Variability aware compact model characterization for statistical circuit design optimization
NASA Astrophysics Data System (ADS)
Qiao, Ying; Qian, Kun; Spanos, Costas J.
2012-03-01
Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.
A compact model for electroosmotic flows in microfluidic devices
NASA Astrophysics Data System (ADS)
Qiao, R.; Aluru, N. R.
2002-09-01
A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.
Richter, H; Greiner-Bär, M; Pavlov, S G; Semenov, A D; Wienold, M; Schrottke, L; Giehler, M; Hey, R; Grahn, H T; Hübers, H-W
2010-05-10
We report on the development of a compact, easy-to-use terahertz radiation source, which combines a quantum-cascade laser (QCL) operating at 3.1 THz with a compact, low-input-power Stirling cooler. The QCL, which is based on a two-miniband design, has been developed for high output and low electrical pump power. The amount of generated heat complies with the nominal cooling capacity of the Stirling cooler of 7 W at 65 K with 240 W of electrical input power. Special care has been taken to achieve a good thermal coupling between the QCL and the cold finger of the cooler. The whole system weighs less than 15 kg including the cooler and power supplies. The maximum output power is 8 mW at 3.1 THz. With an appropriate optical beam shaping, the emission profile of the laser is fundamental Gaussian. The applicability of the system is demonstrated by imaging and molecular-spectroscopy experiments. (c) 2010 Optical Society of America.
Compact discs as versatile cost-effective substrates for releasable nanopatterned aluminium films
NASA Astrophysics Data System (ADS)
Barrios, Carlos Angulo; Canalejas-Tejero, Víctor
2015-02-01
We demonstrate that standard polycarbonate compact disk surfaces can provide unique adhesion to Al films that is both strong enough to permit Al film nanopatterning and weak enough to allow easy nanopatterned Al film detachment using Scotch tape. Transferred Al nanohole arrays on Scotch tape exhibit excellent optical and plasmonic performance.We demonstrate that standard polycarbonate compact disk surfaces can provide unique adhesion to Al films that is both strong enough to permit Al film nanopatterning and weak enough to allow easy nanopatterned Al film detachment using Scotch tape. Transferred Al nanohole arrays on Scotch tape exhibit excellent optical and plasmonic performance. Electronic supplementary information (ESI) available: 1. Optical simulations (Fig. SI.1); 2. Optical coupling via an Al NHA on the Scotch tape (Fig. SI.2); 3. Electrostatics-based opto-mechanical cantilever (Fig. SI.3). Video 1. Transfer of the Al film nanostructured with a nanohole array from a polycarbonate CD surface onto a Scotch tape; Video 2. Opto-mechanical electrostatics-based sensor: electrical attraction. Video 3. Opto-mechanical electrostatics-based sensor: electrical repulsion. See DOI: 10.1039/c4nr06271j
Bengtsson, Simon; de Blois, Mark; Wilén, Britt-Marie; Gustavsson, David
2018-03-20
The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.2 mg/L phosphorus at 7°C. The alternative based on AGS was estimated to have a 40-50% smaller footprint and 23% less electricity requirement than conventional activated sludge. In relation to the other compact treatment options IFAS and MBR, the AGS process had an estimated electricity usage that was 35-70% lower. This suggests a favourable potential for processes based on AGS although more available experience of AGS operation and performance at full scale is desired.
NASA Astrophysics Data System (ADS)
Xiao, Ling; Sun, Y. H.; Yu, Lie
2011-07-01
This paper investigated the effect of compaction parameters and dielectric composition on mechanical, magnetic and electrical properties of iron-organosilicon epoxy resin soft magnetic composites. In this work, iron powders with high purity were covered by an organic material (organosilicon epoxy resin) and then by coupling agent (KH-550). The coated powders were then cold compacted at 600, 800 and 1000 MPa and cured under vacuum respectively. The results show that the saturation magnetic flux density and electrical resistivity are dependent on compaction pressure and resin content. Increase in the organic phase content leads to decrease of the saturation magnetic flux density, while increase of the electrical resistivity. Furthermore, the samples with 0.9 wt% resins + 0.1 wt% coupling agent at compaction pressure of 800 MPa shows better properties than the others.
Variable cross-section windings for efficiency improvement of electric machines
NASA Astrophysics Data System (ADS)
Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.
2018-02-01
Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.
Yu, Haofei; Stuart, Amy L
2017-01-15
'Smart' growth and electric vehicles are potential solutions to the negative impacts of worldwide urbanization on air pollution and health. However, the effects of planning strategies on distinct types of pollutants, and on human exposures, remain understudied. The goal of this work was to investigate the potential impacts of alternative urban designs for the area around Tampa, Florida USA, on emissions, ambient concentrations, and exposures to oxides of nitrogen (NO x ), 1,3-butadiene, and benzene. We studied three potential future scenarios: sprawling growth, compact growth, and 100% vehicle fleet electrification with compact growth. We projected emissions in the seven-county region to 2050 based on One Bay regional visioning plan data. We estimated pollutant concentrations in the county that contains Tampa using the CALPUFF dispersion model. We applied residential population projections to forecast acute (highest hour) and chronic (annual average) exposure. The compact scenario was projected to result in lower regional emissions of all pollutants than sprawl, with differences of -18%, -3%, and -14% for NO x , butadiene, and benzene, respectively. Within Hillsborough County, the compact form also had lower emissions, concentrations, and exposures than sprawl for NO x (-16%/-5% for acute/chronic exposures, respectively), but higher exposures for butadiene (+41%/+30%) and benzene (+21%/+9%). The addition of complete vehicle fleet electrification to the compact scenario mitigated these in-county increases for the latter pollutants, lowering predicted exposures to butadiene (-25%/-39%) and benzene (-5%/-19%), but also resulted in higher exposures to NO x (+81%/+30%) due to increased demand on power plants. These results suggest that compact forms may have mixed impacts on exposures and health. 'Smart' urban designs should consider multiple pollutants and the diverse mix of pollutant sources. Cleaner power generation will also likely be needed to support aggressive adoption of electric vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.
Effective High-Frequency Permeability of Compacted Metal Powders
NASA Astrophysics Data System (ADS)
Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.
2018-03-01
We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.
Open strings and electric fields in compact spaces
NASA Astrophysics Data System (ADS)
Condeescu, Cezar; Dudas, Emilian; Pradisi, Gianfranco
2018-05-01
We analyse open strings with background electric fields in the internal space, T-dual to branes moving with constant velocities in the internal space. We find that the direction of the electric fields inside a two torus, dual to the D-brane velocities, has to be quantised such that the corresponding direction is compact. This implies that D-brane motion in the internal torus is periodic, with a periodicity that can be parametrically large in terms of the internal radii. By S-duality, this is mapped into an internal magnetic field in a three torus, a quantum mechanical analysis of which yields a similar result, i.e. the parallel direction to the magnetic field has to be compact. Furthermore, for the magnetic case, we find the Landau level degeneracy as being given by the greatest common divisor of the flux numbers. We carry on the string quantisation and derive the relevant partition functions for these models. Our analysis includes also the case of oblique electric fields which can arise when several stacks of branes are present. Compact dimensions and/or oblique sectors influence the energy loss of the system through pair-creation and thus can be relevant for inflationary scenarios with branes. Finally, we show that the compact energy loss is always larger than the non-compact one.
1.54 micron Emission from Erbium implanted GaN for Photonic Applications
NASA Technical Reports Server (NTRS)
Thaik, Myo; Hommerich, U.; Schwartz, R. N.; Wilson, R. G.; Zavada, J. M.
1998-01-01
The development of efficient and compact light sources operating at 1.54 micron is of enormous importance for the advancement of new optical communication systems. Erbium (1%) doped fiber amplifiers (EDFA's) or semiconductor lasers are currently being employed as near infrared light sources. Both devices, however, have inherent limitations due to their mode of operation. EDFA's employ an elaborate optical pumping scheme, whereas diode lasers have a strongly temperature dependent lasing wavelength. Novel light emitters based on erbium doped III-V semiconductors could overcome these limitations. Er doped semiconductors combine the convenience of electrical excitation with the excellent luminescence properties of Er(3+) ions. Electrically pumped, compact, and temperature stable optoelectronic devices are envisioned from this new class of luminescent materials. In this paper we discuss the potential of Er doped GaN for optoelectronic applications based on temperature dependent photoluminescence excitation studies.
Electro-optically tunable microwave source based on composite-cavity microchip laser.
Qiao, Yunfei; Zheng, Shilie; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin
2012-12-17
A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO(3) cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.
Compact silicon photonics-based multi laser module for sensing
NASA Astrophysics Data System (ADS)
Ayotte, S.; Costin, F.; Babin, A.; Paré-Olivier, G.; Morin, M.; Filion, B.; Bédard, K.; Chrétien, P.; Bilodeau, G.; Girard-Deschênes, E.; Perron, L.-P.; Davidson, C.-A.; D'Amato, D.; Laplante, M.; Blanchet-Létourneau, J.
2018-02-01
A compact three-laser source for optical sensing is presented. It is based on a low-noise implementation of the Pound Drever-Hall method and comprises high-bandwidth optical phase-locked loops. The outputs from three semiconductor distributed feedback lasers, mounted on thermo-electric coolers (TEC), are coupled with micro-lenses into a silicon photonics (SiP) chip that performs beat note detection and several other functions. The chip comprises phase modulators, variable optical attenuators, multi-mode-interference couplers, variable ratio tap couplers, integrated photodiodes and optical fiber butt-couplers. Electrical connections between a metallized ceramic and the TECs, lasers and SiP chip are achieved by wirebonds. All these components stand within a 35 mm by 35 mm package which is interfaced with 90 electrical pins and two fiber pigtails. One pigtail carries the signals from a master and slave lasers, while another carries that from a second slave laser. The pins are soldered to a printed circuit board featuring a micro-processor that controls and monitors the system to ensure stable operation over fluctuating environmental conditions. This highly adaptable multi-laser source can address various sensing applications requiring the tracking of up to three narrow spectral features with a high bandwidth. It is used to sense a fiber-based ring resonator emulating a resonant fiber optics gyroscope. The master laser is locked to the resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.
Electrical source of pseudothermal light
NASA Astrophysics Data System (ADS)
Kuusela, Tom A.
2018-06-01
We describe a simple and compact electrical version of a pseudothermal light source. The source is based on electrical white noise whose spectral properties are tailored by analog filters. This signal is used to drive a light-emitting diode. The type of second-order coherence of the output light can be either Gaussian or Lorentzian, and the intensity distribution can be either Gaussian or non-Gaussian. The output light field is similar in all viewing angles, and thus, there is no need for a small aperture or optical fiber in temporal coherence analysis.
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław
2017-12-20
The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.
Pruttivarasin, Thaned; Katori, Hidetoshi
2015-11-01
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
Electrically-pumped compact hybrid silicon microring lasers for optical interconnects.
Liang, Di; Fiorentino, Marco; Okumura, Tadashi; Chang, Hsu-Hao; Spencer, Daryl T; Kuo, Ying-Hao; Fang, Alexander W; Dai, Daoxin; Beausoleil, Raymond G; Bowers, John E
2009-10-26
We demonstrate an electrically-pumped hybrid silicon microring laser fabricated by a self-aligned process. The compact structure (D = 50 microm) and small electrical and optical losses result in lasing threshold as low as 5.4 mA and up to 65 degrees C operation temperature in continuous-wave (cw) mode. The spectrum is single mode with large extinction ratio and small linewidth observed. Application as on-chip optical interconnects is discussed from a system perspective.
NASA Astrophysics Data System (ADS)
He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu
2017-01-01
Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.
Compact continuum brain model for human electroencephalogram
NASA Astrophysics Data System (ADS)
Kim, J. W.; Shin, H.-B.; Robinson, P. A.
2007-12-01
A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.
Continious production of exfoliated graphite composite compositions and flow field plates
Shi, Jinjun; Zhamu, Aruna; Jang, Bor Z.
2010-07-20
A process of continuously producing a more isotropic, electrically conductive composite composition is provided. The process comprises: (a) continuously supplying a compressible mixture comprising exfoliated graphite worms and a binder or matrix material, wherein the binder or matrix material is in an amount of between 3% and 60% by weight based on the total weight of the mixture; (b) continuously compressing the compressible mixture at a pressure within the range of from about 5 psi or 0.035 MPa to about 50,000 psi or 350 MPa in at least a first direction into a cohered graphite composite compact; and (c) continuously compressing the composite compact in a second direction, different from the first direction, to form the composite composition in a sheet or plate form. The process leads to composite plates with exceptionally high thickness-direction electrical conductivity.
NASA Astrophysics Data System (ADS)
Mahesh, M. L. V.; Bhanu Prasad, V. V.; James, A. R.
2016-04-01
Barium zirconium titanate, Ba(Zr0.15Ti0.85)O3 nano-crystalline powders were synthesized using high energy ball milling. The calcined powders were compacted adopting two different approaches viz. the conventional uniaxial pressing and cold-isostatic pressing (CIP) and the compacts were sintered at 1350 °C. A single phase perovskite structure was observed in both cases. BZT ceramics compacted using CIP technique exhibited enhanced dielectric and ferroelectric properties compared to ceramics compacted by uniaxial pressing. The polarization current peaks have been used in this paper as an experimental evidence to prove the existence of ferroelectricity in the BZT ceramics under study. The peak polarization current was found to be ~700% higher in case of cold iso-statically compacted ceramics. Similarly electric field induces strain showed a maximum strain ( S max) of 0.08% at an electric field of 28 kV/cm. The dielectric and ferroelectric properties observed are comparable to single crystals of the same material.
Compact orthogonal NMR field sensor
Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL
2009-02-03
A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.
Dudina, Dina V.; Bokhonov, Boris B.; Mukherjee, Amiya K.
2016-01-01
A need to deeper understand the influence of electric current on the structure and properties of metallic materials consolidated by Spark Plasma Sintering (SPS) stimulates research on inter-particle interactions, bonding and necking processes in low-pressure or pressureless conditions as favoring technique-specific local effects when electric current passes through the underdeveloped inter-particle contacts. Until now, inter-particle interactions during pressureless SPS have been studied mainly for particles of the same material. In this work, we focused on the interactions between particles of dissimilar materials in mixtures of micrometer-sized Fe and Al powders forming porous compacts during pressureless SPS at 500–650 °C. Due to the chemical interaction between Al and Fe, necks of conventional shape did not form between the dissimilar particles. At the early interaction stages, the Al particles acquired shell morphology. It was shown that this morphology change was not related to the influence of electric current but was due to the Kirkendall effect in the Fe–Al system and particle rearrangement in a porous compact. No experimental evidence of melting or melt ejection during pressureless SPS of the Fe–Al mixtures or Fe and Al powders sintered separately was observed. Porous FeAl-based compacts could be obtained from Fe-40at.%Al mixtures by pressureless SPS at 650 °C. PMID:28773498
Wang, Yadong; Wei, Yongqiang; Huang, Yingyan; Tu, Yongming; Ng, Doris; Lee, Cheewei; Zheng, Yunan; Liu, Boyang; Ho, Seng-Tiong
2011-01-31
We have demonstrated a heterogeneously integrated III-V-on-Silicon laser based on an ultra-large-angle super-compact grating (SCG). The SCG enables single-wavelength operation due to its high-spectral-resolution aberration-free design, enabling wavelength division multiplexing (WDM) applications in Electronic-Photonic Integrated Circuits (EPICs). The SCG based Si/III-V laser is realized by fabricating the SCG on silicon-on-insulator (SOI) substrate. Optical gain is provided by electrically pumped heterogeneous integrated III-V material on silicon. Single-wavelength lasing at 1550 nm with an output power of over 2 mW and a lasing threshold of around 150 mA were achieved.
Compact magnetic energy storage module
Prueitt, M.L.
1994-12-20
A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.
Compact magnetic energy storage module
Prueitt, Melvin L.
1994-01-01
A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.
Theory of unfolded cyclotron accelerator
NASA Astrophysics Data System (ADS)
Rax, J.-M.; Robiche, J.
2010-10-01
An acceleration process based on the interaction between an ion, a tapered periodic magnetic structure, and a circularly polarized oscillating electric field is identified and analyzed, and its potential is evaluated. A Hamiltonian analysis is developed in order to describe the interplay between the cyclotron motion, the electric acceleration, and the magnetic modulation. The parameters of this universal class of magnetic modulation leading to continuous acceleration without Larmor radius increase are expressed analytically. Thus, this study provides the basic scaling of what appears as a compact unfolded cyclotron accelerator.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.
2000-01-01
A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.
Low-level radwaste storage facility at Hope Creek and Salem Generating Stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyen, L.C.; Lee, K.; Bravo, R.
Following the January 1, 1993, closure of the radwaste disposal facilities at Beatty, Nevada, and Richland, Washington (to waste generators outside the compact), only Barnwell, South Carolina, is open to waste generators in most states. Barnwell is scheduled to stay open to waste generators outside the Southeast Compact until June 30, 1994. Continued delays in opening regional radwaste disposal facilities have forced most nuclear utilities to consider on-site storage of low-level radwaste. Public Service Electric and Gas Company (PSE G) considered several different radwaste storage options before selecting the design based on the steel-frame and metal-siding building design described inmore » the Electric Power Research Institute's (EPRI's) TR-100298 Vol. 2, Project 3800 report. The storage facility will accommodate waste generated by Salem units 1 and 2 and Hope Creek unit 1 for a 5-yr period and will be located within their common protected area.« less
Development of a Compact, Efficient Cooling Pump for Space Suit Life Support Systems
NASA Technical Reports Server (NTRS)
van Boeyen, Roger; Reeh, Jonathan; Trevino, Luis
2009-01-01
A compact, low-power electrochemically-driven fluid cooling pump is currently being developed by Lynntech, Inc. With no electric motor and minimal lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness is achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit primary life support systems (PLSSs). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops is discussed.
Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun
2018-06-15
External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate 'bond and peel' method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.
NASA Astrophysics Data System (ADS)
Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun
2018-06-01
External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate ‘bond and peel’ method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.
High-frequency electric field measurement using a toroidal antenna
Lee, Ki Ha
2002-01-01
A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.
Tests of New NIRS Compact ECR Ion Source for Carbon Therapy
NASA Astrophysics Data System (ADS)
Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.
2005-03-01
Ion sources for medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without maintenance (one year or more). Based on the performance of the proto type compact source, a 10 GHz compact ECR ion source with all permanent magnets has been developed. Peak values of the mirror magnetic field along the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, respectively, while the minimum B strength is 0.25 T. The source has a diameter of 320 mm and a length of 295 mm. The result of beam tests showed that a C4+ intensity of 530 μA was obtained under an extraction voltage of 40 kV. This paper describes the experimental results for the new source.
Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken
2012-04-09
We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.
A graphene-based Fabry-Pérot spectrometer in mid-infrared region
Wang, Xiaosai; Chen, Chen; Pan, Liang; Wang, Jicheng
2016-01-01
Mid-infrared spectroscopy is of great importance in many areas and its integration with thin-film technology can economically enrich the functionalities of many existing devices. In this paper we propose a graphene-based ultra-compact spectrometer (several micrometers in size) that is compatible with complementary metal-oxide-semiconductor (CMOS) processing. The proposed structure uses a monolayer graphene as a mid-infrared surface waveguide, whose optical response is spatially modulated using electric fields to form a Fabry-Pérot cavity. By varying the voltage acting on the cavity, we can control the transmitted wavelength of the spectrometer at room temperature. This design has potential applications in the graphene-silicon-based optoelectronic devices as it offers new possibilities for developing new ultra-compact spectrometers and low-cost hyperspectral imaging sensors in mid-infrared region. PMID:27573080
NASA Astrophysics Data System (ADS)
Yu, Fei; Ma, Xiaoyu; Deng, Wanling; Liou, Juin J.; Huang, Junkai
2017-11-01
A physics-based drain current compact model for amorphous InGaZnO (a-InGaZnO) thin-film transistors (TFTs) is proposed. As a key feature, the surface potential model accounts for both exponential tail and deep trap densities of states, which are essential to describe a-InGaZnO TFT electrical characteristics. The surface potential is solved explicitly without the process of amendment and suitable for circuit simulations. Furthermore, based on the surface potential, an explicit closed-form expression of the drain current is developed. For the cases of the different operational voltages, surface potential and drain current are verified by numerical results and experimental data, respectively. As a result, our model can predict DC characteristics of a-InGaZnO TFTs.
Photovoltaic roofing tile systems
NASA Astrophysics Data System (ADS)
Melchior, B.
The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.
NASA Astrophysics Data System (ADS)
Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.
2017-07-01
In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.
Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing
Wang, Zhaojun; Lei, Ming; Yao, Baoli; Cai, Yanan; Liang, Yansheng; Yang, Yanlong; Yang, Xibin; Li, Hui; Xiong, Daxi
2015-01-01
Autofocusing is a routine technique in redressing focus drift that occurs in time-lapse microscopic image acquisition. To date, most automatic microscopes are designed on the distance detection scheme to fulfill the autofocusing operation, which may suffer from the low contrast of the reflected signal due to the refractive index mismatch at the water/glass interface. To achieve high autofocusing speed with minimal motion artifacts, we developed a compact multi-band fluorescent microscope with an electrically tunable lens (ETL) device for autofocusing. A modified searching algorithm based on equidistant scanning and curve fitting is proposed, which no longer requires a single-peak focus curve and then efficiently restrains the impact of external disturbance. This technique enables us to achieve an autofocusing time of down to 170 ms and the reproductivity of over 97%. The imaging head of the microscope has dimensions of 12 cm × 12 cm × 6 cm. This portable instrument can easily fit inside standard incubators for real-time imaging of living specimens. PMID:26601001
Beyond regulation: A social compact' for gas and electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stram, B.; Thorn, T.
The public utility covenant, granting franchise protection to firms in return for just and reasonable rate regulation, has come under increasing scrutiny as socially inefficient for several reasons. First, cost-based regulation fails to adequately incite cost-minimization and new product development. Second, public utility regulation has turned into a micro-management exercise where prospective strategies are laboriously scrutinized and past performance is penalized from 20-20 hind-sight. Third, traditional regulation has provided a forum for nontraditional special interest regulation that may not be in the ratepayer's interest. An alternative to the regulatory covenant is the social compact where long-term contracts among the affectedmore » parties set price and service terms. The advantages of such contracting would be to reduce the administrative costs of regulation, better incite the market's entrepreneurial discovery process, deregulate upstream production and transportation, and eliminate extraneous regulation of electric and gas distribution. The winners would be gas consumers and the most efficient industry suppliers.« less
Lasche, G.P.
1983-09-29
The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.
A quantum kinematics for asymptotically flat gravity
NASA Astrophysics Data System (ADS)
Campiglia, Miguel; Varadarajan, Madhavan
2015-07-01
We construct a quantum kinematics for asymptotically flat gravity based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying loop quantum gravity (LQG) which supports, in addition to the usual LQG operators, the action of ‘background exponential operators’, which are connection dependent operators labelled by ‘background’ su(2) electric fields. KS states have, in addition to the LQG state label corresponding to one dimensional excitations of the triad, a label corresponding to a ‘background’ electric field that describes three dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields that label the states and the background electric fields that label the operators. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We show that KS states can be realised as wave functions on a quantum configuration space of generalized connections and that the asymptotic behaviour of each such generalized connection is determined by that of the background electric fields which label the background exponential operators. Similar to the spatially compact case, the Gauss law and diffeomorphism constraints are then imposed through group averaging techniques to obtain a large sector of gauge invariant states. It is shown that this sector supports a unitary action of the group of asymptotic rotations and translations and that, as anticipated by Friedman and Sorkin, for appropriate spatial topology, this sector contains states that display fermionic behaviour under 2π rotations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Placidi, M.; Jung, J. -Y.; Ratti, A.
2014-07-25
This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibilitymore » when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.« less
Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer
NASA Astrophysics Data System (ADS)
Sheng, Jingwei; Wan, Shuangai; Sun, Yifan; Dou, Rongshe; Guo, Yuhao; Wei, Kequan; He, Kaiyan; Qin, Jie; Gao, Jia-Hong
2017-09-01
In recent years, substantial progress has been made in developing a new generation of magnetoencephalography (MEG) with a spin-exchange relaxation free (SERF)-based atomic magnetometer (AM). An AM employs alkali atoms to detect weak magnetic fields. A compact AM array with high sensitivity is crucial to the design; however, most proposed compact AMs are potassium (K)- or rubidium (Rb)-based with single beam configurations. In the present study, a pump-probe two beam configuration with a Cesium (Cs)-based AM (Cs-AM) is introduced to detect human neuronal magnetic fields. The length of the vapor cell is 4 mm, which can fully satisfy the need of designing a compact sensor array. Compared with state-of-the-art compact AMs, our new Cs-AM has two advantages. First, it can be operated in a SERF regime, requiring much lower heating temperature, which benefits the sensor with a closer distance to scalp due to ease of thermal insulation and less electric heating noise interference. Second, the two-beam configuration in the design can achieve higher sensitivity. It is free of magnetic modulation, which is necessary in one-beam AMs; however, such modulation may cause other interference in multi-channel circumstances. In the frequency band between 10 Hz and 30 Hz, the noise level of the proposed Cs-AM is approximately 10 f T/Hz1/2, which is comparable with state-of-the-art K- or Rb-based compact AMs. The performance of the Cs-AM was verified by measuring human auditory evoked fields (AEFs) in reference to commercial superconducting quantum interference device (SQUID) channels. By using a Cs-AM, we observed a clear peak in AEFs around 100 ms (M100) with a much larger amplitude compared with that of a SQUID, and the temporal profiles of the two devices were in good agreement. The results indicate the possibility of using the compact Cs-AM for MEG recordings, and the current Cs-AM has the potential to be designed for multi-sensor arrays and gradiometers for future neuroscience studies.
Manual centrifuge system: Bearing-based hand spinner made with 3-D printer.
Sun-Young Yoo; Seung Jae Lee; Jong-Mo Seo
2017-07-01
Compact disk (CD) Microfluidic platforms are being studied for medical applications such as blood tests. However, its size is bulky and electricity is needed to realize centrifuge force. In this paper, bearing-based hand spinner is designed using three-dimensional printer. This spinner does not need electricity and keeps rotating direction unlike paperfuge while it is spinning. The properties of spinner vary depending on bearing type which is positioned at the center. The type of weighting area also affects change in RPM over time. When a separation experiment is implemented, separating mixture into red ink and oil and whole blood into red blood cell and plasma are achieved properly with ceramic ball bearing.
NASA Astrophysics Data System (ADS)
Cazimajou, T.; Legallais, M.; Mouis, M.; Ternon, C.; Salem, B.; Ghibaudo, G.
2018-05-01
We studied the current-voltage characteristics of percolating networks of silicon nanowires (nanonets), operated in back-gated transistor mode, for future use as gas or biosensors. These devices featured P-type field-effect characteristics. It was found that a Lambert W function-based compact model could be used for parameter extraction of electrical parameters such as apparent low field mobility, threshold voltage and subthreshold slope ideality factor. Their variation with channel length and nanowire density was related to the change of conduction regime from direct source/drain connection by parallel nanowires to percolating channels. Experimental results could be related in part to an influence of the threshold voltage dispersion of individual nanowires.
NASA Astrophysics Data System (ADS)
Kibria, Golam
Resistivity imaging (RI) is a promising approach to obtaining continuous profile of soil subsurface. This method offers simple technique to identify moisture variation and heterogeneity of the investigated area. However, at present, only qualitative information of subsurface can be obtained using RI. A study on the quantification of geotechnical properties has become important for rigorous use of this method in the evaluation of geohazard potential and construction quality control of landfill liner system. Several studies have been performed to describe electrical resistivity of soil as a function of pore fluid conductivity and surface conductance. However, characterization tests on pore water and surface charge are not typically performed in a conventional geotechnical investigation. The overall objective of this study is to develop correlations between geotechnical parameters and electrical resistivity of soil, which would provide a mean to estimate geotechnical properties from RI. As a part of the study, multiple regression analyses were conducted to develop practically applicable models correlating resistivity with influential geotechnical parameters. The soil samples considered in this study were classified as highly plastic clay (CH) and low plasticity clay (CL) according to Unified Soil Classification System (USCS). Based on the physical tests, scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) analysis, kaolinite was identified as the dominant mineral with some traces of magnesium, calcium, potassium, and iron. Electrical resistivity tests were conducted on compacted clays and undisturbed samples under varied geotechnical conditions. The experimental results indicated that the degree of saturation substantially influenced electrical resistivity. Electrical resistivity decreased as much as 11 times from initial value for the increase of degree of saturation from 23 to 100% in the laboratory tests on compacted clays. In case of undisturbed soil samples, resistivity decreased as much as sixteen fold (49.4 to 3.2 Ohm-m) for an increase of saturation from 31 to 100%. Furthermore, the resistivity results were different for the specimens at a specific degree of saturation because of varied surface activity and isomorphous substitution of clayey soils. In addition to physical properties, compressibility of clays was correlated with electrical conductivity. Based on the investigation, it was determined that the electrical conductivity vs. pressure curves followed similar trends as e vs. logp curves. Multiple linear regression (MLR) models were developed for compacted and undisturbed samples using statistical analysis software SAS (2009). During model development, degree of saturation and CEC were selected as independent variables. The proposed models were validated using experimental results on a different set of samples. Moreover, the applicability of the models in the determination of degrees of saturation was evaluated using field RI tests.
Microcombustor-thermoelectric power generator for 10-50 watt applications
NASA Astrophysics Data System (ADS)
Marshall, Daniel S.; Cho, Steve T.
2010-04-01
Fuel-based portable power systems, including combustion and fuel cell systems, take advantage of the 80x higher energy density of fuel over lithium battery technologies and offer the potential for much higher energy density power sources - especially for long-duration applications, such as unattended sensors. Miniaturization of fuel-based systems poses significant challenges, including processing of fuel in small channels, catalyst poisoning, and coke and soot formation. Recent advances in micro-miniature combustors in the 200Watt thermal range have enabled the development of small power sources that use the chemical energy of heavy fuel to drive thermal-to-electric converters for portable applications. CUBE Technology has developed compact Micro-Furnace combustors that efficiently deliver high-quality heat to optimized thermal-to-electric power converters, such as advanced thermoelectric power modules and Stirling motors, for portable power generation at the 10-50Watt scale. Key innovations include a compact gas-gas recuperator, innovative heavy fuel processing, coke- & soot-free operation, and combustor optimization for low balance-of-plant power use while operating at full throttle. This combustor enables the development of robust, high energy density, miniature power sources for portable applications.
On-chip photonic particle sensor
NASA Astrophysics Data System (ADS)
Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian
2018-02-01
We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.
Silicon-based products and solutions
NASA Astrophysics Data System (ADS)
Painchaud, Y.; Poulin, M.; Pelletier, F.; Latrasse, C.; Gagné, J.-F.; Savard, S.; Robidoux, G.; Picard, M.-.; Paquet, S.; Davidson, C.-.; Pelletier, M.; Cyr, M.; Paquet, C.; Guy, M.; Morsy-Osman, M.; Chagnon, M.; Plant, D. V.
2014-03-01
TeraXion started silicon photonics activities aiming at developing building blocks for new products and customized solutions. Passive and active devices have been developed including MMI couplers, power splitters, Bragg grating filters, high responsivity photodetectors, high speed modulators and variable optical attenuators. Packaging solutions including fiber attachment and hybrid integration using flip-chip were also developed. More specifically, a compact packaged integrated coherent receiver has been realized. Good performances were obtained as demonstrated by our system tests results showing transmission up to 4800 km with BER below hard FEC threshold. The package size is small but still limited by the electrical interface. Migrating to more compact RF interface would allow realizing the full benefit of this technology.
An FPGA-based demodulation system for fiber Bragg grating sensing
NASA Astrophysics Data System (ADS)
Li, Yongqian; He, Haitao; Yao, Guozhen
2010-11-01
This paper introduces the principle of fiber Bragg grating (FBG) sensor, designs and realizes a compact wavelength demodulation system for FBG sensing using a Fabry-Perot (F-P) filter. FPGA is adopted as a main controller to control a D/A converter to produce a sawtooth wave for driving the F-P filter, and to design the data acquisition circuit for collecting the output signals of photoelectric detector. The collected data is processed after transmitting to PC through the data transmission circuit, and then the demodulation of FBG wavelength is completed finally. This compact FBG wavelength demodulation system is expected to have wide applications in on-line monitoring of electric power equipment and large structures.
NASA Astrophysics Data System (ADS)
Mason, Thomas J.; Millichamp, Jason; Neville, Tobias P.; El-kharouf, Ahmad; Pollet, Bruno G.; Brett, Daniel J. L.
2012-12-01
This paper describes the use of an in situ analytical technique based on simultaneous displacement and resistance measurement of gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs), when exposed to varying compaction pressure. In terms of the losses within fuel cells, the ohmic loss makes up a significant portion. Of this loss, the contact resistance between the GDL and the bipolar plate (BPP) is an important constituent. By analysing the change in thickness and ohmic resistance of GDLs under compression, important mechanical and electrical properties are obtained. Derived parameters such as the 'displacement factor' are used to characterise a representative range of commercial GDLs. Increasing compaction pressure leads to a non-linear decrease in resistance for all GDLs. For Toray paper, compaction becomes more irreversible with pressure with no elastic region observed. Different GDLs have different intrinsic resistance; however, all GDLs of the same class share a common compaction profile (change in resistance with pressure). Cyclic compression of Toray GDL leads to progressive improvement in resistance and reduction in thickness that stabilises after ∼10 cycles.
Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; ...
2015-11-02
Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining themore » initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. As a result, the choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.« less
Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; Chernov, Ivan; Staltsov, Maxim; Khasanov, Oleg; Olevsky, Eugene
2015-11-02
Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10-15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.
Ma, Zhijie; Hanham, Stephen M; Gong, Yandong; Hong, Minghui
2018-02-15
We present an all-dielectric metasurface that simultaneously supports electric and magnetic dipole resonances for orthogonal polarizations. At resonances, the metasurface reflects the incident light with nearly perfect efficiency and provides a phase difference of π in the two axes, making a low-loss half-wave plate in reflection mode. The polarization handedness of the incident circularly polarized light is preserved after reflection; this is different from either a pure electric mirror or magnetic mirror. With the features of high reflection and circular polarization conservation, the metamirror is an ideal platform for the geometric phase-based gradient metasurface functioning in reflection mode. Anomalous reflection with the planar meta-mirror is demonstrated as a proof of concept. The proposed meta-mirror can be a good alternative to plasmonic metasurfaces for future compact and high-efficiency metadevices for polarization and phase manipulation in reflection mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can lastmore » up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.« less
Compact tunable and reconfigurable microwave photonic filter for satellite payloads
NASA Astrophysics Data System (ADS)
Santos, M. C.; Yoosefi, O.
2017-11-01
The trend towards the photonic processing of electrical signals at microwave frequencies for satellite payloads is increasing at a breathtaking pace, mainly spurred by prospects of wide electrical bandwidth operation, low mass and volume, reduced electrical noise levels, immunity to electromagnetic interferences and resistance to both temperature and radiation.
1979-11-15
COMPACTION 7-12 [2] 9 SUITABILITY AS ROAD SUBGRADE (’) poor to fair lair to go SUITABILITY AS ROAD SUBBASE OR BASE (1) poor poor to fai aJ 2.1-10.9 1.1...wave velocity of 9350 fps (2850 mps). These variable seismic wave velocities indicate nonuniformity in subsoil density and cementation. Electrical
Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas
2016-09-01
The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Paniagua, John; Borowski, Stanley
2003-01-01
Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.
Calculation of the Neoclassical Radial Electric Field using a Gyrokinetic δ f Code
NASA Astrophysics Data System (ADS)
Lewandowski, J. L. V.; Boozer, A.; Williams, J.; Lin, Z.; Zarnstorff, M.
2000-10-01
The calculation of the radial electric field in stellarator devices is an important issue in neoclassical transport. The radial electric field, which is also related to the formation of transport barriers, can affect the anomalous transport. In stellarator configurations which depart only weakly from axi-symmetry, a direct Monte Carlo calculations of the radial electric is difficult due to the large statistical fluctuations. We present a novel method based on the evaluation of the perpendicular ( p_⊥ ) and parallel ( p_|| ) pressures. The variation of widehatp ≡ ( p_|| + p_⊥ ) /2 on the magnetic surface provides a low-noise calculation of the radial electric field. The low-noise method has been implemented in a three-dimensional gyro-kinetic particle code [1]. The calculation of the radial electric field for the National Compact Stellarator Experiment [2] will be presented. [ 1 ] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. White Science 281, 1835 (1998). [ 2 ] A. Reiman et al, invited talk (this conference).
Modeling of charged anisotropic compact stars in general relativity
NASA Astrophysics Data System (ADS)
Dayanandan, Baiju; Maurya, S. K.; T, Smitha T.
2017-06-01
A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e^{λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research
Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less
Ignitor with stable low-energy thermite igniting system
Kelly, Michael D.; Munger, Alan C.
1991-02-05
A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.
Characterizing soil erosion potential using electrical resistivity imaging : final report.
DOT National Transportation Integrated Search
2017-04-01
The erosion rate, or erodibility, of soil depends on many soil characteristics including: plasticity, : water content, grain size, percent clay, compaction, and shear strength. Many of these characteristics also : influence soil in situ bulk electric...
Characterizing soil erosion potential using electrical resistivity imaging : technical summary.
DOT National Transportation Integrated Search
2017-04-01
The erosion rate, or erodibility, of soil depends on many soil characteristics : including: plasticity, water content, grain size, percent clay, compaction, and shear : strength. Many of these characteristics also influence soil in situ bulk electric...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-10-01
ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with anmore » innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.« less
The effect of mechanical stress on electric resistance of nanographite-epoxy composites
NASA Astrophysics Data System (ADS)
Vovchenko, L.; Lazarenko, A.; Matzui, L.; Zhuravkov, A.
2012-03-01
The in-plane electric resistance Ra of composite materials (CMs) thermoexfoliated graphite(TEG)-epoxy resin(ED) under compression along compacting C-axis has been investigated by four-probe method. TEG content was 5-75 wt%. It was shown that specimens prepared by cold pressing are denser and reveal lower values of electric resistivity in comparison with specimens prepared by pouring. It was found that compression of the specimens leads to plastic deformation of specimens (εpl) and essential irreversible decrease of electric resistance during the first cycle of loading (up to 50 MPa), especially for the poured specimens with low density. Within the proposed model the contact resistance Rk between graphite particles in CM has been evaluated and it was shown that it increased with the decrease in TEG content in CM and depends on compacting method of CMs and the dispersity of graphite filler.
NASA Astrophysics Data System (ADS)
Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.
