Christina; Azzaroni, Omar
2018-05-09
Molecular design of biosensors based on enzymatic processes taking place in nanofluidic elements is receiving increasing attention by the scientific community. In this work, we describe the construction of novel ultrasensitive enzymatic nanopore biosensors employing "reactive signal amplifiers" as key elements coupled to the transduction mechanism. The proposed framework offers innovative design concepts not only to amplify the detected ionic signal and develop ultrasensitive nanopore-based sensors but also to construct nanofluidic diodes displaying specific chemo-reversible rectification properties. The integrated approach is demonstrated by electrostatically assembling poly(allylamine) on the anionic pore walls followed by the assembly of urease. We show that the cationic weak polyelectrolyte acts as a "reactive signal amplifier" in the presence of local pH changes induced by the enzymatic reaction. These bioinduced variations in proton concentration ultimately alter the protonation degree of the polyamine resulting in amplifiable, controlled, and reproducible changes in the surface charge of the pore walls, and consequently on the generated ionic signals. The "iontronic" response of the as-obtained devices is fully reversible, and nanopores are reused and assayed with different urea concentrations, thus ensuring reliable design. The limit of detection (LOD) was 1 nM. To the best of our knowledge, this value is the lowest LOD reported to date for enzymatic urea detection. In this context, we envision that this approach based on the use of "reactive signal amplifiers" into solid-state nanochannels will provide new alternatives for the molecular design of highly sensitive nanopore biosensors as well as (bio)chemically addressable nanofluidic elements.
Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 °C
NASA Astrophysics Data System (ADS)
Marx, Andreas; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Wanders, Niko; Zink, Matthias; Wood, Eric F.; Pan, Ming; Sheffield, Justin; Samaniego, Luis
2018-02-01
There is growing evidence that climate change will alter water availability in Europe. Here, we investigate how hydrological low flows are affected under different levels of future global warming (i.e. 1.5, 2, and 3 K with respect to the pre-industrial period) in rivers with a contributing area of more than 1000 km2. The analysis is based on a multi-model ensemble of 45 hydrological simulations based on three representative concentration pathways (RCP2.6, RCP6.0, RCP8.5), five Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) and three state-of-the-art hydrological models (HMs: mHM, Noah-MP, and PCR-GLOBWB). High-resolution model results are available at a spatial resolution of 5 km across the pan-European domain at a daily temporal resolution. Low river flow is described as the percentile of daily streamflow that is exceeded 90 % of the time. It is determined separately for each GCM/HM combination and warming scenario. The results show that the low-flow change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean region, while they increase in the Alpine and Northern regions. In the Mediterranean, the level of warming amplifies the signal from -12 % under 1.5 K, compared to the baseline period 1971-2000, to -35 % under global warming of 3 K, largely due to the projected decreases in annual precipitation. In contrast, the signal is amplified from +22 (1.5 K) to +45 % (3 K) in the Alpine region due to changes in snow accumulation. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. However, it is not possible to distinguish climate-induced differences in low flows between 1.5 and 2 K warming because of (1) the large inter-annual variability which prevents distinguishing statistical estimates of period-averaged changes for a given GCM/HM combination, and (2) the uncertainty in the multi-model ensemble expressed by the signal-to-noise ratio. The contribution by the GCMs to the uncertainty in the model results is generally higher than the one by the HMs. However, the uncertainty due to HMs cannot be neglected. In the Alpine, Northern, and Mediterranean regions, the uncertainty contribution by the HMs is partly higher than those by the GCMs due to different representations of processes such as snow, soil moisture and evapotranspiration. Based on the analysis results, it is recommended (1) to use multiple HMs in climate impact studies and (2) to embrace uncertainty information on the multi-model ensemble as well as its single members in the adaptation process.
Solieri, Lisa; Giudici, Paolo
2010-01-01
Control over malolactic fermentation (MLF) is a difficult goal in winemaking and needs rapid methods to monitor Oenococcus oeni malolactic starters (MLS) in a stressful environment such as wine. In this study, we describe a novel quantitative PCR (QPCR) assay enabling the detection of an O. oeni strain during MLF without culturing. O. oeni strain LB221 was used as a model to develop a strain-specific sequence-characterized amplified region (SCAR) marker derived from a discriminatory OPA20-based randomly amplified polymorphic DNA (RAPD) band. The 5′ and 3′ flanking regions and the copy number of the SCAR marker were characterized using inverse PCR and Southern blotting, respectively. Primer pairs targeting the SCAR sequence enabled strain-specific detection without cross amplification of other O. oeni strains or wine species of lactic acid bacteria (LAB), acetic acid bacteria (AAB), and yeasts. The SCAR-QPCR assay was linear over a range of cell concentrations (7 log units) and detected as few as 2.2 × 102 CFU per ml of red wine with good quantification effectiveness, as shown by the correlation of QPCR and plate counting results. Therefore, the cultivation-independent monitoring of a single O. oeni strain in wine based on a SCAR marker represents a rapid and effective strain-specific approach. This strategy can be adopted to develop easy and rapid detection techniques for monitoring the implantation of inoculated O. oeni MLS on the indigenous LAB population, reducing the risk of unsuccessful MLF. PMID:20935116
Yang, Wen; Li, Tengfei; Shu, Chang; Ji, Shunli; Wang, Lei; Wang, Yan; Li, Duo; Mtalimanja, Michael; Sun, Luning; Ding, Li
2018-05-10
A method is described for the determination of proteins with LC-MS/MS enabled by a small molecule (adenosine) barcode and based on a double-recognition sandwich structure. The coagulation protein thrombin was chosen as the model analyte. Magnetic nanoparticles were functionalized with aptamer29 (MNP/apt29) and used to capture thrombin from the samples. MNP/apt29 forms a sandwich with functionalized gold nanoparticles modified with (a) aptamer15 acting as thrombin-recognizing element and (b) a large number of adenosine as mass barcodes. The sandwich formed (MNP/apt29-thrombin-apt15/AuNP/adenosine) can ben magnetically separated from the sample. Mass barcodes are subsequently released from the sandwiched structure for further analysis by adding 11-mercaptoundecanoic acid. Adenosine is then detected by LC-MS/MS as it reflects the level of thrombin with impressively amplified signal. Numerous adenosines introduced into the sandwich proportional to the target concentration further amplify the signal. Under optimized conditions, the response is linearly proportional to the thrombin concentration in the range of 0.02 nM to 10 nM, with a detection limit of 9 fM. The application of this method to the determination of thrombin in spiked plasma samples gave recoveries that ranged from 92.3% to 104.7%. Graphical abstract Schematic representation of a method for the determination of thrombin with LC-MS/MS. The method is based on a double-recognition sandwiched structure. With LC-MS/MS, mass barcodes (adenosine) are detected to quantify thrombin, which amplifies the detection signal impressively.
Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio
2017-06-14
In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 V RMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame.
Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G
2014-10-06
We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koptev, M Yu; Anashkina, E A; Lipatov, D S
2015-05-31
We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm rangemore » and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)« less
Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio
2017-01-01
In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame. PMID:28613250
NASA Astrophysics Data System (ADS)
Cao, Jianqiu; Liu, Wenbo; Ying, Hanyuan; Chen, Jinbao; Lu, Qisheng
2018-03-01
The characteristics of a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier are investigated numerically using the rate-equation model while taking thermal transfer into account. It is revealed that the seed power should play an important role in the fiber amplifier and should be large enough to ensure high output efficiency. The effects of three pumping schemes (i.e. the co-, counter- and bi-directional pumping schemes) and the initial refraction index difference are also studied. It is revealed that the optimum fiber length changes with the pumping scheme, and the initial refraction index difference should be lower than 10-4 in order to ensure the linear increment of the output signal power with the pump power. Furthermore, a brief comparison between the thermally induced waveguides in the fiber amplifiers for three pumping schemes is also made.
Noise behavior of microwave amplifiers operating under nonlinear conditions
NASA Astrophysics Data System (ADS)
Escotte, L.; Gonneau, E.; Chambon, C.; Graffeuil, J.
2005-12-01
B The noise behavior of microwave amplifiers operating under a large-signal condition has been studied in this paper. A Gaussian noise is added to a microwave signal and they are applied at the input of several amplifying devices. Experimental data show a decrease of the output noise spectral density when the power of the microwave signal at the input of the devices increases due to the compression of the amplifiers. A distortion component due to the interaction of the signal and its harmonics with the noise is also demonstrated from a simplified theoretical model. The statistical properties of the signal and the noise have also been investigated in order to verify the Gaussianity of the noise at the output of the nonlinear circuits. We have also observed that the majority of the measured devices show some variations of their additive noise versus the input power level.
Single-mode single-frequency high peak power all-fiber MOPA at 1550 nm
NASA Astrophysics Data System (ADS)
Kotov, L. V.; Likhachev, M. E.; Bubnov, M. M.; Paramonov, V. M.; Belovolov, M. I.; Lipatov, D. S.; Guryanov, A. N.
