Sample records for based compounds including

  1. Chemical production processes and systems

    DOEpatents

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  2. Chemical production processes and systems

    DOEpatents

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  3. Boron compounds as anion binding agents for nonaqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili

    2000-02-08

    Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

  4. Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James; Sun, Xuehui

    2002-01-01

    Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.

  5. Expanding the analyte set of the JPL Electronic Nose to include inorganic compounds

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Homer, M. L.; Zhou, H.; Mannat, K.; Manfreda, A.; Kisor, A.; Shevade, A.; Yen, S. P. S.

    2005-01-01

    An array-based sensing system based on 32 polymer/carbon composite conductometric sensors is under development at JPL. Until the present phase of development, the analyte set has focuses on organic compounds and a few selected inorganic compounds, notably ammonia and hydrazine.

  6. Heteroaromatic-based electrolytes for lithium and lithium-ion batteries

    DOEpatents

    Cheng, Gang; Abraham, Daniel P.

    2017-04-18

    The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.

  7. Oxide-based method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.

    2000-01-01

    A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  8. Aza compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  9. Aza compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  10. Anion receptor compounds for non-aqueous electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James

    2000-09-19

    A new family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  11. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  12. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  13. Method of plasma etching Ga-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  14. [Rapid analysis on phenolic compounds in Rheum palmatum based on UPLC-Q-TOF/MSE combined with diagnostic ions filter].

    PubMed

    Wang, Qing; Lu, Zhi-Wei; Liu, Yue-Hong; Wang, Ming-Ling; Fu, Shuang; Zhang, Qing-Qing; Zhao, Hui-Zhen; Zhang, Zhi-Xin; Xie, Zi-Ye; Huang, Zheng-Hai; Yu, Hong-Hong; Zhou, Wen-Juan; Gao, Xiao-Yan

    2017-05-01

    Diagnostic ions filter method was used to rapidly detect and identify the phenolic compounds in Rheum palmatum based on ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The representative authentic standards of phenolic compounds, including gallic acid, (+)-catechin, (-)-epicatechin, (-)-epicatechin-3-O-gallate and procyanidin B2, were subjected to analysis by UPLC-Q-TOF/MSE system with negative ion mode. Fragmentation patterns of each standard were summarized based on assigned fragment ions. The prominent product ions were selected as diagnostic ions. Subsequently, diagnostic ions filter was employed to rapidly recognize analogous skeletons. Combined with retention time, accurate mass, characteristic fragments and previous literature data, the structures of the filtered compounds were identified or tentatively characterized. A total 63 phenolic compounds (36 phenolic acid derivatives, 8 flavonoid derivatives and 19 tennis derivatives) in R. palmatum were identified, including 6 potential new compounds. The method of diagnostic ions filter could rapidly detect and identify phenolic compounds in R. palmatum This study provides a method for rapid detection of phenolic compounds in R. palmatum and is expected to complete the material basis of rhubarb. Copyright© by the Chinese Pharmaceutical Association.

  15. Photoactive devices including porphyrinoids with coordinating additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths,more » increase the external quantum efficiency of the material, or both.« less

  16. A web-based platform for virtual screening.

    PubMed

    Watson, Paul; Verdonk, Marcel; Hartshorn, Michael J

    2003-09-01

    A fully integrated, web-based, virtual screening platform has been developed to allow rapid virtual screening of large numbers of compounds. ORACLE is used to store information at all stages of the process. The system includes a large database of historical compounds from high throughput screenings (HTS) chemical suppliers, ATLAS, containing over 3.1 million unique compounds with their associated physiochemical properties (ClogP, MW, etc.). The database can be screened using a web-based interface to produce compound subsets for virtual screening or virtual library (VL) enumeration. In order to carry out the latter task within ORACLE a reaction data cartridge has been developed. Virtual libraries can be enumerated rapidly using the web-based interface to the cartridge. The compound subsets can be seamlessly submitted for virtual screening experiments, and the results can be viewed via another web-based interface allowing ad hoc querying of the virtual screening data stored in ORACLE.

  17. Immobilized magnetic beads-based multi-target affinity selection coupled with HPLC-MS for screening active compounds from traditional Chinese medicine and natural products.

    PubMed

    Chen, Yaqi; Chen, Zhui; Wang, Yi

    2015-01-01

    Screening and identifying active compounds from traditional Chinese medicine (TCM) and other natural products plays an important role in drug discovery. Here, we describe a magnetic beads-based multi-target affinity selection-mass spectrometry approach for screening bioactive compounds from natural products. Key steps and parameters including activation of magnetic beads, enzyme/protein immobilization, characterization of functional magnetic beads, screening and identifying active compounds from a complex mixture by LC/MS, are illustrated. The proposed approach is rapid and efficient in screening and identification of bioactive compounds from complex natural products.

  18. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor); Clausen, Christian A. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  19. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Aitken, Brian S. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor)

    2010-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  20. From the Test Tube to the Treatment Room: Fundamentals of Boron-containing Compounds and their Relevance to Dermatology.