2008-11-01
Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.
Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source.
Töpperwien, Mareike; Gradl, Regine; Keppeler, Daniel; Vassholz, Malte; Meyer, Alexander; Hessler, Roland; Achterhold, Klaus; Gleich, Bernhard; Dierolf, Martin; Pfeiffer, Franz; Moser, Tobias; Salditt, Tim
2018-03-21
We demonstrate that phase retrieval and tomographic imaging at the organ level of small animals can be advantageously carried out using the monochromatic radiation emitted by a compact x-ray light source, without further optical elements apart from source and detector. This approach allows to carry out microtomography experiments which - due to the large performance gap with respect to conventional laboratory instruments - so far were usually limited to synchrotron sources. We demonstrate the potential by mapping the functional soft tissue within the guinea pig and marmoset cochlea, including in the latter case an electrical cochlear implant. We show how 3d microanatomical studies without dissection or microscopic imaging can enhance future research on cochlear implants.
Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K
2014-09-22
In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
.... of China; Feit Electric Company, Inc. of CA; General Electric Company of CT; Xiamen Topstar Lighting Co. Ltd. of China; Technical Consumer Products, Inc. of OH; TCP China of China; TCP (Shanghai) Tiancanbao Lighting of China; Shanghai Jensing Electron Electrical Equipment Co., Ltd. of China; Shanghai...
Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei
2015-10-28
The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.
Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei
2015-01-01
The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680
NASA Astrophysics Data System (ADS)
Mohsin, Mohammad; Mohd, Aas; Suhaib, M.; Arif, Sajjad; Arif Siddiqui, M.
2017-10-01
In this experimental work, aluminium Al-20Fe-5Cr (in wt.%) matrix reinforced with varying wt.% Al2O3 (0, 10, 20 and 30) and compaction pressure (470, 550 and 600 MPa) were prepared by powder metallurgy technique. The characterization of composites were performed by scanning electron microscopy (SEM), x-ray diffraction (XRD), energy dispersive spectrum (EDS) and elemental mapping. Uniform distribution of Al2O3 in aluminium matrix were observed by elemental mapping. The composites showed an increase in density and hardness by increasing both alumina and compaction pressure. While, electrical conductivity decreased by the addition of alumina. The tribological study of the composites were performed on pin-on-disc apparatus at sliding conditions (applied load 40 N, sliding speed 1.5 m s-1, sliding distance 300 m). The tribological properties of the composites were improved by increasing alumina and compaction pressure. SEM analysis were also carried out to understand wear mechanism of the worn surfaces of various fabricated composites and aluminium matrix.
NASA Astrophysics Data System (ADS)
Moraila-Martínez, Carmen Lucía; Guerrero-García, Guillermo Iván; Chávez-Páez, Martín; González-Tovar, Enrique
2018-04-01
The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.
NASA Astrophysics Data System (ADS)
Yan, Ru-Yu; Tang, Jian; Zhang, Zhi-Hai; Yuan, Jian-Hui
2018-05-01
In the present work, the optical properties of GaAs/AlGaAs semiparabolic quantum wells (QWs) are studied under the effect of applied electric field and magnetic field by using the compact-density-matrix method. The energy eigenvalues and their corresponding eigenfunctions of the system are calculated by using the differential method. Simultaneously, the nonlinear optical rectification (OR) and optical absorption coefficients (OACs) are investigated, which are modulated by the applied electric field and magnetic field. It is found that the position and the magnitude of the resonant peaks of the nonlinear OR and OACs can depend strongly on the applied electric field, magnetic field and confined potential frequencies. This gives a new way to control the device applications based on the intersubband transitions of electrons in this system.
Pasetto, Marco; Baldo, Nicola
2010-09-15
The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction. Copyright 2010 Elsevier B.V. All rights reserved.
A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.
Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce
2016-04-21
Large amounts of low-grade waste heat (temperatures <130 °C) are released during many industrial, geothermal, and solar-based processes. Using thermally-regenerative ammonia solutions, low-grade thermal energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of batteries for plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
English, Jeffrey Robb
This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity. Three sample optimizations were performed: a compact car, a, truck, and a sports car. The compact car benefits from increased battery capacity despite the associated higher cost. The truck returned the smallest possible battery of each chemistry, indicating that electrification is not advisable. The sports car optimization resulted in the largest possible battery, indicating large performance from increased electrification. These results mirror the current state of the electric vehicle market.
Compact ion chamber based neutron detector
Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.
2015-10-27
A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.
Compact Hybrid Automotive Propulsion System
NASA Technical Reports Server (NTRS)
Lupo, G.
1986-01-01
Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.
Compact Interconnection Networks Based on Quantum Dots
NASA Technical Reports Server (NTRS)
Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew
2003-01-01
Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary-signal wires described in the cited prior article. One of these advances would be the development of QCA-based wires capable of bidirectional transmission of signals. The other advance would be the development of QCA circuits capable of high-impedance state outputs. The high-impedance states would be utilized along with the 0- and 1-state outputs of QCA.
Compact Q-balls and Q-shells in a scalar electrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arodz, H.; Lis, J.
2009-02-15
We investigate spherically symmetric nontopological solitons in electrodynamics with a scalar field self-interaction U{approx}|{psi}| taken from the complex signum-Gordon model. We find Q-balls for small absolute values of the total electric charge Q, and Q-shells when |Q| is large enough. In both cases the charge density exactly vanishes outside certain compact regions in the three-dimensional space. The dependence of the total energy E of small Q-balls on the total electric charge has the form E{approx}|Q|{sup 5/6}, while in the case of very large Q-shells, E{approx}|Q|{sup 7/6}.
JPRS Report, Science & Technology, USSR: Materials Science
1988-07-11
MATERIALY, No 2, Mar-Apr 88) , 19 Formation of Multilayer Polytypes Based on Diamond or Sphaleritic Boron Nitride Under High Pressures at High...in Compact Modifications of Boron Nitride (V. B, Shipilo, et al,; SVERKHTVERDYYE MATERIALY, No 2, Mar-Apr 88) 20 Change in Electrical...25CrMnNiMoTi alloy steel were first refined by heat treatment and then, covered with a heat-absorbent MnP04 coating , treated with a laser beam
"Squishy capacitor" model for electrical double layers and the stability of charged interfaces.
Partenskii, Michael B; Jordan, Peter C
2009-07-01
Negative capacitance (NC), predicted by various electrical double layer (EDL) theories, is critically reviewed. Physically possible for individual components of the EDL, the compact or diffuse layer, it is strictly prohibited for the whole EDL or for an electrochemical cell with two electrodes. However, NC is allowed for the artificial conditions of sigma control, where an EDL is described by the equilibrium electric response of electrolyte to a field of fixed, and typically uniform, surface charge-density distributions, sigma. The contradiction is only apparent; in fact local sigma cannot be set independently, but is established by the equilibrium response to physically controllable variables, i.e., applied voltage phi (phi control) or total surface charge q (q control). NC predictions in studies based on sigma control signify potential instabilities and phase transitions for physically realizable conditions. Building on our previous study of phi control [M. B. Partenskii and P. C. Jordan, Phys. Rev. E 77, 061117 (2008)], here we analyze critical behavior under q control, clarifying the basic picture using an exactly solvable "squishy capacitor" toy model. We find that phi can change discontinuously in the presence of a lateral transition, specify stability conditions for an electrochemical cell, analyze the origin of the EDL's critical point in terms of compact and diffuse serial contributions, and discuss perspectives and challenges for theoretical studies not limited by sigma control.
The Preparation of Soft Magnetic Composites Based on FeSi and Ferrite Fibers
NASA Astrophysics Data System (ADS)
Strečková, Magdaléna; Fáberová, Mária; Bureš, Radovan; Kurek, Pavel
2016-12-01
The fields of soft magnetic composites and powder metallurgy technologies have a powerful potential to redesign the way of electric motor preparation, and will continue to grow for years to come. A design of the novel soft microcomposite material composed of spherical FeSi particles and Ni0.3Zn0.7Fe2O4 ferrite nanofibers is reported together with a characterization of basic mechanical and electrical properties. The needle-less electrospinning method was used for a preparation of Ni0.3Zn0.7Fe2O4 ferrite nanofibers, which has a spinel-type crystal structure as verified by XRD and TEM analysis. The dielectric coating was prepared by mixing of nanofibers with glycerol and ethanol because of safe manipulation with fumed fibers and homogeneous distribution of the coating around the FeSi particle surface. The final microcomposite samples were prepared by a combination of the traditional PM compaction technique supplemented with a conventional sintering process of the prepared green compacts. The composition and distribution of the secondary phase formed by the spinel ferrite fibers were examined by SEM. It is demonstrated that the prepared composite material has a tight arrangement without any significant porosity, which manifest itself through superior mechanical properties (high mechanical hardness, Young modulus, and transverse rupture strength) and specific electric resistivity compared to the related composite materials including resin as the organic binder.
Multi-Channel, Constant-Current Power Source for Aircraft Applications
2017-03-01
Special considerations impacting this design were minimizing volume, maintaining system power quality, and providing electrical fault protection...applications. Electrical loads, such as lighting, de-icing heaters, and actuators may be operated from this compact power conversion unit. Because of the...nature of aircraft systems, two of the most important design considerations are the maintenance of electrical power quality and minimization of weight
Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles
NASA Technical Reports Server (NTRS)
Kurtz, D. W.
1979-01-01
An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.
NASA Technical Reports Server (NTRS)
Vranish, John M.
1993-01-01
Roller locking brake is normally braking rotary mechanism allowing free rotation when electromagnet in mechanism energized. Well suited to robots and other machinery which automatic braking upon removal of electrical power required. More compact and reliable. Requires little electrical power to maintain free rotation and exhibits minimal buildup of heat.
Resistive switching characteristics and mechanisms in silicon oxide memory devices
NASA Astrophysics Data System (ADS)
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.
2016-05-01
Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.
Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P
2017-04-17
Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.
NASA Astrophysics Data System (ADS)
Huang, Jung-Jie; Chiu, Shih-Ping; Wu, Menq-Jion; Hsu, Chun-Fa
2016-11-01
In this study, titanium dioxide films were deposited on indium tin oxide glass substrates by liquid-phase deposition (LPD) for application as the compact layer in dye-sensitized solar cells (DSSCs). A deposition solution of ammonium hexafluorotitanate and boric acid was used for TiO2 deposition. Compact layer passivation can improve DSSC performance by decreasing carrier losses from recombination at the ITO/electrolyte interface and improving the electrical contact between the ITO and the TiO2 photo-electrode. The optimum thickness of the compact layer was found to be 48 nm, which resulted in a 50 % increase in the conversion efficiency compared with cells without compact layers. The conversion efficiency can be increased from 3.55 to 5.26 %. Therefore, the LPD-TiO2 compact layer inhibits the dark current and increases the short-circuit current density effectively.
NASA Astrophysics Data System (ADS)
Ito, Mikio; Kawahara, Kenta; Araki, Keita
2014-04-01
Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.
NASA Astrophysics Data System (ADS)
Mu, Cheng-Fu; Sun, Gao-Feng; Zhuang, Peng-Fei
2009-03-01
Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars. Due to the sudden drop of the electron density at thefirst-order chiral phase transition, the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.
Wide Bandgap Technology Enhances Performance of Electric-Drive Vehicles |
, WBG materials/devices enable lighter, more compact, and more efficient power electronics for vehicles, and increased electric vehicle adoption by consumers. Wide bandgap power electronics devices power electronics component size and potentially reduce system or component-level cost, while improving
Monolithic integration of a plasmonic sensor with CMOS technology
NASA Astrophysics Data System (ADS)
Shakoor, Abdul; Cheah, Boon C.; Hao, Danni; Al-Rawhani, Mohammed; Nagy, Bence; Grant, James; Dale, Carl; Keegan, Neil; McNeil, Calum; Cumming, David R. S.
2017-02-01
Monolithic integration of nanophotonic sensors with CMOS detectors can transform the laboratory based nanophotonic sensors into practical devices with a range of applications in everyday life. In this work, by monolithically integrating an array of gold nanodiscs with the CMOS photodiode we have developed a compact and miniaturized nanophotonic sensor system having direct electrical read out. Doing so eliminates the need of expensive and bulky laboratory based optical spectrum analyzers used currently for measurements of nanophotonic sensor chips. The experimental optical sensitivity of the gold nanodiscs is measured to be 275 nm/RIU which translates to an electrical sensitivity of 5.4 V/RIU. This integration of nanophotonic sensors with the CMOS electronics has the potential to revolutionize personalized medical diagnostics similar to the way in which the CMOS technology has revolutionized the electronics industry.
A 0.5 MV magnetically self-insulated pulsed transformer
NASA Astrophysics Data System (ADS)
Istenic, M.; Novac, B. M.; Luo, J.; Kumar, R.; Smith, I. R.
2006-11-01
This paper describes the successful development of a light and compact 0.5 MV spiral-strip transformer, with the secondary winding contained in vacuum and based on magnetic self-insulation. Ensuring trouble-free operation required the use of conductive elastomers in electric field grading techniques and the adoption in the secondary winding of glass/ceramic conductor spacers. It is demonstrated that the primary-current/secondary breakdown-voltage characteristic is a function of the vacuum pressure, with only 52 kA being necessary to produce 0.5 MV at 10-6 Torr. The difficult task of modelling the transformer required 3D electric and magnetic field computation, together with state-of-the-art calculation of the electron flow in the vacuum. Based on the results obtained to date, scaling up to multi-megavolt transformers can readily be envisaged.
The T/R modules for phased-array antennas
NASA Astrophysics Data System (ADS)
Peignet, Colette; Mancuso, Yves; Resneau, J. Claude
1990-09-01
The concept of phased array radar is critically dependent on the availability of compact, reliable and low power consuming Transmitter/Receiver (T/R) modules. An overview is given on two major programs actually at development stage within the Thomson group and on three major development axis (electrical concept optimization, packaging, and size reduction). The technical feasibility of the concept was proven and the three major axis were enlightened, based on reliability, power added efficiency, and RF tests optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatayama, Ariyoshi; Ogasawara, Masatada; Yamauchi, Michinori
1994-08-01
Plasma size and other basic performance parameters for 1000-MW(electric) power production are calculated with the blanket energy multiplication factor, the M value, as a parameter. The calculational model is base don the International Thermonuclear Experimental Reactor (ITER) physics design guidelines and includes overall plant power flow. Plasma size decreases as the M value increases. However, the improvement in the plasma compactness and other basic performance parameters, such as the total plant power efficiency, becomes saturated above the M = 5 to 7 range. THus, a value in the M = 5 to 7 range is a reasonable choice for 1000-MW(electric)more » hybrids. Typical plasma parameters for 1000-MW(electric) hybrids with a value of M = 7 are a major radius of R = 5.2 m, minor radius of a = 1.7 m, plasma current of I{sub p} = 15 MA, and toroidal field on the axis of B{sub o} = 5 T. The concept of a thermal fission blanket that uses light water as a coolant is selected as an attractive candidate for electricity-producing hybrids. An optimization study is carried out for this blanket concept. The result shows that a compact, simple structure with a uniform fuel composition for the fissile region is sufficient to obtain optimal conditions for suppressing the thermal power increase caused by fuel burnup. The maximum increase in the thermal power is +3.2%. The M value estimated from the neutronics calculations is {approximately}7.0, which is confirmed to be compatible with the plasma requirement. These studies show that it is possible to use a tokamak fusion core with design requirements similar to those of ITER for a 1000-MW(electric) power reactor that uses existing thermal reactor technology for the blanket. 30 refs., 22 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2014-03-01
Optical nerve stimulation (ONS) has been commonly performed in the laboratory using high-power, pulsed, infrared (IR) lasers including Holmium:YAG, diode, and Thulium fiber lasers. However, the relatively high cost of these lasers in comparison with conventional electrical nerve stimulation (ENS) equipment may represent a significant barrier to widespread adoption of ONS. Optical stimulation of the prostate cavernous nerves (CN's) has recently been reported using lower cost, continuous-wave (CW), all-fiber-based diode lasers. This preliminary study describes further miniaturization and cost reduction of the ONS system in the form of a compact, lightweight, cordless, and inexpensive IR laser. A 140-mW, 1560-nm diode laser was integrated with a green aiming beam and delivery optics into a compact ONS system. Surface and subsurface ONS was performed in a total of 5 rats, in vivo, with measurement of an intracavernous pressure (ICP) response during CW laser irradiation for 30 s with a spot diameter of 0.7 mm. Short-term, CW ONS of the prostate CN's is feasible using a compact, inexpensive, batterypowered IR laser diode system. This ONS system may represent an alternative to ENS for laboratory studies, and with further development, a handheld option for ONS in the clinic to identify and preserve the CN's during prostate cancer surgery.
Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S
2016-03-15
Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.
Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.
2016-01-01
Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199
A Compact Via-free Composite Right/Left Handed Low-pass Filter with Improved Selectivity
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Choudhary, Dilip Kumar; Chaudhary, Raghvendra Kumar
2017-07-01
In this paper, a compact via-free low pass filter is designed based on composite right/left handed (CRLH) concept. The structure uses open ended concept. Rectangular slots are etched on signal transmission line (TL) to suppress the spurious band without altering the performance and size of filter. The filter is designed for low pass frequency band with cut-off frequency of 3.5 GHz. The proposed metamaterial structure has several prominent advantages in term of selectivity up to 34 dB/GHz and compactness with average insertion loss less than 0.4 dB. It has multiple applications in wireless communication (such as GSM900, global navigation satellite system (1.559-1.610 GHz), GSM1800, WLAN/WiFi (2.4-2.49 GHz) and WiMAX (2.5-2.69 GHz)). The design parameters have been measured and compared with the simulated results and found excellent agreement. The electrical size of proposed filter is 0.14λ0× 0.11λ0 (where λ0 is free space wavelength at zeroth order resonance (ZOR) frequency 2.7 GHz).
NASA Astrophysics Data System (ADS)
Xie, Guoqiang; Ohashi, Osamu; Yamaguchi, Norio; Song, Minghui; Mitsuishi, Kazutaka; Furuya, Kazuo; Noda, Tetsuji
2003-07-01
Al-1.0 mass% Mg alloy powders were sintered using the pulse electric current sintering (PECS) process at various temperatures. The microstructure at the interfaces between powder particles and the effect of sintering temperature on interface characteristics were investigated using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The precipitates were observed at the interfaces between powder particles of the compacts. The amounts of the precipitates increased and the compositions changed with an increase in sintering temperature: MgO for the compact sintered at 613 K, MgAl2O4+MgO for those at 663 K and 713 K, and MgAl2O4 for those above 763 K. Comparing the results obtained by the PECS process with those of diffusion bonding experiments and thermodynamic calculation, it was suggested that the temperature at the interfaces between the particles was higher than that of the particles sintered by the PECS process.
Soil properties affecting wheat yields following drilling-fluid application.
Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D
2005-01-01
Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.
Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform.
Azzam, Shaimaa I; Obayya, Salah S A
2015-03-15
We investigate the polarization-dependent resonance tunneling effect in silicon waveguides to achieve ultra-compact and highly efficient polarization fitters for integrated silicon photonics, to the best of our knowledge for the first time. We hence propose simple structures for silicon-on-insulator transverse electric (TE)-pass and transverse magnetic (TM)-pass polarizers based on the resonance tunneling effect in silicon waveguides. The suggested TE-pass polarizer has insertion losses (IL), extinction ratio (ER), and return losses (RL) of 0.004 dB, 18 dB, and 24 dB, respectively; whereas, the TM-pass polarizer is characterized by IL, ER, and RL of 0.15 dB, 20 dB, and 23 dB, respectively. Both polarizers have an ultra-short device length of only 1.35 and 1.31 μm for the TE-pass and the TM-pass polarizers which are the shortest reported lengths to the best of our knowledge.
A PDA-based electrocardiogram/blood pressure telemonitor for telemedicine.
Bolanos, Marcos; Nazeran, Homayoun; Gonzalez, Izzac; Parra, Ricardo; Martinez, Christopher
2004-01-01
An electrocardiogram (ECG) / blood pressure (BP) telemonitor consisting of comprehensive integration of various electrical engineering concepts, devices, and methods was developed. This personal digital assistant-based (PDAbased) system focused on integration of biopotential amplifiers, photoplethysmographic measurement of blood pressure, microcontroller devices, programming methods, wireless transmission, signal filtering and analysis, interfacing, and long term memory devices (24 hours) to develop a state-of-the-art ECG/BP telemonitor. These instrumentation modules were developed and tested to realize a complete and compact system that could be deployed to assist in telemedicine applications and heart rate variability studies. The specific objective of this device was to facilitate the long term monitoring and recording of ECG and blood pressure signals. This device was able to acquire ECG/BP waveforms, transmit them wirelessly to a PDA, save them onto a compact flash memory, and display them on the LCD screen of the PDA. It was also capable of calculating the heart rate (HR) in beats per minute, and providing systolic and diastolic blood pressure values.
A compact source for bunches of singly charged atomic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murböck, T.; Birkl, G.; Schmidt, S.
2016-04-15
We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 10{sup 6} Mg{sup +}more » ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg{sup +} ions for sympathetic cooling of highly charged ions by laser-cooled {sup 24}Mg{sup +}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Oleg V.; N.S. Enikolopov Institute of Synthetic Polymer Materials of RAS, Profsoyuznaya st., Moscow, 117393; Kechek’yan, Alexander S.
Electrically conductive oriented polymer nano-composites of different compositions, based on the reactor powder of ultra-high-molecular-weight polyethylene (UHMWPE) with a special morphology, filled with particles of nanostructured graphite (NG), multi-walled carbon nanotubes (MWCNTs), and electrically conductive carbon black (CB), were investigated. Polymer composites were obtained via compaction of the mechanical mixture of the polymer and filler powder, followed by uniaxial deformation of the material under homogeneous shear (HS) conditions (all of the processing stages were conducted at room temperature). Resulted composites possess a high tensile strength, high level of the electrical conductivity and low percolation threshold, owing it to the formationmore » of the segregated conductive structure, The influence of the type of nanosized carbon filler, degree of the deformation under HS condition, temperature and etc. on the electrical conductivity and mechanical properties of strengthened conductive composites oriented under homogeneous shear conditions was investigated. Changes in the electrical conductivity of oriented composite materials during reversible “tension–shrinkage” cycles along the orientation axis direction were studied. A theoretical approach, describing the process of transformation of the conductive system as a response on polymer phase deformation and volume change, was proposed, based on the data received from the analysis of the conductivity behavior during the uniaxial deformation and thermal treatment of composites.« less
Development of Compact Ozonizer with High Ozone Output by Pulsed Power
NASA Astrophysics Data System (ADS)
Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei
Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.
Compact diode laser source for multiphoton biological imaging
Niederriter, Robert D.; Ozbay, Baris N.; Futia, Gregory L.; Gibson, Emily A.; Gopinath, Juliet T.
2016-01-01
We demonstrate a compact, pulsed diode laser source suitable for multiphoton microscopy of biological samples. The center wavelength is 976 nm, near the peak of the two-photon cross section of common fluorescent markers such as genetically encoded green and yellow fluorescent proteins. The laser repetition rate is electrically tunable between 66.67 kHz and 10 MHz, with 2.3 ps pulse duration and peak powers >1 kW. The laser components are fiber-coupled and scalable to a compact package. We demonstrate >600 μm depth penetration in brain tissue, limited by laser power. PMID:28101420
Spherical torus fusion reactor
Martin Peng, Y.K.M.
1985-10-03
The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.
NASA Technical Reports Server (NTRS)
Harvey, Jason; Moore, Michael
2013-01-01
The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.
Wright, Heather M.; Cashman, Katharine V.
2014-01-01
Pyroclastic flows produced by large volcanic eruptions commonly densify after emplacement. Processes of gas escape, compaction, and welding in pyroclastic-flow deposits are controlled by the physical and thermal properties of constituent material. Through measurements of matrix porosity, permeability, and electrical conductivity, we provide a framework for understanding the evolution of pore structure during these processes. Using data from the Shevlin Park Tuff in central Oregon, United States, and from the literature, we find that over a porosity range of 0%–70%, matrix permeability varies by almost 10 orders of magnitude (from 10–20 to 10–11 m2), with over three orders of magnitude variation at any given porosity. Part of the variation at a given porosity is due to permeability anisotropy, where oriented core samples indicate higher permeabilities parallel to foliation (horizontally) than perpendicular to foliation (vertically). This suggests that pore space is flattened during compaction, creating anisotropic crack-like networks, a geometry that is supported by electrical conductivity measurements. We find that the power law equation: k1 = 1.3 × 10–21 × ϕ5.2 provides the best approximation of dominant horizontal gas loss, where k1 = permeability, and ϕ = porosity. Application of Kozeny-Carman fluid-flow approximations suggests that permeability in the Shevlin Park Tuff is controlled by crack- or disk-like pore apertures with minimum widths of 0.3 and 7.5 μm. We find that matrix permeability limits compaction over short times, but deformation is then controlled by competition among cooling, compaction, water resorption, and permeable gas escape. These competing processes control the potential for development of overpressure (and secondary explosions) and the degree of welding in the deposit, processes that are applicable to viscous densification of volcanic deposits in general. Further, the general relationships among porosity, permeability, and pore geometry are relevant for flow of any fluid through an ignimbritic host.
Electrically controlled magnetic circular dichroism and Faraday rotation in graphene
NASA Astrophysics Data System (ADS)
Kuzmenko, Alexey; Poumirol, Jean-Marie; Liu, Peter Q. Liu; Slipchenko, Tetiana; Nikitin, Alexey; Martin-Moreno, Luis; Faist, Jerome
Magnetic circular dichroism (MCD) and Faraday rotation (FR) are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials the strength and the sign of these effects can be only controlled by the field value and its orientation. Using broadband terahertz magneto-electro-optical spectroscopy, we demonstrate that in graphene both the MCD and the FR can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field due to the unique properties of the Dirac fermions. Our results indicate the fundamental possibility of compact, efficient, electrically invertible and wavelength-tunable non-reciprocal passive terahertz elements based on graphene operating at ambient temperature.
Compact Instruments Measure Heat Potential
NASA Technical Reports Server (NTRS)
2009-01-01
Based in Huntsville, Alabama, AZ Technology Inc. is a woman- and veteran-owned business that offers expertise in electromechanical-optical design and advanced coatings. AZ Technology has received eight Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center for the development of spectral reflectometers and the measurement of surface thermal properties. The company uses a variety of measurement services and instruments, including the Spectrafire, a portable spectral emissometer it used to assist General Electric with the design of its award-winning Giraffe Warmer for neonatal intensive care units.
SP-100 flight qualification testing assessment
NASA Technical Reports Server (NTRS)
Jeanmougin, Nanette M.; Moore, Roger M.; Wait, David L.; Jacox, Michael G.
1988-01-01
The SP-100 is a compact space power system driven by a nuclear reactor that provides 100 kWe to the user at 200 VDC. The thermal energy generated by the nuclear reactor is converted into electrical energy by passive thermoelectric devices. Various options for tailoring the MIL-STD-1540B guidelines to the SP-100 nuclear power system are discussed. This study aids in selecting the appropriate qualification test program based on the cost, schedule, and test effectiveness of the various options.
Influence of winding construction on starter-generator thermal processes
NASA Astrophysics Data System (ADS)
Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.
2018-01-01
Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.
NASA Astrophysics Data System (ADS)
Huang, Tao; Zou, Yanhui; Lv, Jianhong; Yang, Jinchun; Tao, Li; Zhou, Jianfei
2017-09-01
Human body under high-voltage AC transmission lines will produce a certain induced voltage due to the electrostatic induction. When the human body contacts with some grounded objects, the charges transfer from the body to the ground and produce contact current which may cause transient electric shock. Using CDEGS and ATP/EMTP, the paper proposes a method for quantitatively calculating the transient electric shock characteristics. It calculates the human body voltage, discharge current and discharge energy under certain 500kV compact-type transmission lines and predicts the corresponding human feelings. The results show that the average root value of discharge current is less than 10mA when the human body is under the 500kV compact-type transmission lines and the human body is overall safe if the transmission lines satisfy the relevant design specifications. It concludes that the electric field strength above the ground should be limited to 4kV/m through the residential area for the purpose of reducing the electromagnetic impact.
Wang, Tengxing; Jiang, Wei; Divan, Ralu; ...
2017-08-03
A Permalloy (Py) thin film enabled tunable 3-D solenoid inductor is designed and fabricated. The special configuration of magnetic core is discussed and by selectively patterning Py thin film, the proposed tunable inductor can work at frequency up to several GHz range. The inductance of the solenoid inductor can be electrically tuned by dc current and the tunability is above 10%. Utilizing the implemented Py enabled tunable solenoid inductor and Lead Zirconate Titanate (PZT) thin film enabled metal-insulator-metal (MIM) capacitor, a compact fully electrically tunable lumped elements phase shifter is achieved. The tunable phase shifter has both inductive and capacitivemore » tunability and the dual tunability significantly improves the tuning range and design flexibility. Moreover, the dual tunability is able to retain the equivalent characteristic impedance of the device in the process of the phase being tuned. Here, the phase of the device can be tuned by fully electrical methods and when dc current and dc voltage are provided, the length normalized phase tunability is up to 210°/cm« less
Müller, Michael Thomas; Hilarius, Konrad; Liebscher, Marco; Lellinger, Dirk; Alig, Ingo; Pötschke, Petra
2017-05-18
The influence of the morphology of industrial graphite nanoplate (GNP) materials on their dispersion in polycarbonate (PC) is studied. Three GNP morphology types were identified, namely lamellar, fragmented or compact structure. The dispersion evolution of all GNP types in PC is similar with varying melt temperature, screw speed, or mixing time during melt mixing. Increased shear stress reduces the size of GNP primary structures, whereby the GNP aspect ratio decreases. A significant GNP exfoliation to individual or few graphene layers could not be achieved under the selected melt mixing conditions. The resulting GNP macrodispersion depends on the individual GNP morphology, particle sizes and bulk density and is clearly reflected in the composite's electrical, thermal, mechanical, and gas barrier properties. Based on a comparison with carbon nanotubes (CNT) and carbon black (CB), CNT are recommended in regard to electrical conductivity, whereas, for thermal conductive or gas barrier application, GNP is preferred.
Agricultural and Food Processing Applications of Pulsed Power Technology
NASA Astrophysics Data System (ADS)
Takaki, Koichi; Ihara, Satoshi
Recent progress of agricultural and food processing applications of pulsed power is described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power have been developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as decontamination of air and liquid, germination promotion, inhabitation of saprophytes growth, extraction of juice from fruits and vegetables, and fertilization of liquid medium, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei.
Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng
2018-04-30
Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.
Compact E x B mass separator for heavy ion beams.
Wada, M; Hashino, T; Hirata, F; Kasuya, T; Sakamoto, Y; Nishiura, M
2008-02-01
A compact E x B mass separator that deflects beam by 30 degrees has been designed and built to prove its principle of operation. The main part of the separator is contained in a shielding box of 11 cm long, 9 cm wide, and 1.5 cm high. An electromagnet of 7 cm pole diameter produced variable magnetic field in the mass separation region instead of a couple of permanent magnets which is to be used in the final design. The experimental result agreed well with the theoretical prediction, and larger mass ions is bent with less magnetic field with the aid of the deflection electric field. The reduction in resolving power for mass separation due to the deflection electric field has been investigated experimentally.
Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift.
She, Alan; Zhang, Shuyan; Shian, Samuel; Clarke, David R; Capasso, Federico
2018-02-01
Focal adjustment and zooming are universal features of cameras and advanced optical systems. Such tuning is usually performed longitudinally along the optical axis by mechanical or electrical control of focal length. However, the recent advent of ultrathin planar lenses based on metasurfaces (metalenses), which opens the door to future drastic miniaturization of mobile devices such as cell phones and wearable displays, mandates fundamentally different forms of tuning based on lateral motion rather than longitudinal motion. Theory shows that the strain field of a metalens substrate can be directly mapped into the outgoing optical wavefront to achieve large diffraction-limited focal length tuning and control of aberrations. We demonstrate electrically tunable large-area metalenses controlled by artificial muscles capable of simultaneously performing focal length tuning (>100%) as well as on-the-fly astigmatism and image shift corrections, which until now were only possible in electron optics. The device thickness is only 30 μm. Our results demonstrate the possibility of future optical microscopes that fully operate electronically, as well as compact optical systems that use the principles of adaptive optics to correct many orders of aberrations simultaneously.
NASA Astrophysics Data System (ADS)
Bazaz Behbahani, Sanaz; Tan, Xiaobo
2017-08-01
Fish actively control their stiffness in different swimming conditions. Inspired by such an adaptive behavior, in this paper we study the design, prototyping, and dynamic modeling of compact, tunable-stiffness fins for robotic fish, where electrorheological (ER) fluid serves as the enabling element. A multi-layer composite fin with an ER fluid core is prototyped and utilized to investigate the influence of electrical field on its performance. Hamilton's principle is used to derive the dynamic equations of motion of the flexible fin, and Lighthill's large-amplitude elongated-body theory is adopted to estimate the hydrodynamic force when the fin undergoes base-actuated rotation. The dynamic equations are then discretized using the finite element method, to obtain an approximate numerical solution. Experiments are conducted on the prototyped flexible ER fluid-filled beam for parameter identification and validation of the proposed model, and for examining the effectiveness of electrically controlled stiffness tuning. In particular, it is found that the natural frequency is increased by almost 40% when the applied electric field changes from 0 to 1.5× {10}6 {{V}} {{{m}}}-1.
A compact multi-wire-layered secondary winding for Tesla transformer.
Zhao, Liang; Su, Jian-Cang; Li, Rui; Wu, Xiao-Long; Xu, Xiu-Dong; Qiu, Xu-Dong; Zeng, Bo; Cheng, Jie; Zhang, Yu; Gao, Peng-Cheng
2017-05-01
A compact multi-wire-layered (MWL) secondary winding for a Tesla transformer is put forward. The basic principle of this winding is to wind the metal wire on a polymeric base tube in a multi-layer manner. The tube is tapered and has high electrical strength and high mechanical strength. Concentric-circle grooves perpendicular to the axis of the tube are carved on the surface of the tube to wind the wire. The width of the groove is basically equal to the diameter of the wire so that the metal wire can be fixed in the groove without glue. The depth of the groove is n times of the diameter of the wire to realize the n-layer winding manner. All the concentric-circle grooves are connected via a spiral groove on the surface of the tube to let the wire go through. Compared with the traditional one-wire-layered (OWL) secondary winding for the Tesla transformer, the most conspicuous advantage of the MWL secondary winding is that the latter is compact with only a length of 2/n of the OWL. In addition, the MWL winding has the following advantages: high electrical strength since voids are precluded from the surface of the winding, high mechanical strength because polymer is used as the material of the base tube, and reliable fixation in the Tesla transformer as special mechanical connections are designed. A 2000-turn MWL secondary winding is fabricated with a winding layer of 3 and a total length of 1.0 m. Experiments to test the performance of this winding on a Tesla-type pulse generator are conducted. The results show that this winding can boost the voltage to 1 MV at a repetition rate of 50 Hz reliably for a lifetime longer than 10 4 pulses, which proves the feasibility of the MWL secondary winding.
A compact multi-wire-layered secondary winding for Tesla transformer
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jian-cang; Li, Rui; Wu, Xiao-long; Xu, Xiu-dong; Qiu, Xu-dong; Zeng, Bo; Cheng, Jie; Zhang, Yu; Gao, Peng-cheng
2017-05-01
A compact multi-wire-layered (MWL) secondary winding for a Tesla transformer is put forward. The basic principle of this winding is to wind the metal wire on a polymeric base tube in a multi-layer manner. The tube is tapered and has high electrical strength and high mechanical strength. Concentric-circle grooves perpendicular to the axis of the tube are carved on the surface of the tube to wind the wire. The width of the groove is basically equal to the diameter of the wire so that the metal wire can be fixed in the groove without glue. The depth of the groove is n times of the diameter of the wire to realize the n-layer winding manner. All the concentric-circle grooves are connected via a spiral groove on the surface of the tube to let the wire go through. Compared with the traditional one-wire-layered (OWL) secondary winding for the Tesla transformer, the most conspicuous advantage of the MWL secondary winding is that the latter is compact with only a length of 2/n of the OWL. In addition, the MWL winding has the following advantages: high electrical strength since voids are precluded from the surface of the winding, high mechanical strength because polymer is used as the material of the base tube, and reliable fixation in the Tesla transformer as special mechanical connections are designed. A 2000-turn MWL secondary winding is fabricated with a winding layer of 3 and a total length of 1.0 m. Experiments to test the performance of this winding on a Tesla-type pulse generator are conducted. The results show that this winding can boost the voltage to 1 MV at a repetition rate of 50 Hz reliably for a lifetime longer than 104 pulses, which proves the feasibility of the MWL secondary winding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Two Senate bills, S. 1517 and S. 1578, were the subject of joint hearings on the issue of the disposal of low-level wastes. At issue was the inability to meet the January 1 deadline for the states to develop regional compacts. Witnesses discussed interim measures until the compacts are in place as proposed in the two bills. S. 1517 continues DOE financial and technical assistance, and revises the guidelines for regional compacts. S. 1578 focuses on improving the procedures for establishing and implementing the compacts. The witnesses presented the views of several states, the nuclear and electric power industries, environmentalmore » and safety groups, and others. Two appendices with additional responses and material submitted for the record follow the text of the two bills and the statements and testimony of 24 witnesses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasmine, P. Christina Lily; Peter, A. John, E-mail: a.john.peter@gmail.com
The dependence of electric field on the electronic and optical properties is investigated in a Cd{sub 0.8}Zn{sub 0.2}Se/ZnSe quantum dot. The hydrogenic binding energy, in the presence of electric field, is calculated with the spatial confinement effect. The electric field dependent optical gain with the photon energy is found using compact density matrix method. The results show that the electric field has a great influence on the optical properties of II-VI semiconductor quantum dot.
A microcomputer-based daily living activity recording system.
Matsuoka, Shingo; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Thayer, Julian F; Caldwell, W Morton
2003-01-01
A new daily living activity recording system has been developed for monitoring health conditions and living patterns, such as respiration, posture, activity/rest ratios and general activity level. The system employs a piezoelectric sensor, a dual axis accelerometer, two low-power active filters, a low-power 8-bit single chip microcomputer and a 128 MB compact flash memory. The piezoelectric sensor, whose electrical polarization voltage is produced by mechanical strain, detects body movements. Its high-frequency output components reflect body movements produced by walking and running activities, while the low frequency components are mainly respiratory. The dual axis accelerometer detects, from body X and Y tilt angles, whether the patient is standing, sitting or lying down (prone, supine, left side or right side). The detected respiratory, behavior and posture signals are stored by the compact flash memory. After recording, these data are downloaded to a desktop computer and analyzed.