2014-10-01
In this Report, we present a record-high-peak-power single-frequency master oscillator power amplifier (MOPA) system based on a newly developed double-clad large-mode-area Yb-free Er-doped fiber (DC-LMA-EDF). A fiber Bragg grating wavelength-stabilized fiber-coupled diode laser at λ=1551 nm with ~2 MHz spectral width was used as the master oscillator. Its radiation was externally modulated with a 5 kHz repetition rate and 92 ns pulse duration and then amplified in a core-pumped Er-doped fiber amplifier up to an average power of 4 mW. The amplified spontaneous emission (ASE) generated at the last preamplifier stage was suppressed by a narrow-band (0.7 nm) DWDM filter. The last MOPA stage was based on the recently developed single-mode DC-LMA-EDF with a mode field diameter of 25 microns and pump clad-absorption of 3 dB/m at λ=980 nm. The pump and the signal were launched into this fiber through a commercial pump combiner in a co-propagating amplifier scheme. At first, we used a 3-m long DC-LMAEDF. In such configuration, a peak power of 800 W was achieved at the output of the amplifier together with a ~ 12 % pump conversion slope efficiency. Further power scaling was limited by SBS. After that we shortened the fiber length to 1 m. As a result, owing to large unabsorbed pump power, the efficiency decreased to ~5 %. However, a peak power of more than 3.5 kW was obtained before the SBS threshold. In this case, the pulse shape changed and its duration decreased to ~60 ns owing to inversion depletion after propagation of the forward front of the pulse. To the best of our knowledge, the peak power of more than 3.5 kW reported here is the highest value ever published for a single-frequency single-mode silica-based fiber laser system operating near λ=1550 nm.
Management and outcome of stage 3 neuroblastoma
Modak, Shakeel; Kushner, Brian H.; LaQuaglia, Michael P.; Kramer, Kim; Cheung, Nai-Kong V.
2013-01-01
Purpose The management of patients with International Neuroblastoma Staging System (INSS) stage 3 neuroblastoma (NB) is not consistent worldwide. We describe a single centre approach at Memorial Sloan-Kettering Cancer Centre (MSKCC) from 1991 to 2007 that minimizes therapy except for those patients with MYCN-amplified NB. Methods In this retrospective analysis of 69 patients, tumour MYCN was not amplified in 53 and amplified in 16. Event-free survival (EFS) and overall survival (OS) were determined by Kaplan–Meier analysis. Results Fourteen patients with non-MYCN-amplified tumours were treated with surgery alone (group A) and the remaining 39 (group B) with surgery following chemotherapy that was initiated and administered at non-MSKCC institutions. Chemotherapy was discontinued after surgery in 38/39 of the latter. The 10-year EFS and OS for all patients with MYCN-non-amplified NB were 74.9 ± 16.9% and 92.6 ± 5.5%, respectively. There was no difference in OS between groups A and B (p = 0.2; 10-year OS for groups A and B was 84.6 ± 14% and 97.1 ± 2.9%, respectively). Patients with MYCN-amplified disease (group C) underwent dose-intensive induction, tumour resection and local radiotherapy: 13 achieved complete or very good partial remission, and 10 received myeloablative chemotherapy. 11/16 patients also received 3F8-based immunotherapy: 10 remain free of disease. The 10-year EFS and OS for patients with MYCN-amplified neuroblastoma treated with immunotherapy were both 90.9 ± 8.7%. Conclusion Patients with MYCN-non-amplified stage 3 NB can be successfully treated with surgery without the need for radiotherapy or continuation of chemotherapy. Combination of dose-intensive chemotherapy, surgery, radiotherapy and immunotherapy was associated with a favourable outcome for most patients with MYCN-amplified stage 3 NB. PMID:18996003
NASA Astrophysics Data System (ADS)
Wang, Sijia; Liu, Bowen; Song, Youjian; Hu, Minglie
2016-04-01
We report on a simple passive scheme to reduce the intensity noise of high-power nonlinear fiber amplifiers by use of the spectral-breathing parabolic evolution of the pulse amplification with an optimized negative initial chirp. In this way, the influences of amplified spontaneous emission (ASE) on the amplifier intensity noise can be efficiently suppressed, owing to the lower overall pulse chirp, shorter spectral broadening distance, as well as the asymptotic attractive nature of self-similar pulse amplification. Systematic characterizations of the relative intensity noise (RIN) of a free-running nonlinear Yb-doped fiber amplifier are performed over a series of initial pulse parameters. Experiments show that the measured amplifier RIN increases respect to the decreased input pulse energy, due to the increased amount of ASE noise. For pulse amplification with a proper negative initial chirp, the increase of RIN is found to be smaller than with a positive initial chirp, confirming the ASE noise tolerance of the proposed spectral-breathing parabolic amplification scheme. At the maximum output average power of 27W (25-dB amplification gain), the incorporation of an optimum negative initial chirp (-0.84 chirp parameter) leads to a considerable amplifier root-mean-square (rms) RIN reduction of ~20.5% (integrated from 10 Hz to 10 MHz Fourier frequency). The minimum amplifier rms RIN of 0.025% (integrated from 1 kHz to 5 MHz Fourier frequency) is obtained along with the transform-limited compressed pulse duration of 55fs. To our knowledge, the demonstrated intensity noise performance is the lowest RIN level measured from highpower free-running femtosecond fiber amplifiers.
NASA Astrophysics Data System (ADS)
Engin, Doruk; Chuang, Ti; Litvinovitch, Slava; Storm, Mark
2017-08-01
Fibertek has developed and demonstrated an ideal high-power; low-risk; low-size, weight, and power (SWaP) 2051 nm laser design meeting the lidar requirements for satellite-based global measurement of carbon dioxide (CO2). The laser design provides a path to space for either a coherent lidar approach being developed by NASA Jet Propulsion Laboratory (JPL)1,2 or an Integrated Path Differential Lidar (IPDA) approach developed by Harris Corp using radio frequency (RF) modulation and being flown as part of a NASA Earth Venture Suborbital Mission—NASA's Atmospheric Carbon and Transport - America.3,4 The thulium (Tm) fiber laser amplifies a <500 kHz linewidth distributed feedback (DFB) laser up to 25 W average power in a polarization maintaining (PM) fiber. The design manages and suppresses all deleterious non-linear effects that can cause linewidth broadening or amplified spontaneous emission (ASE) and meets all lidar requirements. We believe the core laser components, architecture, and design margins can support a coherent or IPDA lidar 10-year space mission. With follow-on funding Fibertek can adapt an existing space-based Technology Readiness Level 6 (TRL-6), 20 W erbium fiber laser package for this Tm design and enable a near-term space mission with an electrical-to-optical (e-o) efficiency of <20%. A cladding-pumped PM Tm fiber-based amplifier optimized for high efficiency and high-power operation at 2051 nm is presented. The two-stage amplifier has been demonstrated to achieve 25 W average power and <16 dB polarization extinction ratio (PER) out of a single-mode PM fiber using a <500 kHz linewidth JPL DFB laser5-7 and 43 dB gain. The power amplifier's optical conversion efficiency is 53%. An internal efficiency of 58% is calculated after correcting for passive losses. The two-stage amplifier sustains its highly efficient operation for a temperature range of 5-40°C. The absence of stimulated Brillouin scattering (SBS) for the narrow linewidth amplification shows promise for further power scaling.
A 90 GHz Amplifier Assembled Using a Bump-Bonded InP-Based HEMT
NASA Technical Reports Server (NTRS)
Pinsukanjana, Paul R.; Samoska, Lorene A.; Gaier, Todd C.; Smith, R. Peter; Ksendzov, Alexander; Fitzsimmons, Michael J.; Martin, Suzanne C.
1998-01-01
We report on the performance of a novel W-band amplifier fabricated utilizing very compact bump bonds. We bump-bonded a high-speed, low-noise InP high electron mobility transistor (HEMT) onto a separately fabricated passive circuit having a GaAs substrate. The compact bumps and small chip size were used for efficient coupling and maximum circuit design flexibility. This new quasi-monolithic millimeter-wave integrated circuit (Q-MMIC) amplifier exhibits a peak gain of 5.8 dB at approx. 90 GHz and a 3 dB bandwidth of greater than 25%. To our knowledge, this is the highest frequency amplifier assembled using bump-bonded technology. Our bump-bonding technique is a useful alternative to the high cost of monolithic millimeter-wave integrated circuits (MMIC's). Effects of the bumps on the circuit appear to be minimal. We used the simple matching circuit for demonstrating the technology - future circuits would have all of the elements (resistors, via holes, bias lines, etc.) included 'in conventional MMIC's. Our design in different from other investigators' efforts in that the bumps are only 8 microns thick by 15 microns wide. The bump sizes were sufficiently small that the devices, originally designed for W-band hybrid circuits, could be bonded without alteration. Figure 3 shows the measured and simulated magnitude of S-parameters from 85-120 GHz, of the InP HEMT bump-bonded to the low noise amplifier (LNA) passive. The maximum gain is 5.8 dB at approx. 90 GHz, and gain extends to 117 GHz. Measurement of a single device (without matching networks) shows approx. 1 dB of gain at 90 GHz. The measured gain of the amplifier agrees well with the design in the center of the measurement band, and the agreement falls off at the band edges. Since no accommodation for the bump-bonding parasitics was made in the design, the result implies that the parasitic elements associated with the bonding itself do not dominate the performance of the LNA circuit. It should be noted that this amplifier was designed for good noise performance, which is why the input and output return losses are poorer than one would expect for an amplifier simply matched for gain. However, noise performance has not been measured at this time. While the agreement between modeled vs. experimental data is not exact, the data prove that bump-bonded technology can be used for amplifiers at frequencies at least as high as 100 GHz. JPL is pursuing this technology as a way to economically and quickly incorporate the best available HEMTs into a circuit with all of the reliability and circuit design flexibility offered by MMIC technology. We are currently using the technology to fabricate 4-stage, wide-band, W-band LNA's. We have also performed pull and shear tests which show that the bump bonds are sufficiently robust for any anticipated application.
