Science.gov

Sample records for based cast films

  1. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  2. A simple calibration approach based on film-casting for confocal Raman microscopy to support the development of a hot-melt extrusion process.

    PubMed

    Netchacovitch, L; Thiry, J; De Bleye, C; Dumont, E; Dispas, A; Hubert, C; Krier, F; Sacré, P-Y; Evrard, B; Hubert, Ph; Ziemons, E

    2016-07-01

    When developing a new formulation, the development, calibration and validation steps of analytical methods based on vibrational spectroscopy are time-consuming. For each new formulation, real samples must be produced and a "reference method" must be used in order to determine the Active Pharmaceutical Ingredient (API) content of each sample. To circumvent this issue, the paper presents a simple approach based on the film-casting technique used as a calibration tool in the framework of hot-melt extrusion process. Confocal Raman microscopic method was successfully validated for the determination of itraconazole content in film-casting samples. Then, hot-melt extrusion was carried out to produce real samples in order to confront the results obtained with confocal Raman microscopy and Ultra High Performance Liquid Chromatography (UHPLC). The agreement between both methods was demonstrated using a comparison study based on the Bland and Altman's plot.

  3. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    PubMed Central

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  4. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    NASA Astrophysics Data System (ADS)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  5. Residual stress in spin-cast polyurethane thin films

    SciTech Connect

    Zhang, Hong; Zhang, Li

    2015-01-19

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  6. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  7. Infiltration of Slag Film into the Grooves on a Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Cho, Jung-Wook; Jeong, Hee-Tae

    2013-02-01

    An analytical model is developed to clarify the slag film infiltration into grooves on a copper mold during the continuous casting of steel slabs. A grooved-type casting mold was applied to investigate the infiltration of slag film into the grooves of a pitch of 0.8 mm, width of 0.7 mm, and depth of 0.6 mm at the vicinity of a meniscus. The plant trial tests were carried out at a casting speed of 5.5 m min-1. The slag film captured at a commercial thin slab casting plant showed that both the overall and the liquid film thickness were decreased exponentially as the distance from the meniscus increases. In contrast, the infiltration of slag film into the grooves had been increased with increasing distance from the meniscus. A theoretic model has been derived based on the measured profile of slag film thickness to calculate the infiltration of slag film into the grooves. It successfully reproduces the empirical observation that infiltration ratio increased sharply along casting direction, about 80 pct at 50 mm and 95 pct at 150 mm below the meniscus. In the model calculation, the infiltration of slag film increases with increasing groove width and/or surface tension of the slag. The effect of groove depth is negligible when the width to depth ratio of the groove is larger than unity. It is expected that the developed model for slag film infiltration in this study will be widely utilized to optimize the design of groove dimensions in continuous casting molds.

  8. Emulsion based cast booster - a priming system

    SciTech Connect

    Gupta, R.N.; Mishra, A.K.

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiated with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.

  9. Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: novel anti-bacterial wound dressing matrices.

    PubMed

    Shahzad, Sohail; Yar, Muhammad; Siddiqi, Saadat Anwar; Mahmood, Nasir; Rauf, Abdul; Qureshi, Zafar-ul-Ahsan; Anwar, Muhammad Sabieh; Afzaal, Shahida

    2015-03-01

    The development of highly efficient anti-bacterial wound dressings was carried out. For this purpose nanofibrous mats, hydrogels and films were synthesized from chitosan, poly(vinyl alcohol) and hydroxyapatite. The physical/chemical interactions of the synthesized materials were evaluated by FTIR. The morphology, structure; average diameter and pore size of the materials were investigated by scanning electron microscopy. The hydrogels showed a greater degree of swelling as compared to nanofibrous mats and films in phosphate buffer saline solution of pH 7.4. The in vitro drug release studies showed a burst release during the initial period of 4 h and then a sustained release profile was observed in the next upcoming 20 h. The lyophilized hydrogels showed a more slow release as compared to nanofibrous mats and films. Antibacterial potential of drug released solutions collected after 24 h of time interval was determined and all composite matrices showed good to moderate activity against Gram-positive and Gram-negative bacterial strains respectively. To determine the cytotoxicity, cell culture was performed for various cefixime loaded substrates by using neutral red dye uptake assay and all the matrices were found to be non-toxic.

  10. Structure in Thin and Ultrathin Spin-Cast Polymer Films

    NASA Astrophysics Data System (ADS)

    Frank, C. W.; Rao, V.; Despotopoulou, M. M.; Pease, R. F. W.; Hinsberg, W. D.; Miller, R. D.; Rabolt, J. F.

    1996-08-01

    The molecular organization in ultrathin polymer films (thicknesses less than 1000 angstroms) and thin polymer films (thicknesses between 1000 and 10,000 angstroms) may differ substantially from that of bulk polymers, which can lead to important differences in resulting thermophysical properties. Such constrained geometry films have been fabricated from amorphous poly(3-methyl-4-hydroxy styrene) (PMHS) and semicrystalline poly(di-n-hexyl silane) (PD6S) by means of spin-casting. The residual solvent content is substantially greater in ultrathin PMHS films, which suggests a higher glass transition temperature that results from a stronger hydrogen-bonded network as compared with that in thicker films. Crystallization of PD6S is substantially hindered in ultrathin films, in which a critical thickness of 150 angstroms is needed for crystalline morphology to exist and in which the rate of crystallization is initially slow but increases rapidly as the film approaches 500 angstroms in thickness.

  11. Electrospun fiber and cast films produced using zein blends with nylon-6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blends of zein and nylon-6 (55k) were used to produce electrospun fibers and solution cast films. Zein was blended with nylon-6 in formic acid solution. When the amount of nylon-6 was 8% or less a compatible blend formed. The blend was determined to be compatible based on physical property measureme...

  12. Storage Stability and Antibacterial Activity against E. coli O157:H7 of Carvacrol in Edible Apple Films made by Two Different Casting Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antimicrobial activities against E. coli O157:H7, as well as the stability of carvacrol, the main constituent of oregano oil, were evaluated during the preparation and storage of apple-based edible films made by two different casting methods, continuous casting and batch casting. Antimicrobial ...

  13. Tape casting and partial melting of Bi-2212 thick films

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Lang, TH.; Heeb, B.; Gauckler, L. J.

    1995-01-01

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 microns. The orientation of the (a,b)-plane of the grains was parallel to the substrate with a misalignment of less than 6 deg. At 77 K/0T a critical current density of 15, 000 A/sq cm was reached in films of the dimension 1 cm x 2 cm x 20 microns (1 micron V/cm criterion, resistively measured). At 4 K/0T the highest value was 350,000 A/sq cm (1 nV/cm criterion, magnetically measured).

  14. Tape casting and partial melting of Bi-2212 thick films

    SciTech Connect

    Buhl, D.; Lang, T.; Heeb, B.

    1994-12-31

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density of 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).

  15. Hand-based thumb spica casting.

    PubMed

    Roberts, W O

    1998-03-01

    A hand-based thumb spica cast can be used to protect the metacarpophalangeal (MCP) and interphalangeal (IP) joints of the thumb after uncomplicated ulnar collateral ligament (UCL) sprains and certain other thumb injuries. The cast allows continued participation in many activities, letting the patient grip an implement and move the wrist joint but immobilizing the thumb joints.

  16. Properties and microstructure of thermo-pressed wheat gluten films: a comparison with cast films.

    PubMed

    Mangavel, C; Rossignol, N; Perronnet, A; Barbot, J; Popineau, Y; Guéguen, J

    2004-01-01

    Wheat gluten films were prepared by thermo-pressing, and their mechanical properties were compared to those of cast films. The stress-strain relationship was established for films with various amounts of glycerol. Both relationships were quite different, revealing a different network organization. Thermo-pressed films presented higher stress values than cast films, but the effect of the glycerol amount was similar in both cases, an increase of the glycerol amount leading to a decrease of both films stress. The glycerol influence on the strain at break of thermo-pressed films was very limited, with strain values reaching a maximum around 200%. The role of disulfide bridges on themomoulded films mechanical properties was investigated, and it was shown that some rearrangements and a significative protein insolubilization occurred during the process. The effective flow porosity of the protein network for thermo-pressed films was estimated by water capillary rise measurements to about 7%. Scanning electron microscopy was used to obtain some information about the microstructure of both cast and thermo-pressed films.

  17. Accuracy of Small Base Metal Dental Castings,

    DTIC Science & Technology

    1980-07-10

    aCCURACY OF SMALL BASE METAL DENTAL CASTINGS,(U) M JUL 80 E A HUBET, S 6 VERMILYEA, M .J KUFFLER UNCLASSIFIED NE7 hhhhh *EN UN~CLASSIFIED SECURITY...TPCCSI70NO. 3. RECIPIENT’S .CATALOG NUMBER I _% dSutte 5. TYPE OF REPORT & PERIOD COVERED Accuracy of Small Base Metal Dental Castings Manuscript S...base metal- alloys is countered by their inadequate casting accuracy . Until this problem can be overcome, the acceptance of such alloys for routine use

  18. Aging properties of films of plasticized vital wheat gluten cast from acidic and basic solutions.

    PubMed

    Olabarrieta, Idoia; Cho, Sung-Woo; Gällstedt, Mikael; Sarasua, Jose-Ramon; Johansson, Eva; Hedenqvist, Mikael S

    2006-05-01

    In order to understand the mechanisms behind the undesired aging of films based on vital wheat gluten plasticized with glycerol, films cast from water/ethanol solutions were investigated. The effect of pH was studied by casting from solutions at pH 4 and pH 11. The films were aged for 120 days at 50% relative humidity and 23 degrees C, and the tensile properties and oxygen and water vapor permeabilities were measured as a function of aging time. The changes in the protein structure were determined by infrared spectroscopy and size-exclusion and reverse-phase high-performance liquid chromatography, and the film structure was revealed by optical and scanning electron microscopy. The pH 11 film was mechanically more stable with time than the pH 4 film, the latter being initially very ductile but turning brittle toward the end of the aging period. The protein solubility and infrared spectroscopy measurements indicated that the protein structure of the pH 4 film was initially significantly less polymerized/aggregated than that of the pH 11 film. The polymerization of the pH 4 film increased during storage but it did not reach the degree of aggregation of the pH 11 film. Reverse-phase chromatography indicated that the pH 11 films were to some extent deamidated and that this increased with aging. At the same time a large fraction of the aged pH 11 film was unaffected by reducing agents, suggesting that a time-induced isopeptide cross-linking had occurred. This isopeptide formation did not, however, change the overall degree of aggregation and consequently the mechanical properties of the film. During aging, the pH 4 films lost more mass than the pH 11 films mainly due to migration of glycerol but also due to some loss of volatile mass. Scanning electron and optical microscopy showed that the pH 11 film was more uniform in thickness and that the film structure was more homogeneous than that of the pH 4 film. The oxygen permeability was also lower for the pH 11 film. The

  19. Study of anisotropy of spin cast and vapor deposited polyimide films using internal reflection techniques

    SciTech Connect

    Liberman, V.

    1996-11-01

    We have compared anisotropy of spin cast and vapor deposited polyimide (VDP) films, using internal reflection infrared spectroscopy. The films were deposited directly on the internal reflection element. We find that spin cast films are more anisotropic than their VDP counterparts, with the polyimide chains tending to align parallel to the substrate. Both films are found to contain more and less ordered regions. Within the ordered regions, the plane of the phenyl ring tends to align parallel to the substrate.

  20. Land-based turbine casting initiative

    SciTech Connect

    Mueller, B.A.; Spicer, R.A.

    1995-10-01

    The Advanced Turbine Systems (ATS) program has set goals which include a large-scale utility turbine efficiency that exceeds 60 percent (LHV) on natural gas and an industrial turbine system heat rate improvement of 15 percent. To meet these goals, technological advances developed for aircraft gas turbine engines need to be applied to land based gas turbines. These technological advances include: directionally solidified and single crystal castings, alloys tailored to exploit these microstructures, complex internal cooling schemes, and coatings. Equiaxed and directionally solidified castings are employed in current land based power generation equipment. These castings do not possess the ability to meet the efficiency targets as outlined above. The production use of premium single crystal components with complex internal cooling schemes in the latest generation of alloys is necessary to meet the ATS goals. However, at present, the use of single crystal components with complex internal cooling schemes is restricted to industrial sized or aeroderivative engines, and prototype utility sized components.

  1. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    PubMed

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration.

  2. Electroconductive PET/SWNT Films by Solution Casting

    NASA Technical Reports Server (NTRS)

    Steinert, Brian W.; Dean, Derrick R.

    2008-01-01

    The market for electrically conductive polymers is rapidly growing, and an emerging pathway for attaining these materials is via polymer-carbon nanotube (CNT) nanocomposites, because of the superior properties of CNTs. Due to their excellent electrical properties and anisotropic magnetic susceptibility, we expect CNTs could be easily aligned to maximize their effectiveness in imparting electrical conductivity to the polymer matrix. Single-walled carbon nanotubes (SWNT) were dispersed in a polyethylene terephthalate (PET) matrix by solution blending then cast onto a glass substrate to create thin, flexible films. Various SWNT loading concentrations were implemented (0.5, 1.0, and 3.0 wt.%) to study the effect of additive density. The processing method was repeated to produce films in the presence of magnetic fields (3 and 9.4 Tesla). The SWNTs showed a high susceptibility to the magnetic field and were effectively aligned in the PET matrix. The alignment was characterized with Raman spectroscopy. Impedance spectroscopy was utilized to study the electrical behavior of the films. Concentration and dispersion seemed to play very important roles in improving electrical conductivity, while alignment played a secondary and less significant role. The most interesting result proved to be the effect of a magnetic field during processing. It appears that a magnetic field may improve dispersion of unmodified SWNTs, which seems to be more important than alignment. It was concluded that SWNTs offer a good option as conductive, nucleating filler for electroconductive polymer applications, and the utilization of a magnetic field may prove to be a novel method for CNT dispersion that could lead to improved nanocomposite materials.

  3. Properties of cast films made of chayote (Sechium edule Sw.) tuber starch reinforced with cellulose nanocrystals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, cellulose (C) and cellulose nanocrystals (CN) were blended with chayote tuber (Sechium edule Sw.) starch (CS) in formulations cast into films. The films were conditioned at different storage temperatures and relative humidity (RH), and analyzed by mechanical tests, X-ray diffraction, ...

  4. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    PubMed

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R; Voznyy, Oleksandr; Kwon, S Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H

    2015-07-13

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  5. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  6. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-07-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  7. Antimicrobial Activity of Nisin and Natamycin Incorporated Sodium Caseinate Extrusion-Blown Films: A Comparative Study with Heat-Pressed/Solution Cast Films.

    PubMed

    Colak, Basak Yilin; Peynichou, Pierre; Galland, Sophie; Oulahal, Nadia; Prochazka, Frédéric; Degraeve, Pascal

    2016-05-01

    Antimicrobial edible films based on sodium caseinate, glycerol, and 2 food preservatives (nisin or natamycin) were prepared by classical thermomechanical processes. Food preservatives were compounded (at 65 °C for 2.5 min) with sodium caseinate in a twin-screw extruder. Anti-Listeria activity assays revealed a partial inactivation of nisin following compounding. Thermoplastic pellets containing food preservatives were then used to manufacture films either by blown-film extrusion process or by heat-press. After 24 h of incubation on agar plates, the diameters of K. rhizophila growth inhibition zones around nisin-incorporated films prepared by solution casting (control), extrusion blowing or heat pressing at 80 °C for 7 min of nisin-containing pellets were 15.5 ± 0.9, 9.8 ± 0.2, and 8.6 ± 1.0 mm, respectively. Since heat-pressing for 7 min at 80 °C of nisin-incorporated pellets did not further inactivate nisin, this indicates that nisin inactivation during extrusion-blowing was limited. Moreover, the lower diameter of the K. rhizophila growth inhibition zone around films prepared with nisin-containing pellets compared to that observed around films directly prepared by solution casting confirms that nisin inactivation mainly occurred during the compounding step. Natamycin-containing thermoplastic films inhibited Aspergillus niger growth; however, by contrast with nisin-containing films, heat-pressed films had higher inhibition zone diameters than blown films, therefore suggesting a partial inactivation of natamycin during extrusion-blowing.

  8. Conductivity of PEDOT:PSS on Spin-Coated and Drop Cast Nanofibrillar Cellulose Thin Films

    NASA Astrophysics Data System (ADS)

    Valtakari, Dimitar; Liu, Jun; Kumar, Vinay; Xu, Chunlin; Toivakka, Martti; Saarinen, Jarkko J.

    2015-10-01

    Aqueous dispersion of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) was deposited on spin-coated and drop cast nanofibrillar cellulose (NFC)-glycerol (G) matrix on a glass substrate. A thin glycerol film was utilized on plasma-treated glass substrate to provide adequate adhesion for the NFC-glycerol (NFC-G) film. The effects of annealing temperature, the coating method of NFC-G, and the coating time intervals on the electrical performance of the PEDOT:PSS were characterized. PEDOT:PSS on drop cast NFC-G resulted in 3 orders of magnitude increase in the electrical conductivity compared to reference PEDOT:PSS film on a reference glass substrate, whereas the optical transmission was only slightly decreased. The results point out the importance of the interaction between the PEDOT:PSS and the NFC-G for the electrical and barrier properties for thin film electronics applications.

  9. Ageing of Insensitive DNAN Based Melt-Cast Explosives

    DTIC Science & Technology

    2014-08-01

    Systems Division Defence Science and Technology Organisation DSTO-TN-1332 ABSTRACT DNAN or 2,4-dinitroanisole is a new melt- cast matrix that...replaces traditional TNT based melt- cast explosives. Aside from sensitiveness improvements, the use of DNAN allows for the continued operation of

  10. Radial Dependence of Spin-Cast Polymer/Clay Nanocomposite Film Thickness

    NASA Astrophysics Data System (ADS)

    Li, Jun; Singh, Avtar; Schiffman, Scott; Kapoor, Deepak; Schwarz, Steven; Sokolov, Jonathan; Rafailovich, Miriam

    2004-03-01

    The thickness of spin-cast PS (polystyrene), PMMA (polymethylmethacrylate), and PB (polybutadiene) films on silicon wafers are examined as a function of solvent concentration, concentration of clay (Cloisite 6A) filler, and spin rate. A strong radial dependence of film thickness is observed in the clay composite films. As film thickness is a competition between evaporation rate and viscous flow, these properties are independently measured. Evaporation is determined by weight loss measurements, while viscosity vs. shear rate is measured in an ARES rheometer. Film thickness for composite films is determined by measuring scratch depths with a Dektak surface profilometer. Clay orientation within the film is examined by transmission electron microscopy. The viscosity and evaporation rate data are fed into a simple computer algorithm, which provides a semi-quantitative description of the data obtained. The radial dependence predicted by this simple physical model is too weak, however, most probably owing to the effects of clay platelet alignment during the spinning process.

  11. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    SciTech Connect

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher; Doshi, Pankaj; Lele, Ashish; Thete, Sumeet

    2015-05-22

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particle tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al{sup 1} wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.{sup 1}D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996)

  12. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    NASA Astrophysics Data System (ADS)

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher; Thete, Sumeet; Doshi, Pankaj; Lele, Ashish

    2015-05-01

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particle tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al1 wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.1D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996).

  13. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    SciTech Connect

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  14. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite.

    PubMed

    Bae, Seo-Yoon; Jeon, In-Yup; Yang, Jieun; Park, Noejung; Shin, Hyeon Suk; Park, Sungjin; Ruoff, Rodney S; Dai, Liming; Baek, Jong-Beom

    2011-06-28

    We report edge-selective functionalization of graphite (EFG) for the production of large-area uniform graphene films by simply solution-casting EFG dispersions in dichloromethane on silicon oxide substrates, followed by annealing. The resultant graphene films show ambipolar transport properties with sheet resistances of 0.52-3.11 kΩ/sq at 63-90% optical transmittance. EFG allows solution processing methods for the scalable production of electrically conductive, optically transparent, and mechanically robust flexible graphene films for use in practice.

  15. 25. Detail of cast iron lamp post base with fluted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Detail of cast iron lamp post base with fluted wooded post at top, located at north end of bridge. VIEW NORTHEAST - Chelsea Street Bridge & Draw Tender's House, Spanning Chelsea River, Boston, Suffolk County, MA

  16. DETAIL VIEW OF BASE OF CAST IRON TOWER SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BASE OF CAST IRON TOWER SHOWING THE FABRICATING MARK OF STARBUCK IRON WORKS, TROY, NY - Bidwell Bar Suspension Bridge & Stone Toll House, Near Lake Oroville (moved from fork of Feather River), Oroville, Butte County, CA

  17. Cast Double Base Propellants: Process Mechanics

    DTIC Science & Technology

    1953-02-01

    thc rate of dilatation, of the casting powder and its .’ate of penetration by casting liquid, 2. 2. To measure the rate of dilatation of the...powders a)d fini.shed charges, 2.4. To dctcrminc the r,ate of solution of the casti)g owdcr in thc castino llquid, 2.5. To measturc the chrngo iu...O aad humidity cabiact ( sect a t 20OC. , 5 5 --c lat:v* hCum-’IitY) fo t ea,t 24 hours befo-re coiiencin-g the test. The gralcz L-u-o thc ):) mo,,sur

  18. Antireflective polyimide based films

    NASA Astrophysics Data System (ADS)

    Cao, Yuanmei

    The goal of this work was to prepare antireflective and anti-abrasion films using polyimide and organically modified silica nanoparticle thin films. A series of thin film were prepared from colorless and soluble polyimide with organically modified silica colloids via a solution casting method. The polyimide was selected for its optical properties. Three type of organically modified silica nanoparticles were prepared by grafting polysiloxane, polyfluoroester and fluoroalkyl groups onto silica nanoparticles. The molecular weight of the polysiloxane, polyfluoroester and the amount of fluorinated alkyl groups were varied. The organically modified silica colloids were characterized by TEM, DLS, FTIR, 1H NMR, solid state 13C NMR and solid state 29Si NMR. The coatings were characterized by UV-Vis transmittance spectra and SEM. The effect of modified silica loading, the molecular weight of polymer and type of solvent on AR properties were studied. An enhancement in antireflective activity was observed for 1 wt% LPDMS modified (low molecular weight) silica coatings, 3 wt% fluorosilica-10 and 3% L-MPS-PF-SILICA nanoparticles (low molecular weight polyfluoroester modified silica) in dimethylacetamide (DMAc). In comparison with cyclopentanone (CPT), DMAc favors migration of silica particles towards coating-air interface giving higher transmittance. The migration of particles to the surface and consequent increased surface roughness were observed by SEM. The present study suggested a roll to roll solution casting method to create antireflective coatings. This approach had potential to be used for a one-step large-scale manufacturing of antireflective coating. Four acrylated bismaleimide were made via two-step process. The first step involved the solution imidization to form hydroxylated bismaleimide. In the second step, hydroxylated bismaleimide was reacted with acryloyl chloride to form acrylated bismaleimide. The acrylated bismaleimide were characterized by FTIR, 1H NMR, 13C

  19. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  20. Awareness Programs and Change in Taste-Based Caste Prejudice

    PubMed Central

    Banerjee, Ritwik; Datta Gupta, Nabanita

    2015-01-01

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution - the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste. PMID:25902290

  1. Awareness programs and change in taste-based caste prejudice.

    PubMed

    Banerjee, Ritwik; Datta Gupta, Nabanita

    2015-01-01

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution--the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste.

  2. Properties of cast films from hemp (Cannabis sativa L.) and soy protein isolates. A comparative study.

    PubMed

    Yin, Shou-Wei; Tang, Chuan-He; Wen, Qi-Biao; Yang, Xiao-Quan

    2007-09-05

    The properties of cast films from hemp protein isolate (HPI) including moisture content (MC) and total soluble mass (TSM), tensile strength (TS) and elongation at the break (EAB), and surface hydrophobicity were investigated and compared to those from soy protein isolate (SPI). The plasticizer (glycerol) level effect on these properties and the interactive force pattern for the film network formation were also evaluated. At some specific glycerol levels, HPI films had similar MC, much less TSM and EAB, and higher TS and surface hydrophobicity (support matrix side), as compared to SPI films. The TS of HPI and SPI films as a function of plasticizer level (in the range of 0.3-0.6 g/g of protein) were well fitted with the exponential equation with coefficient factors of 0.991 and 0.969, respectively. Unexpectedly, the surface hydrophobicity of HPI films (including air and support matrix sides) increased with increasing the glycerol level (from 0.3 to 0.6 g/g of protein). The analyses of protein solubility of film in various solvents and free sulfydryl group content showed that the disulfide bonds are the prominent interactive force in the HPI film network formation, while in the SPI case, besides the disulfide bonds, hydrogen bonds and hydrophobic interactions are also to a similar extent involved. The results suggest that hemp protein isolates have good potential to be applied to prepare protein film with some superior characteristics, e.g., low solubility and high surface hydrophobicity.

  3. Relationships between the solution and solid-state properties of solution-cast low-k silica thin films.

    PubMed

    Chiang, Chao-Ching; Su, Chien-You; Yang, An-Chih; Wang, Ting-Yu; Lee, Wen-Ya; Hua, Chi-Chung; Kang, Dun-Yen

    2016-07-27

    This paper reports on the fabrication of low-k (amorphous) silica thin films cast from solutions without and with two different types of surfactants (TWEEN® 80 and Triton™ X-100) to elucidate the relationships between the structural/morphological features of the casting solutions and the physical properties of the resulting thin films. Cryogenic transmission microscopy (cryo-TEM), static/dynamic light scattering (SLS/DLS), and small-angle X-ray scattering (SAXS) revealed contrasting colloidal dispersion states and phase behavior among the three casting solutions. Casting solution with the Triton™ X-100 surfactant produced stable (>90 days) nanoparticles with good dispersion in solution (mean particle size ∼10 nm) as well as good mesopore volume (characterized by nitrogen physisorption) in powder and thin films of high mechanical strength (characterized by the nanoindentation test). The longer main chain and bulkier side units of the TWEEN® 80 surfactant led to stable micelle-nanoparticle coexisting dispersion, which resulted in the highest mesopore volume in powder and thin films with the lowest dielectric constant (∼3) among the samples in this study. The casting solution without the surfactant failed to produce a stabilized solution or thin films of acceptable uniformity. These findings demonstrate the possibility of fine-tuning low-k silica film properties by controlling the colloidal state of casting solutions.

  4. Structure and properties of polypropylene cast films: Polymer type and processing effects

    NASA Astrophysics Data System (ADS)

    Mileva, Daniela; Gahleitner, Markus; Gloger, Dietrich

    2016-05-01

    The influence of processing parameters in a cast film extrusion process of thin films of isotactic polypropylene homopolymer and random propylene-ethylene copolymer was analyzed. Variation of the chill roll temperature allowed changing the supercooling of the melt and thus the generation of different crystal polymorphs of iPP. Additional focus was placed on the effect of flow induced crystallization via changing the output rate of the line. The crystal structure and morphology of the materials were evaluated and correlated to selected optical and mechanical properties.

  5. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    NASA Astrophysics Data System (ADS)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  6. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process.

    PubMed

    Li, Jie; Zheng, Jianyong; Zhang, Jing; Feng, Jie

    2016-06-01

    Lotus-like surfaces have attracted great attentions in recent years for their wide applications in water repellency, anti-fog and self-cleaning. This paper introduced a novel process, nanoparticle assisted cast micromolding, to create polymer film with superhydrophobic surface. Briefly, waterborne polyurethane (WPU) sol and nano TiO2/WPU sol were each cast onto the featured surfaces of the poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from the stamps, PU and TiO2/WPU replica films were created respectively. To the former, only high hydrophobic property was observed with static water contact angle (WCA) at 142.5 degrees. While to the later, superhydrophobic property was obtained with WCA more than 150 degrees and slide angle less than 3 degrees. Scanning electron microscopy (SEM) imaging showed that the PU replica film only had the micro-papillas and the TiO2/PU replica film not only had micro papillas but also had a large number of nano structures distributed on and between the micro-papillas. Such nano and micro hierarchical structures were very similar with those on the natural lotus leaf surface, thus was the main reason for causing superhydrophobic property. Although an elastic PDMS stamp from lotus leaf was used in herein process, hard molds may also be used in theory. This study supplied an alternative technique for large scale production of polymeric films with superhydrophobic.

  7. Crystallographic Textures and Morphologies of Solution Cast Ibuprofen Composite Films at Solid Surfaces

    PubMed Central

    2014-01-01

    The preparation of thin composite layers has promising advantages in a variety of applications like transdermal, buccal, or sublingual patches. Within this model study the impact of the matrix material on the film forming properties of ibuprofen–matrix composite films is investigated. As matrix materials polystyrene, methyl cellulose, or hydroxyl-ethyl cellulose were used. The film properties were either varied by the preparation route, i.e., spin coating or drop casting, or via changes in the relative ratio of the ibuprofen and the matrix material. The resulting films were investigated via X-ray diffraction and atomic force microscope experiments. The results show that preferred (100) textures can be induced via spin coating with respect to the glass surface, while the drop casting results in a powder-like behavior. The morphologies of the films are strongly impacted by the ibuprofen amount rather than the preparation method. A comparison of the various matrix materials in terms of their impact on the dissolution properties show a two times faster zero order release from methyl cellulose matrix compared to a polystyrene matrix. The slowest rate was observed within the hydroxyl ethyl cellulose as the active pharmaceutical ingredients (APIs) release is limited by diffusion through a swollen matrix. The investigation reveals that the ibuprofen crystallization and film formation is only little effected by the selected matrix material than that compared to the dissolution. A similar experimental approach using other matrix materials may therefore allow to find an optimized composite layer useful for a defined application. PMID:25275801

  8. Crystallizaion and surface morphology of poly(vinylidene fluoride)/poly(methylmethacrylate) films by solution casting on different substrates

    NASA Astrophysics Data System (ADS)

    Ma, Wenzhong; Zhang, Jun; Wang, Xiaolin

    2008-03-01

    The dependence of surface structure of the poly(vinylidene fluoride) (PVDF)/poly(methylmethacrylate) (PMMA) films by solution casting on properties of seven substrates was investigated by wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and differential scanning calorimetry (DSC). It was revealed that the polyblend films obtained by casting onto each substrate contained exclusively β phase PVDF. Higher crystallinity of the film was obtained by casting onto ceramic, polytetrafluoroethylene (PTFE), copper (Cu), stainless steel and glass substrates than that by casting onto aluminium (Al) and polypropylene (PP) substrates, depending on the degree of close lattice matching. The surface crystalline structure of PVDF was strongly affected by the wettability of substrate. The largest size of PVDF spherulitic crystal structure with about 6 μm presented in the casting film grown at the air/solution interface on glass substrate, while the smallest spherulite size with about 3 μm was generated by casting onto PTFE, stainless steel and PP substrates. It implied that the higher surface tension the substrate had, the larger PVDF spherulite grew at the air/solution interface.

  9. Spin-Casting Polymer Brush Films for Stimuli-Responsive and Anti-Fouling Surfaces.

    PubMed

    Xu, Binbin; Feng, Chun; Hu, Jianhua; Shi, Ping; Gu, Guangxin; Wang, Lei; Huang, Xiaoyu

    2016-03-01

    Surfaces modified with amphiphilic polymers can dynamically alter their physicochemical properties in response to changes of their environmental conditions; meanwhile, amphiphilic polymer coatings with molecular hydrophilic and hydrophobic patches, which can mitigate biofouling effectively, are being actively explored as advanced coatings for antifouling materials. Herein, a series of well-defined amphiphilic asymmetric polymer brushes containing hetero side chains, hydrophobic polystyrene (PS) and hydrophilic poly(ethylene glycol) (PEG), was employed to prepare uniform thin films by spin-casting. The properties of these films were investigated by water contact angle, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). AFM showed smooth surfaces for all films with the roughness less than 2 nm. The changes in water contact angle and C/O ratio (XPS) evidenced the enrichment of PEG or PS chains at film surface after exposed to selective solvents, indicative of stimuli- responsiveness. The adsorption of proteins on PEG functionalized surface was quantified by QCM and the results verified that amphiphilic polymer brush films bearing PEG chains could lower or eliminate protein-material interactions and resist to protein adsorption. Cell adhesion experiments were performed by using HaCaT cells and it was found that polymer brush films possess good antifouling ability.

  10. Aluminum-Based Cast In Situ Composites: A Review

    NASA Astrophysics Data System (ADS)

    Pramod, S. L.; Bakshi, Srinivasa R.; Murty, B. S.

    2015-06-01

    In situ composites are a class of composite materials in which the reinforcement is formed within the matrix by reaction during the processing. In situ method of composite synthesis has been widely followed by researchers because of several advantages over conventional stir casting such as fine particle size, clean interface, and good wettability of the reinforcement with the matrix and homogeneous distribution of the reinforcement compared to other processes. Besides this, in situ processing of composites by casting route is also economical and amenable for large scale production as compared to other methods such as powder metallurgy and spray forming. Commonly used reinforcements for Al and its alloys which can be produced in situ are Al2O3, AlN, TiB2, TiC, ZrB2, and Mg2Si. The aim of this paper is to review the current research and development in aluminum-based in situ composites by casting route.

  11. Some properties of a stir-cast Ni-Cr based dental alloy.

    PubMed

    Boswell, P G; Stevens, L

    1980-06-01

    A Ni-Cr based crown and bridge alloy has been successfully stir-cast into small investment mould spaces using a modified induction melting and casting machine. Stir-casting produced substantial improvements to the mechanical properties of the cast alloy. A model for the development of the stir-cast microstructure is described and the clinical significance of the improvements in the alloy's properties is discussed.

  12. Optimization of a 0.69PZT-0.31PZNN thick film by controlling slurry viscosity and tape-casting blade height

    NASA Astrophysics Data System (ADS)

    Song, Daniel; Woo, Min Sik; Ahn, Jung Hwan; Sung, Tae Hyun; Kim, Kyoung Bum

    2014-12-01

    We investigated how the viscosities of piezoelectric lead zirconate titanate/lead zirconate nickel niobate (PZT-PZNN) slurry samples affect the laminated-film densities based on various conditions of degassing time for 0, 30, and 60 min. PZT-PZNN slurries with different viscosities were tape casted into green sheets by adjusting the comma blade height to 100, 200, 300, 400, and 500 μm. As a result the slurry viscosity linearly increased with increasing slurry degassing time, and the thickness of the green sheet increased with increasing comma blade height. The density and the dielectric properties of piezoelectric ceramic films with the same thicknesses, but composed of different numbers of layers, were compared. The laminated-film density and the dielectric property d33 × g33 increased with decreasing number of laminated layers. However, when the viscosity of the slurry was too high (degassing time > 60 min) and the comma blade height was too high (comma blade height > 300 μm), the tape-casted green sheet was too thick to have enough time to dry. By controlling the slurry viscosity by adjusting the degassing time and the comma blade height, we were able to optimize the thickness of the green sheet in a tape-casting. The optimal green sheet thickness was < 70 μm, and the number of sheets laminated should be minimized to increase the film's density and dielectric constant.

  13. Drug release from cast films of ethylene vinyl acetate (EVA) copolymer: Stability of drugs by 1H NMR and solid state 13C CP/MAS NMR.

    PubMed

    Kalachandra, S; Lin, D M; Stejskal, E O; Prakki, A; Offenbacher, S

    2005-07-01

    The study utilizes an oral biocompatible material based on ethylene vinyl acetate copolymer (EVA) designed to release drugs in vitro at therapeutic levels over several days. We examined the drug stability during film casting process using proton and solid state NMR techniques. The drug-loaded EVA films were prepared from the dry sheet obtained by solvent (dichloromethane) evaporation of polymer casting solutions. Drugs tested include chlorhexidine diacetate (CDA), doxycycline hydrochloride (DOH), tetracycline hydrochloride (TTH) and nystatin (NST). Drug release from the films was examined for at least 14 days in 10 ml ddH2O (NST in water/ethanol (4:1)) which was replaced daily. Changes in optical density were followed spectraphotometrically. Effect of temperature on rate measurements was studied and the energies of activation (E*) were calculated using Arrhenius plots. Effect of EVA copolymer composition on CDA release rate was also investigated. The enhanced rates with temperature increase may be attributed to the formation of channels with increased geometry in the polymer. The highest E* observed for CDA compared to DOH and TTH may be related to their average molecular weights. Spectral analyses for CDA and NST revealed that the chemical and physical structures of the drugs remained unaffected during the film casting process.

  14. Growth directions of C8-BTBT thin films during drop-casting

    NASA Astrophysics Data System (ADS)

    Iizuka, Naoki; Zanka, Tomohiko; Onishi, Yosuke; Fujieda, Ichiro

    2016-02-01

    Because charge transport in a single crystal is anisotropic, control of its orientation is important for enhancing electrical characteristics and reducing variations among devices. For growing an organic thin film, a solution process such as inkjet printing offers advantages in throughput. We have proposed to apply an external temperature gradient during drop-casting and to control the direction of solvent evaporation. In experiment, a temperature gradient was generated in a bare Si substrate by placing it on a Si plate bridging two heat stages. When a solution containing 2,7-dioctyl [1]benzothieno[3,2-b]benzothiophene (C8-BTBT) was dropped on the substrate, evaporation started at the hotter side of the droplet and proceeded toward the colder side. The front line of the liquid was not pinned and the solution extended toward the colder region. As a result, a thin film was formed in a 7mm-long region. The peripheral region of the film was significantly thicker due to the coffee ring effect. The surface of the rest of the film was mostly smooth and terrace structures with 2.6nm steps were observed. The step roughly corresponds to the length of the C8-BTBT molecule. The film thickness varied from 20nm to 50nm over the distance of 3mm. Another film was grown on a glass substrate under a similar condition. Observation of the film with a polarizing microscope revealed that fan-shaped domains were formed in the film and that their optical axes were mostly along the directions of the solvent evaporation.

  15. Improving Drug Loading of Mucosal Solvent Cast Films Using a Combination of Hydrophilic Polymers with Amoxicillin and Paracetamol as Model Drugs

    PubMed Central

    Kianfar, Farnoosh

    2013-01-01

    Solvent cast mucosal films with improved drug loading have been developed by combining carboxymethyl cellulose (CMC), sodium alginate (SA), and carrageenan (CAR) using paracetamol and amoxicillin as model drugs and glycerol (GLY) as plasticizer. Films were characterized using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), folding resilience, swelling capacity, mucoadhesivity, and drug dissolution studies. SA, CMC, and GLY (5 : 3 : 6) films showed maximum amoxicillin loading of 26.3% whilst CAR, CMC, and GLY (1 : 2 : 3) films had a maximum paracetamol loading of 40%. XRPD analysis showed different physical forms of the drugs depending on the amount loaded. Films containing 29.4% paracetamol and 26.3% amoxicillin showed molecular dispersion of the drugs while excess paracetamol was observed on the film surface when the maximum 40% was loaded. Work of adhesion was similar for blank films with slightly higher cohesiveness for CAR and CMC based films, but the differences were significant between paracetamol and amoxicillin containing films. The stickiness and cohesiveness for drug loaded films were generally similar with no significant differences. The maximum percentage cumulative drug release was 84.65% and 70.59% for paracetamol and amoxicillin, respectively, with anomalous case two transport mechanism involving both drug diffusion and polymer erosion. PMID:23841056

  16. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    PubMed

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  17. Changes in the composition of a nickel-base partial denture casting alloy upon fusion and casting.

    PubMed

    Lewis, A J

    1975-02-01

    Three series of tensile test pieces were produced using a nickel-base partial denture casting alloy. For the first series induction heating was employed for melting the alloy, for the second a resistance crucible, and for the third an oxy-acetylene torch. In each series the same metal was cast sequentially five times, following which samples of the alloy were subjected to a ten element quantitative analysis to ascertain compositional changes associated with the three methods of fusion.

  18. Cast iron-base alloy for cylinder/regenerator housing

    NASA Technical Reports Server (NTRS)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  19. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.

    PubMed

    Tan, Yueming; Deng, Wenfang; Li, Yunyong; Huang, Zhao; Meng, Yue; Xie, Qingji; Ma, Ming; Yao, Shouzhuo

    2010-04-22

    We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.

  20. A novel dimethylformamide (DMF) free bar-cast method to deposit organolead perovskite thin films with improved stability.

    PubMed

    Jones, Eurig W; Holliman, Peter J; Connell, Arthur; Davies, Matthew L; Baker, Jennifer; Hobbs, Robert J; Ghosh, Sanjay; Furnell, Leo; Anthony, Rosie; Pleydell-Pearce, Cameron

    2016-03-21

    We report a solvent-free approach to synthesizing organolead perovskites by using solid state reactions to coat perovskite crystals onto Al2O3 or TiO2 nanoparticles followed by addition of terpineol affording perovskite inks. We have bar cast these inks to produce photoactive perovskite thin films which are significantly more stable to humidity than solution-processed films. This new method also avoids the use of toxic DMF solvent.

  1. Method of casting pitch based foam

    DOEpatents

    Klett, James W.

    2002-01-01

    A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.

  2. Fluid casting of particle-based articles

    DOEpatents

    Menchhofer, Paul

    1995-01-01

    A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.

  3. Fluid casting of particle-based articles

    DOEpatents

    Menchhofer, P.

    1995-03-28

    A method is disclosed for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product. 1 figure.

  4. Casting of particle-based hollow shapes

    DOEpatents

    Menchhofer, P.

    1995-05-30

    A method is disclosed for the production of hollow articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is coated onto a prewarmed continuous surface in a relatively thin layer so that the slurry is substantially uniformly coated on the surface. The heat of the prewarmed surface conducts to the slurry to initiate a reaction which causes the slurry to set or harden in a shape conforming to the surface. The hardened configurations may then be sintered to consolidate the particles and provide a high density product. 9 figs.

  5. Coccidioidomycosis among cast and crew members at an outdoor television filming event--California, 2012.

    PubMed

    Wilken, Jason A; Marquez, Patricia; Terashita, Dawn; McNary, Jennifer; Windham, Gayle; Materna, Barbara

    2014-04-18

    In March 2013, the California Department of Public Health (CDPH) identified two Doctor's First Reports of Occupational Injury or Illness (DFRs) regarding Los Angeles County residents who had worked at the same jobsite in January 2012 and had been evaluated for possible work-associated coccidioidomycosis (valley fever). Occupational exposure to Coccidioides, the causative fungi, typically is associated with soil-disrupting activities. The physicians noted that both workers were cast or crew members filming a television series episode, and the site of possible exposure was an outdoor set in Ventura County, California. On the basis of their job titles, neither would have been expected to have been engaged in soil-disrupting activities. Los Angeles County Department of Public Health (LACDPH) conducted an outbreak investigation by using CDPH-provided occupational surveillance records, traditional infectious disease surveillance, and social media searches. This report describes the results of that investigation, which identified a total of five laboratory-confirmed and five probable cases linked to this filming event. The employer and site manager were interviewed. The site manager stated that they would no longer allow soil-disruptive work at the site and would incorporate information about the potential risk for Coccidioides exposure onsite into work contracts. Public health professionals, clinicians, and the television and film industry should be aware that employees working outdoors in areas where Coccidioides is endemic (e.g., central and southern California), even those not engaged in soil-disruptive work, might be at risk for coccidioidomycosis.

  6. Comparative study on properties of edible films based on pinhao (Araucaria angustifolia) starch and flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to develop and compare the properties of edible films based on pinhao starch and pinhao flour. Seven formulations were developed by casting methodology: 5% pinhao starch with 0, 1, 1.5, and 2% glycerol, and 5% pinhao flour with 1, 1.5, and 2% glycerol. The films were evalua...

  7. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds.

    PubMed

    Sangsanoh, Pakakrong; Waleetorncheepsawat, Suchada; Suwantong, Orawan; Wutticharoenmongkol, Patcharaporn; Weeranantanapan, Oratai; Chuenjitbuntaworn, Boontharika; Cheepsunthorn, Poonlarp; Pavasant, Prasit; Supaphol, Pitt

    2007-05-01

    The in vitro responses of Schwann cells (RT4-D6P2T, a schwannoma cell line derived from a chemically induced rat peripheral neurotumor) on various types of electrospun fibrous scaffolds of some commercially available biocompatible and biodegradable polymers, i.e., poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polycaprolactone (PCL), poly(l-lactic acid) (PLLA), and chitosan (CS), were reported in comparison with those of the cells on corresponding solution-cast film scaffolds as well as on a tissue-culture polystyrene plate (TCPS), used as the positive control. At 24 h after cell seeding, the viability of the attached cells on the various substrates could be ranked as follows: PCL film > TCPS > PCL fibrous > PLLA fibrous > PHBV film > CS fibrous approximately CS film approximately PLLA film > PHB film > PHBV fibrous > PHB fibrous. At day 3 of cell culture, the viability of the proliferated cells on the various substrates could be ranked as follows: TCPS > PHBV film > PLLA film > PCL film > PLLA fibrous > PHB film approximately PCL fibrous > CS fibrous > CS film > PHB fibrous > PHBV fibrous. At approximately 8 h after cell seeding, the cells on the flat surfaces of all of the film scaffolds and that of the PCL nanofibrous scaffold appeared in their characteristic spindle shape, while those on the surfaces of the PHB, PHBV, and PLLA macrofibrous scaffolds also appeared in their characteristic spindle shape, but with the cells being able to penetrate to the inner side of the scaffolds.

  8. Interplay of processing, morphological order, and charge-carrier mobility in polythiophene thin films deposited by different methods: comparison of spin-cast, drop-cast, and inkjet-printed films.

    PubMed

    Wong, Loke-Yuen; Png, Rui-Qi; Silva, F B Shanjeera; Chua, Lay-Lay; Repaka, D V Maheswar; Shi-Chen; Gao, Xing-Yu; Ke, Lin; Chua, Soo-Jin; Wee, Andrew T S; Ho, Peter K H

    2010-10-05

    The dependence of morphology and polymer-chain orientation of regioregular poly(3-hexylthiophene) (rrP3HT) thin films on processing conditions have been widely studied. However, their possible variation across the film thickness direction remains largely unknown. We report here a marked difference in the optical dielectric (n,k) spectra between the top and bottom interfaces of spin-cast (sc) rrP3HT films deposited from chlorobenzene solutions. These spectra were obtained from reflection variable-angle spectroscopic ellipsometry using a self-consistent graded optical model with self-imposed Kramers-Krönig consistency. The top interface shows a red-shifted absorption that is characteristic of better order than at the bottom, across a wide range of film thicknesses. This disparity diminishes in drop-cast (dc) and multipass inkjet-printed (ijp) films, and disappears in amorphous films such as those of polystyrene and of a green-emitting phenyl-substituted poly(p-phenylenevinylene). The (n,k) spectra also reveal that crystallinity increases across sc < dc < ijp films. This is supported by cross section scanning electron microscopy of the cleaved edges and measurement of the microroughness of both the film interfaces. Furthermore, optical anisotropy decreases across sc > dc > ijp films. Finally, near-edge X-ray absorption fine structure spectroscopy also shows the frontier chains in ijp and dc films are more isotropically oriented than those in sc films. These results suggest that semicrystalline conjugated polymer films can be produced far from equilibrium. This explains the marked variation in their (opto)electronic properties between the top and bottom surfaces that has sometimes been found depending on the film deposition method. In particular, an unusually pronounced crystallization is induced by ijp. We label this marked ijp-induced crystallization the "ijp morphology", which appears to be general, as it is found also in single-inkjet-droplet films. It appears

  9. Improved mechanical properties of solution-cast silicone film reinforced with electrospun polyurethane nanofiber containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tijing, Leonard D.; Park, Chan-Hee; Kang, Seung-Ji; Amarjargal, Altangerel; Kim, Tae-Hyung; Pant, Hem Raj; Kim, Han Joo; Lee, Dong Hwan; Kim, Cheol Sang

    2013-01-01

    In this study, we describe the enhancing ability of electrospun polyurethane (PU) nanofibers containing carbon nanotubes (CNTs) as nanofillers for silicone film in improving the physico-mechanical properties of the composite material. We prepared the samples combining two simple techniques: solution casting and electrospinning. Neat PU nanofibers alone are good reinforcing materials but the presence of CNTs inside the PU nanofibers has drastically improved the mechanical properties of the silicone composite film. The silicone film increased its tensile strength by 226% and its tensile modulus by more than 14-fold when CNT/PU nanofibers were incorporated.