A compact 3 T all HTS cryogen-free MRI system
NASA Astrophysics Data System (ADS)
Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.
2017-12-01
We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.
Toroidal Localized Spoof Plasmons on Compact Metadisks.
Qin, Pengfei; Yang, Yihao; Musa, Muhyiddeen Yahya; Zheng, Bin; Wang, Zuojia; Hao, Ran; Yin, Wenyan; Chen, Hongsheng; Li, Erping
2018-03-01
Localized spoof surface plasmons (LSSPs) have recently emerged as a new research frontier due to their unique properties and increasing applications. Despite the importance, most of the current researches only focus on electric/magnetic LSSPs. Very recent research has revealed that toroidal LSSPs, LSSPs modes with multipole toroidal moments, can be achieved at a point defect in a 2D groove metal array. However, this metamaterial shows the limitations of large volume and poor compatibility to photonic integrated circuits. To overcome the above challenges, here it is proposed and experimentally demonstrated compact planar metadisks based on split ring resonators to support the toroidal LSSPs at microwave frequencies. Additionally, it is experimentally demonstrated that the toroidal LSSPs resonance is very sensitive to the structure changes and the background medium. These might facilitate its utilization in the design and application of plasmonic deformation sensors and the refractive index sensors.
Linear electric field mass spectrometry
McComas, David J.; Nordholt, Jane E.
1992-01-01
A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.
Influence of temporary organic bond nature on the properties of compacts and ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ditts, A., E-mail: ditts@tpu.ru; Revva, I., E-mail: revva@tpu.ru; Pogrebenkov, V.
2016-01-15
This work contains results of investigation of obtaining high thermally conductive ceramics from commercial powders of aluminum nitride and yttrium oxide by the method of monoaxial compaction of granulate. The principal scheme of preparation is proposed and technological properties of granulate are defined. Compaction conditions for simple items to use as heat removal in microelectronics and power electrical engineering have been established. Investigations of thermophysical properties of obtained ceramics and its structure by the XRD and SEM methods have been carried out. Ceramics with thermal conductivity from 172 to 174 W/m·K has been obtained as result of this work.
A compact microwave patch applicator for hyperthermia treatment of cancer.
Chakaravarthi, Geetha; Arunachalam, Kavitha
2014-01-01
Design and development of a compact microstrip C-type patch applicator for hyperthermia treatment of cancer is presented. The patch antenna is optimized for resonance at 434 MHz, return loss (S11) better than -15dB and co-polarized electric field in tissue. Effect of water bolus thickness on power delivery is studied for improved power coupling. Numerical simulations for antenna design optimization carried out using EM simulation software, Ansys HFSS(®), USA were experimentally verified. The effective field coverage for the optimized patch antenna and experimental results indicate that the compact antenna resonates at ISM frequency 434 MHz with better than -15 dB power coupling.
Experimental research made during a city cycle on the feasibility of electrically charged SI engines
NASA Astrophysics Data System (ADS)
Kocsis, Levente B.; Burnete, Nicolae
2014-06-01
The paper presents experimental research on performance improvements in a city cycle (operating mostly transient) of a compact class vehicle equipped with a turbocharged SI engine which had attached an electric charger, to improve engine response at low operational speeds. During tests, functional parameters, energy consumption of the electric charger and vehicle performances were measured while driving in two operating conditions: with active and inactive electric charger. The tests were carried out on a well-defined path, in the same driving style, by the same driver.
A Compact Microwave Microfluidic Sensor Using a Re-Entrant Cavity.
Hamzah, Hayder; Abduljabar, Ali; Lees, Jonathan; Porch, Adrian
2018-03-19
A miniaturized 2.4 GHz re-entrant cavity has been designed, manufactured and tested as a sensor for microfluidic compositional analysis. It has been fully evaluated experimentally with water and common solvents, namely methanol, ethanol, and chloroform, with excellent agreement with the expected behaviour predicted by the Debye model. The sensor's performance has also been assessed for analysis of segmented flow using water and oil. The samples' interaction with the electric field in the gap region has been maximized by aligning the sample tube parallel to the electric field in this region, and the small width of the gap (typically 1 mm) result in a highly localised complex permittivity measurement. The re-entrant cavity has simple mechanical geometry, small size, high quality factor, and due to the high concentration of electric field in the gap region, a very small mode volume. These factors combine to result in a highly sensitive, compact sensor for both pure liquids and liquid mixtures in capillary or microfluidic environments.
NASA Astrophysics Data System (ADS)
Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.
2010-02-01
We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.
Handheld probe for portable high frame photoacoustic/ultrasound imaging system
NASA Astrophysics Data System (ADS)
Daoudi, K.; van den Berg, P. J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.; Steenbergen, W.
2013-03-01
Photoacoustics is a hybrid imaging modality that is based on the detection of acoustic waves generated by absorption of pulsed light by tissue chromophors. In current research, this technique uses large and costly photoacoustic systems with a low frame rate imaging. To open the door for widespread clinical use, a compact, cost effective and fast system is required. In this paper we report on the development of a small compact handset pulsed laser probe which will be connected to a portable ultrasound system for real-time photoacoustic imaging and ultrasound imaging. The probe integrates diode lasers driven by an electrical driver developed for very short high power pulses. It uses specifically developed highly efficient diode stacks with high frequency repetition rate up to 10 kHz, emitting at 800nm wavelength. The emitted beam is collimated and shaped with compact micro optics beam shaping system delivering a homogenized rectangular laser beam intensity distribution. The laser block is integrated with an ultrasound transducer in an ergonomically designed handset probe. This handset is a building block enabling for a low cost high frame rate photoacoustic and ultrasound imaging system. The probe was used with a modified ultrasound scanner and was tested by imaging a tissue mimicking phantom.
Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy
NASA Astrophysics Data System (ADS)
Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.
2005-11-01
Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59T at the extraction side and 0.87T at the gas-injection side, while the minimum B strength is 0.25T. These parameters have been optimized for the production of C4+ based on the experience at the 10GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320mm and a length of 295mm. The beam intensity of C4+ was obtained to be 530μA under an extraction voltage of 40kV. The beam stability was better than 6% at C4+ of 280μA during 90h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper.
Compact, maintainable 80-KeV neutral beam module
Fink, Joel H.; Molvik, Arthur W.
1980-01-01
A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Paniagua, John; Rather, John
2007-01-01
MIC (Magnetically Inflated Cables) is a new approach for robotically erecting very large, strong, rigid, and ultra-lightweight structures in space. MIC structures use a network of high current (SC) cables with attached high tensile strength Kevlar or Spectra tethers. MIC is launched as a compact package of coiled SC cables and tethers on a conventional launch vehicle. Once in space the SC cables are electrically energized. The resultant strong outwards magnetic forces expand them and the restraining tethers into a large structure, which can be 100's of meters in size. MIC structures can be configured for many different applications, including solar electric generation, solar thermal propulsion, energy storage, large space telescopes, magnetic shielding for astronauts, etc. The MIC technology components, including high temperature superconductors (HTS), thermal insulation, high strength tethers, and cryogenic refrigerators all exist commercially. Refrigeration requirements are very modest, on the order of 100 watts thermal per kilometer of MIC cable, with an input electric power to the refrigeration system of ~5 kW(e) per km. baseline MIC designs are described for a manned lunar base, including: 1) a 1 MW(e) solar electric system, 2) a high Isp (~900 seconds) solar thermal tug to transport 30 ton payloads between the Earth and the Moon, 3) a 2000 Megajoule electric energy storage system for peaking and emergency power, and 4) a large (~1 km) space telescope.
Efficient entanglement distribution over 200 kilometers.
Dynes, J F; Takesue, H; Yuan, Z L; Sharpe, A W; Harada, K; Honjo, T; Kamada, H; Tadanaga, O; Nishida, Y; Asobe, M; Shields, A J
2009-07-06
Here we report the first demonstration of entanglement distribution over a record distance of 200 km which is of sufficient fidelity to realize secure communication. In contrast to previous entanglement distribution schemes, we use detection elements based on practical avalanche photodiodes (APDs) operating in a self-differencing mode. These APDs are low-cost, compact and easy to operate requiring only electrical cooling to achieve high single photon detection efficiency. The self-differencing APDs in combination with a reliable parametric down-conversion source demonstrate that entanglement distribution over ultra-long distances has become both possible and practical. Consequently the outlook is extremely promising for real world entanglement-based communication between distantly separated parties.
A compact model of the reverse gate-leakage current in GaN-based HEMTs
NASA Astrophysics Data System (ADS)
Ma, Xiaoyu; Huang, Junkai; Fang, Jielin; Deng, Wanling
2016-12-01
The gate-leakage behavior in GaN-based high electron mobility transistors (HEMTs) is studied as a function of applied bias and temperature. A model to calculate this current is given, which shows that trap-assisted tunneling, trap-assisted Frenkel-Poole (FP) emission, and direct Fowler-Nordheim (FN) tunneling have their main contributions at different electric field regions. In addition, the proposed model clearly illustrates the effect of traps and their assistance to the gate leakage. We have demonstrated the validity of the model by comparisons between model simulation results and measured experimental data of HEMTs, and a good agreement is obtained.
Linear electric field mass spectrometry
McComas, D.J.; Nordholt, J.E.
1992-12-01
A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.
NASA Astrophysics Data System (ADS)
Zumr, David; Vláčilová, Markéta; Dostál, Tomáš; Jeřábek, Jakub; Sobotková, Martina; Sněhota, Michal
2015-04-01
Soil compaction is a well recognized phenomena in the agricultural land. Various effects can alter the degree of the compaction in the field. The topsoil is regularly loosened due to agrotechnical operations, but the subsoil remains usually compacted. Various studies show increasing bulk density and decreasing saturated hydraulic conductivity in the plough pan, even though some authors argue that it does not have to be always the case due to presence of bio-macropores. Hence the structural properties of the subsoil and the spatial distribution of the compacted layer depth within the cultivated fields are important factors influencing soil water regime, nutrients regime and runoff generation. The aim of the contribution is to present the results of the monitoring of the plough pan depth spatial distribution at the experimental catchment Nucice (Central Bohemia, Czech Republic). The soils are classified as Luvisols and Cambisols with a loamy Ap horizon (0.1 - 0.2 m deep) underlined by a silty and silty-clay B horizon. The content of clay particles in the topsoil is around 8%. The soil has low inner aggregate (soil matrix) hydraulic conductivity, with measured values of approximately 0.1 - 2 cm d-1. The bulk topsoil saturated hydraulic conductivity (Ks) is significantly higher and varies depending on the season. To observe the divide between topsoil and subsoil layers in detail and to be able to compare the soil structure and pore networks of both layers we inspected undisturbed soil samples with X-ray computed tomography. The divide between the conservatively tilled topsoil and the subsoil is clearly observable also on terrain. To identify its exact position we implemented a combination of penetrometry, soil sampling and electrical resistance tomography (ERT). The penetration tests accompanied by soil probing were done in an irregular network across the whole catchment based on the slopes and distance to the stream. Several 2D ERT measurements were done locally on a plot of approximately 10 x 50 m. Dipole-dipole scheme with electrode span of 10 cm was used. The results obtained by different techniques are in a good agreement with observed plough pan position. The contribution was prepared within the project of Czech Science Foundation No. 13-20388P. We thank Johannes Koestel from SLU Uppsala for his great help during CT imaging of the soil samples.
Ultra-compact Marx-type high-voltage generator
Goerz, David A.; Wilson, Michael J.
2000-01-01
An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.
Electrochemical cell with powdered electrically insulative material as a separator
Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell
Cooper, Tom O.; Miller, William E.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, is compacted as layers onto an electrode to form an integral electrode structure and assembled into the cell. The assembled cell is heated to its operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Method of preparing an electrode material of lithium-aluminum alloy
Settle, Jack L.; Myles, Kevin M.; Battles, James E.
1976-01-01
A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.
NASA Technical Reports Server (NTRS)
1996-01-01
SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.
Digital Microfluidics for Manipulation and Analysis of a Single Cell.
He, Jie-Long; Chen, An-Te; Lee, Jyong-Huei; Fan, Shih-Kang
2015-09-15
The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF), the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed.
Digital Microfluidics for Manipulation and Analysis of a Single Cell
He, Jie-Long; Chen, An-Te; Lee, Jyong-Huei; Fan, Shih-Kang
2015-01-01
The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF), the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed. PMID:26389890
Controlled generation of different orbital angular momentum states in a hybrid optical fiber
NASA Astrophysics Data System (ADS)
Heng, Xiaobo; Gan, Jiulin; Zhang, Zhishen; Qian, Qi; Xu, Shanhui; Yang, Zhongmin
2017-11-01
A new kind of hybrid optical fiber for different orbital angular momentum (OAM) states generation is proposed and investigated by simulation. The hybrid fiber is composed of three main regions: the core, the cladding and the bow-tie-shaped stress-applying zones (SAZs). The SAZs are symmetrically distributed on both sides of the core and filled with piezoelectric material PZT-5H which would generate radial mechanical movement when subjected to an electric field. The strain applied by the SAZs introduces anisotropic variation of the material permittivity which affect the propagation of the guided modes along the fiber core. The OAM modes of | l | = 1 , 2 , 3 can be generated by setting the appropriate electric potential applied in the SAZs. This fiber-based structure and electric control design enable the generation and adjustment of OAM states with the merits of accuracy, compactness and practicality, which would have potential application in OAM optical fiber communication systems and other systems utilizing OAM light.
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.
2014-12-01
Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.
DOT National Transportation Integrated Search
2017-08-01
Intelligent Compaction (IC) technique is a fast-developing technology for base and soil compaction quality control. Proof-rolling subgrades and bases using IC rollers upon completion of compaction can identify the less stiff spots and significantly i...
Müller, Michael Thomas; Hilarius, Konrad; Liebscher, Marco; Lellinger, Dirk; Alig, Ingo; Pötschke, Petra
2017-01-01
The influence of the morphology of industrial graphite nanoplate (GNP) materials on their dispersion in polycarbonate (PC) is studied. Three GNP morphology types were identified, namely lamellar, fragmented or compact structure. The dispersion evolution of all GNP types in PC is similar with varying melt temperature, screw speed, or mixing time during melt mixing. Increased shear stress reduces the size of GNP primary structures, whereby the GNP aspect ratio decreases. A significant GNP exfoliation to individual or few graphene layers could not be achieved under the selected melt mixing conditions. The resulting GNP macrodispersion depends on the individual GNP morphology, particle sizes and bulk density and is clearly reflected in the composite’s electrical, thermal, mechanical, and gas barrier properties. Based on a comparison with carbon nanotubes (CNT) and carbon black (CB), CNT are recommended in regard to electrical conductivity, whereas, for thermal conductive or gas barrier application, GNP is preferred. PMID:28772907
High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter
Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; Wustmann, B.; Koesterke, I.; Schwarz, M.; Freitag, M.; Arnold, A.; Teichert, J.; Justus, M.; Seidel, W.; Ilgner, C.; Awari, N.; Nicoletti, D.; Kaiser, S.; Laplace, Y.; Rajasekaran, S.; Zhang, L.; Winnerl, S.; Schneider, H.; Schay, G.; Lorincz, I.; Rauscher, A. A.; Radu, I.; Mährlein, S.; Kim, T. H.; Lee, J. S.; Kampfrath, T.; Wall, S.; Heberle, J.; Malnasi-Csizmadia, A.; Steiger, A.; Müller, A. S.; Helm, M.; Schramm, U.; Cowan, T.; Michel, P.; Cavalleri, A.; Fisher, A. S.; Stojanovic, N.; Gensch, M.
2016-01-01
Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution. PMID:26924651
High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter
Green, B.; Kovalev, S.; Asgekar, V.; ...
2016-02-29
Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields andmore » the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. In conclusion, we benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.« less
Silicon carbide transparent chips for compact atomic sensors
NASA Astrophysics Data System (ADS)
Huet, L.; Ammar, M.; Morvan, E.; Sarazin, N.; Pocholle, J.-P.; Reichel, J.; Guerlin, C.; Schwartz, S.
2017-11-01
Atom chips [1] are an efficient tool for trapping, cooling and manipulating cold atoms, which could open the way to a new generation of compact atomic sensors addressing space applications. This is in particular due to the fact that they can achieve strong magnetic field gradients near the chip surface, hence strong atomic confinement at moderate electrical power. However, this advantage usually comes at the price of reducing the optical access to the atoms, which are confined very close to the chip surface. We will report at the conference experimental investigations showing how these limits could be pushed farther by using an atom chip made of a gold microcircuit deposited on a single-crystal Silicon Carbide (SiC) substrate [2]. With a band gap energy value of about 3.2 eV at room temperature, the latter material is transparent at 780nm, potentially restoring quasi full optical access to the atoms. Moreover, it combines a very high electrical resistivity with a very high thermal conductivity, making it a good candidate for supporting wires with large currents without the need of any additional electrical insulation layer [3].
Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2004-01-01
The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.
Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun
2010-10-19
A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.
The influence of future electricity mix alternatives on southwestern US water resources
NASA Astrophysics Data System (ADS)
Yates, D.; Meldrum, J.; Averyt, K.
2013-12-01
A climate driven, water resource systems model of the southwestern US was used to explore the implications of growth, extended drought, and climate warming on the allocation of water among competing uses. The analysis focused on the water benefits from alternative thermoelectric generation mixes, but included other uses, namely irrigated agriculture, municipal indoor and outdoor use, and environmental and inter-state compact requirements. The model, referred to as WEAP-SW, was developed on the Water Evaluation and Planning (WEAP) platform, and is scenario-based and forward projecting from 2008 to 2050. The scenario includes a southwest population that grows from about 55 million to more than 100 million, a prolonged dry period, and a long-term warming trend of 2 ° C by mid-century. In addition, the scenario assumes that water allocation under shortage conditions would prioritize thermoelectric, environmental, and inter-state compacts by shorting first irrigated agriculture, then municipal demands. We show that while thermoelectric cooling water consumption is relatively small compared with other uses, the physical realities and the legal and institutional structures of water use in the region mean that relatively small differences in regional water use across different electricity mix scenarios correspond with more substantial impacts on individual basins and water use sectors. At a region-wide level, these choices influence the buffer against further water stress afforded the region through its generous storage capacity in reservoirs.
Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z
2014-04-08
A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.
Compensation for Lithography Induced Process Variations during Physical Design
NASA Astrophysics Data System (ADS)
Chin, Eric Yiow-Bing
This dissertation addresses the challenge of designing robust integrated circuits in the deep sub micron regime in the presence of lithography process variability. By extending and combining existing process and circuit analysis techniques, flexible software frameworks are developed to provide detailed studies of circuit performance in the presence of lithography variations such as focus and exposure. Applications of these software frameworks to select circuits demonstrate the electrical impact of these variations and provide insight into variability aware compact models that capture the process dependent circuit behavior. These variability aware timing models abstract lithography variability from the process level to the circuit level and are used to estimate path level circuit performance with high accuracy with very little overhead in runtime. The Interconnect Variability Characterization (IVC) framework maps lithography induced geometrical variations at the interconnect level to electrical delay variations. This framework is applied to one dimensional repeater circuits patterned with both 90nm single patterning and 32nm double patterning technologies, under the presence of focus, exposure, and overlay variability. Studies indicate that single and double patterning layouts generally exhibit small variations in delay (between 1--3%) due to self compensating RC effects associated with dense layouts and overlay errors for layouts without self-compensating RC effects. The delay response of each double patterned interconnect structure is fit with a second order polynomial model with focus, exposure, and misalignment parameters with 12 coefficients and residuals of less than 0.1ps. The IVC framework is also applied to a repeater circuit with cascaded interconnect structures to emulate more complex layout scenarios, and it is observed that the variations on each segment average out to reduce the overall delay variation. The Standard Cell Variability Characterization (SCVC) framework advances existing layout-level lithography aware circuit analysis by extending it to cell-level applications utilizing a physically accurate approach that integrates process simulation, compact transistor models, and circuit simulation to characterize electrical cell behavior. This framework is applied to combinational and sequential cells in the Nangate 45nm Open Cell Library, and the timing response of these cells to lithography focus and exposure variations demonstrate Bossung like behavior. This behavior permits the process parameter dependent response to be captured in a nine term variability aware compact model based on Bossung fitting equations. For a two input NAND gate, the variability aware compact model captures the simulated response to an accuracy of 0.3%. The SCVC framework is also applied to investigate advanced process effects including misalignment and layout proximity. The abstraction of process variability from the layout level to the cell level opens up an entire new realm of circuit analysis and optimization and provides a foundation for path level variability analysis without the computationally expensive costs associated with joint process and circuit simulation. The SCVC framework is used with slight modification to illustrate the speedup and accuracy tradeoffs of using compact models. With variability aware compact models, the process dependent performance of a three stage logic circuit can be estimated to an accuracy of 0.7% with a speedup of over 50,000. Path level variability analysis also provides an accurate estimate (within 1%) of ring oscillator period in well under a second. Another significant advantage of variability aware compact models is that they can be easily incorporated into existing design methodologies for design optimization. This is demonstrated by applying cell swapping on a logic circuit to reduce the overall delay variability along a circuit path. By including these variability aware compact models in cell characterization libraries, design metrics such as circuit timing, power, area, and delay variability can be quickly assessed to optimize for the correct balance of all design metrics, including delay variability. Deterministic lithography variations can be easily captured using the variability aware compact models described in this dissertation. However, another prominent source of variability is random dopant fluctuations, which affect transistor threshold voltage and in turn circuit performance. The SCVC framework is utilized to investigate the interactions between deterministic lithography variations and random dopant fluctuations. Monte Carlo studies show that the output delay distribution in the presence of random dopant fluctuations is dependent on lithography focus and exposure conditions, with a 3.6 ps change in standard deviation across the focus exposure process window. This indicates that the electrical impact of random variations is dependent on systematic lithography variations, and this dependency should be included for precise analysis.
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
Wei, Hong; Li, Zhipeng; Tian, Xiaorui; Wang, Zhuoxian; Cong, Fengzi; Liu, Ning; Zhang, Shunping; Nordlander, Peter; Halas, Naomi J; Xu, Hongxing
2011-02-09
We show that the local electric field distribution of propagating plasmons along silver nanowires can be imaged by coating the nanowires with a layer of quantum dots, held off the surface of the nanowire by a nanoscale dielectric spacer layer. In simple networks of silver nanowires with two optical inputs, control of the optical polarization and phase of the input fields directs the guided waves to a specific nanowire output. The QD-luminescent images of these structures reveal that a complete family of phase-dependent, interferometric logic functions can be performed on these simple networks. These results show the potential for plasmonic waveguides to support compact interferometric logic operations.
NASA Technical Reports Server (NTRS)
Robinson, Paul A., Jr.
1988-01-01
Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.
[Study on corrosion resistance of three non-noble porcelain alloys].
Wu, Zhikai; Xu, Sheng; Li, Wei; Teng, Jin; Li, Ning
2011-10-01
To study the electrochemical corrosion behavior of Co-Cr, Ni-Cr and Ni-Cr-Be based porcelain alloys in NaCl solution. Five samples of each alloy were made respectively, electric polarization curve of each alloy was obtained using potentiodynamic polarization technique. Self-corrosion potential (E(corr)), self-corrosion current density (I(corr), passive region and transpassivation potential were tested. Microstructure and constituent was examined using scanning electron microscopy and energy dispersive spectroscopy. Co-Cr alloy possessed the most desirable corrosion resistance because of its integrated, homogeneous and compact passive film. The poor compactness of Ni-Cr alloy's passive film decreased its corrosion resistance. Ni-Cr-Be alloy exhibited the worst corrosion resistance due to the Cr and Mo depleted Ni-Be eutectic phases in the alloy. Taking biological security into consideration, it is necessary to avoid the application of porcelain alloys with Be element. Co-Cr alloy with better biocompatibility possesses much broader prospect in the field of dental restoration.
Electromagnetic duality and the electric memory effect
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Seo, Min-Seok; Shiu, Gary
2018-02-01
We study large gauge transformations for soft photons in quantum electrodynamics which, together with the helicity operator, form an ISO(2) algebra. We show that the two non-compact generators of the ISO(2) algebra correspond respectively to the residual gauge symmetry and its electromagnetic dual gauge symmetry that emerge at null infinity. The former is helicity universal (electric in nature) while the latter is helicity distinguishing (magnetic in nature). Thus, the conventional large gauge transformation is electric in nature, and is naturally associated with a scalar potential. We suggest that the electric Aharonov-Bohm effect is a direct measure for the electromagnetic memory arising from large gauge transformations.
Liu, Zhibin; Liu, Songyu; Cai, Yi; Fang, Wei
2015-06-01
As the dielectric constant and conductivity of petroleum products are different from those of the pore water in soil, the electrical resistivity characteristics of oil-contaminated soil will be changed by the corresponding oil type and content. The contaminated soil specimens were manually prepared by static compaction method in the laboratory with commercial kaolin clay and diesel oil. The water content and dry density of the first group of soil specimens were controlled at 10 % and 1.58 g/cm(3). Corresponding electrical resistivities of the contaminated specimens were measured at the curing periods of 7, 14, and 28 and 90, 120, and 210 days on a modified oedometer cell with an LCR meter. Then, the electrical resistivity characteristics of diesel oil-contaminated kaolin clay were discussed. In order to realize a resistivity-based oil detection method, the other group of oil-contaminated kaolin clay specimens was also made and tested, but the initial water content, oil content, and dry density were controlled at 0~18 %, 0~18 %, 1.30~1.95 g/cm(3), respectively. Based on the test data, a resistivity-based artificial neural network (ANN) was developed. It was found that the electrical resistivity of kaolin clay decreased with the increase of oil content. Moreover, there was a good nonlinear relationship between electrical resistivity and corresponding oil content when the water content and dry density were kept constant. The decreasing velocity of the electrical resistivity of oil-contaminated kaolin clay was higher before the oil content of 12 % than after 12 %, which indicated a transition of the soil from pore water-controlled into oil-controlled electrical resistivity characteristics. Through microstructural analysis, the decrease of electrical resistivity could be explained by the increase of saturation degree together with the collapse of the electrical double layer. Environmental scanning electron microscopy (ESEM) photos indicated that the diesel oil in kaolin clay normally had three kinds of effects including oil filling, coating, and bridging. Finally, a resistivity-based ANN model was established based on the database collected from the experiment data. The performance of the model was proved to be reasonably accepted, which puts forward a possible simple, economic, and effective tool to detect the oil content in contaminated clayey soils just with four basic parameters: wet density, dry density, measured moisture content, and electrical resistivity.
Pressure-induced effects and phase relations in Mg2NiH4
NASA Astrophysics Data System (ADS)
Gavra, Z.; Kimmel, G.; Gefen, Y.; Mintz, Moshe H.
1985-05-01
The low-temperature (<210 °C) crystallographic structure, electrical conductivity, and thermal stability of Mg2NiH4 powders compacted under isostatic pressures of up to 10 kbar were studied. A comparison is made with the corresponding properties of the noncompressed material. It has been concluded that under stress-free hydriding conditions performed below 210 °C, a two-phase hydride mixture is formed. Each of the hydride particles consists of an inner core composed of an hydrogen-deficient monoclinic phase coated by a layer of a stoichiometric orthorhombic phase. The monoclinic phase has a metalliclike electrical conductivity while the orthorhombic phase is insulating. High compaction pressures cause the transformation of the orthorhombic structure into the monoclinic one, thereby resulting in a pressure-induced insulator-to-conductor transition. Reduced decomposition temperatures are obtained for the compressed hydrides. This reduction is attributed to kinetic factors rather than to a reduced thermodynamic stability.
Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriarty, K.; Elchinger, M.; Hill, G.
2014-07-01
NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered tomore » capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.« less
A Way to Select Electrical Sheets of the Segment Stator Core Motors.
NASA Astrophysics Data System (ADS)
Enomoto, Yuji; Kitamura, Masashi; Sakai, Toshihiko; Ohara, Kouichiro
The segment stator core, high density winding coil, high-energy-product permanent magnet are indispensable technologies in the development of a compact and also high efficient motors. The conventional design method for the segment stator core mostly depended on experienced knowledge of selecting a suitable electromagnetic material, far from optimized design. Therefore, we have developed a novel design method in the selection of a suitable electromagnetic material based on the correlation evaluation between the material characteristics and motor performance. It enables the selection of suitable electromagnetic material that will meet the motor specification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, U.
The purpose of this CRADA is to develop a fabrication process to reduce the manufacturing cost for a very compact, high temperature, film-on-foil high energy-density PLZT (Pb-La-Zr- Ti-O) capacitor. Motivation for this CRADA is derived from the DOE’s Office of Vehicle Technologies (OVT) program, which seeks to advance technologies to improve vehicle fuel efficiency in the mid-term and facilitate the transition to electric drive vehicles over the longterm. The objective of Argonne’s work is to develop and characterize high-performance capacitors on base-metal foils. The PLZT film-on-foil prepared using a spin-coating technique
Development of a fiber shape polymeric humidity sensor
NASA Astrophysics Data System (ADS)
Cheng, Yen-Tse; Chen, Ling-Chih; Wang, Wei-Chih
2017-04-01
In this paper, we demonstrate a polymeric humidity sensor made of a cellulose based composite nanofiber. The device measures humidity via a humidity induced electrical impedance change. The compact, efficient design of the fiber makes it ideal to incorporate into textiles for biometrics applications such as body fluid monitoring. Initial test results show that the sensor can measure between 20 to 80% relative humidity with a sensitivity of about 2%. The impedance of the sensor material changes relatively linearly with relative humidity. The sensor also shows a relatively fast response ( 4s) compared to current commercial sensors.
Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua
2015-11-20
Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor's compact size makes it suitable for internal installation in high-voltage electrical equipment.
Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua
2015-01-01
Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor’s compact size makes it suitable for internal installation in high-voltage electrical equipment. PMID:26610506
Form factors of the d*(2380 ) resonance
NASA Astrophysics Data System (ADS)
Dong, Yubing; Shen, Pengnian; Zhang, Zongye
2018-06-01
In order to explore the possible physical quantities for judging different structures of the newly observed resonance d*(2380 ), we study its electromagnetic form factors. In addition to the electric charge monopole C 0 , we calculate its electric quadrupole E 2 , magnetic dipole M 1 , and magnetic octupole M 3 form factors on the base of the realistic coupled Δ Δ +C8C8 channel d* wave function with both the S - and D -partial waves. The results show that the magnetic dipole moment and electric quadrupole deformation of d* are 7.602 and 2.53 ×10-2 fm2 , respectively. The calculated magnetic dipole moment in the naive constituent quark model is also compared with the result of D12π picture. By comparing with partial results where the d* state is considered with a single Δ Δ and with a D12π structures, we find that in addition to the charge distribution of d*, the magnetic dipole moment and magnetic radius can be used to discriminate different structures of d*. Moreover, a quite small electric quadrupole deformation indicates that d* is more inclined to a slightly oblate shape due to our compact hexaquark dominated structure of d*.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of Medium Base Compact Fluorescent Lamps W Appendix W to Subpart B of Part 430 Energy DEPARTMENT OF... Consumption of Medium Base Compact Fluorescent Lamps 1. Scope: This appendix covers the test requirements used... rated life, rapid cycle stress, and lamp life of medium base compact fluorescent lamps. 2. Definitions...
Code of Federal Regulations, 2012 CFR
2012-01-01
... of Medium Base Compact Fluorescent Lamps W Appendix W to Subpart B of Part 430 Energy DEPARTMENT OF... Consumption of Medium Base Compact Fluorescent Lamps 1. Scope: This appendix covers the test requirements used... rated life, rapid cycle stress, and lamp life of medium base compact fluorescent lamps. 2. Definitions...
Code of Federal Regulations, 2011 CFR
2011-01-01
... of Medium Base Compact Fluorescent Lamps W Appendix W to Subpart B of Part 430 Energy DEPARTMENT OF... Consumption of Medium Base Compact Fluorescent Lamps 1. Scope: This appendix covers the test requirements used... rated life, rapid cycle stress, and lamp life of medium base compact fluorescent lamps. 2. Definitions...
Code of Federal Regulations, 2014 CFR
2014-01-01
... of Medium Base Compact Fluorescent Lamps W Appendix W to Subpart B of Part 430 Energy DEPARTMENT OF... Consumption of Medium Base Compact Fluorescent Lamps 1. Scope: This appendix covers the test requirements used... rated life, rapid cycle stress, and lamp life of medium base compact fluorescent lamps. 2. Definitions...
Application Research of Quality Control Technology of Asphalt Pavement based on GPS Intelligent
NASA Astrophysics Data System (ADS)
Wang, Min; Gao, Bo; Shang, Fei; Wang, Tao
2017-10-01
Due to the difficulty of steel deck pavement asphalt layer compaction caused by the effect of the flexible supporting system (orthotropic steel deck plate), it is usually hard and difficult to control for the site compactness to reach the design goal. The intelligent compaction technology is based on GPS control technology and real-time acquisition of actual compaction tracks, and then forms a cloud maps of compaction times, which guide the roller operator to do the compaction in accordance with the design requirement to ensure the deck compaction technology and compaction quality. From the actual construction situation of actual bridge and checked data, the intelligent compaction technology is significant in guaranteeing the steel deck asphalt pavement compactness and quality stability.
Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity
NASA Astrophysics Data System (ADS)
Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas
2018-03-01
A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.
Hydrogen generator, via catalytic partial oxidation of methane for fuel cells
NASA Astrophysics Data System (ADS)
Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano
It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Ismail, M. A.; Sopyan, I.; Rahman, H. Y.
2018-01-01
This paper presents the outcomes of an experimental investigation on the effects of forming temperature and sintering schedule to the final characteristics of FeCuAl powder mass formed at different temperature and sintered at different schedule. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at room temperature as well as elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other elemental powders, namely copper (Cu), and aluminum (Al) for 60 minutes and compacted at three different temperature, i.e., 30°C, 150°C, and 200°C by applying 425 MPa of simultaneous downward and upward axial loading to generate green compacts. The as-pressed samples were inspected visually and the defect-free green compacts were subsequently sintered in an argon gas fired furnace at 800°C for 60 min at three different heating/cooling rates, i.e., 5, 10, and 15°C/min, respectively. The sintered samples were then characterised for their physical, electrical, and mechanical properties. The microstructures of the sintered samples were also analysed. The results revealed that a forming temperature of 150°C and a sintering rate of 10°C/min could produce a product with better characteristics.
2009-12-31
system, being used to both harvest energy through regenerative braking and to deliver that energy for quick bursts of acceleration or low-speed...conventional braking . The most visible applications of hybrid-electric systems are for transportation, with examples ranging from compact cars to garbage...EDLCs is particularly effective for regenerative energy capture in hybrid-electric systems, but is also beneficial for addressing power quality issues
A Survey of Power Source Options for a Compact Battery Charger for Soldier Applications
2008-12-01
virtually any flammable liquid could be used as a fuel. Research on linear engines, enabled by developments in power control and linear electrical...the use of atmospheric oxygen. Molten carbonate and phosphoric acid fuel cells use hot corrosive liquid electrolytes and are best applied to...cells using DuPont’s NAFION membranes began at General Electric and Ballard Industries in the early 1980s. NAFION is a fluoropolymer with
Translations on Environmental Quality, Number 176
1978-08-21
impurities, which considerably reduces the production areas occupied by purification installations as a result of the compactness of the flotation ...industrial wastes such as [phosphogin], pyrite gas, ash from thermal electric power stations, slag from nonferrous and ferrous metallurgy and wastes
Package Holds Five Monolithic Microwave Integrated Circuits
NASA Technical Reports Server (NTRS)
Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.
1996-01-01
Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.
Compact stars in the non-minimally coupled electromagnetic fields to gravity
NASA Astrophysics Data System (ADS)
Sert, Özcan
2018-03-01
We investigate the gravitational models with the non-minimal Y(R)F^2 coupled electromagnetic fields to gravity, in order to describe charged compact stars, where Y( R) denotes a function of the Ricci curvature scalar R and F^2 denotes the Maxwell invariant term. We determine two parameter family of exact spherically symmetric static solutions and the corresponding non-minimal model without assuming any relation between energy density of matter and pressure. We give the mass-radius, electric charge-radius ratios and surface gravitational redshift which are obtained by the boundary conditions. We reach a wide range of possibilities for the parameters k and α in these solutions. Lastly we show that the models can describe the compact stars even in the more simple case α =3.
Hyperchaotic Dynamics for Light Polarization in a Laser Diode
NASA Astrophysics Data System (ADS)
Bonatto, Cristian
2018-04-01
It is shown that a highly randomlike behavior of light polarization states in the output of a free-running laser diode, covering the whole Poincaré sphere, arises as a result from a fully deterministic nonlinear process, which is characterized by a hyperchaotic dynamics of two polarization modes nonlinearly coupled with a semiconductor medium, inside the optical cavity. A number of statistical distributions were found to describe the deterministic data of the low-dimensional nonlinear flow, such as lognormal distribution for the light intensity, Gaussian distributions for the electric field components and electron densities, Rice and Rayleigh distributions, and Weibull and negative exponential distributions, for the modulus and intensity of the orthogonal linear components of the electric field, respectively. The presented results could be relevant for the generation of single units of compact light source devices to be used in low-dimensional optical hyperchaos-based applications.
NASA Astrophysics Data System (ADS)
Roy, Samarpita; Kundu Roy, Tapatee; Das, Debdulal
2018-03-01
The present work emphasizes the influence of Er2O3 addition on the microstructure and nonlinear current-voltage characteristics of ZnO based varistors prepared by mixing in a high energy ball mill followed by compaction and sintering at a temperature of 1100 °C for duration ranging from 0.5 to 8 h. Increasing sintering time is found to enhance the size of ZnO grains of the sintered pellets and thereby, degrades the electrical properties. However, Er2O3 addition retards the grain growth of ZnO due to the generation of secondary spinel phases (ErVO4 and Er-rich) at grain boundaries and triple points that restrict the grain boundary migration. Er2O3 modified ZnO varistor sintered at 1100 °C for 0.5 h exhibits considerably improved electrical property with nonlinear exponent and breakdown field of 27 and 3880 V cm-1, respectively.