Mobile robots IV; Proceedings of the Meeting, Philadelphia, PA, Nov. 6, 7, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, W.J.; Chun, W.H.
1990-01-01
The present conference on mobile robot systems discusses high-speed machine perception based on passive sensing, wide-angle optical ranging, three-dimensional path planning for flying/crawling robots, navigation of autonomous mobile intelligence in an unstructured natural environment, mechanical models for the locomotion of a four-articulated-track robot, a rule-based command language for a semiautonomous Mars rover, and a computer model of the structured light vision system for a Mars rover. Also discussed are optical flow and three-dimensional information for navigation, feature-based reasoning trail detection, a symbolic neural-net production system for obstacle avoidance and navigation, intelligent path planning for robot navigation in an unknown environment,more » behaviors from a hierarchical control system, stereoscopic TV systems, the REACT language for autonomous robots, and a man-amplifying exoskeleton.« less
Huang, Long; Ma, Pengfei; Tao, Rumao; Shi, Chen; Wang, Xiaolin; Zhou, Pu
2015-04-01
A linearly polarized monolithic fiber laser based on a master oscillator power amplifier structure with a master oscillator and a one-stage power amplifier is reported. We design a homemade oscillator based on the theory that, in the coiled gain fiber, the higher modes and the polarized mode of the fundamental mode along the fast axis are suppressed effectively because of their obviously higher bend loss than that of the polarized mode of the fundamental mode along the slow axis. The oscillator operates at 1080 nm, launching a 30 W seed laser with a high polarization extinction ratio of 19 dB into the power amplifier via a mode field adapter. The power amplifier utilizes Yb-doped polarization-maintaining fiber of 20/400 μm, which produces nearly diffraction-limited output power of about 1.5 kW with an optical-optical efficiency of 81.5% and a polarization extinction ratio of 13.8 dB. Both the M(x)² factor and the M(y)² factor of the collimated beam are measured to be about 1.2. The spectral width of the output power is broadened approximately linearly, and the full width at half maximum of the spectrum at the maximum output power is about 5.8 nm. It is known as the highest linearly polarized output power to the best of our knowledge.
Transient control for cascaded EDFAs by using a multi-objective optimization approach
NASA Astrophysics Data System (ADS)
Freitas, Marcio; Givigi, Sidney N., Jr.; Klein, Jackson; Calmon, Luiz C.; de Almeida, Ailson R.
2004-11-01
Erbium-doped fiber amplifiers (EDFA) have been used for some years now in building effective optical systems for the most diverse applications. For some applications, it is necessary to introduce some feedback control laws in order to avoid the generation of transients that could create impairments in the system. In this paper, we use a multi-objective optimization approach based on genetic algorithms, to study the introduction of proportional-derivative (PD) controllers into systems of cascaded EDFAs. We compare the use of individual controllers for each amplifier to the use of controllers to sets of amplifiers.
Noise reduction in plasmonic amplifiers
NASA Astrophysics Data System (ADS)
Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.
2018-06-01
Surface plasmon polaritons amplification give the possibility to overcome strong absorption in metals and design truly nanoscale devices for on-chip photonic circuits. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission, which greatly increases the noise power. Herein we present an efficient strategy for noise reduction in plasmonic amplifiers,which is based on gain redistribution along the amplifier. We show that even a very small gain redistribution (∼3%) makes it possible to increase the signal-to-noise ratio by ∼100% and improve the bit error ratio by orders of magnitude.
Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier
NASA Astrophysics Data System (ADS)
O'Brien, Kevin
Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.
Demands on Intranets — Viable System Model as a Foundation for Intranet Design
NASA Astrophysics Data System (ADS)
Amcoff Nyström, Christina
2006-06-01
The number of Intranets increases in organizations but their potential to support viability is not fully exploited. The cybernetic model, the Viable System Model, has not been connected to the Intranet concept before. Characteristics of the VSM, such as highlighting the importance of production, monitoring of production units through Early Warning Systems, autonomy and empowerment, are used as patterns and a base for de-signing essential parts and/or functions of an Intranet. The result is a brief description of functions vital to the operational parts of organizations. Examples are Early Warning Systems, control systems, "gate-keepers," amplifying and damping information to and from the organization and "agents" supporting search abilities on an Intranet.
2007-05-08
deoxynucleotide triphosphates, from Sigma. Sequences for glyceraldehyde-3-phosphate dehydrogenase ( G3PDH ), IL-8,and TNF-a were amplified with primer...This was accomplished by normalizing all samples to the mRNA for the moderately expressed housekeeping function glyceraldehyde-3 -phosphate...without and with isolation of cells before reverse transcription and PCR. G3PDH mRNA target amplifies at 983 base pairs. The 630 base pair band is the
Lee, J C; Cole, M; Linacre, A
2000-05-01
Unambiguous identification of the hallucinogenic fungi of the genera Psilocybe and Panaeolus is required by national and international drug control legislation. We report on a DNA-based test using the technique of amplified fragment length polymorphism (AFLP). AFLP can differentiate species of the two genera Psilocybe and Panaeolus by using different primer sets. The identification of hallucinogenic fungi using a DNA-based test, which can be used in conjunction with morphological features, will assist in forensic investigations.
NASA Astrophysics Data System (ADS)
Trikshev, A. I.; Pyrkov, Yu. N.; Tsvetkov, V. B.
2017-12-01
We have demonstrated stable operation of a system for maintaining a constant phase difference between two laser channels with a total output power of 60 W. The system is based on a two-channel fibre amplifier with phase modulators based on piezoceramic spools. At a main piezo element modulation frequency of 11 kHz, the phasing time after thermal and mechanical influences on the active medium is 100 ms.
Picelli, Carina G; Borges, Rafael J; Fernandes, Carlos A H; Matioli, Fabio M; Fernandes, Carla F C; Sobrinho, Juliana C; Holanda, Rudson J; Ozaki, Luiz S; Kayano, Anderson M; Calderon, Leonardo A; Fontes, Marcos R M; Stábeli, Rodrigo G; Soares, Andreimar M
2017-10-01
Phospholipases A 2 inhibitors (PLIs) produced by venomous and non-venomous snakes play essential role in this resistance. These endogenous inhibitors may be classified by their fold in PLIα, PLIβ and PLIγ. Phospholipases A 2 (PLA 2 s) develop myonecrosis in snake envenomation, a consequence that is not efficiently neutralized by antivenom treatment. This work aimed to identify and characterize two PLIs from Amazonian snake species, Bothrops atrox and Micrurus lemniscatus. Liver tissues RNA of specimens from each species were isolated and amplified by RT-PCR using PCR primers based on known PLIγ gene sequences, followed by cloning and sequencing of amplified fragments. Sequence similarity studies showed elevated identity with inhibitor PLIγ gene sequences from other snake species. Molecular models of translated inhibitors' gene sequences resemble canonical three finger fold from PLIγ and support the hypothesis that the decapeptide (residues 107-116) may be responsible for PLA 2 inhibition. Structural studies and action mechanism of these PLIs may provide necessary information to evaluate their potential as antivenom or as complement of the current ophidian accident treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Intensity and temporal noise characteristics in femtosecond optical parametric amplifiers.
Chen, Wei; Fan, Jintao; Ge, Aichen; Song, Huanyu; Song, Youjian; Liu, Bowen; Chai, Lu; Wang, Chingyue; Hu, Minglie
2017-12-11
We characterize the relative intensity noise (RIN) and relative timing jitter (RTJ) between the signal and pump pulses of optical parametric amplifiers (OPAs) seeded by three different seed sources. Compared to a white-light continuum (WLC) seeded- and an optical parametric generator (OPG) seeded OPA, the narrowband CW seeded OPA exhibits the lowest root-mean-square (RMS) RIN and RTJ of 0.79% and 0.32 fs, respectively, integrated from 1 kHz to the Nyquist frequency of 1.25 MHz. An improved numerical model based on a forward Maxwell equation (FME) is built to investigate the transfers of the pump and seed's noise to the resulting OPAs' intensity and temporal fluctuation. Both the experimental and numerical study indicate that the low level of noise from the narrowband CW seeded OPA is attributed to the elimination of the RIN and RTJ coupled from the noise of seed source, being one of the important contributions to RIN and timing jitter in the other two OPAs. The approach to achieve lower level of noise from this CW seeded OPA by driving it close to saturation is also discussed with the same numerical model.
Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen
2014-04-07
Mid-infrared (3-5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP(2)-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP(2) crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M(2) = 3.
NASA Astrophysics Data System (ADS)
Prêle, Damien; Voisin, Fabrice; Beillimaz, Cyril; Chen, Si; Goldwurm, Andrea
2016-10-01
The focal plane of the X-Ray Integral Field Unit (X-IFU) instrument of the Advanced Telescope for High-Energy Astrophysics observatory is composed of 3840 microcalorimeters. These sensors, based on superconducting transition edge sensors (TES), are read out through a frequency multiplexer. A "base-band feedback" suppresses all the carriers of the multiplexed signal in the superconducting quantum interference devices input coil (cryogenic readout). However, the loop gain of this feedback is too small (less than 10 in the present baseline of the phase A mission) to strongly compensate the readout gain drifts. An onboard x-ray source is considered to calibrate the gain of the full instrument. However, in-flight calibration time must be minimized, which leads to a requirement on the gain stability larger than 10-4 over a long duration (between each calibration) to reach the challenging energy resolution goal of 2.5 eV at 6 keV of the X-IFU. A significant part of this gain is provided by a low-noise amplifier in the warm front-end electronics (WFEE). To reach such gain stability over more than a dozen minutes, this noncooled amplifier has to cope with the temperature and supply voltage variations. Moreover, mainly for noise reasons, a common large loop gain with feedback cannot be used. We propose a new amplifier topology using diodes as loads of a differential amplifier to provide a fixed voltage gain, independent of the temperature and of the bias fluctuations. This amplifier is designed using 350-nm SiGe BiCMOS technology and is part of an integrated circuit developed for the WFEE. Our simulations provide the expected gain and noise performances. Comparison with standard resistive loaded differential pair clearly shows the advantages of the proposed amplifier topology with a gain drift decreased by more than an order of magnitude. Performances of this diode loaded amplifier are discussed in the context of the X-IFU requirements.