    PubMed

    Del Rosso, James Q; Plattner, Jacob J

    2014-02-01

    The development of new drug classes and novel molecules that are brought to the marketplace has been a formidable challenge, especially for dermatologic drugs. The relative absence of new classes of antimicrobial agents is also readily apparent. Several barriers account for slow drug development, including regulatory changes, added study requirements, commercial pressures to bring drugs to market quickly by developing new generations of established compounds, and the greater potential for failure and higher financial risk when researching new drug classes. In addition, the return on investment is usually much lower with dermatologic drugs as compared to the potential revenue from "blockbuster" drugs for cardiovascular or gastrointestinal disease, hypercholesterolemia, and mood disorders. Nevertheless, some researchers are investigating new therapeutic platforms, one of which is boron-containing compounds. Boron-containing compounds offer a wide variety of potential applications in dermatology due to their unique physical and chemical properties, with several in formal phases of development. Tavaborole, a benzoxaborole compound, has been submitted to the United States Food and Drug Administration for approval for treatment of onychomycosis. This article provides a thorough overview of the history of boron-based compounds in medicine, their scientific rationale, physiochemical and pharmacologic properties, and modes of actions including therapeutic targets. A section dedicated to boron-based compounds in development for treatment of various skin disorders is also included.

  1. A comprehensive evaluation of three microfluidic chemiluminescence methods for the determination of the total phenolic contents in fruit juices.

    PubMed

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2017-01-01

    Three recently reported microfluidic chemiluminescence (MF-CL) methods (based on reactions with acidic permanganate enhanced by formaldehyde (KMnO4-COH), acidic cerium (IV) and rhodamine B (Ce-RB), and acidic cerium (IV) and rhodamine 6G (Ce-R6G) enhanced by SDS) for the determination of the total phenolic content (TPC) in juices were critically evaluated in terms of their selectivity. The evaluation was carried out using 86 analytes, including 22 phenolic compounds (phenolic acids and polyphenols), 6 known non-phenolic antioxidants, 9 amino acids and a number of proteins, carbohydrates, nucleotide bases, inorganic salts and other compounds. Each method was sensitive toward phenolic compounds (PCs). However, the KMnO4-COH CL system showed a higher sensitivity toward phenolic acids and also responded to non-phenolic antioxidants. The other two systems showed higher sensitivity toward polyphenolic compounds than to phenolic acids and did not responded to all other compounds including non-phenolic antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Basol, Bulent M.; Kapur, Vijay K.; Halani, Arvind T.; Leidholm, Craig R.; Roe, Robert A.

    1999-01-01

    A method of forming a compound film includes the steps of preparing a source material, depositing the source material on a base to form a precursor film, and heating the precursor film in a suitable atmosphere to form a film. The source material includes Group IB-IIIA alloy-containing particles having at least one Group IB-IIIA alloy phase, with Group IB-IIIA alloys constituting greater than about 50 molar percent of the Group IB elements and greater than about 50 molar percent of the Group IIIA elements in the source material. The film, then, includes a Group IB-IIIA-VIA compound. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.80 and less than about 1.0, or substantially greater than 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.80 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The alloy phase may include a dopant. Compound films including a Group IIB-IVA-VA compound or a Group IB-VA-VIA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  3. Relationship between electronic properties and drug activity of seven quinoxaline compounds: A DFT study

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Roonasi, Payman; Assle taghipour, Khatoon; van der Spoel, David; Manzetti, Sergio

    2015-07-01

    The quantum chemical calculations at the DFT/B3LYP level of theory were carried out on seven quinoxaline compounds, which have been synthesized as anti-Mycobacterium tuberculosis agents. Three conformers were optimized for each compound and the lowest energy structure was found and used in further calculations. The electronic properties including EHOMO, ELUMO and related parameters as well as electron density around oxygen and nitrogen atoms were calculated for each compound. The relationship between the calculated electronic parameters and biological activity of the studied compounds were investigated. Six similar quinoxaline derivatives with possible more drug activity were suggested based on the calculated electronic descriptors. A mechanism was proposed and discussed based on the calculated electronic parameters and bond dissociation energies.

  4. Identification of sumoylation activating enzyme 1 inhibitors by structure-based virtual screening.

    PubMed

    Kumar, Ashutosh; Ito, Akihiro; Hirohama, Mikako; Yoshida, Minoru; Zhang, Kam Y J

    2013-04-22

    SUMO activating enzyme 1 (SUMO E1) is responsible for the activation of SUMO in the first step of the sumoylation cascade. SUMO E1 is linked to many human diseases including cancer, thus making it a potential therapeutic target. There are few reported SUMO E1 inhibitors including several natural products. To identify small molecule inhibitors of SUMO E1 with better drug-like properties for potential therapeutic studies, we have used structure-based virtual screening to identify hits from the Maybridge small molecule library for biological assay. Our virtual screening protocol involves fast docking of the entire small molecule library with rigid protein and ligands followed by redocking of top hits using a method that incorporates both ligand and protein flexibility. Subsequently, the top-ranking compounds were prioritized using the molecular dynamics simulation-based binding free energy calculation. Out of 24 compounds that were acquired and tested using in vitro sumoylation assay, four of them showed more than 85% inhibition of sumoylation with the most active compound showing an IC50 of 14.4 μM. A similarity search with the most active compound in the ZINC database has identified three more compounds with improved potency. These compounds share a common phenyl urea scaffold and have been confirmed to inhibit SUMO E1 by in vitro SUMO-1 thioester bond formation assay. Our study suggests that these phenyl urea compounds could be used as a starting point for the development of novel therapeutic agents.