Adaptive microlens array based on electrically charged polyvinyl chloride/dibutyl phthalate gel
NASA Astrophysics Data System (ADS)
Xu, Miao; Ren, Hongwen
2016-09-01
We prepared an adaptive microlens array (MLA) using a polyvinyl chloride/dibutyl phthalate gel and an indium-tin-oxide (ITO) glass substrate. The gel forms a membrane on the glass substrate and the ITO electrode has a ring array pattern. When the membrane is electrically charged by a DC voltage, the surface of the membrane above each circular electrode in the ring array can be deformed with a convex shape. As a result, the membrane functions as an MLA. By applying a voltage from 20 to ˜65 V to the electrode, the focal length of each microlens can be tuned from 300 to ˜160 μm. The dynamic response time can by reduced largely by changing the polarity of the DC voltage. Due to the advantages of optical isotropy, compact structure, and good stability, our MLA has potential applications in imaging, biometrics, and electronic displays.
Magnetically driven jets and winds: Exact solutions
NASA Technical Reports Server (NTRS)
Contopoulos, J.; Lovelace, R. V. E.
1994-01-01
We present a general class of self-similar solutions of the full set of MHD equations that include matter flow, electromagnetic fields, pressure, and gravity. The solutions represent axisymmetric, time-independent, nonrelativistic, ideal, magnetohydrodynamic, collimated outflows (jet and winds) from magnetized accretion disks around compact objects. The magnetic field extracts angular momentum from the disk, accelerates the outflows perpedicular to the disk, and provides collimation at large distances. The terminal outflow velocities are of the order of or greater than the rotational velocity of the disk at the base of the flow. When a nonzero electric current flows along the jet, the outflow radius oscillates with axial distance, whereas when the total electric current is zero (with the return current flowing across the jet's cross section), the outflow radius increase to a maximum and then decreases. The method can also be applied to relativistic outflows.
Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells
2013-01-01
Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059
Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred
2009-01-05
We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.
A smart microelectromechanical sensor and switch triggered by gas
NASA Astrophysics Data System (ADS)
Bouchaala, Adam; Jaber, Nizar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.
2016-07-01
There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.
Bulk Superconductors in Mobile Application
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.
We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.
GaN-Based Laser Wireless Power Transfer System.
De Santi, Carlo; Meneghini, Matteo; Caria, Alessandro; Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid; Kalinic, Boris; Cesca, Tiziana; Meneghesso, Gaudenzio; Zanoni, Enrico
2018-01-17
The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications.
GaN-Based Laser Wireless Power Transfer System
Meneghini, Matteo; Caria, Alessandro; Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid; Kalinic, Boris; Meneghesso, Gaudenzio; Zanoni, Enrico
2018-01-01
The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications. PMID:29342114
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Rather, John
2010-01-01
A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light in weight. A 300 meter diameter MIC mirror in orbit for example, would weigh 20 metric tons and MIC structures can be easily developed and tested on Earth at small scale in existing evacuated chambers followed by larger scale tests in the atmosphere, using a vacuum tight enclosure on the small diameter superconducting cable to prevent air leakage into the evacuated thermal insulation around the superconducting cable.
NASA Astrophysics Data System (ADS)
Zhang, Li; Xie, Hong-Jing
2003-11-01
Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic QW have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic QW systems. The project supported in part by Guangdong Provincial Natural Science Foundation of China
Collision safety of a hard-shell low-mass vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaeser, R.; Walz, F.H.; Brunner, A.
1994-06-01
Low-mass vehicles and in particular low-mass electric vehicles as produced today in very small quantities are in general not designed for crashworthiness in collisions. Particular problems of compact low-mass cars are: reduced length of the car front, low mass compared to other vehicles, and heavy batteries in the case of an electric car. With the intention of studying design improvements, three frontal crash tests were run last year: the first one with a commercial, lightweight electric car; the second with a reinforced version of the same car; and the last one with a car based on a different structural designmore » with a `hard-shell` car body. Crash tests showed that the latter solution made better use of the small zone available for continuous energy absorption. The paper discusses further the problem of frontal collisions between vehicles of different weight and, in particular, the side collision. A side-collision test was run with the hard-shell vehicle following the ECE lateral-impact test procedure at 50 km/h and led to results for the EuroSIDI-dummy well below current injury tolerance criteria.« less
Collision safety of a hard-shell low-mass vehicle.
Kaeser, R; Walz, F H; Brunner, A
1994-06-01
Low-mass vehicles and in particular low-mass electric vehicles as produced today in very small quantities are in general not designed for crashworthiness in collisions. Particular problems of compact low-mass cars are: reduced length of the car front, low mass compared to other vehicles, and heavy batteries in the case of an electric car. With the intention of studying design improvements, three frontal crash tests were run last year: the first one with a commercial, lightweight electric car; the second with a reinforced version of the same car; and the last one with a car based on a different structural design with a "hard-shell" car body. Crash tests showed that the latter solution made better use of the small zone available for continuous energy absorption. The paper discusses further the problem of frontal collisions between vehicles of different weight and, in particular, the side collision. A side-collision test was run with the hard-shell vehicle following the ECE lateral-impact test procedure at 50 km/h and led to results for the EuroSID1-dummy well below current injury tolerance criteria.
NASA Astrophysics Data System (ADS)
Krishnan, M.
2017-05-01
We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or rapid, reliable predictions are desired.
Reconfigurable dual-band metamaterial antenna based on liquid crystals
NASA Astrophysics Data System (ADS)
Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun
2018-05-01
In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward ‑16° to forward +13° at 7.2 GHz and backward ‑9° to forward +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.
Rapid solidification and dynamic compaction of Ni-base superalloy powders
NASA Technical Reports Server (NTRS)
Field, R. D.; Hales, S. J.; Powers, W. O.; Fraser, H. L.
1984-01-01
A Ni-base superalloy containing 13Al-9Mo-2Ta (in at. percent) has been characterized in both the rapidly solidified condition and after dynamic compaction. Dynamically compacted specimens were examined in the as-compacted condition and observations related to current theories of interparticle bonding. In addition, the recrystallization behavior of the compacted material at relatively low temperature (about 0.5-0.75 Tm) was investigated.
Hey, Tobias; Bajraktari, Niada; Davidsson, Åsa; Vogel, Jörg; Madsen, Henrik Tækker; Hélix-Nielsen, Claus; Jansen, Jes la Cour; Jönsson, Karin
2018-02-01
Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps to protect humans and the environment from adverse effects. Membrane technology has gained increasing attention as an alternative to conventional wastewater treatment due to increased urbanization. Among the available membrane technologies, microfiltration (MF) and forward osmosis (FO) have been selected for this study due to their specific characteristics, such as compactness and efficient removal of particles. In this study, two treatment concepts were evaluated with regard to their specific electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small- and medium-sized wastewater treatment plants at full scale: (1) direct MF and (2) direct FO with seawater as the draw solution. The framework of this study is based on a combination of data obtained from bench- and pilot-scale experiments applying direct MF and FO, respectively. Additionally, available complementary data from a Swedish full-scale wastewater treatment plant and the literature were used to evaluate the concepts in depth. The results of this study indicate that both concepts are net positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area-efficient manner with techniques that are already commercially available and with future membrane technology.
Freeze-Thaw Cycles Effects on Soil Compaction in a Clay Loam
NASA Astrophysics Data System (ADS)
Jabro, J.; Evans, R.; Iversen, W.
2012-04-01
Inappropriate soil management practices and heavier farm machinery and equipment have led to an increase in soil compaction in the last two decades prompting increased global concern regarding the impact of soil compaction on crop production and soil quality in modern mechanized agriculture. A 3-yr comprehensive study was established to evaluate the dynamic of freeze-thaw cycles on soil compaction in a clay loam soil. Plots of frozen soils were compared with plots where soils were prevented from freezing with electrically heated blankets commonly used on concrete. Results showed that frequent freeze-thaw cycles over the winter alleviated a majority of soil compaction at the 0 - 20 cm depth. Soil penetration resistance in compacted soils was reduced by 73 and 68% over the winter at the 0 - 10 and 10 - 20 cm depths, respectively, due to dynamic effects of freeze-thaw cycles on soil structure and particles configuration. In unfrozen compacted soils, the penetration resistance was also reduced by 50 and 60% over winter at the 0 - 10 and 10 - 20 cm depths, respectively, due to the biology of soil, microbial activity, and disruptive effects of shrink-swell cycles. These results have demonstrated of how repeated freeze-thaw cycles can alleviate soil compaction, alter soil physical quality and create optimal soil conditions required for profitable growth of agricultural crops. The results from this study will save growers considerable time, money and energy currently required to alleviate soil compaction using other methods such as sub-soiling and deep tillage. We believe that Mother Nature provides ways to reverse soil compaction and improve soil structure and aggregation through the dynamic of freeze-thaw cycles that soils in Montana and other parts of the country go through each year. We concluded that the Mother Nature is the most effective and cheapest way to alleviate soil compaction.
Kishii, Y; Kawasaki, S; Kitagawa, A; Muramatsu, M; Uchida, T
2014-02-01
A compact ECR ion source has utilized for carbon radiotherapy. In order to increase beam intensity with higher electric field at the extraction electrode and be better ion supply stability for long periods, electric geometry and surface conditions of an extraction electrode have been studied. Focusing attention on black deposited substances on the extraction electrode, which were observed around the extraction electrode after long-term use, the relation between black deposited substances and the electrical insulation property is investigated. The black deposited substances were inspected for the thickness of deposit, surface roughness, structural arrangement examined using Raman spectroscopy, and characteristics of electric discharge in a test bench, which was set up to simulate the ECR ion source.
An Impulse Electric Motor for Driving Recording Instruments
NASA Technical Reports Server (NTRS)
Joachim, W F
1923-01-01
The chief purpose in undertaking the development of this synchronous motor was the creation of a very small, compact power source, capable of driving the film drums of the recording aircraft instruments designed by the staff of the National Advisory Committee for Aeronautics.
Microelectrode for energy and current control of nanotip field electron emitters
NASA Astrophysics Data System (ADS)
Lüneburg, S.; Müller, M.; Paarmann, A.; Ernstorfer, R.
2013-11-01
Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10-30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.
Zheng, Lina; Kulkarni, Pramod; Zavvos, Konstantinos; Liang, Huayan; Birch, M. Eileen; Dionysiou, Dionysios D.
2017-01-01
Efficient microconcentration of aerosols to a substrate is essential for effectively coupling the collected particles to microscale optical spectroscopies such as laser-induced or spark microplasma, or micro-Raman or infrared spectroscopies. In this study, we present detailed characterization of a corona-based aerosol microconcentration technique developed previously (Diwakar and Kulkarni, 2012). The method involves two coaxial electrodes separated by a few millimeters, one held at a high electrical potential and the other grounded. The particles are collected on the collection (i.e., ground) electrode from a coaxial aerosol flow in a one-step charge-and-collect scheme using corona discharge and electrical precipitation between the two electrodes. Performance of the corona microconcentration method was determined experimentally by measuring collection efficiency, wall losses, and particle deposition density. An intrinsic spectroscopic sensitivity was experimentally determined for the aerosol microconcentrator. Using this sensitivity, we show that corona-based microconcentration is much superior to alternative methods, including filtration, focused impaction using aerodynamic lens, and spot collection using condensational growth. The method offers unique advantages for compact, hand-held aerosol analytical instrumentation. PMID:28626243
An 8-GW long-pulse generator based on Tesla transformer and pulse forming network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jiancang; Zhang, Xibo; Li, Rui
A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW andmore » a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.« less
An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.
Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin
2014-06-01
A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.
Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G
2015-12-01
Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.
Elastic airtight container for the compaction of air-sensitive materials
NASA Astrophysics Data System (ADS)
Shoulders, W. Taylor; Locke, Richard; Gaume, Romain M.
2016-06-01
We report on the design and fabrication of a simple and versatile elastic canister for the compaction and hot-pressing of air-sensitive materials. This device consists of a heated double-ended floating die assembly, enclosed in a compressible stainless steel bellows that allows the action of an external hydraulic press in a uniaxial motion. The enclosure is fitted with vacuum, gas, and electrical feedthroughs to allow for atmosphere control, heating, and in situ process monitoring. The overall chamber is compact enough to be portable and transferrable into and out of a standard laboratory glovebox, thus eliminating the problem of exposing samples to ambient atmosphere during loading and unloading. Our design has been tested up to 600 °C and 7500 kg-force applied load, conditions within which transparent ceramics of anhydrous halides can be produced.
Development of a compact bushing for NBI
NASA Astrophysics Data System (ADS)
de Esch, H. P. L.; Simonin, A.; Grand, C.; Lepetit, B.; Lemoine, D.; Márquez-Mijares, M.; Minea, T.; Caillault, L.; Seznec, B.; Jager, T.; Odic, E.; Kirkpatrick, M. J.; Teste, Ph.; Dessante, Ph.; Almaksour, K.
2017-08-01
Research into a novel type of compact bushing is being conducted through the HVIV (High Voltage holding In Vacuum) partnership between CEA-Cadarache1, GeePs-Centralesupélec4, LPGP3 and LCAR2. The bushing aims to concentrate the high electric field inside its interior, rather than in the vacuum tank. Hence the field emission current is also concentrated inside the bushing and it can be attempted to suppress this so-called dark current by conditioning the internal surfaces and by adding gas. LCAR have performed theoretical quantum mechanical studies of electron field emission and the role of adsorbates in changing the work function. LPGP studied the ionization of gas due to field emission current and the behavior of micro particles exposed to emissive electron current in the vacuum gap under high electric fields. Experiments at Geeps have clarified the role of surface conditioning in reducing the dark current. Geeps also found that adding low pressure nitrogen gas to the vacuum is much more effective than helium in reducing the field emission. An interesting observation is the growth of carbon structures after exposure of an electrode to the electric field. Finally, IRFM have performed experiments on a single stage test bushing that features a 36 cm high porcelain insulator and two cylindrical electrode surfaces in vacuum or low-pressure gas. Using 0.1 Pa N2 gas, the voltage holding exceeded 185 kV over a 40 mm "vacuum" gap without dark current. Above this voltage, exterior breakdowns occurred over the insulator, which was in air. The project will finish with the fabrication of a 2-stage compact bushing, capable to withstand 400 kV.
2017-01-01
Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities. PMID:28901137
Schmidt, Rita; Webb, Andrew
2017-10-11
Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.
Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María
2012-01-01
This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.
Nuclear powerplants for mobile applications.
NASA Technical Reports Server (NTRS)
Anderson, J. L.
1972-01-01
Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. This paper examines the technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.
Nuclear power plants for mobile applications
NASA Technical Reports Server (NTRS)
Anderson, J. L.
1972-01-01
Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.
Electokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.
2000-01-01
A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.
Highly miniaturized FEEP propulsion system (NanoFEEP) for attitude and orbit control of CubeSats
NASA Astrophysics Data System (ADS)
Bock, Daniel; Tajmar, Martin
2018-03-01
A highly miniaturized Field Emission Electric Propulsion (FEEP) system is currently under development at TU Dresden, called NanoFEEP [1]. The highly miniaturized thruster heads are very compact and have a volume of less than 3 cm3 and a weight of less than 6 g each. One thruster is able to generate continuous thrust of up to 8 μN with short term peaks of up to 22 μN. The very compact design and low power consumption (heating power demand between 50 and 150 mW) are achieved by using Gallium as metal propellant with its low melting point of approximately 30 °C. This makes it possible to implement an electric propulsion system consisting of four thruster heads, two neutralizers and the necessary electronics on a 1U CubeSat with its strong limitation in space, weight and available power. Even formation flying of 1U CubeSats using an electric propulsion system is possible with this system, which is shown by the example of a currently planned cooperation project between Wuerzburg University, Zentrum fuer Telematik and TU Dresden. It is planned to use the NanoFEEP electric propulsion system on the UWE (University Wuerzburg Experimental) 1U CubeSat platform [2] to demonstrate orbit and two axis attitude control with our electric propulsion system NanoFEEP. We present the latest performance characteristics of the NanoFEEP thrusters and the highly miniaturized electronics. Additionally, the concept and the current status of a novel cold neutralizer chip using Carbon Nano Tubes (CNTs) is presented.
Development of an ultra-compact mid-infrared attenuated total reflectance spectrophotometer
NASA Astrophysics Data System (ADS)
Kim, Dong Soo; Lee, Tae-Ro; Yoon, Gilwon
2014-07-01
Mid-infrared spectroscopy has been an important tool widely used for qualitative analysis in various fields. However, portable or personal use is size and cost prohibitive for either Fourier transform infrared or attenuated total reflectance (ATR) spectrophotometers. In this study, we developed an ultra-compact ATR spectrophotometer whose frequency band was 5.5-11.0 μm. We used miniature components, such as a light source fabricated by semiconductor technology, a linear variable filter, and a pyro-electric array detector. There were no moving parts. Optimal design based on two light sources, a zippered configuration of the array detector and ATR optics could produce absorption spectra that might be used for qualitative analysis. A microprocessor synchronized the pulsed light sources and detector, and all the signals were processed digitally. The size was 13.5×8.5×3.5 cm3 and the weight was 300 grams. Due to its low cost, our spectrophotometer can replace many online monitoring devices. Another application could be for a u-healthcare system installed in the bathroom or attached to a smartphone for monitoring substances in body fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Srutarshi; Rajan, Rehim N.; Singh, Sandeep K.
2014-07-01
DC Accelerators undergoes different types of discharges during its operation. A model depicting the discharges has been simulated to study the different transient conditions. The paper presents a Physics based approach of developing a compact circuit model of the DC Accelerator using Partial Element Equivalent Circuit (PEEC) technique. The equivalent RLC model aids in analyzing the transient behavior of the system and predicting anomalies in the system. The electrical discharges and its properties prevailing in the accelerator can be evaluated by this equivalent model. A parallel coupled voltage multiplier structure is simulated in small scale using few stages of coronamore » guards and the theoretical and practical results are compared. The PEEC technique leads to a simple model for studying the fault conditions in accelerator systems. Compared to the Finite Element Techniques, this technique gives the circuital representation. The lumped components of the PEEC are used to obtain the input impedance and the result is also compared to that of the FEM technique for a frequency range of (0-200) MHz. (author)« less
NASA Astrophysics Data System (ADS)
Kim, Kyunghun; Cho, Jinhwi; Jhon, Heesauk; Jeon, Jongwook; Kang, Myounggon; Eon Park, Chan; Lee, Jihoon; An, Tae Kyu
2017-05-01
Organic field-effect transistors (OFETs) have been developed over the past few decades due to their potential applications in future electronics such as wearable and foldable electronics. As the electrical performance of OFETs has improved, patterning organic semiconducting crystals has become a key issue for their commercialization. However, conventional soft lithographic techniques have required the use of expensive processes to fabricate high-resolution master molds. In this study, we demonstrated a cost-effective method to prepare nanopatterned master molds for the fabrication of high-performance nanowire OFETs. We repurposed commercially available compact discs (CDs) as master molds because they already have linear nanopatterns on their surface. Flexible nanopatterned templates were replicated from the CDs using UV-imprint lithography. Subsequently, 6,13-bis-(triisopropylsilylethynyl) pentacene nanowires (NWs) were grown from the templates using a capillary force-assisted lithographic technique. The NW-based OFETs showed a high average field-effect mobility of 2.04 cm2 V-1 s-1. This result was attributed to the high crystallinity of the NWs and to their crystal orientation favorable for charge transport.
FORTE Compact Intra-cloud Discharge Detection parameterized by Peak Current
NASA Astrophysics Data System (ADS)
Heavner, M. J.; Suszcynsky, D. M.; Jacobson, A. R.; Heavner, B. D.; Smith, D. A.
2002-12-01
The Los Alamos Sferic Array (EDOT) has recorded over 3.7 million lightning-related fast electric field change data records during April 1 - August 31, 2001 and 2002. The events were detected by three or more stations, allowing for differential-time-of-arrival location determination. The waveforms are characterized with estimated peak currents as well as by event type. Narrow Bipolar Events (NBEs), the VLF/LF signature of Compact Intra-cloud Discharges (CIDs), are generally isolated pulses with identifiable ionospheric reflections, permitting determination of event source altitudes. We briefly review the EDOT characterization of events. The FORTE satellite observes Trans-Ionospheric Pulse Pairs (TIPPs, the VHF satellite signature of CIDs). The subset of coincident EDOT and FORTE CID observations are compared with the total EDOT CID database to characterize the VHF detection efficiency of CIDs. The NBE polarity and altitude are also examined in the context of FORTE TIPP detection. The parameter-dependent detection efficiencies are extrapolated from FORTE orbit to GPS orbit in support of the V-GLASS effort (GPS based global detection of lightning).
High-Performance Power-Semiconductor Packages
NASA Technical Reports Server (NTRS)
Renz, David; Hansen, Irving; Berman, Albert
1989-01-01
A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.
Ferroelectric tunneling element and memory applications which utilize the tunneling element
Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN
2010-07-20
A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.
Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lei; Tittel, Frank K.; Li, Chunguang
2016-02-25
Two compact TDLAS sensor systems based on different structural optical cores were developed. The two optical cores combine two recent developments, gallium antimonide (GaSb)-based ICL and a compact multipass gas cell (MPGC) with the goal to create compact TDLAS based sensors for the mid-IR gas detection with high detection sensitivity and low power consumption. The sensors achieved minimum detection limits of ~5 ppbv and ~8 ppbv, respectively, for CH 4 and C 2H 6 concentration measurements with a 3.7-W power consumption.
SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures
Chen, Qun
2013-01-01
Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes. PMID:23818830
SGC tests for influence of material composition on compaction characteristic of asphalt mixtures.
Chen, Qun; Li, Yuzhi
2013-01-01
Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.
Broadband electromagnetic analysis of compacted kaolin
NASA Astrophysics Data System (ADS)
Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander
2017-01-01
The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.
NASA Astrophysics Data System (ADS)
Kremer, Matthias P.; Tortschanoff, Andreas
2014-03-01
One key challenge in the field of microfluidics and lab-on-a-chip experiments for biological or chemical applications is the remote manipulation of fluids, droplets and particles. These can be volume elements of reactants, particles coated with markers, cells or many others. Light-driven microfluidics is one way of accomplishing this challenge. In our work, we manipulated micrometre sized polystyrene beads in a microfluidic environment by inducing thermal flows. Therefore, the beads were held statically in an unstructured microfluidic chamber, containing a dyed watery solution. Inside this chamber, the beads were moved along arbitrary trajectories on a micrometre scale. The experiments were performed, using a MOEMS (micro-opto-electro-mechanical-systems)-based laser scanner with a variable focal length. This scanner system is integrated in a compact device, which is flexibly applicable to various microscope setups. The device utilizes a novel approach for varying the focal length, using an electrically tunable lens. A quasi statically driven MOEMS mirror is used for beam steering. The combination of a tunable lens and a dual axis micromirror makes the device very compact and robust and is capable of positioning the laser focus at any arbitrary location within a three dimensional working space. Hence, the developed device constitutes a valuable extension to manually executed microfluidic lab-on-chip experiments.
Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers
NASA Astrophysics Data System (ADS)
Cassinerio, Marco; Gambetta, Alessio; Coluccelli, Nicola; Laporta, Paolo; Galzerano, Gianluca
2014-06-01
We report on a compact scheme for absolute referencing and coherent averaging for dual-comb based spectrometers, exploiting a single continuous-wave (CW) laser in a transfer oscillator configuration. The same CW laser is used for both absolute calibration of the optical frequency axis and the generation of a correction signal which is used for a real-time jitter compensation in a fully electrical feed-forward scheme. The technique is applied to a near-infrared spectrometer based on a pair of free-running mode-locked Er:fiber lasers, allowing to perform real-time absolute-frequency measurements over an optical bandwidth of more than 25 nm, with coherent interferogram averaging over 1-s acquisition time, leading to a signal-to-noise ratio improvement of 29 dB over the 50 μs single shot acquisition. Using 10-cm single pass cell, a value of 1.9 × 10-4 cm-1 Hz-0.5 noise-equivalent-absorption over 1 s integration time is obtained, which can be further scaled down with a multi-pass or resonant cavity. The adoption of a single CW laser, together with the absence of optical locks, and the full-fiber design makes this spectrometer a robust and compact system to be employed in gas-sensing applications.
Growth of Acousto-Optic Crystals for Applications in Infrared Region of Spectrum
2005-04-30
Acousto - optic (AO) modulators, deflectors, filters offer convenience, reliability, compact size and fast speed in regulation of optical beams. So far...extremely low acousto - optic figure of merit, which automatically results in high requirements on driving electric power and poor diffraction efficiency. It
NASA Astrophysics Data System (ADS)
Dreicer, H.
1987-09-01
Potential commercial fusion power systems must be acceptable from a safety and environmental standpoint. They must also promise to be competitive with other sources of energy (i.e., fossil, fission, etc.) when considered from the standpoint of the cost of electricity (COE) and the unit direct cost (UDC) in dollars/kWe. These costs are affected by a host of factors including recirculating power, plant availability, construction time, capital cost, etc., and are influenced by technological complexity. In an attempt to meet these requirements, the emphasis of fusion research in the United States has been moving toward smaller, lower-cost systems. There is increased interest in higher beta tokamaks and stellarators, and in compact alternate concepts such as the Reversed Field Pinch (RFP) and the Compact Toroids (CTs) which are, in part, the subject of this paper.
Qian, Linyong; Zhang, Dawei; Dai, Bo; Wang, Qi; Huang, Yuanshen; Zhuang, Songlin
2015-07-13
A novel bandwidth-tunable notch filter is proposed based on the guided-mode resonance effect. The notch is created due to the superposition spectra response of two guided-mode resonant filters. The compact, bandwidth tuning capability is realized by taking advantage the effect of spectra-to-polarization sensitivity in one-dimensional classical guided-mode resonance filter, and using a liquid crystal polarization rotator for precise and simple polarization control. The operation principle and the design of the device are presented, and we demonstrate it experimentally. The central wavelength is fixed at 766.4 nm with a relatively symmetric profile. The full width at half maximum bandwidth could be tuned from 8.6 nm to 18.2 nm by controlling the applied voltage in electrically-driving polarization rotator.
Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics
NASA Astrophysics Data System (ADS)
Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.
2013-12-01
In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.
Research on application of modern household design and intellective household system
NASA Astrophysics Data System (ADS)
Zhang, Kaisheng; Zeng, Yuan; Fan, Junli
2009-07-01
People spend most of their lives indoors. To build a comfortable human environment, is always a dream for humankind. From ancient to now, the development of architecture imprints the progress of human civilization. However, for today's architecture, steel and concrete are only the surface. Intelligent technology will create its spirit and offer the soul. Nowadays, there's new meaning for the connotation of household design. This paper mainly discusses Design of Home Intelligent Electronic Assistant System Based on Embedded Module of S3C2410. Conerning the aspects of Home Security System, Automatic Meter Reading System, Automatic Control System for Electrical appliances, and Data Intelligence Communication System, it compactly describes the system's constitution diagram and hardware module, thus making better use of Home Intelligent Electronic Assistant System Based on Embedded Module.
Electrical Imaging of Infiltration in Agricultural Soils on Long Island, New York
NASA Astrophysics Data System (ADS)
Lampousis, A.; Kenyon, P. M.; Sanwald, K.; Steiner, N.
2007-12-01
High resolution electrical resistivity imaging of vadose zone infiltration experiments was conducted on agricultural soils by the City College and Graduate Center of CUNY, in cooperation with Cornell University's Agricultural Stewardship Program and Long Island Horticultural Research and Extension Center (LIHREC) in Riverhead, New York. Measurements were made in active vineyards with a commercial resistivity imaging system, using a half- meter electrode spacing. Soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silty loam (BgA). The Riverhead and Haven soils are the most common types found on eastern Long Island. The Bridgehampton is considered the most fertile. Soil samples and measurements of soil compaction were collected at the same time as the geophysical measurements. In addition, remote sensing data were obtained for the three sites and processed to produce normalized difference vegetation index (NDVI) data to evaluate potential correlations between vegetation vigor, soil texture and water migration patterns. Applications of this study include continuous water content monitoring in high value cash crops (precision agriculture). Changes in electrical resistivity during infiltration are clearly visible at all three locations. Preliminary analysis of the results shows correlations of baseline resistivity with particle size distributions and correlations between changes in resistivity during infiltration and soil compaction data. Time-lapse electrical images of the three sites will also be compared with published properties for these soils, including particle size distribution, saturated hydraulic conductivity, available water capacity, and surface texture.
Bai, Yang; He, Hui-Min; Li, Ying; ...
2015-02-19
Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H 2O) 2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less
Design of a MEMS-based retina scanning system for biometric authentication
NASA Astrophysics Data System (ADS)
Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Schelinski, Uwe; Grüger, Heinrich
2014-05-01
There is an increasing need for reliable authentication for a number of applications such as e commerce. Common authentication methods based on ownership (ID card) or knowledge factors (password, PIN) are often prone to manipulations and may therefore be not safe enough. Various inherence factor based methods like fingerprint, retinal pattern or voice identifications are considered more secure. Retina scanning in particular offers both low false rejection rate (FRR) and low false acceptance rate (FAR) with about one in a million. Images of the retina with its characteristic pattern of blood vessels can be made with either a fundus camera or laser scanning methods. The present work describes the optical design of a new compact retina laser scanner which is based on MEMS (Micro Electric Mechanical System) technology. The use of a dual axis micro scanning mirror for laser beam deflection enables a more compact and robust design compared to classical systems. The scanner exhibits a full field of view of 10° which corresponds to an area of 4 mm2 on the retinal surface surrounding the optical disc. The system works in the near infrared and is designed for use under ambient light conditions, which implies a pupil diameter of 1.5 mm. Furthermore it features a long eye relief of 30 mm so that it can be conveniently used by persons wearing glasses. The optical design requirements and the optical performance are discussed in terms of spot diagrams and ray fan plots.
NASA Astrophysics Data System (ADS)
Abdelatty, M. Y.; Badr, M. M.; Swillam, M. A.
2018-03-01
Using transparent conducting oxides (TCOs), like indium-tin-oxide (ITO), for optical modulation attracted research interest because of their epsilon-near-zero (ENZ) characteristics at telecom wavelengths. Utilizing indium-tin-oxide (ITO) in multilayer structure modulators, optical absorption of the active ITO layer can be electrically modulated over a large spectrum range. Although they show advances over common silicon electro-optical modulators (EOMs), they suffer from high insertion losses. To reduce insertion losses and device footprints without sacrificing bandwidth and modulation strength, slot waveguides are promising options because of their high optical confinement. In this paper, we present the study and the design of an electro-optical absorption modulator based on electrically tuning ITO carrier density inside a MOS structure. The device structure is based on dielectric slot waveguide with an ITO plasmonic waveguide modulation section. By changing the dimensions, the effective refractive indices for the slot mode and the off-sate mode of the plasmonic section can be matched. When applying electric field to the plasmonic section (on-state), carriers are generated at the ITO-dielectric interface that result in changing the layer where the electric field is confined from a transparent layer into a lossy layer. A finite difference time domain method with perfect matching layer (PML) absorbing boundary conditions is taken up to simulate and analyze this design. An extinction ratio of 2.3 dB is achieved for a 1-μm-short modulation section, at the telecommunications wavelength (1.55 μm). This EOM has advantages of simple design, easy fabrication, compact size, compatibility with existing silicon photonics platforms, as well as broadband performance.
NASA Astrophysics Data System (ADS)
Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani
2016-04-01
Soil compaction due to agricultural vehicular traffic alters the geometrical arrangement of soil constituents, thereby modifying mechanical properties and pore spaces that affect a range of soil hydro-ecological functions. The ecological and economic costs of soil compaction are dependent on the immediate impact on soil functions during the compaction event, and a function of the recovery time. In contrast to a wealth of soil compaction information, mechanisms and rates of soil structure recovery remain largely unknown. A long-term (>10-yr) soil structure observatory (SSO) was established in 2014 on a loamy soil in Zurich, Switzerland, to quantify rates and mechanisms of structure recovery of compacted arable soil under different post-compaction management treatments. We implemented three initial compaction treatments (using a two-axle agricultural vehicle with 8 Mg wheel load): compaction of the entire plot area (i.e. track-by-track), compaction in wheel tracks, and no compaction. After compaction, we implemented four post-compaction soil management systems: bare soil (BS), permanent grass (PG), crop rotation without mechanical loosening (NT), and crop rotation under conventional tillage (CT). BS and PG provide insights into uninterrupted natural processes of soil structure regeneration under reduced (BS) and normal biological activity (PG). The two cropping systems (NT and CT) enable insights into soil structure recovery under common agricultural practices with minimal (NT) and conventional mechanical soil disturbance (CT). Observations include periodic sampling and measurements of soil physical properties, earthworm abundance, crop measures, electrical resistivity and ground penetrating radar imaging, and continuous monitoring of state variables - soil moisture, temperature, CO2 and O2 concentrations, redox potential and oxygen diffusion rates - for which a network of sensors was installed at various depths (0-1 m). Initial compaction increased soil bulk density to about half a metre, decreased gas and water transport functions (air permeability, gas diffusivity, saturated hydraulic conductivity), and increased mechanical impedance. Water infiltration at the soil surface was initially reduced by three orders of magnitude, but significantly recovered within a year. However, within the soil profile, recovery of transport properties is much smaller. Air permeability tended to recover more than gas diffusivity, suggesting that initial post-compaction recovery is initiated by new macropores (e.g. biopores). Tillage recovered topsoil bulk density but not topsoil transport functions. Compaction changed grass species composition in PG, and significantly reduced grass biomass in PG and crop yields in NT and CT.
The Science and Technology Case for High-Field Fusion
NASA Astrophysics Data System (ADS)
Whyte, D.
2017-10-01
This review will focus on the origin, development and new opportunities of a strategy for fusion energy based on the high-field approach. In this approach confinement devices are designed at the maximum possible value of vacuum magnetic field strength, B. The integrated electrical, mechanical and cooling engineering challenges of high-field on coil (Bcoil) , large-bore electromagnets are examined for both copper and superconductor materials. These engineering challenges are confronted because of the profound science advantages provided by high-B, which are derived and reviewed: high fusion power density, B4, in compact devices, thermonuclear plasmas with significant stability margin, and, in tokamaks, access to higher plasma density. Two distinct high-field strategies emerged in the 1980's. The first was compact, cryogenically-cooled copper devices (BPX, IGNITOR, FIRE) with Bcoil>20 T, while the second was a large-volume, Nb3Sn superconductor device with Bcoil <12 T; with the second path exclusively chosen ca. 2000 with the ITER construction decision. The reasoning, advantages and challenges of that decision are discussed. Yet since that decision, a new opportunity has arisen: compact, Rare Earth Barium Copper Oxide (REBCO) superconductor-based devices with Bcoil >20 T; a strategy that essentially combines the best components of the two previous strategies. Recent activities examining the technology and science implications of this new strategy are reviewed. On the technology side, REBCO superconductors have now been used to produce Bcoil>40 T in small-bore electromagnets, enabled by rapid progress in manufactured REBCO conductor quality, coil modularity and flexible operating temperature range. Specific tokamak designs, over a range of aspect ratios, have been developed to take scientific advantage of these features in various ways, and will be described.
Compact Plasma Accelerator for Micropropulsion Applications
NASA Technical Reports Server (NTRS)
Foster, John E.
2001-01-01
There is a need for a low power, light-weight (compact), high specific impulse electric propulsion device to satisfy mission requirements for microsatellite (1 to 20 kg) class missions. Satisfying these requirements entails addressing the general problem of generating a sufficiently dense plasma within a relatively small volume and then accelerating it. In the work presented here, the feasibility of utilizing a magnetic cusp to generate a dense plasma over small length scales of order 1 mm is investigated. This approach could potentially mitigate scaling issues associated with conventional ion thruster plasma containment schemes. Plume and discharge characteristics were documented using a Faraday probe and a retarding potential analyzer.
Microelectrode for energy and current control of nanotip field electron emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lüneburg, S.; Müller, M., E-mail: m.mueller@fhi-berlin.mpg.de; Paarmann, A., E-mail: alexander.paarmann@fhi-berlin.mpg.de
2013-11-18
Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10–30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.
Lebedev, Vyacheslav; Bartlett, Joshua H.; Malyzhenkov, Alexander; ...
2017-12-06
Here, we present a novel compact design for a multichannel atomic oven which generates collimated beams of refractory atoms for fieldable laser spectroscopy. Using this resistively heated crucible, we demonstrate spectroscopy of an erbium sample at 1300 °C with improved isotopic resolution with respect to a single-channel design. In addition, our oven has a high thermal efficiency. By minimizing the surface area of the crucible, we achieve 2000 °C at 140 W of applied electrical power. As a result, the design does not require any active cooling and is compact enough to allow for its incorporation into fieldable instruments.
The Meteorology of Storms that Produce Narrow Bipolar Events
NASA Technical Reports Server (NTRS)
Lang, Timothy; McCaul, Bill; Fuchs, Brody; Cummer, Steve
2013-01-01
Narrow Bipolar Event's (NBE) are compact (< 2 km), powerful (> 10 kW in VHF), and impulsive (approx 10 micro s) electrical discharges in thunderstorms, also known as compact intracloud discharges (CIDs). Can be either positive or negative polarity and have distinctive broadband waveform signatures sometimes confused for +CGs in the past by NLDN and other networks. NBEs are related to lightning but are likely optically "dark". As revealed by VHF sensors (both satellite and ground): (1) The most powerful lightning--related VHF sources observed (2) Tend to occur at the beginning of intracloud discharges (3) Difficult to estimate altitude properly due to receiver saturation.
Pink-Beam, Highly-Accurate Compact Water Cooled Slits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard
2007-01-19
Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less
Goeddel, W.V.; Simnad, M.T.
1962-04-24
An improved method of making a fuel body containing carbon for reactors is described. Carbides of uranium and thorium having a particle size of from 100 to 500 microns are mixed with carbon having a particle size that will pass a 200 mesh screen but be retained by a 325 mesh screen, and 10 per cent by weight pitch. The mixture is heated to a temperature of about 700 to 900 deg C, at which point bonding is effected while maintaining it under mechanical pressure of over 3,000 pounds per square inch. The entire compact is heated to a uniform temperature during the process, preferably by electrical resistance of the compact itself. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Vyacheslav; Bartlett, Joshua H.; Malyzhenkov, Alexander
Here, we present a novel compact design for a multichannel atomic oven which generates collimated beams of refractory atoms for fieldable laser spectroscopy. Using this resistively heated crucible, we demonstrate spectroscopy of an erbium sample at 1300 °C with improved isotopic resolution with respect to a single-channel design. In addition, our oven has a high thermal efficiency. By minimizing the surface area of the crucible, we achieve 2000 °C at 140 W of applied electrical power. As a result, the design does not require any active cooling and is compact enough to allow for its incorporation into fieldable instruments.
NASA Technical Reports Server (NTRS)
Fox, D. A.; Fullemann, J. S.
1980-01-01
Compact, solid state, electric-power controller switches power on and off at remote load, limits current drawn by load, and shuts off (with 2- to 3- second trip time) in case of short circuit. Lightweight efficient hybrid unit operates at 28 volts dc and at maximum currents of from 3 to 2 amperes.