  10. Development of microporous drug-releasing films cast from artificial nanosized latexes of poly(styrene-co-methyl methacrylate) or poly(styrene-co-ethyl methacrylate).

    PubMed

    Otto, Daniel P; Vosloo, Hermanus C M; Liebenberg, Wilna; de Villiers, Melgardt M

    2008-08-01

    Two sets of copolymers comprising of styrene and either methyl or ethyl methacrylate as comonomer were conveniently synthesized by microemulsion copolymerization. The purified materials were characterized by GPC-MALLS and were shown to form artificial nanolatexes in THF. ATR-FTIR analysis revealed differences in copolymer composition and based on the copolymer properties, a selection of copolymers was chosen to cast drug-loaded, microporous films that exhibit microencapsulation of drug agglomerates. The contact angles of the copolymers suggested potential applications in medical devices to prevent the formation of bacterial biofilms that commonly result in infections. Additionally, the different copolymeric films showed two phases of drug release characterized by a rapid initial drug release followed by a zero-order phase. Depending on the application, one could select the copolymer films that best suited the application i.e. for short-term drug release applications such as urinary catheters or long-term applications such as artificial implants.

  11. Cast Fe-base cylinder/regenerator housing alloy

    NASA Technical Reports Server (NTRS)

    Larson, F.; Kindlimann, L.

    1980-01-01

    The development of an iron-base alloy that can meet the requirements of automotive Stirling engine cylinders and regenerator housings is described. Alloy requirements are as follows: a cast alloy, stress for 5000-hr rupture life of 200 MPa (29 ksi) at 775 C (1427 F), oxidation/corrosion resistance comparable to that of N-155, compatibility with hydrogen, and an alloy cost less than or equal to that of 19-9DL. The preliminary screening and evaluation of ten alloys are described.

  12. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films.

    PubMed

    Unsal, E; Drum, J; Yucel, O; Nugay, I I; Yalcin, B; Cakmak, M

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)∕DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay∕NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying∕swelling∕solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  13. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films

    NASA Astrophysics Data System (ADS)

    Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  14. PZT/P(VDF-HFP) 0 3 composites as solvent-cast thin films: preparation, structure and piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Wegener, Michael; Arlt, Kristin

    2008-08-01

    Composite films of lead zirconate titanate (PZT) and poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) were prepared as 100 µm thin films by solvent casting. Within the 0-3 composites, the ceramic-volume fraction was varied between 0.19 and 0.65, which yielded films with different structural and dielectric properties. These influenced the piezoelectric properties of the composite films found after electric poling, which was performed here at room temperature. The piezoelectric activity, with a maximum piezoelectric coefficient of 11 pC N-1 in the film-thickness direction, originates from the polarization of the embedded ceramic particles as proved by poling experiments in corona discharges as well as in direct contact.

  15. On the stabilizing effects of neck-in, gravity, and inertia in Newtonian film casting

    NASA Astrophysics Data System (ADS)

    Bechert, M.; Schubert, D. W.; Scheid, B.

    2016-02-01

    We investigate the influence of the reduction of width along the stretching direction, the so-called neck-in effect, on the draw resonance instability in Newtonian film casting using a linear stability analysis of a model of reduced dimensionality including gravity and inertia forces. Proper scaling reveals the aspect ratio, i.e., the ratio of the initial film half-width to the film length, together with the fluidity and the inlet velocity as independent, dimensionless control parameters. Moreover, we introduce the local Trouton ratio as a measure for the type of elongational deformation, which can be uniaxial, planar, or a combination of both. In the case of purely uniaxial or planar deformations, a one-dimensional model is sufficient. The influence of the control parameters on the draw resonance instability, including a threshold to unconditional stability, is visualized by several stability maps. Special cases of viscous-gravity and viscous-inertia models are analyzed separately due to their practical importance. Gravity appears to influence the aspect ratio at which the critical draw ratio is maximum and amplifies the stabilizing effect of the neck-in. Inertia increases the stabilization due to neck-in, eventually leading to a window of unconditional stability within the analyzed region of aspect ratios. The mechanism underlying the complete suppression of draw resonance is presented, using exclusively steady state analysis. Additionally, the stabilizing mechanisms of gravity and neck-in are revealed. Known alternative stability criteria are extended to the case of finite width and their validity is tested in the presence of inertia, gravity, and finite aspect ratios.

  16. Development and mechanical characterization of solvent-cast polymeric films as potential drug delivery systems to mucosal surfaces.

    PubMed

    Boateng, Joshua S; Stevens, Howard N E; Eccleston, Gillian M; Auffret, Anthony D; Humphrey, Michael J; Matthews, Kerr H

    2009-08-01

    Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.

  17. Caste-, work-, and descent-based discrimination as a determinant of health in social epidemiology.

    PubMed

    Patil, Rajan R

    2014-01-01

    Social epidemiology explores health in the context of broad social determinants of health, where the boundary lines between health and politics appear increasingly blurred. Social determinants of health such as caste, discrimination, and social exclusion are inherently political in nature, hence it becomes imperative to look at health through a broader perspective of political philosophy, ideology, and caste that imposes enormous obstacles to a person's full attainment of civil, political, economic, social, and cultural rights. Caste is descent based and hereditary in nature. It is a characteristic determined by one's birth into a particular caste, irrespective of the faith practiced by the individual. Caste denotes a system of rigid social stratification into ranked groups defined by descent and occupation. Under various caste systems throughout the world, caste divisions also dominate in housing, marriage, and general social interaction divisions that are reinforced through the practice and threat of social ostracism, economic boycotts, and even physical violence-all of which undermine health equality.

  18. Solvent-dependent electrical characteristics and stability of organic thin-film transistors with drop cast bis(triisopropylsilylethynyl) pentacene

    NASA Astrophysics Data System (ADS)

    Kim, Chang Su; Lee, Stephanie; Gomez, Enrique D.; Anthony, John E.; Loo, Yueh-Lin

    2008-09-01

    The solvent from which the active layer is drop cast dramatically influences the electrical characteristics and electrical stability of thin-film transistors comprising bis(triisopropylsilylethynyl) pentacene. Casting from high boiling solvents allows slower crystallization; devices cast from toluene and chlorobenzene thus exhibit mobilities >0.1 cm2/V s and on/off ratios of ˜106. More importantly, the solvent choice influences the device stability. Devices from toluene exhibit stable characteristics, whereas devices from chlorobenzene show hystereses on cycling, with dramatic threshold voltage shifts toward positive voltages. The instability in chlorobenzene devices is attributed to the migration of water and solvent impurities to the charge transport interface on repetitive testing.

  19. High pressure die casting of Fe-based metallic glass

    PubMed Central

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  20. High pressure die casting of Fe-based metallic glass

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  1. Determination of the Lifetime of a Double-Oxide Film in Al Castings

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mahmoud Ahmed; Salem, Hanadi A. G.; Kandeil, Abdelrazek Youssef; Griffiths, W. D.

    2014-08-01

    One of the most important casting defects in Al alloys is thought to be the double-oxide film defect (bifilm) which has been reported to have a deleterious effect on the reproducibility of the mechanical properties of Al castings. Previous research has suggested that the atmosphere inside such bifilms could be consumed by reaction with the surrounding melt, which might decrease the size of the defects and reduce their harmful effect on mechanical properties. In order to follow the change in the composition of the interior atmosphere of a bifilm, analog air bubbles were held inside Al alloy melts, for varying lengths of time, and subjected to stirring, followed by solidification. The bubble contents were then analyzed using a mass spectrometer to determine the changes in their compositions with time. The results suggested that initially oxygen and then nitrogen inside the bubble were consumed, and hydrogen dissolved in the melt diffused into the bubble. The consumption rates of O and N as well as the rate of H diffusion were dependent upon the type of oxide, which was dependent on the alloy composition. The reaction rates were the fastest with MgO (in an Al-5Mg alloy), slower with alumina (in commercial-purity Al alloy), and the slowest with MgAl2O4 spinel (in an Al-7Si-0.3Mg alloy). It was estimated that the times required for typical bifilm defects in the different alloys to lose their entire oxygen and nitrogen contents were about 345 seconds (~6 minutes), in the case of Al-5Mg; 538 seconds (~9 minutes), in the case of a commercial purity alloy; and 1509 seconds (~25 minutes), in the case of the Al-7Si-0.3Mg alloy (2L99) due to the different oxides that the different alloys would be expected to form.

  2. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    SciTech Connect

    Tan, Y.M.; Lim, S.H.; Tay, B.Y.; Lee, M.W.; Thian, E.S.

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  3. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.

    PubMed

    Trotochaud, Lena; Ranney, James K; Williams, Kerisha N; Boettcher, Shannon W

    2012-10-17

    Water oxidation is a critical step in water splitting to make hydrogen fuel. We report the solution synthesis, structural/compositional characterization, and oxygen evolution reaction (OER) electrocatalytic properties of ~2-3 nm thick films of NiO(x), CoO(x), Ni(y)Co(1-y)O(x), Ni(0.9)Fe(0.1)O(x), IrO(x), MnO(x), and FeO(x). The thin-film geometry enables the use of quartz crystal microgravimetry, voltammetry, and steady-state Tafel measurements to study the electrocatalytic activity and electrochemical properties of the oxides. Ni(0.9)Fe(0.1)O(x) was found to be the most active water oxidation catalyst in basic media, passing 10 mA cm(-2) at an overpotential of 336 mV with a Tafel slope of 30 mV dec(-1) with oxygen evolution reaction (OER) activity roughly an order of magnitude higher than IrO(x) control films and similar to the best known OER catalysts in basic media. The high activity is attributed to the in situ formation of layered Ni(0.9)Fe(0.1)OOH oxyhydroxide species with nearly every Ni atom electrochemically active. In contrast to previous reports that showed synergy between Co and Ni oxides for OER catalysis, Ni(y)Co(1-y)O(x) thin films showed decreasing activity relative to the pure NiO(x) films with increasing Co content. This finding is explained by the suppressed in situ formation of the active layered oxyhydroxide with increasing Co. The high OER activity and simple synthesis make these Ni-based catalyst thin films useful for incorporating with semiconductor photoelectrodes for direct solar-driven water splitting or in high-surface-area electrodes for water electrolysis.

  4. Cast adhesive polyelectrolyte complex particle films of unmodified or maltose-modified poly(ethyleneimine) and cellulose sulphate: fabrication, film stability and retarded release of zoledronate.

    PubMed

    Torger, Bernhard; Vehlow, David; Urban, Birgit; Salem, Samaa; Appelhans, Dietmar; Müller, Martin

    2013-12-01

    The bone therapeutic drug zoledronate (ZOL) was loaded at and released by polyelectrolyte complex (PEC) particle films composed of either pure poly(ethyleneimine) (PEI) or maltose-modified poly(ethyleneimine) (PEI-M) and oppositely charged cellulose sulfate attached to model germanium (Ge) substrates by solution casting. Dispersions of colloidally stable polyelectrolyte complex (PEC) particles in the size range 11-141 nm were obtained by mixing PEI or PEI-M, CS and ZOL in defined stoichiometric ratios. TRANS-FTIR spectroscopy was used to determine the stability of the PEC films against detachment, in-situ-ATR-FTIR spectroscopy for the ZOL loss in the PEC film and UV-VIS spectroscopy for the ZOL enrichment of the release medium. Films of casted ZOL/CS/PEI-M or ZOL/CS/PEI particles were stable in contact to water, while films of the pure drug (ZOL) and of the binary systems ZOL/PEI-M or ZOL/PEI were not stable against detachment. Retarded releases of ZOL from various PEC films compared to the pure drug film were observed. The molecular weight of PEI showed a considerable effect on the initial burst (IB) of ZOL. No significant effect of the maltose modification of PEI-25 K on IB could be found. Generally, after one day the ZOL release process was finished for all measured ZOL/PEC samples and residual amounts of 0-30% were obtained. Surface adhesive drug loaded PEC particles are promising drug delivery systems to supply and release a defined amount of bone therapeutics and to functionalize bone substitution materials.

  5. Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires.

    PubMed

    Shahzadi, Kiran; Wu, Lin; Ge, Xuesong; Zhao, Fuhua; Li, Hui; Pang, Shuping; Jiang, Yijun; Guan, Jing; Mu, Xindong

    2016-02-10

    A bio-based hybrid film containing chitosan (CS) and silver nanowires (AgNWs) has been prepared by a simple casting technique. X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible spectroscopy were employed to characterize the structure of bio-based film. The bio-based hybrid film showed unique performance compared with bare chitosan film. The incorporated nano-silver could improve the strength properly. The results revealed that AgNWs in CS film, improved its tensile strength more than 62% and Young modulus 55% compared with pure chitosan film. On the other hand tensile strength was increased 36.7% with AgNPs. Importantly, the film also exhibited conductivity and antibacterial properties, which may expand its future application.

  6. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PEDOT: PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  7. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-02-15

    The use of synthetic petroleum based packaging films caused serious environmental problems due to their difficulty in recycling and poor biodegradability. Therefore, present study was aimed to develop natural biopolymer-based antimicrobial packaging films as an alternative for the synthetic packaging films. As a natural antimicrobial agent, grapefruit seed extract (GSE) has been incorporated into agar to prepare antimicrobial packaging film. The films with different concentrations of GSE were prepared by a solvent casting method and the resulting composite films were examined physically and mechanically. In addition, the films were characterized by FE-SEM, XRD, FT-IR and TGA. The incorporation of GSE caused increase in color, UV barrier, moisture content, water solubility and water vapor permeability, while decrease in surface hydrophobicity, tensile strength and elastic modulus of the films. As the concentration of GSE increased from 0.6 to 13.3 μg/mL, the physical and mechanical properties of the films were affected significantly. The addition of GSE changed film microstructure of the film, but did not influence the crystallinity of agar and thermal stability of the agar-based films. The agar/GSE films exhibited distinctive antimicrobial activity against three test food pathogens, such as Listeria monocytogenes, Bacillus cereus and Escherichia coli. These results suggest that agar/GSE films have potential to be used in an active food packaging systems for maintaining food safety and extending the shelf-life of the packaged food.

  8. Influence of S. mutans on base-metal dental casting alloy toxicity.

    PubMed

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p < 0.0001) and cell metabolic activity (p < 0.0001), and significantly increased cell toxicity (p < 0.0001) and inflammatory cytokine expression (p < 0.0001). S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  9. Periodic porous stripe patterning in a polymer blend film induced by phase separation during spin-casting.

    PubMed

    Kim, Jae-Kyung; Taki, Kentaro; Nagamine, Shinsuke; Ohshima, Masahiro

    2008-08-19

    A periodic striping pattern with microscale pore size is observed on the surface of thin films prepared by spin-casting from a polystyrene (PS) and polyethylene glycol (PEG) blend solution. The pattern is created by the convection generated by thermal gradients in the solution between the substrate and film solution during solvent evaporation, the radial flow of the spin-coated solution, and the primary and secondary phase separation of the PS and PEG solutions. The formation mechanism of the periodic porous stripe pattern is discussed, wherein the effects of the polymer blend weight ratio, polymer concentration, and drying rate on the formation of the periodic porous striping pattern are investigated using scanning electron and atomic force microscopy.

  10. Spectral response of solvent-cast polyvinyl chloride (PVC) thin film used as a long-term UV dosimeter.

    PubMed

    Amar, Abdurazaq; Parisi, Alfio V

    2013-08-05

    The spectral response of solvent-cast polyvinyl chloride (PVC) thin film suitable for use as a long-term UV dosimeter has been determined by measuring the UV induced change in the 1064 cm(-1) peak intensity of the PVC's infrared (IR) spectra as a function of the wavelength of the incident radiation. Measurements using cut-off filters, narrow band-pass filters and monochromatic radiation showed that the 16 μm PVC film responds mainly to the UVB band. The maximum response was at 290 nm and decreasing exponentially with wavelength up to about 340 nm independent of temperature and exposure dose. The most suitable concentration (W/V%) of PVC/Tetrahydrofuran solution was found to be 10% and the best thickness for the dosimeter was determined as 16 μm.

  11. Morphological, Mechanical and Thermal Study of ZnO Nanoparticle Reinforced Chitosan Based Transparent Biocomposite Films

    NASA Astrophysics Data System (ADS)

    Das, Kunal; Maiti, Sonakshi; Liu, Dagang

    2014-04-01

    Chitosan based biocomposite transparent films reinforced with zinc oxide (ZnO) nanoparticles at different loading i.e. 2, 4 and 6 wt% were successfully prepared by solution casting method. Shape, size and geometry of the zinc oxide nanoparticles were characterized by scanning electron microscopy (SEM). The biocomposite films were subjected to mechanical characterization, thermal analysis, morphology study and moisture uptake behaviour. The characterization tools used here include wide angle X-ray diffraction study, scanning electron microscopic analysis, differential scanning calorimetric analysis and also UV-visible transmittance behavior. SEM micrographs revealed uniformly dispersed ZnO nanoparticles in biocomposite films. Improvement of the tensile strength about 133 % was observed significantly in case of 4 wt% loaded chitosan/ZnO films with respect to the neat chitosan film. 43 % higher transparency was observed in case of 2 wt% ZnO loaded biocomposites films, thus indicating the best combination of properties of 2 wt% ZnO loaded biocomposite films.

  12. Cellular activity of Wharton's Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds.

    PubMed

    Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Safa, Majid; Joghataei, Mohammad Taghi

    2016-01-01

    It was shown that topography and surface chemistry of materials influence cell behaviors. In this study, the effects of chemistry and topography of scaffold surface on adhesion, proliferation and differentiation of Wharton's Jelly mesenchymal (WJMSCs) stem cells into motor neurons were investigated. WJMSCs were cultivated in an neurogenic inductive medium on the surface of modified and unmodified polycaprolactone (PCL) electrospun fibrous and solvent-cast film scaffolds. All the scaffolds were characterized according to their ability to support cell attachment and viability by SEM and MTT assay. The expression of motor neuron-specific markers was assayed by real-time PCR after 15days post induction. Results showed that attachment, proliferation and differentiation of WJMSCs into motor neuron-like cells on the nanotopographic surface was higher than that of the cells on the solvent-cast scaffolds. In addition, regardless of their topography, WJMSCs cultured on collagen-coated PCL nanofibrous showed results similar to collagen-coated PCL films. Results suggested that surface chemistry has more impact on WJMSCs behaviour rather than topography. In conclusion, collagen-coated electrospun PCL have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhance viability and differentiation of WJMSCs.

  13. The effects of remelting on the mechanical properties of a nickel base partial denture casting alloy.

    PubMed

    Lewis, A J

    1975-04-01

    Three series of tensile test pieces were produced using a nickel base partial denture casting alloy. For the first series induction heating was employed, for the second a resistance crucible, and for the third, an oxy-acetylene torch. In each series the same metal was cast sequentially a number of times and all test pieces so produced were subjected to mechanical testing. The mechanical properties were found to vary according to both the number of times the alloy was cast and the method of heating used to render the alloy molten.

  14. Adhesion Casting In Low Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.

    1996-01-01

    Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.

  15. Fiber laser cladding of nickel-based alloy on cast iron

    NASA Astrophysics Data System (ADS)

    Arias-González, F.; del Val, J.; Comesaña, R.; Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2016-06-01

    Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni-based coating obtained presents a significantly superior hardness than cast iron.

  16. Electrical Transport and Grain Growth in Solution-Cast, Chloride-Terminated Cadmium Selenide Nanocrystal Thin Films

    PubMed Central

    2015-01-01

    We report the evolution of electrical transport and grain size during the sintering of thin films spin-cast from soluble phosphine and amine-bound, chloride-terminated cadmium selenide nanocrystals. Sintering of the nanocrystals occurs in three distinct stages as the annealing temperature is increased: (1) reversible desorption of the organic ligands (≤150 °C), (2) irreversible particle fusion (200–300 °C), and (3) ripening of the grains to >5 nm domains (>200 °C). Grain growth occurs at 200 °C in films with 8 atom % Cl–, while films with 3 atom % Cl– resist growth until 300 °C. Fused nanocrystalline thin films (grain size = 4.5–5.5 nm) on thermally grown silicon dioxide gate dielectrics produce field-effect transistors with electron mobilities as high as 25 cm2/(Vs) and on/off ratios of 105 with less than 0.5 V hysteresis in threshold voltage without the addition of indium. PMID:24960255

  17. Electrical transport and grain growth in solution-cast, chloride-terminated cadmium selenide nanocrystal thin films.

    PubMed

    Norman, Zachariah M; Anderson, Nicholas C; Owen, Jonathan S

    2014-07-22

    We report the evolution of electrical transport and grain size during the sintering of thin films spin-cast from soluble phosphine and amine-bound, chloride-terminated cadmium selenide nanocrystals. Sintering of the nanocrystals occurs in three distinct stages as the annealing temperature is increased: (1) reversible desorption of the organic ligands (≤150 °C), (2) irreversible particle fusion (200-300 °C), and (3) ripening of the grains to >5 nm domains (>200 °C). Grain growth occurs at 200 °C in films with 8 atom % Cl(-), while films with 3 atom % Cl(-) resist growth until 300 °C. Fused nanocrystalline thin films (grain size = 4.5-5.5 nm) on thermally grown silicon dioxide gate dielectrics produce field-effect transistors with electron mobilities as high as 25 cm(2)/(Vs) and on/off ratios of 10(5) with less than 0.5 V hysteresis in threshold voltage without the addition of indium.

  18. Reversible Photoinduced Switching of Permeability in a Cast Non-Porous Film Comprising Azobenzene Liquid Crystalline Polymer.

    PubMed

    Liu, Jian; Wang, Mingle; Dong, Mingling; Gao, Liude; Tian, Jingjing

    2011-10-04

    Permeation characteristics of an azobenzene-containing liquid crystalline (LC) non-porous film are investigated using a metallic corrosion method. Thin films (300 nm) are fabricated by the solution casting of an azobenzene side-chain LC polymer on freshly polished carbon steel coupons. Coated coupons are treated under the following conditions: a) gradual annealing at a cooling rate lower than 1 °C · min(-1) from 150 °C (above its Tg ) to room temperature, and b) irradiation at 465 nm (20 mW · cm(-2) ) with either circularly polarized light (CPL) or non-polarized light (NPL). The morphology of these films is characterized using X-ray diffraction, polarized optical microscopy, and transmission measurements. The results suggest that the annealing treatment resulted in the formation of a polydomain structure consisting of locally ordered small smectic domains that lack mutual orientation. Ordered micro domains are surrounded by disordered phases. CPL and NPL irradiation generates a monodomain orientated structure and an isotropic liquid crystal glass, respectively. The permeability of these non-porous films treated by CPL, NPL, and annealing are found to be 6.14 × 10(-4) , 1.92 × 10(-2) , and 1.56 × 10(-3) cm(3)  · m(-2)  · d(-1) . An orientation-dependent structure model is constructed to explain the permeation phenomenon, considering the ordered phase is impermeable, only the disordered phase is accessible to penetrating molecules. Fast switching of gas permeation is demonstrated by alternative irradiation of the film with CPL and NPL, which results in an approximately 30-fold difference in the permeability of the non-porous film.

  19. A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Lu, Yan; Ripplinger, Keith; Detwiler, Duane; Luo, Alan A.

    2017-02-01

    Cracking of sand molds/cores can result in many casting defects such as veining. A robust cracking criterion is needed in casting process simulation for predicting/controlling such defects. A cracking probability map, relating to fracture stress and effective volume, was proposed for resin-bonded silica sand based on Weibull statistics. Three-point bending test results of sand samples were used to generate the cracking map and set up a safety line for cracking criterion. Tensile test results confirmed the accuracy of the safety line for cracking prediction. A laboratory casting experiment was designed and carried out to predict cracking of a cup mold during aluminum casting. The stress-strain behavior and the effective volume of the cup molds were calculated using a finite element analysis code ProCAST®. Furthermore, an energy dispersive spectroscopy fractographic examination of the sand samples confirmed the binder cracking in resin-bonded silica sand.

  20. Fabrication and Electrical Characteristics of Graphite/Carbon Nanotube/Polyvinyl Butyral Composite Film via Tape-Casting and Heat-Treatment.

    PubMed

    Kim, Min-Young; Choi, Seung-Woo; Boo, Seong Jae; Lee, Jong-Ho; Noh, Hee Sook; Kim, Ho-Sung

    2015-10-01

    Composite stacking films, which can be applied as the bipolar plates of redox flow batteries, were fabricated via a tape-casting process that used slurry of graphite, CNT, and resin materials. The slurry was made of 25~45 wt% conductive filler (graphite, CNT) and 55~75 wt% polyvinyl butyral (PVB) binder solution (binder, dispersant, plasticizer, and solvent). The sheet thickness of the composite films was controlled to 70~150 μm, and composite films of about 1 mm in thickness were also fabricated by stacking and laminating the sheet film, including the conductive filler of above 85 wt%. The effects of the shape and physical properties of the graphite were investigated with regard to the dispersion behavior and flow of the slurry on the carrier film of the tape-casting device. As a result, the acicular graphite showed a good dispersion property with the resin of the PVB binder, as compared to spherical graphite. The composite film with acicular graphite showed a lower resistivity than that of a film with spherical graphite. Furthermore, the effects of adding a small amount of CNT and the heat-treatment to the composite stacking film were also studied. Finally, the composite film showed an electrical characteristic of below 50 mΩ·cm and a high bending strength of above 20 MPa.

  1. Sophorolipid-induced dimpling and increased porosity in solvent-cast short-chain polyhydroxyalkanoate films: impact on thermo-mechanical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sophorolipids (SL; microbial glycolipids) were used as additives in solvent-cast short-chain polyhydroxyalkanoate (sc-PHA) films to enhance surface roughness and porosity. Poly-3-hydroxybutyrate (PHB), poly-(6%)-3-hydroxybutyrate-co-(94%)-3-hydroxyvalerate (PHB/V), and poly-(90%)-3-hydroxybutyrate-c...

  2. The Effects of Confinement of Thin Spin Cast Films of Perfluorinated Ionomers

    NASA Astrophysics Data System (ADS)

    Perahia, Dvora; Hill, Teresa

    2003-03-01

    The surface structure and its response to annealing upon confinement of spin coated perfluorinated ion-containing polymer have been studied by atomic force microscopy, X-ray scattering, and non-polarized neutron reflectometry. Similar to self- assembled films, the spin coated ionomers form structured films consisting of bundles of micelles. In contrast to self-assembled films, in spin coated ones hexagonal arrangements of the basic structural units are observed. Films with thickness ranging from 350 Å to 1050 Å have been investigated as a function of annealing time above the glass transition temperature of the fluorinated backbones. The films remain intact and do not de-wet when heated above the glass transition temperature of the polymer, contrary to what has been observed in thin di-block copolymers. The film thickness affects the ability of the ionomer to rearrange and releases constraints imposed by the spin coating procedure.

  3. Casting Technology.

    ERIC Educational Resources Information Center

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  4. Moving through the phase diagram: morphology formation in solution cast polymer-fullerene blend films for organic solar cells.

    PubMed

    Schmidt-Hansberg, Benjamin; Sanyal, Monamie; Klein, Michael F G; Pfaff, Marina; Schnabel, Natalie; Jaiser, Stefan; Vorobiev, Alexei; Müller, Erich; Colsmann, Alexander; Scharfer, Philip; Gerthsen, Dagmar; Lemmer, Uli; Barrena, Esther; Schabel, Wilhelm

    2011-11-22

    The efficiency of organic bulk heterojunction solar cells strongly depends on the multiscale morphology of the interpenetrating polymer-fullerene network. Understanding the molecular assembly and the identification of influencing parameters is essential for a systematic optimization of such devices. Here, we investigate the molecular ordering during the drying of doctor-bladed polymer-fullerene blends on PEDOT:PSS-coated substrates simultaneously using in situ grazing incidence X-ray diffraction (GIXD) and laser reflectometry. In the process of blend crystallization, we observe the nucleation of well-aligned P3HT crystallites in edge-on orientation at the interface at the instant when P3HT solubility is crossed. A comparison of the real-time GIXD study at ternary blends with the binary phase diagrams of the drying blend film gives evidence of strong polymer-fullerene interactions that impede the crystal growth of PCBM, resulting in the aggregation of PCBM in the final drying stage. A systematic dependence of the film roughness on the drying time after crossing P3HT solubility has been shown. The highest efficiencies have been observed for slow drying at low temperatures which showed the strongest P3HT interchain π-π-ordering along the substrate surface. By adding the "unfriendly" solvent cyclohexanone to a chlorobenzene solution of P3HT:PCBM, the solubility can be crossed prior to the drying process. Such solutions exhibit randomly orientated crystalline structures in the freshly cast film which results in a large crystalline orientation distribution in the dry film that has been shown to be beneficial for solar cell performance.

  5. Mechanical and structural properties of solution-cast high-amylose maize starch films.

    PubMed

    Koch, Kristine; Gillgren, Thomas; Stading, Mats; Andersson, Roger

    2010-01-01

    Environmental issues have forced the introduction of sustainable solutions such as annually renewable resources being used as a raw material for packaging and disposables. This paper examined the effects of time and temperature during manufacturing and plasticiser content on the molecular structure of high-amylose maize starch films. It also analysed how manufacturing conditions, plasticiser content and molecular structure of the films affected their material properties. It was found that increased time or temperature increased the degradation of amylose and of amylopectin, which in turn negatively affected film cohesiveness. However, neither time nor temperature had any effect on tensile properties.

  6. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film.

    PubMed

    Yuan, Wei; Chan-Park, Mary B

    2012-04-01

    Although carbon nanotubes have impressive tensile properties, exploiting these properties in composites, especially those made by the common solution casting technique, seems to be elusive thus far. The reasons could be partly due to the poor nanotube dispersion and the weak nanotube/matrix interface. To solve this dual pronged problem, we combine noncovalent and covalent functionalizations of nanotubes in a single system by the design and application of a novel dispersant, hydroxyl polyimide-graft-bisphenol A diglyceryl acrylate (PI(OH)-BDA), and use them with epoxidized single-walled carbon nanotubes (O-SWNTs). Our novel PI(OH)-BDA dispersant functionalizes the nanotubes noncovalently to achieve good dispersion of the nanotubes because of the strong π-π interaction due to main chain and steric hindrance of the BDA side chain. PI(OH)-BDA also functionalizes O-SWNTs covalently because it reacts with epoxide groups on the nanotubes, as well as the cyanate ester (CE) matrix used. The resulting solution-cast CE composites show 57%, 71%, and 124% increases in Young's modulus, tensile strength, and toughness over neat CE. These values are higher than those of composites reinforced with pristine SWNTs, epoxidized SWNTs, and pristine SWNTs dispersed with PI(OH)-BDA. The modulus and strength increase per unit nanotube weight fraction, i.e., dE/dW(NT) and dσ/dW(NT), are 175 GPa and 7220 MPa, respectively, which are significantly higher than those of other nanotube/thermosetting composites (22-70 GPa and 140-3540 MPa, respectively). Our study indicates that covalent cum noncovalent functionalization of nanotubes is an effective tool for improving both the nanotube dispersion and nanotube/matrix interfacial interaction, resulting in significantly improved mechanical reinforcement of the solution-cast composites.

  7. High-Throughput Physiologically Based Toxicokinetic Models for ToxCast Chemicals

    EPA Science Inventory

    Physiologically based toxicokinetic (PBTK) models aid in predicting exposure doses needed to create tissue concentrations equivalent to those identified as bioactive by ToxCast. We have implemented four empirical and physiologically-based toxicokinetic (TK) models within a new R ...

  8. Molecular determinants of the influence of hydrophilic plasticizers on the mechanical properties of cast wheat gluten films.

    PubMed

    Mangavel, C; Barbot, J; Guéguen, J; Popineau, Y

    2003-02-26

    The influence of a set of hydrophilic plasticizers varying in their chain length (ethyleneglycol and longer molecules) on the tensile strength and elongation at break of cast gluten films was studied. When considered on a molar basis (moles of plasticizer per mole of amino acid), the effect of the different plasticizers depended on their respective molecular weights for plasticizer/amino acid ratios in the range from 0.10 to 0.40. However, above a ratio of 0.40-0.50 mol/mol of amino acid, these differences were abolished and both stress and strain reached a plateau value, with all plasticizers studied. In fact, when a homologous series of molecules was considered, the ability for plasticizer to decrease stress and increase strain was closely related to the number of hydrogen bonds the molecule was able to share with the protein network. Ethyleneglycol's efficiency was, however, lower than expected from its hydrogen-bonding potential; a comparison with other diols demonstrated that this was due to the small size of this molecule. The particular effect of glycerol concentration on the films' mechanical properties suggested that other molecular features of the plasticizer, such as the number and position of hydroxide groups in the molecule, were involved in the plasticization mechanism.

  9. Influence of high doses γ-irradiation on oxygen permeability of linear low-density polyethylene and cast polypropylene films

    NASA Astrophysics Data System (ADS)

    Klepac, Damir; Ščetar, Mario; Baranović, Goran; Galić, Kata; Valić, Srećko

    2014-04-01

    Linear low density polyethylene (PE-LLD) and cast polypropylene (PPcast) films were irradiated in a 60Co γ-source. The total irradiation dose varied from 0 kGy (unirradiated samples) to 200 kGy. Oxygen transport was investigated by a manometric method and the structural changes were studied by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Free radicals decay as a function of time was monitored by electron spin resonance (ESR) spectroscopy. The results show that the γ-irradiation reduces oxygen permeability coefficient in both films. The reduction was associated with an increase in crystallinity. DSC thermograms revealed a decrease in PPcast melting point with increasing irradiation dose, indicating higher degradation compared to PE-LLD. The observed peak in FTIR spectra for both samples at 1716 cm-1 corresponds to the stretching of the carbonyl and carboxylic groups which arise from the reaction of oxygen with the free radicals produced in the polymer matrix as a result of irradiation.

  10. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles.

    PubMed

    Bilbao-Sáinz, Cristina; Avena-Bustillos, Roberto J; Wood, Delilah F; Williams, Tina G; McHugh, Tara H

    2010-03-24

    It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of this work was to enhance these properties by reinforcing the films with microcrystalline cellulose (MCC) at the nano scale level. Three sizes of MCC nanoparticles were incorporated into HPMC edible films at different concentrations. Identical MCC nanoparticles were lipid coated (LC) prior to casting into HPMC/LC-MCC composite films. The films were examined for mechanical and moisture barrier properties verifying how the addition of cellulose nanoparticles affected the water affinities (water adsorption/desorption isotherms) and the diffusion coefficients. The expected reinforcing effect of the MCC was observed: HPMC/MCC and HPMC/LC-MCC films showed up to 53% and 48% increase, respectively, in tensile strength values in comparison with unfilled HPMC films. Furthermore, addition of unmodified MCC nanoparticles reduced the moisture permeability up to 40% and use of LC-MCC reduced this value up to 50%. Water vapor permeability was mainly influenced by the differences in water solubility of different composite films since, in spite of the increase in water diffusivity values with the incorporation of MCC to HPMC films, better moisture barrier properties were achieved for HPMC/MCC and HPMC/LC-MCC composite films than for HPMC films.

  11. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    PubMed

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-05

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification.

  12. Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products.

    PubMed

    López-Carballo, G; Hernández-Muñoz, P; Gavara, R; Ocio, M J

    2008-08-15

    The aim of this work was to develop antimicrobial photosensitizer-containing edible films and coatings based on gelatin as the polymer matrix, incorporating sodium magnesium chlorophyllin (E-140) and sodium copper chlorophyllin (E-141). Chlorophyllins were incorporated into the gelatin film-forming solution and the inhibiting effect of the cast films was tested against Staphylococcus aureus and Listeria monocytogenes. The results demonstrated that water soluble sodium magnesium chlorophyllin and water soluble sodium copper chlorophyllin reduced the growth of S. aureus and L. monocytogenes by 5 log and 4 log respectively. Subsequently, the activity of self-standing films and coatings containing E-140 was assessed on cooked frankfurters inoculated with S. aureus and L. monocytogenes. These tests showed that it was possible to reduce microorganism growth in cooked frankfurters inoculated with S. aureus and L. monocytogenes by covering them with sodium magnesium chlorophyllin-gelatin films and coatings.

  13. Mechanical and thermal properties of irradiated films based on Tilapia ( Oreochromis niloticus) proteins

    NASA Astrophysics Data System (ADS)

    Sabato, S. F.; Nakamurakare, N.; Sobral, P. J. A.

    2007-11-01

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia ( Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.

  14. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  15. Effect of casting geometry on mechanical properties of two nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Johnston, J. R.; Dreshfield, R. L.; Collins, H. E.

    1976-01-01

    An investigation was performed to determine mechanical properties of two rhenium-free modifications of alloy TRW, and to evaluate the suitability of the alloy for use in a small integrally cast turbine rotor. The two alloys were initially developed using stress rupture properties of specimens machined from solid gas turbine blades. Properties in this investigation were determined from cast to size bars and bars cut from 3.8 by 7.6 by 17.8 cm blocks. Specimens machined from blocks had inferior tensile strength and always had markedly poorer rupture lives than cast to size bars. At 1,000 C the cast to size bars had shorter rupture lives than those machined from blades. Alloy R generally had better properties than alloy S in the conditions evaluated. The results show the importance of casting geometry on mechanical properties of nickel base superalloys and suggest that the geometry of a component can be simulated when developing alloys for that component.

  16. Crosslinked superhydrophobic films fabricated by simply casting poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-poly(perfluorohexylethyl methacrylate) solution

    NASA Astrophysics Data System (ADS)

    Wen, Xiufang; Ye, Chao; Cai, Zhiqi; Xu, Shouping; Pi, Pihui; Cheng, Jiang; Zhang, Lijuan; Qian, Yu

    2015-06-01

    This study focuses on the preparation of superhydrophobic films by crosslinkable polymer material-Poly(methyl methacrylate-butyl acrylate-hydroxyethyl methacrylate)-b-Poly(perfluorohexylethyl methacrylate) (P (MMA-BA-HEMA)-b-PFMA) with a simple one-step casting process. Nanoscale micelle particles with core-shell structure was obtained by dissolving the polymer and curing agent in the mixture of acetone and 1H, 1H, 5H octafluoropentyl-1,1,2,2 tetrafluoroethyl ether (FHT). Superhydrophobic films were fabricated by casting the micelle solution on the glass slides. By controlling the polymer concentration and acetone/FHT volume ratio, superhydrophobic polymer film with water contact angle of 153.2 ± 2.1° and sliding angle of 4° was obtained. By introducing a curing agent into the micelle solution, mechanical properties of the films can be improved. The adhension grade and hardness of the crosslinked superhydrophobic films reached 2 grade and 3H, respectively. The hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness by nanoscale micelle particles and low surface energy of fluoropolymer. This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  17. Evaluation of an improved centrifugal casting machine.

    PubMed

    Donovan, T E; White, L E

    1985-05-01

    A Type III gold alloy, a silver-palladium alloy, and a base metal alloy were cast in two different centrifugal casting machines. With the number of complete cast mesh squares as an indicator of castability, the Airspin casting machine produced superior castings with all three alloys. The base metal alloy produced the greatest number of complete squares with both casting machines.

  18. Novel composite films based on amidated pectin for cationic dye adsorption.

    PubMed

    Nesic, Aleksandra R; Velickovic, Sava J; Antonovic, Dusan G

    2014-04-01

    Pectin, with its tendency to gel in the presence of metal ions has become a widely used material for capturing the metal ions from wastewaters. Its dye-capturing properties have been much less investigated, and this paper is the first to show how films based on amidated pectin can be used for cationic dye adsorption. In the present study amidated pectin/montmorillonite composite films were synthesized by membrane casting, and they are stable in aqueous solution both below and above pectin pKa. FTIR, thermogravimetry and SEM-EDAX have confirmed the presence of montmorillonite in the cast films and the interactions between the two constituents. In order to evaluate the cationic dye adsorption of these films Basic Yellow 28 was used, showing that the films have higher adsorption capacity compared to the others reported in the literature. The results were fitted into Langmuir, Freundlich and Temkin isotherms indicating an exothermic process and setting the optimum amount of montmorillonite in the films to 30% of pectin mass. According to the Langmuir isotherm the maximum adsorption capacity is 571.4 mg/g.

  19. Urinary casts

    MedlinePlus

    ... blood cell (WBC) casts are more common with acute kidney infections. Your provider will tell you more about your results. Risks There are no risks with this test. Alternative Names Hyaline casts; Granular casts; Renal tubular epithelial casts; Waxy casts; Casts in the ...

  20. Fennel waste-based films suitable for protecting cultivations.

    PubMed

    Mariniello, L; Giosafatto, C V L; Moschetti, G; Aponte, M; Masi, P; Sorrentino, A; Porta, R

    2007-10-01

    Biodegradable, flexible, and moisture-resistant films were obtained by recycling fennel waste and adding to fennel homogenates the bean protein phaseolin that was modified or not modified by the enzyme transglutaminase. All films were analyzed for their morphology, mechanical properties, water vapor permeability, and susceptibility to biodegradation under soil-like conditions. Our experiments showed that transglutaminase treatment of the phaseolin-containing fennel waste homogenates allowed us to obtain films comparable in their mechanical properties and water vapor permeability to the commercial films Ecoflex and Mater-Bi. Furthermore, biodegradability tests demonstrated that the presence of the enzyme in the film-casting sample significantly influences the integrity of such a product that lasts longer than films obtained either with fennel waste alone or with a mixture of fennel waste and phaseolin. These findings indicate the fennel-phaseolin film prepared in the presence of transglutaminase to be a promising candidate for a new environmentally friendly mulching bioplastic.

  1. Online Measurement for Transient Mold Friction Based on the Hydraulic Oscillators of Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Wang, Zhaofeng; Yao, Man

    2013-12-01

    The interaction of the strand shell surface and mold copper plates has significant effects on the slab surface quality and casting productivity. This article focuses on developing a reliable approach to measure the transient friction force between the slab and the mold for the purpose of the investigation of lubrication and friction behavior inside a mold. This method is presented to monitor transient mold frictions for the slab continuous caster equipped with hydraulic oscillators. A mathematical model is also developed to calculate the empty working force of the no casting state, and a new algorithm, based on the particle swarm optimization, is proposed to predict the dynamic characteristic parameters of mold oscillation. The results have shown that the method has a sufficient sensitivity to variation, especially to the periodical variation of the mold friction, and it has been identified that the transient mold friction can be used as an effective index with regard to detecting mold oscillation and optimizing the casting parameters for process control. It may lay the practical foundation for the online detection of powder lubrication and the visualization of the continuous-casting mold process.

  2. Tuning the modulus of nanostructured ionomer films of core-shell nanoparticles based on poly(n-butyl acrylate).

    PubMed

    Musa, Muhamad S; Milani, Amir H; Shaw, Peter; Simpson, Gareth; Lovell, Peter A; Eaves, Elizabeth; Hodson, Nigel; Saunders, Brian R

    2016-10-04

    In this study we investigate the structure-mechanical property relationships for nanostructured ionomer films containing ionically crosslinked core-shell polymer nanoparticles based on poly(n-butyl acrylate) (PBA). Whilst nanostructured ionomer films of core-shell nanoparticles have been previously shown to have good ductility [Soft Matter, 2014, 10, 4725], the modulus values were modest. Here, we used BA as the primary monomer to construct core-shell nanoparticles that provided films containing nanostructured polymers with much higher glass transition temperature (Tg) values. The core-shell nanoparticles were synthesised using BA, acrylonitrile (AN), methacrylic acid (MAA) and 1,4-butanediol diacrylate (BDDA). Nanostructured ionomer films were prepared by casting aqueous core-shell nanoparticle dispersions in which the shell -COOH groups were neutralised with KOH and ZnO. The film mechanical properties were studied using dynamic mechanical analysis and tensile stress-strain measurements. The use of BA-based nanoparticles increased the Tg values to close to room temperature which caused a strong dependence of the film mechanical properties on the AN content and extent of neutralisation of the -COOH groups. The Young's modulus values for the films ranged from 1.0 to 86.0 MPa. The latter is the highest modulus reported for cast films of nanostructured ionomer films prepared from core-shell nanoparticles. The films had good ductility with strain-at-break values of at least 200%. The mechanical properties of the films were successfully modelled using the isostrain model. From comparison with an earlier butadiene-based system this study demonstrates that the nature of the primary monomer used to construct the nanoparticles can profoundly change the film mechanical properties. The aqueous nanoparticle dispersion approach used here provides a simple and versatile method to prepare high modulus elastomer films with tuneable mechanical properties.

  3. Project CAST.

    ERIC Educational Resources Information Center

    Charles County Board of Education, La Plata, MD. Office of Special Education.

    The document outlines procedures for implementing Project CAST (Community and School Together), a community-based career education program for secondary special education students in Charles County, Maryland. Initial sections discuss the role of a learning coordinator, (including relevant travel reimbursement and mileage forms) and an overview of…

  4. Paper Casting.

    ERIC Educational Resources Information Center

    Arrasjid, Dorine A.

    1980-01-01

    Describes an art project, based on the work of artist Chew Teng Beng, in the molding of wet paper on a plaster cast to create embossed paper designs. The values of such a project are outlined, including a note that its tactile approach makes it suitable to visually handicapped students. (SJL)

  5. Technology and experiments of 42CrMo bearing ring forming based on casting ring blank

    NASA Astrophysics Data System (ADS)

    Li, Yongtang; Ju, Li; Qi, Huiping; Zhang, Feng; Chen, Guozhen; Wang, Mingli

    2014-03-01

    Bearing ring is the crucial component of bearing. With regard to such problems as material waste, low efficiency and high energy consumption in current process of producing large bearing ring, a new process named "casting-rolling compound forming technology" is researched by taking the typical 42CrMo slew bearing as object. Through theoretical analysis, the design criteria of the main casting-rolling forming parameters are put forward at first. Then the constitutive relationship model of as-cast 42CrMo steel and its mathematical model of dynamic recrystallization are obtained according to the results of the hot compression experiment. By a coupled thermal-mechanical finite element model for radial-axial rolling of bearing ring, the fraction of dynamic recrystallization is calculated and recrystallized grains size are predicated. Meanwhile, the effects of the initial rolling temperature and feed rate of idle roll on material microstructure evolution are analyzed. Finally, the industrial rolling experiment is designed and performed, based on the simulation results. In addition, mechanical and metallographic tests are conducted on rolled bearing ring to get the mechanical parameters and metallographic structure. The experimental data and results show that the mechanical properties of bearing ring produced by casting-rolling compound forming technology are up to industrial standard, and a qualified bearing ring can be successfully formed by employing this new technology. Through the study, a process of forming large bearing ring directly by using casting ring blank is obtained, which could provide an effective theoretical guidance for manufacturing large ring parts. It also has an edge in saving material, lowering energy and improving efficiency.

  6. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity.

    PubMed

    Rhim, Jong-Whan; Hong, Seok-In; Park, Hwan-Man; Ng, Perry K W

    2006-08-09

    Four different types of chitosan-based nanocomposite films were prepared using a solvent-casting method by incorporation with four types of nanoparticles, that is, an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. Scanning electron micrographs showed that in all of the nanocomposite films, except the Nano-silver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, that is, tensile strength increased by 7-16%, whereas water vapor permeability decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.

  7. A solution concentration dependent transition from self-stratification to lateral phase separation in spin-cast PS:d-PMMA thin films.