  5. Designing monitoring programs for chemicals of emerging concern in potable reuse--what to include and what not to include?

    PubMed

    Drewes, J E; Anderson, P; Denslow, N; Olivieri, A; Schlenk, D; Snyder, S A; Maruya, K A

    2013-01-01

    This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than '1' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound.

  6. Elastomer Compound Developed for High Wear Applications

    NASA Technical Reports Server (NTRS)

    Crawford, D.; Feuer, H.; Flanagan, D.; Rodriguez, G.; Teets, A.; Touchet, P.

    1993-01-01

    The U.S. Army is currently spending 300 million dollars per year replacing rubber track pads. An experimental rubber compound has been developed which exhibits 2 to 3 times greater service life than standard production pad compounds. To improve the service life of the tank track pads various aspects of rubber chemistry were explored including polymer, curing and reinforcing systems. Compounds that exhibited superior physical properties based on laboratory data were then fabricated into tank pads and field tested. This paper will discuss the compounding studies, laboratory data and field testing that led to the high wear elastomer compound.

  7. From the Test Tube to the Treatment Room

    PubMed Central

    Del Rosso, James Q.; Plattner, Jacob J.

    2014-01-01

    The development of new drug classes and novel molecules that are brought to the marketplace has been a formidable challenge, especially for dermatologic drugs. The relative absence of new classes of antimicrobial agents is also readily apparent. Several barriers account for slow drug development, including regulatory changes, added study requirements, commercial pressures to bring drugs to market quickly by developing new generations of established compounds, and the greater potential for failure and higher financial risk when researching new drug classes. In addition, the return on investment is usually much lower with dermatologic drugs as compared to the potential revenue from “blockbuster” drugs for cardiovascular or gastrointestinal disease, hypercholesterolemia, and mood disorders. Nevertheless, some researchers are investigating new therapeutic platforms, one of which is boron-containing compounds. Boron-containing compounds offer a wide variety of potential applications in dermatology due to their unique physical and chemical properties, with several in formal phases of development. Tavaborole, a benzoxaborole compound, has been submitted to the United States Food and Drug Administration for approval for treatment of onychomycosis. This article provides a thorough overview of the history of boron-based compounds in medicine, their scientific rationale, physiochemical and pharmacologic properties, and modes of actions including therapeutic targets. A section dedicated to boron-based compounds in development for treatment of various skin disorders is also included. PMID:24578778

  8. Effects of koji fermented phenolic compounds on the oxidative stability of fish miso.

    PubMed

    Giri, Anupam; Osako, Kazufumi; Okamoto, Akira; Okazaki, Emiko; Ohshima, Toshiaki

    2012-02-01

    In the present study, Aspergillus oryzae-inoculated koji inhibited lipid oxidation in fermented fish paste rich in polyunsaturated fatty acids following a long fermentation period. The fermentation of koji by A. oryzae liberated several bioactive phenolic compounds, including kojic acid and ferulic acid, which were the most abundant. A linear correlation between several phenolic compounds and their bioactive properties, including their radical-scavenging activity, reducing power, metal-chelating activity, and ability to inhibit linoleic acid oxidation was observed. This suggested an important role of koji phenolics in the oxidative stability of fermented fish paste. The activities of different carbohydrate-cleaving enzymes, including α-amylase, cellulase, and β-glucosidase, were positively correlated with the liberation of several phenolic compounds through koji fermentation. Thus, the application of koji offers a novel strategy to enhance the oxidative stability of newly developed fermented fish miso. Application of traditional Japanese koji fermentation technique to develop an aroma enriched fish meat bases seasoning has been established. Aspergillus oryzae-inoculated koji releases several carbohydrate-cleaving enzymes, including α-amylase, cellulose, and β-glucosidase, which led to the liberation of several phenolic compounds during fermentation. Improvement of oxidative stability of the fermented fish meat paste by koji phenolics suggests a useful strategy to uplift the value of different trash fish meat-based seasoning through proper utilization of the present technique. © 2012 Institute of Food Technologists®

  9. Water-soluble constituents of the root barks of Fraxinus rhynchophylla (Chinese drug Qinpi).

    PubMed

    Xiao, Kai; Song, Qing-Hong; Zhang, Shu-Wei; Xuan, Li-Jiang

    2008-01-01

    Chemical studies on the roots of Fraxinus rhynchophylla led to the isolation of fraxisecoside (1), a novel coumarin-secoiridoid hybrid glycoside, namely, fraxetin-8-O-[11'-methyl-oleosidyl-(7'-->6'')]-beta-D-glucopyranoside and 14 known compounds. Their structures were elucidated based on chemical evidence and spectroscopic analysis, including extensive 2D NMR methods. Compound 2 was first isolated as a pure compound. Compound 1 exhibited moderate PTP1B inhibition activity. Compounds 1 and 2 showed inhibition activity against B- and T-cell proliferation, without cytotoxicity.