Integrated geophysical survey in defining subsidence features on a golf course
Xia, J.; Miller, R.D.
2007-01-01
Subsidence was observed at several places on the Salina Municipal Golf Course in areas known to be built over a landfill in Salina, Kansas. High-resolution magnetic survey (???5400 m2), multi-channel electrical resistivity profiling (three 154 m lines) and microgravity profiling (23 gravity-station values) were performed on a subsidence site (Green 16) to aid in determining boundaries and density deficiency of the landfill in the vicinity of the subsidence. Horizontal boundaries of the landfill were confidently defined by both magnetic anomalies and the pseudo-vertical gradient of total field magnetic anomalies. Furthermore, the pseudo-vertical gradient of magnetic anomalies presented a unique anomaly at Green 16, which provided a criterion for predicting other spots with subsidence potential using the same gradient property. Results of multi-channel electrical resistivity profiling (ERP) suggested the bottom limit of the landfill at Green 16 was around 21 m below the ground surface based on the vertical gradient of electric resistivity and a priori information on the depth of the landfill. ERP results also outlined several possible landfill bodies based on their low resistivity values. Microgravity results suggested a -0.14 g cm-3 density deficiency at Green 16 that could equate to future surface subsidence of as much as 1.5 m due to gradual compaction. ?? 2007 Nanjing Institute of Geophysical Prospecting.
Energy-harvesting shock absorber with a mechanical motion rectifier
NASA Astrophysics Data System (ADS)
Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George
2013-02-01
Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.
Magnetic properties evolution of a high permeability nanocrystalline FeCuNbSiB during thermal ageing
NASA Astrophysics Data System (ADS)
Lekdim, Atef; Morel, Laurent; Raulet, Marie-Ange
2017-07-01
It is found to be one of the major issues while designing an aircraft, mass and volume have to be reduced in order to achieve energy efficiency. This leads to a high compactness of the electrical components which enables them to withstand at high temperatures. The magnetic components which are responsible for the electrical energy conversion, therefore exposed to high temperatures in working conditions. Their thermal ageing becomes a serious problem and deserves a particular attention. The FeCuNbSiB nanocrystalline materials have been selected for this ageing study because they are used in power electronic systems very frequently. The objective of the study is based on monitoring the magnetic characteristics under the condition of several continuous thermal ageing (100, 150, 200 and 240 °C). An important, experimental work of magnetic characterization is being done through a specific monitoring protocol and X-ray diffraction (XRD) along with magnetostriction measurements was carried out to support the study of the evolution of the anisotropy energies with aging. The latter is discussed in this paper to explain and give the hypothesis about the aging phenomena. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek
Xue, Xu; Dong, Guohua; Zhou, Ziyao; Xian, Dan; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Chen, Wei; Jiang, Zhuang-De; Liu, Ming
2017-12-13
Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni 0.5 Zn 0.5 Fe 2 O 4 (NZFO)/Pb(Mg 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a large magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Xu; Dong, Guohua; Zhou, Ziyao
2017-12-01
Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni0.5Zn0.5Fe2O4 (NZFO)/Pb(Mg2/3Nb1/3)-PbTiO3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a largemore » magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.« less
Another way of pumping blood with a rotary but noncentrifugal pump for an artificial heart.
Monties, J R; Mesana, T; Havlik, P; Trinkl, J; Demunck, J L; Candelon, B
1990-01-01
This article describes an alternative mode of pumping blood inside the body. The device is a non centrifugal, valveless, low speed rotary pump, electrically powered, based on Wankel engine principle. The authors developed an implantable electrical actuator resulting in a compact, sealed motor-pump unit with electrical and magnetic components insulated from fluids. The results in the flow curve and in the pumping action show some common points but also some basic differences compared to classical pulsatile pumps or centrifugal pumps. The blood coming from the atrium follows a continuous movement without any stop flow but with variations creating pulsatility. Ejection and filling of the pump are simultaneous. It is always an active filling. Hydraulic efficiency depends on clearance in the pumping chamber and outlet port pressure. A 60 cc device allows flows up to 8-9 liters. The implantable motor is cyclindrical in shape, has a moderate weight (490 grams) and presents a good efficiency (32% for a rotary speed of 90 rpm against a mean aortic pressure of 150 mm of Hg). The authors conclude that their device could be proposed after further experimental studies, as an LVAD for shortterm assistance with a good promise for permanent application.
Scalable, Economical Fabrication Processes for Ultra-Compact Warm-White LEDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowes, Ted
Conventional warm-white LED component fabrication consists of a large number of sequential steps which are required to incorporate electrical, mechanical, and optical functionality into the component. Each of these steps presents cost and yield challenges which multiply throughout the entire process. Although there has been significant progress in LED fabrication over the last decade, significant advances are needed to enable further reductions in cost per lumen while not sacrificing efficacy or color quality. Cree conducted a focused 18-month program to develop a new low-cost, high-efficiency light emitting diode (LED) architecture enabled by novel large-area parallel processing technologies, reduced number ofmore » fabrication steps, and minimized raw materials use. This new scheme is expected to enable ultra-compact LED components exhibiting simultaneously high efficacy and high color quality. By the end of the program, Cree fabricated warm-white LEDs with a room-temperature “instant on” efficacy of >135 lm/W at ~3500K and 90 CRI (when driven at the DOE baseline current density of 35 A/cm2). Cree modified the conventional LED fabrication process flow in a manner that is expected to translate into simultaneously high throughput and yield for ultra-compact packages. Building on its deep expertise in LED wafer fabrication, Cree developed these ultra-compact LEDs to have no compromises in color quality or efficacy compared to their conventional counterparts. Despite their very small size, the LEDs will also be robustly electrically integrated into luminaire systems with the same attach yield as conventional packages. The versatility of the prototype high-efficacy LED architecture will likely benefit solid-state lighting (SSL) luminaire platforms ranging from bulbs to troffers. We anticipate that the prototype LEDs will particularly benefit luminaires with large numbers of distributed compact packages, such as linear and area luminaires (e.g. troffers). The fraction of total SSL luminaire cost made up by the LEDs themselves has steadily fallen over the past several years, but can still make up 30% or more of the bill of materials; the new LED design will radically lower this proportion. Ultra-compact, highly efficient LEDs with optimal distribution in the system will further benefit luminaire materials and assembly costs by reducing the complexity and volume of thermal management and optical subsystems.« less
Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources
NASA Astrophysics Data System (ADS)
Wajs, Jan; Mikielewicz, Dariusz; Fornalik-Wajs, Elżbieta; Bajor, Michał
2015-12-01
A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.
An innovative demonstration of high power density in a compact MDH (magnetohydrodynamic) generator
NASA Astrophysics Data System (ADS)
Schmidt, H. J.; Lineberry, J. T.; Chapman, J. N.
1990-06-01
The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible.
Compact dewar and electronics for large-format infrared detectors
NASA Astrophysics Data System (ADS)
Manissadjian, A.; Magli, S.; Mallet, E.; Cassaigne, P.
2011-06-01
Infrared systems cameras trend is to require higher performance (thanks to higher resolution) and in parallel higher compactness for easier integration in systems. The latest developments at SOFRADIR / France on HgCdTe (Mercury Cadmium Telluride / MCT) cooled IR staring detectors do show constant improvements regarding detector performances and compactness, by reducing the pixel pitch and optimizing their encapsulation. Among the latest introduced detectors, the 15μm pixel pitch JUPITER HD-TV format (1280×1024) has to deal with challenging specifications regarding dewar compactness, low power consumption and reliability. Initially introduced four years ago in a large dewar with a more than 2kg split Stirling cooler compressor, it is now available in a new versatile compact dewar that is vacuum-maintenance-free over typical 18 years mission profiles, and that can be integrated with the different available Stirling coolers: K548 microcooler for light solution (less than 0.7 kg), K549 or LSF9548 for split cooler and/or higher reliability solution. The IDDCAs are also required with simplified electrical interface enabling to shorten the system development time and to standardize the electronic boards definition with smaller volumes. Sofradir is therefore introducing MEGALINK, the new compact Command & Control Electronics compatible with most of the Sofradir IDDCAs. MEGALINK provides all necessary input biases and clocks to the FPAs, and digitizes and multiplexes the video outputs to provide a 14 bit output signal through a cameralink interface, in a surface smaller than a business card.
Scattering from Artificial Piezoelectriclike Meta-Atoms and Molecules
NASA Astrophysics Data System (ADS)
Goltcman, Leonid; Hadad, Yakir
2018-01-01
Inspired by natural piezoelectricity, we introduce hybrid-wave electromechanical meta-atoms and metamolecules that consist of coupled electrical and mechanical oscillators with similar resonance frequencies. We explore the linearized electromechanical scattering process and demonstrate that by exploiting the hybrid-wave interaction one may enable functionalities that are forbidden otherwise. For example, we study a dimer metamolecule that is highly directional for electromagnetic waves, although it is electrically deep subwavelength. This unique behavior is a consequence of the fact that, while the metamolecule is electrically small, it is acoustically large. This idea opens vistas for a plethora of exciting dynamics and phenomena in electromagnetics and acoustics, with implications for miniaturized sensors, superresolution imaging, compact nonreciprocal antennas, and more.
Electrical Versus Optical: Comparing Methods for Detecting Terahertz Radiation Using Neon Lamps
NASA Astrophysics Data System (ADS)
Slocombe, L. L.; Lewis, R. A.
2018-05-01
Terahertz radiation impinging on a lit neon tube causes additional ionization of the encapsulated gas. As a result, the electrical current flowing between the electrodes increases and the glow discharge in the tube brightens. These dual phenomena suggest two distinct modes of terahertz sensing. The electrical mode simply involves measuring the electrical current. The optical mode involves monitoring the brightness of the weakly ionized plasma glow discharge. Here, we directly compare the two detection modes under identical experimental conditions. We measure 0.1-THz radiation modulated at frequencies in the range 0.1-10 kHz, for lamp currents in the range 1-10 mA. We find that electrical detection provides a superior signal-to-noise ratio while optical detection has a faster response. Either method serves as the basis of a compact, robust, and inexpensive room-temperature detector of terahertz radiation.
Compact, Lightweight Electromagnetic Pump for Liquid Metal
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Palzin, Kurt
2010-01-01
A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.
Gay, Eddie C.; Martino, Fredric J.
1976-01-01
Particulate electrode reactants, for instance transition metal sulfides for the positive electrodes and lithium alloys for the negative electrodes, are vibratorily compacted into porous, electrically conductive structures. Structures of high porosity support sufficient reactant material to provide high cell capacity per unit weight while serving as an electrical current collector to improve the utilization of reactant materials. Pore sizes of the structure and particle sizes of the reactant material are selected to permit uniform vibratory loading of the substrate without settling of the reactant material during cycling.
NASA Astrophysics Data System (ADS)
Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.
2017-03-01
In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.
Baker, W.R.; Hartwig, A.
1962-09-25
A compactly wound electrical coil is designed for carrying intense pulsed currents such as are characteristic of controlled thermonuclear reaction devices. A flat strip of conductor is tightly wound in a spiral with a matching flat strip of insulator. To provide for a high fluid coolant flow through the coil with minimum pumping pressure, a surface of the conductor is scored with parallel transverse grooves which form short longitudinal coolant pasaages when the conductor is wound in the spiral configuration. Owing to this construction, the coil is extremely resistant to thermal and magnetic shock from sudden high currents. (AEC)
Advanced instrumentation for acousto-ultrasonic based structural health monitoring
NASA Astrophysics Data System (ADS)
Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik
2016-04-01
Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and provides enormous flexibility for the creation of custom interfaces. This paper discusses the impetus for the concept, and outlines key aspects of the hardware design and the module capabilities. The efficacy of the system is demonstrated through the results of first-of-class testing, as well as laboratory AU studies on a flat plate using an array of piezoelectric elements.
Mechanism of vacuum breakdown in radio-frequency accelerating structures
NASA Astrophysics Data System (ADS)
Barengolts, S. A.; Mesyats, V. G.; Oreshkin, V. I.; Oreshkin, E. V.; Khishchenko, K. V.; Uimanov, I. V.; Tsventoukh, M. M.
2018-06-01
It has been investigated whether explosive electron emission may be the initiating mechanism of vacuum breakdown in the accelerating structures of TeV linear electron-positron colliders (Compact Linear Collider). The physical processes involved in a dc vacuum breakdown have been considered, and the relationship between the voltage applied to the diode and the time delay to breakdown has been found. Based on the results obtained, the development of a vacuum breakdown in an rf electric field has been analyzed and the main parameters responsible for the initiation of explosive electron emission have been estimated. The formation of craters on the cathode surface during explosive electron emission has been numerically simulated, and the simulation results are discussed.
Analysis of the resistive network in a bio-inspired CMOS vision chip
NASA Astrophysics Data System (ADS)
Kong, Jae-Sung; Sung, Dong-Kyu; Hyun, Hyo-Young; Shin, Jang-Kyoo
2007-12-01
CMOS vision chips for edge detection based on a resistive circuit have recently been developed. These chips help develop neuromorphic systems with a compact size, high speed of operation, and low power dissipation. The output of the vision chip depends dominantly upon the electrical characteristics of the resistive network which consists of a resistive circuit. In this paper, the body effect of the MOSFET for current distribution in a resistive circuit is discussed with a simple model. In order to evaluate the model, two 160×120 CMOS vision chips have been fabricated by using a standard CMOS technology. The experimental results have been nicely matched with our prediction.
Hybrid integration of VCSELs onto a silicon photonic platform for biosensing application
NASA Astrophysics Data System (ADS)
Lu, Huihui; Lee, Jun Su; Zhao, Yan; Cardile, Paolo; Daly, Aidan; Carroll, Lee; O'Brien, Peter
2017-02-01
This paper presents a technology of hybrid integration vertical cavity surface emitting lasers (VCSELs) directly on silicon photonics chip. By controlling the reflow of the solder balls used for electrical and mechanical bonding, the VCSELs were bonded at 10 degree to achieve the optimum angle-of-incidence to the planar grating coupler through vision based flip-chip techniques. The 1 dB discrepancy between optical loss values of flip-chip passive assembly and active alignment confirmed that the general purpose of the flip-chip design concept is achieved. This hybrid approach of integrating a miniaturized light source on chip opens the possibly of highly compact sensor system, which enable future portable and wearable diagnostics devices.
Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating.
Wang, Guoxi; Lu, Hua; Liu, Xueming; Gong, Yongkang
2012-11-09
We have proposed and numerically investigated an all-optical switch based on a metal-insulator-metal waveguide with graded nonlinear plasmonic gratings. The influences of grating depth and refractive index of a Kerr nonlinear medium on the transmission of the switch are exactly analyzed by utilizing transmission line theory. The finite-difference time-domain simulation results show that the highly compact structure possesses excellent switch function by tuning the incident electric field intensity. In addition, the simulation results show that this all-optical switch has an ultrawide operating frequency regime and femtosecond-scale response time (~130 fs). Such a switch can find potential applications for all-optical signal processing and optical communication.
Zopf, Agnes; Raim, Roman; Danzer, Martin; Niklas, Norbert; Spilka, Rita; Pröll, Johannes; Gabriel, Christian; Nechansky, Andreas; Roucka, Markus
2015-03-01
The detection of KRAS mutations in codons 12 and 13 is critical for anti-EGFR therapy strategies; however, only those methodologies with high sensitivity, specificity, and accuracy as well as the best cost and turnaround balance are suitable for routine daily testing. Here we compared the performance of compact sequencing using the novel hybcell technology with 454 next-generation sequencing (454-NGS), Sanger sequencing, and pyrosequencing, using an evaluation panel of 35 specimens. A total of 32 mutations and 10 wild-type cases were reported using 454-NGS as the reference method. Specificity ranged from 100% for Sanger sequencing to 80% for pyrosequencing. Sanger sequencing and hybcell-based compact sequencing achieved a sensitivity of 96%, whereas pyrosequencing had a sensitivity of 88%. Accuracy was 97% for Sanger sequencing, 85% for pyrosequencing, and 94% for hybcell-based compact sequencing. Quantitative results were obtained for 454-NGS and hybcell-based compact sequencing data, resulting in a significant correlation (r = 0.914). Whereas pyrosequencing and Sanger sequencing were not able to detect multiple mutated cell clones within one tumor specimen, 454-NGS and the hybcell-based compact sequencing detected multiple mutations in two specimens. Our comparison shows that the hybcell-based compact sequencing is a valuable alternative to state-of-the-art methodologies used for detection of clinically relevant point mutations.
Meeting the challenges of developing LED-based projection displays
NASA Astrophysics Data System (ADS)
Geißler, Enrico
2006-04-01
The main challenge in developing a LED-based projection system is to meet the brightness requirements of the market. Therefore a balanced combination of optical, electrical and thermal parameters must be reached to achieve these performance and cost targets. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. LEDs have a luminous flux density which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a matched set of LEDs can be used. This work resulted in two projection engines, one for a compact pocket projector and the other for a rear projection television, both of which are currently in commercialization.
Dong, Lei; Li, Chunguang; Sanchez, Nancy P.; ...
2016-01-05
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lei; Li, Chunguang; Sanchez, Nancy P.
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less
Impacts of Climate Change on Electricity Consumption in Baden-Wuerttemberg
NASA Astrophysics Data System (ADS)
Mimler, S.
2009-04-01
Changes in electricity consumption due to changes in mean air temperatures were examined for the German federal state Baden-Wuerttemberg. Unlike in most recent studies on future electricity demand variations due to climate change, other load influencing factors like the economic, technological and demographic situation were fixed to the state of 2006. This allows isolating the climate change effect on electricity demand. The analysis was realised in two major steps. Firstly, an electricity forecast model based on multiple regressions was estimated on the region of Baden-Wuerttemberg by using historical load and temperature data. The estimation of the forecast model provides information on the temperature sensitivity of electricity demand in the given region. The overall heating and cooling gradients are estimated with -59 and 84 MW / °C respectively. These results already point out a low temperature sensitivity of demand in the region of Baden-Wuerttemberg mostly due to a low share of households equipped with electric heating and air conditioning systems. Secondly, near surface air temperature data of the regional climate model REMO [1] was used to simulate load curves for the control period 1971 to 2000 and for three future scenarios 2006 to 2035, 2036 to 2065 and 2066 to 2095. The results show that the overall load decreases throughout all future scenario periods in comparison to the control period. This is due to a higher decrease in heating than increase in cooling load. Nevertheless, the weather dependent part in Baden-Wuerttemberg loads only accounts for 0.05 % of the average load level. Within this weather dependent part, the heating load decreases are highest in June to September concentrated on the day times evening and afternoon. The cooling period broadens from May to September in the control period to April to October by 2095. The highest relative increases occur in October. Regarding day times, the increase in cooling load is concentrated on afternoons, evenings and nights. [1] Jacob, D. (2005a), "REMO A1B Scenario run, UBA project, 0.088 degree resolution, run no.006211, 1H data", World Data Center for Climate, CERA-DB "REMO_UBA_A1B_1_R006211_1H", http://cera-www.dkrz.de/WDCC/ui/Compact.jsp? acronym=REMO_UBA_A1B_1_R006211_1H Jacob, D. (2005b), "REMO climate of the 20th century run, UBA project, 0.088 degree resolution, run no. 006210, 1H data", World Data Center for Climate, CERA-DB "REMO_UBA_C20_1_R006210_1H", http://cera-www.dkrz.de/WDCC/ui/Compact. jsp?acronym=REMO_UBA_C20_1_R006210_1H
Development of the Miniature Pulse Tube Cryocooler
NASA Astrophysics Data System (ADS)
Matsumoto, N.; Yasukawa, Y.; Ohshima, K.; Toyama, K.; Tsukahara, Y.; Kamoshita, T.; Takeuchi, T.
2004-06-01
Fuji Electric has developed a pulse tube cryocooler (PTC) with in-line configuration with a cooling capacity of 3 W at 70 K and requiring 100 W of electrical input power. The emphasis has been on compactness, lightweight, high performance and low cost. In particular, the dimensions of the PTC have been reduced to a width of 190 mm and a height of 300 mm. Presently, we are developing a U-shaped PTC based on the technology of the in-line PTC. The advantage of the U-shaped PTC is that the cold head is located at the end for easy accessing. The key issue for developing the U-shaped PTC is the design of the flow straightener at the cold head. As a first step in the development we visualized the inside of the pulse tube by using particle image velocimetry (PIV). The design of the flow straightener is based on the visualization results. Preliminary tests indicated that the cooling performance of the U-shaped PTC is 2 W at 70 K while requiring 51 W PV power. We will present the test results on the U-shaped PTC as well as the in-line PTC.
Agricultural and Food Processing Applications of Pulsed Power and Plasma Technologies
NASA Astrophysics Data System (ADS)
Takaki, Koichi
Agricultural and food processing applications of pulsed power and plasma technologies are described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power are developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as germination control of plants such as Basidiomycota and arabidopsis inactivation of bacteria in soil and liquid medium of hydroponics; extraction of juice from fruits and vegetables; decontamination of air and liquid, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power and plasma are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei. This paper mainly describes the application of the pulsed power for the germination control of Basidiomycota i.e. mushroom, inactivation of fungi in the soil and the liquid medium in hydroponics, and extraction of polyphenol from skins of grape.
NASA Astrophysics Data System (ADS)
Kulkov, S.; Vorozhtsov, S.; Turuntaev, I.
2015-04-01
The possibilities to combine metal and metal oxide powders in various compositions open a broad range of mechanical and thermal behavior. When using in nanostructured components the resulting materials might exhibit even more interesting properties, like product effectiveness, tensile strength, wear resistance, endurance and corrosion resistance. Intermetallics like TiAl could be obtained as TiAlx in a quality similar to that obtained from melting where only eutectic mixture can be produced. Similar effects are possible when compacting nanoceramic powders whereas these can be combined with intermetallics. Currently, it is very difficult to produce wires and special shaped parts from high temperature superconducting materials. The compacting by explosives could solve this problem.The present paper uses explosion compacting of Al nanoparticles to create nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material (HEM) for shock-wave compaction. The different schemes and conditions were suggested to run the explosion process. Al nanoparticles as produced by electric wire explosion contain 8-10% of aluminum oxide. That aluminum oxide can serve as strengthening material in the final nanocomposite which may be generated in various compositions by explosive compacting. Further modifications of nanocomposites were obtained when including nanodiamonds into the mixture with aluminum nanoparticles with different percentages. The addition of nanodiamonds results in a substantial strengthening effect. The experiments with compacting aluminum nanoparticles by explosives are described in detail including the process variations and conditions. The physico-mechanical properties of the nanocomposites are determined and discussed by considering the applied conditions. Especially, microstructure and phases of the obtained nanocomposites are analyzed by X-ray diffraction.
There is growing concern about how to limit the release of mercury into the environment. One significant source of mercury is found in fluorescent lamps. Recently, however, compact fluorescent lamps have been heavily promoted in order to conserve electrical energy. While it...
Energy Efficiency Comparison between Compact Fluorescent Lamp and Common Light Bulb
ERIC Educational Resources Information Center
Tanushevsk, Atanas; Rendevski, Stojan
2016-01-01
For acquainting the students of applied physics and students of teaching physics with the concept of energy efficiency, electrical and spectral characteristics of two widely used lamps--integrated fluorescence lamp and common light bulb have been investigated. Characterization of the lamps has been done by measuring the spectral irradiance and…
A 100 GHz Polarimetric Compact Radar Range for Scale-Model Radar Cross Section Measurements
2013-10-01
common radar bands. ACKNOWLEDGEMENTS The authors wish to thank David Jillson (UML STL – Electrical Engineer) for efforts involved in RF and DC wiring...Waldman J., Fetterman H.R., Duffy P.E., Bryant T.G., Tannenwald P.E., “Submillimeter Model Measurements and Their Applications to Millimeter Radar
Laser-induced breakdown ignition in a gas fed two-stroke engine
NASA Astrophysics Data System (ADS)
Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.
2018-01-01
Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.
Caiafa, Antonio; Jiang, Yan; Klopman, Steve; Morton, Christine; Torres, Andrew S.; Loveless, Amanda M.; Neculaes, V. Bogdan
2017-01-01
Electric pulses can induce various changes in cell dynamics and properties depending upon pulse parameters; however, pulsed power generators for in vitro and ex vivo applications may have little to no flexibility in changing the pulse duration, rise- and fall-times, or pulse shape. We outline a compact pulsed power architecture that operates from hundreds of nanoseconds (with the potential for modification to tens of nanoseconds) to tens of microseconds by modifying a Marx topology via controlling switch sequences and voltages into each capacitor stage. We demonstrate that this device can deliver pulses to both low conductivity buffers, like standard pulsed power supplies used for electroporation, and higher conductivity solutions, such as blood and platelet rich plasma. We further test the effectiveness of this pulse generator for biomedical applications by successfully activating platelets ex vivo with 400 ns and 600 ns electric pulses. This novel bioelectrics platform may provide researchers with unprecedented flexibility to explore a wide range of pulse parameters that may induce phenomena ranging from intracellular to plasma membrane manipulation. PMID:28746392
A charged anisotropic well-behaved Adler-Finch-Skea solution satisfying Karmarkar condition
NASA Astrophysics Data System (ADS)
Bhar, Piyali; Singh, Ksh. Newton; Rahaman, Farook; Pant, Neeraj; Banerjee, Sumita
In the present paper, we discover a new well-behaved charged anisotropic solution of Einstein-Maxwell’s field equations. We ansatz the metric potential g00 of the form given by Maurya et al. (Eur. Phys. J. C 76(12) (2016) 693) with n = 2. In their paper, it is mentioned that for n = 2, the solution is not well-behaved for neutral configuration as the speed of sound is nondecreasing radially outward. However, the solution can represent a physically possible configuration with the inclusion of some net electric charge, i.e. the solution can become a well-behaved solution with decreasing sound speed radially outward for a charged configuration. Due to the inclusion of electric charge, the solution leads to a very stiff equation-of-state (EoS) with the velocity of sound at the center vr02 = 0.819, vt02 = 0.923 and the compactness parameter u = 0.823 is close to the Buchdahl limit 0.889. This stiff EoS support a compact star configuration of mass 5.418M⊙ and radius of 10.1km.
Exfoliated YBCO filaments for second-generation superconducting cable
NASA Astrophysics Data System (ADS)
Solovyov, Vyacheslav; Farrell, Paul
2017-01-01
The second-generation high temperature superconductor (2G HTS) wire is the most promising conductor for high-field magnets such as accelerator dipoles and compact fusion devices. The key element of the wire is a thin Y1Ba2Cu3O7 (YBCO) layer deposited on a flexible metal substrate. The substrate, which becomes incorporated in the 2G conductor, reduces the electrical and mechanical performance of the wire. This is a process that exfoliates the YBCO layer from the substrate while retaining the critical current density of the superconductor. Ten-centimeter long coupons of exfoliated YBCO layers were manufactured, and detailed structural, electrical, and mechanical characterization were reported. After exfoliation, the YBCO layer was supported by a 75 μm thick stainless steel foil, which makes for a compact, mechanically stronger, and inexpensive conductor. The critical current density of the filaments was measured at both 77 K and 4.2 K. The exfoliated YBCO retained 90% of the original critical current. Similarly, tests in an external magnetic field at 4.2 K confirmed that the pinning strength of the YBCO layer was also retained following exfoliation.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan
2017-09-01
This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.
An advanced pitch change mechanism incorporating a hybrid traction drive
NASA Technical Reports Server (NTRS)
Steinetz, B. M.; Loewenthal, S. H.; Sargisson, D. F.; White, G.
1984-01-01
A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed.
Comparative Study of Light Sources for Household
NASA Astrophysics Data System (ADS)
Pawlak, Andrzej; Zalesińska, Małgorzata
2017-03-01
The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular) the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.
Goeddel, W.V.; Simnad, M.T.
1963-04-30
This patent relates to a method of making a fuel compact having a matrix of carbon or graphite which carries the carbides of fissile material. A nuclear fuel material selected from the group including uranium and thorium carbides, silicides, and oxides is first mixed both with sufficient finely divided carbon to constitute a matrix in the final product and with a diffusional bonding material selected from the class consisting of zirconium, niobium, molybdenum, titanium, nickel, chromium, and silicon. The mixture is then heated at a temperature of 1500 to 1800 nif- C while maintaining it under a pressure of over about 2,000 pounds per square inch. Preferably, heating is accomplished by the electrical resistance of the compact itself. (AEC)
Deep Compaction Control of Sandy Soils
NASA Astrophysics Data System (ADS)
Bałachowski, Lech; Kurek, Norbert
2015-02-01
Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.
Corona performance of a compact 230-kV line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartier, V.L.; Blair, D.E.; Easley, M.D.
Permitting requirements and the acquisition of new rights-of-way for transmission facilities has in recent years become increasingly difficult for most utilities, including Puget Sound Power and Light Company. In order to maintain a high degree of reliability of service while being responsive to public concerns regarding the siting of high voltage (HV) transmission facilities, Puget Power has found it necessary to more heavily rely upon the use of compact lines in franchise corridors. Compaction does, however, precipitate increased levels of audible noise (AN) and radio and TV interference (RI and TVI) due to corona on the conductors and insulator assemblies.more » Puget Power relies upon the Bonneville Power Administration (BPA) Corona and Field Effects computer program to calculate AN and RI for new lines. Since there was some question of the program`s ability to accurately represent quiet 230-kV compact designs, a joint project was undertaken with BPA to verify the program`s algorithms. Long-term measurements made on an operating Puget Power 230-kV compact line confirmed the accuracy of BPA`s AN model; however, the RI measurements were much lower than predicted by the BPA and other programs. This paper also describes how the BPA computer program can be used to calculate the voltage needed to expose insulator assemblies to the correct electric field in single test setups in HV laboratories.« less
Corona performance of a compact 230-kV line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartier, V.L.; Blair, D.E.; Easley, M.D.
Permitting requirements and the acquisition of new rights-of-way for transmission facilities has in recent years become increasingly difficult for most utilities, including Puget Sound Power and Light Company. In order to maintain a high degree of reliability of service while being responsive to public concerns regarding the siting of high voltage (HV) transmission facilities, Puget Power has found it necessary to more heavily rely upon the use of compact lines in franchise corridors. Compaction does, however, precipitant increased levels of audible noise (AN) and radio and TV interference (RI and TVI) due to corona on the conductors and insulator assemblies.more » Puget Power relies upon the Bonneville Power Administration (BPA) Corona and Field Effects computer program to calculate AN and RI for new lines. Since there was some question of the program`s ability to accurately represent quiet 230-kV compact designs, a joint project was undertaken with BPA to verify the program`s algorithms. Long-term measurements made on an operating Puget Power 230-kV compact line confirmed the accuracy of BPA`s AN model; however, the RI measurements were much lower than predicted by the BPA computer and other programs. This paper also describes how the BPA computer program can be used to calculate the voltage needed to expose insulator assemblies to the correct electric field in single test setups in HV laboratories.« less
On intrinsic nonlinear particle motion in compact synchrotrons
NASA Astrophysics Data System (ADS)
Hwang, Kyung Ryun
Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.
Zener Diode Compact Model Parameter Extraction Using Xyce-Dakota Optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchheit, Thomas E.; Wilcox, Ian Zachary; Sandoval, Andrew J
This report presents a detailed process for compact model parameter extraction for DC circuit Zener diodes. Following the traditional approach of Zener diode parameter extraction, circuit model representation is defined and then used to capture the different operational regions of a real diode's electrical behavior. The circuit model contains 9 parameters represented by resistors and characteristic diodes as circuit model elements. The process of initial parameter extraction, the identification of parameter values for the circuit model elements, is presented in a way that isolates the dependencies between certain electrical parameters and highlights both the empirical nature of the extraction andmore » portions of the real diode physical behavior which of the parameters are intended to represent. Optimization of the parameters, a necessary part of a robost parameter extraction process, is demonstrated using a 'Xyce-Dakota' workflow, discussed in more detail in the report. Among other realizations during this systematic approach of electrical model parameter extraction, non-physical solutions are possible and can be difficult to avoid because of the interdependencies between the different parameters. The process steps described are fairly general and can be leveraged for other types of semiconductor device model extractions. Also included in the report are recommendations for experiment setups for generating optimum dataset for model extraction and the Parameter Identification and Ranking Table (PIRT) for Zener diodes.« less
Ko, Minseong; Chae, Sujong; Jeong, Sookyung; Oh, Pilgun; Cho, Jaephil
2014-08-26
Although various Si-based graphene nanocomposites provide enhanced electrochemical performance, these candidates still yield low initial coloumbic efficiency, electrical disconnection, and fracture due to huge volume changes after extended cycles lead to severe capacity fading and increase in internal impedance. Therefore, an innovative structure to solve these problems is needed. In this study, an amorphous (a) silicon nanoparticle backboned graphene nanocomposite (a-SBG) for high-power lithium ion battery anodes was prepared. The a-SBG provides ideal electrode structures-a uniform distribution of amorphous silicon nanoparticle islands (particle size <10 nm) on both sides of graphene sheets-which address the improved kinetics and cycling stability issues of the silicon anodes. a-Si in the composite shows elastic behavior during lithium alloying and dealloying: the pristine particle size is restored after cycling, and the electrode thickness decreases during the cycles as a result of self-compacting. This noble architecture facilitates superior electrochemical performance in Li ion cells, with a specific energy of 468 W h kg(-1) and 288 W h kg(-1) under a specific power of 7 kW kg(-1) and 11 kW kg(-1), respectively.
Investigation of a high power electromagnetic pulse source.
Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo
2012-09-01
A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.
Development of a compact 30 T magnetic field system for OMEGA
NASA Astrophysics Data System (ADS)
Fiksel, G.; Backhus, R.; McNally, P.; Viges, E.; Villalta, M.; Jacobs-Perkins, D.; Betti, R.
2017-10-01
Aiming at conducting studies of magnetized high-energy density plasmas in a high magnetic field, we are developing a compact system capable of creating a pulsed magnetic field of about 30T in a volume of several cubic centimeters. The system prototype will be tested at the University of Michigan and will be adopted afterwards for use at the OMEGA facility of the Laboratory for Laser Energetics (LLE) of the University of Rochester, NY. The system consists of a pulsed power supply situated outside of the Omega vacuum chamber and a magnetic coil inserted into the chamber with a diagnostic inserter. The power supply is based on a 50 μF/20kV storage capacitor and is capable of driving a pulse of current of up to 50kA through the coil. The power supply is connected with the coil via a low-inductive chain of power cables and a strip transmission line. The system electrical, magnetic, and thermal analysis will be presented along with the results of initial testing. This work is supported in part through a DOE-OFES award DE-SC0016258 and a University of Michigan research Grant U051442.
Compact high-sensitivity potentiometer for detection of low ion concentrations in liquids
NASA Astrophysics Data System (ADS)
Balevicius, Z.; Lescinskas, R.; Celiesiute, R.; Stirke, A.; Balevicius, S.; Kersulis, S.; Bleizgys, V.; Maciuleviciene, R.; Ramanavicius, A.; Zurauskiene, N.
2018-04-01
The compact potentiometer, based on an electronic circuit protected from electrostatic and electromagnetic interference, was developed for the measurement of low ion concentrations in liquids. The electronic circuit of the potentiometer, consisting of analogous and digital parts, enables the measurement of fA currents. This makes it possible to perform reliable measurements of ion concentrations in liquids that are as small as 10-8-10-7M. The instrument was tested using electrodes that were selective for tetraphenylphosphonium (TPP+) ions. It was demonstrated that the characteristic response time of the potentiometer electronic circuit to changes in the concentration of these ions in a liquid was in the order of 10 s. An investigation of TPP+ absorption by baker yeast has shown that this device can be successfully used for long term (several hours) measurements with zero signal drift, which was about 1 μV/s. Finally, due to the small dimensions of the electronic circuit (7.5 × 2 × 1.5 cm), this potentiometer can be easily installed at a large apparatus in the laboratory condition (≈25 °C), such as high pulsed electrical generators of magnetic fields that are used in electroporation studies of biological cells.
Principles of control automation of soil compacting machine operating mechanism
NASA Astrophysics Data System (ADS)
Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly
2018-03-01
The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.
Characterization of Impact Initiation of Aluminum-Based Powder Compacts
NASA Astrophysics Data System (ADS)
Tucker, Michael; Dixon, Sean; Thadhani, Naresh
2011-06-01
Impact initiation of reactions in quasi-statically pressed powder compacts of Al-Ni, Al-Ta, and Al-W powder compacts is investigated in an effort to characterize the differences in the energy threshold as a function of materials system, volumetric distribution, and environment. The powder compacts were mounted in front of a copper projectile and impacted onto a steel anvil using a 7.62 mm gas gun at velocities up to 500 m/s. The experiments were conducted in ambient environment, as well as under a 50 millitorr vacuum. The IMACON 200 framing camera was used to observe the transient powder compact densification and deformation states, as well as a signature of reaction based on light emission. Evidence of reaction was also confirmed based on post-mortem XRD analysis of the recovered residue. The effective kinetic energy, dissipated in processes leading to reaction initiation was estimated and correlated with reactivity of the various compacts as a function of composition and environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falkenbach, Oliver; Koch, Guenter; Schlecht, Sabine
2016-06-07
We report on the preparation and thermoelectric properties of the quaternary system AgPb{sub m}BiTe{sub 2+m} (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Roommore » temperature Hall measurements yielded carrier concentrations in the order of 10{sup 19 }cm{sup −3}, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.« less
Hypervelocity gun. [using both electric and chemical energy for projectile propulsion
NASA Technical Reports Server (NTRS)
Ford, F. C.; Biehl, A. J. (Inventor)
1965-01-01
A velocity amplifier system which uses both electric and chemical energy for projectile propulsion is provided in a compact hypervelocity gun suitable for laboratory use. A relatively heavy layer of a tamping material such as concrete encloses a loop of an electrically conductive material. An explosive charge at least partially surrounding the loop is adapted to collapse the loop upon detonation of the charge. A source of electricity charges the loop through two leads, and an electric switch which is activated by the charge explosive charge, disconnects the leads from the source of electricity and short circuits them. An opening in the tamping material extends to the loop and forms a barrel. The loop, necked down in the opening, forms the sabot on which the projectile is located. When the loop is electrically charged and the explosive detonated, the loop is short circuited and collapsed thus building up a magnetic field which acts as a sabot catcher. The sabot is detached from the loop and the sabot and projectile are accelerated to hypervelocity.
Utilization of busted CFL in developing cheap and efficient segmented compact LED bulbs
NASA Astrophysics Data System (ADS)
Andres, N. S.; Ponce, R. T.