    PubMed

    Dunbar, A D F; Mokarian-Tabari, P; Parnell, A J; Martin, S J; Skoda, M W A; Jones, R A L

    2010-04-01

    Thin films with a rich variety of different nano-scale morphologies have been produced by spin casting solutions of various concentrations of PS:d-PMMA blends from toluene solutions. During the spin casting process specular reflectivity and off-specular scattering data were recorded and ex situ optical and atomic force microscopy, neutron reflectivity and ellipsometry have all been used to characterise the film morphologies. We show that it is possible to selectively control the film morphology by altering the solution concentration used. Low polymer concentration solutions favour the formation of flat in-plane phase-separated bi-layers, with a d-PMMA-rich layer underneath a PS-rich layer. At intermediate concentrations the films formed consist of an in-plane phase-separated bi-layer with an undulating interface and also have some secondary phase-separated pockets rich in d-PMMA in the PS-rich layer and vice versa. Using high concentration solutions results in laterally phase-separated regions with sharp interfaces. As with the intermediate concentrations, secondary phase separation was also observed, especially at the top surface.

  8. Hot-tearing of multicomponent Al-Cu alloys based on casting load measurements in a constrained permanent mold

    SciTech Connect

    Sabau, Adrian S; Mirmiran, Seyed; Glaspie, Christopher; Li, Shimin; Apelian, Diran; Shyam, Amit; Haynes, James A; Rodriguez, Andres

    2017-01-01

    Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during casting can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.

  9. Improved material properties of solution-cast starch films: Effect of varying amylopectin structure and amylose content of starch from genetically modified potatoes.

    PubMed

    Menzel, Carolin; Andersson, Mariette; Andersson, Roger; Vázquez-Gutiérrez, José L; Daniel, Geoffrey; Langton, Maud; Gällstedt, Mikael; Koch, Kristine

    2015-10-05

    High-amylose potato starches were produced through genetic modification resulting in changed granule morphology and composition, with higher amylose content and increased chain length of amylopectin. The increased amylose content and structural changes in amylopectin enhanced film-forming behavior and improved barrier and tensile properties in starch films. The molecular structure in these starches was related to film-forming properties. Solution-cast films of high-amylose starch revealed a homogeneous structure with increasing surface roughness at higher amylose content, possibly due to amylose aggregation. Films exhibited significantly higher stress and strain at break compared with films of wild-type starch, which could be attributable to the longer chains of amylopectin being involved in the interconnected network and more interaction between chains, as shown using transmission electron microscopy. The oxygen permeability of high-amylose starch films was significantly decreased compared with wild-type starch. The nature of the modified starches makes them an interesting candidate for replacement of non-renewable oxygen and grease barrier polymers used today.

  10. A facile and simple high-performance polydimethylsiloxane casting based on self-polymerization dopamine

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Zhang, Lu-lu; Sun, Jian-hai; Li, Hui; Cui, Da-fu

    2014-09-01

    We present a new and facile method for polydimethylsiloxane (PDMS) casting by dip-coating the master molds in an aqueous solution of dopamine. A poly(dopamine) film formed by self-polymerization of dopamine is used as the surface anti-adhesion coating for PDMS de-molding. Different master molds, such as metal, silicon and PDMS replica, were used to verify the feasibility of this proposed PDMS casting method. The poly(dopamine) coatings at various fabrication conditions were studied by using surface plasmon resonance technology. We found that it is very easy to form repeated poly(dopamine) coatings with similar thicknesses and density at fairly flexible conditions of self-polymerization. The water contact angles of the PDMS master molds and the positive PDMS replicas were studied after the PDMS master molds were immersed in the dopamine coating solution for different times. The de-molding process was then measured by surface plasmon resonance technology. The surface morphology of the master molds and the PDMS replicas were characterized by using scanning electron microscopy and atomic force microscopy. Results demonstrate that the poly(dopamine) coating exhibits a strong release property in the PDMS de-molding process and has good stickiness after PDMS de-molding a dozen times. The package performances of the PDMS replicas were detected and compared by bonding experiments. PDMS replicas after a second round of de-molding present a little higher package performance than that of the PDMS replicas with an anti-sticking agent of silane. The biochemical properties of PDMS replicas were studied through fluorescence immunoassay experiments. The PDMS replicas present similar biochemical properties to the bare PDMS. This biomimetic surface modification method of dopamine for PDMS casting has a great potential for preparing microdevices for various biological and clinical applications.

  11. A radiographic evaluation of microporosity in a nickel base casting allow.

    PubMed

    Lewis, A J

    1975-08-01

    Three series of tensile test pieces were produced using a nickel base partial denture casting alloy. For the first series induction heating was employed, for the second a resistance crucible, and for the third an oxy-acetylene torch. All specimens were radiographed and a classification developed to indicate the radiographic soundness of each specimen. Radiographic soundness was subsequently related to the results obtained from mechanical testing.

  12. Cumulative Damage Studies of Conventional-Cast Composite-Modified Double-Base Propellant.

    DTIC Science & Technology

    This report describes results from a one-year study of cumulative damage mechanisms in conventional-cast, composite-modified, double-base ( CMDB ...propellant. Testing was performed on Hercules’ FKM propellant, which is a typical member of the CMDB propellant family. Test data were correlated to...provide usable design envelopes depicting CMDB propellant damage as a function of the number of loading cycles and the level of loading. Major emphasis in

  13. Drug release profiles and microstructural characterization of cast and freeze dried vitamin B12 buccal films by positron annihilation lifetime spectroscopy.

    PubMed

    Szabó, Barnabás; Kállai, Nikolett; Tóth, Gergő; Hetényi, Gergely; Zelkó, Romána

    2014-02-01

    Solvent cast and freeze dried films, containing the water-soluble vitamin B12 as model drug were prepared from two polymers, sodium alginate (SA), and Carbopol 71G (CP). The proportion of the CP was changed in the films. The microstructural characterization of various samples was carried out by positron annihilation lifetime spectroscopy (PALS). The drug release kinetics of untreated and stored samples was evaluated by the conventionally applied semi-empirical power law. Correlation was found between the changes of the characteristic parameters of the drug release and the ortho-positronium (o-Ps) lifetime values of polymer samples. The results indicated that the increase of CP concentration, the freeze-drying process and the storage at 75% R.H. decreased the rate of drug release. The PALS method enabled the distinction between the micro- and macrostructural factors influencing the drug release profile of polymer films.

  14. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed.

  15. Improvement of the mechanical and barrier properties of methylcellulose-based films by treatment with HEMA and silane monomers under gamma radiation

    NASA Astrophysics Data System (ADS)

    Khan, Ruhul A.; Dussault, Dominic; Salmieri, Stephane; Safrany, Agnes; Lacroix, Monique

    2012-08-01

    Methylcellulose (MC)-based films were prepared by casting from its 1% aqueous solution containing 0.5% vegetable oil, 0.25% glycerol and 0.025% Tween®-80. Puncture strength (PS), puncture deformation (PD) and water vapor permeability (WVP) of the films were found to be 147 N/mm, 3.46 mm, and 6.34 g mm/m2 day kPa, respectively. The monomer, 2-hydroxyethyl methacrylate (HEMA) (0.1-1%, w/w) was incorporated into the MC-based solution and films were prepared by casting. Films were then exposed to gamma radiation (5-25 kGy) and it revealed that 1% HEMA containing films showed the highest PS values (282 N/mm at 10 kGy). Silane monomer (3-aminopropyl tri-ethoxy silane) (0.1-1%, w/w) was also added into the MC-based films and were found to improve the strength of the films significantly. In comparison between HEMA and silane treatment onto MC-based films, it was observed that silane performed better strength and barrier properties. Surface morphology of the monomer treated films was examined by scanning electron microscopy and suggested better appearance than MC-based film.

  16. Tape cast second generation orthorhombic-based titanium aluminide alloys for MMC applications. [Metal Matrix Composites

    SciTech Connect

    Smith, P.R.; Rosenberger, A.H. . Materials and Mfg. Directorate); Shepard, M.J. )

    1999-06-18

    Titanium metal matrix composites (TMCs) utilizing continuous SiC fiber reinforcement are considered important, if not, enabling materials for advanced Air Force propulsion systems, wherein combinations of high specific strength and elevated temperature capability are prerequisites to obtain desired increases in thrust-to-weight ratios and decreased specific fuel consumption. One such class of TMCs being assessed for use in rotating engine components are those based upon the orthorhombic titanium aluminide phase, Ti[sub 2]AlNb. These orthorhombic titanium matrix composites (O TMCs) are being examined for sustained use at temperatures up to 700 C. Previous studies have primarily focused on O TMCs made using the foil-fiber-foil fabrication process. More recently the Materials and Manufacturing Directorate of the Air Force Research Laboratory has been focusing attention on an alternative powder metallurgy approach for fabrication of O TMCs via tape casting. This latter approach has the potential to produce significant cost reduction (<$70/lb) for the matrix input material (powder). Unfortunately, little work has been done to understand the effects of powder microstructures and the tape casting process itself on the mechanical performance of O TMCs. Therefore, the first objective of this study is to examine the microstructural evolution and mechanical performance (with and without heat treatment) of three unreinforced heat orthorhombic-based titanium aluminide matrices made via tape casting. A second objective is to assess the viability of powder metallurgy processing for the fabrication of O TMCs.

  17. LineCast: line-based distributed coding and transmission for broadcasting satellite images.

    PubMed

    Wu, Feng; Peng, Xiulian; Xu, Jizheng

    2014-03-01

    In this paper, we propose a novel coding and transmission scheme, called LineCast, for broadcasting satellite images to a large number of receivers. The proposed LineCast matches perfectly with the line scanning cameras that are widely adopted in orbit satellites to capture high-resolution images. On the sender side, each captured line is immediately compressed by a transform-domain scalar modulo quantization. Without syndrome coding, the transmission power is directly allocated to quantized coefficients by scaling the coefficients according to their distributions. Finally, the scaled coefficients are transmitted over a dense constellation. This line-based distributed scheme features low delay, low memory cost, and low complexity. On the receiver side, our proposed line-based prediction is used to generate side information from previously decoded lines, which fully utilizes the correlation among lines. The quantized coefficients are decoded by the linear least square estimator from the received data. The image line is then reconstructed by the scalar modulo dequantization using the generated side information. Since there is neither syndrome coding nor channel coding, the proposed LineCast can make a large number of receivers reach the qualities matching their channel conditions. Our theoretical analysis shows that the proposed LineCast can achieve Shannon's optimum performance by using a high-dimensional modulo-lattice quantization. Experiments on satellite images demonstrate that it achieves up to 1.9-dB gain over the state-of-the-art 2D broadcasting scheme and a gain of more than 5 dB over JPEG 2000 with forward error correction.

  18. Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin.

    PubMed

    Hosseini, Seyed Fakhreddin; Javidi, Zahra; Rezaei, Masoud

    2016-11-01

    Multi-layer film structures of poly(lactic acid) (PLA) and fish gelatin (FG), prepared using the solvent casting technique, were studied in an effort to produce bio-based films with low oxygen (OP) and water vapor permeability (WVP). The scanning electron microscopy (SEM) images of triple-layer film showed that the outer PLA layers are being closely attached to the inner FG layer to make continuous film. The OP of multi-layer film (5.02cm(3)/m(2)daybar) decreased more than 8-fold compared with that of the PLA film, and the WVP of multi-layer film (0.125gmm/kPah m(2)) also decreased 11-fold compared with that of the FG film. Lamination with PLA profoundly increased the water resistance of the bare gelatin film. Meanwhile, the tensile strength of the triple-layer film (25±2.13MPa) was greater than that of FG film (7.48±1.70MPa). At the same time, the resulting film maintains high optical clarity. Differential scanning calorimetry (DSC) analysis also revealed that the materials were compatible showing only one Tg which decreased with FG deposition. This material exhibits an environmental-friendliness potential and a high versatility in food packaging.

  19. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  20. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  1. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film. [Amdt. 173-224, 55 FR 52643...

  2. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  3. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  4. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization.

    PubMed

    Chiellini, E; Cinelli, P; Imam, S H; Mao, L

    2001-01-01

    As a part of an ongoing project on the production of composite materials based on poly(vinyl alcohol) (PVA) and polymeric materials from renewable resources, the present paper reports on the incorporation of agricultural waste materials as organic fillers in a film matrix based on PVA as continuous phase. In this study lignocellulosic fibers byproducts, derived from sugar cane (SC) and apple (AP) and orange (OR) fruit juice extraction, were cast from PVA aqueous solutions. The effect of fiber type and composition on the relative properties of cast films was evaluated and compared. OR resulted to be suitable for blending in higher amounts by weight than SC and AP. Glycerol and urea were added as plasticizing agents and were observed to be effective in giving flexible films. Additionally, cornstarch was added to further increase the composition of polymers from renewable resources in cost-effective and ecoefficient composite film formulations. The prepared films resulted sensitive to moisture and water. To reduce water sensitivity, hexamethoxymethylmelamine (HMMM) was tested as a cross-linking agent for the present composite formulations. Cross-linked films exhibited significant improvement in water-resistance that can be taken as a tuneable structural feature for customized applications. The mechanical properties of the prepared composite films (elongation at break, tensile strength, Young modulus) were found to be dependent upon the nature and content of the filler and on environmental conditions.

  5. Plasmonic films based on colloidal lithography.

    PubMed

    Ai, Bin; Yu, Ye; Möhwald, Helmuth; Zhang, Gang; Yang, Bai

    2014-04-01

    This paper reviews recent advances in the field of plasmonic films fabricated by colloidal lithography. Compared with conventional lithography techniques such as electron beam lithography and focused ion beam lithography, the unconventional colloidal lithography technique with advantages of low-cost and high-throughput has made the fabrication process more efficient, and moreover brought out novel films that show remarkable surface plasmon features. These plasmonic films include those with nanohole arrays, nanovoid arrays and nanoshell arrays with precisely controlled shapes, sizes, and spacing. Based on these novel nanostructures, optical and sensing performances can be greatly enhanced. The introduction of colloidal lithography provides not only efficient fabrication processes but also plasmonic films with unique nanostructures, which are difficult to be fabricated by conventional lithography techniques.

  6. Poly(vinyl alcohol)-based film potentially suitable for antimicrobial packaging applications.

    PubMed

    Musetti, Alessandro; Paderni, Katia; Fabbri, Paola; Pulvirenti, Andrea; Al-Moghazy, Marwa; Fava, Patrizia

    2014-04-01

    This work aimed at developing a thin and water-resistant food-grade poly(vinyl alcohol) (PVOH)-based matrix able to swell when in contact with high moisture content food products without rupturing to release antimicrobial agents onto the food surface. This film was prepared by blending PVOH and 7.20% (wt/wt of PVOH) of poly(ethylene glycol) (PEG) with citric acid as crosslinking agent. The film-forming solution was then casted onto a flat surface and the obtained film was 60 μm in thickness and showed a good transparency (close to T = 100%) in the visible region (400 to 700 nm). After immersion in water for 72 h at room temperature, the crosslinked matrix loses only 19.2% of its original weight (the percentage includes the amount of unreacted crosslinking agent, antimicrobial in itself). Water content, degree of swelling, and crosslinking density of the film prove that the presence of PEG diminishes the hydrophilic behavior of the material. Also the mechanical properties of the wet and dry film were assessed. Alongside this, 2.5% (wt/wt of dry film) of grapefruit seed extract (GSE), an antimicrobial agent, was added to the film-forming solution just before casting and the ability of the plastic matrix to release the additive was then evaluated in vitro against 2 GSE-susceptible microorganisms, Salmonella enteritidis and Listeria innocua. The results indicate that the developed matrix may be a promising food-grade material for the incorporation of active substances.

  7. Development and Evaluation of Buccal Films Based on Chitosan for the Potential Treatment of Oral Candidiasis.

    PubMed

    Tejada, G; Barrera, M G; Piccirilli, G N; Sortino, M; Frattini, A; Salomón, C J; Lamas, María C; Leonardi, Darío

    2017-01-20

    In this work, chitosan films were prepared by a casting/solvent evaporation methodology using pectin or hydroxypropylmethyl cellulose to form polymeric matrices. Miconazole nitrate, as a model drug, was loaded into such formulations. These polymeric films were characterized in terms of mechanical properties, adhesiveness, and swelling as well as drug release. Besides, the morphology of raw materials and films was investigated by scanning electron microscopy; interactions between polymers were analyzed by infrared spectroscopy and drug crystallinity studied by differential scanning calorimetry and X-ray diffraction. In addition, antifungal activity against cultures of the five most important fungal opportunistic pathogens belonging to Candida genus was investigated. Chitosan:hydroxypropylmethyl cellulose films were found to be the most appropriate formulations in terms of folding endurance, mechanical properties, and adhesiveness. Also, an improvement in the dissolution rate of miconazole nitrate from the films up to 90% compared to the non-loaded drug was observed. The in vitro antifungal activity showed a significant activity of the model drug when it is loaded into chitosan films. These findings suggest that chitosan-based films are a promising approach to deliver miconazole nitrate for the treatment of candidiasis.

  8. Preparation of nano cellulose fibers and its application in kappa-carrageenan based film.

    PubMed

    Savadekar, N R; Karande, V S; Vigneshwaran, N; Bharimalla, A K; Mhaske, S T

    2012-12-01

    Bio-based nanocomposite films were successfully developed using nanofibrillated cellulose (NFC) as the reinforcing phase and kappa-carrageenan (KCRG) as the matrix. NFC was successfully synthesis from short stable cotton fibers by chemo-mechanical process. The bionanocomposites were prepared by incorporating 0.1, 0.2, 0.3, 0.4, 0.5, and 1wt% of the NFC into a KCRG matrix using a solution casting method there characterization was done in terms of thermal properties (DSC), morphology (SEM), water vapor transmission rate (WVTR), oxygen transmission rate (OTR), X-ray diffractograms (XRD), and tensile properties. The main conclusion arising from the analysis of the result is that the bionanocomposites containing 0.4wt% of NFC exhibited the highest enhancement in tensile strength it is almost 44% improvement. WVTR and OTR results showed improvement of all nanocomposite film compare to control KCRG film.

  9. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    PubMed Central

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ∼150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at −6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging. PMID:25991874

  10. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-04-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ˜150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at -6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging.

  11. Casting alloys.

    PubMed

    Wataha, John C; Messer, Regina L

    2004-04-01

    Although the role of dental casting alloys has changed in recent years with the development of improved all-ceramic materials and resin-based composites, alloys will likely continue to be critical assets in the treatment of missing and severely damaged teeth. Alloy shave physical, chemical, and biologic properties that exceed other classes of materials. The selection of the appropriate dental casting alloy is paramount to the long-term success of dental prostheses,and the selection process has become complex with the development of many new alloys. However, this selection process is manageable if the practitioner focuses on the appropriate physical and biologic properties, such as tensile strength, modulus of elasticity,corrosion, and biocompatibility, and avoids dwelling on the less important properties of alloy color and short-term cost. The appropriate selection of an alloy helps to ensure a longer-lasting restoration and better oral health for the patient.

  12. Moving cast shadow resistant for foreground segmentation based on shadow properties analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Gao, Yun; Yuan, Guowu; Ji, Rongbin

    2015-12-01

    Moving object detection is the fundamental task in machine vision applications. However, moving cast shadows detection is one of the major concerns for accurate video segmentation. Since detected moving object areas are often contain shadow points, errors in measurements, localization, segmentation, classification and tracking may arise from this. A novel shadow elimination algorithm is proposed in this paper. A set of suspected moving object area are detected by the adaptive Gaussian approach. A model is established based on shadow optical properties analysis. And shadow regions are discriminated from the set of moving pixels by using the properties of brightness, chromaticity and texture in sequence.

  13. Grain refinement of permanent mold cast copper base alloys. Final report

    SciTech Connect

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  14. Kaolin-based particle films for arthropod control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle film technology was conceived by ARS scientists in the mid-1990's as an alternative to chemical pesticides. This technology was based on coating plant parts with mineral films that were chemically inert, could be formulated to spread and create a uniform film, formed a porous film that doe...

  15. Solvothermal synthesis of Cu2Zn1-x Fe x SnS4 nanoparticles and the influence of annealing conditions on drop-casted thin films

    NASA Astrophysics Data System (ADS)

    Shadrokh, Zohreh; Yazdani, Ahmad; Eshghi, Hosein

    2016-04-01

    Cu2Zn1-x Fe x SnS4 (CZFTS) semiconductor alloy sphere-like nanoparticles were synthesized by a solvothermal method and their thin films were fabricated using a facile drop casting route then annealed in Ar and/or sulfur atmosphere. The sphere-like CZFTS nanoparticles demonstrate promising morphological, structural, and optical properties for an absorber layer in thin film solar cells. X-ray diffraction patterns, Raman spectra and EDS measurements of the samples indicate that a phase transition from kesterite to stannite occurred by increasing the Fe content to Fe/Fe + Zn = 0.61 ratio. Moreover, the increase in Fe content (0 ≤ x ≤ 1) resulted in a variation of the band gap energies of CZFTS from ˜1.515 to 1.206 eV on the basis of a parabolic decreasing trend. From a band gap bowing model we derived a small bowing constant of b ˜ 0.2009 ± 0.02 eV, indicating suitable miscibility of alloyed constituents in the host crystal lattice. The films annealed in sulfur showed a dense, uniform, low-crack surface, high thickness and low transmission compared to the films annealed in Ar flow. The four-point probe analysis showed an increasing resistivity of samples annealed in Ar with increasing Fe content.

  16. Design of pectin-sodium alginate based films for potential healthcare application: Study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity.

    PubMed

    Nešić, Aleksandra; Onjia, Antonije; Davidović, Sladjana; Dimitrijević, Suzana; Errico, Maria Emanuela; Santagata, Gabriella; Malinconico, Mario

    2017-02-10

    In this study, pectin based films including different amounts of sodium alginate were prepared by casting method. All the films, with and without polyglycerol as plasticizer, were crosslinked with zinc ions in order to extend their potential functionality. The development of junction points, occurring during the crosslinking process with zinc ions, induced the increasing of free volume with following changing in chemico-physical properties of films. The inclusion of alginate in pectin based formulations improved the strength of zinc ions crosslinking network, whereas the addition of polyglycerol significantly improved mechanical performance. Finally, zinc-crosslinked films evidenced antimicrobial activity against the most common exploited pathogens: Staphylococcus Aureus, Escherichia Coli and Candida Albicans. These results suggest that zinc-crosslinked based films can be exploitable as novel bio-active biomaterials for protection and disinfection of medical devices.

  17. Flexible supercapacitors based on low-cost tape casting of high dense carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Daraghmeh, Allan; Hussain, Shahzad; Servera, Llorenç; Xuriguera, Elena; Blanes, Mireia; Ramos, Francisco; Cornet, Albert; Cirera, Albert

    2017-02-01

    This experimental study, reports the use of flexible tape casting of dense carbon nanofiber (CNFs) alone and in hybrid structure with MnO2 for supercapacitor applications. Different electrolyte concentrations of potassium hydroxide (KOH) were tested and it was founded that mild concentrated electrolyte, like 9 M KOH, provides higher specific capacitance 38 F g‑1 at a scan rate of 5 mV s‑1. Electrochemical impedance spectroscopy (EIS) measurements explain that the solution resistance and the charge transfer resistance is higher for 3 M KOH concentrations and lower for 6 M KOH concentrations. Afterwards a novel, fast and simple method is adopted to achieve a hybrid nanostructure of CNFs/MnO2 with various KMnO4 ratios. The hybrid supercapacitor, having loaded a mass of 0.0003 g MnO2 as a thin film, delivers a highest specific capacitance of 812 F g‑1 at a scan rate 5 mV s‑1. Charge/discharge cycling stability at current density of 7.9 A g‑1 demonstrates larger specific capacitance 303 F g‑1 and stability. Furthermore, the hybrid supercapacitor can deliver specific energy (72.4 Wh kg‑1) at specific power (3.44 kW kg‑1). Specific surface area increase from 68 m2 g‑1 for CNFs to 240 m2 g‑1 for CNFs/MnO2.

  18. A new generation of electrochemical supercapacitors based on layer-by-layer polymer films

    NASA Astrophysics Data System (ADS)

    Christinelli, Wania Ap.; Gonçalves, Roger; Pereira, Ernesto C.

    2016-01-01

    Here we report supercapacitors fabricated with the layer-by-layer (LBL) technique using two polymers, namely poly(o-methoxyaniline) (POMA) and poly(3-thiophene acetic acid) (PTAA). The electrochemical performances of POMA/PTAA supercapacitors were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results were compared with POMA casting film. The specific capacitance of LBL films increases almost linearly with a number of bilayers which were not observed for POMA casting films. The results of this investigation demonstrate that the self-doping effect between POMA and PTAA can change the properties on films and can be successfully used as a supercapacitor technology.

  19. Method of improving fatigue life of cast nickel based superalloys and composition

    DOEpatents

    Denzine, Allen F.; Kolakowski, Thomas A.; Wallace, John F.

    1978-03-14

    The invention consists of a method of producing a fine equiaxed grain structure (ASTM 2-4) in cast nickel-base superalloys which increases low cycle fatigue lives without detrimental effects on stress rupture properties to temperatures as high as 1800.degree. F. These superalloys are variations of the basic nickel-chromium matrix, hardened by gamma prime [Ni.sub.3 (Al, Ti)] but with optional additions of cobalt, tungsten, molybdenum, vanadium, columbium, tantalum, boron, zirconium, carbon and hafnium. The invention grain refines these alloys to ASTM 2 to 4 increasing low cycle fatigue life by a factor of 2 to 5 (i.e. life of 700 hours would be increased to 1400 to 3500 hours for a given stress) as a result of the addition of 0.01% to 0.2% of a member of the group consisting of boron, zirconium and mixtures thereof to aid heterogeneous nucleation. The alloy is vacuum melted and heated to 250.degree.-400.degree. F. above the melting temperature, cooled to partial solidification, thus resulting in said heterogeneous nucleation and fine grains, then reheated and cast at about 50.degree.-100.degree. F. of superheat. Additions of 0.1% boron and 0.1% zirconium (optional) are the preferred nucleating agents.

  20. [Flow of molten metal in denture base in horizontal centrifugal casting procedure. (Part 2) Flow, inflow volume and casting time of molten metal passing through several sprues into model denture plate mold (author's transl)].

    PubMed

    Okamura, H

    1978-10-01

    Two types of spruing methods were used in the casting of the denture type model pattern (thickness, 0.43 mm). Flow of molten metal in the mold was filmed by the improved system of Part 1. When three sprues were attached to the pattern vertically, molten metal passed through each sprue gate flowed being affected by the direction of gravity and revolution of casting machine, and gathered at the lower part of the mold. Next molten metal filled the mold from the lower part to the upper part. In this spruing type, molten metal turned its direction of flow several times. At the middle stage of casting, the inflow volume per unit time (inflow rate), v (mm3/10-2)s)was evaluated as v = 12.36 + 5.16A-0.16 A2 (A: total cross-sectional areas of sprues). The inflow rate increased with increase of the area of the sprues, but it saturated. When the main sprue and the subsprues were attached at the posterior border, the molten metal filled the mold from the lower part to the upper part quietly. In this spruing type, the casting mold was set facing its sprue gates downwards. The inflow rate at the middle stage of casting was evaluated as v = 21.05 + 1.79 C (C: the cross-sectional area of the main sprue). The inflow rate increased linearly with increase of the area of the main sprue.

  1. Context-based user grouping for multi-casting in heterogeneous radio networks

    NASA Astrophysics Data System (ADS)

    Mannweiler, C.; Klein, A.; Schneider, J.; Schotten, H. D.

    2011-08-01

    Along with the rise of sophisticated smartphones and smart spaces, the availability of both static and dynamic context information has steadily been increasing in recent years. Due to the popularity of social networks, these data are complemented by profile information about individual users. Making use of this information by classifying users in wireless networks enables targeted content and advertisement delivery as well as optimizing network resources, in particular bandwidth utilization, by facilitating group-based multi-casting. In this paper, we present the design and implementation of a web service for advanced user classification based on user, network, and environmental context information. The service employs simple and advanced clustering algorithms for forming classes of users. Available service functionalities include group formation, context-aware adaptation, and deletion as well as the exposure of group characteristics. Moreover, the results of a performance evaluation, where the service has been integrated in a simulator modeling user behavior in heterogeneous wireless systems, are presented.

  2. Higher Education's Caste System

    ERIC Educational Resources Information Center

    Iannone, Ron

    2004-01-01

    In this article, the author discusses the history of the present caste system in higher education. He shows how the public's perception of this caste system is based on image and not usually on the quality of teaching and curriculum in colleges and universities. Finally, he discusses a model for accessibility to higher education and how higher…

  3. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    NASA Astrophysics Data System (ADS)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  4. Development of NZP ceramic based {open_quotes}cast-in-place{close_quotes} diesel engine port liners

    SciTech Connect

    Nagaswaran, R.; Limaye, S.Y.

    1996-02-01

    BSX (Ba{sub 1+x}Zr{sub 4}P{sub 6-2x}Si{sub 2x}O{sub 24}) and CSX (Ca{sub l-x}Sr{sub x}Zr{sub 4}P{sub 6}O{sub 24}) type NZP ceramics were fabricated and characterized for: (i) thermal properties viz., thermal conductivity, thermal expansion, thermal stability and thermal shock resistance; (ii) mechanical properties viz., flexure strength and elastic modulus; and (iii) microstructures. Results of these tests and analysis indicated that the BS-25 (x=0.25 in BSX) and CS-50 (x=0.50 in CSX) ceramics had the most desirable properties for casting metal with ceramic in place. Finite element analysis (FEA) of metal casting (with ceramic in place) was conducted to analyze thermomechanical stresses generated and determine material property requirements. Actual metal casting trials were also conducted to verify the results of finite element analysis. In initial trials, the ceramic cracked because of the large thermal expansion mismatch (hoop) stresses (predicted by FEA also). A process for introduction of a compliant layer between the metal and ceramic to alleviate such destructive stresses was developed. The compliant layer was successful in preventing cracking of either the ceramic or the metal. In addition to these achievements, pressure slip casting and gel-casting processes for fabrication of NZP components; and acoustic emission and ultrasonics-based NDE techniques for detection of microcracks and internal flaws, respectively, were successfully developed.

  5. [Cast structures and mechanical properties of Ir added to Ag-based alloys. (Part 1) (author's transl)].

    PubMed

    Honma, H; Iijima, K

    1981-04-01

    The effect of very small quantity of Ir added to pure Agb or Ab-based casting alloys on the mechanical properties were investigated by microstructure observation, tensile test, XMA (electron probe micro analysis) and electrical resistivity measurement. 1) An addition of 0.005% Ir to pure Ag caused grain refinement, increased elongation, yield point, tensile strength. However, the refinement effect did not proportionally increase to the amount of additional Ir. 2) An addition of Ir to Ag alloy containing 7% Cu caused to finely dispersed beta phase in the as cast alloy and degraded the dendrite structure. As a result, homogenization and aging were accelerated. Mechanical properties i. e. elongation, yield point and tensile strength increased in castings and homogeneous state and yield point increased in aging state. The addition of about 0.05% Ir appeared optimum. 3) An addition of Ir to an Ag alloy containing 15% Cu caused grain refinement of the alloy as cast but its effect on the mechanical properties of the alloy was not clarified owing to casting defects. 4) 0.05% Ir added to an Ag alloy containing 20% Pd and 7% Cu did not show an apparent refinement effect. The optimum quantity of Ir is assumed to differ depending on the amount of Pd content.

  6. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    PubMed

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (P<0.05). Visible light spectrophotometry revealed that the type 1 alloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  7. Use of gamma-irradiation technology in the manufacture of biopolymer-based packaging films for shelf-stable foods

    NASA Astrophysics Data System (ADS)

    Parra, Duclerc F.; Rodrigues, Juliana A. F. R.; Lugão, Ademar B.

    2005-07-01

    Gamma irradiation is an alternative method for the manufacture of sterilized packaging with increased storage stability and microbiological safety. Biopolymer-based packaging films are a potential solution to many environmental problems that have emerged from the production and accumulation of significant amounts of synthetic polymeric waste. This work was undertaken to verify the effectiveness of low-dose gamma-irradiation in obtaining biopolymer-based packaging films for shelf-stable foods. PHB polyester poly(3-hydroxybutyrate) is an interesting biodegradable polymer that has been intensely investigated as cast and sheet films, with applications in the food industry and medicine. The films obtained are, however, typically brittle, and many scientists have attempted to reduce this brittleness by blending PHB with other polymers. In the present work, PHB was blended with PEG (polyethyleneglycol) to obtain films by the casting method that were then irradiated at a dose rate of 5.72 kGy/h with a 60Co source. Samples were melted at 200 °C and quenched to 0 °C in order to evaluate film crystallinity levels by differential scanning calorimetry (DSC). DSC analyses were performed with the samples (10 mg) under N2 atmosphere, heating from -50 to 200 °C (10 °C min-1), cooling from 200 to -50 °C (10 °C min-1); and heating from -50 to 200 °C (10 °C min-1). The thermal and mechanical resistances of the films after irradiation at low doses (5, 10, 20 kGy) are discussed. Water vapour transmission decreased with increasing irradiation dose, indicating that the films' performance as water vapour barrier had improved. Critical loss of the mechanical properties was observed at 40 kGy.

  8. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    PubMed Central

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md. Rakibul

    2016-01-01

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days. PMID:27367738

  9. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    PubMed

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  10. Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals.

    PubMed

    Pereda, Mariana; Dufresne, Alain; Aranguren, Mirta I; Marcovich, Norma E

    2014-01-30

    Composite films designed as potentially edible food packaging were prepared by casting film-forming emulsions based on chitosan/glycerol/olive oil containing dispersed cellulose nanocrystals (CNs). The combined use of cellulose nanoparticles and olive oil proved to be an efficient method to reduce the inherently high water vapor permeability of plasticized chitosan films, improving at the same time their tensile behavior. At the same time, it was found that the water solubility slightly decreased as the cellulose content increased, and further decreased with oil addition. Unexpectedly, opacity decreased as cellulose content increased, which balanced the reduced transparency due to lipid addition. Contact angle decreased with CN addition, but increased when olive oil was incorporated. Results from dynamic mechanical tests revealed that all films present two main relaxations that could be ascribed to the glycerol- and chitosan-rich phases, respectively. The response of plasticized chitosan-nanocellulose films (without lipid addition) was also investigated, in order to facilitate the understanding of the effect of both additives.

  11. Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose.

    PubMed

    Chaichi, Maryam; Hashemi, Maryam; Badii, Fojan; Mohammadi, Abdorreza

    2017-02-10

    In this study, for the first time, the edible pectin film was reinforced by crystalline nanocelullose (CNC). The incorporation of three levels of CNC (2, 5 and 7% w/w) on mechanical, thermal and water vapor barrier properties of pectin-based biodegradable film were investigated using solution casting evaporation method for film preparation. The optimum result was obtained through the nanocomposite film with 5% CNC in terms of mechanical and water vapor properties as the tensile strength increased up to 84% and water vapor permeability decreased by 40%. However, analysis of thermal properties indicated no significant effect of CNC on glass transition temperature. X-ray diffraction (XRD) studies illustrated a positive correlation between the degree of crystallinity and the CNC level. Moreover, AFM images presented good dispersion of CNC in the pectin matrix suggesting appropriate interaction between the filler and matrix, which is in agreement with mechanical consequences. According to the overall results, the reinforcement of pectin film with 5% CNC compared to other strengthening strategies had a higher effect and therefore it could be introduced as a good candidate for the development of strong, completely biodegradable and renewable food packaging material.

  12. Effect of the microhardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron

    NASA Astrophysics Data System (ADS)

    Pang, Zuobo; Zhou, Hong; Chang, Fang; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-12-01

    In order to improve the wear resistance of gray cast iron guide rail, the samples with different microhardness difference between bionic coupling units and base metal were manufactured by laser surface remelting. Wear behavior of gray cast iron with bionic coupling units has been studied under dry sliding condition at room temperature using a homemade liner reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that when the microhardness difference is 561 HV0.2, the wear resistance of sample is the best.

  13. Displaying structural property and inheritance of cast iron surfacing on steel base

    NASA Astrophysics Data System (ADS)

    Shveev, I. A.

    2016-06-01

    Graphite inclusions heredity in deposited layer from remelted special cast iron billets was established. The possibility of controlling the structural state and the quality of the deposited layer due to technological parameters of welding and heat treatment of parts is shown. Ways of improving cast iron wear resistance durability are proposed.

  14. Thermodynamics-Based Selection and Design of Creep-Resistant Cast Mg Alloys

    NASA Astrophysics Data System (ADS)

    Abaspour, Saeideh; Cáceres, Carlos H.

    2015-12-01

    Atomic level thermodynamics arguments that account for the generally weak age hardening response while suggesting that extending the athermal regime through short-range order (SRO) is a most feasible path to increasing the creep strength of many current alloys are presented. The tendency, or otherwise, of many solutes to develop SRO in dilute solid solutions rationalizes a number of observations in current multicomponent Mg alloys, and in particular the retention of linear strain hardening at high temperatures, while it disputes the viability of several micromechanisms often considered active, such as pinning of edge dislocations by mobile solute clouds, dynamic precipitation of thermally stable precipitates, or atomic size effects on the diffusivity. Potential solutes are sorted out and ranked based on the sign and value of the enthalpy of mixing of binary solid solutions using the Miedema phenomenological scheme. Due to their large negative energy of mixing and reasonable solubility (>1 at. pct) at ~473 K (~200 °C), Y and Gd appear as the best candidates to increase the creep strength through SRO, followed by Nd and Ca, in close agreement with data reported in the literature. The feasibility of enhancing the age hardening response through homogeneously nucleated, coherent precipitates, in some cases despite the negative energy of mixing of the alloy, or via internally ordered precipitates mimicking those present in Mg-Th alloys is considered by making parallels with the Al-Zn and the Al-Cu alloy systems. The possible optimization of the strengthening of high pressure die cast alloys combining SRO and intergranular eutectics or of heat-treatable cast alloys through internally ordered precipitates and SRO is discussed.

  15. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing.

    PubMed

    Boateng, Joshua S; Pawar, Harshavardhan V; Tetteh, John

    2013-01-30

    Polyethylene oxide (Polyox) and carrageenan based solvent cast films have been formulated as dressings for drug delivery to wounds. Films plasticised with glycerol were loaded with streptomycin (30%, w/w) and diclofenac (10%, w/w) for enhanced healing effects in chronic wounds. Blank and drug loaded films were characterised by texture analysis (for mechanical and mucoadhesive properties), scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and Fourier transform infrared spectroscopy. In addition, swelling, in vitro drug release and antibacterial studies were conducted to further characterise the films. Both blank and drug loaded films showed a smooth, homogeneous surface morphology, excellent transparency, high elasticity and acceptable tensile (mechanical) properties. The drug loaded films showed a high capacity to absorb simulated wound fluid and significant mucoadhesion force which is expected to allow effective adherence to and protection of the wound. The films showed controlled release of both streptomycin and diclofenac for 72 h. These drug loaded films produced higher zones of inhibition against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli compared to the individual drugs zones of inhibition. Incorporation of streptomycin can prevent and treat chronic wound infections whereas diclofenac can target the inflammatory phase of wound healing to relieve pain and swelling.

  16. Pulsed Laser Deposition of the Ni-Base Superalloy Films

    NASA Astrophysics Data System (ADS)

    Shin, Joonghan; Mazumder, Jyotirmoy

    2016-03-01

    Ni-base superalloy films were deposited on single-crystal (SC) Ni-base superalloy substrates from a target with the same alloy composition by pulsed laser deposition (PLD) technique. Microstructure and growth behavior of the films deposited were investigated by X-ray diffraction and scanning electron microscopy, and atomic force microscope. The homoepitaxial growth of the SC Ni-base superalloy film occurred at the 1123 K (850 °C) substrate temperature and 2 J/cm2 pulse energy. Films generally exhibited a strong polycrystalline characteristic as the substrate temperature and pulse energy increased. The SC film had a smooth surface. The measured root mean square roughness of the SC film surface was ~6 nm. Based on the Taguchi analysis, the substrate temperature and pulse energy were the most significant process parameters influencing the structural characteristics of the films. Also, the influence of the pulse repletion rate and deposition time was not found to be significant.

  17. Starch-based Antimicrobial Films Incorporated with Lauric Acid and Chitosan

    NASA Astrophysics Data System (ADS)

    Salleh, E.; Muhamad, I. I.

    2010-03-01

    Antimicrobial (AM) packaging is one of the most promising active packaging systems. Starch-based film is considered an economical material for antimicrobial packaging. This study aimed at the development of food packaging based on wheat starch incorporated with lauric acid and chitosan as antimicrobial agents. The purpose is to restrain or inhibit the growth of spoilage and/or pathogenic microorganisms that are contaminating foods. The antimicrobial effect was tested on B. substilis and E. coli. Inhibition of bacterial growth was examined using two methods, i.e. zone of inhibition test on solid media and liquid culture test (optical density measurements). The control and AM films (incorporated with chitosan and lauric acid) were produced by casting method. From the observations, AM films exhibited inhibitory zones. Interestingly, a wide clear zone on solid media was observed for B. substilis growth inhibition whereas inhibition for E. coli was not as effective as B. substilis. From the liquid culture test, the AM films clearly demonstrated a better inhibition against B. substilis than E. coli.

  18. Glovebox Advanced Casting System Casting Optimization

    SciTech Connect

    Fielding, Randall Sidney

    2016-03-01

    Casting optimization in the GACS included three broad areas; casting of U-10Zr pins, incorporation of an integral FCCI barrier, and development of a permanent crucible coating. U-10Zr casting was improved over last year’s results by modifying the crucible design to minimize contact with the colder mold. Through these modifications casting of a three pin batch was successful. Incorporation of an integral FCCI barrier also was optimized through furnace chamber pressure changes during the casting cycle to reduce gas pressures in the mold cavities which led to three full length pins being cast which incorporated FCCI barriers of three different thicknesses. Permanent crucible coatings were tested against a base case; 1500°C for 10 minutes in a U-20Pu-10Zr molten alloy. None of the candidate coating materials showed evidence of failure upon initial visual examination. In all areas of work a large amount of characterization will be needed to fully determine the effects of the optimization activities. The characterization activities and future work will occur next year.

  19. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    SciTech Connect

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  20. Evaluation of thiouracil-based adhesive systems for bonding cast silver-palladium-copper-gold alloy.

    PubMed

    Yamashita, Miyuki; Koizumi, Hiroyasu; Ishii, Takaya; Furuchi, Mika; Matsumura, Hideo

    2010-09-01

    This study aimed to evaluate the effect of adhesive systems based on a thiouracil monomer on bonding to silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell M.C.12). Disk specimens were cast from the alloy and then air-abraded with alumina. The disks were bonded using six bonding systems selected from four primers and three luting materials. Shear bond strengths were determined both before and after thermocycling. Bond strength varied from 2.7 MPa to 32.0 MPa. Three systems based on a thiouracil monomer (MTU-6) showed durable bonding to the alloy, with post-thermocycling bond strengths of 22.4 MPa for the Metaltite (MTU-6) primer and Super-Bond, a tri-n-butylborane (TBB) initiated resin, 9.0 MPa for the Multi-Bond II resin, and 8.1 MPa for the Metaltite and Bistite II system. It can be concluded that a combination of thiouracil-based primer and TBB initiated resin is effective for bonding Ag-Pd-Cu-Au alloy.

  1. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    SciTech Connect

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  2. Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: Control of film structure through defined-atmosphere solvent-casting.

    PubMed

    Mokarian-Tabari, P; Geoghegan, M; Howse, J R; Heriot, S Y; Thompson, R L; Jones, R A L

    2010-12-01

    Thin films of polymer mixtures made by spin-coating can phase separate in two ways: by forming lateral domains, or by separating into distinct layers. The latter situation (self-stratification or vertical phase separation) could be advantageous in a number of practical applications, such as polymer optoelectronics. We demonstrate that, by controlling the evaporation rate during the spin-coating process, we can obtain either self-stratification or lateral phase separation in the same system, and we relate this to a previously hypothesised mechanism for phase separation during spin-coating in thin films, according to which a transient wetting layer breaks up due to a Marangoni-type instability driven by a concentration gradient of solvent within the drying film. Our results show that rapid evaporation leads to a laterally phase-separated structure, while reducing the evaporation rate suppresses the interfacial instability and leads to a self-stratified final film.

  3. Design of freeze-dried Soluplus/polyvinyl alcohol-based film for the oral delivery of an insoluble drug for the pediatric use.

    PubMed

    Shamma, Rehab; Elkasabgy, Nermeen

    2016-01-01

    Spironolactone (SL) is a poorly water-soluble drug. Being poorly soluble affects its dissolution rate which in turn affects its oral bioavailability. This work aimed to prepare freeze-dried SL-Soluplus/polyvinyl alcohol (PVA) oral thin film in an attempt to enhance the drug solubility on one hand and at the same time prepare a solid dosage form convenient for the pediatric use. SL-Soluplus/PVA films were prepared using polyethylene glycol 400 (PEG 400) as a plasticizer applying the solvent-casting technique. The prepared films were evaluated for their thickness, tensile strength, and in vitro dissolution studies. Box-Behnken design (17 runs) was applied to optimize the effects of the formulation variables on the film properties. The optimized film formulation was freeze-dried after casting so as to enhance the drug dissolution. Moreover, the optimized freeze-dried film was re-characterized in vitro and evaluated in vivo in human volunteers to investigate its palatability and satisfaction. The results showed that the optimized formulation composed of 10% polymer concentration containing Soluplus:PVA (0.33:0.66) and plasticized with 30% PEG 400 possessed the highest desirability value (0.836). Freeze-drying of the optimized formulation succeeded to improve SL in vitro dissolution due to the preparation of a more porous film compared to the non-freeze-dried one. In vivo evaluation of the optimized freeze-dried film showed high satisfaction among the participating volunteers concerning the ease of administration and sensation thereafter, where all the film specimens dissolved without the need for water and no film residues remained in the mouth following film dissolution. In conclusion, freeze-dried Soluplus®/PVA-based oral thin film proved to be a successful carrier for the oral delivery of insoluble drugs like SL for pediatrics.

  4. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-05-01

    This report deals with the welding procedure development and weldment properties of an Fe-16 at. % Al alloy known as FAPY. The welding procedure development was carried out on 12-, 25-, and 51-mm (0.5-, 1-, and 2-in.) -thick plates of the alloy in the as-cast condition. The welds were prepared by using the gas tungsten arc process and filler wire of composition matching the base-metal composition. The preheat temperatures varied from room temperature to 350{degrees}C, and the postweld heat treatment (PWHT) was limited only for 1 h at 750{degrees}C. The welds were characterized by microstructural. analysis and microhardness data. The weldment specimens were machined for Charpy-impact, tensile, and creep properties. The tensile and creep properties of the weldment specimens were essentially the same as that of the base metal. The Charpy-impact properties of the weldment specimens improved with the PWHT and were somewhat lower than previously developed data on the wrought material. Additional work is required on welding of thicker sections, development of PWHT temperatures as a function of section thickness, and mechanical properties.

  5. Laser ignition of elastomer-modified cast double-base (EMCDB) propellant using a diode laser

    NASA Astrophysics Data System (ADS)

    Herreros, Dulcie N.; Fang, Xiao

    2017-03-01

    An experimental study was conducted to investigate laser ignition using a diode laser for elastomer-modified cast double-base (EMCDB) propellant in order to develop more liable and greener laser ignitors for direct initiation of the propellant. Samples of the propellant were ignited using a 974 nm near-infrared diode laser. Laser beam parameters including laser power, beam width and pulse width were investigated to determine their effects on the ignition performance in terms of delay time, rise time and burn time of the propellant which was arranged in several different configurations. The results have shown that the smaller beam widths, longer pulse widths and higher laser powers resulted in shorter ignition delay times and overall burn times, however, there came a point at which increasing the amount of laser energy transferred to the material resulted in no significant reduction in either delay time or overall burn time. The propellant tested responded well to laser ignition, a discovery which supports continued research into the development of laser-based propellant ignitors.