  10. Itô and Stratonovich integrals on compound renewal processes: the normal/Poisson case

    NASA Astrophysics Data System (ADS)

    Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L.

    2010-06-01

    Continuous-time random walks, or compound renewal processes, are pure-jump stochastic processes with several applications in insurance, finance, economics and physics. Based on heuristic considerations, a definition is given for stochastic integrals driven by continuous-time random walks, which includes the Itô and Stratonovich cases. It is then shown how the definition can be used to compute these two stochastic integrals by means of Monte Carlo simulations. Our example is based on the normal compound Poisson process, which in the diffusive limit converges to the Wiener process.

  11. Identification and hit-to-lead optimization of a novel class of CB1 antagonists.

    PubMed

    Letourneau, Jeffrey J; Jokiel, Patrick; Olson, John; Riviello, Christopher M; Ho, Koc-Kan; McAleer, Lihong; Yang, Jingchun; Swanson, Robert N; Baker, James; Cowley, Phillip; Edwards, Darren; Ward, Nick; Ohlmeyer, Michael H J; Webb, Maria L

    2010-09-15

    The discovery, synthesis and preliminary structure-activity relationships (SARs) of a novel class of CB1 antagonists is described. Initial optimization of benzimidazole-based screening hit 4 led to the identification of 'inverted' indole-based lead compound 18c with improved properties versus compound 4 including reduced AlogP, improved microsomal stability and improved aqueous solubility. Compound 18c demonstrates in vivo CB1 antagonist efficacy (CB1 agonist induced hypothermia model) and is orally bioavailable in rat. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Ground-based research of crystal growth of II-VI compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Su, Ching-Hua; Sha, Yi-Gao; Zhou, W.; Dudley, M.; Liu, Hao-Chieh; Brebrick, R. F.; hide

    1994-01-01

    Ground-based investigation of the crystal growth of II-VI semiconductor compounds, including CdTe, CdS, ZnTe, and ZnSe, by physical vapor transport in closed ampoules was performed. The crystal growth experimental process and supporting activities--preparation and heat treatment of starting materials, vapor partial pressure measurements, and transport rate measurements are reported. The results of crystal characterization, including microscopy, microstructure, optical transmission photoluminescence, synchrotron radiation topography, and chemical analysis by spark source mass spectrography, are also discussed.

  13. Isotopic analyses of nitrogenous compounds from the Murchison meteorite: ammonia, amines, amino acids, and polar hydrocarbons

    NASA Technical Reports Server (NTRS)

    Pizzarello, S.; Feng, X.; Epstein, S.; Cronin, J. R.

    1994-01-01

    The combined volatile bases (ammonia, aliphatic amines, and possibly other bases), ammonia, amino acids, and polar hydrocarbons were prepared from the Murchison meteorite for isotopic analyses. The volatile bases were obtained by cryogenic transfer after acid-hydrolysis of a hot-water extract and analyzed by combined gas chromatography-mass spectrometry of pentafluoropropionyl derivatives. The aliphatic amines present in this preparation comprise a mixture that includes both primary and secondary isomers through C5 at a total concentration of > or = 100 nmoles g-1. As commonly observed for meteoritic organic compounds, almost all isomers through C5 are present, and the concentrations within homologous series decrease with increasing chain length. Ammonia was chromatographically separated from the other volatile bases and found at a concentration of 1.1-1.3 micromoles g-1 meteorite. The ammonia analyzed includes contributions from ammonium salts and the hydrolysis of extractable organic compounds, e.g., carboxamides. Stable isotope analyses showed the volatile bases to be substantially enriched in the heavier isotopes, relative to comparable terrestrial compounds delta D < or = +1221%; delta 13C = +22%; delta 15N = +93%). Ammonia, per se, was found to have a somewhat lower delta 15N value (+69%) than the total volatile bases; consequently, a higher delta 15N (>93%) can be inferred for the other bases, which include the amines. Solvent-extractable polar hydrocarbons obtained separately were found to be enriched in 15N (delta 15N = +104%). Total amino acids, prepared from a hydrolyzed hot-water extract by cation exchange chromatography, gave a delta 15N of +94%, a value in good agreement with that obtained previously. Nitrogen isotopic data are also given for amino acid fractions separated chromatographically. The delta 15N values of the Murchison soluble organic compounds analyzed to date fall within a rather narrow range (delta 15N = +94 +/- 8%), an observation consistent with their formation, or formation of their precursors, by interstellar chemistry.

  14. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends.

    PubMed

    Ventura, Sónia P M; E Silva, Francisca A; Quental, Maria V; Mondal, Dibyendu; Freire, Mara G; Coutinho, João A P

    2017-05-24

    Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.

  15. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends

    PubMed Central

    2017-01-01

    Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid–liquid extractions, IL-based liquid–liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations. PMID:28151648

  16. Large-Scale Phenotype-Based Antiepileptic Drug Screening in a Zebrafish Model of Dravet Syndrome1,2,3

    PubMed Central

    Dinday, Matthew T.