2018-01-01
Today’s generation will not survive a day without the help of lighting. In fact, someone’s productivity, particularly at night, depends on the presence of a good lighting and it seems that it is a daily necessity. Lighting takes a large part on the consumption of household electrical energy particularly in the Philippines. There are different type of lighting bulbs used at home can affect the overall lighting consumption. Nowadays, most commonly and widely used bulb in the household is the Compact Fluorescent Light (CFL). However, the main problem of CFL is the mercury they contain. In addition to this is the harmful effect of mercury such as Emission of UV Radiation. In response to the said problem, this project study gives solution to the problem of the society concerning environment, health and safety as well energy conservation, by developing a segmented compact light-emitting diode (SCLED) bulb from busted CFL that are efficient, economical, and does not contain toxic chemicals.
NASA Astrophysics Data System (ADS)
Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing
2018-05-01
The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.
Sumriddetchkajorn, Sarun; Chaitavon, Kosom
2006-01-01
A surface plasmon resonance (SPR)-based optical touch sensor structure is proposed that provides high switch sensitivity and requires a weak activating force. Our proposed SPR-based optical touch sensor is arranged in a compact Kretschmann-Raether configuration in which the prism acting as our sensor head is coated with a metal nanofilm. Our optical-based noise rejection scheme relies on wavelength filtering, spatial filtering, and high reflectivity of the metal nanofilm, whereas our electrical-based noise reduction is obtained by means of an electrical signal filtering process. In our experimental proof of concept, a visible laser diode at a 655 nm centered wavelength and a prism made from BK7 with a 50 nm thick gold layer on the touching surface are used, showing a 7.85 dB optical contrast ratio for the first touch. An estimated weak mechanical force of <0.1 N is also observed that sufficiently activates the desired electrical load. It is tested for 51 operations without sensor malfunction under typical and very high illumination of 342 and 3000 lx, respectively. In this case, a measured average optical contrast of 0.80 dB is obtained with a +/-0.47 dB fluctuation, implying that the refractive index change in a small 3.2% of the overall active area is enough for our SPR-based optical touch sensor to function properly. Increasing optical contrast in our SPR-based optical touch sensor can be accomplished by using a higher polarization-extinction ratio and a narrower-bandwidth optical beam. A controlled environment and gold-coated surface using the thin-film sputtering technique can help improve the reliability and the durability of our SPR-based optical touch sensor. Other key features include ease of implementation, prevention of a light beam becoming incident on the user, and the ability to accept both strong and weak activating forces.
Investigation of methods and equipment for compaction of composite mixtures during their granulation
NASA Astrophysics Data System (ADS)
Shkarpetkin, E. A.; Osokin, A. V.; Sabaev, V. G.
2018-03-01
The article presents the results of a literature analysis of the methods of compaction of materials, analytical and experimental research on the creation of a roller compacting device and the determination of its operation modes, which provides an efficient preliminary compaction of a composite mixture based on technogenic materials.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... Federal Power Act, proposing to study the feasibility of the Silver Lake Hydroelectric Project, located on Silver Lake and Duck River, in the Valdez-Cordova Census Area, Alaska. The sole purpose of a preliminary...-high roller-compacted concrete dam constructed at the outfall of Silver Lake to Duck River; (2) Silver...
USDA-ARS?s Scientific Manuscript database
Catastrophic floods resulting from the failure of dam and levee infrastructures can paralyze the economy and social life of large populations for long periods of time. The United States has over 100,000 miles of levees and the National Inventory of Dams lists approximately 79,000 U.S. dams. The de...
Compact Method for Modeling and Simulation of Memristor Devices
2011-08-01
single-valued equations. 15. SUBJECT TERMS Memristor, Neuromorphic , Cognitive, Computing, Memory, Emerging Technology, Computational Intelligence 16...resistance state depends on its previous state and present electrical biasing conditions, and when combined with transistors in a hybrid chip ...computers, reconfigurable electronics and neuromorphic computing [3,4]. According to Chua [4], the memristor behaves like a linear resistor with
Origin of the Chemical Elements and Their Discoveries [added 1/2007] National Laboratories and Other to the content of DOE R&D Accomplishments. Celebrating Einstein - series of articles about Albert Einstein and his work [added 3/2005] Compact Portable Electric Power Sources [added 1/2007] History of the
Improved battery charger for electric vehicles
NASA Technical Reports Server (NTRS)
Rippel, W. E.
1981-01-01
Polyphase version of single-phase "boost chopper" significantly reduces ripple and electromagnetic interference (EMI). Drive circuit of n-phase boost chopper incorporates n-phase duty-cycle generator; inductor, transistor, and diode compose chopper which can run on single-phase or three-phase alternating current or on direct current. Device retains compactness and power factors approaching unity, while improving efficiency.
High-Temperature Hall-Effect Apparatus
NASA Technical Reports Server (NTRS)
Wood, C.; Lockwood, R. A.; Chemielewski, A. B.; Parker, J. B.; Zoltan, A.
1985-01-01
Compact furnace minimizes thermal gradients and electrical noise. Semiautomatic Hall-effect apparatus takes measurements on refractory semiconductors at temperatures as high as 1,100 degrees C. Intended especially for use with samples of high conductivity and low chargecarrier mobility that exhibit low signal-to-noise ratios, apparatus carefully constructed to avoid spurious electromagnetic and thermoelectric effects that further degrade measurements.
Acoustic wave filter based on periodically poled lithium niobate.
Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain
2012-09-01
Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.
Tunable, Electrically Small, Inductively Coupled Antenna for Transportable Ionospheric Heating
NASA Astrophysics Data System (ADS)
Esser, Benedikt; Mauch, Daniel; Dickens, James; Mankowski, John; Neuber, Andreas
2018-04-01
An electrically small antenna is evaluated for use as the principle radiating element in a mobile ionospheric heating array. Consisting of a small loop antenna inductively coupled to a capacitively loaded loop, the electrically small antenna provides high efficiency with the capability of being tuned within the range of ionospheric heating. At a factor 60 smaller in area than a High-Frequency Active Auroral Research Program element, this antenna provides a compact, efficient radiating element for mobile ionospheric heating. A prototype antenna at 10 MHz was built to study large-scale feasibility and possible use with photoconductive semiconductor switch-based drivers. Based on the experimental study, the design has been extrapolated to a small 6 × 4 array of antennas. At a total power input of 16.1 MW this array is predicted to provide 3.6-GW effective radiated power typically required for ionospheric heating. Array cross talk is addressed, including effects upon individual antenna port parameters. Tuning within the range of ionospheric heating, 3-10 MHz, is made possible without the use of lossy dielectrics through a large capacitive area suited to tune the antenna. Considerations for high power operation across the band are provided including a method of driving the antenna with a simple switcher requiring no radio frequency cabling. Source matching may be improved via adjustment of the coupling between small loop antenna and capacitively loaded loop improving |S11| from -1 to -21 dB at 3 MHz.
Compact biomedical pulsed signal generator for bone tissue stimulation
Kronberg, J.W.
1993-06-08
An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.
Compact biomedical pulsed signal generator for bone tissue stimulation
Kronberg, James W.
1993-01-01
An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.
Thermal battery for portable climate control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, S; Li, XS; Yang, S
2015-07-01
Current technologies that provide climate control in the transportation sector are quite inefficient. In gasoline-powered vehicles, the use of air-conditioning is known to result in higher emissions of greenhouse gases and pollutants apart from decreasing the gas-mileage. On the other hand, for electric vehicles (EVs), a drain in the onboard electric battery due to the operation of heating and cooling system results in a substantial decrease in the driving range. As an alternative to the conventional climate control system, we are developing an adsorption-based thermal battery (ATB), which is capable of storing thermal energy, and delivering both heating and coolingmore » on demand, while requiring minimal electric power supply. Analogous to an electrical battery, the ATB can be charged for reuse. Furthermore, it promises to be compact, lightweight, and deliver high performance, which is desirable for mobile applications. In this study, we describe the design and operation of the ATB-based climate control system. We present a general theoretical framework to determine the maximum achievable heating and cooling performance using the ATB. The framework is then applied to study the feasibility of ATB integration in EVs, wherein we analyze the use of NaX zeolite-water as the adsorbent-refrigerant pair. In order to deliver the necessary heating and cooling performance, exceeding 2.5 kW h thermal capacity for EVs, the analysis determines the optimal design and operating conditions. While the use of the ATB in EVs can potentially enhance its driving range, it can also be used for climate control in conventional gasoline vehicles, as well as residential and commercial buildings as a more efficient and environmentally-friendly alternative. (C) 2015 Elsevier Ltd. All rights reserved.« less
Anisotropic charged stellar models in Generalized Tolman IV spacetime
NASA Astrophysics Data System (ADS)
Murad, Mohammad Hassan; Fatema, Saba
2015-01-01
With the presence of electric charge and pressure anisotropy some anisotropic stellar models have been developed. An algorithm recently presented by Herrera et al. (Phys. Rev. D 77, 027502 (2008)) to generate static spherically symmetric anisotropic solutions of Einstein's equations has been used to derive relativistic anisotropic charged fluid spheres. In the absence of pressure anisotropy the fluid spheres reduce to some well-known Generalized Tolman IV exact metrics. The astrophysical significance of the resulting equations of state (EOS) for a particular case (Wyman-Leibovitz-Adler) for the anisotropic charged matter distribution has been discussed. Physical analysis shows that the relativistic stellar structure obtained in this work may reasonably model an electrically charged compact star, whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself like electrically charged bare strange quark stars.
NASA Astrophysics Data System (ADS)
Zhang, Li; Xie, Hong-Jing
2003-12-01
By using the compact-density-matrix approach and iterative procedure, a detailed procedure for the calculation of the second-harmonic generation (SHG) susceptibility tensor is given in the electric-field-biased parabolic and semiparabolic quantum wells (QW’s). The simple analytical formula for the SHG susceptibility in the systems is also deduced. By adopting the methods of envelope wave function and displacement harmonic oscillation, the electronic states in parabolic and semi parabolic QW’s with applied electric fields are exactly solved. Numerical results on typical AlxGa1-xAl/GaAs materials show that, for the same effective widths, the SHG susceptibility in semiparabolic QW is larger than that in parabolic QW due to the self-asymmetry of the semiparabolic QW, and the applied electric field can make the SHG susceptibilities in both systems enhance remarkably. Moreover, the SHG susceptibility also sensitively depends on the relaxation rate of the systems.
NASA Astrophysics Data System (ADS)
Kim, June-Young; Kim, Hyun-Chul
2018-06-01
The self-consistent chiral quark-soliton model is a relativistic pion mean-field approach in the large Nc limit, which describes both light and heavy baryons on an equal footing. In the limit of the infinitely heavy mass of the heavy quark, a heavy baryon can be regarded as Nc-1 valence quarks bound by the pion mean fields, leaving the heavy quark as a color static source. The structure of the heavy baryon in this scheme is mainly governed by the light-quark degrees of freedom. Based on this framework, we evaluate the electromagnetic form factors of the lowest-lying heavy baryons. The rotational 1 /Nc and strange current quark mass corrections in linear order are considered. We discuss the electric charge and magnetic densities of heavy baryons in comparison with those of the nucleons. The results of the electric charge radii of the positive-charged heavy baryons show explicitly that the heavy baryon is a compact object. The electric form factors are presented. The form factor of Σc++ is compared with that from a lattice QCD. We also discuss the results of the magnetic form factors. The magnetic moments of the baryon sextet with spin 1 /2 and the magnetic radii are compared with other works and the lattice data.
A two-stage series diode for intense large-area moderate pulsed X rays production.
Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang
2017-01-01
This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm 2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.
On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback.
Monticelli, Marco; Torti, Andrea; Cantoni, Matteo; Petti, Daniela; Albisetti, Edoardo; Manzin, Alessandra; Guerriero, Erica; Sordan, Roman; Gervasoni, Giacomo; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Bertacco, Riccardo
2016-02-17
Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-μm sized beads is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Niu, Q.; Zhang, C.
2017-12-01
Archie's law is an important empirical relationship linking the electrical resistivity of geological materials to their porosity. It has been found experimentally that the porosity exponent m in Archie's law in sedimentary rocks might be related to the degree of cementation, and therefore m is termed as "cementation factor" in most literatures. Despite it has been known for many years, there is lack of well-accepted physical interpretations of the porosity exponent. Some theoretical and experimental evidences have also shown that m may be controlled by the particle and/or pore shape. In this study, we conduct a pore-scale modeling of the porosity exponent that incorporates different geological processes. The evolution of m of eight synthetic samples with different particle sizes and shapes are calculated during two geological processes, i.e., compaction and cementation. The numerical results show that in dilute conditions, m is controlled by the particle shape. As the samples deviate from dilute conditions, m increases gradually due to the strong interaction between particles. When the samples are at static equilibrium, m is noticeably larger than its values at dilution condition. The numerical simulation results also show that both geological compaction and cementation induce a significant increase in m. In addition, the geometric characteristics of these samples (e.g., pore space/throat size, and their distributions) during compaction and cementation are also calculated. Preliminary analysis shows a unique correlation between the pore size broadness and porosity exponent for all eight samples. However, such a correlation is not found between m and other geometric characteristics.
An electric artificial heart for clinical use.
Pierce, W S; Rosenberg, G; Snyder, A J; Pae, W E; Donachy, J H; Waldhausen, J A
1990-01-01
Advances in microelectronics, high-strength magnets, and control system design now make replacement of the heart using an implantable, electrically powered pump feasible. The device described herein is a compact, dual pusher plate unit with valved polyurethane sac-type ventricles positioned at either end. The power unit consists of a small, brushless direct current motor and a motion translator. A microprocessor control system is used to regulate heart beat rate and provide left-right output balance. Bench studies lasting for as long as 1 year have been performed. Heart replacement with the electric heart has been performed in 18 calves since 1984. The longest survivor lived for more than 7 months. Among the causes of termination were component failure, thromboembolic complications, and bleeding. No major problem has been identified that precludes prolonged use of the electric heart. In the future the patient with end-stage heart disease will have an electric artificial heart as one therapeutic option. Images Figs. 1A and 1B. Fig. 3. Fig. 5. PMID:2396885
Influence of metallic additives on manganese ferrites sintering
NASA Astrophysics Data System (ADS)
Shevelev, S. A.; Luchnikov, P. A.; Yarullina, A. R.
2018-01-01
Influence of cuprum nanopowder additive received by electric explosion on the process of manganese ferrites MgFe2O4 consolidating at thermal sintering was researched by dilatometry method. Cuprum nanopowder at a rate of 5 mass % was added into the original commercial-grade powder of manganese ferrite MgFe2O4. Powder mixture was numerously blended with screening for better blending before pressing. Powder compacts were formed by cold one-axle static pressing. It was proved that introduction of cuprum additive caused shrinkage increase at final heating stage. There was abnormal compact enlarging at sintering in the air at isothermal stage; the specified process was not observed in vacuum. This difference can be explained by changes in conditions of gaseous discharge from volume of pores.
Folser, George R.
1980-01-01
Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.
An advanced pitch change mechanism incorporating a hybrid traction drive
NASA Technical Reports Server (NTRS)
Steinetz, B. M.; Sargisson, D. F.; White, G.; Loewenthal, S. H.
1984-01-01
A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed. Comparisons are made to the more conventional pitch control mechanisms.
Compact terahertz wave polarization beam splitter using photonic crystal.
Mo, Guo-Qiang; Li, Jiu-Sheng
2016-09-01
Electromagnetic polarization conveys valuable information for signal processing. Manipulation of a terahertz wave polarization state exhibits tremendous potential in developing applications of terahertz science and technology. We propose an approach to efficiently split transverse-electric and transverse-magnetic polarized terahertz waves into different propagation directions over the frequency range from 0.9998 to 1.0007 THz. Both the plane wave expansion method and the finite-difference time-domain method are used to calculate and analyze the transmission characteristics of the proposed device. The present device is very compact and the total size is 1.02 mm×0.99 mm. This polarization beam splitter performance indicates that the structure has a potential application for forthcoming terahertz-wave integrated circuit fields.
Measuring electrical and mechanical properties of red blood cells with a double optical tweezers
NASA Astrophysics Data System (ADS)
Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; Pozzo, Liliana d. Y.; Barbosa, Luiz C.; Cesar, Carlos L.
2006-08-01
The fluid lipid bilayer viscoelastic membrane of red blood cells (RBC) contains antigen glycolproteins and proteins which can interact with antibodies to cause cell agglutination. This is the basis of most of the immunohematologic tests in blood banks and the identification of the antibodies against the erythrocyte antigens is of fundamental importance for transfusional routines. The negative charges of the RBCs creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. The first counterions cloud strongly binded moving together with the RBC is called the compact layer. This report proposes the use of a double optical tweezers for a new procedure for measuring: (1) the apparent membrane viscosity, (2) the cell adhesion, (3) the zeta potential and (4) the compact layer's size of the charges formed around the cell in the electrolytic solution. To measure the membrane viscosity we trapped silica beads strongly attached to agglutinated RBCs and measured the force to slide one RBC over the other as a function of the relative velocity. The RBC adhesion was measured by slowly displacing two RBCs apart until the disagglutination happens. The compact layer's size was measured using the force on the silica bead attached to a single RBC in response to an applied voltage and the zeta potential was obtained by measuring the terminal velocity after releasing the RBC from the optical trap at the last applied voltage. We believe that the methodology here proposed can improve the methods of diagnosis in blood banks.
Experiment Analysis and Modelling of Compaction Behaviour of Ag60Cu30Sn10 Mixed Metal Powders
NASA Astrophysics Data System (ADS)
Zhou, Mengcheng; Huang, Shangyu; Liu, Wei; Lei, Yu; Yan, Shiwei
2018-03-01
A novel process method combines powder compaction and sintering was employed to fabricate thin sheets of cadmium-free silver based filler metals, the compaction densification behaviour of Ag60Cu30Sn10 mixed metal powders was investigated experimentally. Based on the equivalent density method, the density-dependent Drucker-Prager Cap (DPC) model was introduced to model the powder compaction behaviour. Various experiment procedures were completed to determine the model parameters. The friction coefficients in lubricated and unlubricated die were experimentally determined. The determined material parameters were validated by experiments and numerical simulation of powder compaction process using a user subroutine (USDFLD) in ABAQUS/Standard. The good agreement between the simulated and experimental results indicates that the determined model parameters are able to describe the compaction behaviour of the multicomponent mixed metal powders, which can be further used for process optimization simulations.
Compaction dynamics of crunchy granular material
NASA Astrophysics Data System (ADS)
Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai
2017-06-01
Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.
Nguyen, Duc Dung; Hsieh, Ping-Yen; Tsai, Meng-Ting; Lee, Chi-Young; Tai, Nyan-Hwa; To, Bao Dong; Vu, Duc Tu; Hsu, Chia Chen
2017-11-22
We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.
Filamentous carbon particles for cleaning oil spills and method of production
Muradov, Nazim
2010-04-06
A compact hydrogen generator is coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. The hydrogen generator can be conveniently integrated with high temperature fuel cells to produce an efficient and self-contained source of electrical power.
Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers
NASA Astrophysics Data System (ADS)
Kaneto, K.
2016-04-01
Artificial muscles (or soft actuators) based on electroactive polymers (EAPs) are attractive power sources to drive human-like robots in place of electrical motor, because they are quiet, powerful, light weight and compact. Among EAPs for soft actuators, conducting polymers are superior in strain, stress, deformation form and driving voltage compared with the other EAPs. In this paper, the research trends of EAPs and conducting polymers are reviewed by retrieval of the papers and patents. The research activity of EAP actuators showed the maximum around 2010 and somehow declining now days. The reasons for the reducing activity are found to be partly due to problems of conducting polymer actuators for the practical application. The unique characteristics of conducting polymer actuators are mentioned in terms of the basic mechanisms of actuation, creeping, training effect and shape retention under high tensile loads. The issues and limitation of conducting polymer soft actuators are discussed.
Real time capable infrared thermography for ASDEX Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieglin, B., E-mail: Bernhard.Sieglin@ipp.mpg.de; Faitsch, M.; Herrmann, A.
2015-11-15
Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The cameramore » communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.« less
NASA Astrophysics Data System (ADS)
Świątkowski, Michał; Wojtuś, Arkadiusz; Wielgoszewski, Grzegorz; Rudek, Maciej; Piasecki, Tomasz; Jóźwiak, Grzegorz; Gotszalk, Teodor
2018-04-01
Atomic force microscopy (AFM) is a widely used technology for the investigation and characterization of nanomaterials. Its functionality can be easily expanded by applying dedicated extension modules, which can measure the electrical conductivity or temperature of a sample. In this paper, we introduce a transformer ratio-arm bridge setup dedicated to AFM-based thermal imaging. One of the key features of the thermal module is the use of a low-power driving signal that prevents undesirable tip heating during resistance measurement, while the other is the sensor location in a ratio-arm transformer bridge working in the audio frequency range and ensuring galvanic isolation of the tip, enabling contact-mode scanning of electronic circuits. The proposed expansion module is compact and it can be integrated onto the AFM head close to the cantilever. The calibration process and the resolution of 11 mK of the proposed setup are shown.
Apparatus for improving performance of electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2004-08-31
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Apparatus for improving performance of electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2002-01-01
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Method for improving performance of highly stressed electrical insulating structures
Wilson, Michael J.; Goerz, David A.
2002-01-01
Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.
Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.
Joshi, P B; Rehani, Bharati; Naik, Palak; Patel, Swati; Khanna, P K
2012-03-01
Oxide dispersion-strengthened copper-base composites are widely used for applications demanding high tensile strength, high hardness along with good electrical and thermal conductivity. Oxides of metals like aluminium, cerium, yttrium and zirconium are often used for this purpose as fine and uniformly distributed dispersoid particles in soft and ductile copper matrix. Such composites find applications as electrical contacts, resistance-welding tips, lead wires, continuous casting moulds, etc. In this investigation an attempt has been made to produce copper-yttria nanocomposites using two different morphologies of copper powder and two different processing routes namely, high-energy milling and in-situ chemical reduction. The synthesized powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for their phase identification and morphological study. The nanocomposite powders in each case were subsequently processed to obtain bulk solids by classical powder metallurgy route of press-sinter-repress. The resultant bulk solid compacts were subjected to property evaluation. The study revealed that the properties of Cu-Y2O3 nanocomposites depend on the processing route used and in turn on the resultant powder morphology.
Farrell, Daniel J.; Sodabanlu, Hassanet; Wang, Yunpeng; Sugiyama, Masakazu; Okada, Yoshitaka
2015-01-01
The direct conversion of solar energy to electricity can be broadly separated into two main categories: photovoltaics and thermal photovoltaics, where the former utilizes gradients in electrical potential and the latter thermal gradients. Conventional thermal photovoltaics has a high theoretical efficiency limit (84%) but in practice cannot be easily miniaturized and is limited by the engineering challenges of sustaining large (>1,000 K) temperature gradients. Here we show a hot-carrier-based thermophotonic solar cell, which combines the compact nature of photovoltaic devices with the potential to reach the high-efficiency regime of thermal photovoltaics. In the device, a thermal gradient of 500 K is established by hot electrons, under Stokes illumination, rather than by raising the temperature of the material itself. Under anti-Stokes (sub-bandgap) illumination we observe a thermal gradient of ∼20 K, which is maintained by steady-state Auger heating of carriers and corresponds to a internal thermal up-conversion efficiency of 30% between the collector and solar cell. PMID:26541415
NASA Astrophysics Data System (ADS)
Wart, Megan; Simpson, Evan; Flaska, Marek
2018-01-01
Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT) plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.
Astorino, Maria Denise; Fastampa, Renato; Frezza, Fabrizio; Maiolo, Luca; Marrani, Marco; Missori, Mauro; Muzi, Marco; Tedeschi, Nicola; Veroli, Andrea
2018-01-31
This paper reports the design, the microfabrication and the experimental characterization of an ultra-thin narrow-band metamaterial absorber at terahertz frequencies. The metamaterial device is composed of a highly flexible polyimide spacer included between a top electric ring resonator with a four-fold rotational symmetry and a bottom ground plane that avoids misalignment problems. Its performance has been experimentally demonstrated by a custom polarization-maintaining reflection-mode terahertz time-domain spectroscopy system properly designed in order to reach a collimated configuration of the terahertz beam. The dependence of the spectral characteristics of this metamaterial absorber has been evaluated on the azimuthal angle under oblique incidence. The obtained absorbance levels are comprised between 67% and 74% at 1.092 THz and the polarization insensitivity has been verified in transverse electric polarization. This offers potential prospects in terahertz imaging, in terahertz stealth technology, in substance identification, and in non-planar applications. The proposed compact experimental set-up can be applied to investigate arbitrary polarization-sensitive terahertz devices under oblique incidence, allowing for a wide reproducibility of the measurements.
An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.
Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S
2016-11-07
Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L -1 , giving a total energy density of 38 Wh L -1 at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm -2 the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
Compact self-contained electrical-to-optical converter/transmitter
Seligmann, Daniel A.; Moss, William C.; Valk, Theodore C.; Conder, Alan D.
1995-01-01
A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch.
Optofluidic lens with tunable focal length and asphericity
Mishra, Kartikeya; Murade, Chandrashekhar; Carreel, Bruno; Roghair, Ivo; Oh, Jung Min; Manukyan, Gor; van den Ende, Dirk; Mugele, Frieder
2014-01-01
Adaptive micro-lenses enable the design of very compact optical systems with tunable imaging properties. Conventional adaptive micro-lenses suffer from substantial spherical aberration that compromises the optical performance of the system. Here, we introduce a novel concept of liquid micro-lenses with superior imaging performance that allows for simultaneous and independent tuning of both focal length and asphericity. This is achieved by varying both hydrostatic pressures and electric fields to control the shape of the refracting interface between an electrically conductive lens fluid and a non-conductive ambient fluid. Continuous variation from spherical interfaces at zero electric field to hyperbolic ones with variable ellipticity for finite fields gives access to lenses with positive, zero, and negative spherical aberration (while the focal length can be tuned via the hydrostatic pressure). PMID:25224851
Jordan, K.C.
1958-07-22
The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.
Intense laser field effects on a Woods-Saxon potential quantum well
NASA Astrophysics Data System (ADS)
Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.
2015-11-01
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.
DOT National Transportation Integrated Search
2016-11-28
Intelligent Compaction (IC) is considered to be an innovative technology intended to address some of the problems associated with conventional compaction methods of earthwork (e.g. stiffnessbased measurements instead of density-based measurements). I...
NASA Technical Reports Server (NTRS)
Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul
2017-01-01
Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The sensing capability of a novel airborne UV detector was verified with a standard ground-based instrument. Flights with this sensor showed that UAV measurement operations and recording methods are viable. With improved sensor range, UAVs equipped with compact UV sensors could serve as the detection elements in a self-diagnosing power grid. (3) Simplification of rich lidar maps to polyhedral obstacle maps reduces data volume by orders of magnitude, so that computation with the resultant maps in real time is possible. This enables real-time obstacle avoidance autonomy. Stable navigation may be feasible in the GPS-deprived environment near transmission lines by a UAV that senses ground structures and compares them to these simplified maps. (4) A new, formally verified path conformance software system that runs onboard a UAV was demonstrated in flight for the first time. It successfully maneuvered the aircraft after a sudden lateral perturbation that models a gust of wind, and processed lidar-derived polyhedral obstacle maps in real time. (5) Tracking of the UAV in the national airspace using the NASA UTM technology was a key safety component of this reference mission, since the flights were conducted beneath the landing approach to a heavily used runway. Comparison to autopilot tracking showed that UTM tracking accurately records the UAV position throughout the flight path.
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.
2018-01-01
This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.
Charged reflecting stars supporting charged massive scalar field configurations
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-03-01
The recently published no-hair theorems of Hod, Bhattacharjee, and Sarkar have revealed the intriguing fact that horizonless compact reflecting stars cannot support spatially regular configurations made of scalar, vector and tensor fields. In the present paper we explicitly prove that the interesting no-hair behavior observed in these studies is not a generic feature of compact reflecting stars. In particular, we shall prove that charged reflecting stars can support charged massive scalar field configurations in their exterior spacetime regions. To this end, we solve analytically the characteristic Klein-Gordon wave equation for a linearized charged scalar field of mass μ , charge coupling constant q, and spherical harmonic index l in the background of a spherically symmetric compact reflecting star of mass M, electric charge Q, and radius R_{ {s}}≫ M,Q. Interestingly, it is proved that the discrete set {R_{ {s}}(M,Q,μ ,q,l;n)}^{n=∞}_{n=1} of star radii that can support the charged massive scalar field configurations is determined by the characteristic zeroes of the confluent hypergeometric function. Following this simple observation, we derive a remarkably compact analytical formula for the discrete spectrum of star radii in the intermediate regime M≪ R_{ {s}}≪ 1/μ . The analytically derived resonance spectrum is confirmed by direct numerical computations.
Electrical resisitivity of mechancially stablized earth wall backfill
NASA Astrophysics Data System (ADS)
Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston
2017-06-01
Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized as construction quality assurance for thoroughness of compaction in MSE construction; however more data are needed at this time.
NASA Technical Reports Server (NTRS)
1976-01-01
Stanford University cardiologists, with the help of Ames engineers, have validated the operation of the echo-cardioscope to monitor cardiac functions of astronauts in flight. This device forms images of internal structures using high-frequency sound. The instrument is compact, lightweight, portable, and DC powered for safety. The battery powered ultrasonic device, being isolated from its electrical environment, has an inherent safety advantage especially with infants.
2015-05-29
approach to reducing the antenna size and achieving an electrically resistive and magnetically conducting metasurface are shown in (f) and (g...currents generated by the incident radiation. This metasurface can be designed for the chosen compact antenna frequency. 3.3 Polarizer Our...demonstrated near-unity polarization conversion over a 200-nm bandwidth (Figure 18c). However, one drawback of such metasurfaces is that they must operate
Electrostatics of a Point Charge between Intersecting Planes: Exact Solutions and Method of Images
ERIC Educational Resources Information Center
Mei, W. N.; Holloway, A.
2005-01-01
In this work, the authors present a commonly used example in electrostatics that could be solved exactly in a conventional manner, yet expressed in a compact form, and simultaneously work out special cases using the method of images. Then, by plotting the potentials and electric fields obtained from these two methods, the authors demonstrate that…
Antenna Solar Energy to Electricity Converter (ASETEC)
1989-11-01
radiation damage • x-ray masks: all aspects • synchrotron lithography • high brightness compact sources • x-ray lithography system considerations...IB.\\VAlmaden Research Center Cochairs: Daryl Ann Doane, DAD Technologies, Inc.; Elsa Reichmanis, AT&T Bell Laboratories This conferenc’.’ is a...Philips Research- Laboratories/Signetics Corporation DiaSY Nyyssonen, CD Metrology, Inc. Victor Pol, - AT&T Bell Laboratories Elsa Reichmanis
Development of a Miniature Pulse Tube Cryocooler of 2.5W at 65K for Telecommunication Applications
NASA Astrophysics Data System (ADS)
Matsumoto, Noboru; Yasukawa, Yukio; Ohshima, Keishi; Takeuchi, Takayuki; Matsushita, Tomoyuki; Mizoguchi, Yoshinori
The Fuji Electric Group has established main technologies with high reliability for use in Stirling cryocoolers for space satellite systems. For commercial applications, we also have developed and started selling a miniature pulse tube cryocooler from 2W to 3W at 70K with 100W electric power input. In the development of a new compressor, we introduce a moving magnet to a driving system to achieve greater compactness and higher efficiency in place of the moving coil that had about 70% efficiency. In addition, we adopted a coaxial pulse tube as an expander for compactness. This development is aimed at cooling a high-temperature superconductive (HTS) device in a wireless telecommunication system. The compressor requires total compression work of 75W with 90% efficiency for longer than 50,000 hours. Preliminary tests of each part of a moving magnet linear motor and a coaxial pulse tube have been completed. In the next phase, we have made a first-stage prototype compressor used by the new linear motor, and we have tested the new machine. Here we describe each test and combination test results of the cryocooler.
Design of megawatt power level heat pipe reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcclure, Patrick Ray; Poston, David Irvin; Dasari, Venkateswara Rao
An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors.more » The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.« less
Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin
2017-09-16
In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF₂) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach.
Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin
2017-01-01
In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF2) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach. PMID:28926953
Optical Fiber Thermometer Based on Fiber Bragg Gratings
NASA Astrophysics Data System (ADS)
Rosli, Ekbal Bin; Mohd. Noor, Uzer
2018-03-01
Fiber Bragg grating has generated much interest in use as sensors to measure strain, temperature, and other physical parameters. It also the most common component used to develop this sensor with the advantages of simple, intrinsic sensing elements, electrically passive operation, EMI immunity, high sensitivity, compact size and potentially low cost [6]. This paper reports the design of an optical fiber thermometer based on fiber Bragg gratings. The system was developed for detecting temperature and strain by monitoring the shift of Bragg wavelength. The shifting of Bragg wavelength is used to indicate the temperature and strain due to the change in the surrounding temperature and strain. When the temperature and strain reach the exact wavelength level of the system, the temperature and strain value will display on the Arduino liquid crystal display (LCD). The optical fiber will provide the broadband light source and after passing the FBG the Bragg wavelength into the optical spectrum analyzer (OSA). The system is based on FBG as a physical quantity sensor. The temperatures measured is taken from the water bath and that of the strain is provided by amount of slotted mass used. The outcome of this project is to characterize the Bragg wavelength shifting from the fiber Bragg grating output. As the conclusion, this project provides an efficient optical fiber thermometer in measuring temperature and strain in order to replace the use of conventional electrical instruments.
High Resolution UAV-based Passive Microwave L-band Imaging of Soil Moisture
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Stachura, M.; Elston, J.; McIntyre, E. M.
2013-12-01
Due to long electrical wavelengths and aperture size limitations the scaling of passive microwave remote sensing of soil moisture from spaceborne low-resolution applications to high resolution applications suitable for precision agriculture requires use of low flying aerial vehicles. This presentation summarizes a project to develop a commercial Unmanned Aerial Vehicle (UAV) hosting a precision microwave radiometer for mapping of soil moisture in high-value shallow root-zone crops. The project is based on the use of the Tempest electric-powered UAV and a compact digital L-band (1400-1427 MHz) passive microwave radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated UAV/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a lobe-correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAV above the ground while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer incorporates digital sampling and radio frequency interference mitigation along with infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction. This NASA-sponsored project is being developed both for commercial application in cropland water management, L-band satellite validation, and estuarian plume studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, D; Mutic, S; Shvartsman, S
Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less
NASA Astrophysics Data System (ADS)
Saraf, Shailendhar
A spacecraft demonstration of ultra-violet (UV) LEDs and UV LED charge management based on research done at Stanford University is being developed jointly by the King Abdulaziz City for Science and Technology (KACST) Saudi Arabia and NASA Ames Research Center, with an expected launch date of June 2014. This paper will report on the payload design and testing, mission preparation, satellite launch and payload bring -up in space. Mission lifetime is expected to be at least one month, during which time the ability for the UV LEDs to mitigate actual space-based charging and the effects of radiation on the UV LED device performance will be studied. Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. The mission will demonstrate that AlGaN UV LEDs operating at 255 nm are an effective low-cost, low-power and compact substitute for Mercury vapor lamps used in previous missions. The goal of the mission is to increase the UV LED device to TRL-9 and the charge management system to TRL-7.
NASA Astrophysics Data System (ADS)
Mwankemwa, Benard S.; Legodi, Matshisa J.; Mlambo, Mbuso; Nel, Jackie M.; Diale, Mmantsae
2017-07-01
Undoped and copper doped zinc oxide (ZnO) nanorods have been synthesized by a simple chemical bath deposition (CBD) method at a temperature of 90 °C. Structural, morphological, optical and electrical properties of the synthesized ZnO nanorods were found to be dependent on the Cu doping percentage. X-ray diffraction (XRD) patterns revealed strong diffraction peaks of hexagonal wurtzite of ZnO, and no impurity phases from metallic zinc or copper. Scanning electron microscopy (SEM) images showed changes in diameter and shape of nanorods, where by those doped with 2 at.% and 3 at.% aggregated and became compact. Selected area electron diffraction (SAED) patterns indicates high quality, single crystalline wurtzite structure ZnO and intensities of bright spots varied with copper doping concentration. UV-visible absorption peaks of ZnO red shifted with increasing copper doping concentration. Raman studies demonstrated among others, strong and sharp E2 (low) and E2 (high) optical phonon peaks confirming crystal structure of ZnO. Current-voltage measurements based on the gold/ZnO nanorods/ITO showed good rectifying behavior of the Schottky diode. The predicted Schottky barrier height of 0.60 eV was obtained which is not far from the theoretical Schottky-Mott value of 0.80 eV.
Latest developments for low-power infrared laser-based trace gas sensors for sensor networks
NASA Astrophysics Data System (ADS)
So, Stephen; Thomazy, David; Wang, Wen; Marchat, Oscar; Wysocki, Gerard
2011-09-01
Academic and industrial researchers require ultra-low power, compact laser based trace-gas sensor systems for the most demanding environmental and space-borne applications. Here the latest results from research projects addressing these applications will be discussed: 1) an ultra-compact CO2 sensor based on a continuous wave quantum cascade laser, 2) an ultra-sensitive Faraday rotation spectrometer for O2 detection, 3) a fully ruggedized compact and low-power laser spectrometer, and 4) a novel non-paraxial nonthin multipass cell. Preliminary tests and projection for performance of future sensors based on this technology is presented.
Solid State Lighting: A Nanoenabled Case Study in Sustainability
NASA Astrophysics Data System (ADS)
Hicks, Andrea L.
This work uses three household lighting technology options (incandescent, compact fluorescent (CFL), and light emitting diode (LED)) in a nanoenabled case study of artificial lighting. Life cycle assessment (LCA) is used to analyze the environmental impact of three lighting types across all four lifecycle phases: raw materials acquisition, manufacturing, use, and end of life. Using the average United States electricity profile, the use phase is found to have the greatest impact in all nine impact categories defined by TRACI (Tool for the Reduction and Assessment of Chemical and other environmental Impacts). Agent based modeling (ABM) is used to further investigate the use phase with respect to the adoption of energy efficient lighting and the rebound effect. Survey data on the consumer adoption and use of energy efficient lighting technology yields insight into consumer actions and the potential for rebound to occur, and is used to inform the ABM. Based on the results of the ABM analysis it is suggested that regardless of the type of energy efficient lighting, as long as the consumption of light continues to increase, efficiency alone will not reduce energy consumption. Over extended periods of time (~70 years), energy consumption rebounds to levels of pre-efficiency periods. There is a need for policy measures that are coupled with efficiency increases in such a way that energy savings are sustainable. Geographical and temporal variations in electricity profiles and their associated impacts are explored using LCA. It is found that there is the potential for significant variation in the lifetime environmental impact of lighting options based on shifts in the electricity profile. These results suggest the need for effective local policy in coordination with flexible national policy.