  6. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    NASA Astrophysics Data System (ADS)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  7. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES

    Sims, Zachary C.; Weiss, David; McCall, S. K.; ...

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  8. Oral keratinocyte responses to nickel-based dental casting alloys in vitro.

    PubMed

    Wylie, C M; Davenport, A J; Cooper, P R; Shelton, R M

    2010-09-01

    Adverse reactions of oral mucosa to nickel-based dental casting alloys are probably due to corrosion metal ion release. We exposed H400 oral keratinocytes to two Ni-based dental alloys (Matchmate and Dsign10) as well as NiCl( 2) (1-40 microg/mL Ni(2+)). Alloy derived Ni(2+) media concentrations were determined. Direct culture on both alloys resulted in inhibited growth with a greater effect observed for Dsign10 (higher ion release). Indirect exposure of cells to conditioned media from Dsign10 negatively affected cell numbers (approximately 64% of control by 6 days) and morphology while Matchmate-derived media did not. Exposure to increasing NiCl(2) negatively affected cell growth and morphology, and the Granulocyte-macrophage colony-stimulating factor (GM-CSF) transcript was significantly up-regulated in cells following direct and indirect exposure to Dsign10. NiCl(2) exposure up-regulated all cytokine transcripts at 1 day. At day 6, IL-1beta and IL-8 transcripts were suppressed while GM-CSF and IL-11 increased with Ni(2+) dose. Accumulation of Ni(2+) ions from alloys in oral tissues may affect keratinocyte viability and chronic inflammation.

  9. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    SciTech Connect

    Sims, Zachary C.; Weiss, David; McCall, S. K.; McGuire, Michael A.; Ott, Ryan T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  10. Novel chitosan-based films cross-linked by genipin with improved physical properties.

    PubMed

    Jin, J; Song, M; Hourston, D J

    2004-01-01

    Novel cross-linked chitosan-based films were prepared using the solution casting technique. A naturally occurring and nontoxic cross-linking agent, genipin, was used to form the chitosan and chitosan/poly(ethylene oxide) (PEO) blend networks, where two types of PEO were used, one with a molecular weight of 20 000 g/mol (HPEO) and the other of 600 g/mol (LPEO). Genipin is used in traditional Chinese medicine and extracted from gardenia fruit. Importantly, it overcomes the problem of physiological toxicity inherent in the use of some common synthetic chemicals as cross-linking agents. The mechanical properties and the stability in water of cross-linked and un-crosslinked chitosan and chitosan/PEO blend films were investigated. It was shown that, compared to the transparent yellow, un-cross-linked chitosan/PEO blend films, the genipin-cross-linked chitosan-based film, blue in color, was more elastic, was more stable, and had better mechanical properties. Genipin-cross-linking produced chitosan networks that were insoluble in acidic and alkaline solutions but were able to swell in these aqueous media. The swelling characteristics of the films exhibit sensitivity to the environmental pH and temperature. The surface properties of the films were also examined by contact angle measurements using water and mixtures of water/ethanol. The results showed that, with the one exception of cross-linked pure chitosan in 100% water, the cross-linked chitosan and chitosan/PEO blends were more hydrophobic than un-crosslinked ones.

  11. Application of alcohol based spraying coating on green sand mould for steel casting

    NASA Astrophysics Data System (ADS)

    Xu, Z. L.; Wang, J.; Yang, S. S.; He, Q. L.; Xiong, H. Sh

    2015-12-01

    A kind of coating suitable for green sand steel casting was developed. The practical application showed that the strength of the coating was high enough with no crack and no peeling under room temperature after drying the spraying coating, the performance of the coating for anti-cracking was good under high temperature, and the gas evolution of the coating was low. Using the coating, the casting surfaces finish appeared very good.

  12. [Flow of molten metal in denture base in horizontal centrifugal casting procedure. (Part 1) Flow, inflow volume and casting time of molten metal passing through single aprue into disk type mold (author's transl)].

    PubMed

    Okamura, H

    1976-01-01

    A pyrex glass plate was fitted at the bottom of casting ring, and disk type wax pattern (thickness. 0.43 mm) was put on the plate. Five types of sprueing were applied. Pure tin was casted using holizontal centrifugal casting machine. Flow of molten metal was filmed by the motor drive camera with the method of stroboscope. The results were summarized as follows. 1) When the sprue was attached at the center of the disk type mold vertically, moten metal flowed like a concentric circle at the early stage of casting. It was affected gradually by the direction of gravity and revolution, and it filled the mold from the lower part to the upper part. 2) When the sprue gate was attached to the side edge of the mold, and the sprue gate was placed to the forward and backward direction against the revolution direction, molten metal filled from lower part to the upper part. 3) When the sprue gate was placed against upper edge, molten metal flow was affected by the direction of gravity and revolution. When the sprue gate was placed against lower edge, molten metal filled quietry from the lower part to the upper part. 4) Inflow volume per unit time (inflow rate) was small at the early stage of casting. Inflow rate increased and became constant at the next stage. At the latter stage it became small again. 5) Inflow rate increased with the increase of area of sprue. 6) The time which was necessary to fill the volume of 1 cm (about 80% of the mold volume) became short with the increase of area of sprue. It was also influenced by the type of sprueing.

  13. Electrochemistry and current control in surface films based on silica-azure redox nanoparticles, carbon nanotubes, enzymes, and polyelectrolytes.

    PubMed

    Karra, Sushma; Zhang, Maogen; Gorski, Waldemar

    2013-01-15

    The redox active nanoparticles were developed by covalently attaching redox dye Azure C (AZU) to commercial silica nanoparticles (SN) via the silylated amine and glutaric dialdehyde links. The SN-AZU nanoparticles were studied as redox mediators for the oxidation of reduced β-nicotinamide adenine dinucleotide (NADH) in two polymeric films. The first film (F1) was composed of SN-AZU, carbon nanotubes, and cationic polyelectrolyte chitosan. The second film (F2) contained also added enzyme glucose dehydrogenase and its cofactor β-nicotinamide adenine dinucleotide (NAD(+)). The films F1 and F2 were cast on the glassy carbon electrodes, covered with an anionic polyelectrolyte Nafion, and their electrochemical properties were probed with NADH and glucose, respectively, using voltammetry, amperometry, and potentiometry. The Nafion overcoat reduced the sensitivity of F1/Nafion film electrodes to NADH by >98%. In contrast, depending on the concentration of Nafion, the sensitivity of the F2/Nafion film electrodes (reagentless biosensors) to glucose increased by up to 340%. The amplification of glucose signal was ascribed to the Donnan exclusion and ensuing Nafion-gated ionic fluxes, which enhanced enzyme activity in films F2. The proposed model predicts that such signal amplification should be also feasible in the case of other enzyme-based biosensors.

  14. Study on aluminium-based single films.

    PubMed

    Vinod Kumar, G S; García-Moreno, F; Babcsán, N; Brothers, A H; Murty, B S; Banhart, J

    2007-12-28

    In the present paper the authors studied isolated metallic films made from the same material used for making metallic foams, and then characterised their properties. Metal films were made from a liquid aluminium alloy reinforced with ceramic particles of known concentration. Melts without such particles were also investigated. It is shown that stable films could not be made from Al-Si alloy having no particles, and just extremely thin and fragile films could be made from commercially-pure Al. In contrast, aluminium alloys containing particles such as SiC and TiB(2) allowed pulling thin, stable films, which did not rupture. Significant thinning of films was observed when the particle concentration in the melt decreased. By in situ X-ray monitoring of liquid films during pulling, film thickness and drainage effects within the liquid film could be studied. The morphology and microstructure of films was characterised after solidification. Our work shows that the question of how foams are stabilised can be studied using a simplified system such as a film, instead of having to deal with the multitude of different structural elements present in a foam.

  15. Synthesis of FeS2 Nano Crystals for ink based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Dhakal, Tara; Ganta, Lakshmi; Westgate, Charles

    2012-02-01

    With a band gap of 0.95 eV and high absorption coefficient (?10^5 cm-1), FeS2 is ideal for use as a p-type hetero-junction partner in a solar cell. Although pyrite is abundant in nature, getting the right phase for thin films is difficult due to the various phases of iron sulfides. We propose an ink based process for attaining the pyrite phase. Our experimental process involves use of low cost non-toxic chemicals for synthesis. The process involves reacting iron (II) chloride, 1, 2-hexadecanediol with 70% Oleylamine at 100 C for 1 hour followed by introduction of sulfur and reacting for 2 hours at 220 C. The reaction provides perfect nano crystals dispersed in a carbon based solution which is later subjected to centrifugation to separate the crystals. After multiple cleaning cycles, the crystals were dispersed in chloroform for uniform suspension. SEM image the film formed by drop casting followed by argon-annealing revealed that the nano-crystals were hexagonal with sizes ranging from 100-500nm with perfect symmetry. EDAX analysis showed the iron to sulfur atomic percentage ratio 1:1. The argon annealed film was then sulfurized using an organic sulfur source at 400 C, which gave a desired pyrite cubic phase. We will present the growth process and the efficiency data for this ink based FeS2 solar cell.

  16. Real-Time, Model-Based Spray-Cooling Control System for Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Petrus, Bryan; Zheng, Kai; Zhou, X.; Thomas, Brian G.; Bentsman, Joseph

    2011-02-01

    This article presents a new system to control secondary cooling water sprays in continuous casting of thin steel slabs (CONONLINE). It uses real-time numerical simulation of heat transfer and solidification within the strand as a software sensor in place of unreliable temperature measurements. The one-dimensional finite-difference model, CON1D, is adapted to create the real-time predictor of the slab temperature and solidification state. During operation, the model is updated with data collected by the caster automation systems. A decentralized controller configuration based on a bank of proportional-integral controllers with antiwindup is developed to maintain the shell surface-temperature profile at a desired set point. A new method of set-point generation is proposed to account for measured mold heat flux variations. A user-friendly monitor visualizes the results and accepts set-point changes from the caster operator. Example simulations demonstrate how a significantly better shell surface-temperature control is achieved.

  17. Microstructure and stress rupture properties of polycrystal and directionally solidified castings of nickel-based superalloys

    NASA Astrophysics Data System (ADS)

    Wu, Bao-ping; Li, Lin-han; Wu, Jian-tao; Wang, Zhen; Wang, Yan-bin; Chen, Xing-fu; Dong, Jian-xin; Li, Jun-tao

    2014-01-01

    A new directionally solidified Ni-based superalloy DZ24, which is a modification of K24 alloy without rare and expensive elemental additions, such as Ta and Hf, was studied in this paper. The microstructure and stress rupture properties of conventionally cast and directionally solidified superalloys were comparatively analyzed. It is indicated that the microstructure of K24 alloy is composed of γ, γ', γ/γ' eutectics and MC carbides. Compared with the microstructure of K24 polycrystalline alloy, γ/γ' eutectic completely dissolves into the γ matrix, the fine and regular γ' phase reprecipitates, and MC carbides decompose to M6C/M23C6 carbides after heat treatment in DZ24 alloy. The rupture life of DZ24 alloy is two times longer than that of K24 alloy. The more homogeneous the size of γ' precipitate, the longer the rupture life. The coarsening and rafting behaviors of γ' precipitates are observed in DZ24 alloy after the stress-rupture test.

  18. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  19. Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals.

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...

  20. Sensitivity of linear CCD array based film scanners used for film dosimetry

    SciTech Connect

    Devic, Slobodan; Wang Yizhen; Tomic, Nada; Podgorsak, Ervin B.

    2006-11-15

    Film dosimetry is commonly performed by using linear CCD array transmission optical densitometers. However, these devices suffer from a variation in response along the detector array. If not properly corrected for, this nonuniformity may lead to significant overestimations of the measured dose as one approaches regions close to the edges of the scanning region. In this note, we present measurements of the spatial response of an AGFA Arcus II document scanner used for radiochromic film dosimetry. Results and methods presented in this work can be generalized to other CCD based transmission scanners used for film dosimetry employing either radiochromic or radiographic films.

  1. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  2. Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration

    SciTech Connect

    Azenha, Miguel; Magalhaes, Filipe; Faria, Rui; Cunha, Alvaro

    2010-07-15

    The use of ambient vibration tests to characterize the evolution of E-modulus of concrete right after casting is investigated in this paper. A new methodology is proposed, which starts by casting a concrete cylindrical beam inside a hollow acrylic formwork. This beam is then placed horizontally, simply supported at both extremities, and vertical accelerations resulting from ambient vibration are measured at mid-span. Processing these mid-span acceleration time series using power spectral density functions allows a continuous identification of the first flexural frequency of vibration of the composite beam, which in turn is correlated with the evolutive E-modulus of concrete since casting. Together with experiments conducted with the proposed methodology, a complementary validation campaign for concrete E-modulus determination was undertaken by static loading tests performed on the composite beam, as well as by standard compressive tests of concrete cylinders of the same batch loaded at different ages.

  3. Interferometric measurement method of thin film thickness based on FFT

    NASA Astrophysics Data System (ADS)

    Shuai, Gaolong; Su, Junhong; Yang, Lihong; Xu, Junqi

    2009-05-01

    The kernel of modern interferometry is to obtain necessary surface shape and parameter by processing interferogram with reasonable algorithm. The paper studies the basic principle of interferometry involving 2-D FFT, proposes a new method for measuring thin film thickness based on FFT: by CCD receiving and acquired card collecting with the help of Twyman-Green interferometer, can a fringe interferogram of the measured thin film be obtained. Based on the interferogram processing knowledge, an algorithm processing software/program can be prepared to realize identification of the edge films, regional extension, filtering, unwrapping the wrapped phase etc. And in this way can the distribution of film information-coated surface be obtained and the thickness of thin film samples automatically measured. The findings indicate the PV value and RMS value of the measured film samples are 0.256 λ and 0.068 λ respectively and prove the new method has high precision.

  4. Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from Orange (Citrus sinensis Osbeck) peel.

    PubMed

    Baron, Ricardo Duran; Pérez, Latife Lúquez; Salcedo, Jesús Mejía; Córdoba, Luis Pérez; Sobral, Paulo José do Amaral

    2017-05-01

    The objective of this study was to develop and characterize films based on blends of chitosan and pectin, produced in laboratory scale, from industrial wastes. The chitosan was obtained by termoalcaline deacetylation of chitin, extracted from blue crab (Callinectes sapidus) waste and characterized according to degree of deacetylation (DD) and viscosimetric molecular weight (Mw); and pectin was extracted by conventional heating, from orange (Citrus sinensis Osbeck) peel and characterized according to degree of esterification (DE) and molecular weight (Mw). The Ch:P based films were prepared by the casting method in different Ch:P ratios [0: 100, 25:75, 50:50, 75:25 and 100:0], and compared to two controls [0:100 and 100:0], of commercial pectin and chitosan. Glycerol was used as a plasticizer at concentrations of 0.2g/g macromolecules. The addition of high concentrations of pectin in the formulations resulted in films with high solubility and an increase in moisture. No significant difference (P>0.05) in the degree of swelling (DS) and water vapor permeability (WVP) of the films was observed. Ch:P blend films were less stiff and therefore more elastic and flexible than films based on only one biopolymer. The control films presented better results in terms of color, being brighter and less opaque than other film formulations. These data suggest that chitosan or pectin obtained from agro-industrial waste is a potential matrix to produce biodegradable films for future food applications.

  5. Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic.

    PubMed

    Niu, Qingyuan; Gao, Kezheng; Wu, Wenhui

    2014-09-22

    A cellulose nanofibril film is modified by chemical assembly of boronate-terminated conjugated polymer chains at its specific sites, C-6 carboxyl groups. The modified cellulose nanofibril film is used as a fluorescent sensor for nitroaromatic vapor. Thanks to the specific reactive sites, numerous loose cavities or pathways located in the film sensor's out-layer have been formed, and the fraction of easily accessible cavities of the novel fluorescent film sensor is up to 0.97, which could benefit the penetration and diffusion of analyte vapor. Therefore, the novel fluorescent film sensor exhibits high sensitivity toward nitroaromatic vapor with a fast response. The fluorescence quenching efficiency of the chemical-assembly film sensor is about 3 times larger than that of the spin-cast film sensor using the same conjugated polymer for 600 s exposure to DNT vapor. In addition, the novel fluorescent film sensor shows good reversibility.

  6. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film.

    PubMed

    He, Xin; Liu, A'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-25

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq(-1). A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  7. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film

    NASA Astrophysics Data System (ADS)

    He, Xin; Liu, A.'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-01

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq-1. A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  8. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  9. Improvement of Castability and Surface Quality of Continuously Cast TWIP Slabs by Molten Mold Flux Feeding Technology

    NASA Astrophysics Data System (ADS)

    Cho, Jung-Wook; Yoo, Shin; Park, Min-Seok; Park, Joong-Kil; Moon, Ki-Hyeon

    2017-02-01

    An innovative continuous casting process named POCAST (POSCO's advanced CASting Technology) was developed based on molten mold flux feeding technology to improve both the productivity and the surface quality of cast slabs. In this process, molten mold flux is fed into the casting mold to enhance the thermal insulation of the meniscus and, hence, the lubrication between the solidifying steel shell and the copper mold. Enhancement of both the castability and the surface quality of high-aluminum advanced high-strength steel (AHSS) slabs is one of the most important advantages when the new process has been applied into the commercial continuous casting process. A trial cast of TWIP steel has been carried out using a 10-ton scale pilot caster and 100-ton scale and 250-ton scale commercial casters. The amount of mold flux consumption was more than 0.2 kg/m2 in the new process, which is much larger than that in the conventional powder casting. Trial TWIP castings at both the pilot and the plant caster showed stable mold performances such as mold heat transfer. Also, cast slabs showed periodic/sound oscillation marks and little defects. The successful casting of TWIP steel has been attributed to the following characteristics of POCAST: dilution of the reactant by increasing the slag pool depth, enlargement of channel for slag film infiltration at meniscus by elimination of the slag bear, and decrease of apparent viscosity of the mold slag at meniscus by increasing the slag temperature.

  10. Improved quantitative visualization of hypervelocity flow through wavefront estimation based on shadow casting of sinusoidal gratings.

    PubMed

    Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan

    2016-08-01

    A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.

  11. High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research pr...

  12. High Throughput Prioritization for Integrated Toxicity Testing Based on ToxCast Chemical Profiling

    EPA Science Inventory

    The rational prioritization of chemicals for integrated toxicity testing is a central goal of the U.S. EPA’s ToxCast™ program (http://epa.gov/ncct/toxcast/). ToxCast includes a wide-ranging battery of over 500 in vitro high-throughput screening assays which in Phase I was used to...

  13. Electrocaloric devices based on thin-film heat switches

    NASA Astrophysics Data System (ADS)

    Epstein, Richard I.; Malloy, Kevin J.

    2009-09-01

    We describe a new approach to refrigeration, heat pumping, and electrical generation that allows one to exploit the attractive properties of thin films of electrocaloric materials. Layers of electrocaloric material coupled with thin-film heat switches can work as either refrigerators and heat pumps or electrical generators, depending on the phasing of the applied voltages and heat switching. With heat switches based on thin layers of liquid crystals, the efficiency of electrocaloric thin-film devices can be at least as high as that of current thermoelectric devices. Advanced heat switches that may use carbon nanotubes would enable thin-film refrigerators and generators to outperform conventional vapor-compression devices.

  14. Electrocaloric devices based on thini-film heat switches

    SciTech Connect

    Epstein, Richard I; Malloy, Kevin J

    2009-01-01

    We describe a new approach to refrigeration and electrical generation that exploits the attractive properties of thin films of electrocaloric materials. Layers of electrocaloric material coupled with thin-film heat switches can work as either refrigerators or electrical generators, depending on the phasing of the applied voltages and heat switching. With heat switches based on thin layers of liquid crystals, the efficiency of these thin-film heat engines can be at least as high as that of current thermoelectric devices. Advanced heat switches would enable thin-film heat engines to outperform conventional vaporcompression devices.

  15. Microwave surface resistance in Tl-based superconducting thin films

    SciTech Connect

    Chang, L.D.; Moskowitz, M.J.; Hammond, R.B.; Eddy, M.M.; Olson, W.L.; Casavant, D.D.; Smith, E.J.; Robinson, M. ); Drabeck, L.; Gruner, G.; and others

    1989-09-25

    We report measurements of microwave surface resistance in Tl-based superconductor thin films made by laser ablation followed by a post-deposition thermal process. The films were measured by using cavity methods. The data at 9.5 and 148 GHz indicate that the residual resistance scales as {ital f}{sup 2}. At 77 K, the 9.5 GHz surface resistance is ten times smaller than oxygen-free high-conductance copper at the same temperature and frequency. The 9.5 GHz measurement also indicates that the film-substrate interface does not cause more microwave loss than the film surface.

  16. Microwave surface resistance in Tl-based superconducting thin films

    SciTech Connect

    Chang, L.D.; Moskowitz, M.J.; Hammond, R.B.; Eddy, M.M.; Olson, W.L.

    1989-09-25

    Measurements are reported of microwave surface resistance in Tl-based superconductor thin films made by laser ablation followed by a post-deposition thermal process. The films were measured by using cavity methods. The data at 9.5 and 148 GHz indicate that the residual resistance scales as f2. At 77 K, the 9.5 GHz surface resistance is ten times smaller than oxygen-free high-conductance copper at the same temperature and frequency. The 9.5 GHz measurement also indicates that the film-substrate interface does not cause more microwave loss than the film surface.

  17. AC conductivity and electrochemical studies of PVA/PEG based polymer blend electrolyte films

    NASA Astrophysics Data System (ADS)

    Polu, Anji Reddy; Kumar, Ranveer; Dehariya, Harsha

    2012-06-01

    Polymer blend electrolyte films based on Polyvinyl alcohol(PVA)/Poly(ethylene glycol)(PEG) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique. Conductivity in the temperature range 303-373 K and transference number measurements have been employed to investigate the charge transport in this polymer blend electrolyte system. The highest conductivity is found to be 9.63 × 10-5 S/cm at 30°C for sample with 30 weight percent of Mg(NO3)2 in PVA/PEG blend matrix. Transport number data shows that the charge transport in this polymer electrolyte system is predominantly due to ions. Using this electrolyte, an electrochemical cell with configuration Mg/(PVA+PEG+Mg(NO3)2)/(I2+C+electrolyte) was fabricated and its discharge characteristics profile has been studied.

  18. Structural, morphological and optical properties of PEDOT:PSS/QDs nano-composite films prepared by spin-casting

    NASA Astrophysics Data System (ADS)

    Najeeb, Mansoor Ani; Abdullah, Shahino Mah; Aziz, Fakhra; Ahmad, Zubair; Rafique, Saqib; Wageh, S.; Al-Ghamdi, Ahmed A.; Sulaiman, Khaulah; Touati, Farid; Shakoor, R. A.; Al-Thani, N. J.

    2016-09-01

    This paper describes the structural, morphological and optical properties of the nano-composite of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and quantum dots (QDs). The ZnSe and CdSe QDs have been synthesized, with the aid of Mercaptoacetic acid (MAA), by a colloidal method with an average size of ~5 to 7 nm. QDs have been embedded in PEDOT:PSS using a simple solution processing approach and has been deposited as thin films by spin coating technique. The QDs embedded PEDOT:PSS enhances the light absorption spectra of samples, prominently in terms of absorption intensity which may consequently improve sensitivity of the optoelectronic devices.

  19. Exciton dynamics reveal aggregates with intermolecular order at hidden interfaces in solution-cast organic semiconducting films.

    PubMed

    Wong, Cathy Y; Cotts, Benjamin L; Wu, Hao; Ginsberg, Naomi S

    2015-01-12

    Large-scale organic electronics manufacturing requires solution processing. For small-molecule organic semiconductors, solution processing results in crystalline domains with high charge mobility, but the interfaces between these domains impede charge transport, degrading device performance. Although understanding these interfaces is essential to improve device performance, their intermolecular and electronic structure is unknown: they are smaller than the diffraction limit, are hidden from surface probe techniques, and their nanoscale heterogeneity is not typically resolved using X-ray methods. Here we use transient absorption microscopy to isolate a unique signature of a hidden interface in a TIPS-pentacene thin film, exposing its exciton dynamics and intermolecular structure. Surprisingly, instead of finding an abrupt grain boundary, we reveal that the interface can be composed of nanoscale crystallites interleaved by a web of interfaces that compound decreases in charge mobility. Our novel approach provides critical missing information on interface morphology necessary to correlate solution-processing methods to optimal device performance.

  20. Exciton dynamics reveal aggregates with intermolecular order at hidden interfaces in solution-cast organic semiconducting films

    NASA Astrophysics Data System (ADS)

    Wong, Cathy Y.; Cotts, Benjamin L.; Wu, Hao; Ginsberg, Naomi S.

    2015-01-01

    Large-scale organic electronics manufacturing requires solution processing. For small-molecule organic semiconductors, solution processing results in crystalline domains with high charge mobility, but the interfaces between these domains impede charge transport, degrading device performance. Although understanding these interfaces is essential to improve device performance, their intermolecular and electronic structure is unknown: they are smaller than the diffraction limit, are hidden from surface probe techniques, and their nanoscale heterogeneity is not typically resolved using X-ray methods. Here we use transient absorption microscopy to isolate a unique signature of a hidden interface in a TIPS-pentacene thin film, exposing its exciton dynamics and intermolecular structure. Surprisingly, instead of finding an abrupt grain boundary, we reveal that the interface can be composed of nanoscale crystallites interleaved by a web of interfaces that compound decreases in charge mobility. Our novel approach provides critical missing information on interface morphology necessary to correlate solution-processing methods to optimal device performance.

  1. Millisecond Photoinduced Absorption Studies of Pyridine-Based Copolymer Films

    NASA Astrophysics Data System (ADS)

    Coplin, K. A.; Clark, D. T.; Jessen, S. W.; Epstein, A. J.; Fu, D.-K.; Swager, T. M.

    1997-03-01

    We present a study of the photoexcited states in copolymers of poly(p-pyridyl vinylene) and poly(p-phenylene vinylene) (PPyVPR_iV) with sidegroups R_1=C_12H_25 or R_2=COOC_12H_25 attached at the 2 and 5 positions of the phenyl ring. Previous studies discussed the millisecond photoinduced absorption (ms PA) characteristics of PPyVPR_iV powders(S.W. Jessen et al.), Synth. Met., in press.. In particular, triplet-triplet (T-T) transitions were observed at 1.6 eV for both materials. Additional polaron signatures were also observed in both the electronic ( ~ 0.85 eV) and infrared (1100 - 1600 cm-1) regions of the photoinduced spectrum. We compare these powder results with ms PA features for film morphologies of both the copolymers. We observe a weaker ( ~ 10X) T-T^* transition for copolymer films cast from xylene solution indicating a reduction in triplet exciton production as compared to powder samples. These results are contrasted with the behavior we reported(S.W. Jessen et al.), to be published. earlier for film and powder samples of the parent polymer poly(p-pyridyl vinylene).

  2. Isothermal and non-isothermal crystallization kinetics of PVA + ionic liquid [BDMIM][BF4]-based polymeric films

    NASA Astrophysics Data System (ADS)

    Saroj, A. L.; Chaurasia, S. K.; Kataria, Shalu; Singh, R. K.

    2016-06-01

    The effect of ionic liquid (IL), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM][BF4], on crystallization behavior of poly(vinyl alcohol) (PVA) has been studied by isothermal and non-isothermal differential scanning calorimetry techniques. The PVA + IL based polymer electrolyte films have been prepared using solution casting technique. To describe the isothermal and non-isothermal crystallization kinetics, several kinetic equations have been employed on PVA + IL based films. There is strong dependence of the peak crystallization temperature (Tc), relative degree of crystallity (Xt), half-time of crystallization (t1/2), crystallization rate constants (Avrami Kt and Tobin AT), and Avrami (n) and Tobin (nT) exponents on the cooling rate and IL loading.

  3. A Winning Cast

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.

  4. Machine Casting of Ferrous Alloys.

    DTIC Science & Technology

    possible today. Extensive work was conducted on casting of semi-solid alloys when highly fluid (’ Rheocasting ’) and when thixotropically gelled...Thixocasting’). In initial phases of the program, copper base alloys and cast iron alloys were prepared with special non-dendritic Rheocast structure by batch...processing. Compatibility studies were carried out to select materials suitable for preparing cast iron with the Rheocast structure. Design

  5. Fully casted soft power generating triboelectric shoe insole

    NASA Astrophysics Data System (ADS)

    Haque, Rubaiyet I.; Farine, Pierre-André; Briand, Danick

    2016-11-01

    Power generating soft triboelectric based shoe insole fully elastomeric and compatible with large-scale fabrication technique has been developed. During the process, film casting and stencil printing techniques were implemented to deposit/pattern elastomeric and soft/flexible materials, such as, polydimethylsiloxane (PDMS) and polyurethane (PU). Carbon- based elastomeric materials were used as electrodes, which were also film casted. The developed triboelectric generator (TENG) was capable of harnessing electrical power effectively from mechanical deformation of the system during walking or running activities. The performance of the device was tested for walking with frequency of 0.9±0.2 Hz. The power (rms value) of 0.25 mW was achieved for load resistance of 100 MΩ,, which corresponded to the power density (rms value) of 1.9 μW/cm2.

  6. Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging.

    PubMed

    Rodríguez, Francisco J; Torres, Alejandra; Peñaloza, Ángela; Sepúlveda, Hugo; Galotto, María J; Guarda, Abel; Bruna, Julio

    2014-01-01

    Nanocomposites based on biopolymers have been recognised as potential materials for the development of new ecofriendly food packaging. In addition, if these materials incorporate active substances in their structure, the potential applications are much higher. Therefore, this work was oriented to develop nanocomposites with antimicrobial activity based on cellulose acetate (CA), a commercial organoclay Cloisite30B (C30B), thymol (T) as natural antimicrobial component and tri-ethyl citrate (TEC) as plasticiser. Nanocomposites were prepared by a solvent casting method and consisted of 5% (w/w) of C30B, 5% (w/w) of TEC and variable content of T (0%, 0.5% and 2% w/w). To evaluate the effect of C30B into the CA matrix, CA films without this organoclay but with T were also prepared. All nanocomposites showed the intercalation of CA into the organoclay structure; furthermore this intercalation was favoured when 2% (w/w) of T was added to the nanocomposite. In spite of the observed intercalation, the presence of C30B inside the CA matrices increased the opacity of the films significantly. On the other hand, T showed a plasticiser effect on the thermal properties of CA nanocomposites decreasing glass transition, melting temperature and melting enthalpy. The presence of T in CA nanocomposites also allowed the control de Listeria innocua growth when these materials were placed in contact with this Gram-positive bacterium. Interestingly, antimicrobial activity was increased with the presence of C30B. Finally, studies on T release showed that the clay structure inside the CA matrix did not affect its release rate; however, this nanofiller affected the partition coefficient KP/FS which was higher to CA nanocomposites films than in CA films without organoclay. The results obtained in the present study are really promising to be applied in the manufacture of food packaging materials.

  7. Preparation of refractive index matching polymer film alternative to oil for use in a portable surface-plasmon resonance phenomenon-based chemical sensor method.

    PubMed

    Masadome, Takashi; Asano, Yasukazu; Imato, Toshihiko; Ohkubo, Satoshi; Tobita, Tatsuya; Tabei, Hisao; Iwasaki, Yuzuru; Niwa, Osamu; Fushinuki, Yoshito

    2002-07-01

    In order to simplify the procedure for assembling a surface-plasmon resonance (SPR) sensor, a refractive index matching polymer film was prepared as an alternative to the conventionally used matching oil. The refractive index matching polymer film, the refractive index of which was nearly equal to the prism and sensor chip material (a cover glass) of the SPR sensor, was prepared by casting a tetrahydrofuran solution of poly (vinyl chloride) (PVC) containing equal weights of dioctyl phthalate and tricresyl phosphate. The refractive index matching polymer film was found to have a refractive index of 1.516, which is identical to that of the prism and the cover glass used for the present SPR sensor. The utility of the matching polymer film for the SPR sensor was confirmed by the detection of anti-human albumin, based on an antigen-antibody reaction.

  8. Water-based oxygen-sensor films.

    PubMed

    Habibagahi, Arezoo; Mébarki, Youssef; Sultan, Yasir; Yap, Glenn P A; Crutchley, Robert J

    2009-08-01

    The luminescent cyclometalated iridium complex [Ir(fppy)(2)(t-Bu-iCN)(2)]CF(3)SO(3), 1 (fppy = 4-(2-pyridyl)benzaldehyde, and t-Bu-iCN = tert-butyl isocyanide), was synthesized and characterized by X-ray crystallography and (1)H NMR, absorption, and emission spectroscopies. Complex 1 was quantitatively bound to the water-soluble amine-functionalized polymer Silamine D208-EDA by reductive amination, to produce 2. The quantum yield of emission and excited state lifetime of 2 (varphi(em) = 0.23 and tau = 20.6 mus) are comparable to that of the model complex [Ir(tpy)(2)(t-Bu-iCN)(2)]CF(3)SO(3), 3 (tpy = 2-(p- tolyl) pyridine) with varphi(em) = 0.28 and tau = 35.6 mus. Aqueous blends of 2 with Silamine and colloidal microcrystalline cellulose (MC) were used to prepare oxygen-sensor films. Oxygen sensitivities of these films were determined as a function of Silamine:MC ratio and obeyed Stern-Volmer kinetics. The optimum oxygen-sensor film composition was 2 in 1:1 Silamine:MC, which had an oxygen sensitivity of 0.502 over an atmospheric pressure range of 0.007-45 psi. Temperature sensitivity (percentage loss of intensity per degrees C) of this film was determined to be -1.1 and -1.4% degrees C(-1) at vacuum and 1 bar atmospheric pressure, respectively. These results were compared to those of films incorporating dispersions of 1 and 3. Luminescence microscopy of 9:1, 1:1, and 1:5 Silamine:MC films of 2 show that the charged iridium complex in 2 associates with the surface of MC and lifetime measurements of these films show an increase in lifetime with increasing MC fraction. The optimum quenching sensitivity observed for the 1:1 Silamine:MC film suggests that the diffusion of oxygen must decrease with increasing fraction of MC and thereby decrease oxygen sensitivity. These novel materials offer an environmentally friendly alternative to the preparation of oxygen-sensor films.

  9. Antimicrobial nanostructured starch based films for packaging.

    PubMed

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material.

  10. Chimerical categories: caste, race, and genetics.

    PubMed

    Sabir, Sharjeel

    2003-12-01

    Is discrimination based on caste equivalent to racism? This paper explores the complex relationship between genetic, race and caste. It also discusses the debate over the exclusion of a discussion of caste-based discrimination at the 2001 World Conference against Racism, Racial Discrimination, Xenophobia and Related Intolerance held in Durban, South Africa.

  11. Fabrication and characterization of novel semolina-based antimicrobial films derived from the combination of ZnO nanorods and nanokaolin.

    PubMed

    Jafarzadeh, Shima; Alias, Abd Karim; Ariffin, Fazilah; Mahmud, Shahrom; Najafi, Ali; Ahmad, Mehraj

    2017-01-01

    This study aimed to provide novel biopolymer-based antimicrobial films as food packaging that may assist in reducing environmental pollution caused by the accumulation of synthetic food packaging. The blend of ZnO nanorods (ZnO-nr) and nanokaolin in different ratios (1:4, 2:3, 3:2 and 4:1) was incorporated into semolina, and nanocomposite films were prepared using solvent casting. The resulting films were characterized through field-emission scanning electron microscopy and X-ray diffraction. The mechanical, optical, physical, and antimicrobial properties of the films were also analyzed. The water vapor permeability of the films decreased with increasing ZnO-nr percentage, but their tensile strength and modulus of elasticity increased with increasing nanokaolin percentage. The UV transmittance of the semolina films were greatly influenced by an increase in the amount of ZnO-nr. The addition of ZnO-nr: nanokaolin at all ratios (except 1:4) into semolina reduced UV transmission to almost 0%. Furthermore, the ZnO-nr/nanokaolin/semolina films exhibited a strong antimicrobial activity against Staphylococcus aureus. These properties suggest that the combination of ZnO-nr and nanokaolin are potential fillers in semolina-based films to be used as active packaging for food and pharmaceuticals.

  12. Cool Cast Facts

    MedlinePlus

    ... moving. The outer layer is usually made of plaster or fiberglass. Fiberglass casts are made of fiberglass, ... color! These casts are lighter and stronger than plaster casts. Plaster casts are usually white and made ...

  13. Nanocrystalline silicon based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  14. Effect of gamma radiation on the mechanical and barrier properties of HEMA grafted chitosan-based films

    NASA Astrophysics Data System (ADS)

    Khan, Avik; Huq, Tanzina; Khan, Ruhul A.; Dussault, Dominic; Salmieri, Stephane; Lacroix, Monique

    2012-08-01

    Chitosan films were prepared by dissolving 1% (w/v) chitosan powder in 2% (w/v) aqueous acetic acid solution. Chitosan films were prepared by solution casting. The values of puncture strength (PS), viscoelasticity coefficient and water vapor permeability (WVP) of the films were found to be 565 N/mm, 35%, and 3.30 g mm/m2 day kPa, respectively. Chitosan solution was exposed to gamma irradiation (0.1-5 kGy) and it was revealed that PS values were reduced significantly (p≤0.05) after 1 kGy dose and it was not possible to form films after 5 kGy. Monomer, 2-hydroxyethyl methacrylate (HEMA) solution (0.1-1%, w/v) was incorporated into the chitosan solution and the formulation was exposed to gamma irradiation (0.3 kGy). A 0.1% (w/v) HEMA concentration at 0.3 kGy dose was found optimal-based on PS values for chitosan grafting. Then radiation dose (0.1-5 kGy) was optimized for HEMA grafting. The highest PS values (672 N/mm) were found at 0.7 kGy. The WVP of the grafted films improved significantly (p≤0.05) with the rise of radiation dose.

  15. Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles.

    PubMed

    Noshirvani, Nooshin; Ghanbarzadeh, Babak; Mokarram, Reza Rezaei; Hashemi, Mahdi; Coma, Véronique

    2017-03-04

    Active nanocomposites based on carboxymethyl cellulose-chitosan-oleic acid (CMC-CH-OL) incorporated with different concentrations (0.5-2wt.%) of zinc oxide nanoparticles (ZnO NPs) were produced by casting method. The effects of ZnO NPs on the morphological, mechanical, thermal, physical and antifungal properties of the films were studied. New interaction between ZnO NPs and polymer matrix were confirmed by Fourier Transform infrared. After addition of ZnO NPs, tensile strength, lightness (L*) and thermal stability decreased however, elongation at break, contact angle, a* (greenness) and b* (yellowness) of the nanocomposite films increased in comparison to the films without nano-filler. UV transmittance at 280nm decreased from 17.3% to 0.2, 0.1 and 0.1 for the nanocomposite films containing 0.5, 1 and 2wt.% ZnO NPs, respectively, suggesting higher UV blocking properties. Disc diffusion test showed considerable antifungal properties of the active nanocomposite films against Aspergillus niger, especially in CMC-CH-OL-ZnO 2wt.% by more than 40% fungal growth inhibition.

  16. Education and Caste in India

    ERIC Educational Resources Information Center

    Chauhan, Chandra Pal Singh

    2008-01-01

    This paper analyses the policy of reservation for lower castes in India. This policy is similar to that of affirmative action in the United States. The paper provides a brief overview of the caste system and discusses the types of groups that are eligible for reservation, based on data from government reports. The stance of this paper is that…

  17. Methods for preparing colloidal nanocrystal-based thin films

    DOEpatents

    Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.

    2016-05-10

    Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.

  18. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    NASA Astrophysics Data System (ADS)

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-08-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  19. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    PubMed

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-08-09

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  20. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    PubMed Central

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  1. CASTING FURNACES

    DOEpatents

    Ruppel, R.H.; Winters, C.E.

    1961-01-01

    A device is described for casting uranium which comprises a crucible, a rotatable table holding a plurality of molds, and a shell around both the crucible and the table. The bottom of the crucible has an eccentrically arranged pouring hole aligned with one of the molds at a time. The shell can be connected with a vacuum.

  2. High-temperature superconducting thin-film-based electronic devices

    SciTech Connect

    Wu, X.D; Finokoglu, A.; Hawley, M.; Jia, Q.; Mitchell, T.; Mueller, F.; Reagor, D.; Tesmer, J.

    1996-09-01

    This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites.

  3. Integrated thick-film nanostructures based on spinel ceramics

    PubMed Central

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications. PMID:24670141

  4. Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Desain, John D.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth K.; Borduin, Russell; Koo, Joseph H.; Brady, Brian B.; Curtiss, Thomas J.; Story, George

    2012-01-01

    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature.

  5. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    NASA Astrophysics Data System (ADS)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  6. Gating of Permanent Molds for ALuminum Casting

    SciTech Connect

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  7. Inner surface roughness of complete cast crowns made by centrifugal casting machines.

    PubMed

    Ogura, H; Raptis, C N; Asgar, K

    1981-05-01

    Six variables that could affect the surface roughness of a casting were investigated. The variables were (1) type of alloy, (2) mold temperature, (3) metal casting temperature, (4) casting machine, (5) sandblasting, and (6) location of each section. It was determined that the training portion of a complete cast crown had rougher surfaces than the leading portion. Higher mold and casting temperatures produced rougher castings, and this effect was more pronounced in the case of the base metal alloy. Sandblasting reduced the roughness, but produced scratched surfaces. Sandblasting had a more pronounced affect on the surface roughness of the base metal alloy cast either at a higher mold temperature or metal casting temperature. The morphology and the roughness profile of the original cast surface differed considerably with the type of alloy used.

  8. Thermoforming of film-based biomedical microdevices.

    PubMed

    Truckenmüller, Roman; Giselbrecht, Stefan; Rivron, Nicolas; Gottwald, Eric; Saile, Volker; van den Berg, Albert; Wessling, Matthias; van Blitterswijk, Clemens

    2011-03-18

    For roughly ten years now, a new class of polymer micromoulding processes comes more and more into the focus both of the microtechnology and the biomedical engineering community. These processes can be subsumed under the term "microthermoforming". In microthermoforming, thin polymer films are heated to a softened, but still solid state and formed to thin-walled microdevices by three-dimensional stretching. The high material coherence during forming is in contrast to common polymer microreplication processes where the material is processed in a liquid or flowing state. It enables the preservation of premodifications of the film material. In this progress report, we review the still young state of the art of microthermoforming technology as well as its first applications. So far, the applications are mainly in the biomedical field. They benefit from the fact that thermoformed microdevices have unique properties resulting from their special, unusual morphology. The focus of this paper is on the impact of the new class of micromoulding processes and the processed film materials on the characteristics of the moulded microdevices and on their applications.

  9. Microporosity in casting alloys.

    PubMed

    Lewis, A J

    1975-06-01

    Three series of tensile test pieces were produced using a nickel base partial denture casting alloy. For the first series induction heating was employed, for the second a resistance crucible, and for the third an oxy-acetylene torch. Samples from each series were sectioned longitudinally, mounted, polished and examined microscopically for evidence of microporosity.

  10. ShakeCast Manual

    USGS Publications Warehouse

    Lin, Kuo-Wan; Wald, David J.

    2008-01-01

    ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users? facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  11. An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films.

    PubMed

    Heriot, Sasha Y; Jones, Richard A L

    2005-10-01

    Spin-coating is a very widely used technique for making uniform thin polymer films. For example, the active layers in most experimental semiconducting polymer-based devices, such as light-emitting diodes and photovoltaics, are made this way. The efficiency of such devices can be improved by using blends of polymers; these phase separate during the spin-coating process, creating the complex morphology that leads to performance improvements. We have used time-resolved small-angle light scattering and light reflectivity during the spin-coating process to study the development of structure directly. Our results provide evidence that a blend of two polymers first undergoes vertical stratification; the interface between the stratified layers then becomes unstable, leading to the final phase-separated thin film. This has given us the basis for establishing a full mechanistic understanding of the development of morphology in thin mixed polymer films, allowing a route to the rational design of processing conditions so as to achieve desirable morphologies by self-assembly.

  12. Energy Consumption of Die Casting Operations

    SciTech Connect

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  13. Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy

    SciTech Connect

    Mackie, D.; Robson, J.D.; Withers, P.J.; Turski, M.

    2015-06-15

    Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al{sub 8}Mn{sub 5} in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallic phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets.

  14. Casting methods

    SciTech Connect

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  15. Calculation of the Combined Heat Transfer Coefficient of Hot-face on Cast Iron Cooling Stave Based on Thermal Test

    NASA Astrophysics Data System (ADS)

    Li, Feng-guang; Zhang, Jian-liang; Zuo, Hai-bin; Qin, Xuan; Qi, Cheng-lin

    2017-03-01

    Cooling effects of the cast iron cooling stave were tested with a specially designed experimental furnace under the conditions of different temperatures of 800 °C, 900 °C, 1,000 °C and 1,100 °C as well as different cooling water velocities of 0.5 m·s-1, 1.0 m·s-1, 1.5 m·s-1 and 2.0 m·s-1. Furthermore, the combined heat transfer coefficient of hot-face on cast iron cooling stave (αh-i) was calculated by heat transfer theory based on the thermal test. The calculated αh-i was then applied in temperature field simulation of cooling stave and the simulation results were compared with the experimental data. The calculation of αh-i indicates that αh-i increases rapidly as the furnace temperature increases while it increases a little as the water velocity increases. The comparison of the simulation results with the experimental data shows that the simulation results fit well with the experiment data under different furnace temperatures.

  16. Functionally graded alumina-based thin film systems

    DOEpatents

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  17. CASTING APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-09-23

    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  18. ZnS-nanocrystals/polypyrrole nanocomposite film based immunosensor

    NASA Astrophysics Data System (ADS)

    Mishra, Sujeet K.; Pasricha, Renu; Biradar, Ashok M.; Rajesh

    2012-01-01

    We report an electrochemically synthesized ZnS nanocrystals modified polypyrrole (PPy) nanocomposite film based immunosensor for the detection of C-reactive protein (αCRP). The ZnS-PPy composite film was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemical techniques. The modified film showed good biocompatibility with efficient binding to protein antibody (αCRP-Ab) molecules through ZnS nanocrystals, exhibited an attractive platform for immunosensor fabrication. The electrical and sensing properties of the polymer composite film of different thickness towards protein antigen (αCRP-Ag) were delineated. The immunosensor exhibited an impedance response to αCRP-Ag concentration in a linear range from 10 ng to 10 μg mL-1.

  19. A film pressure sensor based on optical fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Deng, Gang; Dai, Yongbo; Liu, Yanju; Leng, Jinsong

    2010-03-01

    The measurement of pressure is essential for the design and flying controlling of aircraft. In order to measure the surface pressures of the aircraft, the common pressure tube method and Pressure sensitive paint measurement method have their own disadvantages, and are not applicable to all aircraft structures and real time pressure monitoring. In this paper, a novel thin film pressure sensor based on Fiber Bragg Grating (FBG) is proposed, using FBG measuring the tangential strain of the disk sensing film. Theoretical circle strain of the disk sensing film of the pressure sensor under pressure and temperature variation are analyzed, and the linear relationship between FBG center wavelength shift and pressure, temperature variation is gotten. The pressure and temperature calibration experiments prove the theoretical analysis. But the calibration sensing parameters are small than the calculating ones, which is caused by the constraint of optical fibre to the thin sensing film.

  20. Development and Evaluation of Cefadroxil Drug Loaded Biopolymeric Films Based on Chitosan-Furfural Schiff Base

    PubMed Central

    Dixit, Ritu B.; Uplana, Rahul A.; Patel, Vishnu A.; Dixit, Bharat C.; Patel, Tarosh S.