Investment Dynamics with Natural Expectations.
Fuster, Andreas; Hebert, Benjamin; Laibson, David
2010-01-01
We study an investment model in which agents have the wrong beliefs about the dynamic properties of fundamentals. Specifically, we assume that agents underestimate the rate of mean reversion. The model exhibits the following six properties: (i) Beliefs are excessively optimistic in good times and excessively pessimistic in bad times. (ii) Asset prices are too volatile. (iii) Excess returns are negatively autocorrelated. (iv) High levels of corporate profits predict negative future excess returns. (v) Real economic activity is excessively volatile; the economy experiences amplified investment cycles. (vi) Corporate profits are positively autocorrelated in the short run and negatively autocorrelated in the medium run. The paper provides an illustrative model of animal spirits, amplified business cycles, and excess volatility.
Investment Dynamics with Natural Expectations*
Fuster, Andreas; Hebert, Benjamin; Laibson, David
2012-01-01
We study an investment model in which agents have the wrong beliefs about the dynamic properties of fundamentals. Specifically, we assume that agents underestimate the rate of mean reversion. The model exhibits the following six properties: (i) Beliefs are excessively optimistic in good times and excessively pessimistic in bad times. (ii) Asset prices are too volatile. (iii) Excess returns are negatively autocorrelated. (iv) High levels of corporate profits predict negative future excess returns. (v) Real economic activity is excessively volatile; the economy experiences amplified investment cycles. (vi) Corporate profits are positively autocorrelated in the short run and negatively autocorrelated in the medium run. The paper provides an illustrative model of animal spirits, amplified business cycles, and excess volatility. PMID:23243469
Latest development on RNA-based drugs and vaccines.
Lundstrom, Kenneth
2018-06-01
Drugs and vaccines based on mRNA and RNA viruses show great potential and direct translation in the cytoplasm eliminates chromosomal integration. Limitations are associated with delivery and stability issues related to RNA degradation. Clinical trials on RNA-based drugs have been conducted in various disease areas. Likewise, RNA-based vaccines for viral infections and various cancers have been subjected to preclinical and clinical studies. RNA delivery and stability improvements include RNA structure modifications, targeting dendritic cells and employing self-amplifying RNA. Single-stranded RNA viruses possess self-amplifying RNA, which can provide extreme RNA replication in the cytoplasm to support RNA-based drug and vaccine development. Although oligonucleotide-based approaches have demonstrated potential, the focus here is on mRNA- and RNA virus-based methods.
Ojima, Yasukuni; Nawata, Kouji; Omatsu, Takashige
2005-10-31
We have produced a high beam quality pico-second laser based on a continuous-wave diode pumped Nd:YVO4 slab amplifier with a photorefractive phase conjugate mirror. 12.8W diffraction-limited output with a pulse width of 8.7ps was obtained.
Low noise InP-based MMIC receivers for W-band
NASA Technical Reports Server (NTRS)
Leonard, Regis F.
1991-01-01
A program to develop a monolithic W-band low noise amplifier (a critical element in any W-band communications, sensors, or radar application) is described. Goals of the program include a completely monolithic low noise amplifier, less than a 3.5 dB noise figure, and a monolithic mixer suitable for integration with the LNA.
Randomly amplified polymorphic DNA linkage relationships in different Norway spruce populations
M. Troggio; Thomas L. Kubisiak; G. Bucci; P. Menozzi
2001-01-01
We tested the constancy of linkage relationships of randomly amplified polymorphic DNA (RAPD) marker loci used to construct a population-based consensus map in material from an Italian stand of Picea abies (L.) Karst. in 29 individuals from three Norwegian populations. Thirteen marker loci linked in the Italian stand did show a consistent locus...
A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors.
Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo
2018-03-02
Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K + ) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K + sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.
NASA Astrophysics Data System (ADS)
Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi
2017-10-01
With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.
A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL.
Haberman, Marcelo Alejandro; Spinelli, Enrique Mario
2012-12-01
Single ended (SE) amplifiers allow implementing biopotential front-ends with a reduced number of parts, being well suited for preamplified electrodes or compact EEG headboxes. On the other hand, given that each channel has independent gain; mismatching between these gains results in poor common-mode rejection ratios (CMRRs) (about 30 dB considering 1% tolerance components). This work proposes a scheme for multichannel EEG acquisition systems based on SE amplifiers and a novel digital driven right leg (DDRL) circuit, which overcome the poor CMRR of the front-end stage providing a high common mode reduction at power line frequency (up to 80 dB). A functional prototype was built and tested showing the feasibility of the proposed technique. It provided EEG records with negligible power line interference, even in very aggressive EMI environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yami; Feng, Jingliang; Cao, Leiming
2016-03-28
Beamsplitters have played an important role in quantum optics experiments. They are often used to split and combine two beams, especially in the construct of an interferometer. In this letter, we experimentally implement a nonlinear beamsplitter using a phase-sensitive parametric amplifier, which is based on four-wave mixing in hot rubidium vapor. Here we show that, despite the different frequencies of the two input beams, the output ports of the nonlinear beamsplitter exhibit interference phenomena. We make measurements of the interference fringe visibility and study how various parameters, such as the intensity gain of the amplifier, the intensity ratio of themore » two input beams, and the one and two photon detunings, affect the behavior of the nonlinear beamsplitter. It may find potential applications in quantum metrology and quantum information processing.« less
E-band Nd 3+ amplifier based on wavelength selection in an all-solid micro-structured fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Jay W.; Kiani, Leily S.; Pax, Paul H.
Here, a Nd 3+ fiber amplifier with gain from 1376 nm to 1466 nm is demonstrated. This is enabled by a wavelength selective waveguide that suppresses amplified spontaneous emission between 850 nm and 1150 nm. It is shown that while excited state absorption (ESA) precludes net gain below 1375 nm with the exception of a small band from 1333 nm to 1350 nm, ESA diminishes steadily beyond 1375 nm allowing for the construction of an efficient fiber amplifier with a gain peak at 1400 nm and the potential for gain from 1375 nm to 1500 nm. A peak small signalmore » gain of 13.3 dB is measured at 1402 nm with a noise figure of 7.6 dB. Detailed measurements of the Nd 3+ emission and excited state absorption cross sections suggest the potential for better performance in improved fibers. Specifically, reduction of the fiber mode field diameter from 10.5 µm to 5.25 µm and reduction of the fiber background loss to <10 dB/km at 1400 nm should enable construction of an E-band fiber amplifier with a noise figure < 5 dB and a small signal gain > 20 dB over 30 nm of bandwidth. Such an amplifier would have a form factor and optical properties similar to current erbium fiber amplifiers, enabling modern fiber optic communication systems to operate in the E-band with amplifier technology similar to that employed in the C and L bands.« less
E-band Nd 3+ amplifier based on wavelength selection in an all-solid micro-structured fiber
Dawson, Jay W.; Kiani, Leily S.; Pax, Paul H.; ...
2017-03-13
Here, a Nd 3+ fiber amplifier with gain from 1376 nm to 1466 nm is demonstrated. This is enabled by a wavelength selective waveguide that suppresses amplified spontaneous emission between 850 nm and 1150 nm. It is shown that while excited state absorption (ESA) precludes net gain below 1375 nm with the exception of a small band from 1333 nm to 1350 nm, ESA diminishes steadily beyond 1375 nm allowing for the construction of an efficient fiber amplifier with a gain peak at 1400 nm and the potential for gain from 1375 nm to 1500 nm. A peak small signalmore » gain of 13.3 dB is measured at 1402 nm with a noise figure of 7.6 dB. Detailed measurements of the Nd 3+ emission and excited state absorption cross sections suggest the potential for better performance in improved fibers. Specifically, reduction of the fiber mode field diameter from 10.5 µm to 5.25 µm and reduction of the fiber background loss to <10 dB/km at 1400 nm should enable construction of an E-band fiber amplifier with a noise figure < 5 dB and a small signal gain > 20 dB over 30 nm of bandwidth. Such an amplifier would have a form factor and optical properties similar to current erbium fiber amplifiers, enabling modern fiber optic communication systems to operate in the E-band with amplifier technology similar to that employed in the C and L bands.« less
Kanai, Tsuneto; Malevich, Pavel; Kangaparambil, Sarayoo Sasidharan; Ishida, Kakuta; Mizui, Makoto; Yamanouchi, Kaoru; Hoogland, Heinar; Holzwarth, Ronald; Pugzlys, Audrius; Baltuska, Andrius
2017-02-15
We report on the parametric generation of 100 fs sub-6-cycle 40 μJ pulses with the center wavelength at 5.2 μm using a 1 ps 2.1 μm pump laser and a dispersion management scheme based on bulk material. Our optically synchronized amplifier chain consists of a Ho:YAG chirped-pulse amplifier and white-light-seeded optical parametric amplifiers providing simultaneous passive carrier-envelope phase locking of three ultrashort longwave pulses at the pump, signal, and idler wavelengths corresponding, respectively, to 2.1, 3.5, and 5.2 μm. We also demonstrate bandwidth enhancement and efficient control over nonlinear spectral phase in the regime of cascaded χ2 nonlinearity in ZnGeP2.