    2015-01-01

    Abstract Mutations in a voltage-gated sodium channel (SCN1A) result in Dravet Syndrome (DS), a catastrophic childhood epilepsy. Zebrafish with a mutation in scn1Lab recapitulate salient phenotypes associated with DS, including seizures, early fatality, and resistance to antiepileptic drugs. To discover new drug candidates for the treatment of DS, we screened a chemical library of ∼1000 compounds and identified 4 compounds that rescued the behavioral seizure component, including 1 compound (dimethadione) that suppressed associated electrographic seizure activity. Fenfluramine, but not huperzine A, also showed antiepileptic activity in our zebrafish assays. The effectiveness of compounds that block neuronal calcium current (dimethadione) or enhance serotonin signaling (fenfluramine) in our zebrafish model suggests that these may be important therapeutic targets in patients with DS. Over 150 compounds resulting in fatality were also identified. We conclude that the combination of behavioral and electrophysiological assays provide a convenient, sensitive, and rapid basis for phenotype-based drug screening in zebrafish mimicking a genetic form of epilepsy. PMID:26465006

  17. BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia

    PubMed Central

    Zabriskie, Matthew S.; Eide, Christopher A.; Tantravahi, Srinivas K.; Vellore, Nadeem A.; Estrada, Johanna; Nicolini, Franck E.; Khoury, Hanna J.; Larson, Richard A.; Konopleva, Marina; Cortes, Jorge E.; Kantarjian, Hagop; Jabbour, Elias J.; Kornblau, Steven M.; Lipton, Jeffrey H.; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J.; Press, Richard D.; Chuah, Charles; Goldberg, Stuart L.; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R.; Heaton, William L.; Eiring, Anna M.; Pomicter, Anthony D.; Khorashad, Jamshid S.; Kelley, Todd W.; Baron, Riccardo; Druker, Brian J.; Deininger, Michael W.; O'Hare, Thomas

    2014-01-01

    Summary Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph+) leukemia, including the recalcitrant BCR-ABL1T315I mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph+ leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. PMID:25132497

  18. Transformation of gram positive bacteria by sonoporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yunfeng; Li, Yongchao

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  19. Metal-Element Compounds of Titanium, Zirconium, and Hafnium as Pyrotechnic Fuels

    DTIC Science & Technology

    2015-05-04

    including ceramic materials in this role has been far less common. Following the development of boron carbide-based pyrotechnics in our laboratories, we...ameliorate these problems. Commercially available group 4 compounds containing hydrogen, boron , carbon, nitrogen, silicon, and phosphorus were obtained for...predicted behavior suggests that these compounds may be useful for a variety of pyrotechnic applications. 1. INTRODUCTION The recent use of boron

  20. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques.

    PubMed

    Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław

    2018-01-01

    Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.

  1. Effect of on-site wastewater disposal on quality of ground water and base flow: A pilot study in Chester County, Southeastern Pennsylvania, 2005

    USGS Publications Warehouse

    Senior, Lisa A.; Cinotto, Peter J.

    2007-01-01

    On-site wastewater disposal has the potential to introduce contaminants into ground water and subsequently, by ground-water discharge, to streams. A pilot study was conducted during 2005 by the U.S. Geological Survey in cooperation with the Chester County Health Department and the Chester County Water Resources Authority to determine if wastewater components, including inorganic constituents and selected organic wastewater compounds, such as detergents, considered to be emerging contaminants, were present in ground water and stream base flow in areas with on-site wastewater disposal. The study area was a small watershed (about 7.1 square miles) of mixed land use drained by Broad Run in central Chester County, Pa. The area is underlain by fractured metamorphic rocks that form aquifers recharged by precipitation. Surface- and ground-water sampling was done in areas with and without on-site wastewater disposal for comparison, including a relatively densely populated village with cesspools and septic systems, a residential area with septic systems, a residential area served by sewers, and agricultural land. Samples were collected in May-June and September 2005 from eight headwater stream sites under base-flow conditions and in June 2005 from eight wells and two springs. Samples were analyzed for major ions, nutrients, boron, bacteria, and a suite of organic wastewater compounds. Several emerging contaminant wastewater compounds, including detergent components, insect repellents, and flame retardants, were detected in base-flow and ground-water samples. Stream base-flow samples generally contained more compounds and higher concentrations of those compounds than did ground-water samples, and of the ground-water samples, samples from springs contained more compounds and higher concentrations than samples from wells. Concentrations of nitrate, chloride, and boron (inorganic constituents associated with wastewater) generally were all elevated in base-flow and ground-water samples in areas with relatively high densities of on-site wastewater disposal (septic systems or cesspools) compared to other areas sampled. Results of this pilot study should be considered preliminary because of limited data.