    2010-01-01

    Cefadroxil drug loaded biopolymeric films of chitosan-furfural schiff base were prepared by reacting chitosan with furfural in presence of acetic acid and perchloric acid respectively for the external use. Prepared films were evaluated for their strength, swelling index, thickness, drug content, uniformity, tensile strength, percent elongation, FTIR spectral analysis and SEM. The results of in vitro diffusion studies revealed that the films exhibited enhanced drug diffusion as compared to the films prepared using untreated chitosan. The films also demonstrated good to moderate antibacterial activities against selective gram positive and gram negative bacteria. PMID:21179325

  1. SUBTLEX-ESP: Spanish Word Frequencies Based on Film Subtitles

    ERIC Educational Resources Information Center

    Cuetos, Fernando; Glez-Nosti, Maria; Barbon, Analia; Brysbaert, Marc

    2011-01-01

    Recent studies have shown that word frequency estimates obtained from films and television subtitles are better to predict performance in word recognition experiments than the traditional word frequency estimates based on books and newspapers. In this study, we present a subtitle-based word frequency list for Spanish, one of the most widely spoken…

  2. Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors

    NASA Astrophysics Data System (ADS)

    Sun, Jiawei; Xie, Xiao; Bi, Hengchang; Jia, Haiyang; Zhu, Chongyang; Wan, Neng; Huang, Jianqiu; Nie, Meng; Li, Dan; Sun, Litao

    2017-03-01

    Vacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates. Other methods require GO to be reduced on filters before separation, thus limiting the reduction methods. Inspired by a coagulation bath that enables rapid formation of ultrastrong GO fibers, we present an ultrafast (<1 min) and solution-assisted strategy to fabricate smooth and freestanding GO films. The diverse interfacial energy of hydrogen bonds also demonstrates another reason for the successful separation. The film thickness ranges from 45 nm to several micrometers. When used as a composite of counter electrodes in dye sensitized solar cells, it showed higher (8.58%) power conversion efficiency than its spin-(7.71%) and spray-coated (8.07%) counterparts. It also showed promising performance in capacitive humidity sensors. The capacitance varied by three orders of magnitude in the range of the relative humidity of 15%–95%. Therefore the strategy realizes an ultrafast and high-quality film production which is suitable for various applications.

  3. Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors.

    PubMed

    Sun, Jiawei; Xie, Xiao; Bi, Hengchang; Jia, Haiyang; Zhu, Chongyang; Wan, Neng; Huang, Jianqiu; Nie, Meng; Li, Dan; Sun, Litao

    2017-03-01

    Vacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates. Other methods require GO to be reduced on filters before separation, thus limiting the reduction methods. Inspired by a coagulation bath that enables rapid formation of ultrastrong GO fibers, we present an ultrafast (<1 min) and solution-assisted strategy to fabricate smooth and freestanding GO films. The diverse interfacial energy of hydrogen bonds also demonstrates another reason for the successful separation. The film thickness ranges from 45 nm to several micrometers. When used as a composite of counter electrodes in dye sensitized solar cells, it showed higher (8.58%) power conversion efficiency than its spin-(7.71%) and spray-coated (8.07%) counterparts. It also showed promising performance in capacitive humidity sensors. The capacitance varied by three orders of magnitude in the range of the relative humidity of 15%-95%. Therefore the strategy realizes an ultrafast and high-quality film production which is suitable for various applications.

  4. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    SciTech Connect

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel was the first partner company that installed the radiant burner tube assembly in their heat-treating furnace. Other steel companies participated in project review meetings and are currently working with Duraloy Technologies to obtain components of the new alloys. EIO is promoting the enhanced performance of the newly designed alloys to Ohio-based companies. The Timken Company is one of the Ohio companies being promoted by EIO. The project management and coordination plan is shown in Fig. 1.1. A related project at University of Texas-Arlington (UT-A) is described in Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired

  5. Field emission from graphene based composite thin films

    NASA Astrophysics Data System (ADS)

    Eda, Goki; Emrah Unalan, H.; Rupesinghe, Nalin; Amaratunga, Gehan A. J.; Chhowalla, Manish

    2008-12-01

    Field emission from graphene is challenging because the existing deposition methods lead to sheets that lay flat on the substrate surface, which limits the field enhancement. Here we describe a simple and general solution based method for the deposition of field emitting graphene/polymer composite thin films. The graphene sheets are oriented at some angles with respect to the substrate surface leading to field emission at low threshold fields (˜4Vμm-1). Our method provides a route for the deposition of graphene based thin film field emitter on different substrates, opening up avenues for a variety of applications.

  6. Effects of silicon on the oxidation, hot-corrosion, and mechanical behavior of two cast nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1977-01-01

    Cast specimens of nickel-base superalloys 713C and Mar-M200 with nominal additions of 0, 0.5, and 1 wt% Si were evaluated for oxidation and corrosion resistance, tensile and stress-rupture properties, microstructure, and phase relations. Results are compared with those of an earlier study of the effects of Si in B-1900. Si had similar effects on all three superalloys. It improves oxidation resistance but the improvement in 713C and Mar-M200 was considerably less than in B-1900. Hot-corrosion resistance is also improved somewhat. Si is, however, detrimental to mechanical properties, in particular, rupture strength and tensile ductility. Si has two obvious microstructural effects. It increases the amount of gamma-prime precipitated in eutectic nodules and promotes a Mo(Ni,Si)2 Laves phase in the alloys containing Mo. These microstructural effects do not appear responsible for the degradation of mechanical properties, however.

  7. Casting materials

    DOEpatents

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  8. Novel ammonia sensor based on polyaniline/polylactic acid composite films

    NASA Astrophysics Data System (ADS)

    Sotirov, S.; Bodurov, I.; Marudova, M.

    2017-01-01

    We propose a new type of ammonia sensor based on composite film between polyaniline (emeraldine base) dissolved in dimethylformamide, and poly(DL-lactic) acid dissolved in chloroform. The two solutions were mixed in weight ratio of the components 1:1 and cast on Al2O3 substrate, on which silver electrodes were deposited previously. The active layer structure and morphology were examined by atomic force microscopy. The sensor resistance at constant humidity and different ammonia concentrations was measured. It was found that an increase in the ammonia concentration leads to resistance increase. This result is explained in the terms of ionic interactions between the polyaniline and the ammonia, which change the permittivity of the sensor active media. A response between 2% and 590% was shown depending on the ammonia concentration. The sensor is reversible and possesses response time of typically 100 s. Based on the changes of the sensor resistance, ammonia concentration from 10 ppm to 1000 ppm could be detected.

  9. Fabrication of wrist-like SMA-based actuator by double smart soft composite casting

    NASA Astrophysics Data System (ADS)

    Rodrigue, Hugo; Wei, Wang; Bhandari, Binayak; Ahn, Sung-Hoon

    2015-12-01

    A new manufacturing method for smart soft composite (SSC) actuators that consists of double casting a SSC actuator to produce an actuator with non-linear shape memory alloy (SMA) wire positioning is proposed. This method is used to manufacture a tube-shaped SSC actuator in which the SMA wires follow the curvature of the tube and is capable of pure-twisting deformations while sustaining a cantilever load. The concept is tested by measuring the maximum twisting angle and a simple control method is proposed to control the twisting angle of the actuator. Then, a soft robotic wrist with a length of 18 cm is built, its load-carrying capability is tested by measuring the cantilever force required for deforming the actuator, and its load-carrying capability during actuation is tested by loading one end with different objects and actuating the actuator. This wrist actuator shows good repeatability, is capable of twisting deformations up to 25° while holding objects weighing 100 g, and can sustain loads above 2 N without undergoing buckling.

  10. Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.

    EPA Science Inventory

    Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.Evans, M.V., Sawyer, M.E., Isaacs, K.K, and Wambaugh, J.With the development of efficient high-throughput (HT) in ...

  11. Slip-Cast Superconductive Parts

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Vasquez, Peter; Buck, Gregory M.; Hicks, Lana P.; Hooker, Matthew W.; Taylor, Theodore D.

    1993-01-01

    Complex shapes fabricated without machining. Nonaqueous slip-casting technique used to form complexly shaped parts from high-temperature superconductive materials like YBa(2)Cu(3)O(7-delta). Such parts useful in motors, vibration dampers, and bearings. In process, organic solvent used as liquid medium. Ceramic molds made by lost-wax process used instead of plaster-of-paris molds, used in aqueous slip-casting but impervious to organic solvents and cannot drain away liquid medium. Organic-solvent-based castings do not stick to ceramic molds as they do to plaster molds.

  12. MBE growth of Fe-based superconducting films

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Yamagishi, T.; Takeda, S.; Agatsuma, S.; Takano, S.; Mitsuda, A.; Naito, M.

    2011-11-01

    We report MBE growth of the iron-based superconductors, Sr1-xKxFe2As2, Ba1-xKxFe2As2, and SmFeAs(O,F). In the growth of Sr1-xKxFe2As2 and Ba1-xKxFe2As2 films, the key to incorporating volatile K in films is low-temperature (300-350 °C) growth in reduced As flux. The highest Tc so far obtained are Tcon (Tcend) = 33.4K (31.0 K) and 38.3 K (35.5 K) for Sr1-xKxFe2As2 and Ba1-xKxFe2As2, respectively. In the growth of superconducting SmFeAs(O,F), we have adopted two approaches. In the first approach, we first grew F-free SmFeAsO films, and subsequently introduced F to the films via F diffusion from an overlayer of SmF3 or NdF3. In the second approach, we attempted the growth of as-grown superconducting SmFeAs(O,F) films by coevaporating Sm, SmF3, Fe, and As. In both the approaches, the growth temperature was as high as 650 °C. So far better results have been obtained by the first F diffusion method. The films prepared by F diffusion showed Tcon (Tcend) = 52 K (48.6 K) whereas the as-grown films showed Tcon = 47 K but with a long transition tail.

  13. Ferromagnetism in antiferromagnetic NiO-based thin films

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Hua; Zhan, Bin; Nan, Ce-Wen; Zhao, Rongjuan; Xu, Xiang; Kobayashi, M.

    2011-08-01

    Polycrystalline NiO-based thin films with Li or/and transition metal ions (V, Cr, Mn, Fe, Co, Cu, Zn) doping have been prepared by a sol-gel spin-coating method. Magnetization measurements reveal that V-, Fe-, and Mn-doped NiO thin films show obvious room-temperature ferromagnetic behaviors and ferromagnetic properties can be enhanced by the Li co-doping. Microstructure and X-ray core-level photoemission spectra analysis indicate that the ferromagnetism was not from the impurity TM metal cluster and may be ascribed to double exchange coupling effects via Li-induced holes.

  14. Switchable mirrors based on nickel-magnesium films

    SciTech Connect

    Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

    2001-01-16

    A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

  15. Monte-Carlo based prediction of radiochromic film response for hadrontherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Frisson, T.; Zahra, N.; Lautesse, P.; Sarrut, D.

    2009-07-01

    A model has been developed to calculate MD-55-V2 radiochromic film response to ion irradiation. This model is based on photon film response and film saturation by high local energy deposition computed by Monte-Carlo simulation. We have studied the response of the film to photon irradiation and we proposed a calculation method for hadron beams.

  16. Vertical Conducting Nanodomains Self-Assembled from Poly(3-hexylthiophene)-Based Diblock Copolymer Thin Films

    SciTech Connect

    Y Lee; S Kim; H Yang; M Jang; S Hwang; H Lee; K Baek

    2011-12-31

    We have synthesized {pi}-conjugated poly(3-hexyl thiophene)-block-poly(methyl methacrylate) (P3HT-b-PMMA) with a P3HT molecular weight of 11 kDa and a PMMA volume fraction of 0.53, which potentially has several organic electronic applications. Its phase-separation behavior was investigated for various thicknesses cast from organic solvents. When cast onto 300 nm thick SiO{sub 2} dielectrics from toluene, in which the P3HT segments have limited solubility, the P3HT-b-PMMA films consist of nanofibrillar self-assemblies of laterally {pi}-stacked P3HT chains. In contrast, the P3HT segments were found to be highly mobile in chlorobenzene, generating a typical phase-separation morphology consisting of vertically conducting P3HT nanodomains on these dielectrics. As the thickness of the cast films increased, however, the topmost surface becomes covered with {pi}-conjugated nanofibrils that are laterally oriented with respect to the surface. Due to the anisotropic domain orientations of P3HT, top-gate organic field-effect transistors (OFETs) containing the P3HT-b-PMMA films exhibited enhanced electrical performance compared to bottom-gate OFETs.

  17. Films.

    ERIC Educational Resources Information Center

    Philadelphia Board of Education, PA. Div. of Instructional Materials.

    The Affective Curriculum Research Project produced five films and two records during a series of experimental summer programs. The films and records form part of a curriculum designed to teach to the concerns of students. The films were an effort to describe the Philadelphia Cooperative Schools Program, to explain its importance, and to…

  18. Directional solidification of large cross-section nickel-base superalloy castings via liquid-metal cooling

    NASA Astrophysics Data System (ADS)

    Elliott, Andrew J.

    The drive for higher efficiency in very large industrial gas turbines (IGTs) used in power generation applications has led to the need for directional solidification of large cross-section components, such as turbine blades, used in the hot gas path sections of the IGTs. The Bridgman directional solidification technique, which is currently used to produce these components, has been optimized for much smaller aero-engine components. The scale-up of this technique to produce large parts has resulted in numerous problems, and consequently low casting yield, which can all be related to the limited cooling capability of the Bridgman process. In this dissertation, a higher cooling efficiency process, liquid-metal cooling (LMC) using Sn as the cooling medium, has been evaluated for improved capability to cast large cross-section components. A series of castings were made for direct comparison using both the conventional Bridgman and the high thermal gradient LMC processes. Casting conditions were selected to simulate the state of the art for the Bridgman method and to assess the limits of casting with the less familiar LMC method. The experiments were evaluated through thermocouple analyses of casting conditions and post-casting analyses of grain defects, microstructural features, and mechanical behavior. Additionally, a finite element model of the solidification process was developed to further elucidate casting conditions. The casting parameters and elements of the LMC process that had the greatest influence on casting conditions were determined. Results indicated that the LMC process is capable of significantly enhancing cooling efficiency during directional solidification of large cross-section components. The enhanced cooling allowed much faster solidification withdrawal rates and resulted in substantially refined cast microstructure. The LMC process eliminated freckle-type defects in all cases and considerably reduced other casting defects under optimal conditions

  19. O on the Crystallization Behavior of Lime-Alumina-Based Mold Flux for Casting High-Al Steels

    NASA Astrophysics Data System (ADS)

    Lu, Boxun; Chen, Kun; Wang, Wanlin; Jiang, Binbin

    2014-08-01

    With the development of advanced high strength steel (AHSS), a large amount of aluminum was added into steels. The reaction between aluminum in the molten steel and silica based mold flux in the continuous-casting process would tend to cause a series of problems and influence the quality of slabs. To solve the above problems caused by the slag-steel reaction, nonreactive lime-alumina-based mold flux system has been proposed. In this article, the effect of Li2O and Na2O on the crystallization behavior of the lime-alumina-silica-based mold flux has been studied by using the single hot thermocouple technology (SHTT) and double hot thermocouple technology (DHTT). The results indicated that Li2O and Na2O in the above mold flux system play different roles as they behaved in traditional lime-silica based mold flux, which would tend to inhibit general mold flux crystallization by lowering the initial crystallization temperature and increasing incubation time, especially in the high-temperature region. However, when their content exceeds a critical value, the crystallization process of mold fluxes in low temperature zone would be greatly accelerated by the new phase formation of LiAlO2 and Na x Al y Si z O4 crystals, respectively. The crystalline phases precipitated in all samples during the experiments are discussed in the article.

  20. Antibacterial activity against E. coli O157:H7, physical properties, and storage stability of novel carvacrol-containing edible tomato films.

    PubMed

    Du, W-X; Olsen, C W; Avena-Bustillos, R J; McHugh, T H; Levin, C E; Friedman, Mendel

    2008-09-01

    Edible films containing plant antimicrobials are gaining importance as potential treatment to extend product shelf life and reduce risk of pathogen growth on contaminated food surfaces. The main objective of the present study was to evaluate the antimicrobial activities, storage stabilities, and physical-chemical-mechanica1 properties of novel edible films made from tomatoes containing carvacrol, the main constituent of oregano oil. The antimicrobial activities against E. coli O157:H7 and the stability of carvacrol were evaluated during the preparation and storage of tomato-based films made by 2 different casting methods, continuous casting and batch casting. Antimicrobial assays of tomato films indicated that optimum antimicrobial effects occurred with carvacrol levels of approximately 0.75% added to tomato purees before film preparation. HPLC analysis of the films indicated that the carvacrol concentrations and bactericidal effect of the films remained unchanged over the storage period of up to 98 d at 5 and 25 degrees C. Carvacrol addition to the tomato puree used to prepare the films increased water vapor permeability of tomato films. The continuous method for casting of the films appears more suitable for large-scale use than the batch method. This 1st report on tomato-based edible antimicrobial tomato films suggests that these films have the potential to prevent adverse effects of contaminated food and promote human health associated with the consumption of tomatoes.

  1. Structure and Properties of Carbon Based Nanocomposite Films

    DTIC Science & Technology

    2004-03-18

    Research Institute for Technical Physics and Materials Science of the Hungarian Academy of Sciences Structure and Properties of Carbon Based...MAR 2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Structure and Properties of Carbon Based Nanocomposite Films 5a...INTRODUCTION The theoretically predicted superhard β-C3N4 has not yet been experimentally realized, however, the different CNx structures and their

  2. Sixty Years of Casting Research

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  3. Prediction of Part Distortion in Die Casting

    SciTech Connect

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  4. USGS ShakeCast

    USGS Publications Warehouse

    Wald, David; Lin, Kuo-Wan

    2007-01-01

    Automating, Simplifying, and Improving the Use of ShakeMap for Post-Earthquake Decisionmaking and Response. ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  5. The effect of grain refinement on the room-temperature ductility of as-cast Fe{sub 3}Al-based alloys

    SciTech Connect

    Viswanathan, S.; Andleigh, V.K.; McKamey, C.G.

    1995-08-01

    Fe{sub 3}Al-based alloys exhibit poor room-temperature ductility in the as-cast condition. In this study, the effect of grain refinement of the as-cast alloy on room-temperature ductility was investigated. Small melts of Fe-28 at. % Al-5 at. % Cr were inoculated with various alloying additions and cast into a 50- x 30- x 30-mm graphite mold. The resulting ingots were examined metallographically for evidence of grain refinement, and three-point bend tests were conducted on samples to assess the effect on room-temperature ductility. Ductility was assumed to correlate with the strain corresponding to the maximum stress obtained in the bend test. The results showed that titanium was extremely effective in grain refinement, although it severely embrittled the alloy in contents exceeding 1%. Boron additions strengthened the alloy significantly, while carbon additions reduced both the strength and ductility. The best ductility was found in an alloy containing titanium, boron, and carbon. In order to verify the results of the grain refinement study, vacuum-induction melts of selected compositions were prepared and cast into a larger 25- x 150- x 100-mm graphite mold. Tensile specimens were machined from the ingots, and specimens were tested at room temperature. The results of the tensile tests agreed with the results of the grain refinement study; in addition, the addition of molybdenum was found to significantly increase room-temperature tensile ductility over that of the base alloy.

  6. Antistaphylococcal Nanocomposite Films Based on Enzyme-Nanotube Conjugates

    PubMed Central

    Pangule, Ravindra C.; Brooks, Sarah J.; Dinu, Cerasela Zoica; Bale, Shyam Sundhar; Salmon, Sharon L.; Zhu, Guangyu; Metzger, Dennis W.; Kane, Ravi S.; Dordick, Jonathan S.

    2010-01-01

    Infection with antibiotic-resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) is one of the primary causes of hospitalizations and deaths. To address this issue, we have designed antimicrobial coatings incorporating carbon nanotube-enzyme conjugates that are highly effective against antibiotic–resistant pathogens. Specifically, we incorporated conjugates of carbon nanotubes with lysostaphin, a cell wall degrading enzyme, into films to impart bactericidal properties against Staphylococcus aureus and Staphylococcus epidermidis. We fabricated and characterized nanocomposites containing different conjugate formulations and enzyme loadings. These enzyme–based composites were highly efficient in killing MRSA (>99% within 2 h) without release of the enzyme into solution. Additionally, these films were reusable and stable under dry storage conditions for a month. Such enzyme–based film formulations may be used to prevent growth of pathogenic and antibiotic-resistant microorganisms on various common surfaces in hospital settings. Polymer and paint films containing such antimicrobial conjugates, in particular, could be advantageous to prevent risk of staphylococcal-specific infection and biofouling. PMID:20604574

  7. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  8. [Investigation of influencing variables on the computer-aided simulation of contacts in dynamic occlusion based on optically digitized plaster casts].

    PubMed

    Böröcz, Z; Dirksen, D; Thomas, C; Runte, C; Bollmann, F; von Bally, G

    2004-05-01

    In dentistry, mechanical articulators with which mandibular movements can be reproduced in dentals casts play a major role. Commonly used semiadjustable articulators, however, have major limitations: On the one hand, the movement of the mandible is not reproduced exactly, on the other, they do not provide time-related information on jaw movement. Both problems can be solved by replacing the mechanical articulator by a digital simulation ("virtual articulator") based on digitized plaster casts and electronically recorded masticatory movements. We present a system for the 3D measurement of plaster casts in a skull-related, anatomical coordinate system using the fringe projection technique, and electronically recorded condylar movements. Using numerical algorithms, the contacts between upper and low jaw, and the angle of rotation of the temporomandibular joint can be computed for each movement in dynamic occlusion. Taking the data recorded from a patient as an example, the influence of the accuracy of the digitization of plaster casts on the computation of the rotation of the temporomandibular joint is discussed in relation to the anatomy of the masticatory apparatus.

  9. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of starch in polymer composites for film production has been studied extensively for increasing biodegradability, improving film properties and reducing cost. Starch nanoparticles have received much attention, primarily those obtained by acid hydrolysis of starch granules. In this study, nan...

  10. Thick-film humidity sensor based on porous ? material

    NASA Astrophysics Data System (ADS)

    Qu, Wenmin; Meyer, Jörg-Uwe

    1997-06-01

    A new compact, robust, yet fast and highly sensitive ceramic humidity sensor based on the semiconducting metal oxide 0957-0233/8/6/002/img2 has been developed using thick-film technology. The sensor element possesses a novel `sandwich' configuration with a 0957-0233/8/6/002/img3 porous 0957-0233/8/6/002/img2 ceramic layer sandwiched by two 0957-0233/8/6/002/img5 polarity-reversed interdigitated metal films. Instead of traditional glass frits, LiCl powders were used as adhesion promoters. The sintered ceramic layer exhibits a porous structure. The degree of the porosity is controlled by the amount of LiCl added and by the firing conditions for the ceramic. The surfaces of ceramic grains behave like electrolytes and easily adsorb water vapour through the pores. The novel electrode arrangement combines the advantages of humidity sensors in the form of a parallel capacitor with those in the form of an interdigital capacitor. The influence of temperature on the sensor characteristics has been compensated for by integrating a thick-film NTC resistor. The results of studies on the material processing, the fabrication and the characterization of this novel thick-film humidity sensor are described.

  11. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    NASA Astrophysics Data System (ADS)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  12. Fabrication, Characterization, and Applications of Graphene-based Flexible Films

    NASA Astrophysics Data System (ADS)

    Naik, Gautam

    Scientific interest in the field of nanotechnology has increased multifold since the discovery of multi-walled carbon nanotubes in the early 1990s. This further received a tremendous boost with the isolation of graphene, a single layer of sp2-hybridized carbon atoms, in 2004. Graphene has exceptional mechanical and electrical properties, which makes it an attractive candidate for electronics and composites. In order to realize the implementation of graphene for such applications, scalable production of graphene-based materials needs to be accomplished. Graphene oxide, the product of oxidation and exfoliation of graphite, is a promising precursor for bulk-production of graphene and graphene-like materials. The oxidation of graphite to synthesize graphene oxide results in the decoration of the basal plane of graphene with oxygen-containing functional groups. The presence of these functional groups makes graphene oxide strongly hydrophilic, making it soluble in water and a good candidate for solution-based processing. This hydrophilic nature of graphene oxide can also be utilized to fabricate highly sensitive and flexible humidity sensors, the results of which are included in this research. The fabricated humidity sensors show high sensitivity and a fast response time. A difference in response is observed at low and high humidity, with hysteresis observed at high humidity levels. A method to "reset" the sensor and a mechanism to explain the response is also proposed. Although the hydrophilic nature of graphene oxide makes it suitable for bulk processing, the presence of functional groups makes it defective and insulating. Graphene oxide needs to be reduced to make it electrically active. Numerous methodologies proposed for reduction of graphene oxide result in the simultaneous reduction and exfoliation of graphene oxide films. But for instances where flexible graphene films are required for certain applications, a method for reduction of graphene oxide flexible films

  13. Antimicrobial food packaging film based on the release of LAE from EVOH.

    PubMed

    Muriel-Galet, Virginia; López-Carballo, Gracia; Gavara, Rafael; Hernández-Muñoz, Pilar

    2012-07-02

    The aim of this work was to develop antimicrobial films for active packaging applications containing the natural antimicrobial compound LAE (lauramide arginine ethyl ester) in EVOH copolymers with different mol % ethylene contents (i.e. EVOH-29 and EVOH-44). EVOH-29 and EVOH-44 films were made by casting and incorporating 0.25%, 1%, 5%, and 10% LAE in the film forming solution (w/w with respect to polymer weight). Previously, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of LAE against Listeria monocytogenes, Escherichia coli, and Salmonella enterica were determined by a microdilution assay. The antimicrobial activity of the resulting films was tested in vitro against these microorganisms in liquid culture media. The activity of the films was also evaluated over time. The results showed that films containing 5% and 10% LAE produced total growth inhibition and viable counts decreased with 0.25% and 1% LAE. Finally, the effectiveness of the films was tested by applying them to an infant formula milk inoculated with L. monocytogenes and S. enterica and stored for 6 days at 4°C. The application of films with LAE to infant formula milk inoculated with L. monocytogenes reduced at the end of storage period about 4 log in case of 10% LAE and with S. enterica reduced 3.74 log and 3.95 log with EVOH 29 5% and 10%, respectively, and EVOH-44 5% and 10% LAE reduced 1 log and 3.27 log, respectively, at the end of storage. The antimicrobial capacity of EVOH-29 films was greater than that of EVOH-44 films in all the cases tested. In general, the films were more effective in inhibiting the growth of L. monocytogenes than S. enterica, this inhibition being more acute at the end of the storage time.

  14. A comparison of the marginal adaptation of cathode-arc vapor-deposited titanium and cast base metal copings

    PubMed Central

    Wu, JC; Lai, LC; Sheets, CG; Earthman, J; Newcomb, R

    2011-01-01

    Statement of problem A new fabrication process has been developed where a titanium coping, which has a gold colored titanium nitride outer layer can be reliably fused to porcelain, but the marginal adaptation characteristics are still undetermined. Purpose The primary purpose of this study is to compare the rate of Clinically Acceptable Marginal Adaptation (CAMA-defined as a marginal gap mean ≤60 μm) of cathode-arc vapor-deposited titanium with the CAMA rate for the cast base metal copings. In addition, the study will evaluate the marginal gap scores themselves to assess their mean difference between the two study groups. Finally, the study will present two analyses of group differences in variability to support the contention that the titanium copings perform more consistently than their base metal counterparts. Material and methods Thirty-seven cathode-arc vapor-deposited titanium copings and 40 cast base metal copings were evaluated by computer-based image analysis using an optical microscope. The conventional lost wax technique was used to fabricate the 40 cast base metal copings that were 0.3 mm thick. The titanium copings were 0.3 mm thick and were formed by a collection of atomic titanium vapor onto a refractory die duplicate in a high vacuum chamber. Fifty vertical marginal gap measurements were collected from each of the 77 copings and the mean of these measurements was computed to form a gap score for each coping. Next, the gap score was compared to the 60 μm criterion to classify each coping as to whether it did or did not achieve Clinically Acceptable Marginal Adaption (CAMA). A comparison of the CAMA rates for each type of coping was used to address the primary purpose of this study. In addition, the gap scores themselves were used to test the (one-sided) hypothesis that the mean of the titanium gap scores is smaller than the mean of the base metal gap scores. Finally, the assertion that the titanium copings provide more consistency in their

  15. Development and characterization of films based on chemically cross-linked gliadins.

    PubMed

    Hernández-Muñoz, Pilar; Kanavouras, Antonis; Lagaron, José M; Gavara, Rafael

    2005-10-19

    The aim of the present work has been to study the possibility of obtaining modified gliadin films with improved water resistance and mechanical properties by means of promoting intermolecular covalent bonds between polypeptide chains. Prior to casting films, formaldehyde, glutaraldehyde, and glyoxal were used to cross-link proteins at concentrations ranging from 1% to 4% (grams per 100 g of protein). Mechanical properties (tensile strength and elongation at break), water vapor permeability, moisture sorption isotherms, and optical properties of the films produced were evaluated as a function of the cross-linker used. Experimental results showed that some properties of gliadin films were considerably modified. Cross-linking improved the water resistance of films, avoiding their disintegration. Their water barrier properties were also enhanced, but their moisture sorption properties remained unchanged. Formaldehyde imparted greater mechanical strength to films than glutaraldehyde or glyoxal, increasing tensile strength values 10-fold. Addition of the cross-linkers at concentrations in excess of 2.5% did not further improve the mechanical or barrier properties. However, modification with glutaraldehyde or glyoxal imparted an increasingly yellowish tint to the films.

  16. Micro-structure evolution of wall based crystals after casting of model suspensions as obtained from Bragg microscopy.

    PubMed

    Palberg, Thomas; Maaroufi, Martin R; Stipp, Andreas; Schöpe, Hans Joachim

    2012-09-07

    Growth of heterogeneously nucleated, wall based crystals plays a major role in determining the micro-structure during melt casting. This issue is here addressed using a model system of charged colloidal spheres in deionized aqueous suspension observed by Bragg microscopy which is a combination of light scattering and microscopy. We examine the evolution of the three-dimensional size, shape, and orientation of twin domains in monolithic crystals growing from two opposing planar walls into a meta-stable (shear-) melt. At each wall crystal orientation and twinning emerges during nucleation with small domains. During growth these widen and merge. From image analysis we observe the lateral coarsening velocities to follow a power law behaviour L(XY) ∝ t(1/2) as long as the vertical growth continues at constant speed. Lateral coarsening terminates upon intersection of the two solids and hardly any further ripening is seen. Initial lateral coarsening velocities show a Wilson Frenkel type dependence on the melt meta-stability.

  17. Effects of composition and testing conditions on oxidation behavior of four cast commercial nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Probst, H. B.

    1974-01-01

    Four cast nickel-base superalloys were oxidized at 1000 and 1100 C for times up to 100 hr in static air and a Mach 1 gas stream. The oxidation resistance was judged by weight change, metal thickness loss, depletion-zone formation, and oxide formation and morphology. The alloys which formed mostly nickel aluminate (NiAl2O4) and aluminum oxide (Al2O3) (B-1900, VIA, and to a lesser extent 713C) were more oxidation resistant. Poorer oxidation resistance was associated with the appearance of chromium sesquioxide (Cr2O3) and chromite spinel (738X). Refractory metal content had little effect on oxidation resistance. Refractory metals appeared in the scale as tapiolite (NiM2O6, where M represents the refractory metal). Thermal cycling in static air appeared to supply sufficient data for the evaluation of oxidation resistance, especially for alloys which form oxides of low volatility. For alloys of higher chromium levels with high propensities toward forming a chromium-bearing scale of higher volatility, testing under conditions of high gas velocity is necessary to assess fully the behavior of the alloy.

  18. Web life: Planet SciCast

    NASA Astrophysics Data System (ADS)

    2009-08-01

    So what is the site about? Planet SciCast is an online repository for short films about science - a bit like a science-specific, moderated version of YouTube. As of July 2009, the site hosts over 150 films on topics ranging from CERN's Large Hadron Collider to fun things to do with treacle. New content appears on the site every few weeks, and some films include links to information about related experiments, demos and activities. The site also runs an annual competition aimed at getting more people involved in making science films, with prizes in categories like "best original score" and "best presenter".

  19. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    NASA Astrophysics Data System (ADS)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  20. Films

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhang, Yang; Shao, Yayun; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J.-M.; Ishiwara, Hiroshi

    2014-09-01

    In this paper, we investigated the microstructure and electrical properties of Bi2SiO5 (BSO) doped SrBi2Ta2O9 (SBT) films deposited by chemical solution deposition. X-ray diffraction observation indicated that the crystalline structures of all the BSO-doped SBT films are nearly the same as those of a pure SBT film. Through BSO doping, the 2Pr and 2Ec values of SBT films were changed from 15.3 μC/cm2 and 138 kV/cm of pure SBT to 1.45 μC/cm2 and 74 kV/cm of 10 wt.% BSO-doped SBT. The dielectric constant at 1 MHz for SBT varied from 199 of pure SBT to 96 of 10 wt.% BSO-doped SBT. The doped SBT films exhibited higher leakage current than that of non-doped SBT films. Nevertheless, all the doped SBT films still had small dielectric loss and low leakage current. Our present work will provide useful insights into the BSO doping effects to the SBT films, and it will be helpful for the material design in the future nonvolatile ferroelectric memories.

  1. Synthesis, characterization and antibacterial activity of biodegradable films prepared from Schiff bases of zein.

    PubMed

    Soliman, E A; Khalil, A A; Deraz, S F; El-Fawal, G; Elrahman, S Abd

    2014-10-01

    Pure zein is known to be very hydrophobic, but is still inappropriate for coating and film applications because of their brittle nature. In an attempt to improve the flexibility and the antimicrobial activity of these coatings and films, Chemical modification of zein through forming Schiff bases with different phenolic aldhydes was tried. Influence of this modifications on mechanical, topographical, wetting properties and antimicrobial activity of zein films were evaluated. The chemical structure of the Schiff bases films were characterized by ATR-FTIR spectroscopy. The results indicate an improvement in mechanical properties with chemically modification of zein to form Schiff bases leading to a reduction in the elastic modulus. An increase in the elongation at break has been observed, but with slight influence on tensile strength. Plasticized zein films have similar initial contact angle (∼40°). An increase in reaction temperature and time increases film's affinity towards water. As shown by contact angle measurements, a noticeable relation was found between film composition and the hydrophilicity. Surface topography also varied by forming Schiff bases, becoming rougher than zein-based films. The antibacterial activities of zein and Schiff bases of zein-based films were investigated against gram-positive bacteria (Listeria innocua, Listeria monocytogenes, Bacillus cereus and Clostridium sporogenes) and gram-negative bacteria (Escherichia coli, Yersinia enterocolitica and Salmonella enterica). It was found that the antibacterial activity of the Schiff bases-based films was more effective than that of zein-based films.

  2. Prediction of Optimum Combination of Eudragit RS/Eudragit RL/Ethyl Cellulose Polymeric Free Films Based on Experimental Design for Using as a Coating System for Sustained Release Theophylline Pellets

    PubMed Central

    Akhgari, Abbas; Tavakol, Ali

    2016-01-01

    Purpose: The physicochemical properties of free films made from different mixtures of sustained release polymers were investigated, and an optimum formulation coating on drug containing pellets, based on the study of free film was evaluated. Methods: In order to determine the effect of different variables on the permeability and swelling of films and procedure optimization, the experimental design was fulfilled based on the statistical method of a 33 full factorial design, and according to this method 27 formulations were prepared. The films were prepared using casting-solvent evaporation method. Water vapor permeability, the swelling and permeability of free films in both acidic and buffer media, were carried out. Then, the pellets containing theophylline were coated with the optimum formulation. Results: The results of this study demonstrated that an increase in the free film thickness and Eurdragit RS ratio in films lowered the water vapor transmission (WVT), the swelling and the permeability of all formulations, while an increase in the quantity of ethylcellulose, up to a specific ratio (approximately 40%), decreased the permeability and swelling. The most optimum free film formulation was made up of 60% Eudragit RS and 40% ethylcellulose. Conclusion: Pellets coated with a 10% coating level of ethylcellulose and Eudragit RS (4:6) showed suitable release properties and could serve as a favorable sustained release system for theophylline. PMID:27478784

  3. MEMS-based thin-film fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  4. Identification and annotation of erotic film based on content analysis

    NASA Astrophysics Data System (ADS)

    Wang, Donghui; Zhu, Miaoliang; Yuan, Xin; Qian, Hui

    2005-02-01

    The paper brings forward a new method for identifying and annotating erotic films based on content analysis. First, the film is decomposed to video and audio stream. Then, the video stream is segmented into shots and key frames are extracted from each shot. We filter the shots that include potential erotic content by finding the nude human body in key frames. A Gaussian model in YCbCr color space for detecting skin region is presented. An external polygon that covered the skin regions is used for the approximation of the human body. Last, we give the degree of the nudity by calculating the ratio of skin area to whole body area with weighted parameters. The result of the experiment shows the effectiveness of our method.

  5. INTERIOR VIEW WITH CASTING MACHINE AND CASTING FOREMAN OBSERVING OPERATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND CASTING FOREMAN OBSERVING OPERATION TO ENSURE MAXIMUM PRODUCTION AND QUALITY. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  6. Polarization-corrosion behavior of commercial gold- and silver-base casting alloys in Fusayama solution.

    PubMed

    Johnson, D L; Rinne, V W; Bleich, L L

    1983-12-01

    Based on polarization measurements, high Au alloys are highly corrosion-resistant and exhibit the lowest corrosion rates; intermediate Au, Ag, and Pd alloys with Cu are passive but exhibit higher corrosion rates. Twenty weight percent (w/o) In-Ag alloys exhibit active corrosion behavior at potentials only 100 mV noble to the corrosion potential.

  7. Fatigue Properties of Cast Magnesium Wheels

    NASA Astrophysics Data System (ADS)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-08-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  8. Development of Advanced Coating Techniques for Highly-durable Casting Dies

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Takagi, M.; Mano, T.

    2013-03-01

    In order to improve the durability of aluminum die-casting molds, we applied microstructure-controlled PVD coating techniques. Single-layer and multilayer films consisting of chromium nitride (CrN) or titanium aluminum nitride (TiAlN) were prepared using an ion plating process. Structures of multilayer films were observed using transmission electron microscopy. Pin-shaped mold steel specimens coated with each of the films were soaked in the molten aluminum alloy at 953 K different periods of time, and the amount of weight loss due to erosion was evaluated. The weight losses for the multilayer CrN and TiAlN specimens were found to be less than those for the single-layer specimens. As a practical test, five specimens of core pins used in aluminum die casting of automobile parts were coated with multilayer films, and the number of maintenance operations required to remove aluminum alloy remaining on the specimen surfaces after several thousand castings was counted and compared with six control specimens (core pins treated using a commercial salt bath diffusion process). The number of maintenance operations for CrN- and TiAlN-based multilayer-coated core pins was found to be lower than for the control specimens.

  9. Influence of hydroxypropylmethylcellulose addition and homogenization conditions on properties and ageing of corn starch based films.

    PubMed

    Jiménez, Alberto; Fabra, María José; Talens, Pau; Chiralt, Amparo

    2012-06-20

    Edible films based on corn starch, hydroxypropyl methylcellulose (HPMC) and their mixtures were prepared by using two different procedures to homogenize the film forming dispersions (rotor-stator and rotor-stator plus microfluidizer). The influence of both HPMC-starch ratio and the homogenization method on the structural, optical, tensile and barrier properties of the films was analysed. The ageing of the films was also studied by characterizing them after 5 weeks' storage. Starch re-crystallization in newly prepared and stored films was analysed by means of X-ray diffraction. HPMC-corn starch films showed phase separation of polymers, which was enhanced when microfluidization was applied to the film forming dispersion. Nevertheless, HPMC addition inhibited starch re-crystallization during storage, giving rise to more flexible films at the end of the period. Water barrier properties of starch films were hardly affected by the addition of HPMC, although oxygen permeability increased due to its poorer oxygen barrier properties.

  10. Low Cycle Fatigue Behavior and Life Prediction of a Cast Cobalt-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Yang, Ho-Young; Kim, Jae-Hoon; Yoo, Keun-Bong

    Co-base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

  11. Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation

    NASA Astrophysics Data System (ADS)

    Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming

    2016-10-01

    In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films.

  12. Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation

    PubMed Central

    Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming

    2016-01-01

    In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films. PMID:27734900

  13. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives

    PubMed Central

    Zhou, Ying; Azumi, Reiko

    2016-01-01

    Abstract Developments in the manufacturing technology of low-cost, high-quality carbon nanotubes (CNTs) are leading to increased industrial applications for this remarkable material. One of the most promising applications, CNT based transparent conductive films (TCFs), are an alternative technology in future electronics to replace traditional TCFs, which use indium tin oxide. Despite significant price competition among various TCFs, CNT-based TCFs have good potential for use in emerging flexible, stretchable and wearable optoelectronics. In this review, we summarize the recent progress in the fabrication, properties, stability and applications of CNT-based TCFs. The challenges of current CNT-based TCFs for industrial use, in comparison with other TCFs, are considered. We also discuss the potential of CNT-based TCFs, and give some possible strategies to reduce the production cost and improve their conductivity and transparency. PMID:27877899

  14. Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin.

    PubMed

    Balaguer, Mari Pau; Fajardo, Paula; Gartner, Hunter; Gomez-Estaca, Joaquin; Gavara, Rafael; Almenar, Eva; Hernandez-Munoz, Pilar

    2014-03-03

    Gliadin films cross-linked with cinnamaldehyde (1.5, 3, and 5%) and incorporated with natamycin (0.5%) were prepared by casting, and their antifungal activity, water resistance, and barrier properties were characterized. Incorporation of natamycin gave rise to films with greater water uptake, weight loss and diameter gain, and higher water vapor and oxygen permeabilities. These results may be associated to a looser packing of the protein chains as a consequence of the presence of natamycin. The different cross-linking degree of the matrices influenced the natamycin migration to the agar test media, increasing from 13.3 to 23.7 (μg/g of film) as the percentage of cinnamaldehyde was reduced from 5% to 1.5%. Antifungal activity of films was assayed against common food spoilage fungi (Penicillium species, Alternaria solani, Colletotrichum acutatum). The greatest effectiveness was obtained for films containing natamycin and treated with 5% of cinnamaldehyde. The level of cinnamaldehyde reached in the head-space of the test assay showed a diminishing trend as a function of time, which was in agreement with fungal growth and cinnamaldehyde metabolization. Developed active films were used in the packaging of cheese slices showing promising results for their application in active packaging against food spoilage.

  15. A biomimetic tactile sensing system based on polyvinylidene fluoride film

    NASA Astrophysics Data System (ADS)

    Xin, Yi; Tian, Hongying; Guo, Chao; Li, Xiang; Sun, Hongshuai; Wang, Peiyuan; Qian, Chenghui; Wang, Shuhong; Wang, Cheng

    2016-02-01

    Polyvinylidene fluoride (PVDF) film has been widely investigated as a sensing material due to its outstanding properties such as biocompatibility, high thermal stability, good chemical resistance, high piezo-, pyro- and ferro-electric properties. This paper reports on the design, test, and analysis of a biomimetic tactile sensor based on PVDF film. This sensor consists of a PVDF film with aluminum electrodes, a pair of insulating layers, and a "handprint" friction layer with a copper foil. It is designed for easy fabrication and high reliability in outputting signals. In bionics, the fingerprint of the glabrous skin plays an important role during object handling. Therefore, in order to enhance friction and to provide better manipulation, the ridges of the fingertips were introduced into the design of the proposed tactile sensor. And, a basic experimental study on the selection of the high sensitivity fingerprint type for the biomimetic sensor was performed. In addition, we proposed a texture distinguish experiment to verify the sensor sensitivity. The experiment's results show that the novel biomimetic sensor is effective in discriminating object surface characteristics. Furthermore, an efficient visual application program (LabVIEW) and a quantitative evaluation method were proposed for the verification of the biomimetic sensor. The proposed tactile sensor shows great potential for contact force and slip measurements.

  16. Enhanced optical discrimination system based on switchable retroreflective films

    NASA Astrophysics Data System (ADS)

    Schultz, Phillip; Heikenfeld, Jason

    2016-04-01

    Reported herein is the design, characterization, and demonstration of a laser interrogation and response optical discrimination system based on large-area corner-cube retroreflective films. The switchable retroreflective films use light-scattering liquid crystal to modulate retroreflected intensity. The system can operate with multiple wavelengths (visible to infrared) and includes variable divergence optics for irradiance adjustments and ease of system alignment. The electronic receiver and switchable retroreflector offer low-power operation (<4 mW standby) on coin cell batteries with rapid interrogation to retroreflected signal reception response times (<15 ms). The entire switchable retroreflector film is <1 mm thick and is flexible for optimal placement and increased angular response. The system was demonstrated in high ambient lighting conditions (daylight, 18k lux) with a visible 10-mW output 635-nm source out to a distance of 400 m (naked eye detection). Nighttime demonstrations were performed using a 1.5-mW, 850-nm infrared laser diode out to a distance of 400 m using a night vision camera. This system could have tagging and conspicuity applications in commercial or military settings.

  17. Study of carbon nanotubes based Polydimethylsiloxane composite films

    NASA Astrophysics Data System (ADS)

    Shahzad, M. I.; Giorcelli, M.; Shahzad, N.; Guastella, S.; Castellino, M.; Jagdale, P.; Tagliaferro, A.

    2013-06-01

    Thanks to their remarkable characteristics, carbon nanotubes (CNTs) have fields of applications which are growing every day. Among them, the use of CNTs as filler for polymers is one of the most promising. In this work we report on Polydimethylsiloxane (PDMS) composites with different weight percentages (0.0% to 3.0%) of multiwall carbon nanotubes (MWCNTs) having diameter 10-30 nm and length 20-30 μm. To achieve optimum dispersion of CNTs in PDMS matrix, high speed mechanical stirring and ultrasonication were performed. By using the doctor blade technique, 70 μm thick uniform films were produced on glass. They were subsequently thermally cured and detached from the glass to get flexible and self standing films. The surface morphological study done by FESEM, shows that CNTs are well dispersed in the PDMS. Raman spectroscopy and FTIR were used to investigate the possible structural changes in the polymer composite. To examine the optical behavior UV-VIS spectroscopy was employed in both specular and diffused modes. A linear increase in absorption coefficient is found with the increasing percentage of CNTs while the transmittance decreases exponentially. The results confirm the dependence of optical limiting effect on the quantity of MWCNTs. Based on optical study, MWCNTs/PDMS composite films can be a promising material to extend performances of optical limiters against laser pulses, which is often required in lasing systems.

  18. Tantalum-based thin film coatings for wear resistant arthroprostheses.

    PubMed

    Balagna, C; Faga, M G; Spriano, S

    2011-10-01

    Cobalt-chromium-molybdenum alloys with high carbon content (HC-CoCrMo) are widely used as materials for arthroprosthesis, in particular in metal-on-metal (MoM) hip joints. In spite of their good wear and corrosion resistance, production of metallic wear particles and metal ion release will occur on a large time-scale. An enhancement of the metal ion level in the patient's blood and urine is often reported in clinical data. Hypersensitivity, inflammatory response and cell necrosis can occur as consequence. So implants on young patients and women on childbearing age are not so widespread. The aim of this research is the realization of a thin film coating in order to improve the biocompatibility of Co-based alloys and to reduce debris production, ion release and citotoxicity. The innovative process consists of a thermal treatment in molten salts, in order to obtain a tantalum enriched thin film coating. Tantalum is chosen because it is considered a biocompatible metal with high corrosion resistance and low ion release. Three HC-CoCrMo alloys, produced by different manufacturing processes, are tested as substrates. The coating is a thin film of TaC or it can be composed by a multilayer of two tantalum carbides and metallic tantalum, depending on the temperature of the treatment and on the carbon content of the substrate. The thin films as well the substrates are characterized from the structural, chemical and morphological point of view. Moreover mechanical behaviour of treated and untreated materials is analyzed by means of nanohardness, scratch and ball-on-disc wear tests. The coating increases the mechanical and tribological properties of HC-CoCrMo.