Unusual high B{sub s} for Fe-based amorphous powders produced by a gas-atomization technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, K.; Bito, M.; Kageyama, J.
2016-05-15
Fe-based alloy powders with a high Fe content of about 81 at.% were produced by a gas-atomization technique. Powders of Fe{sub 81}Si{sub 1.9}B{sub 5.7}P{sub 11.4} (at.%) alloy showed a good glass forming ability and exhibited unusual high saturation magnetic flux density of 1.57 T. The core-loss property at a frequency of 100 kHz for the compacted core made of the Fe{sub 81}Si{sub 1.9}B{sub 5.7}P{sub 11.4} powder is evaluated to be less than 500 kW/m{sup 3} under a maximum induction of 100 mT. Moreover, good DC-superposition characteristic of the core was also confirmed. These results suggest that the present Fe-based alloymore » powder is promising for low-loss magnetic-core materials and expected to contribute in miniaturization of electric parts in the near future.« less
Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring.
Zhou, Shaofeng; Huang, Shaobin; Li, Yi; Zhao, Nannan; Li, Han; Angelidaki, Irini; Zhang, Yifeng
2018-08-15
This study presents an innovative microbial fuel cell-based biosensor for carbon monoxide (CO) monitoring. The hypothesis for the function of the biosensor is that CO inhibits bacterial activity in the anode and thereby reduces electricity production. A mature electrochemically active biofilm on the anode was exposed to CO gas at varied concentrations. A proportional linear relationship (R 2 = 0.987) between CO concentration and voltage drop (0.8 to 24 mV) in the range of 10% and 70% of CO concentration was observed. Notably, no further decrease of voltage output was observed by with further increasing CO concentration over 70%. Besides, the response time of the biosensor was 1 h. The compact design and simple operation of the biosensor makes it easy to be integrated in existing CO-based industrial facilities either as a forewarning sensor for CO toxicity or even as an individual on-line monitoring device. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lei, E-mail: donglei@sxu.edu.cn; State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006; Li, Chunguang
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 μm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH{sub 4} sensor with a small footprint (32 × 20 × 17 cm{sup 3}) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH{sub 4} concentrations, respectively. An Allan-Werle deviation analysis shows that the measurement precision can reach 1.4 ppb for amore » 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH{sub 4} sensor system.« less
A new two-phase homopolar switched reluctance motor for electric vehicle applications
NASA Astrophysics Data System (ADS)
Tsai, Mi-Ching; Huang, Chien-Chin; Huang, Zheng-Yi
2003-12-01
This paper presents a novel 2-phase homopolar switched reluctance motor (SRM), whose design successfully avoids dead-zone problems that afflict low cost 1- and/or 2-phase SRMs. Unlike conventional radial-winding-radial-gap motors, the proposed SRM has an interior stator that is of the pancake type with axial winding. Such a design allows for a high slot-fill factor and is suitable for implementation as a flat pancake-shaped stator. An efficient, compact prototype was produced with TMS320F240 DSP driving control unit. Experimental results indicate that the present SRM design has the potential to be used for electric bicycles and scooters.
A miniature fuel reformer system for portable power sources
NASA Astrophysics Data System (ADS)
Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan
2014-12-01
A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.
Modeling of hot-mix asphalt compaction : a thermodynamics-based compressible viscoelastic model
DOT National Transportation Integrated Search
2010-12-01
Compaction is the process of reducing the volume of hot-mix asphalt (HMA) by the application of external forces. As a result of compaction, the volume of air voids decreases, aggregate interlock increases, and interparticle friction increases. The qu...
InP-based compact transversal filter for monolithically integrated light source array.
Ueda, Yuta; Fujisawa, Takeshi; Takahata, Kiyoto; Kohtoku, Masaki; Ishii, Hiroyuki
2014-04-07
We developed an InP-based 4x1 transversal filter (TF) with multi-mode interference couplers (MMIs) as a compact wavelength multiplexer (MUX) 1700 μm x 400 μm in size. Furthermore, we converted the MMI-based TF to a reflection type to obtain an ultra-compact MUX of only 900 μm x 50 μm. These MUXs are made with a simple fabrication process and show a satisfactory wavelength filtering operation as MUXs of monolithically integrated light source arrays, for example, for 100G bit Ethernet.
Brugmans, Marieke M C P; Driessen-Mol, Anita; Rubbens, Mirjam P; Cox, Martijn A J; Baaijens, Frank P T
2015-12-01
Tissue-engineered heart valves (TEHVs), based on polyglycolic acid (PGA) scaffolds coated with poly-4-hydroxybutyrate (P4HB), have shown promising in vivo results in terms of tissue formation. However, a major drawback of these TEHVs is compaction and retraction of the leaflets, causing regurgitation. To overcome this problem, the aim of this study was to investigate: (a) the use of the slowly degrading poly-ε-caprolactone (PCL) scaffold for prolonged mechanical integrity; and (b) the use of lower passage cells for enhanced tissue formation. Passage 3, 5 and 7 (P3, P5 and P7) human and ovine vascular-derived cells were seeded onto both PGA-P4HB and PCL scaffold strips. After 4 weeks of culture, compaction, tissue formation, mechanical properties and cell phenotypes were compared. TEHVs were cultured to observe retraction of the leaflets in the native-like geometry. After culture, tissues based on PGA-P4HB scaffold showed 50-60% compaction, while PCL-based tissues showed compaction of 0-10%. Tissue formation, stiffness and strength were increased with decreasing passage number; however, this did not influence compaction. Ovine PCL-based tissues did render less strong tissues compared to PGA-P4HB-based tissues. No differences in cell phenotype between the scaffold materials, species or cell passage numbers were observed. This study shows that PCL scaffolds may serve as alternative scaffold materials for human TEHVs with minimal compaction and without compromising tissue composition and properties, while further optimization of ovine TEHVs is needed. Reducing cell expansion time will result in faster generation of TEHVs, providing more rapid treatment for patients. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
2004-01-01
Topics covered include: COTS MEMS Flow-Measurement Probes; Measurement of an Evaporating Drop on a Reflective Substrate; Airplane Ice Detector Based on a Microwave Transmission Line; Microwave/Sonic Apparatus Measures Flow and Density in Pipe; Reducing Errors by Use of Redundancy in Gravity Measurements; Membrane-Based Water Evaporator for a Space Suit; Compact Microscope Imaging System with Intelligent Controls; Chirped-Superlattice, Blocked-Intersubband QWIP; Charge-Dissipative Electrical Cables; Deep-Sea Video Cameras Without Pressure Housings; RFID and Memory Devices Fabricated Integrally on Substrates; Analyzing Dynamics of Cooperating Spacecraft; Spacecraft Attitude Maneuver Planning Using Genetic Algorithms; Forensic Analysis of Compromised Computers; Document Concurrence System; Managing an Archive of Images; MPT Prediction of Aircraft-Engine Fan Noise; Improving Control of Two Motor Controllers; Electro-deionization Using Micro-separated Bipolar Membranes; Safer Electrolytes for Lithium-Ion Cells; Rotating Reverse-Osmosis for Water Purification; Making Precise Resonators for Mesoscale Vibratory Gyroscopes; Robotic End Effectors for Hard-Rock Climbing; Improved Nutation Damper for a Spin-Stabilized Spacecraft; Exhaust Nozzle for a Multitube Detonative Combustion Engine; Arc-Second Pointer for Balloon-Borne Astronomical Instrument; Compact, Automated Centrifugal Slide-Staining System; Two-Armed, Mobile, Sensate Research Robot; Compensating for Effects of Humidity on Electronic Noses; Brush/Fin Thermal Interfaces; Multispectral Scanner for Monitoring Plants; Coding for Communication Channels with Dead-Time Constraints; System for Better Spacing of Airplanes En Route; Algorithm for Training a Recurrent Multilayer Perceptron; Orbiter Interface Unit and Early Communication System; White-Light Nulling Interferometers for Detecting Planets; and Development of Methodology for Programming Autonomous Agents.
Surgical bedside master console for neurosurgical robotic system.
Arata, Jumpei; Kenmotsu, Hajime; Takagi, Motoki; Hori, Tatsuya; Miyagi, Takahiro; Fujimoto, Hideo; Kajita, Yasukazu; Hayashi, Yuichiro; Chinzei, Kiyoyuki; Hashizume, Makoto
2013-01-01
We are currently developing a neurosurgical robotic system that facilitates access to residual tumors and improves brain tumor removal surgical outcomes. The system combines conventional and robotic surgery allowing for a quick conversion between the procedures. This concept requires a new master console that can be positioned at the surgical bedside and be sterilized. The master console was developed using new technologies, such as a parallel mechanism and pneumatic sensors. The parallel mechanism is a purely passive 5-DOF (degrees of freedom) joystick based on the author's haptic research. The parallel mechanism enables motion input of conventional brain tumor removal surgery with a compact, intuitive interface that can be used in a conventional surgical environment. In addition, the pneumatic sensors implemented on the mechanism provide an intuitive interface and electrically isolate the tool parts from the mechanism so they can be easily sterilized. The 5-DOF parallel mechanism is compact (17 cm width, 19cm depth, and 15cm height), provides a 505,050 mm and 90° workspace and is highly backdrivable (0.27N of resistance force representing the surgical motion). The evaluation tests revealed that the pneumatic sensors can properly measure the suction strength, grasping force, and hand contact. In addition, an installability test showed that the master console can be used in a conventional surgical environment. The proposed master console design was shown to be feasible for operative neurosurgery based on comprehensive testing. This master console is currently being tested for master-slave control with a surgical robotic system.
Compact battery-less information terminal (CoBIT) for location-based support systems
NASA Astrophysics Data System (ADS)
Nishimura, Takuichi; Itoh, Hideo; Yamamoto, Yoshinobu; Nakashima, Hideyuki
2002-06-01
The target of ubiquitous computing environment is to support users to get necessary information and services in a situation-dependent form. Therefore, we propose a location-based information support system by using Compact Battery-less Information Terminal (CoBIT). A CoBIT can communicate with the environmental system and with the user by only the energy supply from the environment. It has a solar cell and get a modulated light from an environmental optical beam transmitter. The current from the solar cell is directly (or through passive circuit) introduced into an earphone, which generates sound for the user. The current is also used to make vibration, LED signal or electrical stimulus on the skin. The sizes of CoBITs are about 2cm in diameter, 3cm in length, which can be hanged on ears conveniently. The cost of it would be only about 1 dollar if produced massively. The CoBIT also has sheet type corner reflector, which reflect optical beam back in the direction of the light source. Therefore the environmental system can easily detect the terminal position and direction as well as some simple signs from the user by multiple cameras with infra-red LEDs. The system identifies the sign by the modulated patterns of the reflected light, which the user makes by occluding the reflector by hand. The environmental system also recognizes other objects using other sensors and displays video information on a nearby monitor in order to realize situated support.
0-6676 : Rapid field detection of moisture content for base and subgrade : [project summary].
DOT National Transportation Integrated Search
2013-08-01
Properly applying water during compaction of : roadway base and subgrade materials is : important for achieving adequate compaction. : Construction specifications determine the : required water content, and field measurement : historically takes plac...
Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.
2016-01-01
Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761
A novel compact dual-wideband BPF with multiple transmission zeros and super wide upper stopband
NASA Astrophysics Data System (ADS)
Mirzaee, Milad; Nosrati, Mehdi
2013-05-01
In this article, a novel miniaturised dual-wideband bandpass filter (DWB-BPF) based on two different resonators including a quasi-spiral loaded multiple-mode resonator (QSL-MMR) and L-shaped transmission line (LS-TL) is presented. At the first step, in order to design a single wideband BPF filter with controllable transmission zeros near the centre frequency, the open circuit impedance parameter of quasi-spiral loaded resonator Z21 is determined in terms of ABCD matrix. Then an equivalent circuit model of the proposed structure is derived and the impedance characteristic and electrical length of LS-TLs to achieve a DWB-BPF with excellent selectivity are calculated through even- and odd-mode analysis. The proposed filter possesses both compact and simple structure as well as two wide passbands with fractional bandwidth (FBW) of 70% and 22.8% for its first and second passbands, respectively. The proposed technique creates two transmission zeros at the lower and upper stopbands of each passband resulting in a very sharp roll-off accompanied by a wide stopband. Notably, the circuit size is reduced and the bandwidth is enhanced in comparison with its conventional counterparts. The theoretical performance of the filter is verified by the experimental one where a good agreement is reported between them.
NASA Astrophysics Data System (ADS)
Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.
2016-02-01
Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Xiang-kun; Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044; Liu, Shao-Bin, E-mail: plrg@nuaa.edu.cn
2014-12-15
A novel, compact, and multichannel nonreciprocal absorber through a wave tunneling mechanism in epsilon-negative and matching metamaterials is theoretically proposed. Nonreciprocal absorption properties are acquired via the coupling together of evanescent and propagating waves in an asymmetric configuration, constituted of nonlinear plasma alternated with matching metamaterial. The absorption channel number can be adjusted by changing the periodic number. Due to the positive feedback between nonlinear permittivity of plasma and the inner electric field, bistable absorption and reflection are achieved. Moreover, compared with some truncated photonic crystal or multilayered designs proposed before, our design is more compact and independent of incidentmore » angle or polarization. This kind of multilayer structure offers additional opportunities to design novel omnidirectional electromagnetic wave absorbers.« less
Compact mass spectrometer for plasma discharge ion analysis
Tuszewski, M.G.
1997-07-22
A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.
Compact microwave re-entrant cavity applicator for plasma-assisted combustion.
Hemawan, Kadek W; Wichman, Indrek S; Lee, Tonghun; Grotjohn, Timothy A; Asmussen, Jes
2009-05-01
The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH(4)/O(2) flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of > or = 10 W microplasma discharges can be produced in the high electric field region of the applicator.
Compact microwave re-entrant cavity applicator for plasma-assisted combustion
NASA Astrophysics Data System (ADS)
Hemawan, Kadek W.; Wichman, Indrek S.; Lee, Tonghun; Grotjohn, Timothy A.; Asmussen, Jes
2009-05-01
The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH4/O2 flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of ≥10 W microplasma discharges can be produced in the high electric field region of the applicator.
Bennett, G.A.
1992-11-24
A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.
Compact mass spectrometer for plasma discharge ion analysis
Tuszewski, Michel G.
1997-01-01
A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.
Gain modulation by graphene plasmons in aperiodic lattice lasers
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Marshall, O. P.; Folland, T. G.; Kim, Y.-J.; Grigorenko, A. N.; Novoselov, K. S.
2016-01-01
Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene’s Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology.
NASA Technical Reports Server (NTRS)
Nevill, Gale E., Jr.
1988-01-01
The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies.
Prototype solar heating and hot water systems
NASA Technical Reports Server (NTRS)
1977-01-01
Alternative approaches to solar heating and hot water system configurations were studied, parametrizing the number and location of the dampers, the number and location of the fans, the interface locations with the furnace, the size and type of subsystems, and operating modes. A two-pass air-heating collector was selected based on efficiency and ease of installation. Also, an energy transport module was designed to compactly contain all the mechanical and electrical control components. System performance calculations were carried out over a heating season for the tentative site location at Tunkhnana, Pa. Results illustrate the effect of collector size, storage capacity, and use of a reflector. Factors which affected system performance include site location, insulative quality of the house, and of the system components. A preliminary system performance specification is given.
Yohannes, B; Gonzalez, M; Abebe, A; Sprockel, O; Nikfar, F; Kiang, S; Cuitiño, A M
2016-04-30
The evolution of microstructure during powder compaction process was investigated using a discrete particle modeling, which accounts for particle size distribution and material properties, such as plasticity, elasticity, and inter-particle bonding. The material properties were calibrated based on powder compaction experiments and validated based on tensile strength test experiments for lactose monohydrate and microcrystalline cellulose, which are commonly used excipient in pharmaceutical industry. The probability distribution function and the orientation of contact forces were used to study the evolution of the microstructure during the application of compaction pressure, unloading, and ejection of the compact from the die. The probability distribution function reveals that the compression contact forces increase as the compaction force increases (or the relative density increases), while the maximum value of the tensile contact forces remains the same. During unloading of the compaction pressure, the distribution approaches a normal distribution with a mean value of zero. As the contact forces evolve, the anisotropy of the powder bed also changes. Particularly, during loading, the compression contact forces are aligned along the direction of the compaction pressure, whereas the tensile contact forces are oriented perpendicular to direction of the compaction pressure. After ejection, the contact forces become isotropic. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shauly, Eitan N.; Levi, Shimon; Schwarzband, Ishai; Adan, Ofer; Latinsky, Sergey
2015-04-01
A fully automated silicon-based methodology for systematic analysis of electrical features is shown. The system was developed for process monitoring and electrical variability reduction. A mapping step was created by dedicated structures such as static-random-access-memory (SRAM) array or standard cell library, or by using a simple design rule checking run-set. The resulting database was then used as an input for choosing locations for critical dimension scanning electron microscope images and for specific layout parameter extraction then was input to SPICE compact modeling simulation. Based on the experimental data, we identified two items that must be checked and monitored using the method described here: transistor's sensitivity to the distance between the poly end cap and edge of active area (AA) due to AA rounding, and SRAM leakage due to a too close N-well to P-well. Based on this example, for process monitoring and variability analyses, we extensively used this method to analyze transistor gates having different shapes. In addition, analysis for a large area of high density standard cell library was done. Another set of monitoring focused on a high density SRAM array is also presented. These examples provided information on the poly and AA layers, using transistor parameters such as leakage current and drive current. We successfully define "robust" and "less-robust" transistor configurations included in the library and identified unsymmetrical transistors in the SRAM bit-cells. These data were compared to data extracted from the same devices at the end of the line. Another set of analyses was done to samples after Cu M1 etch. Process monitoring information on M1 enclosed contact was extracted based on contact resistance as a feedback. Guidelines for the optimal M1 space for different layout configurations were also extracted. All these data showed the successful in-field implementation of our methodology as a useful process monitoring method.
Shaped cathodes for the production of ultra-short multi-electron pulses
Petruk, Ariel Alcides; Pichugin, Kostyantyn; Sciaini, Germán
2017-01-01
An electrostatic electron source design capable of producing sub-20 femtoseconds (rms) multi-electron pulses is presented. The photoelectron gun concept builds upon geometrical electric field enhancement at the cathode surface. Particle tracer simulations indicate the generation of extremely short bunches even beyond 40 cm of propagation. Comparisons with compact electron sources commonly used for femtosecond electron diffraction are made. PMID:28191483
Makowiecki, Daniel M.; McKernan, Mark A.; Grabner, R. Fred; Ramsey, Philip B.
1994-01-01
A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.
Fano Bounds for Compact Antennas. Phase I
2007-10-01
Transimpedance Amplifiers IEEE Journal of Solid-State Circuits, 39(8), pages 1263–1270. [3] Baher, H. [1984] Synthesis of Electrical Networks, John Wiley...band PHEMTMMIC Low Noise Amplifier with Minimum Input Match- ing Network, Electronics Letters, 36, pages 1627–1629. [7] Edminister, Joseph A. [1965...pages 1328–1331. [11] Gonzalez, Guillermo [1997] Microwave Transistor Amplifiers , Second Edition, Prentice Hall, Upper Saddle River, NJ. 68 [12
Channel plate for DNA sequencing
Douthart, R.J.; Crowell, S.L.
1998-01-13
This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.
Practical application of HgI2 detectors to a space-flight scanning electron microscope
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.
1989-01-01
Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.
Deb, Pranab; Haldar, Tapas; Kashid, Somnath M; Banerjee, Subhrashis; Chakrabarty, Suman; Bagchi, Sayan
2016-05-05
Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitrile's utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.
Code of Federal Regulations, 2013 CFR
2013-01-01
... “ENERGY STAR Program Requirements for [Compact Fluorescent Lamps] CFLs,” Version dated August 9, 2001... DOE's “ENERGY STAR Program Requirements for [Compact Fluorescent Lamps] CFLs,” Version dated August 9...
Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W
2012-06-01
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.
Compact self-contained electrical-to-optical converter/transmitter
Seligmann, D.A.; Moss, W.C.; Valk, T.C.; Conder, A.D.
1995-11-21
A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch. 13 figs.
Development of Electric Power Units Driven by Waste Heat
NASA Astrophysics Data System (ADS)
Inoue, Naoyuki; Takeuchi, Takao; Kaneko, Atsushi; Uchimura, Tomoyuki; Irie, Kiichi; Watanabe, Hiroyoshi
For the development of a simple and compact power generator driven by waste heat, working fluids and an expander were studied, then a practical electric power unit was put to test. Many working fluids were calculated with the low temperature power cycle (evaporated at 77°C, condensed at 42°C),and TFE,R123,R245fa were selected to be suitable for the cycle. TFE(Trifluoroethanol CF3CH2OH) was adopted to the actual power generator which was tested. A radial turbine was adopted as an expander, and was newly designed and manufactured for working fluid TFE. The equipment was driven by hot water as heat source and cooling water as cooling source, and generated power was connected with electric utility. Characteristics of the power generating cycle and characteristics of the turbine were obtained experimentally.
NASA Astrophysics Data System (ADS)
Grigoryev, Evgeny G.
2011-01-01
Simultaneous electro discharge sintering of high strength structure of tungsten carbide—cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide—cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.
Rapid field detection of moisture content for base and subgrade : technical report.
DOT National Transportation Integrated Search
2015-03-01
Mixing and compacting soil and flexible base pavement materials at the proper moisture content is critical : for obtaining adequate compaction and meeting construction specification requirements. This project sought : to evaluate rapid non-nuclear te...
NASA Astrophysics Data System (ADS)
Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.; Uribe, P.; Cameron, T.
2017-12-01
A compact Ion and Neutral Mass Spectrometer (INMS) has been developed for GSFC's Dellingr mission, using the 6U CubeSat platform. Dellingr is expected to deploy into ISS orbit in October 2017 to measure the dynamics of the ionosphere-thermosphere-mesosphere and to determine the steady state background atmospheric conditions at this altitude. The INMS makes in situ measurements of ionized and neutral H, He, N, O, N2, O2 densities with M/dM of approximately 10-12 for thermal particles. The INMS is based on particle acceleration, electronically gated time of flight (TOF), electrostatic analyzer, and CEM detectors. The compact instrument has a dual symmetric configuration with ion and neutral sensor heads on opposite sides of the shared electronics. The neutral front-end includes thermionic ionization and ion-blocking grids. The electronics include fast preamplifiers, electric gating, and TOF measurements and processing, C&DH digital electronics for commands, data storage and back-end I/O, and HVPS for detector and sensor biases. The data package includes 400 bins of mass spectra per ion and neutral sensor and key housekeeping and calibration data, in a single time tagged data frame of 14kbits uncompressed. The nominal data sampling is 1 sec corresponding to 7.5km spatial resolution in LEO orbits. This miniaturized instrument occupies a 1.1U volume, weighs only 570g and nominally operates at 1.2W. This presentation will include preliminary flight data of ions and neutrals from the Dellingr mission and outlines improvements incorporated into the design for the Dellingr (Oct 2017), ExoCube2 (Dec 2017) and petitSat (2020) CubeSat missions.
NASA Astrophysics Data System (ADS)
Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing
2018-03-01
Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.
LILCO (Long Island Lighting Co. ) pushes electric vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daumann, E.; Dwing, A.H.
1979-02-01
Acting as manufacturer's representative, LILCO recently showed five new electric vehicles to over 75 major Long Island companies and organizations as part of a U.S. Department of Energy demonstration project. The five new models include three different types and sizes of vans and a pickup truck, all made by Jet Industries Inc., and a compact station wagon made by Electric Vehicle Associates Inc. All are capable of going faster and further than required by federal standards. E. Daumann, manager of LILCO's energy services department, explained that the vehicle batteries will usually be charged during the evening hours, when electricity costsmore » are lower and 40-50Vertical Bar3< of utility capacity nationwide is idle. LILCO plans to add 40 new electric vehicles to its present fleet of 12. Four other organizations selected by the Federal Government to be ''site operators'' for the demonstration project are American Telephone and Telegraph Co., Walt Disney World, Consolidated Edison Co. of New York Inc., and Penn Jersey Subaru. A. H. Dwing (Dep. Energy) said that the vehicles represent a means of conserving the world oil supplies.« less
NASA Astrophysics Data System (ADS)
Motohiro, Tomoyoshi; Takeda, Yasuhiko; Ito, Hiroshi; Hasegawa, Kazuo; Ikesue, Akio; Ichikawa, Tadashi; Higuchi, Kazuo; Ichiki, Akihisa; Mizuno, Shintaro; Ito, Tadashi; Yamada, Noboru; Nath Luitel, Hom; Kajino, Tsutomu; Terazawa, Hidetaka; Takimoto, Satoshi; Watanabe, Kemmei
2017-08-01
We have developed a compact solar-pumped laser (µSPL) employing an off-axis parabolic mirror with an aperture of 76.2 mm diameter and an yttrium aluminum garnet (YAG) ceramic rod of φ1 mm × 10 mm doped with 1% Nd and 0.1% Cr as a laser medium. The laser oscillation wavelength of 1.06 µm, just below the optical absorption edge of Si cells, is suitable for photoelectric conversion with minimal thermal loss. The concept of laser beam power feeding to an electric vehicle equipped with a photovoltaic panel on the roof was proposed by Ueda in 2010, in which the electricity generated by solar panels over the road is utilized to drive a semiconductor laser located on each traffic signal along the road. By substituting this solar-electricity-driven semiconductor laser with a solar-pumped laser, the energy loss of over 50% in converting the solar electricity to a laser beam can be eliminated. The overall feasibility of this system in an urban area such as Tokyo was investigated.
White, M D; Bissiere, S; Alvarez, Y D; Plachta, N
2016-01-01
Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.
Sneed, Michelle; Galloway, Devin L.
2000-01-01
Land subsidence resulting from ground-water-level declines has long been recognized as a problem in Antelope Valley, California. At Edwards Air Force Base (EAFB), ground-water extractions have caused more than 150 feet of water-level decline, resulting in nearly 4 feet of subsidence. Differential land subsidence has caused sinklike depressions and earth fissures and has accelerated erosion of the playa lakebed surface of Rogers Lake at EAFB, adversely affecting the runways on the lakebed which are used for landing aircraft such as the space shuttles. Since 1990, about 0.4 foot of aquifer-system compaction has been measured at a deep (840 feet) borehole extensometer (Holly site) at EAFB. More than 7 years of paired ground-water-level and aquifer-system compaction measurements made at the Holly site were analyzed for this study. Annually, seasonal water-level fluctuations correspond to steplike variations in aquifer-system compaction; summer water-level drawdowns are associated with larger rates of compaction, and winter water-level recoveries are associated with smaller rates of compaction. The absence of aquifer-system expansion during recovery is consistent with the delayed drainage and resultant delayed, or residual, compaction of thick aquitards. A numerical one-dimensional MODFLOW model of aquitard drainage was used to refine estimates of aquifer-system hydraulic parameters that control compaction and to predict potential future compaction at the Holly site. The analyses and simulations of aquifer-system compaction are based on established theories of aquitard drainage. Historical ground-water-level and land-subsidence data collected near the Holly site were used to constrain simulations of aquifer-system compaction and land subsidence at the site for the period 1908?90, and ground-water-level and aquifer- system compaction measurements collected at the Holly site were used to constrain the model for the period 1990?97. Model results indicate that two thick aqui- tards, which total 129 feet or about half the aggregate thickness of all the aquitards penetrated by the Holly boreholes, account for most (greater than 99 percent) of the compaction measured at the Holly site during the period 1990?97. The results of three scenarios of future water-level changes indicate that these two thick aquitards account for most of the future compaction. The results also indicate that if water levels decline to about 30 feet below the 1997 water levels an additional 1.7 feet of compaction may occur during the next 30 years. If water levels remain at 1997 levels, the model predicts that only 0.8 foot of compaction may occur during the same period, and even if water levels recover to about 30 feet above 1997 water levels, another 0.5 foot of compaction may occur in the next 30 years. In addition, only a portion of the compaction that ultimately will occur likely will occur within the next 30 years; therefore, the residual compaction and associated land subsidence attributed to slowly equilibrating aquitards is important to consider in the long-term management of land and water resources at EAFB.
NASA Astrophysics Data System (ADS)
Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru
2016-12-01
A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.
Cryogenic Electric Motor Tested
NASA Technical Reports Server (NTRS)
Brown, Gerald V.
2004-01-01
Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.
Mitigation of air pollution and carbon footprint by energy conservation through CFLs: a case study.
Wath, Sushant B; Majumdar, Deepanjan
2011-01-01
Electricity consumption of compact fluorescent lamps (CFLs) is low, making them a useful tool for minimizing the rapidly increasing demand of electrical energy in India. The present study aims to project the likely electricity conservation in a scenario of complete replacement of existing Fluorescent Tubes (FTs) by CFLs at CSIR-NEERI (National Environmental Engineering Research Institute) visa vis the financial repercussions and indirect reduction in emissions of greenhouse gases, e.g. CO2, N2O, CH4 and other air pollutants, e.g. SO2, NO, suspended particulate matter (SPM), black carbon (BC) and mercury (Hg) from coal fired thermal power plants. The calculations show that the Institute could save around 122850 kWh of electricity per annum, thereby saving approximately INR 859950/(USD 18453.86) towards electricity cost per annum and would be able to minimize 44579.08 kg of CO2-C equivalent (over 100 year time horizon), 909 kg SO2, 982.8 kg NO, 9.8 kg of BC, 368.5 kg SPM, 18.4 kg PM10 and 0.0024 kg Hg emissions per annum from a coal fired thermal power plant by conserving electricity at the institute level.
NASA Astrophysics Data System (ADS)
Chen, Tzehan; Chow, Brian J.; Zhong, Ying; Wang, Meng; Kou, Rui; Qiao, Yu
2018-02-01
We report results from an experiment on high-pressure compaction of lunar soil simulant (LSS) mixed with 2-5 wt% polymer binder. The LSS grains can be strongly held together, forming an inorganic-organic monolith (IOM) with the flexural strength around 30-40 MPa. The compaction pressure, the number of loadings, the binder content, and the compaction duration are important factors. The LSS-based IOM remains strong from -200 °C to 130 °C, and is quite gas permeable.
NASA Astrophysics Data System (ADS)
Lee, Dicky; Moulton, Peter F.
2001-03-01
In this paper we discuss our red, green, and blue (RGB) optical parametric oscillator (OPO) light source for projection display applications. Our source consists of a diode-pumped pump laser and a LBO-based OPO. Based on our Nd:YLF gain-module design, the pump laser is frequency doubled to serve as the pump source for the OPO. The unconverted pump power is recycled as the green light for projection. The singly resonant, non-critically phase- matched OPO has, to date, generated 13 W of 898-nm signal power and an estimated 9.3 W of intra-cavity idler power at 1256 nm. With approximately 76% of pump depletion, the power of the residual green light for projection is about 5.8 W. We have extra-cavity doubled the signal to produce approximately 3.5 W of 449-nm blue light and intra-cavity doubled the idler to produce approximately 6 W of 628-nm red light. The OPO-based RGB source generates about 4000 lumens of D65-balanced white light. The overall electrical power luminous efficiency (diodes only) is about 14.6 lumens/Watt.
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2016-12-01
In recent years, object based image analysis (OBIA) has spread out and become a widely accepted technique for the analysis of remotely sensed data. OBIA deals with grouping pixels into homogenous objects based on spectral, spatial and textural features of contiguous pixels in an image. The first stage of OBIA, named as image segmentation, is the most prominent part of object recognition. In this study, multiresolution segmentation, which is a region-based approach, was employed to construct image objects. In the application of multi-resolution, three parameters, namely shape, compactness and scale must be set by the analyst. Segmentation quality remarkably influences the fidelity of the thematic maps and accordingly the classification accuracy. Therefore, it is of great importance to search and set optimal values for the segmentation parameters. In the literature, main focus has been on the definition of scale parameter, assuming that the effect of shape and compactness parameters is limited in terms of achieved classification accuracy. The aim of this study is to deeply analyze the influence of shape/compactness parameters by varying their values while using the optimal scale parameter determined by the use of Estimation of Scale Parameter (ESP-2) approach. A pansharpened Qickbird-2 image covering Trabzon, Turkey was employed to investigate the objectives of the study. For this purpose, six different combinations of shape/compactness were utilized to make deductions on the behavior of shape and compactness parameters and optimal setting for all parameters as a whole. Objects were assigned to classes using nearest neighbor classifier in all segmentation observations and equal number of pixels was randomly selected to calculate accuracy metrics. The highest overall accuracy (92.3%) was achieved by setting the shape/compactness criteria to 0.3/0.3. The results of this study indicate that shape/compactness parameters can have significant effect on classification accuracy with 4% change in overall accuracy. Also, statistical significance of differences in accuracy was tested using the McNemar's test and found that the difference between poor and optimal setting of shape/compactness parameters was statistically significant, suggesting a search for optimal parameterization instead of default setting.
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.
Two Improved Access Methods on Compact Binary (CB) Trees.
ERIC Educational Resources Information Center
Shishibori, Masami; Koyama, Masafumi; Okada, Makoto; Aoe, Jun-ichi
2000-01-01
Discusses information retrieval and the use of binary trees as a fast access method for search strategies such as hashing. Proposes new methods based on compact binary trees that provide faster access and more compact storage, explains the theoretical basis, and confirms the validity of the methods through empirical observations. (LRW)
Mission-Based Funding Compacts with Public Universities. Go8 Backgrounder 6
ERIC Educational Resources Information Center
Group of Eight (NJ1), 2008
2008-01-01
This Go8 Backgrounder explores the possible uses of compacts in government financing of university activities, examines their potential costs and benefits, and outlines principles for their design and implementation. The Government has committed to compacts as an element of its future funding arrangements with public universities but has not yet…
NASA Astrophysics Data System (ADS)
Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo
2013-07-01
In this paper, an innovative strategy for improving the performance of a recently developed rotational energy harvester is proposed. Its performance can be considerably enhanced by replacing the electromagnetic induction part, consisting of moving permanent magnets and a fixed solenoid coil, with a moving mass and a rotational generator (i.e., an electric motor). The proposed system is easily tuned to the natural frequency of a target structure using the position change of a proof mass. Owing to the high efficiency of the rotational generator, the device can more effectively harness electrical energy from the wind-induced vibration of a stay cable. Also, this new configuration makes the device more compact and geometrically tunable. In order to validate the effectiveness of the new configuration, a series of laboratory and field tests are carried out with the prototype of the proposed device, which is designed and fabricated based on the dynamic characteristics of the vibration of a stay cable installed in an in-service cable-stayed bridge. From the field test, it is observed that the normalized output power of the proposed system is 35.67 mW (m s-2)-2, while that of the original device is just 5.47 mW (m s-2)-2. These results show that the proposed device generates much more electrical energy than the original device. Moreover, it is verified that the proposed device can generate sufficient electricity to power a wireless sensor node placed on a cable under gentle-moderate wind conditions.
NASA Astrophysics Data System (ADS)
Rachi, Hideki
Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.
Sequentially pulsed traveling wave accelerator
Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA
2009-08-18
A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.
Compact Superconducting Power Systems for Airborne Applications (Postprint)
2009-01-01
rotating machin- ery such as motors and alternators, is to maximize the magnet- ic flux density. This can be achieved by using a higher current...future systems could be driven to much higher power ratios, since the initial machine configuration was a homopolar inductor alternator‡ (HIA). A... Homopolar inductor alternator is an electrically symmetrical synchro- nous generator with a field winding that has a fixed magnetic position in relation to
Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.
1994-08-02
A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.
1986-10-01
developed by the AEH Group has the advantages: of compactness which makes it easily transportable; computer controlled acquisi- tion, signal processing...be available to a negatively charged aircraft. The experimental arrangement attempts to simulate the streamer propagation and growth in a quasi ...separate foam configurations: the operational configuration of non - conductive foam and a second configuration which contained an experimental
Introduction to Piezoelectric Actuators and Transducers
2003-06-17
a piezo-device and a metal fork. A piezoelectric buzzer is shown in Fig. 12, which has merits such as high electric power efficiency, compact size...coefficient for surface acoustic wave and so is used for SAW devices with high -stabilized frequencies. The another distinguished characteristic of...quartz is an extremely high mechanical quality factor Qm > 10 5. Lithium niobate and lithium tantalate belong to an isomorphous crystal system and
COMPACT E+A GALAXIES AS A PROGENITOR OF MASSIVE COMPACT QUIESCENT GALAXIES AT 0.2 < z < 0.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahid, H. Jabran; Hochmuth, Nicholas Baeza; Geller, Margaret J.
We search the Sloan Digital Sky Survey and the Baryon Oscillation Sky Survey to identify ∼5500 massive compact quiescent galaxy candidates at 0.2 < z < 0.8. We robustly classify a subsample of 438 E+A galaxies based on their spectral properties and make this catalog publicly available. We examine sizes, stellar population ages, and kinematics of galaxies in the sample and show that the physical properties of compact E+A galaxies suggest that they are a progenitor of massive compact quiescent galaxies. Thus, two classes of objects—compact E+A and compact quiescent galaxies—may be linked by a common formation scenario. The typicalmore » stellar population age of compact E+A galaxies is <1 Gyr. The existence of compact E+A galaxies with young stellar populations at 0.2 < z < 0.8 means that some compact quiescent galaxies first appear at intermediate redshifts. We derive a lower limit for the number density of compact E+A galaxies. Assuming passive evolution, we convert this number density into an appearance rate of new compact quiescent galaxies at 0.2 < z < 0.8. The lower limit number density of compact quiescent galaxies that may appear at z < 0.8 is comparable to the lower limit of the total number density of compact quiescent galaxies at these intermediate redshifts. Thus, a substantial fraction of the z < 0.8 massive compact quiescent galaxy population may descend from compact E+A galaxies at intermediate redshifts.« less
Wind speed time series reconstruction using a hybrid neural genetic approach
NASA Astrophysics Data System (ADS)
Rodriguez, H.; Flores, J. J.; Puig, V.; Morales, L.; Guerra, A.; Calderon, F.