  2. Synthesis and Evaluation of In Vitro Antibacterial and Antitumor Activities of Novel N,N-Disubstituted Schiff Bases

    PubMed Central

    Luo, Heng; Xia, Yu-fen; Sun, Bao-fei; Huang, Li-rong; Wang, Xing-hui; Lou, Hua-yong; Zhu, Xu-hui

    2017-01-01

    To get inside the properties of N,N-disubstituted Schiff bases, we synthesized three high-yielding benzaldehyde Schiff bases. We used the reaction between salicylaldehyde and different diamine compounds, including diamine, ethanediamine, and o-phenylenediamine, determining the structure of obtained molecules by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectroscopy. We thus evaluated the microbicidal and antitumor activity of these compounds, showing that salicylaldehyde-hydrazine hydrate Schiff base (compound 1a) significantly inhibited the growth of S. aureus; salicylaldehyde-o-phenylenediamine Schiff base (compound 1c) displayed a strong capability to inhibit the proliferation of leukemia cell lines K562 and HEL. Moreover, we observed that the antibacterial action of 1a might be associated with the regulation of the expression of key virulence genes in S. aureus. Compound 1c resulted in a strong apoptotic activity against leukemia cells, also affecting the cell cycle distribution. Overall, our novel N,N-disubstituted Schiff bases possess unique antibacterial or antitumor activities that exhibit the potent application prospect in prophylactic or therapeutic interventions, providing new insights for developing new antibacterial and anticancer chemical agents. PMID:28713593

  3. "How'd They do That?".

    PubMed

    Roberts, Jerrod L

    2006-01-01

    For the purpose of this article "success" is defined as compounding more prescriptions on a daily basis. Based on that defintion, an online survey for compounding pharmacists was developed and conducted. This article provides an overview of the results of that survey. The purpose of this survey was not to imply that attaining a goal of high volume determined success but to compare and contrast pharmacies that reported high volumes of compounding with those that reported lower volumes of compounding. Subjects of some of the major services provided by compounding pharmacists are discussed in this article, including: sterile and nonsterile compounding, consultations, over-the-counter services, pharmacy websites, and marketing.

  4. Synthesis and Structural Studies of Calcium and Magnesium Phosphinate and Phosphonate Compounds

    NASA Astrophysics Data System (ADS)

    Bampoh, Victoria Naa Kwale

    The work presented herein describes synthetic methodologies leading to the design of a wide array of magnesium and calcium based phosphinate and phosphonates with possible applications as bone scaffolding materials or additives to bone cements. The challenge to the chemistry of the alkaline earth phosphonate target compounds includes poor solubility of compounds, and poorly understood details on the control of the metal's coordination environment. Hence, less is known on phosphonate based alkaline earth metal organic frameworks as compared to transition metal phosphonates. Factors governing the challenges in obtaining crystalline, well-defined magnesium and calcium solids lie in the large metal diameters, the absence of energetically available d-orbitals to direct metal geometry, as well as the overall weakness of the metal-ligand bonds. A significant part of this project was concerned with the development of suitable reaction conditions to obtain X-ray quality crystals of the reaction products to allow for structural elucidation of the novel compounds. Various methodologies to aid in crystal growth including hydrothermal methods and gel crystallization were employed. We have used phosphinate and phosphonate ligands with different number of phosphorus oxygen atoms as well as diphosphonates with different linker lengths to determine their effects on the overall structural features. An interesting correlation is observed between the dimensionality of products and the increasing number of donor oxygen atoms in the ligands as we progress from phosphinic acid to the phosphorous acids. As an example, monophosphinate ligand only yielded one-dimensional compounds, whereas the phosphonates crystallize as one and two-dimensional compounds, and the di- and triphosphonate based compounds display two or three-dimensional geometries. This thesis provides a selection of calcium and magnesium compounds with one-dimensional geometry, as represented in a calcium phosphinate to novel two-dimensional sheets of magnesium and pillared calcium phosphonates. The preparation of these novel compounds has led to the establishment of synthetic protocols that allow for the direct preparation of compounds with defined structural features.

  5. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor Alpha Selective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Kennedy, L; Shi, Y

    2010-01-01

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and {approx}410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystalmore » structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.« less

  6. Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta

    DOE PAGES

    Jiang, Lin; Liu, Cong; Leibly, David; ...

    2013-07-16

    Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer’s, Parkinson’s, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer’s disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind tomore » Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers.« less

  7. A metabolomics-based approach identifies changes in the small molecular weight compound composition of the peanut as a result of dry-roasting.

    PubMed

    Klevorn, Claire M; Dean, Lisa L

    2018-02-01

    Raw peanuts in the USA are subjected to thermal processing, such as dry-roasting, prior to consumption. A multi-instrument metabolomics-based platform along with targeted analyses was used to determine changes in the low-molecular-weight compound composition of peanuts due to dry-roasting. Runner and virginia-type peanut seeds were characterized using several analytical platforms including (RP)/UPLC-MS/MS (positive and negative ion mode ESI) and HILIC/UPLC-MS/MS with negative ion mode ESI. Of the 383 compounds identified, 16 compounds were unique to the roasted peanuts. Using pathway analysis, compounds associated with arginine and proline metabolism were found to be the most changed. Products of chemical degradation and compounds contained within the vesicular bodies of the peanut increased after roasting. Dry-roasting had a significant impact on the levels and types of low-molecular-weight compounds present. These findings provide useful information about composition changes due to roasting. Published by Elsevier Ltd.