  19. Photopolymerization-based fabrication of chemical sensing films

    SciTech Connect

    Yang, Xiaoguang; Swanson, Basil I.; Du, Xian-Xian

    2003-12-30

    A photopolymerization method is disclosed for attaching a chemical microsensor film to an oxide surface including the steps of pretreating the oxide surface to form a functionalized surface, coating the functionalized surface with a prepolymer solution, and polymerizing the prepolymer solution with ultraviolet light to form the chemical microsensor film. The method also allows the formation of molecular imprinted films by photopolymerization. Formation of multilayer sensing films and patterned films is allowed by the use of photomasking techniques to allow patterning of multiple regions of a selected sensing film, or creating a sensor surface containing several films designed to detect different compounds.

  20. Preparation and Characterization of an Olive Flounder (Paralichthys olivaceus) Skin Gelatin and Polylactic Acid Bilayer Film.

    PubMed

    Lee, Ka-Yeon; Song, Kyung Bin

    2017-03-01

    Olive flounder skin gelatin (OSG) was used as a film base material. A bilayer film of OSG and polylactic acid (PLA) was prepared using solvent casting method to enhance the film properties. Physical properties of the OSG-PLA film were increased compared with the nonaugmented OSG film. In particular, the PLA lamination decreased water vapor permeability from 2.17 to 0.92 × 10(-9) g·m/m(2) ·s·Pa, as well as of the water solubility from 16.62% to 9.27%, in the bilayer film relative to the OSG film. The oxygen permeability of the OSG-PLA bilayer film was held low by the OSG film, compensating for the high oxygen permeability of the PLA layer. Therefore, the OSG-PLA bilayer film with its enhanced physical properties and high water and oxygen barrier properties can be applied as a food packaging material.

  1. Effect of casting methods on accuracy of peridental restorations.

    PubMed

    Finger, W; Kota, K

    1982-06-01

    The present study has shown that the accuracy of peridental gold alloy castings depends 1) on the type of casting machine used, 2) on the diameter of the casting sprue, and 3) on the strength properties of the investment material. The dependence between the accuracy and the three factors mentioned is based on erosion of the investment mold by the inflow of the liquid casting alloy. The vacuum casting technique proved to be a more gentle casting method than centrifugal and vacuum/pressure techniques.

  2. Optical properties of a long dynamic range chemical UV dosimeter based on solvent cast polyvinyl chloride (PVC).

    PubMed

    Amar, Abdurazaq; Parisi, Alfio V

    2013-11-05

    The dosimetric properties of the recently introduced UV dosimeter based on 16 μm PVC film have been fully characterised. Drying the thin film in air at 50 °C for at least 28 days was found to be necessary to minimise the temperature effects on the dosimeter response. This research has found that the dosimeter response, previously reported to be mainly to UVB, has no significant dependence on either exposure temperature or dose rate. The dosimeter has negligible dark reaction and responds to the UV radiation with high reproducibility. The dosimeter angular response was found to have a similar pattern as the cosine function but deviates considerably at angles larger than 70°. Dose response curves exhibit monotonically increasing shape and the dosimeter can measure more than 900 SED. This is about 3 weeks of continuous exposure during summer at subtropical sites. Exposures measured by the PVC dosimeter for some anatomical sites exposed to solar radiation for twelve consecutive days were comparable with those concurrently measured by a series of PPO dosimeters and were in line with earlier results reported in similar studies.

  3. Cool Cast Facts

    MedlinePlus

    ... outer layer is usually made of plaster or fiberglass. Fiberglass casts are made of fiberglass, which is a plastic that can be shaped. Fiberglass casts come in many different colors — if you' ...

  4. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  5. Study on the Hydrogenated ZnO-Based Thin Film Transistors. Part 1

    DTIC Science & Technology

    2011-04-30

    zinc oxide (a-IGZO) thin film transistors ( TFTs ) was...Amorphous indium-gallium- zinc oxide thin - film transistors (a-IGZO TFTs ) have been investigated for switching devices in the active matrix liquid crystal...depletion-mode ZnO -based thin - film transistors ( TFTs ) were studied using two approaches. The first approach used elevated substrate

  6. Development, processing, and characterization of cellulose nanocrystal neat films

    NASA Astrophysics Data System (ADS)

    Reising, Alexander B.

    Methods for processing quality cellulose nanocrystal (CNC) suspensions using sulfuric acid hydrolysis of microcrystalline cellulose were developed and optimized. The resulting suspensions were used to develop shear-based methods for casting neat CNC films. These methods were used to produce oriented CNC films from the Purdue-made (long crystals, CNC-L) and FPL-made (short crystals, CNC-S) CNC suspensions. Increased casting shear rate increased the degree of CNC orientation as quantified by Hermans order parameter, S. The highest shear rate (100·s-1) produced maximum orientation, with resulting Hermans order parameter of S = 0.36 in the CNC-S film. Elastic modulus, ultimate tensile strength, and elongation at failure were measured with respect to film casting direction and CNC orientation. Elastic modulus in CNC films scaled directly with orientation and reached a maximum average of 23 GPa. Tensile strength did not scale with orientation, but was strongly linked to CNC length, where a maximum strength of 196 MPa was measured. In addition to CNC length and shear rate, suspension pH and heat treatment also affected film properties. As the pH of casting suspensions was increased from ˜3 to ˜7, orientation retention in films was increased, and a new maximum modulus of 30 GPa was observed at S = 0.53 for the CNC-S film. The mechanical properties of all neutral pH films were further enhanced through heat treatment, in which a 1-4 GPa increase in elastic modulus was observed, as well as a 40-80 MPa increase in tensile strength for all axially oriented films.

  7. LLNL casting technology

    SciTech Connect

    Shapiro, A.B.; Comfort, W.J. III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US compentiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective, experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  8. Fast-response humidity-sensing films based on methylene blue aggregates formed on nanoporous semiconductor films

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryota; Katoh, Ryuzi

    2016-05-01

    We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.

  9. Evolution of nano-rheological properties of Nafion¯ thin films during pH modification by strong base treatment: A static and dynamic force spectroscopy study

    NASA Astrophysics Data System (ADS)

    Eslami, Babak; López-Guerra, Enrique A.; Raftari, Maryam; Solares, Santiago D.

    2016-04-01

    Addition of a strong base to Nafion® proton exchange membranes is a common practice in industry to increase their overall performance in fuel cells. Here, we investigate the evolution of the nano-rheological properties of Nafion thin films as a function of the casting pH, via characterization with static and dynamic, contact and intermittent-contact atomic force microscopy (AFM) techniques. The addition of KOH causes non-monotonic changes in the viscoelastic properties of the films, which behave as highly dissipative, softer materials near neutral pH values, and as harder, more elastic materials at extreme pH values. We quantify this behavior through calculation of the temporal evolution of the compliance and the glassy compliance under static AFM measurements. We complement these observations with dynamic AFM metrics, including dissipated power and virial (for intermittent-contact-mode measurements), and contact resonance frequency and quality factor (for dynamic contact-mode measurements). We explain the non-monotonic material property behavior in terms of the degree of ionic crosslinking and moisture content of the films, which vary with the addition of KOH. This work focuses on the special case study of the addition of strong bases, but the observed mechanical property changes are broadly related to water plasticizing effects and ionic crosslinking, which are also important in other types of films.

  10. High Electron Mobility Thin‐Film Transistors Based on Solution‐Processed Semiconducting Metal Oxide Heterojunctions and Quasi‐Superlattices

    PubMed Central

    Lin, Yen‐Hung; Faber, Hendrik; Labram, John G.; Stratakis, Emmanuel; Sygellou, Labrini; Kymakis, Emmanuel; Hastas, Nikolaos A.; Li, Ruipeng; Zhao, Kui; Amassian, Aram; Treat, Neil D.; McLachlan, Martyn

    2015-01-01

    High mobility thin‐film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin‐film transistors is reported that exploits the enhanced electron transport properties of low‐dimensional polycrystalline heterojunctions and quasi‐superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band‐like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature‐dependent electron transport and capacitance‐voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas‐like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll‐to‐roll, etc.) and can be seen as an extremely promising technology for application in next‐generation large area optoelectronics such as ultrahigh definition optical displays and large‐area microelectronics where high performance is a key requirement. PMID:27660741

  11. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  12. Effects of the Exposure to Corrosive Salts on the Frictional Behavior of Gray Cast Iron and a Titanium-Based Metal Matrix Composite

    SciTech Connect

    Blau, Peter Julian; Truhan, Jr., John J; Kenik, Edward A

    2007-01-01

    The introduction of increasingly aggressive road-deicing chemicals has created significant and costly corrosion problems for the trucking industry. From a tribological perspective, corrosion of the sliding surfaces of brakes after exposure to road salts can create oxide scales on the surfaces that affect friction. This paper describes experiments on the effects of exposure to sodium chloride and magnesium chloride sprays on the transient frictional behavior of cast iron and a titanium-based composite sliding against a commercial brake lining material. Corrosion scales on cast iron initially act as abrasive third-bodies, then they become crushed, spread out, and behave as a solid lubricant. The composition and subsurface microstructures of the corrosion products on the cast iron were analyzed. Owing to its greater corrosion resistance, the titanium composite remained scale-free and its frictional response was markedly different. No corrosion scales were formed on the titanium composite after aggressive exposure to salts; however, a reduction in friction was still observed. Unlike the crystalline sodium chloride deposits that tended to remain dry, hygroscopic magnesium chloride deposits absorbed ambient moisture from the air, liquefied, and retained a persistent lubricating effect on the titanium surfaces.

  13. Usefulness of gel-casting method in the fabrication of nonstoichiometric CaZrO{sub 3}-based electrolytes for high temperature application

    SciTech Connect

    Dudek, Magdalena

    2009-09-15

    Hydrogels obtained from lower toxicity monomers of N-(hydroxymethyl)acrylamide and N,N'-methylenebisacrylamide were applied to form nonstoichiometric CaZrO{sub 3}-based electrolytes. A coprecipitation-calcination method with ((NH{sub 4}){sub 2}C{sub 2}O{sub 4}) in concentrated NH{sub 3} aqueous solution was used to synthesise CaZrO{sub 3} involving 51 mol.% CaO (CZ-51) powder. The gas-tight CaZrO{sub 3}-based rods were prepared by the gel-casting method with 45 vol.% suspension and then sintered at 1500 deg. C-2 h. It was found that in low oxygen partial pressure, the nonstoichiometric CaZrO{sub 3} obtained by gel-casting method were pure oxide ion conductors. These samples exhibited comparable electrical conductivity values to isostatically compressed pellets starting from the same powder. The results of experiments on thermochemical stability of CZ-51 gel-cast shapes at high temperatures in air or gas mixtures involving 2-50 vol.% H{sub 2}, as well as the corrosion resistance in exhaust gases from a self-ignition engine were also presented and discussed. The thermal resistance of CaZrO{sub 3} obtained rods against molten nickel or iron was also examined. Based upon these investigations, it is evident that only in hydrogen-rich gas atmospheres can the stability of CaZrO{sub 3} shapes be limited due to the presence of CaO precipitation as a second phase. The nonstoichiometric CaZrO{sub 3} (CZ-51) gel-cast materials were also tested in solid galvanic cells, designed to study thermodynamic properties of oxide materials, important for SOFC and energy technology devices. In this way, the Gibbs energy of NiM{sub 2}O{sub 4}, M = Cr, Fe, at 650-1000 deg. C was determined. The CaZrO{sub 3} involving 51 mol.% CaO gel-cast sintered shapes seems to be promising solid electrolytes for electrochemical oxygen probes in control of metal processing and thermodynamic studies of materials important for the development of the energy industry.

  14. PET based nanocomposite films for microwave packaging applications

    NASA Astrophysics Data System (ADS)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-12-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  15. PET based nanocomposite films for microwave packaging applications

    SciTech Connect

    Galdi, M. R. Olivieri, R.; Liguori, L.; Albanese, D. Di Matteo, M.; Di Maio, L.

    2015-12-17

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  16. Graphene-based flexible and stretchable thin film transistors

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-07-01

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  17. Graphene-based flexible and stretchable thin film transistors.

    PubMed

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-08-21

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  18. Comparative Evaluation of Marginal Accuracy of a Cast Fixed Partial Denture Compared to Soldered Fixed Partial Denture Made of Two Different Base Metal Alloys and Casting Techniques: An In vitro Study.

    PubMed

    Jei, J Brintha; Mohan, Jayashree

    2014-03-01

    The periodontal health of abutment teeth and the durability of fixed partial denture depends on the marginal adaptation of the prosthesis. Any discrepancy in the marginal area leads to dissolution of luting agent and plaque accumulation. This study was done with the aim of evaluating the accuracy of marginal fit of four unit crown and bridge made up of Ni-Cr and Cr-Co alloys under induction and centrifugal casting. They were compared to cast fixed partial denture (FPD) and soldered FPD. For the purpose of this study a metal model was fabricated. A total of 40 samples (4-unit crown and bridge) were prepared in which 20 Cr-Co samples and 20 Ni-Cr samples were fabricated. Within these 20 samples of each group 10 samples were prepared by induction casting technique and other 10 samples with centrifugal casting technique. The cast FPD samples obtained were seated on the model and the samples were then measured with travelling microscope having precision of 0.001 cm. Sectioning of samples was done between the two pontics and measurements were made, then the soldering was made with torch soldering unit. The marginal discrepancy of soldered samples was measured and all findings were statistically analysed. The results revealed minimal marginal discrepancy with Cr-Co samples when compared to Ni-Cr samples done under induction casting technique. When compared to cast FPD samples, the soldered group showed reduced marginal discrepancy.

  19. Elements of adaptive optics based on metallized polymer films

    NASA Astrophysics Data System (ADS)

    Voliak, T. B.; Krasiuk, I. K.; Pashinin, P. P.

    Results of an experimental study of the stability of metallized polymer films exposed to laser radiation at wavelengths of 1.06 and 10.6 microns are reported, and methods for fabricating variable-curvature mirrors from these films are discussed. Formulas are presented for calculating the shape of film mirrors as a function of the pressure acting on the film, mounting contour, and film properties. The performance of film mirrors is investigated experimentally in a pulsed CO2 laser with stable and unstable resonators.

  20. Ion permeability of polydopamine films revealed using a Prussian blue-based electrochemical method.

    PubMed

    Gao, Bowen; Su, Lei; Tong, Ying; Guan, Miao; Zhang, Xueji

    2014-11-06

    Polydopamine (PDA) is fast becoming a popular surface modification technique. Detailed understanding of the ion permeability properties of PDA films will improve their applications. Herein, we report for the first time the thickness-independent ion permeability of PDA films using a Prussian blue (PB)-based electrochemical method. In this method, PDA films are deposited via ammonium persulfate-induced dopamine polymerization onto a PB electrode. The ion permeability of the PDA films can thus be detected by observing the changes in electrochemical behaviors of the PB coated by PDA films. On the basis of this method, it was unexpectedly found that the PDA films with thickness greater than 45 nm (e.g., ~60 and ~113 nm) can exhibit pH-switchable but thickness-insensitive permeability to monovalent cations such as potassium and sodium ions. These observations clearly indicate the presence of a continuous network of interconnected intermolecular voids within PDA films, regardless of film thickness.

  1. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  2. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  3. Process Modeling of Low-Pressure Die Casting of Aluminum Alloy Automotive Wheels

    NASA Astrophysics Data System (ADS)

    Reilly, C.; Duan, J.; Yao, L.; Maijer, D. M.; Cockcroft, S. L.

    2013-09-01

    Although on initial inspection, the aluminum alloy automotive wheel seems to be a relatively simple component to cast based on its shape, further insight reveals that this is not the case. Automotive wheels are in a select group of cast components that have strict specifications for both mechanical and aesthetic characteristics due to their important structural requirements and their visibility on a vehicle. The modern aluminum alloy automotive wheel continues to experience tightened tolerances relating to defects to improve mechanical performance and/or the physical appearance. Automotive aluminum alloy wheels are assessed against three main criteria: wheel cosmetics, mechanical performance, and air tightness. Failure to achieve the required standards in any one of these categories will lead to the wheel either requiring costly repair or being rejected and remelted. Manufacturers are becoming more reliant on computational process modeling as a design tool for the wheel casting process. This article discusses and details examples of the use of computational process modeling as a predictive tool to optimize the casting process from the standpoint of defect minimization with the emphasis on those defects that lead to failure of aluminum automotive wheels, namely, macroporosity, microporosity, and oxide films. The current state of applied computational process modeling and its limitations with regard to wheel casting are discussed.

  4. Gating of Permanent Molds for Aluminum Casting

    SciTech Connect

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-01-01

    This report summarizes a two-year project, DE-FC07-011D13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was to determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings. Equipment and procedure for real time X-Ray radiography of molten aluminum flow into permanent molds have been developed. Other studies have been conducted using water flow and behavior of liquid aluminum in sand mold using real time photography. This investigation utilizes graphite molds transparent to X-Rays making it possible to observe the flow pattern through a number of vertically oriented grating systems. These have included systems that are choked at the base of a rounded vertical sprue and vertical gating systems with a variety of different ingates into the bottom of a mold cavity. These systems have also been changed to include gating systems with vertical and horizontal gate configurations. Several conclusions can be derived from this study. A sprue-well, as designed in these experiments, does not eliminate the vena contracta. Because of the swirling at the sprue-base, the circulating metal begins to push the entering metal stream toward the open runner mitigating the intended effect of the sprue-well. Improved designs of

  5. Dimensional accuracy of small gold alloy castings. Part 4. The casting ring and ring liners.

    PubMed

    Morey, E F

    1992-04-01

    The role of the casting ring and its asbestos liner is discussed. Asbestos as a liner has now largely been replaced by two alternative materials, one based on cellulose and the other on ceramic fibres. The limited literature on the effect of these newer materials on casting accuracy is also reviewed as their introduction may require significant changes in the traditional technology of dental casting.

  6. Effect of Sodium Sulfite, Sodium Dodecyl Sulfate, and Urea on the Molecular Interactions and Properties of Whey Protein Isolate-Based Films

    PubMed Central

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2017-01-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm3 (STP/standard temperature and pressure) 100 μm (m2 d bar)−1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 μm (m2 d)−1 measured at 50 to 0% r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient. PMID:28149835

  7. Evaluation of the Influence of Formulation and Process Variables on Mechanical Properties of Oral Mucoadhesive Films Using Multivariate Data Analysis

    PubMed Central

    Landová, Hana; Gajdziok, Jan; Doležel, Petr; Muselík, Jan; Dvořáčková, Kateřina; Jekl, Vladimír; Hauptman, Karel

    2014-01-01

    Oral mucosa is an attractive region for the local and systemic application of many drugs. Oral mucoadhesive films are preferred for their prolonged time of residence, the improved bioavailability of the drug they contain, their painless application, their protection against lesions, and their nonirritating properties. This work was focused on preparation of nonmedicated carmellose-based films using both solvent casting and impregnation methods, respectively. Moreover, a modern approach to evaluation of mucoadhesive films applying analysis of texture and subsequent multivariate data analysis was used. In this experiment, puncture strength strongly correlated with tensile strength and could be used to obtain necessary information about the mechanical film characteristics in films prepared using both methods. Puncture work and tensile work were not correlated in films prepared using the solvent casting method, as increasing the amount of glycerol led to an increase in the puncture work in thinner films. All measured texture parameters in films prepared by impregnation were significantly smaller compared to films prepared by solvent casting. Moreover, a relationship between the amount of glycerol and film thickness was observed, and a greater recalculated tensile/puncture strength was needed for an increased thickness in films prepared by impregnation. PMID:25136560

  8. Characterization of poly(L-lactide/Propylene glycol) based polyurethane films using ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Manap, Siti Munirah; Ahmad, Azizan; Anuar, Farah Hannan

    2016-11-01

    A polyurethane films consisting of PLLA, PPG and PLLA-PPG were prepared using solution casting method. Three types of polyurethane were prepared: PPLA:PMDI, PPG:PMDI and PLLA-PPG:PMDI in the presence of polymeric diphenylmethane diisocyanate (PMDI) as the coupling agent and catalyst, Sn(Oct)2. The aim of this research was to improve the physicals properties of PLLA and PPG homopolymers through copolymerization between the two polymers. The homopolymers and polyurethane films were characterized using ATR-FTIR spectroscopy. Chemical reaction between PLLA, PPG and PMDI before and after the reaction were confirmed by observing the shifting of wavenumber for the carbonyl and ether group. Other than that, the additional band for N-H after the reaction indicated that the reaction was successful.

  9. Bamboo (Neosinocalamus affinis)-based thin film, a novel biomass material with high performances.

    PubMed

    Song, Fei; Xu, Chen; Bao, Wen-Yi; Wang, Xiu-Li; Wang, Yu-Zhong

    2015-03-30

    Exploration of biomass based materials to replace conventional petroleum based ones has been a trend in recent decades. In this work, bamboo (Neosinocalamus affinis) with abundant resources was used for the first time to prepare films in the presence of cellulose. The effects of weight ratio of bamboo/cellulose on the appearances and properties of the films were investigated. It was confirmed there existed strong interactions between bamboo and cellulose, which were favorable to formation of homogeneous structure of blend films. Particularly, the presence of bamboo could improve the surface hydrophobicity, water resistance and thermal stability of blend films, and the films possessed an excellent oxygen barrier property, compared with generally used commercial packaging films. The bamboo biomass, therefore, is successfully used to create a new film material with a good application prospect in the fields of packaging, coating, and food industry.

  10. Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites.

    PubMed

    de Souza, Clayton F; Lucyszyn, Neoli; Woehl, Marco A; Riegel-Vidotti, Izabel C; Borsali, Redouane; Sierakowski, Maria Rita

    2013-03-01

    We describe the mechanical defibrillation of bacterial cellulose (BC) followed by the dry-cast generation of reconstituted BC films (RBC). Xyloglucan (XGT), extracted from tamarind seeds, was incorporated into the defibrillated cellulose at various compositions, and new films were created using the same process. Microscopy and contact angle analyses of films revealed an increase in the microfibre adhesion, a reduced polydispersity in the diameters of the microfibrils and increased hydrophobic behaviour as a function of %XGT. X-ray diffraction analysis revealed changes to the crystallographic planes of the RBC and the biocomposite films with preferential orientation along the (110) plane. Compared with BC, RBC/XGT biocomposite with 10% XGT exhibited improvement in its thermal properties and in Young's modulus. These results indicated a reorganisation of the microfibres with mechanical treatment, which when combined with hydrocolloids, can create cellulose-based materials that could be applied as scaffolding for tissue engineering and drug release.

  11. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    SciTech Connect

    Pankiw, Roman I; Muralidharan, G.; Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  12. Crack width monitoring of concrete structures based on smart film

    NASA Astrophysics Data System (ADS)

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2014-04-01

    Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.

  13. NanoSQUIDs based on niobium nitride films

    NASA Astrophysics Data System (ADS)

    Russo, R.; Esposito, E.; Crescitelli, A.; Di Gennaro, E.; Granata, C.; Vettoliere, A.; Cristiano, R.; Lisitskiy, M.

    2017-02-01

    We present an experimental investigation of nanoSQUIDs based on niobium nitride films. Niobium nitride has a relatively high critical temperature and a large upper critical magnetic field, making it a good material for superconducting electronics working in high magnetic field. We have fabricated nanoSQUIDs using electron beam lithography lift-off technique and deposition of niobium nitride films by magnetron sputtering at room temperature. The characterization of nanoSQUIDs was performed at 4.2 K and it consists mainly of current-voltage (IV) characteristics and critical current as a function of external magnetic field (magnetic pattern). The fabricated nanoSQUIDs show a hysteretic IV characteristic and they present a multi-values magnetic pattern. We show that by reducing the critical current by ion etching it is possible to obtain nanoSQUIDs with a single value magnetic pattern suitable for magnetic particle measurements. Magnetic noise analysis has been performed and a white noise of 0.3 μΦ0 Hz-1/2 has been estimated.

  14. Research on the measurement of thin film thickness based on phaseshift interferometry

    NASA Astrophysics Data System (ADS)

    Shi, Yi-lei; Su, Jun-hong; Yang, Li-hong; Xu, Jun-qi

    2009-05-01

    Only by solving the problem of accurate measurement of thin film thickness, will it be possible to solve the problem of thin film preparation. A novel measurement method of thin film thickness based on phase-shift interferometry is presented in the paper. Taking advantage of Twyman-Green interferometer, the multi-frame interferogram measured the thin film can be obtained by receiving the interference fringes of thin film by means of CCD and using digital acquisition card to collect interferogram and with the help of computer control PZT driver and modulation piezoelectric regulator to promote reference mirror uniformly-spaced movement. After the gained interferogram were disposed of phase unwrapped, 3D wavefront containing the information of thin film thickness can be obtained. According to the characteristics between the thin film thickness and the unwrapping phase, taking advantage of the overlapping 4-frame average algorithm, corresponding relationships between the quantification phase information and thin film thickness of each point has been established to realize the thin film thickness accurate measurement. The results show that this method has the advantage of non-contact, the high accuracy, not only has testified the feasibility of film thickness measurement with phase-shift interferometry, but also has further ensured research and optimization of the thin film preparation technics. The PV and RMS value of the measured thin film thickness are 0.162μm and 0.043μm respectively.

  15. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging.

    PubMed

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-01-01

    In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications.

  16. Printed organic thin-film transistor-based integrated circuits

    NASA Astrophysics Data System (ADS)

    Mandal, Saumen; Noh, Yong-Young

    2015-06-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted.

  17. Preparation and characterization of oxadiazole based electron transporting thin films

    NASA Astrophysics Data System (ADS)

    Mahajan, Aman; Aulakh, Ramanpreet Kaur; Bedi, R. K.

    2012-08-01

    To study the effect of aggregation of the 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) molecule in solid state, thin films of PBD have been prepared by the thermal evaporation technique onto glass and quartz substrates under different experimental conditions. These films have been studied for their structural, optical and electrical properties. AFM investigations of the films revealed that the films were smooth, dense and crack free with RMS roughness of 11-14 nm. XRD measurements indicate that films deposited on quartz are more crystalline than films deposited on glass substrate. Both absorption and reflectance spectra over the wavelength range 200-800 nm have been recorded to find optical parameters, namely, absorption, extinction coefficient, refractive index and dielectric constants. The inter-band transition energies are found to lie within the range 3.45-3.49 eV. Optical studies of the films indicate that PBD molecules preferred J-aggregation. A prominent single emission peak in the range of 370-390 nm has been observed which confirms that the fluorescent property of this molecule is not quenched in the thin film state. The electrical conductivity results for the evaporated films exhibited semiconductor behaviour within the investigated field and temperature range. The nature of the substrate is found to be a useful tool to modify the film morphology and for enhancing the charge transport within the films.

  18. Cooling Performance and Structural Reliability of a Modified Corrugated-insert Air-cooled Turbine Blade with an Integrally Cast Shell and Base

    NASA Technical Reports Server (NTRS)

    Freche, John C; Schum, Eugene F

    1957-01-01

    A modified corrugated-insert blade with integrally cast shell and base was developed. This blade was as light as a conventional fabricated corrugated-insert blade. Of four test blades operated in a full-scale turbojet engine, one failed after about 15 hours operation at an inlet gas temperature of 1670 degrees F, a coolant-flow ratio of 0.0064, and a 1/3-span centrifugal stress of approximately 28,000 psi. Three other test blades ran for approximately 16, 31, and 36 hours without failure at similar conditions.

  19. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment. [for high-pressure oxidizer turbopump turbine nozzles

    NASA Technical Reports Server (NTRS)

    Cooper, R. A.

    1976-01-01

    Samples of two nickel-base casting alloys, Mar-M-246 (a Martin Company alloy) and 713LC (a low-carbon modification of the alloy 713C developed by International Nickel Company) were tested as candidate materials for the high-pressure fuel and high-pressure oxidizer turbopump turbine nozzles. The samples were subjected to tensile tests and to low cycle fatigue tests in high-pressure hydrogen to study the influence of the hydrogen environment. The Mar-M-246 material was found to have a three times higher cyclic life in hydrogen than the 713LC alloy, and was selected as the nozzle material.

  20. Processing of IN-718 Lattice Block Castings

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2002-01-01

    Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.

  1. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting.

    PubMed

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-12

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  2. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  3. LTCC Phase Shifters Based on Tunable Ferroelectric Composite Thick Films

    NASA Astrophysics Data System (ADS)

    Nikfalazar, M.; Kohler, C.; Heunisch, A.; Wiens, A.; Zheng, Y.; Schulz, B.; Mikolajek, M.; Sohrabi, M.; Rabe, T.; Binder, J. R.; Jakoby, R.

    2015-11-01

    This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

  4. High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Qian, Long; Xu, Wenya; Nie, Shuhong; Gu, Weibing; Zhang, Jianhui; Zhao, Jianwen; Lin, Jian; Chen, Zheng; Cui, Zheng

    2013-05-01

    In this work, a simple and rapid method to selectively sort semiconducting-SWCNTs (sc-SWCNTs) with large diameters using regioregular poly(3-dodecylthiophene) (rr-P3DDT) is presented. The absorption spectra and Raman spectra demonstrated that metallic species of arc discharge SWCNTs were effectively removed after interaction with rr-P3DDT in toluene with the aid of sonication and centrifugation. The sorted sc-SWCNT inks have been directly used to fabricate thin film transistors (TFTs) by dip-coating, drop-casting and inkjet printing. TFTs with an effective mobility of ~34 cm2 V-1 s-1 and on-off ratios of ~107 have been achieved by dip coating and drop casting the ink on SiO2/Si substrates with pre-patterned interdigitated gold electrode arrays. The printed devices also showed excellent electrical properties with a mobility of up to 6.6 cm2 V-1 s-1 and on-off ratios of up to 105. Printed inverters based on the TFTs have been constructed on glass substrates, showing a maximum voltage gain of 112 at a Vdd of -5 V. This work paves the way for making printable logic circuits for real applications.In this work, a simple and rapid method to selectively sort semiconducting-SWCNTs (sc-SWCNTs) with large diameters using regioregular poly(3-dodecylthiophene) (rr-P3DDT) is presented. The absorption spectra and Raman spectra demonstrated that metallic species of arc discharge SWCNTs were effectively removed after interaction with rr-P3DDT in toluene with the aid of sonication and centrifugation. The sorted sc-SWCNT inks have been directly used to fabricate thin film transistors (TFTs) by dip-coating, drop-casting and inkjet printing. TFTs with an effective mobility of ~34 cm2 V-1 s-1 and on-off ratios of ~107 have been achieved by dip coating and drop casting the ink on SiO2/Si substrates with pre-patterned interdigitated gold electrode arrays. The printed devices also showed excellent electrical properties with a mobility of up to 6.6 cm2 V-1 s-1 and on-off ratios of up to 105

  5. Improving Metal Casting Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  6. Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan

    NASA Astrophysics Data System (ADS)

    Mushi, Ngesa; Utsel, Simon; Berglund, Lars

    2014-11-01

    Chitosan is widely used in films for packaging applications. Chitosan reinforcement by stiff particles or fibers is usually obtained at the expense of lowered ductility and toughness. Here, chitosan film reinforcement by a new type of native chitin nanofibers is reported. Films are prepared by casting from colloidal suspensions of chitin in dissolved chitosan. The nanocomposite films are chitin nanofiber networks in chitosan matrix. Characterization is carried out by dynamic light scattering, quartz crystal microbalance, field emission scanning electron microscopy, tensile tests and dynamic mechanical analysis. The nanostructured biocomposite was produced in volume fractions of 0, 8, 22 and 56% chitin nanofibers. Favorable chitin-chitosan synergy for colloidal dispersion is demonstrated. Also, lowered moisture sorption is observed for the composites, probably due to the favorable chitin-chitosan interface. The highest toughness (area under stress-strain curve) was observed at 8 vol% chitin content. The toughening mechanisms and the need for well-dispersed chitin nanofibers is discussed. Finally, desired structural characteristics of ductile chitin biocomposites are discussed.

  7. Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan

    PubMed Central

    Mushi, Ngesa E.; Utsel, Simon; Berglund, Lars A.

    2014-01-01

    Chitosan is widely used in films for packaging applications. Chitosan reinforcement by stiff particles or fibers is usually obtained at the expense of lowered ductility and toughness. Here, chitosan film reinforcement by a new type of native chitin nanofibers is reported. Films are prepared by casting from colloidal suspensions of chitin in dissolved chitosan. The nanocomposite films are chitin nanofiber networks in chitosan matrix. Characterization is carried out by dynamic light scattering, quartz crystal microbalance, field emission scanning electron microscopy, tensile tests and dynamic mechanical analysis. The polymer matrix nanocomposites were produced in volume fractions of 8, 22, and 56% chitin nanofibers. Favorable chitin-chitosan synergy for colloidal dispersion is demonstrated. Also, lowered moisture sorption is observed for the composites, probably due to the favorable chitin-chitosan interface. The highest toughness (area under stress-strain curve) was observed at 8 vol% chitin content. The toughening mechanisms and the need for well-dispersed chitin nanofibers is discussed. Finally, desired structural characteristics of ductile chitin biocomposites are discussed. PMID:25478558

  8. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    SciTech Connect

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong; Szulczewski, Greg; Li, Dawen

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystal orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.

  9. Moving beyond "Bookish Knowledge": Using Film-Based Assignments to Promote Deep Learning

    ERIC Educational Resources Information Center

    Olson, Joann S.; Autry, Linda; Moe, Jeffry

    2016-01-01

    This article investigates the effectiveness of a film-based assignment given to adult learners in a graduate-level group counseling class. Semi-structured interviews were conducted with four students; data analysis suggested film-based assignments may promote deep approaches to learning (DALs). Participants indicated the assignment helped them…

  10. SLIP CASTING METHOD

    DOEpatents

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  11. Evolution of halictine castes

    NASA Astrophysics Data System (ADS)

    Knerer, Gerd

    1980-03-01

    Social halictine bees have female castes that range from species with no size differences to those with a discrete bimodality. Female caste differences are inversely correlated with the number of males produced in the first brood. It is proposed that the sexual dimorphism of solitary forms is being usurped by the female caste system of species in the process of turning social. Thus, caste differences and summer male suppression are greatest in the social species originating from solitary precursors with distinct sexual dimorphism, and are least in species evolving from solitary ancestors with a continuous sexual polymorphism.

  12. Cast Aluminum Bonding Study

    DTIC Science & Technology

    1988-05-01

    fabricated using P?-’r;est11 bur)ld II19 te(hnll I Oly with 6 cIsL nqs. The cast a lumi num alloy used was A357 . The sur- face preparation was phosphoric acid...from a cast aluminum alloy designated A357 . The bonding surfaces of the adherends were prepared using PAA. One primer and two adhesives considered...System, Cast Aluminum Lap Shear 18 11 Bond Area of 350°F Adhesive System, Cast Aluminum Lap Shear 19 vi LIST OF TABLES TABLE PAGE 1 A357 Chemical

  13. Is Casting for Non-Displaced Simple Scaphoid Waist Fracture Effective? A CT Based Assessment of Union

    PubMed Central

    Grewal, Ruby; Suh, Nina; MacDermid, Joy C.

    2016-01-01

    Objective: The purpose of this study is to report the union rate and time to union for acute non-displaced scaphoid waist fractures treated with a short arm thumb spica cast. Methods: A database was searched (2006-2013) to identify acute undisplaced scaphoid waist fractures. Cases that were not given a trial of casting were excluded (n=33). X-rays, CT scans and health records for each patient were reviewed to extract data. Results: 172 patients met inclusion criteria. There were 138 males, 34 females, the mean age was 30 ± 16 years. The union rate was 99.4% (1 nonunion/172 subjects). The mean time to union was approximately 7.5 weeks (53 ± 37 days). Energy of injury, age or gender did not affect union rates or time to union. Cysts did not affect the union rate (p=0.73) but patients with cystic resorption along the fracture line required approximately 10 weeks for union (69 ± 60 days) compared to 7 weeks (51 ± 34 days) for those without cysts (p=0.05). Diabetes did not affect the union rate (p=0.81) but was found to increase the risk of delayed union (p=0.05). There was a weak, but statistically significant correlation between the number of days before the fracture was casted and the length of time needed to achieve union (r=0.27, p=0.001). Conclusion: Non-displaced scaphoid waist fractures have a high healing rate with appropriate identification and immobilization. Follow-up CT scans to assess healing can identify union within a shorter time frame (~7 weeks) than previously reported in the literature. PMID:27708739

  14. Patterning of Tl-based superconducting films using new etching solution

    NASA Astrophysics Data System (ADS)

    Sojková, M.; Štrbík, V.; Španková, M.; Chromik, Š.

    2014-09-01

    Tl-based cuprate superconducting films were prepared in a two-step process by RF magnetron sputtering of an amorphous precursor and ex situ thallination in open system. The films prepared on LaAlO3 and CeO2 buffered R-plane sapphire substrates consisted from c-axis oriented Tl-2212 superconducting phase. The zero resistance critical temperature TC0 exhibited values up to 94 K. Subsequently, superconducting structures were prepared from the Tl-based thin films using photolithography process and wet etching. A new etchant based on potassium iodide was used for the Tl-based film patterning. The prepared structures had sharp edges, unchanged phase composition and critical temperature values. Such a way of the Tl-based film patterning is very simple, fast and easy to realize.

  15. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2001-01-01

    Single-arm double-mode double-order optical waveguide interferometer utilizes interference between two propagating modes of different orders. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric slab structure containing a dye-doped polymer film onto a fused quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional), TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TM(sub 1) or TE(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye sensitive to a particular gas. Change of optical absorption spectrum of the dye caused by the gaseous pollutant results change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As an indicator dyes, we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate, which shows a reversible growth of the absorption peak neat 600 nm after exposure to wet ammonia. We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed sensitivity to temperature change of the order of 2 C per one full oscillation of the signal. The sensitivity of the sensor to the presence of wet ammonia is 200 ppm per one full oscillation of the signal. The further improvements include switching to a longer wavelength laser source (750-nm semiconductor laser), substitution of poly(methyl) methacrylate with hydrophilic

  16. National Metal Casting Research Institute final report. Volume 2, Die casting research

    SciTech Connect

    Jensen, D.

    1994-06-01

    Four subprojects were completed: development and evaluation of die coatings, accelerated die life characterization of die materials, evaluation of fluid flow and solidification modeling programs, selection and characterization of Al-based die casting alloys, and influence of die materials and coatings on die casting quality.

  17. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity.

  18. Soil burial biodegradation studies of palm oil-based UV-curable films

    SciTech Connect

    Tajau, Rida Salleh, Mek Zah Salleh, Nik Ghazali Nik Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi Hamidi, Nur Amira

    2016-01-22

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  19. Characterization and performance of carbon films deposited by plasma and ion beam based techniques

    SciTech Connect

    Walter, K C; Kung, H; Levine, T

    1994-12-31

    Plasma and ion beam based techniques have been used to deposit carbon-based films. The ion beam based method, a cathodic arc process, used a magnetically mass analyzed beam and is inherently a line-of-sight process. Two hydrocarbon plasma-based, non-line-of-sight techniques were also used and have the advantage of being capable of coating complicated geometries. The self-bias technique can produce hard carbon films, but is dependent on rf power and the surface area of the target. The pulsed-bias technique can also produce hard carbon films but has the additional advantage of being independent of rf power and target surface area. Tribological results indicated the coefficient of friction is nearly the same for carbon films from each deposition process, but the wear rate of the cathodic arc film was five times less than for the self-bias or pulsed-bias films. Although the cathodic arc film was the hardest, contained the highest fraction of sp{sup 3} bonds and exhibited the lowest wear rate, the cathodic arc film also produced the highest wear on the 440C stainless steel counterface during tribological testing. Thus, for tribological applications requiring low wear rates for both counterfaces, coating one surface with a very hard, wear resistant film may detrimentally affect the tribological behavior of the counterface.

  20. Planting Healthy Roots: Using Documentary Film to Evaluate and Disseminate Community-Based Participatory Research.

    PubMed

    Brandt, Heather M; Freedman, Darcy A; Friedman, Daniela B; Choi, Seul Ki; Seel, Jessica S; Guest, M Aaron; Khang, Leepao

    2016-01-01

    Documentary filmmaking approaches incorporating community engagement and awareness raising strategies may be a promising approach to evaluate community-based participatory research. The study purpose was 2-fold: (1) to evaluate a documentary film featuring the formation and implementation of a farmers' market and (2) to assess whether the film affected awareness regarding food access issues in a food-desert community with high rates of obesity. The coalition model of filmmaking, a model consistent with a community-based participatory research (CBPR) approach, and personal stories, community profiles, and expert interviews were used to develop a documentary film (Planting Healthy Roots). The evaluation demonstrated high levels of approval and satisfaction with the film and CBPR essence of the film. The documentary film aligned with a CBPR approach to document, evaluate, and disseminate research processes and outcomes.

  1. Reduced graphene oxide based silver sulfide hybrid films formed at a liquid/liquid interface

    SciTech Connect

    Bramhaiah, K. John, Neena S.

    2014-04-24

    Free-standing, ultra-thin films of silver sulfide and reduced graphene oxide (RGO) based silver sulfide hybrids are prepared at a liquid/liquid interface employing in situ chemical reaction strategy. Ag{sub 2}S and RGO−Ag{sub 2}S hybrid films are characterized by various techniques such as UV-visible and photo luminescence spectroscopy, X-ray diffraction and scanning electron microscopy. The morphology of hybrid films consists of Ag{sub 2}S nanocrystals on RGO surface while Ag{sub 2}S films contains branched network of dendritic structures. RGO−Ag{sub 2}S exhibit interesting optical and electrical properties. The hybrid films absorb in the region 500–650 nm and show emission in the red region. A higher conductance is observed for the hybrid films arising from the RGO component. This simple low cost method can be extended to prepare other RGO based metal sulfides.

  2. Degradation studies of nitride-based low-e films

    NASA Astrophysics Data System (ADS)

    Andersson, Kent E.; Wahlstrom, M. K.; Roos, Arne; Ribbing, Carl-Gustaf

    1992-11-01

    Triple layer structures of TiO2/TiN/TiO2 and quadruple layer structures of TiO2/Al/TiN/TiO2 have been sputtered on glass substrates at temperatures ranging from room temperature to 300 degree(s)C. The reflectance and transmittance were measured in the visible and the near infrared wavelength regions. Accelerated degradation tests with respect to high temperature and acid exposure have been performed with these laboratory samples of low-e coatings and the degradation has been compared with that of commercial silver based window coatings. As expected the durability of the nitride based coatings is far superior to the stability of those based on noble metals. Furthermore, the nitride coatings with an aluminum sacrificial layer have been found to resist aging at elevated temperatures (as high as 350 - 400 degree(s)C) far better than similar coatings without the aluminum. It has also been shown that the aluminum layer protects the nitride film during deposition of the top oxide layer. The effects of high temperature annealing have been modeled with optical multilayer calculations. Comparison of two degradation mechanisms demonstrates that the silver layers fail by agglomeration while the nitride suffers successive oxidation. This explains the effectiveness of the aluminum layer which forms a dense oxide during the initial stages of TiO2- deposition.

  3. Polyester-based thin films with high photosensitivity

    SciTech Connect

    POTTER,KELLY SIMMONS; POTTER JR.,BARRETT G.; WHEELER,DAVID R.; JAMISON,GREGORY M.

    2000-02-29

    A great deal of research has been done to understand the photosensitive optical response of inorganic glasses, which exhibit a permanent, photo-induced refractive index change due to the presence of optically active point defects in the glass structure. In the present work, the authors have performed a preliminary study of the intrinsic photosensitivity of a polyester containing a cinnamylindene malonate group (CPE, a photo- and thermal-crosslinkable group) for use in photonic waveguide devices. Thin films of CPE (approximately 0.5 microns thick) were spun onto fused silica substrates. Optical absorption in the thin films was evaluated both before and after exposure to UV radiation sources. It was found that the polyester exhibits two dominant UV absorption bands centered about 240 nm and 330 nm. Under exposure to 337 nm radiation (nitrogen laser) a marked bleaching of the 330 nm band was observed. This band bleaching is a direct result of the photo-induced crosslinking in the cinnamylindene malonate group. Exposure to 248 nm radiation (excimer laser), conversely, resulted in similar bleaching of the 330 nm band but was accompanied by nearly complete bleaching of the higher energy 240 nm band. Based on a Kramers-Kronig analysis of the absorption changes, refractive index changes on the order of {minus}10{sup {minus}2} are estimated. Confirmation of this calculation has been provided via ellipsometry which estimates a refractive index change at 632 nm of {minus}0.061 {+-} 0.002. Thus, the results of this investigation confirm the photosensitive potential of this type of material.

  4. Evaluation of variational principle based model for LDPE large scale film blowing process

    NASA Astrophysics Data System (ADS)

    Kolarik, Roman; Zatloukal, Martin

    2013-04-01

    In this work, variational principle based film blowing model combined with Pearson and Petrie formulation, considering non-isothermal processing conditions and novel generalized Newtonian model allowing to capture steady shear and uniaxial extensional viscosities has been validated by using experimentally determined bubble shape and velocity profile for LDPE sample on large scale film blowing line. It has been revealed that the minute change in the flow activation energy can significantly influence the film stretching level.

  5. Directional Bias in the Perception of Cast Shadows

    PubMed Central

    Koizumi, Tomomi; Sunaga, Shoji; Ogawa, Masaki

    2017-01-01

    Previous studies have demonstrated that the perception of shading is based upon assumptions about lighting direction, for example, light from above. However, it is not clear whether these assumptions are used in the perception of cast shadows. Moreover, it is unclear whether a perceptual interaction exists between shading and cast shadows because until now they have been studied separately. In this study, we investigated through three experiments whether the light-from-above (or another direction) assumption is used in interpreting ambiguous cast shadows, and whether shading information influences the interpretation of cast shadows. Our results indicate the existence of the light-from-above assumption in interpreting cast shadows. Consistent shading information enhanced the interpretation, and judgments of lighting direction were also based on both cast shadow and shading information. However, the perceptual determination of shape from shading was relatively independent of the cast shadow interpretation or the lighting direction judgments of the scene. PMID:28210485

  6. Raman spectra of heterogeneous nanostructures based on organosilicon films

    NASA Astrophysics Data System (ADS)

    Vlasukova, L. A.; Komarov, F. F.; Leontyev, A. V.; Parkhomenko, I. N.

    2013-01-01

    We studied the effect of ion bombardment on the structure of SOG (spin-on-glass) films. We used IR and Raman spectroscopy and plan-view transmission electron microscopy to study the characteristic features of the structural transformation in organosilicon films when bombarded by nitrogen ions. We show that they are heterogeneous and we establish the presence of inclusions of nanocrystalline graphite.

  7. Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties.