Josephson parametric converter saturation and higher order effects
NASA Astrophysics Data System (ADS)
Liu, G.; Chien, T.-C.; Cao, X.; Lanes, O.; Alpern, E.; Pekker, D.; Hatridge, M.
2017-11-01
Microwave parametric amplifiers based on Josephson junctions have become indispensable components of many quantum information experiments. One key limitation which has not been well predicted by theory is the gain saturation behavior which limits the amplifier's ability to process large amplitude signals. The typical explanation for this behavior in phase-preserving amplifiers based on three-wave mixing, such as the Josephson Parametric Converter, is pump depletion, in which the consumption of pump photons to produce amplification results in a reduction in gain. However, in this work, we present experimental data and theoretical calculations showing that the fourth-order Kerr nonlinearities inherent in Josephson junctions are the dominant factor. The Kerr-based theory has the unusual property of causing saturation to both lower and higher gains, depending on bias conditions. This work presents an efficient methodology for optimizing device performance in the presence of Kerr nonlinearities while retaining device tunability and points to the necessity of controlling higher-order Hamiltonian terms to make further improvements in parametric devices.
NASA Astrophysics Data System (ADS)
He, Haizhen; Luo, Rongming; Hu, Zhenhua; Wen, Lei
2017-07-01
A current-mode field programmable analog array(FPAA) is presented in this paper. The proposed FPAA consists of 9 configurable analog blocks(CABs) which are based on current differencing transconductance amplifiers (CDTA) and trans-impedance amplifier (TIA). The proposed CABs interconnect through global lines. These global lines contain some bridge switches, which used to reduce the parasitic capacitance effectively. High-order current-mode low-pass and band-pass filter with transmission zeros based on the simulation of general passive RLC ladder prototypes is proposed and mapped into the FPAA structure in order to demonstrate the versatility of the FPAA. These filters exhibit good performance on bandwidth. Filter's cutoff frequency can be tuned from 1.2MHz to 40MHz.The proposed FPAA is simulated in a standard Charted 0.18μm CMOS process with +/-1.2V power supply to confirm the presented theory, and the results have good agreement with the theoretical analysis.
Operation and maintenance, fire rescue air-pack. Volume 2: Communications
NASA Technical Reports Server (NTRS)
1972-01-01
The operation and maintenance procedures are described for the development model of the fire rescue air pack (FRAP) voice amplifier assembly, including the battery charger. Operational instructions include a general description of the assembly, specifications, and installation and operation. Maintenance instructions include theory of operation, preventive maintenance, repair, adjustment, and a parts list. The FRAP is intended to permit fire rescue personnel to enter a smoke-filled, toxic or oxygen depleted environment carrying their own source of breathing air. The voice amplifier assembly permits the wearer to communicate by voice with other persons in the vicinity. The battery charger assembly provides a means of keeping the amplifier batteries fully charged.
Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses.
Didenko, N V; Konyashchenko, A V; Lutsenko, A P; Tenyakov, S Yu
2008-03-03
Experiment and modeling show that the refractive index nonlinearity can significantly degrade the contrast of a chirped-pulse amplifier seeded with a pulse and a single postpulse. Multiple powerful non-equidistant pre- and postpulses are generated. For a Gaussian pulse and a hat-top beam, an incident postpulse of energy W results in a prepulse of energy 0.58B(2)W, where B is the nonlinear phase (B-integral) of the main pulse. Calculations show that level of satellites due to gain saturation is negligibly small. Experimental results for Ti:Sapphire regenerative and multipass amplifiers and prepulse generation in fused silica agree well with the theory.
NASA Astrophysics Data System (ADS)
Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi
This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.
NASA Astrophysics Data System (ADS)
Müller, Michelle; Maiwald, Verena; Thiele, Lothar; Beutel, Jan; Roman, Cosmin; Hierold, Christofer
2018-04-01
A micromechanical broadband vibration amplitude-amplifier for low power detection of acoustic emission signals is presented. It is based on a coupled mass-spring system and was fabricated in a two-level bulk microfabrication process. The device consists of ten resonators coupled in series, which decrease in mass by a factor of three each, to achieve a high amplification over a broad bandwidth. The fabrication process for this multiscale device is based on front- and backside etching of a silicon-on-insulator wafer. It enables coupling MEMS resonators of two different thicknesses with a weight ratio from largest to smallest mass of 26’244 and reduces die size by resonator stacking. The first ten eigenmodes of the device are in-plane and unidirectional. Steady-state and transient response of the device in comparison to a 1D lumped element model is presented. An average amplitude amplification of 295 over a bandwidth of 10.7 kHz (4.4-15.1 kHz) is achieved and can be reached in less than 1 ms. Applications are low-power detection of short broadband vibration signals e.g. for structural health monitoring (cliffs, pipelines, bridges).
Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links
NASA Astrophysics Data System (ADS)
Jiao, Haisong; Pu, Tao; Xiang, Peng; Zheng, Jilin; Fang, Tao; Zhu, Huatao
2017-08-01
The quantitative security of quantum-noise randomized cipher (QNRC) in optically amplified links is analyzed from the perspective of physical-layer advantage. Establishing the wire-tap channel models for both key and data, we derive the general expressions of secrecy capacities for the key against ciphertext-only attack and known-plaintext attack, and that for the data, which serve as the basic performance metrics. Further, the maximal achievable secrecy rate of the system is proposed, under which secrecy of both the key and data is guaranteed. Based on the same framework, the secrecy capacities of various cases can be assessed and compared. The results indicate perfect secrecy is potentially achievable for data transmission, and an elementary principle of setting proper number of photons and bases is given to ensure the maximal data secrecy capacity. But the key security is asymptotically perfect, which tends to be the main constraint of systemic maximal secrecy rate. Moreover, by adopting cascaded optical amplification, QNRC can realize long-haul transmission with secure rate up to Gb/s, which is orders of magnitude higher than the perfect secrecy rates of other encryption systems.
Witsenboer, H; Michelmore, R W; Vogel, J
1997-12-01
Selectively amplified microsatellite polymorphic locus (SAMPL) analysis is a method of amplifying microsatellite loci using generic PCR primers. SAMPL analysis uses one AFLP primer in combination with a primer complementary to microsatellite sequences. SAMPL primers based on compound microsatellite sequences provided the clearest amplification patterns. We explored the potential of SAMPL analysis in lettuce to detect PCR-based codominant microsatellite markers. Fifty-eight SAMPLs were identified and placed on the genetic map. Seventeen were codominant. SAMPLs were dispersed with RFLP markers on 11 of the 12 main linkage groups in lettuce, indicating that they have a similar genomic distribution. Some but not all fragments amplified by SAMPL analysis were confirmed to contain microsatellite sequences by Southern hybridization. Forty-five cultivars of lettuce and five wild species of Lactuca were analyzed to determine the allelic diversity for codominant SAMPLs. From 3 to 11 putative alleles were found for each SAMPL; 2-6 alleles were found within Lactuca sativa and 1-3 alleles were found among the crisphead genotypes, the most genetically homogeneous plant type of L. sativa. This allelic diversity is greater than that found for RFLP markers. Numerous new alleles were observed in the wild species; however, there were frequent null alleles. Therefore, SAMPL analysis is more applicable to intraspecific than to interspecific comparisons. A phenetic analysis based on SAMPLs resulted in a dendrogram similar to those based on RFLP and AFLP markers.
NASA Astrophysics Data System (ADS)
Ruppe, John M.; Pei, Hanzhang; Chen, Siyun; Sheikhsofla, Morteza; Wilcox, Russell B.; Nees, John A.; Galvanauskas, Almantas
2017-03-01
We report multi-mJ energy (>5mJ) extraction from femtosecond-pulse Yb-doped fiber CPA using coherent pulse stacking amplification (CPSA) technique. This high energy extraction has been enabled by amplifying 10's of nanosecond long pulse sequence, and by using 85-µm core Yb-doped CCC fiber based power amplification stage. The CPSA system consists of 1-GHz repetition rate mode-locked fiber oscillator, followed by a pair of fast phase and amplitude electro-optic modulators, a diffraction-grating based pulse stretcher, a fiber amplifier chain, a GTI-cavity based pulse stacker, and a diffraction grating pulse compressor. Electro-optic modulators are used to carve out from the 1-GHz mode-locked pulse train an amplitude and phase modulated pulse burst, which after stretching and amplification, becomes equal-amplitude pulse burst consisting of 27 stretched pulses, each approximately 1-ns long. Initial pulse-burst shaping accounts for the strong amplifier saturation effects, so that it is compensated at the power amplifier output. This 27-pulse burst is then coherently stacked into a single pulse using a multiplexed sequence of 5 GTI cavities. The compact-footprint 4+1 multiplexed pulse stacker consists of 4 cavities having rountrip of 1 ns, and one Herriott-cell folded cavity - with 9ns roundtrip. After stacking, stretched pulses are compressed down to the bandwidth-limited 300 fs duration using a standard diffraction-grating pulse compressor.