  8. DISTRIBUTION OF DIOXINS, FURANS, AND COPLANAR ...

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency (EPA) and the United States Department of Agriculture (USDA) recently collaborated on a statistically-based, national survey of dioxin-like compounds, including dioxins, furans, and coplanar PCBs, in the back fat from slaughtered cattle. Back fat was selected because it was a matrix that could easily be sampled by the veterinarians at the slaughter establishments. Also, since it was a matrix that was very high in fat content (in the range of 60-90% lipid), the ability to measure the dioxin-like compounds with a given sample volume was maximized. A principal use of the results of the national beef survey is to evaluate the exposure of individuals in the United States to these compounds through consumption of beef. In order to use the data for this purpose, an assumption needs to be made regarding the relationship between lipid concentrations of these compounds in back fat compared to the concentrations in meat products. However, data on the concentrations of these compounds in different cattle fat reservoirs to derive the proper assumption are sparse. There is some information on compounds with similar properties (lipophilic, persistent), including residues of HCB, PBB, and DDT, and these data do suggest that their lipid-based concentrations in various fat reservoirs in cattle are similar. In order to evaluate whether the same can be said of the dioxin-like compounds, the EPA and USDA collaborated on a seco

  9. Weighted similarity-based clustering of chemical structures and bioactivity data in early drug discovery.

    PubMed

    Perualila-Tan, Nolen Joy; Shkedy, Ziv; Talloen, Willem; Göhlmann, Hinrich W H; Moerbeke, Marijke Van; Kasim, Adetayo

    2016-08-01

    The modern process of discovering candidate molecules in early drug discovery phase includes a wide range of approaches to extract vital information from the intersection of biology and chemistry. A typical strategy in compound selection involves compound clustering based on chemical similarity to obtain representative chemically diverse compounds (not incorporating potency information). In this paper, we propose an integrative clustering approach that makes use of both biological (compound efficacy) and chemical (structural features) data sources for the purpose of discovering a subset of compounds with aligned structural and biological properties. The datasets are integrated at the similarity level by assigning complementary weights to produce a weighted similarity matrix, serving as a generic input in any clustering algorithm. This new analysis work flow is semi-supervised method since, after the determination of clusters, a secondary analysis is performed wherein it finds differentially expressed genes associated to the derived integrated cluster(s) to further explain the compound-induced biological effects inside the cell. In this paper, datasets from two drug development oncology projects are used to illustrate the usefulness of the weighted similarity-based clustering approach to integrate multi-source high-dimensional information to aid drug discovery. Compounds that are structurally and biologically similar to the reference compounds are discovered using this proposed integrative approach.

  10. Possible incorporation of petroleum-based carbons in biochemicals produced by bioprocess--biomass carbon ratio measured by accelerator mass spectrometry.

    PubMed

    Kunioka, Masao

    2010-06-01

    The biomass carbon ratios of biochemicals related to biomass have been reviewed. Commercial products from biomass were explained. The biomass carbon ratios of biochemical compounds were measured by accelerator mass spectrometry (AMS) based on the (14)C concentration of carbons in the compounds. This measuring method uses the mechanism that biomass carbons include a very low level of (14)C and petroleum carbons do not include (14)C similar to the carbon dating measuring method. It was confirmed that there were some biochemicals synthesized from petroleum-based carbons. This AMS method has a high accuracy with a small standard deviation and can be applied to plastic products.

  11. Dehydration processes using membranes with hydrophobic coating

    DOEpatents

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  12. Gold(III) complexes in medicinal chemistry.

    PubMed

    Maia, Pedro Ivo da Silva; Deflon, Victor M; Abram, Ulrich

    2014-09-01

    A number of gold(III) compounds has been designed with the objective of overcoming the disadvantages associated with the platinum-based drugs for cancer treatment. Compounds of a remarkable structural manifold show significant antiproliferative effects in vitro against a number of cancer cells, including cisplatin resistant ones. The target of most of them is, unlike that of cisplatin, not the DNA. Although the mechanisms of action displayed by the gold compounds in biological media are still under investigation, many studies show evidence that the cellular targets are mitochondria-based. Recent advances in gold(III) medicinal chemistry also recommend such compounds for other pharmacological applications such as the treatment of viral or parasitic diseases. The radioactive isotopes (198)Au and (199)Au present potential in radiotherapy.

  13. Synthesis of carbohydrate-based surfactants

    DOEpatents

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  14. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines.

    PubMed

    Olender, Dorota; Żwawiak, Justyna; Zaprutko, Lucjusz

    2018-05-29

    The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.

  15. Occurrence and fate of organic contaminants during onsite wastewater treatment

    USGS Publications Warehouse

    Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

    2006-01-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

  16. Identifying relationships between unrelated pharmaceutical target proteins on the basis of shared active compounds.

    PubMed

    Miljković, Filip; Kunimoto, Ryo; Bajorath, Jürgen

    2017-08-01

    Computational exploration of small-molecule-based relationships between target proteins from different families. Target annotations of drugs and other bioactive compounds were systematically analyzed on the basis of high-confidence activity data. A total of 286 novel chemical links were established between distantly related or unrelated target proteins. These relationships involved a total of 1859 bioactive compounds including 147 drugs and 141 targets. Computational analysis of large amounts of compounds and activity data has revealed unexpected relationships between diverse target proteins on the basis of compounds they share. These relationships are relevant for drug discovery efforts. Target pairs that we have identified and associated compound information are made freely available.