2017-11-01
Currently, electric energy is used in practically all modern human activities. Most of the energy produced came from fossil fuels, making irreversible damage to the environment. Lately, there has been an effort by nations to produce energy using clean methods, such as solar and wind energy, among others. Wind energy is one of the cleanest alternatives. However, the wind speed is not constant, making the planning and operation at electric power systems a difficult activity. Knowing in advance the amount of raw material (wind speed) used for energy production allows us to estimate the energy to be generated by the power plant, helping the maintenance planning, the operational management, optimal operational cost. For these reasons, the forecast of wind speed becomes a necessary task. The forecast process involves the use of past observations from the variable to forecast (wind speed). To measure wind speed, weather stations use devices called anemometers, but due to poor maintenance, connection error, or natural wear, they may present false or missing data. In this work, a hybrid methodology is proposed, and it uses a compact genetic algorithm with an artificial neural network to reconstruct wind speed time series. The proposed methodology reconstructs the time series using a ANN defined by a Compact Genetic Algorithm.
Multifunctional Deployment Hinges Rigidified by Ultraviolet
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Simburger, Edward J.; Matusmoto, James; Giants, Thomas W.; Garcia, Alexander; Perry, Alan; Rawal, Suraj; Marshall, Craig; Lin, John Kun Hung; Day, Jonathan Robert;
2005-01-01
Multifunctional hinges have been developed for deploying and electrically connecting panels comprising planar arrays of thin-film solar photovoltaic cells. In the original intended application of these hinges, the panels would be facets of a 32-sided (and approximately spherical) polyhedral microsatellite (see figure), denoted a PowerSphere, that would be delivered to orbit in a compact folded configuration, then deployed by expansion of gas in inflation bladders. Once deployment was complete, the hinges would be rigidified to provide structural connections that would hold the panels in their assigned relative positions without backlash. Such hinges could also be used on Earth for electrically connecting and structurally supporting solar panels that are similarly shipped in compact form and deployed at their destinations. As shown in section A-A in the figure, a hinge of this type is partly integrated with an inflation bladder and partly integrated with the frame of a solar panel. During assembly of the hinge, strip extensions from a flexible circuit harness on the bladder are connected to corresponding thin-film conductors on the solar panel by use of laser welding and wrap-around contacts. The main structural component of the hinge is a layer of glass fiber impregnated with an ultraviolet-curable resin. After deployment, exposure to ultraviolet light from the Sun cures the resin, thereby rigidifying the hinge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlou, A. T.; Betzler, B. R.; Burke, T. P.
Uncertainties in the composition and fabrication of fuel compacts for the Fort St. Vrain (FSV) high temperature gas reactor have been studied by performing eigenvalue sensitivity studies that represent the key uncertainties for the FSV neutronic analysis. The uncertainties for the TRISO fuel kernels were addressed by developing a suite of models for an 'average' FSV fuel compact that models the fuel as (1) a mixture of two different TRISO fuel particles representing fissile and fertile kernels, (2) a mixture of four different TRISO fuel particles representing small and large fissile kernels and small and large fertile kernels and (3)more » a stochastic mixture of the four types of fuel particles where every kernel has its diameter sampled from a continuous probability density function. All of the discrete diameter and continuous diameter fuel models were constrained to have the same fuel loadings and packing fractions. For the non-stochastic discrete diameter cases, the MCNP compact model arranged the TRISO fuel particles on a hexagonal honeycomb lattice. This lattice-based fuel compact was compared to a stochastic compact where the locations (and kernel diameters for the continuous diameter cases) of the fuel particles were randomly sampled. Partial core configurations were modeled by stacking compacts into fuel columns containing graphite. The differences in eigenvalues between the lattice-based and stochastic models were small but the runtime of the lattice-based fuel model was roughly 20 times shorter than with the stochastic-based fuel model. (authors)« less
Testing of Compact Bolted Fasteners with Insulation and Friction-Enhanced Shims for NCSX
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. E. Dudek, J.H. Chrzanowski, G. Gettelfinger, P. Heitzenroeder, S. Jurczynski, M. Viola and K. Freudenberg
The fastening of the National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to the high magnetic forces, need to control induced currents, tight tolerances and restrictive space envelope. A fastening method using high strength studs, jack nuts, insulating spacers, bushings and alumina coated shims was developed which met the requirements. A test program was conducted to verify the design. The tests included measurements of flatness of the spacers, determination of contact area, torque vs. tension of the studs and jack nuts, friction coefficient tests on the alumina and G-10 insulators, electrical tests,more » and tension relaxation tests due to temperature excursions from room temperature to liquid nitrogen temperatures. This paper will describe the design and the results of the test program.« less
Compact microwave ion source for industrial applications.
Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok
2012-02-01
A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.
Electromagnetic fields of slowly rotating magnetized compact stars in conformal gravity
NASA Astrophysics Data System (ADS)
Turimov, Bobur; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Bambi, Cosimo
2018-06-01
In this paper we investigate the exterior vacuum electromagnetic fields of slow-rotating magnetized compact stars in conformal gravity. Assuming the dipolar magnetic field configuration, we obtain an analytical solution of the Maxwell equations for the magnetic and the electric fields outside a slowly rotating magnetized star in conformal gravity. Furthermore, we study the dipolar electromagnetic radiation and energy losses from a rotating magnetized star in conformal gravity. In order to get constraints on the L parameter of conformal gravity, the theoretical results for the magnetic field of a magnetized star in conformal gravity are combined with the precise observational data of radio pulsar period slowdown, and it is found that the maximum value of the parameter of conformal gravity is less than L ≲9.5 ×105 cm (L /M ≲5 ).
Shen, Hui; Wang, Chun; Li, Liufeng; Chen, Lisheng
2013-05-01
Being small in size and weight, piezoelectric transducers hold unique positions in vibration sensing and control. Here, we explore the possibility of building a compact vibration isolation system using piezoelectric sensors and actuators. The mechanical resonances of a piezoelectric actuator around a few kHz are suppressed by an order of magnitude via electrical damping, which improves the high-frequency response. Working with a strain gauge located on the piezoelectric actuator, an auxiliary control loop eliminates the drift associated with a large servo gain at dc. Following this approach, we design, optimize, and experimentally verify the loop responses using frequency domain analysis. The vibration isolation between 1 Hz and 200 Hz is achieved and the attenuation peaks at 60 near vibration frequency of 20 Hz. Restrictions and potentials for extending the isolation to lower vibration frequencies are discussed.
Design of a radio telescope surface segment actuator based on a form-closed eccentric cam
NASA Astrophysics Data System (ADS)
Smith, David R.
2014-07-01
As radio telescopes have reached larger diameters and higher frequencies, it is typically not possible to meet their surface accuracy specifications using passive homology-based designs. The most common solution to this problem in the current generation of large, high-frequency radio telescopes is to employ a system of linear actuators to correct the surface shape of the primary reflector. The exact specifications of active surface actuators vary with the telescope. However, they have many common features, some of which drive their design. In general, these actuators must provide precise and repeatable positioning under significant loads during operation and they must withstand even higher loads for survival conditions. For general safety, they typically must hold position in the event of a power failure and must incorporate position limits, whether electrical, mechanical, or both. Because the number of actuators is generally high for large active surfaces (hundreds or even thousands of actuators), they must also be reliable and of reasonable individual cost. Finally, for maximum flexibility in their installation, they must be compact. This paper presents a concept for an active surface actuator based on a form-closed eccentric cam (kinematically, a Scotch Yoke mechanism). Such a design is limited in stroke, but offers potential advantages in terms of manufacture, compactness, measurement, and survival loading. The paper demonstrates that some of the expected advantages cannot be practically realized, due to dimensions that are driven by survival loading conditions. As a result, this concept is likely to offer an advantage over conventional screw-type actuators only for cases where actuator runaway and stall are the driving considerations.
Non-perturbing voltage measurement in a coaxial cable with slab-coupled optical sensors.
Stan, Nikola; Seng, Frederick; Shumway, LeGrand; King, Rex; Schultz, Stephen
2017-08-20
Voltage in a coaxial cable is measured by an electric-field optical fiber sensor exploiting the proportionality of voltage and electric field in a fixed structure. The sensor is inserted in a hole drilled through the dielectric of the RG-218 coaxial cable and sealed with epoxy to displace all air and prevent the adverse effects of charge buildup during high-voltage measurements. It is shown that the presence of the sensor in the coaxial cable does not significantly increase electrical reflections in the cable. A slab-coupled optical fiber sensor (SCOS) is used for its compact size and dielectric make. The dynamic range of 50 dB is shown experimentally with detection of signals as low as 1 V and up to 157 kV. A low corner of 0.3 Hz is demonstrated and the SCOS is shown to be able to measure 90 ns rise time.
The investigation of a compact auto-connected wire-wrapped pulsed transformer
NASA Astrophysics Data System (ADS)
Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Zhang, Tianyang
2012-05-01
For the power conditioning circuit used to deliver power efficiently from flux compression generator (FCG) to the load with high impedance, an air-cored and wire-wrapped transformer convenient in coaxial connection to the other parts is investigated. To reduce the size and enhance the performance, an auto-connection is adopted. A fast and simple model is used to calculate the electrical parameters of the transformer. To evaluate the high voltage capability, the voltages across turns and the electric field distribution in the transformer are investigated. The calculated and the measured electrical parameters of the transformer show good agreements. And the safe operating voltage is predicted to exceed 500 kV. In the preliminary experiments, the transformer is tested in a power conditioning circuit with a capacitive power supply. It is demonstrated that the output voltage of the transformer reaches -342 kV under the input voltage of -81 kV.
Electrically optofluidic zoom system with a large zoom range and high-resolution image.
Li, Lei; Yuan, Rong-Ying; Wang, Jin-Hui; Wang, Qiong-Hua
2017-09-18
We report an electrically controlled optofluidic zoom system which can achieve a large continuous zoom change and high-resolution image. The zoom system consists of an optofluidic zoom objective and a switchable light path which are controlled by two liquid optical shutters. The proposed zoom system can achieve a large tunable focal length range from 36mm to 92mm. And in this tuning range, the zoom system can correct aberrations dynamically, thus the image resolution is high. Due to large zoom range, the proposed imaging system incorporates both camera configuration and telescope configuration into one system. In addition, the whole system is electrically controlled by three electrowetting liquid lenses and two liquid optical shutters, therefore, the proposed system is very compact and free of mechanical moving parts. The proposed zoom system has potential to take place of conventional zoom systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englebretson, Steven; Ouyang, Wen; Tschida, Colin
This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability ofmore » the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.« less
The investigation of a compact auto-connected wire-wrapped pulsed transformer.
Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Zhang, Tianyang
2012-05-01
For the power conditioning circuit used to deliver power efficiently from flux compression generator (FCG) to the load with high impedance, an air-cored and wire-wrapped transformer convenient in coaxial connection to the other parts is investigated. To reduce the size and enhance the performance, an auto-connection is adopted. A fast and simple model is used to calculate the electrical parameters of the transformer. To evaluate the high voltage capability, the voltages across turns and the electric field distribution in the transformer are investigated. The calculated and the measured electrical parameters of the transformer show good agreements. And the safe operating voltage is predicted to exceed 500 kV. In the preliminary experiments, the transformer is tested in a power conditioning circuit with a capacitive power supply. It is demonstrated that the output voltage of the transformer reaches -342 kV under the input voltage of -81 kV.
Near term hybrid passenger vehicle development program, phase 1
NASA Technical Reports Server (NTRS)
1980-01-01
Missions for hybrid vehicles that promise to yield high petroleum impact were identified and a preliminary design, was developed that satisfies the mission requirements and performance specifications. Technologies that are critical to successful vehicle design, development and fabrication were determined. Trade-off studies to maximize fuel savings were used to develop initial design specifications of the near term hybrid vehicle. Various designs were "driven" through detailed computer simulations which calculate the petroleum consumption in standard driving cycles, the petroleum and electricity consumptions over the specified missions, and the vehicle's life cycle costs over a 10 year vehicle lifetime. Particular attention was given to the selection of the electric motor, heat engine, drivetrain, battery pack and control system. The preliminary design reflects a modified current compact car powered by a currently available turbocharged diesel engine and a 24 kW (peak) compound dc electric motor.
SP-100 ground engineering system test site description and progress update
NASA Astrophysics Data System (ADS)
Baxter, William F.; Burchell, Gail P.; Fitzgibbon, Davis G.; Swita, Walter R.
1991-01-01
The SP-100 Ground Engineering System Test Site will provide the facilities for the testing of an SP-100 reactor, which is technically prototypic of the generic design for producing 100 kilowatts of electricity. This effort is part of the program to develop a compact, space-based power system capable of producing several hundred kilowatts of electrical power. The test site is located on the U.S. Department of Energy's Hanford Site near Richland, Washington. The site is minimizing capital equipment costs by utilizing existing facilities and equipment to the maximum extent possible. The test cell is located in a decommissioned reactor containment building, and the secondary sodium cooling loop will use equipment from the Fast Flux Test Facility plant which has never been put into service. Modifications to the facility and special equipment are needed to accommodate the testing of the SP-100 reactor. Definitive design of the Ground Engineering System Test Site facility modifications and systems is in progress. The design of the test facility and the testing equipment will comply with the regulations and specifications of the U.S. Department of Energy and the State of Washington.
Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine
NASA Astrophysics Data System (ADS)
D'Almeida, Thierry; Lassalle, Francis; Morell, Alain; Grunenwald, Julien; Zucchini, Frédéric; Loyen, Arnaud; Maysonnave, Thomas; Chuvatin, Alexandre
2013-06-01
SPHINX is a 6MA, 1- μs Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being considered for improving the generator performances, there is a compact Dynamic Load Current Amplifier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments, based on electrical and hydrodynamic simulations. Initial results obtained over a set of experiments on an aluminum cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented. Details of the electrical and Photonic Doppler Velocimetry (PDV) setups used to monitor and diagnose the ramp compression experiments are provided. Current profiles measured at various locations across the system, particularly the load current, agree with simulated current profile and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. Higher ramp pressure levels are foreseen in future experiments with an improved DLCM system.
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A. Douglas; Choma, Michael A.; Cao, Hui
2015-01-01
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946
Electrically-pumped 850-nm micromirror VECSELs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith
Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission ismore » employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.« less
Electrically pumped 850-nm micromirror VECSELs
NASA Astrophysics Data System (ADS)
Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Mar, Alan
2005-03-01
Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.
NASA Astrophysics Data System (ADS)
Shurupov, A. V.; Shurupov, M. A.; Kozlov, A. A.; Kotov, A. V.
2016-11-01
This paper considers the possibility of creating on new physical principles a highspeed current-limiting device (CLD) for the networks with voltage of 110 kV, namely, on the basis of the explosive switching elements. The device is designed to limit the steady short-circuit current to acceptable values for the time does not exceed 3 ms at electric power facilities. The paper presents an analysis of the electrical circuit of CLD. The main features of the scheme are: a new high-speed switching element with high regenerating voltage; fusible switching element that enables to limit the overvoltage after sudden breakage of network of the explosive switch; non-inductive resistor with a high heat capacity and a special reactor with operating time less than 1 s. We analyzed the work of the CLD with help of special software PSPICE, which is based on the equivalent circuit of single-phase short circuit to ground in 110 kV network. Analysis of the equivalent circuit operation CLD shows its efficiency and determines the CLD as a perspective direction of the current-limiting devices of new generation.
Li, Yijun; Wang, Cheng; Zhu, Yibo; Zhou, Xiaohong; Xiang, Yu; He, Miao; Zeng, Siyu
2017-03-15
This work presents a fully integrated graphene field-effect transistor (GFET) biosensor for the label-free detection of lead ions (Pb 2+ ) in aqueous-media, which first implements the G-quadruplex structure-switching biosensing principle in graphene nanoelectronics. We experimentally illustrate the biomolecular interplay that G-rich DNA single-strands with one-end confined on graphene surface can specifically interact with Pb 2+ ions and switch into G-quadruplex structures. Since the structure-switching of electrically charged DNA strands can disrupt the charge distribution in the vicinity of graphene surface, the carrier equilibrium in graphene sheet might be altered, and manifested by the conductivity variation of GFET. The experimental data and theoretical analysis show that our devices are capable of the label-free and specific quantification of Pb 2+ with a detection limit down to 163.7ng/L. These results first verify the signaling principle competency of G-quadruplex structure-switching in graphene electronic biosensors. Combining with the advantages of the compact device structure and convenient electrical signal, a label-free GFET biosensor for Pb 2+ monitoring is enabled with promising application potential. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrically tunable soft solid lens inspired by reptile and bird accommodation.
Pieroni, Michael; Lagomarsini, Clara; De Rossi, Danilo; Carpi, Federico
2016-10-26
Electrically tunable lenses are conceived as deformable adaptive optical components able to change focus without motor-controlled translations of stiff lenses. In order to achieve large tuning ranges, large deformations are needed. This requires new technologies for the actuation of highly stretchable lenses. This paper presents a configuration to obtain compact tunable lenses entirely made of soft solid matter (elastomers). This was achieved by combining the advantages of dielectric elastomer actuation (DEA) with a design inspired by the accommodation of reptiles and birds. An annular DEA was used to radially deform a central solid-body lens. Using an acrylic elastomer membrane, a silicone lens and a simple fabrication method, we assembled a tunable lens capable of focal length variations up to 55%, driven by an actuator four times larger than the lens. As compared to DEA-based liquid lenses, the novel architecture halves the required driving voltages, simplifies the fabrication process and allows for a higher versatility in design. These new lenses might find application in systems requiring large variations of focus with low power consumption, silent operation, low weight, shock tolerance, minimized axial encumbrance and minimized changes of performance against vibrations and variations in temperature.
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui
2015-02-03
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.
Improving lab compaction specifications for flexible bases within the Texas DOT.
DOT National Transportation Integrated Search
2009-04-01
In Test Methods Tex-113-E and Tex-114-E, the Texas Department of Transportation (TxDOT) employs an impact hammer method of sample compaction for laboratory preparation of road base and subgrade materials for testing. In this third and final report do...
Recent advances in design and fabrication of on-chip micro-supercapacitors
NASA Astrophysics Data System (ADS)
Beidaghi, Majid; Wang, Chunlei
2012-06-01
Recent development in miniaturized electronic devices has increased the demand for power sources that are sufficiently compact and can potentially be integrated on a chip with other electronic components. Miniaturized electrochemical capacitors (EC) or micro-supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. Recently, we have developed several types of micro-supercapacitors with different structural designs and active materials. Carbon-Microelectromechanical Systems (C-MEMS) with three dimensional (3D) interdigital structures are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of pseudo-capacitive materials. More recently, we have also developed microsupercapacitor based on hybrid graphene and carbon nanotube interdigital structures. In this paper, the recent advances in design and fabrication of on-chip micro-supercapacitors are reviewed.
Dual-Polarization Ku-Band Compact Spaceborne Antenna Based on Dual-Reflectarray Optics.
Tienda, Carolina; Encinar, Jose A; Barba, Mariano; Arrebola, Manuel
2018-04-05
This article demonstrated an accurate analysis technique for dual-reflectarray antennas that take into account the angle of incidence of the impinging electric field on the main reflectarray cells. The reflected field on the sub and the main reflectarray surfaces is computed using Method of Moments in the spectral domain and assuming local periodicity. The sub-reflectarray is divided into groups of elements and the field radiated by each group is used to compute the incident and reflected field on the main reflectarray cells. A 50-cm demonstrator in Ku-band that provides European coverage has been designed, manufactured and tested to validate the analysis technique. The measured radiation patterns match the simulations and they fulfill the coverage requirements, achieving a cross-polar discrimination better than 25 dB in the frequency range: 12.975-14.25 GHz.
NASA Astrophysics Data System (ADS)
Kong, Jae-Sung; Hyun, Hyo-Young; Seo, Sang-Ho; Shin, Jang-Kyoo
2008-11-01
Complementary metal-oxide-semiconductor (CMOS) vision chips for edge detection based on a resistive circuit have recently been developed. These chips help in the creation of neuromorphic systems of a compact size, high speed of operation, and low power dissipation. The output of the vision chip depends predominantly upon the electrical characteristics of the resistive network which consists of a resistive circuit. In this paper, the body effect of the metal-oxide-semiconductor field-effect transistor for current distribution in a resistive circuit is discussed with a simple model. In order to evaluate the model, two 160 × 120 CMOS vision chips have been fabricated using a standard CMOS technology. The experimental results nicely match our prediction.
Applied optics. Gain modulation by graphene plasmons in aperiodic lattice lasers.
Chakraborty, S; Marshall, O P; Folland, T G; Kim, Y-J; Grigorenko, A N; Novoselov, K S
2016-01-15
Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene's Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology. Copyright © 2016, American Association for the Advancement of Science.
RT-CW: widely tunable semiconductor THz QCL sources
NASA Astrophysics Data System (ADS)
Razeghi, M.; Lu, Q. Y.
2016-09-01
Distinctive position of Terahertz (THz) frequencies (ν 0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1-5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated.
Geometric calculus-based postulates for the derivation and extension of the Maxwell equations
NASA Astrophysics Data System (ADS)
McClellan, Gene E.
2012-09-01
Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.
NASA Astrophysics Data System (ADS)
Hu, Zijun; Chen, Da; Yang, Pan; Yang, Lijun; Qin, Laishun; Huang, Yuexiang; Zhao, Xiaochong
2018-05-01
In this work, high-performance inverted planar perovskite solar cells (PSCs) using sol-gel processed Y-doped NiO thin films as hole transport layer (HTL) were demonstrated. Y-doped NiO thin films containing different Y doping concentrations were successfully prepared through a simple sol-gel process. The Y doping could significantly improve the electrical conductivity of NiO thin film, and the photovoltaic performance of Y-doped NiO HTL-based PSC devices outperformed that of the pristine NiO HTL-based device. Notably, the PSC using a 5%Y-NiO HTL exhibited the champion performance with an open-circuit voltage (Voc) of 1.00 V, a short circuit current density (Jsc) of 23.82 mA cm-2, a fill factor (FF) of 68% and a power conversion efficiency (PCE) of 16.31%, resulting in a 27.62% enhancement in PCE in comparison with the NiO device. The enhanced performance of the Y-doped NiO device could be attributed to the improved hole mobility, the high quality compact active layer morphology, the more efficient charge extraction from perovskite absorber as well as the lower recombination probability of charge carriers. Thus, this work provides a simple and effective approach to improve the electrical conductivity of p-type NiO thin films for use as a promising HTL in high performance PSCs.
NASA Astrophysics Data System (ADS)
Arena, Maurizio; Noviello, Maria Chiara; Rea, Francesco; Amoroso, Francesco; Pecora, Rosario
2018-03-01
The design and application of adaptive devices are currently ambitious targets in the field of aviation research addressed at new generation aircraft. The development of intelligent structures involves aspects of multidisciplinary nature: the combination of compact architectures, embedded electrical systems and smart materials, allows for developing a highly innovative device. The paper aims to present the control system design of an innovative morphing flap tailored for the next generation regional aircraft, within Clean Sky 2 - Airgreen 2 European Research Scenario. A distributed system of electromechanical actuators (EMAs) has been sized to enable up to three operating modes of a structure arranged in four blocks along the chord-wise direction: •overall camber-morphing; •upwards/downwards deflection and twisting of the final tip segment. A state-of-art feedback logic based on a decentralized control strategy for shape control is outlined, including the results of dynamic stability analysis based on the blocks rational schematization within Matlab/Simulink® environment. Such study has been performed implementing a state-space model, considering also design parameters as the torsional stiffness and damping of the actuation chain. The design process is flowing towards an increasingly "robotized" system, which can be externally controlled to perform certain operations. Future developments will be the control laws implementation as well as the functionality test on a real flap prototype.
Two examples of intelligent systems based on smart materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unsworth, J.
1994-12-31
Two intelligent systems are described which are based on smart materials. The operation of the systems also rely on conventional well known technologies such as electronics, signal conditioning, signal processing, microprocessors and engineering design. However without the smart materials the development and integration into the intelligent systems would not have been possible. System 1 is a partial discharge monitor for on-line continuous checking of the condition of electrical power transformers. The ultrasonic and radio frequency detectors in this system rely on special piezoelectric composite integrated with a compact annular metal ring. Partial discharges set up ultrasonic and radio frequency signalsmore » which are received by the integrated detectors. The signals are amplified, conditioned, signal processed, the time interval between the two signals measured and the level of partial discharge activity averaged and assessed for numerous pairs and alarms triggered on remote control panels if the level is dangerous. The system has the capability of initiating automatic shutdown of the transformer once it is linked into the control computers of the electrical power authority. System 2 is called a Security Cradle and is an intelligent 3D shield designed to use the properties of electro active polymers to prevent hardware hackers from stealing valuable of sensitive information from memory devices (e.g., EPROMS) housed in computer or microprocessor installations.« less
Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welz, Tobias; Hischier, Roland, E-mail: Roland.Hischier@empa.ch; Hilty, Lorenz M.
2011-04-15
With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase),more » different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.« less
Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells
NASA Astrophysics Data System (ADS)
Uchikata, Nami; Yoshida, Shijun; Pani, Paolo
2016-09-01
The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.
Plasma promoted manufacturing of hydrogen and vehicular applications
NASA Astrophysics Data System (ADS)
Bromberg, Leslie
2003-10-01
Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.
Development ceramic composites based on Al2O3, SiO2 and IG-017 additive
NASA Astrophysics Data System (ADS)
Kurovics, E.; Shmakova, A.; Kanev, B.; Gömze, L. A.
2017-02-01
Based on high purity alumina and quartz powders and IG-017 bio-original additives the authors have developed new ceramic composite materials for different industrial purposes. The main goal was to fine a material and morphological structures of high performance ceramic composites as frames for development complex materials for extreme consumptions in the future. For this the mixed powders of Al2O3 , SiO2 and IG-017 bio-original additive were uniaxially pressed at different compaction pressures into disc shapes and were sintered in electric kiln under air (1) and nitrogrn (2) atmosphere. The grain size distributions of the raw materials were determined by laser granulometry. There thermo-physical properties were also determined by derivatography. The prepared and sintered specimens were tested on geometrical sizes, microstructure and morphology by scanning electron microscopy, porosity and water absorption. In this work the authors present the results of their research and investigation.
Design and simulation of the circuit of SWIR hyper-spectral imaging spectrometer
NASA Astrophysics Data System (ADS)
Ren, Bin; Li, Zi-tian; Meng, Nan
2009-07-01
With the requirement of the SWIR Hyper-spectral Imaging Spectrometer, this article describes a project of SWIR image circuit based on IRFPA detector. First, the structure of the SWIR Hyper-spectral Imaging Spectrometer is introduced in this paper, and then the infrared imaging circuit design is proposed, which is based on MCT SWIR FPA with 500*256 pixels, the detector NEPTURN, in Safradir Company. According to the scheme, several key technologies have been studied in particular, such as driving circuit, time control circuit, high-speed A/D converter, LVDS (Low Voltage Differential Signaling) transmission circuit. At last, An improved two-point Correction Method was chosen to correct the Non-uniformity of image. The simulation results demonstrate that the proposed method can effectively suppress noises and work with low power consumption. The electric system not only has the advantages of simplicity and compactness but also can work stably, providing 500×256 image at the frame frequency of 200 Hz in good quality.
Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes
NASA Astrophysics Data System (ADS)
Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.
2010-03-01
Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.
The design of an adaptive predictive coder using a single-chip digital signal processor
NASA Astrophysics Data System (ADS)
Randolph, M. A.
1985-01-01
A speech coding processor architecture design study has been performed in which Texas Instruments TMS32010 has been selected from among three commercially available digital signal processing integrated circuits and evaluated in an implementation study of real-time Adaptive Predictive Coding (APC). The TMS32010 has been compared with AR&T Bell Laboratories DSP I and Nippon Electric Co. PD7720 and was found to be most suitable for a single chip implementation of APC. A preliminary design system based on TMS32010 has been performed, and several of the hardware and software design issues are discussed. Particular attention was paid to the design of an external memory controller which permits rapid sequential access of external RAM. As a result, it has been determined that a compact hardware implementation of the APC algorithm is feasible based of the TSM32010. Originator-supplied keywords include: vocoders, speech compression, adaptive predictive coding, digital signal processing microcomputers, speech processor architectures, and special purpose processor.
Electro-optical full-adder/full-subtractor based on graphene-silicon switches
NASA Astrophysics Data System (ADS)
Zivarian, Hossein; Zarifkar, Abbas; Miri, Mehdi
2018-01-01
A compact footprint, low-power consumption, and high-speed operation electro-optical full-adder/full-subtractor based on graphene-silicon electro-optical switches is demonstrated. Each switch consists of a Mach-Zehnder interferometer in which few-layer graphene is embedded in a silicon slot waveguide to construct phase shifters. The presented structure can be used as full-adder and full-subtractor simultaneously. The analysis of various factors such as extinction ratio, power consumption, and operation speed has been presented. As will be shown, the proposed electro-optical switch has a minimum extinction ratio of 36.21 dB, maximum insertion loss about 0.18 dB, high operation speed of 180 GHz, and is able to work with a low applied voltage about 1.4 V. Also, the extinction ratio and insertion loss of the full-adder/full-subtractor are about 30 and 1.5 dB, respectively, for transfer electric modes at telecommunication wavelength of 1.55 μm.
TetraMag: A compact magnetizing device based on eight rotating permanent magnets
NASA Astrophysics Data System (ADS)
Gilbert, M.; Mertins, H.-Ch.; Tesch, M.; Berges, O.; Feilbach, Herbert; Schneider, C. M.
2012-02-01
In this paper we describe a novel magnetizing device based on eight rotatable permanent magnets arranged in a quadrupolar configuration, which is termed the TetraMag. TetraMag creates stable and homogeneous magnetic fields at the sample position with a resolution of 0.02 mT tunable between -570 mT and +570 mT. The field direction is continuously rotatable between 0° and 360° within the sample plane, while the field strength is maintained. A simplified mathematical description of TetraMag is developed leading to magnetic field calculations which are in good agreement with the experimental results. This versatile device avoids electrical energy dissipation, cooling mechanisms, and hysteresis effects known from classical electromagnets. It is ultrahigh vacuum compatible and it offers a completely free optical path over 180° for magneto-optical experiments. It is suitable for scattering experiments with synchrotron radiation and neutrons and may be employed in a large class of magnetization experiments.
NASA Astrophysics Data System (ADS)
Cao, Jingchen; Peng, Songang; Liu, Wei; Wu, Quantan; Li, Ling; Geng, Di; Yang, Guanhua; Ji, Zhouyu; Lu, Nianduan; Liu, Ming
2018-02-01
We present a continuous surface-potential-based compact model for molybdenum disulfide (MoS2) field effect transistors based on the multiple trapping release theory and the variable-range hopping theory. We also built contact resistance and velocity saturation models based on the analytical surface potential. This model is verified with experimental data and is able to accurately predict the temperature dependent behavior of the MoS2 field effect transistor. Our compact model is coded in Verilog-A, which can be implemented in a computer-aided design environment. Finally, we carried out an active matrix display simulation, which suggested that the proposed model can be successfully applied to circuit design.
On the acoustic radiation modes of compact regular polyhedral arrays of independent loudspeakers.
Pasqual, Alexander Mattioli; Martin, Vincent
2011-09-01
Compact spherical loudspeaker arrays can be used to provide control over their directivity pattern. Usually, this is made by adjusting the gains of preprogrammed spatial filters corresponding to a finite set of spherical harmonics, or to the acoustic radiation modes of the loudspeaker array. Unlike the former, the latter are closely related to the radiation efficiency of the source and span the subspace of the directivities it can produce. However, the radiation modes depend on frequency for arbitrary distributions of transducers on the sphere, which yields complex directivity filters. This work focuses on the most common loudspeaker array configurations, those following the regular shape of the Platonic solids. It is shown that the radiation modes of these sources are frequency independent, and simple algebraic expressions are derived for their radiation efficiencies. In addition, since such modes are vibration patterns driven by electrical signals, the transduction mechanism of compact multichannel sources is also investigated, which is an important issue, especially if the transducers interact inside a shared cabinet. For Platonic solid loudspeakers, it is shown that the common enclosure does not lead to directivity filters that depend on frequency. © 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Nikitczuk, Jason; Weinberg, Brian; Mavroidis, Constantinos
2006-03-01
In this paper we present the design and control algorithms for novel electro-rheological fluid based torque generation elements that will be used to drive the joint of a new type of portable and controllable Active Knee Rehabilitation Orthotic Device (AKROD) for gait retraining in stroke patients. The AKROD is composed of straps and rigid components for attachment to the leg, with a central hinge mechanism where a gear system is connected. The key features of AKROD include: a compact, lightweight design with highly tunable torque capabilities through a variable damper component, full portability with on board power, control circuitry, and sensors (encoder and torque), and real-time capabilities for closed loop computer control for optimizing gait retraining. The variable damper component is achieved through an electro-rheological fluid (ERF) element that connects to the output of the gear system. Using the electrically controlled rheological properties of ERFs, compact brakes capable of supplying high resistive and controllable torques, are developed. A preliminary prototype for AKROD v.2 has been developed and tested in our laboratory. AKROD's v.2 ERF resistive actuator was tested in laboratory experiments using our custom made ERF Testing Apparatus (ETA). ETA provides a computer controlled environment to test ERF brakes and actuators in various conditions and scenarios including emulating the interaction between human muscles involved with the knee and AKROD's ERF actuators / brakes. In our preliminary results, AKROD's ERF resistive actuator was tested in closed loop torque control experiments. A hybrid (non-linear, adaptive) Proportional-Integral (PI) torque controller was implemented to achieve this goal.
Compact RF ion source for industrial electrostatic ion accelerator
NASA Astrophysics Data System (ADS)
Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub
2016-02-01
Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.
Compact RF ion source for industrial electrostatic ion accelerator.
Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub
2016-02-01
Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.
NASA Technical Reports Server (NTRS)
Anderson, L. A.; Henry, R. L.; Fedor, O. H.; Owens, L. J.
1986-01-01
Rechargeable hydraulic powerpack functions as lightweight, compact source of mechanical energy. Self-contained hydraulic powerpack derives energy from solid chemical charge. Combustion of charge initiated by small hammer, and revolving feeder replaces charges expended. Combustion gases cool during expansion in turbine and not too hot for release to atmosphere. Unit has applications driving wheelchairs and operating drills, winches, and other equipment in remote areas. Also replaces electric motors and internal-combustion engines as source of power in explosive atmospheres.
Brake Stops Both Rotation And Translation
NASA Technical Reports Server (NTRS)
Allred, Johnny W.; Fleck, Vincent J., Jr.
1995-01-01
Combination of braking and positioning mechanisms allows both rotation and translation before brake engaged. Designed for use in positioning model airplane in wind tunnel. Modified version used to position camera on tripod. Brake fast and convenient to use; contains single actuator energizing braking actions against both rotation and translation. Braking actuator electric, but pneumatic actuator could be used instead. Compact and lightweight, applies locking forces close to load, and presents minimal cross section to airflow.
ERIC Educational Resources Information Center
Appleyard, S. J.
2009-01-01
A simple horizontal axis wind turbine can be easily constructed using a 1.5 l PET plastic bottle, a compact disc and a small dynamo. The turbine operates effectively at low wind speeds and has a rotational speed of 500 rpm at a wind speed of about 14 km h[superscript -1]. The wind turbine can be used to demonstrate the relationship between open…
Integration of an Inter Turbine Burner to a Jet Turbine Engine
2013-03-01
whether for electrical systems or increased thrust, improved engine efficiency must be found. An Ultra-Compact Combustor ( UCC ) is a proposed... UCC to be viable it is important to study the effects of feeding the core and circumferential flows from a common gas reservoir. This research...prediction of which flow split would produce the best results and testing of this prediction was initiated. A second important issue for UCC development
Tunable-focus lens for adaptive eyeglasses
Hasan, Nazmul; Banerjee, Aishwaryadev; Kim, Hanseup; Mastrangelo, Carlos H.
2017-01-01
We demonstrate the implementation of a compact tunable-focus liquid lens suitable for adaptive eyeglass application. The lens has an aperture diameter of 32 mm, optical power range of 5.6 diopter, and electrical power consumption less than 20 mW. The lens inclusive of its piezoelectric actuation mechanism is 8.4 mm thick and weighs 14.4 gm. The measured lens RMS wavefront aberration error was between 0.73 µm and 0.956 µm. PMID:28158006
Sequence Determinants of Compaction in Intrinsically Disordered Proteins
Marsh, Joseph A.; Forman-Kay, Julie D.
2010-01-01
Abstract Intrinsically disordered proteins (IDPs), which lack folded structure and are disordered under nondenaturing conditions, have been shown to perform important functions in a large number of cellular processes. These proteins have interesting structural properties that deviate from the random-coil-like behavior exhibited by chemically denatured proteins. In particular, IDPs are often observed to exhibit significant compaction. In this study, we have analyzed the hydrodynamic radii of a number of IDPs to investigate the sequence determinants of this compaction. Net charge and proline content are observed to be strongly correlated with increased hydrodynamic radii, suggesting that these are the dominant contributors to compaction. Hydrophobicity and secondary structure, on the other hand, appear to have negligible effects on compaction, which implies that the determinants of structure in folded and intrinsically disordered proteins are profoundly different. Finally, we observe that polyhistidine tags seem to increase IDP compaction, which suggests that these tags have significant perturbing effects and thus should be removed before any structural characterizations of IDPs. Using the relationships observed in this analysis, we have developed a sequence-based predictor of hydrodynamic radius for IDPs that shows substantial improvement over a simple model based upon chain length alone. PMID:20483348
A compact optical fiber positioner
NASA Astrophysics Data System (ADS)
Hu, Hongzhuan; Wang, Jianping; Liu, Zhigang; Zhou, Zengxiang; Zhai, Chao; Chu, Jiaru
2016-07-01
In this paper, a compact optical fiber positioner is proposed, which is especially suitable for small scale and high density optical fiber positioning. Based on the positioning principle of double rotation, positioner's center shaft depends on planetary gear drive principle, meshing with the fixed annular gear central motor gear driving device to rotate, and the eccentric shaft rotated driving by a coaxial eccentric motor, both center and the eccentric shaft are supported by a rolling bearings; center and eccentric shaft are both designed with electrical zero as a reference point, and both of them have position-limiting capability to ensure the safety of fiber positioning; both eccentric and center shaft are designed to eliminating clearance with spring structure, and can eliminate the influence of gear gap; both eccentric and center motor and their driving circuit can be installed in the positioner's body, and a favorable heat sink have designed, the heat bring by positioning operation can be effectively transmit to design a focal plane unit through the aluminum component, on sleeve cooling spiral airway have designed, when positioning, the cooling air flow is inlet into install hole on the focal plate, the cooling air flow can effectively take away the positioning's heat, to eliminate the impact of the focus seeing. By measuring position device's sample results show that: the unit accuracy reached 0.01mm, can meet the needs of fiber positioning.