Dynamical amplification of Arctic and global warming
NASA Astrophysics Data System (ADS)
Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana; Bobylev, Leonid; Gnatiuk, Natalia; Urazgildeeva, Aleksandra
2015-04-01
The Arctic is coupled with global climate system by the atmosphere and ocean circulation that provides a major contribution to the Arctic energy budget. Therefore increase of meridional heat transport under global warming can impact on its Arctic amplification. Contribution of heat transport to the recent warming in the Arctic, Northern Hemisphere and the globe are estimated on base of reanalysis data, global climate model data and proposed special index. It is shown that significant part of linear trend during last four decades in average surface air temperature in these areas can be attributed to dynamical amplification. This attribution keeps until 400 mb height with progressive decreasing. The Arctic warming is amplified also due to an increase of humidity and cloudiness in the Arctic atmosphere that follow meridional transport gain. From October to January the Arctic warming trends are amplified as a result of ice edge retreat from the Siberian and Alaska coast and the heating of expanded volume of sea water. This investigation is supported with RFBR project 15-05-03512.
NASA Astrophysics Data System (ADS)
Mouser, P. J.; Rizzo, D. M.; Druschel, G.; O'Grady, P.; Stevens, L.
2005-12-01
This interdisciplinary study integrates hydrochemical and genome-based data to estimate the redox processes occurring at long-term monitoring sites. Groundwater samples have been collected from a well-characterized landfill-leachate contaminated aquifer in northeastern New York. Primers from the 16S rDNA gene were used to amplify Bacteria and Archaea in groundwater taken from monitoring wells located in clean, fringe, and contaminated locations within the aquifer. PCR-amplified rDNA were digested with restriction enzymes to evaluate terminal restriction fragment length polymorphism (T-RFLP) community profiles. The rDNA was cloned, sequenced, and partial sequences were matched against known organisms using the NCBI Blast database. Phylogenetic trees and bootstrapping were used to identify classifications of organisms and compare the communities from clean, fringe, and contaminated locations. We used Artificial Neural Network (ANN) models to incorporate microbial data with hydrochemical information for improving our understanding of subsurface processes.
Amicarelli, Giulia; Adlerstein, Daniel; Shehi, Erlet; Wang, Fengfei; Makrigiorgos, G Mike
2006-10-01
Genotyping methods that reveal single-nucleotide differences are useful for a wide range of applications. We used digestion of 3-way DNA junctions in a novel technology, OneCutEventAmplificatioN (OCEAN) that allows sequence-specific signal generation and amplification. We combined OCEAN with peptide-nucleic-acid (PNA)-based variant enrichment to detect and simultaneously genotype v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) codon 12 sequence variants in human tissue specimens. We analyzed KRAS codon 12 sequence variants in 106 lung cancer surgical specimens. We conducted a PNA-PCR reaction that suppresses wild-type KRAS amplification and genotyped the product with a set of OCEAN reactions carried out in fluorescence microplate format. The isothermal OCEAN assay enabled a 3-way DNA junction to form between the specific target nucleic acid, a fluorescently labeled "amplifier", and an "anchor". The amplifier-anchor contact contains the recognition site for a restriction enzyme. Digestion produces a cleaved amplifier and generation of a fluorescent signal. The cleaved amplifier dissociates from the 3-way DNA junction, allowing a new amplifier to bind and propagate the reaction. The system detected and genotyped KRAS sequence variants down to approximately 0.3% variant-to-wild-type alleles. PNA-PCR/OCEAN had a concordance rate with PNA-PCR/sequencing of 93% to 98%, depending on the exact implementation. Concordance rate with restriction endonuclease-mediated selective-PCR/sequencing was 89%. OCEAN is a practical and low-cost novel technology for sequence-specific signal generation. Reliable analysis of KRAS sequence alterations in human specimens circumvents the requirement for sequencing. Application is expected in genotyping KRAS codon 12 sequence variants in surgical specimens or in bodily fluids, as well as single-base variations and sequence alterations in other genes.
Zhao, Hongjuan; Hastie, Trevor; Whitfield, Michael L; Børresen-Dale, Anne-Lise; Jeffrey, Stefanie S
2002-01-01
Background T7 based linear amplification of RNA is used to obtain sufficient antisense RNA for microarray expression profiling. We optimized and systematically evaluated the fidelity and reproducibility of different amplification protocols using total RNA obtained from primary human breast carcinomas and high-density cDNA microarrays. Results Using an optimized protocol, the average correlation coefficient of gene expression of 11,123 cDNA clones between amplified and unamplified samples is 0.82 (0.85 when a virtual array was created using repeatedly amplified samples to minimize experimental variation). Less than 4% of genes show changes in expression level by 2-fold or greater after amplification compared to unamplified samples. Most changes due to amplification are not systematic both within one tumor sample and between different tumors. Amplification appears to dampen the variation of gene expression for some genes when compared to unamplified poly(A)+ RNA. The reproducibility between repeatedly amplified samples is 0.97 when performed on the same day, but drops to 0.90 when performed weeks apart. The fidelity and reproducibility of amplification is not affected by decreasing the amount of input total RNA in the 0.3–3 micrograms range. Adding template-switching primer, DNA ligase, or column purification of double-stranded cDNA does not improve the fidelity of amplification. The correlation coefficient between amplified and unamplified samples is higher when total RNA is used as template for both experimental and reference RNA amplification. Conclusion T7 based linear amplification reproducibly generates amplified RNA that closely approximates original sample for gene expression profiling using cDNA microarrays. PMID:12445333
NASA Astrophysics Data System (ADS)
Lohmeyer, Whitney; Carlton, Ashley; Wong, Frankie; Bodeau, Michael; Kennedy, Andrew; Cahoy, Kerri
2015-05-01
The key components in communications satellite payloads are the high-power amplifiers that amplify the received signal so that it can be accurately transmitted to the intended end user. In this study, we examine 26 amplifier anomalies and quantify the high-energy electron environment for periods of time prior to the anomalies. Building on the work of Lohmeyer and Cahoy (2013), we find that anomalies occur at a rate higher than just by chance when the >2 MeV electron fluence accumulated over 14 and 21 days is elevated. To try to understand "why," we model the amplifier subsystem to assess whether the dielectric material in the radio frequency (RF) coaxial cables, which are the most exposed part of the system, is liable to experience electrical breakdown due to internal charging. We find that the accumulated electric field over the 14 and 21 days leading up to the anomalies is high enough to cause the dielectric material in the coax to breakdown. We also find that the accumulated voltages reached are high enough to compromise components in the amplifier system, for example, the direct current (DC) blocking capacitor. An electron beam test using a representative coaxial cable terminated in a blocking capacitor showed that discharges could occur with peak voltages and energies sufficient to damage active RF semiconductor devices.
Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)
NASA Technical Reports Server (NTRS)
Cornwell, Donald Mitchell, Jr.
1992-01-01
A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.
NASA Astrophysics Data System (ADS)
Wang, Chunhua; Shen, Lifeng; Zhao, Zhiliang; Liu, Bin; Jiang, Hongbo; Chen, Jun; Liu, Chong
2016-11-01
A semiconductor saturable absorber mirror (SESAM) based passively Q-switched microchip Nd:YVO4 seed laser with pulse duration of 90 ps at repetition rate of 100 kHz is amplified by single-passing a Nd:YVO4 bounce amplifier with varying seed input power from 20 μW to 10 mW. The liquid pure metal greasy thermally conductive material is used to replace the traditional thin indium foil as the thermal contact material for better heat load transfer of the Nd:YVO4 bounce amplifier. Temperature distribution at the pump surface is measured by an infrared imager to compare with the numerically simulated results. A highest single-passing output power of 11.3 W is obtained for 10 mW averaged seed power, achieving a pulse peak power of ~1.25 MW and pulse energy of ~113 μJ. The beam quality is well preserved with M2 ≤1.25. The simple configuration of this bounce laser amplifier made the system flexible, robust and cost-effective, showing attractive potential for further applications.
Integration & Validation of LCU with Different Sub-systems for Diacrode based amplifier
NASA Astrophysics Data System (ADS)
Rajnish, Kumar; Verma, Sriprakash; Soni, Dipal; Patel, Hriday; Suthar, Gajendra; Dalicha, Hrushikesh; Dhola, Hitesh; Patel, Amit; Upadhayay, Dishang; Jha, Akhil; Patel, Manoj; Trivedi, Rajesh; Machchhar, Harsha; Singh, Raghuraj; Mukherjee, Aparajita
2017-04-01
ITER-India is responsible to deliver nine (8+1 spare) ICH & CD Power Sources to ITER. Each power source is capable to deliver 2.5 MW at 35 to 65 MHz frequency range with a load condition up to VSWR 2:1. For remote operation of different subsystems, Local Control Unit (LCU) is developed. LCU is developed using PXI hardware and Schneider PLC with Lab VIEW-RT developmental environment. All the protection function of the amplifier is running on PXI 7841 R module that ensures hard wired protection logic. There are three level of protection function- first by power supply itself that detects overcurrent/overvoltage and trips itself and generate trip signal for further action. There are some direct hardwired signal interfaces between power supplies to protect the amplifier. Second level of protection is generated through integrated controller of amplifier i.e. Command Control Embedded (CCE) against arc and Anode over current. Third level of Protection is through LCU where different fault signals are received and processed to generate off command for different sub-systems. Before connecting different subsystem with High power RF amplifiers (Driver & Final stage), each subsystem is individually tested through LCU. All protection functions are tested before hooking up the subsystems with main amplifier and initiating RF operation.