    PubMed

    Dai, Lei; Long, Zhu; Chen, Jie; An, Xingye; Cheng, Dong; Khan, Avik; Ni, Yonghao

    2017-02-15

    The pursuit of sustainable functional materials requires development of materials based on renewable resources and efficient fabrication methods. Hereby, we fabricated all-polysaccharides multilayer films using cationic guar gum (CGG) and anionic cellulose nanofibrils (i.e., TEMPO-oxidized cellulose nanofibrils, TOCNs) through a layer-by-layer casting method. This technique is based on alternate depositions of oppositely charged water-based CGG and TOCNs onto laminated films. The resultant polyelectrolyte multilayer films were transparent, ductile, and strong. More importantly, the self-standing films exhibited excellent gas (water vapor and oxygen) and oil barrier performances. Another outstanding feature of these resultant films was their resistance to various organic solvents including methanol, acetone, N,N-dimethylacetamide (DMAc) and tetrahydrofuran (THF). The proposed film fabrication process is environmentally benign, cost-effective, and easy to scale-up. The developed CGG/TOCNs multilayer films can be used as a renewable material for industrial applications such as packaging.

  8. Multielectrocatalysis by layer-by-layer films based on pararosaniline and vanadium-substituted phosphomolybdate.

    PubMed

    Fernandes, Diana M; Teixeira, Alexandra; Freire, Cristina

    2015-02-10

    Hybrid multilayer films based on the two molecular species pararosaniline (PR) and Keggin-type polyoxometalate K5[PMo11VO40)] (PMo11V) were prepared on different substrates using the electrostatic layer-by-layer (LbL) self-assembly method. The film buildup, monitored by electronic spectroscopy, showed a regular stepwise growth, and X-ray photoelectron spectroscopy data confirmed the presence of both molecular components within the LbL films. Scanning electron microscopy images revealed a completely covered surface with a nonuniform distribution of film components, and atomic force microscopy images confirmed a rough surface. The film electrochemical responses and permeability were studied by cyclic voltammetry. Films revealed three Mo-based redox processes (Mo(VI) → Mo(V)) and one V-based redox process (V(V) → V(IV)) in the potential range between 0.8 and -0.4 V vs Ag/AgCl. Studies with the redox probes [Fe(CN)6](3-/4-) and [Ru(NH3)6](3+/2+) showed that the films maintain the permeability even after six bilayers. Furthermore, the {PR/PMo11V}n multilayer films exhibit excellent Mo-based electrocatalytic activity toward reduction of iodate and V-based electrocatalytic activity toward ascorbic acid oxidation, thus acting as a versatile multielectrocatalyst.

  9. Thin-film chemical sensors based on electron tunneling

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  10. Cast segment evaluation

    NASA Technical Reports Server (NTRS)

    Diem, H. G.; Studhalter, W. R.

    1971-01-01

    Evaluation program to determine feasibility of fabricating segmented rocket engine thrust chambers using low cost, lightweight castings extends state of the art in areas of casting size and complexity, and in ability to provide thin sections and narrow, deep, cooling channels. Related developments are discussed.

  11. A cast orientation index.

    PubMed

    Ivanhoe, J R; Mahanna, G K

    1994-12-01

    This article describes a technique that allows multiple master casts to be precisely oriented to the same path of insertion and withdrawal. This technique is useful in situations where multiple fixed prosthodontic preparations require surveyed restorations and a single master cast is not available.

  12. Structural and optical investigation of Te-based chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Rita; Sharma, Shaveta; Chander, Ravi; Kumar, Praveen; Thangaraj, R.; Mian, M.

    2015-05-01

    We report the structural and optical properties of thermally evaporated Bi2Te3, In2Te3 and InBiTe3 films by using X-ray diffraction, optical and Raman Spectroscopy techniques. The as-prepared thin films were found to be Semi-crystalline by X-ray diffraction. Particle Size and Strain has been calculated from XRD data. The optical constants, film thickness, refractive index and optical band gap (Eg) has been reported for In2Te3, InBiTe3 films. Raman Spectroscopy was performed to investigate the effect of Bi, In, on lattice vibration and chemical bonding in Te based chalcogenide glassy alloys.

  13. Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites.

    PubMed

    Tian, Bian; Zhang, Zhongkai; Shi, Peng; Zheng, Chen; Yu, Qiuyue; Jing, Weixuan; Jiang, Zhuangde

    2017-01-01

    A tungsten-rhenium thin film thermocouple is designed and fabricated, depending on the principle of thermal-electric effect caused by the high temperature. The characteristics of thin film thermocouples in different temperatures are investigated via numerical analysis and analog simulation. The working mechanism and thermo-electric features of the thermocouples are analyzed depending on the simulation results. Then the thin film thermocouples are fabricated and calibrated. The calibration results show that the thin film thermocouples based on the tungsten-rhenium material achieve ideal static characteristics and work well in the practical applications.

  14. Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Tian, Bian; Zhang, Zhongkai; Shi, Peng; Zheng, Chen; Yu, Qiuyue; Jing, Weixuan; Jiang, Zhuangde

    2017-01-01

    A tungsten-rhenium thin film thermocouple is designed and fabricated, depending on the principle of thermal-electric effect caused by the high temperature. The characteristics of thin film thermocouples in different temperatures are investigated via numerical analysis and analog simulation. The working mechanism and thermo-electric features of the thermocouples are analyzed depending on the simulation results. Then the thin film thermocouples are fabricated and calibrated. The calibration results show that the thin film thermocouples based on the tungsten-rhenium material achieve ideal static characteristics and work well in the practical applications.

  15. Elastohydrodynamic film thickness formula based on X-ray measurements with a synthetic paraffinic oil

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.

    1973-01-01

    An empirical elastohydrodynamic film thickness formula for heavily loaded contacts based upon X-ray film thickness measurements made with a synthetic paraffinic oil is presented. The deduced relation was found to adequately reflect the high load dependence exhibited by the measured minimum film thickness data at high Hertizian contact stresses, that is, above 1.04 x 10 to the ninth N/sq m (150,000 psi). Comparisons were made with the numerical results from a theoretical isothermal film thickness formula. The effects of changes in contact geometry, material, and lubricant properties on the form of the empirical model are also discussed.

  16. Neutron radiography inspection of investment castings.

    PubMed

    Richards, W J; Barrett, J R; Springgate, M E; Shields, K C

    2004-10-01

    Investment casting, also known as the lost wax process, is a manufacturing method employed to produce near net shape metal articles. Traditionally, investment casting has been used to produce structural titanium castings for aero-engine applications with wall thickness less than 1 in (2.54 cm). Recently, airframe manufacturers have been exploring the use of titanium investment casting to replace components traditionally produced from forgings. Use of titanium investment castings for these applications reduces weight, cost, lead time, and part count. Recently, the investment casting process has been selected to produce fracture critical structural titanium airframe components. These airframe components have pushed the traditional inspection techniques to their physical limits due to cross sections on the order of 3 in (7.6 cm). To overcome these inspection limitations, a process incorporating neutron radiography (n-ray) has been developed. In this process, the facecoat of the investment casting mold material contains a cocalcined mixture of yttrium oxide and gadolinium oxide. The presence of the gadolinium oxide, allows for neutron radiographic imaging (and eventual removal and repair) of mold facecoat inclusions that remain within these thick cross sectional castings. Probability of detection (POD) studies have shown a 3 x improvement of detecting a 0.050 x 0.007 in2 (1.270 x 0.178 mm2) inclusion of this cocalcined material using n-ray techniques when compared to the POD using traditional X-ray techniques. Further, it has been shown that this n-ray compatible mold facecoat material produces titanium castings of equal metallurgical quality when compared to the traditional materials. Since investment castings can be very large and heavy, the neutron radiography facilities at the University of California, Davis McClellan Nuclear Radiation Center (UCD/MNRC) were used to develop the inspection techniques. The UCD/MNRC has very unique facilities that can handle large

  17. Comparison of Structural Relaxation Behavior in As-Cast and Pre-Annealed Zr-Based Bulk Metallic Glasses Just below Glass Transition

    DOE PAGES

    Haruyama, Osami; Yoshikawa, Kazuyoshi; Yamazaki, Yoshikatsu; ...

    2015-04-25

    In this paper, the α-relaxation of pre-annealed Zr55Cu30Ni5Al10 bulk metallic glasses (BMGs) was compared with that of as-cast Zr-based BMGs including Zr55Cu30Ni5Al10. The α-relaxation was investigated by volume relaxation. The relaxation behavior was well described by a stretched exponential relaxation function, Φ (t) ≈ exp [ - (t/τ α )β α ], with the isothermal relaxation time, τα, and the Kohlrausch exponent, βα. The βα exhibited the strong temperature dependence for the pre-annealed BMG, while the weak temperature dependence was visualized for the as-cast BMG similar to the dynamic relaxation. The τα’s were modified by Moynihan and Narayanaswamy-Tool-Moynihan methods thatmore » reduce the difference in the thermal history of sample. Finally, as a result, the relaxation kinetics in the glass resembled that of a liquid deduced from the behavior of viscosity in the supercooled liquid.« less

  18. A fast and efficient adaptive parallel ray tracing based model for thermally coupled surface radiation in casting and heat treatment processes

    NASA Astrophysics Data System (ADS)

    Fainberg, J.; Schaefer, W.

    2015-06-01

    A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples.

  19. Comparison of Structural Relaxation Behavior in As-Cast and Pre-Annealed Zr-Based Bulk Metallic Glasses Just below Glass Transition

    SciTech Connect

    Haruyama, Osami; Yoshikawa, Kazuyoshi; Yamazaki, Yoshikatsu; Yokoyama, Yoshihiko; Egami, Takeshi

    2015-04-25

    In this paper, the α-relaxation of pre-annealed Zr55Cu30Ni5Al10 bulk metallic glasses (BMGs) was compared with that of as-cast Zr-based BMGs including Zr55Cu30Ni5Al10. The α-relaxation was investigated by volume relaxation. The relaxation behavior was well described by a stretched exponential relaxation function, Φ (t) ≈ exp [ - (t/τ α )β α ], with the isothermal relaxation time, τα, and the Kohlrausch exponent, βα. The βα exhibited the strong temperature dependence for the pre-annealed BMG, while the weak temperature dependence was visualized for the as-cast BMG similar to the dynamic relaxation. The τα’s were modified by Moynihan and Narayanaswamy-Tool-Moynihan methods that reduce the difference in the thermal history of sample. Finally, as a result, the relaxation kinetics in the glass resembled that of a liquid deduced from the behavior of viscosity in the supercooled liquid.

  20. Vacuum-vapor-deposited films based on benzo(a)phenoxazine derivatives under surface plasma fluorination

    NASA Astrophysics Data System (ADS)

    Agabekov, Vladimir E.; Ignasheva, Olga E.; Belyatsky, Vladimir N.

    1997-07-01

    Modification of vacuum vapor deposited thin films based on benzo(a)phenoxazone-5 derivatives with C3F8 and SF6 plasma were investigated. X-ray photoelectron spectroscopy (XPS) method was used to identify and study the distribution of surface functional groups of untreated and fluorinated films investigated. It was shown that fluor content in element composition of surface film layers and perfluorocarbon group content in Cls-lines of XP-spectra depended on chemical structure of the initial compounds. The more quantity and size of side substitutes were contained in the compound chemical structure the less was the content of fluor and perfluorocarbon groups in film surface fluorinated layer. The probable way of plasma active particle interaction with film surface is discussed. Using Kaelbe's method the influence of treatment conditions and initial compound chemical structure on surface properties of fluorinated films was studied.

  1. Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate.

    PubMed

    de Moraes, Ana Carolina Mazarin; Andrade, Patricia Fernanda; de Faria, Andreia Fonseca; Simões, Mateus Batista; Salomão, Francisco Carlos Carneiro Soares; Barros, Eduardo Bedê; Gonçalves, Maria do Carmo; Alves, Oswaldo Luiz

    2015-06-05

    Graphene oxide (GO) has been considered a promising filler material for building polymeric nanocomposites because of its excellent dispersibility and high surface area. In this work, we present the fabrication and characterization of transparent and ultraviolet (UV) shielding composite films based on GO and cellulose acetate (CA). GO sheets were found to be well-dispersed throughout the CA matrix, providing smooth and homogeneous composite films. Moreover, the GO sheets were completely embedded within the CA matrix and no presence of this nanomaterial was found at the surface. Nevertheless, CAGO composite films offered an improved high energy light-shielding capacity when compared to pristine CA films. Particularly for UVC irradiation, the CAGO film containing 0.50wt% GO displayed a UV-shielding capacity of 57%, combined with 79% optical transparency under visible light. These CAGO composite films can be potentially applied as transparent UV-protective coatings for packing biomedical, pharmaceutical, and food products.

  2. One-dimensional semiconductor nanostructure based thin-film partial composite formed by transfer implantation for high-performance flexible and printable electronics at low temperature.

    PubMed

    Moon, Kyeong-Ju; Lee, Tae-Il; Choi, Ji-Hyuk; Jeon, Joohee; Kang, Youn Hee; Kar, Jyoti Prakash; Kang, Jung Han; Yun, Ilgu; Myoung, Jae-Min

    2011-01-25

    Having high bending stability and effective gate coupling, the one-dimensional semiconductor nanostructures (ODSNs)-based thin-film partial composite was demonstrated, and its feasibility was confirmed through fabricating the Si NW thin-film partial composite on the poly(4-vinylphenol) (PVP) layer, obtaining uniform and high-performance flexible field-effect transistors (FETs). With the thin-film partial composite optimized by controlling the key steps consisting of the two-dimensional random dispersion on the hydrophilic substrate of ODSNs and the pressure-induced transfer implantation of them into the uncured thin dielectric polymer layer, the multinanowire (NW) FET devices were simply fabricated. As the NW density increases, the on-current of NW FETs increases linearly, implying that uniform NW distribution can be obtained with random directions over the entire region of the substrate despite the simplicity of the drop-casting method. The implantation of NWs by mechanical transfer printing onto the PVP layer enhanced the gate coupling and bending stability. As a result, the enhancements of the field-effect mobility and subthreshold swing and the stable device operation up to a 2.5 mm radius bending situation were achieved without an additional top passivation.

  3. Structure and physicochemical properties of thin film photosemiconductor cells based on porphine derivatives

    NASA Astrophysics Data System (ADS)

    Kazak, A. V.; Usol'tseva, N. V.; Smirnova, A. I.; Bodnarchuk, V. V.; Sul'yanov, S. N.; Yablonskii, S. V.

    2016-05-01

    Photosemiconductor thin films based on two organic porphine derivatives have been investigated. These compounds have different pendent groups; the film morphology, along with the specific fabrication technique, is determined to a great extent by these groups. The films have been fabricated by vacuum sputtering and using the Langmuir-Schaefer method. According to the atomic force microscopy (AFM) data, the Langmuir-Schaefer films are more homogeneous than the sputtered ones. It is shown that the sputtered films based on substituted porphine have a looser stacking than the initial analog. A spectroscopy study revealed a bathochromic shift of the Soret band in the Langmuir-Schaefer films-sputtered films series. This shift is explained by the increase in the concentration and size of molecular aggregates in sputtered films. It is shown that a polycrystalline C60 fullerene film deposited onto an amorphous substituted porphine layer improves the photoelectric characteristics of the latter. Both the time stability of the photodiode structure and its ampere‒watt sensitivity increase (by a factor of 10 in the transition regime). The steady-state current does not change. The effect of polarity reversal of the photovoltaic signal is observed in a planar C60‒substituted metalloporphine heterostructure, which is similar to the pyroelectric effect. The polarity reversal can be explained by the contribution of the trap charge and discharge current at the interface between the amorphous photosemiconductor and crystalline photosemiconductor to the resulting photoelectric current.

  4. The Imagery of Rhetoric: Film and Academic Writing in the Discipline-based ESL Course.

    ERIC Educational Resources Information Center

    Kasper, Loretta F.

    2000-01-01

    Describes three reading/writing lessons on the topics of linguistics, environmental science, and anthropology used in a discipline-based college-level English as a second language course to illustrate how to use film to teach academic writing skills. Discusses how students analyze a film to help articulate the content of an essay or a book. (SR)

  5. Langmuir-Blodgett films of salophen-based metallosurfactants as surface pretreatment coatings for corrosion mitigation.

    PubMed

    Gonawala, Sunalee; Leopoldino, Verônica R; Kpogo, Kenneth; Verani, Cláudio N

    2016-09-25

    Salophen-based metallosurfactants are successfully used as pretreatment LB films for corrosion mitigation in acidic and saline media. Passivation of electron transfer is clearly demonstrated in gold electrodes, while 99.5% iron substrates treated with such films show up to an impressive 30% corrosion mitigation.

  6. Potential of Kaolin-based Particle Film Barriers for Formosan Subterranean Termite (Isoptera: Rhinotermitidae) Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of three particle film products on Formosan subterranean termites, Coptotermes formosanus Shiraki, were evaluated in feeding, tunneling, and contact assays. The particle films, hydrophobic M96-018 and hydrophilic Surround and Surround WP are based on the inert clay mineral kaolin. In 2-week ...

  7. Versatile fluoride substrates for Fe-based superconducting thin films

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Reich, E.; Hänisch, J.; Ichinose, A.; Tsukada, I.; Hühne, R.; Trommler, S.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Iida, K.

    2013-04-01

    We demonstrate the growth of Co-doped BaFe2As2 (Ba-122) thin films on CaF2 (001), SrF2 (001), and BaF2 (001) single crystal substrates using pulsed laser deposition. All films are grown epitaxially despite of a large misfit of -10.6% for BaF2 substrate. For all films, a reaction layer is formed at the interface confirmed by X-ray diffraction and for the films grown on CaF2 and BaF2 additionally by transmission electron microscopy. The superconducting transition temperature of the film on CaF2 is around 27 K, whereas the corresponding values of the films on SrF2 and BaF2 are around 22 K and 21 K, respectively. The Ba-122 on CaF2 shows almost identical crystalline quality and superconducting properties as films on Fe-buffered MgO.

  8. Systematics of Permanent Magnet Film Texturing and the Limits of Film Synthesized 1-12 and 2-17 Iron Based Rare Earth Transition Metal Permanent Systems

    DTIC Science & Technology

    1998-01-21

    onto a separate substrate was used to saturate the magnetization of the Bi- YIG waveguide. The TbCu7 SmCo based film magnet was 22 urn thick in this case...structure. Microwave circulators using ferrite disks and external bulk permanent magnets are an example of such devices. Magnetoresistive heads are...tested. In a preliminary device configuration consisting of a waveguide etched into a Bi- YIG film, a SmCo based permanent magnet film deposited

  9. Properties of blend film based on cuttlefish (Sepia pharaonis) skin gelatin and mungbean protein isolate.

    PubMed

    Hoque, Md Sazedul; Benjakul, Soottawat; Prodpran, Thummanoon; Songtipya, Ponusa

    2011-11-01

    Blend films based on cuttlefish (Sepia pharaonis) ventral skin gelatin (CG) and mungbean protein isolate (MPI) at different blend ratios (CG/MPI=10:0, 8:2, 6:4, 4:6, 2:8 and 0:10, w/w) prepared at pH 11 using 50% glycerol (based on total protein) as plasticizer were characterized. CG films incorporated with MPI at increasing amounts had the decreases in tensile strength (TS) (p<0.05). The increases in elongation at break (EAB) were observed when CG/MPI ratios of 6:4 or 4:6 were used (p<0.05). Decreased water vapor permeability (WVP) was obtained for films having the increasing proportion of MPI (p<0.05). CG/MPI blend films with higher MPI proportion had lower film solubility and L*-values (lightness) but higher b*-values (yellowness) and ΔE*-values (total color difference) (p<0.05). Electrophoretic study revealed that disulfide bond was present in MPI and CG/MPI blend films. However, hydrogen bonds between CG and MPI in the film matrix were dominant, as elucidated from FTIR spectroscopic analysis. Moreover, thermal stability of CG/MPI blend film was improved as compared to that of films from respective single proteins. Differential scanning calorimetry result suggested solid-state morphology of CG/MPI (6:4) blend film that consisted of amorphous phase of partially miscible CG/MPI mixture and the coexisting two different order phases of individual CG and MPI domains. Thus, the incorporation of MPI into gelatin film could improve the properties of resulting blend film, which were governed by CG/MPI ratio.

  10. Photoelectric properties of a detector based on dried bacteriorhodopsin film.

    PubMed

    Wang, Wei Wei; Knopf, George K; Bassi, Amarjeet S

    2006-01-15

    The photoelectric response of a detector using dried bacteriorhodopsin (bR) film as the light sensing material is mathematically modeled and experimentally verified in this paper. The photocycle and proton transfer kinetics of dried bR film differ dramatically from the more commonly studied aqueous bR material because of the dehydration process. The photoelectric response of the dried film is generated by charge displacement and recombination instead of transferring a proton from the cytoplasmic side to the extracellular side of the cell membrane. In this work, the wild-type bR samples are electrophoretically deposited onto an indium tin oxide (ITO) electrode to construct a simple multiple layered photo-detector with high sensitivity to small changes in incident illumination. The light absorption characteristics of the thin bR film are mathematically represented using the kinetics of the bR photocycle and the charge displacement theorem. An electrically equivalent RC circuit is used to describe the intrinsic photoelectric properties of the film and external measurement circuitry to analyze the detector's response characteristics. Simulated studies and experimental results show that the resistance of the dried bR film is in the order of 10(11) Omega. When the input impedance of the measurement circuitry is one order of magnitude smaller than the dried film, the detector exhibits a strong differential response to the original time-varying light signal. An analytical solution of the equivalent circuit also reveals that the resistance and capacitance values exhibited by the dried bR film, in the absence of incident light, are almost twice as large as the values obtained while the material is under direct illumination. Experimental observations and a predictive model both support the notion that dried bR film can be used in simple highly sensitive photo-detector designs.

  11. Corrosive wear of cast iron under reciprocating lubrication

    SciTech Connect

    Yahagi, Y.; Nagasawa, Y.; Hotta, S.; Mizutani, Y.

    1986-01-01

    In order to study the wear of cylinder bore fundamentally, a reciprocating friction tester was produced and utilized. The friction between a cast iron and a piston-ring and the wear of the cast iron were examined under the corrosive oil with sulphuric acid. The findings indicate that the friction and wear around TDC and BDC was confirmed to be greater than between these reversal points and the friction and wear around the reversal points increased with the sulphuric acid which has caused the deficiency of oil film and the corrosion of the cast iron.

  12. STARCH/PULP-FIBER BASED PACKAGING FOAMS AND CAST FILMS CONTAINING ALASKAN FISH BY-PRODUCTS (WASTE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Baked starch/pulp foams were prepared from formulations containing 0-25% (wt%) of processed Alaskan fish by-products that consisted mostly of salmon heads, pollock heads and pollock frames (bones and associated remains produced in the filleting operation). Fish by-products thermoformed well along wi...

  13. Design of camouflage material for visible and near infrared based on thin film technology

    NASA Astrophysics Data System (ADS)

    Miao, Lei; Shi, Jia-ming; Zhao, Da-peng; Liu, Hao; Wang, Chao; Xu, Yan-liang

    2015-11-01

    Visible light and near infrared based camouflage materials achieve good stealth under traditional optical detection equipment but its spectral differences with green plants can be taken advantage of by high spectrum based detection technologies. Based on the thin structure of bandpass filter, we designed an optical film with both green and near infrared spectrum. We conducted simulations using transfer matrix methods and optimized the result by simplex methods. The spectral reflectance curve of the proposed thin film matches that of green plants, and experiments show that the proposed thin film achieve good invisibility under visible light and near infrared in a wide viewing angle.

  14. High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes.

    PubMed

    Wang, Chao; Qian, Long; Xu, Wenya; Nie, Shuhong; Gu, Weibing; Zhang, Jianhui; Zhao, Jianwen; Lin, Jian; Chen, Zheng; Cui, Zheng

    2013-05-21

    In this work, a simple and rapid method to selectively sort semiconducting-SWCNTs (sc-SWCNTs) with large diameters using regioregular poly(3-dodecylthiophene) (rr-P3DDT) is presented. The absorption spectra and Raman spectra demonstrated that metallic species of arc discharge SWCNTs were effectively removed after interaction with rr-P3DDT in toluene with the aid of sonication and centrifugation. The sorted sc-SWCNT inks have been directly used to fabricate thin film transistors (TFTs) by dip-coating, drop-casting and inkjet printing. TFTs with an effective mobility of ∼34 cm(2) V(-1) s(-1) and on-off ratios of ∼10(7) have been achieved by dip coating and drop casting the ink on SiO2/Si substrates with pre-patterned interdigitated gold electrode arrays. The printed devices also showed excellent electrical properties with a mobility of up to 6.6 cm(2) V(-1) s(-1) and on-off ratios of up to 10(5). Printed inverters based on the TFTs have been constructed on glass substrates, showing a maximum voltage gain of 112 at a V(dd) of -5 V. This work paves the way for making printable logic circuits for real applications.

  15. INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' PIPE OPERATOR SPRAYING A POWDER TO HELP SOLIDIFY THE PIPE BEING CENTRIFUGALLY CAST. - United States Pipe & Foundry Company Plant, Pipe Casting & Testing Area, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  16. Optical isolator based on mode conversion in magnetic garnet films.

    PubMed

    Hemme, H; Dötsch, H; Menzler, H P

    1987-09-15

    Calculations are presented describing a novel optical isolator which works by complete TE(0)-TM(0) mode conversion in magnetic garnet films caused by stress-induced optical anisotropy (50%) and by Faraday rotation (50%). These conversions take place along two different, perpendicular light paths in the same crystal that are connected by an integrated mirror. Possible tolerances of the film parameters are given so that a 30-dB isolation is still guaranteed.

  17. Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts.

    PubMed

    Talón, Emma; Trifkovic, Kata T; Nedovic, Viktor A; Bugarski, Branko M; Vargas, María; Chiralt, Amparo; González-Martínez, Chelo

    2017-02-10

    The aim of this study was to analyse the antioxidant activity of different polymeric matrices based on chitosan and starch, incorporating a thyme extract (TE) rich in polyphenols. TE provided the films with remarkable antioxidant activity. When mixed with chitosan, the polyphenols interacted with the polymer chains, acting as crosslinkers and enhancing the tensile behaviour of films. The opposite effect was observed when incorporated into the starch matrix. All the films became darker, more reddish and less transparent when TE was incorporated. These colour changes were more marked in starch matrices, which suggests that TE compounds were poorly encapsulated. The use of chitosan-based matrices carrying TE polyphenols is recommended as a means of obtaining antioxidant films, on the basis of their tensile response and greater antioxidant activity, which could be associated with the development of polyphenol-chitosan interactions, contributing to a better protection of the functionality of polyphenols during film formation and conditioning.

  18. FILMING OF 'CONTACT' AT LC39 PRESS SITE

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Warner Bros.' cast and crew are filming scenes for the movie 'Contact' at Kennedy Space Center's Launch Complex 39 Press Site on January 30. The screenplay for 'Contact' is based on the best- selling novel by the late astronomer Carl Sagan. The cast includes Jodie Foster, Matthew McConaughey, John Hurt, James Woods, Tom Skerritt, David Morse, William Fichtner, Rob Lowe and Angela Bassett. Described by Warner Bros. as a science fiction drama, 'Contact' will depict humankind's first encounter with evidence of extraterrestrial life.

  19. FILMING OF 'CONTACT' AT LC39 PRESS SITE

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Warner Bros.' cast and crew are filming scenes for the movie 'Contact' at Kennedy Space Center's Launch Complex 39 Press Site on January 29. The screenplay for 'Contact' is based on the best- selling novel by the late astronomer Carl Sagan. The cast includes Jodie Foster, Matthew McConaughey, John Hurt, James Woods, Tom Skerritt, David Morse, William Fichtner, Rob Lowe and Angela Bassett. Described by Warner Bros. as a science fiction drama, 'Contact' will depict humankind's first encounter with evidence of extraterrestrial life.

  20. Three-dimensional measurement of multilayer thin films based on scanning white light interferometer

    NASA Astrophysics Data System (ADS)

    Shi, Zhendong; Zhang, Lin; Ren, Huan; Yuan, Quan; Yang, Yi; Ma, Hua

    2016-09-01

    For multilayer films system, in order to obtain the thickness and surface profile in each layer of thin film, a method to measure the 3D morphology of a multilayer films system based on scanning white light interferometer has been proposed in this article. At first, the mathematical relationship between reflection phase and thickness of each film layer has been obtained by using the electromagnetic field boundary conditions. Then, a nonlinear least square algorithm has been used to fit the reflection phase which had been found through a scanning white light interferometer, in this way the linear and nonlinear terms of the reflection phase have been separated, which made it possible to measure top-layer surface profile and thickness of each thin film layer respectively and avoided the interference with each other, because the linear term is related to the top layer's surface profile but the nonlinear term is correlated to the thickness of each film layer in multilayer thin films system. Thus, the three-dimensional morphology of multilayer thin films system could be reconstructed. Experimental results showed this method was effective in the three-dimensional morphology measurement for multilayer thin films. And the measurement could be completed just using the existing commercial scanning white light interferometer, as a consequence the measurement cost is low, and the operation will be quite simple.

  1. Determining the elastic modulus of thin films using a buckling-based method: computational study

    NASA Astrophysics Data System (ADS)

    Zheng, Xiu-Peng; Cao, Yan-Ping; Li, Bo; Feng, Xi-Qiao; Jiang, Hanqing; Y Huang, Yonggang

    2009-09-01

    The buckling mode of a thin film lying on a soft substrate has been used to determine the elastic modulus of thin films and one-dimensional objects (e.g. nanowires and nanotubes). In this paper, dimensional analysis and three-dimensional nonlinear finite element computations have been made to investigate the buckling of a film with finite width bonded to a compliant substrate. Our study demonstrates that the effect of Poisson's ratio of the film can be neglected when its width-thickness ratio is smaller than 20. For wider films, omitting the influence of Poisson's ratio may lead to a significant systematic error in the measurement of the Young's modulus and, therefore, the film should be treated as a plate. It is also found that the assumption of the uniform interfacial normal stress along the width of the film made in the theoretical analysis does not cause an evident error, even when its width is comparable to its thickness. Based on the computational results, we further present a simple expression to correlate the buckling wavelength with the width and thickness of the film and the material properties (Young's moduli and Poisson's ratios) of the film and substrate, which has a similar form to that in the classical plane-strain problem. The fundamental solutions reported here are not only very accurate in a broad range of geometric and material parameters but also convenient for practical use since they do not involve any complex calculation.

  2. Oxide-based method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.

    2000-01-01

    A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  3. The Surface Structure and Thermal Properties of Novel Polymer Composite Films Based on Partially Phosphorylated Poly(vinyl alcohol) with Aluminum Phosphate

    PubMed Central

    Mohamed Saat, Asmalina

    2014-01-01

    Partially phosphorylated polyvinyl alcohol (PPVA) with aluminum phosphate (ALPO4) composites was synthesized by solution casting technique to produce (PPVA)100−y − (ALPO4)y (y = 0, 1, and 2). The surface structure and thermal properties of the films were characterized using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The results showed that the films have higher thermal stability with strong bonding between PPVA and ALPO4. PMID:25506069

  4. Symptomatic stent cast.

    PubMed

    Keohane, John; Moore, Michael; O'Mahony, Seamus; Crosbie, Orla

    2008-02-01

    Biliary stent occlusion is a major complication of endoscopic stent insertion and results in repeat procedures. Various theories as to the etiology have been proposed, the most frequently studied is the attachment of gram negative bacteria within the stent. Several studies have shown prolongation of stent patency with antibiotic prophylaxis. We report the case of stent occlusion from a cast of a previously inserted straight biliary stent; a "stent cast" in an 86-year-old woman with obstructive jaundice. This was retrieved with the lithotrypter and she made an uneventful recovery. This is the first reported case of a biliary stent cast.

  5. CASTING METHOD AND APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  6. Preparation and characterization of bionanocomposite film based on tapioca starch/bovine gelatin/nanorod zinc oxide.

    PubMed

    Marvizadeh, Mohammad Mehdi; Oladzadabbasabadi, Nazila; Mohammadi Nafchi, Abdorreza; Jokar, Maryam

    2017-02-20

    To exploring a nano-packaging materials for using as coating or edible films, tapioca starch/gelatin/nanorod ZnO (ZnON) bionanocomposites were prepared via solution casting technique. The effects of nanofiller addition on the mechanical, physicochemical, and crystalline structures, as well as the barrier properties of bionanocomposite films were investigated. X-ray diffraction analysis showed that the bionanocomposite film incorporated with ZnON at a concentration of 3.5% w/w exhibited high intensity peaks compared with control samples. Results of UV-vis spectra analysis showed that incorporation of ZnON into the films can absorb the whole UV light. Tensile strength of the films was increased from 14 to 18MPa whereas elongation at breaks decreased from 18 to 8 percent and oxygen permeability decreased from 151.03 to 91.52cm(3)μm/(m(2)-day) by incorporation of 3.5% ZnON into biopolymer matrix. In summary combined starch/gelatin films supported by ZnON showed better properties compared to starch or gelatin alone. Thus, the bionanocomposite films can be used in food, medicine, and pharmaceutical packaging.

  7. Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Shiraishi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H.

    2015-05-01

    We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2.4H2O, and CoCl2.6H2O. The composition of the plated films depended on the amount of FeCl2.4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency.

  8. Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films.

    PubMed

    Mohajer, Setareh; Rezaei, Masoud; Hosseini, Seyed Fakhreddin

    2017-02-10

    This study was conducted with the aim of improving the physico-chemical properties of fish gelatin (FG) based films. For this purpose, FG was blended with agar (AG) in different compositions to acquire biodegradable films (100:0, 80:20, 60:40, 50:50 & 0:100, FG:AG). The obtained results showed that the AG addition strongly increased the film rigidity and resistance to fracture, while reducing the film stretchability, mainly at 50FG: 50AG ratio. AG incorporation greatly reduced the water vapor permeability (WVP) and solubility of gelatin films, as this decline for the blend film with a 50:50 ratio of biopolymers has been about 41% and 66%, respectively (p<0.05). Additional advantages of AG inclusion to FG films are the reduction of the UV-transmittance. Both polymers showed good compatibility, as demonstrated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. Therefore, the blend composition influenced the properties of FG/AG bio-based films.

  9. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  10. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOEpatents

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  11. Mathematical Modeling of Surface Roughness of Castings Produced Using ZCast Direct Metal Casting

    NASA Astrophysics Data System (ADS)

    Chhabra, M.; Singh, R.

    2015-04-01

    Aim of this investigation is to develop a mathematical model for predicting surface roughness of castings produced using ZCast process by employing Buckingham's π-theorem. A relationship has been proposed between surface roughness of castings and shell wall thickness of the shell moulds fabricated using 3D printer. Based on model, experiments were performed to obtain the surface roughness of aluminium, brass and copper castings produced using ZCast process based on 3D printing technique. Based on experimental data, three best fitted third-degree polynomial equations have been established for predicting the surface roughness of castings. The predicted surface roughness values were then calculated using established best fitted equations. An error analysis was performed to compare the experimental and predicted data. The average prediction errors obtained for aluminium, brass and copper castings are 10.6, 2.43 and 3.12 % respectively. The obtained average surface roughness (experimental and predicted) values of castings produced are acceptable with the sand cast surface roughness values range (6.25-25 µm).

  12. Effect of adhesive primers on bonding strength of heat cure denture base resin to cast titanium and cobalt-chromium alloy

    PubMed Central

    Kim, Su-Sung; Yang, Hong-So; Park, Sang-Won; Lim, Hyun-Pil

    2009-01-01

    STATEMENT OF PROBLEM The poor chemical bonding of a denture base resin to cast titanium framework often introduces adhesive failure and increases microleakage. PURPOSE This study evaluated the shear bond strengths of a heat cure denture base resin to commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy using two adhesive primers. MATERIAL AND METHODS Disks of commercially pure titanium, Ti-6Al-4V alloy and a cobalt-chromium alloy were cast. Specimens without the primer were also prepared and used as the controls. The shear bond strengths were measured on a screw-driven universal testing machine. RESULTS The primers significantly (P < .05) improved the shear bond strengths of the heat cure resin to all metals. However, the specimens primed with the Alloy primer® (MDP monomer) showed higher bond strength than those primed with the MR bond® (MAC-10 monomer) on titanium. Only adhesive failure was observed at the metal-resin interface in the non-primed specimens, while the primed specimens showed mixed failure of adhesive and cohesive failure. CONCLUSIONS The use of appropriate adhesive metal primers makes it possible not only to eliminate the need for surface preparation of the metal framework before applying the heat cure resins, but also reduce the need for retentive devices on the metal substructure. In particular, the Alloy primer®, which contains the phosphoric acid monomer, MDP, might be clinically more acceptable for bonding a heat cure resin to titanium than a MR bond®, which contains the carboxylic acid monomer, MAC-10. PMID:21165254

  13. Thermal conductivity and mechanical properties of AlN-based thin films

    NASA Astrophysics Data System (ADS)

    Moraes, V.; Riedl, H.; Rachbauer, R.; Kolozsvári, S.; Ikeda, M.; Prochaska, L.; Paschen, S.; Mayrhofer, P. H.

    2016-06-01

    While many research activities concentrate on mechanical properties and thermal stabilities of protective thin films, only little is known about their thermal properties being essential for the thermal management in various industrial applications. Based on the 3ω-method, we show the influence of Al and Cr on the temperature dependent thermal conductivity of single-phase cubic structured TiN and single-phase wurtzite structured AlN thin films, respectively, and compare them with the results obtained for CrN thin films. The dc sputtered AlN thin films revealed a highly c-axis oriented growth for deposition temperatures of 250 to 700 °C. Their thermal conductivity was found to increase strongly with the film thickness, indicating progressing crystallization of the interface near amorphous regions during the sputtering process. For the 940 nm AlN film, we found a lower boundary for the thermal conductivity of 55.3 W m-1 K-1 . By the substitution of only 10 at. % Al with Cr, κ significantly reduces to ˜5.0 W m-1 K-1 , although the single-phase wurtzite structure is maintained. The single-phase face centered cubic TiN and Ti0.36Al0.64N thin films exhibit κ values of 3.1 W m-1 K-1 and 2.5 W m-1 K-1 , respectively, at room temperature. Hence, also here, the substitutional alloying reduces the thermal conductivity, although at a significantly lower level. Single-phase face centered cubic CrN thin films show κ values of 3.6 W m-1 K-1 . For all nitride based thin films investigated, the thermal conductivity slightly increases with increasing temperature between 200 and 330 K. This rather unusual behavior is based on the high defect density (especially point defects) within the thin films prepared by physical vapor deposition.

  14. Thin-film-based sensitivity enhancement for total internal reflection fluorescence live-cell imaging.

    PubMed

    Kim, Kyujung; Cho, Eun-Jin; Huh, Yong-Min; Kim, Donghyun

    2007-11-01

    We investigated experimentally the evanescent field enhancement based on dielectric thin films in total internal reflection microscopy. The sample employed two layers of Al2O3 and SiO2 deposited on an SF10 glass substrate. Field intensity enhancement measured by fluorescent excitation of microbeads relative to that of a control sample without dielectric films was polarization dependent, determined as 4.2 and 2.4 for TE and TM polarizations, respectively, and was in good agreement with numerical results. The thin-film-based field enhancement was also applied to live-cell imaging of quantum dots, which confirmed the sensitivity enhancement qualitatively.

  15. Infrared Response and Optoelectronic Memory Device Fabrication Based on Epitaxial VO2 Film.

    PubMed

    Fan, Lele; Chen, Yuliang; Liu, Qianghu; Chen, Shi; Zhu, Lei; Meng, Qiangqiang; Wang, Baolin; Zhang, Qinfang; Ren, Hui; Zou, Chongwen

    2016-12-07

    In this work, high-quality VO2 epitaxial films were prepared on high-conductivity n-GaN (0001) crystal substrates via an oxide molecular beam epitaxy method. By fabricating a two-terminal VO2/GaN film device, we observed that the infrared transmittance and resistance of VO2 films could be dynamically controlled by an external bias voltage. Based on the hysteretic switching effect of VO2 in infrared range, an optoelectronic memory device was achieved. This memory device was operated under the "electrical writing-optical reading" mode, which shows promising applications in VO2-based optoelectronic device in the future.

  16. Predicting Pattern Tooling and Casting Dimensions for Investment Casting - Phase II

    SciTech Connect

    Sabau, Adrian S

    2005-09-01

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The wax patterns are used to create a ceramic shell by the application of a series of ceramic coatings, and the alloy is cast into the dewaxed shell mold (Fig. 1.1). However, the complexity of shape and the close dimensional tolerances required in the final casting make it difficult to determine tooling dimensions. The final linear dimension of the casting depends on the cumulative effects of the linear expansions or contractions in each step of the investment casting process (Fig. 1.2). In most cases, the mold geometry or cores restrict the shrinkage of the pattern or the cast part, and the final casting dimensions may be affected by time-dependent processes such as viscoelastic deformation of the wax, and viscoplastic creep and plastic deformations of the shell and alloy. The pattern die is often reworked several times to produce castings whose dimensions are within acceptable tolerances. To date, investment casting technology has been based on hands-on training and experience. Technical literature is limited to experimental, phenomenological studies aimed at obtaining empirical correlations for quick and easy application in industry. The goal of this project was to predict casting dimensions for investment castings in order to meet blueprint nominal during the first casting run. Several interactions have to be considered in a coupled manner to determine the shrinkage factors: these are the die-wax, wax-shell, and shell-alloy interactions (as illustrated in Fig. 1.3). In this work, the deformations of the die-wax and shell-alloy systems were considered in a coupled manner, while the coupled deformation of the wax-shell system was not considered. Future work is needed in order to

  17. Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films.

    PubMed

    Higueras, Laura; López-Carballo, Gracia; Hernández-Muñoz, Pilar; Catalá, Ramón; Gavara, Rafael

    2014-10-01

    Chitosan/cyclodextrin films (CS:CD) incorporating carvacrol were obtained by casting, and conditioned at 23°C and 75% relative humidity prior to being immersed in liquid carvacrol until they reached sorption equilibrium. In a previous work, the in vitro antimicrobial activity of these films was studied. In this work, active films were used to inhibit microbial growth in packaged chicken breast fillets. Samples of CS:CD films loaded with carvacrol, of different sizes and thus with different quantities of antimicrobial agent, were stuck to the aluminium lid used to seal PP/EVOH/PP cups containing 25g of chicken fillets. These samples were stored for 9days at 4°C. The packages were hermetically sealed and it was confirmed that they provided an infinite barrier to carvacrol. The partition of the antimicrobial agent within the food/packaging system was analysed. The antimicrobial devices rapidly released a large percentage of the agent load, amounts that were gained by the adhesive coating of the lid and especially by the chicken fillets. The latter were the main sorbent phase, with average concentrations ranging between 200 and 5000mg/Kg during the period of storage. The microbiota of the packaged fresh chicken fillets - mesophiles, psychrophiles, Pseudomonas spp., enterobacteria, lactic acid bacteria and yeasts and fungi - were analysed and monitored during storage. A general microbial inhibition was observed, increasing with the size of the active device. Inhibition with a 24cm(2) device ranged from 0.3 log reductions against lactic acid bacteria to 1.8logs against yeasts and fungi. However, the large amount of antimicrobial that was sorbed or that reacted with the fillet caused an unacceptable sensory deterioration. These high sorption values are probably due to a great chemical compatibility between chicken proteins and carvacrol.

  18. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    1985-12-01

    The first surfce acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposted on the acoustic progagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectric coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in N2 has been demonstrated.

  19. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    The first surface acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposited on the acoustic propagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectic coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in Ne was demonstrated.

  20. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  1. Experimental Evaluation of Biodegradable Film Compositions Based on Gelatin with Colchicine.

    PubMed

    Bokeriya, L A; Bokeriya, O L; Sivtsev, V S; Novikova, S P; Salokhedinova, R R; Nikolashina, L N; Samsonova, N N; Gorodkov, A Yu; Serov, R A

    2016-07-01

    Biodegradable film compositions based on natural biopolymer gelatin with immobilized colchicine were prepared and their efficiency in prevention of the adhesion process in the pericardium was evaluated on rabbit model of postoperative pericarditis. The use of gelatin-based biodegradable film compositions significantly reduced the intensity of adhesion formation in the pericardial cavity, while immobilization of anti-inflammatory drug colchicine amplified their anti-adhesion activity.

  2. Method of casting aerogels

    DOEpatents

    Poco, J.F.

    1993-09-07

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm[sup 3] to 0.6 g/cm[sup 3]. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of aerogel which occurs during the drying step of supercritical extraction of solvent. 2 figures.

  3. Method of casting aerogels

    DOEpatents

    Poco, John F.

    1993-01-01

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.

  4. Erosive Wear Behavior of Nickel-Based High Alloy White Cast Iron Under Mining Conditions Using Orthogonal Array

    NASA Astrophysics Data System (ADS)

    Yoganandh, J.; Natarajan, S.; Babu, S. P. Kumaresh

    2013-09-01

    Nihard Grade-4, a nickel-bearing cast iron widely used in slurry pumps and hydrodynamic components, is evaluated for its erosive wear response under mining conditions using a statistical approach. Experiments were conducted by varying the factors namely velocity, slurry concentration, angle of impingement, and pH in three levels, using L9 orthogonal array. Analysis of variance was used to rank the factors influencing erosive wear. The results indicate that velocity is the most influencing factor followed by the angle of impingement, slurry concentration, and pH. Interaction effects of velocity, slurry concentration, angle of impingement, and pH on erosion rate have been discussed. Wear morphology was also studied using SEM characterization technique. At lower angle (30°) of impingement, the erosion of material is by micro fracture and shallow ploughing with the plastic deformation of the ductile austenitic matrix. At the normal angle (90°) of impingement, the material loss from the surface is found because of deep indentation, forming protruded lips which are removed by means of repeated impact of the erodent.

  5. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  6. Thin film thickness measurement of whole field based on spatial carrier frequency interferometry

    NASA Astrophysics Data System (ADS)

    Su, Junhong; Yang, Lihong; Ge, Jinman

    2009-12-01

    The kernel of modern interferometry is to the obtain necessary surface shape and parameter by processing interferogram with a reasonable algorithm. On the basis of the study the basic principle of interferometry by using 2-D FFT arithmetic, a new method to measure the thin film thickness is proposed based on the FFT algorithm. A test sample is placed into the light path in Twyman-Green interferometer, the interference fringes were generated by the reference beam with the tested beam reflected respectively from the film surface and the substrate surface. The interferogram is collected by the image acquisition system. The algorithm processing software is prepared to realize identification of the films edge, regional extension, filtering, unwrapping the wrapped phase etc, the film thickness distribution in whole field can be obtained to realize the thickness measurement of thin film samples automatically. The results indicate that the new method has the advantages of high precision, whole test and non-contact measurement.

  7. Thin film thickness measurement of whole field based on spatial carrier frequency interferometry

    NASA Astrophysics Data System (ADS)

    Su, Junhong; Yang, Lihong; Ge, Jinman

    2010-03-01

    The kernel of modern interferometry is to the obtain necessary surface shape and parameter by processing interferogram with a reasonable algorithm. On the basis of the study the basic principle of interferometry by using 2-D FFT arithmetic, a new method to measure the thin film thickness is proposed based on the FFT algorithm. A test sample is placed into the light path in Twyman-Green interferometer, the interference fringes were generated by the reference beam with the tested beam reflected respectively from the film surface and the substrate surface. The interferogram is collected by the image acquisition system. The algorithm processing software is prepared to realize identification of the films edge, regional extension, filtering, unwrapping the wrapped phase etc, the film thickness distribution in whole field can be obtained to realize the thickness measurement of thin film samples automatically. The results indicate that the new method has the advantages of high precision, whole test and non-contact measurement.