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Elbuluk, Malik; Hammoud, Ahmad; VanKeuls, Frederick W.
2009-01-01
This report discusses the performance of silicon germanium, wideband gain amplifiers under extreme temperatures. The investigated devices include Texas Instruments THS4304-SP and THS4302 amplifiers. Both chips are manufactured using the BiCom3 process based on silicon germanium technology along with silicon-on-insulator (SOI) buried oxide layers. The THS4304-SP device was chosen because it is a Class V radiation-tolerant (150 kRad, TID silicon), voltage-feedback operational amplifier designed for use in high-speed analog signal applications and is very desirable for NASA missions. It operates with a single 5 V power supply [1]. It comes in a 10-pin ceramic flatpack package, and it provides balanced inputs, low offset voltage and offset current, and high common mode rejection ratio. The fixed-gain THS4302 chip, which comes in a 16-pin leadless package, offers high bandwidth, high slew rate, low noise, and low distortion [2]. Such features have made the amplifier useful in a number of applications such as wideband signal processing, wireless transceivers, intermediate frequency (IF) amplifier, analog-to-digital converter (ADC) preamplifier, digital-to-analog converter (DAC) output buffer, measurement instrumentation, and medical and industrial imaging.
Quantum Illumination-Based Target Detection and Discrimination
2014-06-30
amplifier (EDFA) was combined with the signal to simulate a high-noise environment, with a noise photon number per mode NB in the range 40–300. The...Research Triangle Park, NC 27709-2211 quantum communication, target detection, entanglement , parametric downconversion, optical parametric amplifiers...laser system of the same average transmitted photon number, when the target return has random-amplitude behavior. Receiver operating characteristic
Non-Gaussian statistics of soliton timing jitter induced by amplifier noise.
Ho, Keang-Po
2003-11-15
Based on first-order perturbation theory of the soliton, the Gordon-Haus timing jitter induced by amplifier noise is found to be non-Gaussian distributed. Both frequency and timing jitter have larger tail probabilities than Gaussian distribution given by the linearized perturbation theory. The timing jitter has a larger discrepancy from Gaussian distribution than does the frequency jitter.
High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes
NASA Astrophysics Data System (ADS)
Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh
2002-03-01
The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.
Analysis of low-offset CTIA amplifier for small-size-pixel infrared focal plane array
NASA Astrophysics Data System (ADS)
Zhang, Xue; Huang, Zhangcheng; Shao, Xiumei
2014-11-01
The design of input stage amplifier becomes more and more difficult as the expansion of format arrays and reduction of pixel size. A design method of low-offset amplifier based on 0.18-μm process used in small-size pixel is analyzed in order to decrease the dark signal of extended wavelength InGaAs infrared focal plane arrays (IRFPA). Based on an example of a cascode operational amplifier (op-amp), the relationship between input offset voltage and size of each transistor is discussed through theoretical analysis and Monte Carlo simulation. The results indicate that input transistors and load transistors have great influence on the input offset voltage while common-gate transistors are negligible. Furthermore, the offset voltage begins to increase slightly when the width and length of transistors decrease along with the diminution of pixel size, and raises rapidly when the size is smaller than a proximate threshold value. The offset voltage of preamplifiers with differential architecture and single-shared architecture in small pitch pixel are studied. After optimization under same conditions, simulation results show that single-shared architecture has smaller offset voltage than differential architecture.
Stability analysis for a delay differential equations model of a hydraulic turbine speed governor
NASA Astrophysics Data System (ADS)
Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.
2017-01-01
The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.
The Pathological and Physiological Roles of IL-6 Amplifier Activation
Murakami, Masaaki; Hirano, Toshio
2012-01-01
The NFκB-triggered positive feedback loop for IL-6 signaling in type 1 collagen+ non-immune cells (IL-6 amplifier) was first discovered to be a synergistic signal that is activated following IL-17A and IL-6 stimulation in type 1 collagen+ non-immune cells. Subsequent disease models have shown that it can also be stimulated by the simultaneous activation of NFκB and STAT3, functions as a local chemokine inducer, and acts as a mechanism for local inflammation, particularly chronic ones like rheumatoid arthritis and a multiple sclerosis. Moreover, we have recently shown that hyper activation of the IL-6 amplifier via regional neural activation establishes a gateway for immune cells including autoreactive T cells to pass the blood-brain barrier at dorsal vessels in 5th lumbar cord. Here we review how the IL-6 amplifier is activated by neural activation and the physiological relevance of the gateway to the central nervous system. Accumulating evidences continues to suggest that the IL-6 amplifier offers a potential molecular mechanism for the relationship between neural activation and the development of inflammatory diseases, which could establish a new interdisciplinary field that fuses neurology and immunology. PMID:23136555
NASA Astrophysics Data System (ADS)
Wang, Xinliang; Lu, Xiaoming; Liu, Yanqi; Xu, Yi; Wang, Cheng; Li, Shuai; Yu, Linpeng; Liu, Xingyan; Liu, Keyang; Xu, Rongjie; Leng, Yuxin
2018-06-01
We present an intra-cavity spectral shaping method to suppress the spectral narrowing in a Ti:sapphire (Ti:Sa) regenerative amplifier. The spectral shaping is realized by manipulating the stored energies of two Ti:Sa crystals with orthogonal c-axes, changing the length of a quartz plate, and rotating a broadband achromatic half-wave plate. Using this method, in our proof-of-concept experiment, an 84-nm-(FWHM)-broadband amplified pulse with an energy gain larger than 106 is obtained, which supports a 17.8 fs Fourier-transform-limited pulse duration. The pulse is compressed to 18.9 fs.
The effect of pumping noise on the characteristics of a single-stage parametric amplifier
NASA Astrophysics Data System (ADS)
Medvedev, S. Iu.; Muzychuk, O. V.
1983-10-01
An analysis is made of the operation of a single-stage parametric amplifier based on a varactor with a sharp transition. Analytical expressions are obtained for the statistical moments of the output signal, the signal-noise ratio, and other characteristics in the case when the output signal and the pump are a mixture of harmonic oscillation and Gaussian noise. It is shown that, when a noise component is present in the pump, an increase of its harmonic component to values close to the threshold leads to a sharp decrease in the signal-noise ratio at the amplifier output.
Computer-oriented synthesis of wide-band non-uniform negative resistance amplifiers
NASA Technical Reports Server (NTRS)
Branner, G. R.; Chan, S.-P.
1975-01-01
This paper presents a synthesis procedure which provides design values for broad-band amplifiers using non-uniform negative resistance devices. Employing a weighted least squares optimization scheme, the technique, based on an extension of procedures for uniform negative resistance devices, is capable of providing designs for a variety of matching network topologies. It also provides, for the first time, quantitative results for predicting the effects of parameter element variations on overall amplifier performance. The technique is also unique in that it employs exact partial derivatives for optimization and sensitivity computation. In comparison with conventional procedures, significantly improved broad-band designs are shown to result.
High removal rate laser-based coating removal system
Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley
1999-11-16
A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.
Radiofrequency amplifier based on a dc superconducting quantum interference device
Hilbert, C.; Martinis, J.M.; Clarke, J.
1984-04-27
A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.
Moyo, Daniel; Beattie, Lynette; Andrews, Paul S; Moore, John W J; Timmis, Jon; Sawtell, Amy; Hoehme, Stefan; Sampson, Adam T; Kaye, Paul M
2018-01-01
Cellular activation in trans by interferons, cytokines, and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and/or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling, and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani -infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation.
Monolayer organic field effect phototransistors: photophysical characterization and modeling
NASA Astrophysics Data System (ADS)
Trukhanov, Vasily A.; Anisimov, Daniil S.; Bruevich, Vladimir V.; Agina, Elena V.; Borshchev, Oleg V.; Ponomarenko, Sergei; Zhang, Jiangbin; Bakulin, Artem A.; Paraschuk, Dmitri Yu.
2016-09-01
Organic field-effect transistors (OFET) can combine photodetection and light amplification and, for example, work as phototransistors. Such organic phototransistors can be used in light-controlled switches and amplifiers, detection circuits, and sensors of ultrasensitive images. In this work, we present photophysical characterization of well-defined ultrathin organic field-effect devices with a semiconductive channel based on Langmuir-Blodgett monolayer film. We observe clear generation of photocurrent under illumination with a modulated laser at 405 nm. The increase of photocurrent with the optical modulation frequency indicates the presence of defect states serving as traps for photogenerated carriers and/or the saturation of charge concentration in the thin active layer. We also propose a simple one-dimensional numerical model of a photosensitive OFET. The model is based on the Poisson, current continuity and drift-diffusion equations allows future evaluation of the photocurrent generation mechanism in the studied systems.
Skin Stem Cell Hypotheses and Long Term Clone Survival – Explored Using Agent-based Modelling
Li, X.; Upadhyay, A. K.; Bullock, A. J.; Dicolandrea, T.; Xu, J.; Binder, R. L.; Robinson, M. K.; Finlay, D. R.; Mills, K. J.; Bascom, C. C.; Kelling, C. K.; Isfort, R. J.; Haycock, J. W.; MacNeil, S.; Smallwood, R. H.
2013-01-01
Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation. PMID:23712735
Skin stem cell hypotheses and long term clone survival--explored using agent-based modelling.