  8. Protein patterning on silicon-based surface using background hydrophobic thin film.

    PubMed

    Lee, Chang-Soo; Lee, Sang-Ho; Park, Sung-Soo; Kim, Yong-Kweon; Kim, Byung-Gee

    2003-04-01

    A new and convenient protein patterning method on silicon-based surface was developed for protein array by spin coating of hydrophobic thin film (CYTOP). Photolithographic lift-off process was used to display two-dimensional patterns of spatially hydrophilic region. The background hydrophobic thin film was used to suppress nonspecific protein binding, and the hydrophilic target protein binding region was chemically modified to introduce aldehyde group after removal of the photoresist layer. The difference in surface energy between the hydrophilic pattern and background hydrophobic film would induce easier covalent binding of proteins onto defined hydrophilic areas having physical and chemical constraints. Below 1 microg/ml of total protein concentration, the CYTOP hydrophobic film effectively suppressed nonspecific binding of the protein. During the process of protein patterning, inherent property of the hydrophobic thin film was not changed judging from static and dynamic contact angle survey. Quantitative analysis of the protein binding was demonstrated by streptavidin-biotin system.

  9. High-energy-density sol-gel thin film based on neat 2-cyanoethyltrimethoxysilane.

    PubMed

    Kim, Yunsang; Kathaperumal, Mohanalingam; Smith, O'Neil L; Pan, Ming-Jen; Cai, Ye; Sandhage, Kenneth H; Perry, Joseph W

    2013-03-13

    Hybrid organic-inorganic sol-gel dielectric thin films from a neat 2-cyanoethyltrimethoxysilane (CNETMS) precursor have been fabricated and their permittivity, dielectric strength, and energy density characterized. CNETMS sol-gel films possess compact, polar cyanoethyl groups and exhibit a relative permittivity of 20 at 1 kHz and breakdown strengths ranging from 650 V/μm to 250 V/μm for film thicknesses of 1.3 to 3.5 μm. Capacitors based on CNETMS films exhibit extractable energy densities of 7 J/cm(3) at 300 V/μm, as determined by charge-discharge and polarization-electric field measurements, as well as an energy extraction efficiency of ~91%. The large extractable energy resulting from the linear dielectric polarization behavior suggests that CNETMS films are promising sol-gel materials for pulsed power applications.

  10. Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films.

    PubMed

    Saurabh, Chaturbhuj K; Gupta, Sumit; Bahadur, Jitendra; Mazumder, S; Variyar, Prasad S; Sharma, Arun

    2013-11-06

    Mechanical and water vapor barrier properties of biodegradable films prepared from radiation processed guar gum were investigated. Films prepared from GG irradiated up to 500 Gy demonstrated significantly higher tensile strength as compared to non-irradiated control films. This improvement in tensile strength observed was demonstrated to be due to the ordering of polymer structures as confirmed by small angle X-ray scattering analysis. Exposure to doses higher than 500 Gy, however, resulted in a dose dependent decrease in tensile strength. A dose dependent decrease in puncture strength with no significant differences in the percent elongation was also observed at all the doses studied. Water vapor barrier properties of films improved up to 15% due to radiation processing. Radiation processing at lower doses for improving mechanical and barrier properties of guar based packaging films is demonstrated here for the first time.

  11. A glucose biosensor based on Prussian blue/chitosan hybrid film.

    PubMed

    Wang, Xueying; Gu, Haifang; Yin, Fan; Tu, Yifeng

    2009-01-01

    Based on electrodeposition of Prussian blue (PB) and chitosan (CS) directly on gold electrode, a hybrid film of PB/CS has been prepared. PB in this film shows a good stability compared with pure PB film when it worked in neutral and weak alkalescent solution and can act as redox mediator. It provides the potential application of such film in biosensor fabrication. A glucose biosensor was fabricated by electrodepositing glucose oxidase (GOD)/CS film on this PB/CS modified electrode. The optimum experimental conditions of biosensor for the detection of glucose have been studied in detail. Under the optimal conditions, a linear dependence of the catalytic current upon glucose concentration was obtained in the range of 2x10(-6) to 4x10(-4)M with a detection limit of 3.97x10(-7)M. The resulting biosensor could be applied to detect the blood sugar in real samples without any pretreatment.

  12. Atomic Oxygen Sensors Based on Nanograin ZnO Films Prepared by Pulse Laser Deposition

    SciTech Connect

    Wang Yunfei; Chen Xuekang; Li Zhonghua; Zheng Kuohai; Wang Lanxi; Feng Zhanzu; Yang Shengsheng

    2009-01-05

    High-quality nanograin ZnO thin films were deposited on c-plane sapphire (Al{sub 2}O{sub 3}) substrates by pulse laser deposition (PLD). Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to characterize the samples. The structural and morphological properties of ZnO films under different deposition temperature have been investigated before and after atomic oxygen (AO) treatment. XRD has shown that the intensity of the (0 0 2) peak increases and its FWHM value decreases after AO treatment. The AO sensing characteristics of nano ZnO film also has been investigated in a ground-based atomic oxygen simulation facility. The results show that the electrical conductivity of nanograin ZnO films decreases with increasing AO fluence and that the conductivity of the films can be recovered by heating.

  13. Modeling the mechanics of graphene-based polymer composite film measured by the bulge test

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Jun; Sun, You-yi; Li, Dian-sen; Cao, Yang; Wang, Zuo; Ma, Jing; Zhao, Gui-Zhe

    2015-10-01

    Graphene-based polymer composite films have wide-ranging potential applications, such as in sensors, electromagnetic shielding, absorbing materials, corrosion resistance and so on. In addition, the practical applications of graphene-based polymer composite films are closely related to their mechanical properties. However, the mechanical properties of graphene-based polymer composite films are difficult to characterize with tensile tests. In this paper, the bugle test was used to investigate the mechanical properties of graphene-based polymer composite films. The experimental results show that the Young’s modulus of polymer composite films increases non-linearly with an increase in the doping content of graphene, and viscoelastic deformation is induced under cyclic loading conditions. Moreover, in order to describe their mechanical behavior, an ‘Arruda-Boyce’ finite-strain constitutive model (modified BPA model), based on the strain amplification hypothesis, and a traditional ‘Arruda-Boyce’ model was proposed, which incorporated many of the features of previous theories. The numerical treatment of the modified BPA model associated with finite element analysis is also discussed. This new model is shown to be able to predict the experimentally observed mechanical behavior of graphene based polymer composite films measured by the bugle test effectively.

  14. Biosensor for dopamine based on stabilized lipid films with incorporated resorcin[4]arene receptor.

    PubMed

    Nikolelis, Dimitrios P; Theoharis, George

    2003-04-01

    This work reports a technique for the stabilization after storage in air of a lipid film with incorporated resorcin[4]arene receptor based biosensor for dopamine. Microporous filters composed of glass fibers (nominal pore sizes, 0.7 and 1.0 microm) were used as supports for the formation and stabilization of these devices and the lipid film is formed on the filter by polymerization prior its use. Methacrylic acid was the functional monomer, ethylene glycol dimethacrylate was the crosslinker and 2,2'-azobis-(2-methylpropionitrile) was the initiator. The stability of the lipid films by incorporation of a receptor for the preparation of stabilized lipid film biosensor is studied throughout this work. The response towards dopamine of the present stabilized for repetitive uses lipid membrane biosensor composed of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidic acid was compared with planar freely suspended bilayer lipid membranes (BLMs). The stabilized lipid membranes provided similar artificial ion gating events as BLMs in the form of transient signals and can function for repetitive uses after storage in air. However, the response of the stabilized lipid films was slower than that of the freely suspended BLMs. This will allow the practical use of the techniques for chemical sensing based on lipid films and commercialization of these devices, because it is now possible to prepare stabilized lipid film based biosensors and store them in the air.

  15. Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film

    SciTech Connect

    Natanasabapathi, Gopishankar; Bisht, Raj Kishor

    2013-12-15

    Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film.

  16. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method

    SciTech Connect

    Mendez, I.; Hartman, V.; Hudej, R.; Strojnik, A.; Casar, B.

    2013-01-15

    Purpose:A dosimetric system formed by Gafchromic EBT2 radiochromic film and Epson Expression 10000XL flatbed scanner was commissioned for dosimetry. In this paper, several open questions concerning the commissioning of radiochromic films for dosimetry were addressed: (a) is it possible to employ this dosimetric system in reflection mode; (b) if so, can the methods used in transmission mode also be used in reflection mode; (c) is it possible to obtain accurate absolute dose measurements with Gafchromic EBT2 films; (d) which calibration method should be followed; (e) which calibration models should be used; and (f) does three-color channel dosimetry offer a significant improvement over single channel dosimetry. The purpose of this paper is to help clarify these questions. Methods: In this study, films were scanned in reflection mode, the effect of surrounding film was evaluated and the feasibility of EBT2 film dosimetry in reflection mode was studied. EBT2's response homogeneity has been reported to lead to excessive dose uncertainties. To overcome this problem, a new plan-based calibration method was implemented. Plan-based calibration can use every pixel and each of the three color channels of the scanned film to obtain the parameters of the calibration model. A model selection analysis was conducted to select lateral correction and sensitometric curve models. The commonly used calibration with fragments was compared with red-channel plan-based calibration and with three-channel plan-based calibration. Results: No effect of surrounding film was found in this study. The film response inhomogeneity in EBT2 films was found to be important not only due to differences in the fog but also due to differences in sensitivity. The best results for lateral corrections were obtained using absolute corrections independent of the dose. With respect to the sensitometric curves, an empirical polynomial fit of order 4 was found to obtain results equivalent to a gamma

  17. First-principles studies of hydrogen interaction with ultrathin Mg and Mg-based alloy films

    NASA Astrophysics Data System (ADS)

    Yoon, Mina; Weitering, Hanno H.; Zhang, Zhenyu

    2011-01-01

    The search for technologically and economically viable storage solutions for hydrogen fuel would benefit greatly from research strategies that involve systematic property tuning of potential storage materials via atomic-level modification. Here, we use first-principles density-functional theory to investigate theoretically the structural and electronic properties of ultrathin Mg films and Mg-based alloy films and their interaction with atomic hydrogen. Additional delocalized charges are distributed over the Mg films upon alloying them with 11.1% of Al or Na atoms. These extra charges contribute to enhance the hydrogen binding strength to the films. We calculated the chemical potential of hydrogen in Mg films for different dopant species and film thickness, and we included the vibrational degrees of freedom. By comparing the chemical potential with that of free hydrogen gas at finite temperature (T) and pressure (P), we construct a hydrogenation phase diagram and identify the conditions for hydrogen absorption or desorption. The formation enthalpies of metal hydrides are greatly increased in thin films, and in stark contrast to its bulk phase, the hydride state can only be stabilized at high P and T (where the chemical potential of free H2 is very high). Metal doping increases the thermodynamic stabilities of the hydride films and thus significantly helps to reduce the required pressure condition for hydrogen absorption from H2 gas. In particular, with Na alloying, hydrogen can be absorbed and/or desorbed at experimentally accessible T and P conditions.

  18. Flexible fluidic microchips based on thermoformed and locally modified thin polymer films.

    PubMed

    Truckenmüller, R; Giselbrecht, S; van Blitterswijk, C; Dambrowsky, N; Gottwald, E; Mappes, T; Rolletschek, A; Saile, V; Trautmann, C; Weibezahn, K-F; Welle, A

    2008-09-01

    This paper presents a fundamentally new approach for the manufacturing and the possible applications of lab on a chip devices, mainly in the form of disposable fluidic microchips for life sciences applications. The new technology approach is based on a novel microscale thermoforming of thin polymer films as core process. The flexibility not only of the semi-finished but partly also of the finished products in the form of film chips could enable future reel to reel processes in production but also in application. The central so-called 'microthermoforming' process can be surrounded by pairs of associated pre- and postprocesses for micro- and nanopatterned surface and bulk modification or functionalisation of the formed films. This new approach of microscale thermoforming of thin polymer film substrates overlaid with a split local modification of the films is called 'SMART', which stands for 'substrate modification and replication by thermoforming'. In the process, still on the unformed, plane film, the material modifications of the preprocess define the locations where later, then on the spatially formed film, the postprocess generates the final local modifications. So, one can obtain highly resolved modification patterns also on hardly accessible side walls and even behind undercuts. As a first application of the new technology, we present a flexible chip-sized scaffold for three dimensional cell cultivation in the form of a microcontainer array. The spatially warped container walls have been provided with micropores, cell adhesion micropatterns and thin film microelectrodes.

  19. Immobilization of bioactive compounds in Cassia grandis galactomannan-based films: Influence on physicochemical properties.

    PubMed

    Albuquerque, Priscilla B S; Cerqueira, Miguel A; Vicente, António A; Teixeira, José A; Carneiro-da-Cunha, Maria G

    2017-03-01

    Galactomannan extracted from Cassia grandis seeds was used for the production of films containing different concentrations of the bioactive compounds lactoferrin (LF), bioactive peptides (BAPs), and phytosterols. SEM, FTIR, mechanical and thermal properties, colour, moisture content (MC), solubility, water vapour permeability (WVP), and contact angle (CA) were performed evaluating the effect of increasing concentrations of bioactive compounds on the films' physicochemical properties. The immobilization of bioactive compounds leads to films with roughness on their surface, as observed by SEM. The thermal events demonstrated that bioactive compounds avoided the establishment of more hydrogen bonds when compared to galactomannan control film; this behaviour was also confirmed by FTIR. All the studied films had a strong whiteness tendency as well as a yellowish appearance. The addition of Lf reduced MC and solubility values and leads to an increase of WVP and CA values, while the addition of BAPs and phytosterols did not changed the filmś solubility. The mechanical properties were affected by the addition of bioactive compounds, which improved the stiffness of the films. Galactomannan-based films from C. grandis showed to be a promising structure for the immobilization of biomolecules, pointing at a significant number of possible applications in food and pharmaceutical industries.

  20. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  1. Human‐Like Sensing and Reflexes of Graphene‐Based Films

    PubMed Central

    Zhang, Qin; Tan, Lifang; Chen, Yunxu; Zhang, Tao; Wang, Wenjie; Liu, Zhongfan

    2016-01-01

    Humans have numerous senses, wherein vision, hearing, smell, taste, and touch are considered as the five conventionally acknowledged senses. Triggered by light, sound, or other physical stimulations, the sensory organs of human body are excited, leading to the transformation of the afferent energy into neural activity. Also converting other signals into electronical signals, graphene‐based film shows its inherent advantages in responding to the tiny stimulations. In this review, the human‐like senses and reflexes of graphene‐based films are presented. The review starts with the brief discussions about the preparation and optimization of graphene‐based film, as where as its new progress in synthesis method, transfer operation, film‐formation technologies and optimization techniques. Various human‐like senses of graphene‐based film and their recent advancements are then summarized, including light‐sensitive devices, acoustic devices, gas sensors, biomolecules and wearable devices. Similar to the reflex action of humans, graphene‐based film also exhibits reflex when under thermal radiation and light actuation. Finally, the current challenges associated with human‐like applications are discussed to help guide the future research on graphene films. At last, the future opportunities lie in the new applicable human‐like senses and the integration of multiple senses that can raise a revolution in bionic devices. PMID:27981005

  2. Effect of oil lamination between plasticized starch layers on film properties.

    PubMed

    Basiak, Ewelina; Debeaufort, Frédéric; Lenart, Andrzej

    2016-03-15

    To reduce the hygroscopic character of biodegradable starch-based films, rapeseed oil was incorporated by lamination (starch-oil-starch 3-layers technique). The lipid lamination followed by starch solution casting step induced an emulsion type structure of dried films. Composite films are more opalescent and glossier than fatty free starch films. For all the films, structure is heterogeneous in the cross-section only. Adding fat induced a twice decrease of the tensile strength. Thermal gravimetry analysis did not show differences between films with and without oil. Lipid reduced the moisture absorption particularly at higher RH as well as the surface swelling index, when water droplet contact occurred. Addition of lipids always decreases the contact angle for all liquid tested, except for water. Surface affinity of films for liquids less polar that water increased with rapeseed oil addition. The addition of rapeseed oil significantly reduces water vapour and oxygen permeability.

  3. Physical Simulation of Investment Casting of Complex Shape Parts

    NASA Astrophysics Data System (ADS)

    Rahimian, Mehdi; Milenkovic, Srdjan; Maestro, Laura; De Azua, Aitor Eguidazu Ruiz; Sabirov, Ilchat

    2015-05-01

    Development of investment casting process has been a challenge for manufacturers of complex shape parts. Numerous experimental casting trials are typically carried out to determine the optimum casting parameters for fabrication of high-quality products. In this work, it is demonstrated that physical simulation of investment casting can successfully predict microstructure and hardness in as-cast complex shape parts. The physical simulation tool consists of a thermal model and melting/solidification experiments in thermo-mechanical simulator. The thermal model is employed to predict local cooling rate during solidification at each point of a casting. Melting/solidification experiments are carried out under controlled cooling rates estimated by the thermal model. Microstructural and mechanical characterization of the solidified specimens is performed; the obtained results predict the local microstructure and mechanical properties of the casting. This concept is applied to investment casting of complex shape nozzle guide vanes from Mar-M247 Ni-based superalloy. Experimental casting trials are performed and the outcomes of physical simulation tool are validated against experimental results. It is shown that phase composition, secondary dendrite arm spacing, grain size, γ/ γ' eutectic size and volume fraction, size and shape of carbide particles, and local microhardness can be predicted at each point of the casting via physical simulation.

  4. X-ray computed tomography for casting development

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.; Crews, Alan R.; Bossi, Richard H.

    1992-09-01

    Computed tomography (CT) has been used to evaluate specific sand casting product examples for technical and economic benefits. The representative results are applicable to other casting technologies as well. CT has been shown to be cost effective in the development of new castings. The areas which would benefit include internal dimensional measurements (eliminating destructive sectioning), specific region inspections, flaw characterization in critical regions (to allow passing or informed repair of castings), and geometric acquisition for CAD/CAM. The quantitative capability of CT allows an engineering evaluation of castings based upon a correlation with performance. This quantitative measurement capability has also been used to measure the benefit of hot isostatic pressing in casting production. CT is also cost effective for engineering design and analysis by providing rapid geometry acquisition for input to computer aided design systems. This is particularly beneficial for components that do not have existing drawings or cannot be adequately defined until they are made for any reason. Presently CT can serve as an engineering aid to casting manufacturing. In order for CT evaluation to become routine in foundry applications, however, casting designers need to call it out as a measurement technique in the original casting design drawings, specifications on the application of CT must be written, contracts must include CT evaluation as a means for accepting casting quality, and lower cost CT systems must be available.

  5. Adaptive significance of the Indian caste system: an ecological perspective.

    PubMed

    Gadgil, M; Malhotra, K C

    1983-01-01

    Indian society is an agglomeration of several thousand endogamous groups or castes each with a restricted geographical range and a hereditarily determined mode of subsistence. These reproductively isolated castes may be compared to biological species, and the society thought of as a biological community with each caste having its specific ecological niche. In this paper we examine the ecological-niche relationships of castes which are directly dependent on natural resources. Evidence is presented to show that castes living together in the same region had so organized their pattern of resource use as to avoid excessive intercaste competition for limiting resources. Furthermore, territorial division of the total range of the caste regulated intra-caste competition. Hence, a particular plant or animal resource in a given locality was used almost exclusively by a given lineage within a caste generation after generation. This favoured the cultural evolution of traditions ensuring sustainable use of natural resources. This must have contributed significantly to the stability of Indian caste society over several thousand years. The collapse of the base of natural resources and increasing monetarization of the economy has, however, destroyed the earlier complementarity between the different castes and led to increasing conflicts between them in recent years.

  6. Hot film anemometry. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Habercom, G. E., Jr.

    1980-08-01

    The principles of hot film anemometer operation are summarized; wind tunnel and laboratory tests are described; flow field dynamics are discussed involving turbulence, boundary layers, separation, shock waves, and stresses; mathematical models and analysis are presented; computer techniques are outlined; and a number of applications are given. This updated bibliography contains 58 citations, 3 of which are new entries to the previous edition.

  7. Homogeneous bilayer graphene film based flexible transparent conductor.

    PubMed

    Lee, Seunghyun; Lee, Kyunghoon; Liu, Chang-Hua; Zhong, Zhaohui

    2012-01-21

    Graphene is considered as a promising candidate to replace conventional transparent conductors due to its low opacity, high carrier mobility and flexible structure. Multi-layer graphene or stacked single layer graphenes have been investigated in the past but both have their drawbacks. The uniformity of multi-layer graphene is still questionable, and single layer graphene stacks require many transfer processes to achieve sufficiently low sheet resistance. In this work, bilayer graphene film grown with low pressure chemical vapor deposition was used as a transparent conductor for the first time. The technique was demonstrated to be highly efficient in fabricating a conductive and uniform transparent conductor compared to multi-layer or single layer graphene. Four transfers of bilayer graphene yielded a transparent conducting film with a sheet resistance of 180 Ω(□) at a transmittance of 83%. In addition, bilayer graphene films transferred onto the plastic substrate showed remarkable robustness against bending, with sheet resistance change less than 15% at 2.14% strain, a 20-fold improvement over commercial indium oxide films.

  8. Memory switches based on metal oxide thin films

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni (Inventor); Thakoor, Anilkumar P. (Inventor); Lambe, John J. (Inventor)

    1990-01-01

    MnO.sub.2-x thin films (12) exhibit irreversible memory switching (28) with an OFF/ON resistance ratio of at least about 10.sup.3 and the tailorability of ON state (20) resistance. Such films are potentially extremely useful as a connection element in a variety of microelectronic circuits and arrays (24). Such films provide a pre-tailored, finite, non-volatile resistive element at a desired place in an electric circuit, which can be electrically turned OFF (22) or disconnected as desired, by application of an electrical pulse. Microswitch structures (10) constitute the thin film element, contacted by a pair of separate electrodes (16a, 16b) and have a finite, pre-selected ON resistance which is ideally suited, for example, as a programmable binary synaptic connection for electronic implementation of neural network architectures. The MnO.sub.2-x microswitch is non-volatile, patternable, insensitive to ultraviolet light, and adherent to a variety of insulating substrates (14), such as glass and silicon dioxide-coated silicon substrates.

  9. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  10. Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging.

    PubMed

    Lu, Peng; Xiao, Huining; Zhang, Weiwei; Gong, Glen

    2014-10-13

    Nanofibrillated cellulose (NFC) easily forms a high strength film but is unable to withstand the influence of water vapor when used in high moisture situations. The water vapor transmission rate (WVTR) of a NFC film was as high as 5088 g/m(2)24h (38 °C, 90% RH). The addition of beeswax latex in a NFC casting film (NFX) lowered the WVTR to 3918 g/m(2)24h. To further reduce the WVTR, a coating agent comprised of acrylated epoxidized soybean oil (AESO) and 3-aminopropyltriethoxysilane (APTS) was applied onto the NFX film using a rod coater. A combination of the suitable AESO/APTS ratio, initiator dosing, curing time and temperature could reduce the WVTR to 188 g/m(2) 24h when the coat weight was 5 g/m(2). Moreover, the coated NFX film was highly hydrophobic along with the improved transparency and thermal stability. This biodegradable polymer-coated NFC film can be used as potential packaging barrier in certain areas.

  11. Intense pulsed light treatment of cadmium telluride nanoparticle-based thin films.

    PubMed

    Dharmadasa, Ruvini; Lavery, Brandon; Dharmadasa, I M; Druffel, Thad

    2014-04-09

    The search for low-cost growth techniques and processing methods for semiconductor thin films continues to be a growing area of research; particularly in photovoltaics. In this study, electrochemical deposition was used to grow CdTe nanoparticulate based thin films on conducting glass substrates. After material characterization, the films were thermally sintered using a rapid thermal annealing technique called intense pulsed light (IPL). IPL is an ultrafast technique which can reduce thermal processing times down to a few minutes, thereby cutting production times and increasing throughput. The pulses of light create localized heating lasting less than 1 ms, allowing films to be processed under atmospheric conditions, avoiding the need for inert or vacuum environments. For the first time, we report the use of IPL treatment on CdTe thin films. X-ray diffraction (XRD), optical absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM) and room temperature photoluminescence (PL) were used to study the effects of the IPL processing parameters on the CdTe films. The results found that optimum recrystallization and a decrease in defects occurred when pulses of light with an energy density of 21.6 J cm(-2) were applied. SEM images also show a unique feature of IPL treatment: the formation of a continuous melted layer of CdTe, removing holes and voids from a nanoparticle-based thin film.

  12. Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong

    2016-02-01

    In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors.

  13. Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors.

    PubMed

    Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong

    2016-02-12

    In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors.

  14. Biodegradable Zein-Based Blend Films: Structural, Mechanical and Barrier Properties.

    PubMed

    Serna, Carolina Pena; Filho, José Francisco Lopes

    2015-09-01

    The effect of adding a hydrocolloid on the structural, mechanical and barrier properties of zein-based blend films is evaluated. Zein-oleic acid blend film with added xanthan gum (Z-OA-XG) showed higher water solubility (13.09%) and opacity (8.49 AU/mm) than zein-oleic acid (Z-OA) film (10.80% and 5.19 AU/mm, respectively). Furthermore, Z-OA film had greater flexibility with lower Young's Modulus (YM=5.02 MPa) and higher elongation at break (η=10.62%); nonetheless, it was less resistant to tension (tensile strength σ=8.5 MPa) than Z-OA-XG film, which showed YM, η and σ of 6.38 MPa, 6.66% and 10.485 MPa, respectively. Both films had glossy and homogeneous structure with comparable water vapour and oxygen barrier properties around 4.39·10(-11) and 1.82·10(-13) g/(Pa·s·m), respectively. Based on that, xanthan gum structure influenced mainly mechanical and light barrier properties of zein-oleic acid blend films.

  15. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape.

    PubMed

    Zhang, Yong; Cui, Lili; Che, Xiaoxia; Zhang, Heng; Shi, Nianqiu; Li, Chunlei; Chen, Yan; Kong, Wei

    2015-05-28

    Zein is a class of alcohol-soluble prolamine proteins present in maize endosperm, which was approved as a generally recognized as safe (GRAS) excipient in 1985 by the United States Food and Drug Administration (US-FDA) for film coating of pharmaceuticals, e.g., tablets. Despite its long-term application in tablet production, effects of zein coating on tablet properties are still not fully understood. Moreover, many studies have also been conducted to illustrate its potential as an active ingredient of direct compressed tablets and film-based delivery carriers. In addition, the use of zein as a functional film coating material for new biomedical applications was also widely investigated in recent reports, which involved medical devices, nanoparticles, quantum dots and nanofibers. In this review, the present status of zein in the form of a thin film and uniform layer for use as a biomedical material is discussed. In addition, studies related to the behaviors and properties of zein films are also summarized and analyzed based on published works to gain mechanistic insights into the relationship between zein film and various improved profiles. This review will benefit future prospects of the use of zein film in drug delivery and biomedical applications.

  16. Thin film transistor based on TiOx prepared by DC magnetron sputtering.

    PubMed

    Chung, Sung Mook; Shin, Jae-Heon; Hong, Chan-Hwa; Cheong, Woo-Seok

    2012-07-01

    This paper reports on the thin film transistor (TFT) based on TiOx prepared by direct current (DC) magnetron sputtering for the application of n-type channel transparent TFTs. A ceramic TiOx target was prepared for the sputtering of the TiO2 films. The structural, optical, and electrical properties of the TiO2 films were investigated after their heat treatment. It is observed from XRD measurement that the TiO2 films show anatase structure having (101), (004), and (105) planes after heat treatment. The anatase-structure TiO2 films show a band-gap energy of approximately 3.20 eV and a transmittance of approximately 91% (@550 nm). The bottom-gate TFTs fabricated with the TiO2 film as an n-type channel layer. These devices exhibit the on-off ratio, the field-effect mobility, and the threshold voltage of about 10(4), 0.002 cm2/Vs, and 6 V, respectively. These results indicate the possibility of applying TiO2 films depositied by DC magnetron sputtering to TiO2-based opto-electronic devices.

  17. High melt strength, tear resistant blown film based on poly(lactic acid)

    NASA Astrophysics Data System (ADS)

    Edmonds, Neil R.; Plimmer, Peter N.; Tanner, Chris

    2015-05-01

    A major problem associated with the commercial manufacture of thin films from PLA is inferior processing characteristics on blown film lines compared to low density polyethylene. PLA has poor melt strength (leading to bubble instability) and develops a permanent crease in the flattened film as it exits the tower of the film line. In addition, the thin film product has poor tear strength and an unacceptable `noise' level when converted into flexible packaging. Furthermore, fabricated articles based on PLA are known to show an unattractive tendency toward dimensional instability. This behaviour is associated with `cold crystallization', a phenomenon which also causes exudation of any plasticizer added for improving flexibility. Blow moulded articles based on PLA also exhibit dimensional sensitivity above 60°C. All of these issues have been overcome by the technology described in this paper. This has been accomplished without loss of the valuable compostability characteristic of PLA; this was confirmed by evaluation of film in a commercial composting operation. These results have been achieved through novel reactive compounding technology which: (a) Creates a PLA-rich structure containing long chain crosslinks, (b) generates a low glass transition temperature phase covalently bonded to the PLA structure, and (c) provides a material which performs like LDPE in a blown film manufacturing operation. The technology developed is covered by NZ Patent 580231 (3). The patent is held by UniServices Ltd, The University of Auckland, New Zealand.

  18. Electroplated Fe-Co-Ni films prepared from deep-eutectic-solvent-based plating baths

    NASA Astrophysics Data System (ADS)

    Yanai, Takeshi; Shiraishi, Kotaro; Akiyoshi, Toshiki; Azuma, Keita; Watanabe, Yoshimasa; Ohgai, Takeshi; Morimura, Takao; Nakano, Masaki; Fukunaga, Hirotoshi

    2016-05-01

    We fabricated soft magnetic films from DES-based plating baths, and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2 ṡ 4H2O, NiCl2 ṡ 6H2O and CoCl2 ṡ 6H2O. The composition of the electroplated film depended on the amount of the reagent in the plating bath, and we consequently obtained the films with various composition. The current efficiency of the plating process shows high values (> 88 %) in the wide composition range. The soft magnetic films with low coercivity were obtained at the Fe compositions of ≈ 30 at.% and > 80 at.%, and we found that low coercivity could be realized by the control of the film composition. We also found that the Fe-rich films prepared from DES-based plating bath have some advantages as a soft magnetic phase for a nanocomposite magnet due to their high saturation magnetization and very fine crystal structure.

  19. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil

    PubMed Central

    Kadzińska, Justyna

    2016-01-01

    Summary The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90). Parameter a* decreased and parameter b* and total colour difference (∆E) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg’s equation (R2≥0.99). The tensile strength, Young’s modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased. PMID:27904396

  20. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil.

    PubMed

    Galus, Sabina; Kadzińska, Justyna

    2016-03-01

    The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90). Parameter a* decreased and parameter b* and total colour difference (∆E) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg's equation (R(2)≥0.99). The tensile strength, Young's modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.

  1. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.

    PubMed

    Soni, Bhawna; Hassan, El Barbary; Schilling, M Wes; Mahmoud, Barakat

    2016-10-20

    The development of biobased active films for use in food packaging is increasing due to low cost, environmental appeal, renewability and availability. The objective of this research was to develop an effective and complete green approach for the production of bionanocomposite films with enhanced mechanical and barrier properties. This was accomplished by incorporating TEMPO-oxidized cellulose nanofibers (2,2,6,6-tetramethylpiperidine-1-oxyl radical) into a chitosan matrix. An aqueous suspension of chitosan (100-75wt%), sorbitol (25wt%) and TEMPO-oxidized cellulose nanofibers (TEMPO-CNFs, 0-25wt%) were cast in an oven at 40°C for 2-4days. Films were preconditioned at 25°C and 50% RH for characterization. The surface morphology of the films was revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties and crystal structure of the films were evaluated by thermogravimetric analysis (TGA-DTG) and X-ray diffraction (XRD). Incorporation of TEMPO-CNFs enhanced the mechanical strength of the films due to the high aspect ratio (3-20nm width, and 10-100nm length) of TEMPO-CNFs and strong interactions with the chitosan matrix. Oxygen and water vapor transmission rates for films that are prepared with chitosan and TEMPO-CNFs (15-25wt%) were significantly reduced. Furthermore, these bionanocomposite films had good thermal stability. Use of TEMPO-CNFs in this method makes it possible to produce bionanocomposite films that are flexible, transparent, and thus have potential in food packaging applications.

  2. Ultrathin Chitosan Films with Tailored Properties

    NASA Astrophysics Data System (ADS)

    Murray, Chris; Stukalov, Oleg; Dutcher, John

    2004-03-01

    Chitosan is a biodegradable polysaccharide derived from seashell waste products. Though abundant, the industrial use of this polymer has up until recently been limited to water treatment products. The high water absorbency and biocompatibility of chitosan have enabled its use as a hydrogel in specialty applications such as wound dressings and drug delivery systems. The most convenient method of processing chitosan is solution casting to form films, since the polymer is soluble in weakly acidic solvents. Based on previous work with synthetic polymers, we have developed a protocol for preparing thin, uniform films of chitosan by spincoating from solution onto silicon substrates. Films with thicknesses between 30 and 600 nm (as measured by ellipsometry) and rms roughnesses of less than 1 nm (as measured by atomic force microscopy) were prepared. After preparation, these films quickly absorb water in the presence of high humidity. Heating of the films to high temperature causes large reductions in film thickness h and index of refraction n. After cooling the films to room temperature, h and n remain constant in the presence of high humidity. Using this simple procedure, we are able to produce films with tailored thickness, optical properties and water absorbency.

  3. Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Guotao; Zhang, Qiuping; Xie, Guangzhong; Su, Yuanjie; Zhao, Kang; Du, Hongfei; Jiang, Yadong

    2016-11-01

    Polyaniline/zinc oxide (PANI/ZnO) hybrid film based sensors have been developed for ammonia (NH3) detection at room temperature (RT). Results shows that hybrid film sensor exhibits a p-type semiconductor behavior and larger response than that of pure PANI film sensor. In the system, ZnO nanorod arrays can not only create nanoscale gap for gas diffusion but also provide abundant adsorption sites, thus leading to enhancement of response. Besides, hydrothermal time is proportional to the length of nanorods, Longer nanorods will provide efficient gap for gas diffusion, which leads to better sensitivity. This work offers a promising way to optimize sensor performance.

  4. Correcting scan-to-scan response variability for a radiochromic film-based reference dosimetry system

    SciTech Connect

    Lewis, David; Devic, Slobodan

    2015-10-15

    Purpose: In radiochromic film dosimetry systems, measurements are usually obtained from film images acquired on a CCD-based flatbed scanner. The authors investigated factors affecting scan-to-scan response variability leading to increased dose measurement uncertainty. Methods: The authors used flatbed document scanners to repetitively scan EBT3 radiochromic films exposed to doses 0–1000 cGy, together with three neutral density filters and three blue optical filters. Scanning was performed under two conditions: scanner lid closed and scanner lid opened/closed between scans. The authors also placed a scanner in a cold room at 9 °C and later in a room at 22 °C and scanned EBT3 films to explore temperature effects. Finally, the authors investigated the effect of altering the distance between the film and the scanner’s light source. Results: Using a measurement protocol to isolate the contribution of the CCD and electronic circuitry of the scanners, the authors found that the standard deviation of response measurements for the EBT3 film model was about 0.17% for one scanner and 0.09% for the second. When the lid of the first scanner was opened and closed between scans, the average scan-to-scan difference of responses increased from 0.12% to 0.27%. Increasing the sample temperature during scanning changed the RGB response values by about −0.17, −0.14, and −0.05%/°C, respectively. Reducing the film-to-light source distance increased the RBG response values about 1.1, 1.3, and 1.4%/mm, respectively. The authors observed that films and film samples were often not flat with some areas up to 8 mm away from the scanner’s glass window. Conclusions: In the absence of measures to deal with the response irregularities, each factor the authors investigated could lead to dose uncertainty >2%. Those factors related to the film-to-light source distance could be particularly impactful since the authors observed many instances where the curl of film samples had the

  5. ACCURATE QUANTIFICATION OF DRIED RESIDUE THIN FILMS USING X-RAY FLUORESCENCE

    SciTech Connect

    C. WORLEY; G. HAVRILLA

    2000-09-01

    An XRF specimen preparation method was developed to quantify the concentration of gallium in plutonium metal while minimizing the risk of contaminating the instrument with radioactive material. To ensure that homogeneous specimens are examined, plutonium is dissolved in dilute HCl and HNO{sub 3} prior to analysis. In the preliminary work here, non-radioactive aqueous gallium standards were prepared, and zinc was added as an internal standard to improve the accuracy and precision. Aliquots from these solutions were cast on Mylar XRF films and air dried prior to analysis. Two methods of casting the solutions were evaluated: (1) casting as a thin layer using a surfactant to wet the support film and (2) casting multiple small spots on the support film. Aqueous gallium standards were prepared and cast as dried residue specimens using each method. These specimens were then analyzed, and calibration curves were prepared. Highly linear calibrations were obtained for each preparation method when zinc was used as the internal standard (RMS values {le}1% of the standards concentration range in both cases). Based on this preliminary work, this dried residue process appears very promising for the accurate quantification of gallium in plutonium.

  6. Development and characterization of an edible composite film based on chitosan and virgin coconut oil with improved moisture sorption properties.

    PubMed

    Binsi, P K; Ravishankar, C N; Srinivasa Gopal, T K

    2013-04-01

    An edible composite film was prepared from an emulsion system based on chitosan and virgin coconut oil (VCO). The effect of incorporation of VCO was evaluated at various concentrations and the optimum concentration was chosen based on resultant changes in the properties of the film. Addition of VCO in film forming solution resulted in increase in film thickness and marginal reduction in film transparency. Compatibility of VCO with chitosan was better at lower concentration of VCO as indicated by the microstructure of composite film in scanning electron micrographs. Phase separation was evident at higher level of oil incorporation and the optimal oil/chitosan ratio was determined to be at 0.5 to 1 mL/g chitosan. Furthermore, chemical interaction took place between VCO and chitosan as revealed by Fourier transform infrared spectroscopy data. Even though control chitosan films exhibited superior gas barrier properties, composite film with optimum VCO concentration revealed better mechanical and moisture sorption properties.

  7. Finite element modeling of the deformation of magnetoelastic film

    SciTech Connect

    Barham, Matthew I.; White, Daniel A.; Steigmann, David J.

    2010-09-01

    Recently a new class of biocompatible elastic polymers loaded with small ferrous particles, a magnetoelastic polymer, has been developed. This engineered material is formed into a thin film using spin casting. An applied magnetic field will deform the film. The magnetic deformation of this film has many possible applications, particularly in microfluidic pumps and pressure regulators. In this paper a finite element method suitable for the transient simulation of arbitrarily shaped three-dimensional magnetoelastic polymers subjected to time-varying magnetic fields is developed. The approach is similar to that employed in finite elment magnetohydrodynamic simulations, the key difference is a more complex hyperelastic material model. In order to confirm the validity of the approach, finite element solutions for an axially symmetric thin film are compared to an analytical solution based on the membrane (infinitely thin) approximation. For this particular problem the two approaches give qualitatively similar results and converge as the film thickness approaches zero.

  8. The mechanisms of plant stress mitigation by kaolin-based particle films and its applications in horticultural and agricultural crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kaolin-based particle films have utility in reducing insect, heat, light, and uv stress in plants due to the reflective nature of the particles. Particle films with a residue density of 1 to 3 g/ square meter have been evaluated in a range of crops and agricultural environments. The particle film ...

  9. Synthesis and Electrochemical Behavior of Ceria Based Bi-Layer Films by Dip Coating Technique.

    PubMed

    Chinnu, M Karl; Anand, K Vijai; Kumar, R Mohan; Alagesan, T; Jayavel, R

    2015-01-01

    Ceria based bi-layer films of CeO2-CdS and CeO2-TiO2 were prepared by sol-gel based hydrothermal route combined with dip-coating. The synthesized samples were subjected to various characterizations such as X-ray diffraction, Field emission scanning electron microscopy, thermo-gravimetric analysis, UV-Vis absorption and photoluminescence studies. The prepared materials were dissolved in naffion solution and disposed as a thin film on glassy carbon electrode by dip coating technique. Electrochemical Li+ intercalation/deintercalation was performed by cyclic voltammetry and these results indicate that the CeO2/LiClO4 system is electrochemically reversible. The total intercalation/deintercalation of the CeO2 film, CeO2-CdS and CeO2-TiO2 bi-layer films was determined by cyclic voltammetry, which showed increased charge storage capacity.

  10. Predicting the optoelectronic properties of nanowire films based on control of length polydispersity

    PubMed Central

    Large, Matthew J.; Burn, Jake; King, Alice A.; Ogilvie, Sean P.; Jurewicz, Izabela; Dalton, Alan B.

    2016-01-01

    We demonstrate that the optoelectronic properties of percolating thin films of silver nanowires (AgNWs) are predominantly dependent upon the length distribution of the constituent AgNWs. A generalized expression is derived to describe the dependence of both sheet resistance and optical transmission on this distribution. We experimentally validate the relationship using ultrasonication to controllably vary the length distribution. These results have major implications where nanowire-based films are a desirable material for transparent conductor applications; in particular when application-specific performance criteria must be met. It is of particular interest to have a simple method to generalize the properties of bulk films from an understanding of the base material, as this will speed up the optimisation process. It is anticipated that these results may aid in the adoption of nanowire films in industry, for applications such as touch sensors or photovoltaic electrode structures. PMID:27158132

  11. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  12. Synthesis of Meltspun Multiwall Carbon Nanotube/Polycarbonate Fibers Through Solvent Casting and Melt Extrusion.

    PubMed

    Yadav, Poonam; Park, Sang Whan; Lee, Dong Bok

    2015-11-01

    Films and strands consisting of polycarbonate (PC) containing 0.55 or 0.75 wt% multiwall carbon nanotubes (MWNTs) were synthesized through solvent casting and melt extrusion methods, respectively. They were further processed into fibers through melt spinning. Fibers made from melt-extruded strands exhibited a smoother surface, more uniform morphology, and better dispersion of MWNTs in PC than those made from solvent-cast films.

  13. Investigation of frequency response of microwave active ring resonator based on ferrite film

    NASA Astrophysics Data System (ADS)

    Martynov, M. I.; Nikitin, A. A.; Ustinov, A. B.; Kalinikos, B. A.

    2016-11-01

    The complex transmission coefficient of active ring resonators based on ferrite-film delay lines was investigated both theoretically and experimentally. Influence of the parameters of the delay line on the transmission coefficients was investigated. It was shown that the resonant frequencies of the ring depend on the ferrite film thickness and the distance between spin-wave antennae. These dependences give possibility to control the shape of the transmission coefficient that in combination with magnetic tuning provide flexibility for microwave applications.

  14. Study of oxygen scavenging PET-based films activated by water

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  15. Brain-based decoding of mentally imagined film clips and sounds reveals experience-based information patterns in film professionals.

    PubMed

    de Borst, Aline W; Valente, Giancarlo; Jääskeläinen, Iiro P; Tikka, Pia

    2016-04-01

    In the perceptual domain, it has been shown that the human brain is strongly shaped through experience, leading to expertise in highly-skilled professionals. What has remained unclear is whether specialization also shapes brain networks underlying mental imagery. In our fMRI study, we aimed to uncover modality-specific mental imagery specialization of film experts. Using multi-voxel pattern analysis we decoded from brain activity of professional cinematographers and sound designers whether they were imagining sounds or images of particular film clips. In each expert group distinct multi-voxel patterns, specific for the modality of their expertise, were found during classification of imagery modality. These patterns were mainly localized in the occipito-temporal and parietal cortex for cinematographers and in the auditory cortex for sound designers. We also found generalized patterns across perception and imagery that were distinct for the two expert groups: they involved frontal cortex for the cinematographers and temporal cortex for the sound designers. Notably, the mental representations of film clips and sounds of cinematographers contained information that went beyond modality-specificity. We were able to successfully decode the implicit presence of film genre from brain activity during mental imagery in cinematographers. The results extend existing neuroimaging literature on expertise into the domain of mental imagery and show that experience in visual versus auditory imagery can alter the representation of information in modality-specific association cortices.

  16. Ammonia gas sensor based on electrosynthesized polypyrrole films.

    PubMed

    Carquigny, Stéphanie; Sanchez, Jean-Baptiste; Berger, Franck; Lakard, Boris; Lallemand, Fabrice

    2009-04-15

    In this work, design and fabrication of micro-gas-sensors, polymerization and deposition of poly(pyrrole) thin films as sensitive layer for the micro-gas-sensors by electrochemical processing, and characterization of the polymer films by FTIR, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), are reported. The change in conductance of thin polymer layers is used as a sensor signal. The behaviours, including sensitivity, reproducibility and reversibility, to various ammonia gas concentrations ranging from 8 ppm to 1000 ppm are investigated. The influence of the temperature on the electrical response of the sensors is also studied. The experimental results show that these ammonia gas sensors are efficient since they are sensitive to ammonia, reversible and reproducible at room temperature.

  17. An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution.

    PubMed

    Chen, Mingxing; Wu, Yizhen; Han, Yongzhen; Lin, Xiaohuan; Sun, Junliang; Zhang, Wei; Cao, Rui

    2015-10-07

    An ultrathin Fe-based film was prepared by electrodeposition from an Fe(II) solution through a fast and simple cyclic voltammetry method. The extremely low Fe loading of 12.3 nmol cm(-2) on indium tin oxide electrodes is crucial for high atom efficiency and transparence of the resulted film. This Fe-based film was shown to be a very efficient electrocatalyst for oxygen evolution from neutral aqueous solution with remarkable activity and stability. In a 34 h controlled potential electrolysis at 1.45 V (vs NHE) and pH 7.0, impressive turnover number of 5.2 × 10(4) and turnover frequency of 1528 h(-1) were obtained. To the best of our knowledge, these values represent one of the highest among electrodeposited catalyst films for water oxidation under comparable conditions. The morphology and the composition of the catalyst film was determined by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy, which all confirmed the deposition of Fe-based materials with Fe(III) oxidation state on the electrode. This study is significant because of the use of iron, the fast and simple cyclic voltammetry electrodeposition, the extremely low catalyst loading and thus the transparency of the catalyst film, the remarkable activity and stability, and the oxygen evolution in neutral aqueous media.

  18. Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing

    NASA Astrophysics Data System (ADS)

    Gadea, C.; Marani, D.; Esposito, V.

    2017-02-01

    Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolamine (MDEA) used as nucleophilic ligand. The function of the ligand is to control the fast hydrolysis/condensation reactions in water for the metal alkoxide before deposition, leading to formation of the TiO2 only after the jet process. The evolution of the titanium-ligand interactions at increasing amount of MDEA is here elucidated in terms of long term stability. The ink printability parameter (Z) is optimized, resulting in a reactive solution with printability, Z, >1, and chemical stability up to 600 h. Thin titanium oxide films (<500 nm) are proved on different substrates. Pure anatase phase is obtained after annealing at low temperature (ca. 400 °C).

  19. Peel-Off Characteristics at Interface between Base Film and Dielectrics with Spin-Coating Film Transfer and Hot-Pressing Technology

    NASA Astrophysics Data System (ADS)

    Kamei, Toshikazu; Sato, Norio; Kudou, Kazuhisa; Kawagoe, Masafumi; Adachi, Hideki; Machida, Katsuyuki

    2007-10-01

    This paper describes the peel-off characteristics of spin-coating film transfer and hot-pressing (STP) technology. STP technology is a new film-formation technology that enables the transfer of a dielectric on a base film onto a wafer by hot pressing. The base film is then peeled off at the interface between the base film and the dielectric. It is examined to control the peel force by the surface treatment of the base film of a fluoropolymer and STP process conditions. An apparatus for measuring peel force during peel off is also devised. The measurement results clarified that the magnitude of the normalized peel force ranges from about 2 to 3 N/cm for a 1-μm-thick dielectric, depending on the surface treatment and STP process conditions. The X-ray photoelectron spectroscopy spectrum of the surface of the base film after peel off indicated that peel off was carried out at the interface. Therefore, it is confirmed that STP technology enables the control of the characteristics of peel off.

  20. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.