Li, X; Upadhyay, A K; Bullock, A J; Dicolandrea, T; Xu, J; Binder, R L; Robinson, M K; Finlay, D R; Mills, K J; Bascom, C C; Kelling, C K; Isfort, R J; Haycock, J W; MacNeil, S; Smallwood, R H
2013-01-01
Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation.
NASA Astrophysics Data System (ADS)
Morasse, Bertrand; Plourde, Estéban
2017-02-01
We present a simple way to achieve and optimize hundreds of kW peak power pulsed output using a monolithic amplifier chain based on solid core double cladding fiber tightly packaged. A fiber pigtailed current driven diode is used to produce nanosecond pulses at 1064 nm. We present how to optimize the use of Fabry-Perot versus DFB type diode along with the proper wavelength locking using a fiber Bragg grating. The optimization of the two pre-amplifiers with respect to the pump wavelength and Yb inversions is presented. We explain how to manage ASE using core and cladding pumping and by using single pass and double pass amplifier. ASE rejection within the Yb fiber itself and with the use of bandpass filter is discussed. Maximizing the amplifier conversion efficiency with regards to the fiber parameters, glass matrix and signal wavelength is described in details. We present how to achieve high peak power at the power amplifier stage using large core/cladding diameter ratio highly doped Yb fibers pumped at 975 nm. The effect of pump bleaching on the effective Yb fiber length is analyzed carefully. We demonstrate that counter-pumping brings little advantage in very short length amplifier. Dealing with the self-pulsation limit of stimulated Brillouin scattering is presented with the adjustment of the seed pulsewidth and linewidth. Future prospects for doubling the output peak power are discussed.
Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.
Xiao, Feng; Alameh, Kamal; Lee, Yong Tak
2009-12-07
A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05 nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.
Crescentini, Marco; Thei, Frederico; Bennati, Marco; Saha, Shimul; de Planque, Maurits R R; Morgan, Hywel; Tartagni, Marco
2015-06-01
Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable multichannel electrophysiology platform based on a hybrid approach that combines integrated state-of-the-art microelectronics with low-cost disposable fluidics providing a platform for high-quality parallel single ion channel recording. Specifically, we have developed a new integrated circuit amplifier based on a novel noise cancellation scheme that eliminates flicker noise derived from devices under test and amplifiers. The system is demonstrated through the simultaneous recording of ion channel activity from eight bilayer membranes. The platform is scalable and could be extended to much larger array sizes, limited only by electronic data decimation and communication capabilities.
OFCC based voltage and transadmittance mode instrumentation amplifier
NASA Astrophysics Data System (ADS)
Nand, Deva; Pandey, Neeta; Pandey, Rajeshwari; Tripathi, Prateek; Gola, Prashant
2017-07-01
The operational floating current conveyor (OFCC) is a versatile active block due to the availability of both low and high input and output impedance terminals. This paper addresses the realization of OFCC based voltage and transadmittance mode instrumentation amplifiers (VMIA and TAM IA). It employs three OFCCs and seven resistors. The transadmittance mode operation can easily be obtained by simply connecting an OFCC based voltage to current converter at the output. The effect of non-idealities of OFCC, in particular finite transimpedance and tracking error, on system performance is also dealt with and corresponding mathematical expressions are derived. The functional verification is performed through SPICE simulation using CMOS based implementation of OFCC.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)
2001-01-01
For the first time, a physics based computational model has been used to provide a direct description of the effects of the TWT (Traveling Wave Tube) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept amplitude and/or swept frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW (Signal Processing Worksystem).
A 220-GHz SIS Mixer Tightly Integrated With a Sub-Hundred-Microwatt SiGe IF Amplifier
NASA Astrophysics Data System (ADS)
Montazeri, Shirin; Grimes, Paul K.; Tong, Cheuk-Yu Edward; Bardin, Joseph C.
2016-01-01
Future kilopixel-scale heterodyne focal plane arrays based on superconductor-insulator-superconductor (SIS) mixers will require submilliwatt power consumption low-noise amplifiers (LNAs) which are tightly integrated with the mixers. In this paper, an LNA that is optimized for direct connection to a 220-GHz SIS mixer chip and requires less than 100 μW of dc power is reported. The amplifier design process is described, and measurement results are presented. It is shown that, when pumped at local oscillator frequencies between 214 and 226 GHz, the mixer/amplifier module achieves a double-sideband system noise temperature between 35 and 50 K over the 3.3-6 GHz IF frequency range while requiring just 90 μW of dc power. Moreover, the potential to further reduce the power consumption is explored and successful operation is demonstrated for LNA power consumption as low as 60 μW.
NASA Astrophysics Data System (ADS)
Atkinson, J. E.; Barker, G. G.; Feltham, S. J.; Gabrielson, S.; Lane, P. C.; Matthews, V. J.; Perring, D.; Randall, J. P.; Saunders, J. W.; Tuck, R. A.
1982-05-01
An electrical model klystron amplifier was designed. Its features include a gridded gun, a single stage depressed collector, a rare earth permanent magnet focusing system, an input loop, six rugged tuners and a coaxial line output section incorporating a coaxial-to-waveguide transducer and a pillbox window. At each stage of the design, the thermal and mechanical aspects were investigated and optimized within the framework of the RF specification. Extensive use was made of data from the preliminary design study and from RF measurements on the breadboard model. In an additional study, a comprehensive draft tube specification has been produced. Great emphasis has been laid on a second additional study on space-qualified materials and processes.
High-speed detection of DNA translocation in nanopipettes.
Fraccari, Raquel L; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim
2016-04-14
We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.
A design of energy detector for ArF excimer lasers
NASA Astrophysics Data System (ADS)
Feng, Zebin; Han, Xiaoquan; Zhou, Yi; Bai, Lujun
2017-08-01
ArF excimer lasers with short wavelength and high photon energy are widely applied in the field of integrated circuit lithography, material processing, laser medicine, and so on. Excimer laser single pulse energy is a very important parameter in the application. In order to detect the single pulse energy on-line, one energy detector based on photodiode was designed. The signal processing circuit connected to the photodiode was designed so that the signal obtained by the photodiode was amplified and the pulse width was broadened. The amplified signal was acquired by a data acquisition card and stored in the computer for subsequent data processing. The peak of the pulse signal is used to characterize the single pulse energy of ArF excimer laser. In every condition of deferent pulse energy value levels, a series of data about laser pulses energy were acquired synchronously using the Ophir energy meter and the energy detector. A data set about the relationship between laser pulse energy and the peak of the pulse signal was acquired. Then, by using the data acquired, a model characterizing the functional relationship between the energy value and the peak value of the pulse was trained based on an algorithm of machine learning, Support Vector Regression (SVR). By using the model, the energy value can be obtained directly from the energy detector designed in this project. The result shows that the relative error between the energy obtained by the energy detector and by the Ophir energy meter is less than 2%.
Hao, Yu-Jin; You, Chun-Xiang; Deng, Xui-Xin
2002-01-01
Shoot-tips of 10 strawberry genotypes were successfully cryopreserved using a modified encapsulation-dehydration method. All genotypes survived cryopreservation with high survival and regeneration rates. Eight Joho single-bud sibling lines were established as a model system for genetic analysis. Although cytological examination found chromosomal variation in both non-cryopreserved and cryopreserved samples, the ploidy constitution remained relatively stable after cryopreservation. DNA samples digested with MseI and PstI were used for amplified fragmentation length polymorphism (AFLP) assay. In 16 primer combinations, only one, namely, PCCA-MCAG, detected one site where band pattern changed after cryopreservation, which might be contributed to the change in DNA methylation status at PstI recognition site. Methylation sensitive amplified polymorphism (MSAP) assay was carried out for further investigation on the influence of cryopreservation on DNA methylation status. It was found that cryopreservation induced a significant change in DNA methylation status.
The behavior of gain and saturation characteristics versus temperature in a copper bromide laser
NASA Astrophysics Data System (ADS)
Mohammadpour Lima, S.; Behrouzinia, S.; Salem, M. K.; Elahei, M.; Khorasani, K.; Dorranian, D.
2017-05-01
A pair of copper bromide lasers in an oscillator-amplifier configuration was used to investigate the temperature dependence of the small-signal gain, saturation intensity, and output power of the laser. The observations were explained in terms of the electron temperature and energy levels of transition. An optimum electrical input power of 1.6 kW and a corresponding operational temperature of 510 °C were determined for the maximum values of these parameters. The balance between the microscopic parameters, such as stimulated emission cross-section, laser upper-level lifetime, and population inversion, which determine the behavior of the amplifying parameters and laser output power with respect to the operational temperature, has been investigated. We used the steady-state rate equation from the Hargrove model to determine the amplifying parameters, instead of the Frantz-Nodvik formula. The power extracted from the amplifier exceeds that achieved with the same device as the oscillator by more than 60%.
Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds
NASA Astrophysics Data System (ADS)
Giller, Robin; Manning, Robert J.; Talli, Giuseppe; Webb, Roderick P.; Adams, Michael J.
2007-02-01
We investigate the dependence of the speed of recovery of optically excited semiconductor optical amplifiers (SOAs) on the active region dimensions. We use a picosecond pump-probe arrangement to experimentally measure and compare the gain and phase dynamics of four SOAs with varying active region dimensions. A sophisticated time domain SOA model incorporating amplified spontaneous emission (ASE) agrees well with the measurements and shows that, in the absence of a continuous wave (CW) beam, the ASE plays a similar role to such a holding beam. The experimental results are shown to be consistent with a recovery rate which is inversely proportional to the optical area. A significant speed increase is predicted for an appropriate choice of active region dimensions.