  17. MEASUREMENT OF VOLATILE ORGANIC COMPOUNDS BY THE US ENVIRONMENTAL PROTECTION AGENCY COMPENDIUM METHOD TO-17 - EVALUATION OF PERFORMANCE CRITERIA

    EPA Science Inventory

    An evaluation of performance criteria for US Environmental Protection Agency Compendium Method TO-17 for monitoring volatile organic compounds (VOCs) in air has been accomplished. The method is a solid adsorbent-based sampling and analytical procedure including performance crit...

  18. Three-dimensional compound comparison methods and their application in drug discovery.

    PubMed

    Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke

    2015-07-16

    Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.

  19. Natural Product Libraries to Accelerate the High Throughput Discovery of Therapeutic Leads±

    PubMed Central

    Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Estee, Samarkand A.; Loveridge, Steven T.; Vervoort, Helene C.; Tenney, Karen; Liu, Junke; Ang, Kenny Kean-Hooi; Ratnam, Joseline; Bray, Walter M.; Gassner, Nadine C.; Shen, Young Y.; Lokey, R. Scott; McKerrow, James H.; Boundy-Mills, Kyria; Nukanto, Arif; Kanti, Atit; Julistiono, Heddy; Kardono, Leonardus B. S.; Bjeldanes, Leonard F.; Crews, Phillip

    2011-01-01

    A high throughput (HT) paradigm generating LC-MS-UV-ELSD based natural product libraries to discover compounds with new bioactivities and or molecular structures is presented. To validate this methodology an extract of the Indo Pacific marine sponge Cacospongia mycofijiensis was evaluated using assays involving cytoskeletal profiling, tumor cell lines, and parasites. Twelve known compounds were identified including the latrunculins (1–4, 10), fijianolides (5, 8–9), mycothiazole (11), the aignopsanes (6–7) and sacrotride A (13). Compounds 1–4, 5, 8–11 exhibited bioactivity not previously reported against the parasite T. brucei, while 11 showed selectivity for lymphoma (U937) tumor cell lines. Four new compounds were also discovered including: aignopsanoic acid B (13), apo latrunculin T (14), 20-methoxy-fijianolide A (15) and aignopsane ketal (16). Compounds 13 and 16 represent important derivatives of the aignopsane class, 14 exhibited inhibition of T. brucei without disrupting microfilament assembly and 15 demonstrated modest microtubule stabilizing effects. The use of removable well plate libraries to avoid false positives from extracts enriched with only 1–2 major metabolites is also discussed. Overall, these results highlight the advantages of applying modern methods in natural products-based research to accelerate the HT discovery of therapeutic leads and or new molecular structures using LC-MS-UV-ELSD based libraries. PMID:22129061

  20. Analysis of low molecular weight compounds by MALDI-FTICR-MS.

    PubMed

    Wang, Hao-Yang; Chu, Xu; Zhao, Zhi-Xiong; He, Xiao-Shuang; Guo, Yin-Long

    2011-05-15

    This review focuses on recent applications of matrix-assisted laser desorption ionization-Fourier-transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) in qualitative and quantitative analysis of low molecular weight compounds. The scope of the work includes amino acids, small peptides, mono and oligosaccharides, lipids, metabolic compounds, small molecule phytochemicals from medicinal herbs and even the volatile organic compounds from tobacco. We discuss both direct analysis and analysis following derivatization. In addition we review sample preparation strategies to reduce interferences in the low m/z range and to improve sensitivities by derivatization with charge tags. We also present coupling of head space techniques with MALDI-FTICR-MS. Furthermore, omics analyses based on MALDI-FTICR-MS were also discussed, including proteomics, metabolomics and lipidomics, as well as the relative MS imaging for bio-active low molecular weight compounds. Finally, we discussed the investigations on dissociation/rearrangement processes of low molecular weight compounds by MALDI-FTICR-MS. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia.

    PubMed

    Zabriskie, Matthew S; Eide, Christopher A; Tantravahi, Srinivas K; Vellore, Nadeem A; Estrada, Johanna; Nicolini, Franck E; Khoury, Hanna J; Larson, Richard A; Konopleva, Marina; Cortes, Jorge E; Kantarjian, Hagop; Jabbour, Elias J; Kornblau, Steven M; Lipton, Jeffrey H; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J; Press, Richard D; Chuah, Charles; Goldberg, Stuart L; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R; Heaton, William L; Eiring, Anna M; Pomicter, Anthony D; Khorashad, Jamshid S; Kelley, Todd W; Baron, Riccardo; Druker, Brian J; Deininger, Michael W; O'Hare, Thomas

    2014-09-08

    Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Compound cuing in free recall.

    PubMed

    Lohnas, Lynn J; Kahana, Michael J

    2014-01-01

    According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cuing in free recall. Specifically, the temporal contiguity effect should be greater when the 2 most recently recalled items were studied in contiguous list positions. A meta-analysis of published free recall experiments demonstrates evidence for compound cuing in both conditional response probabilities and interresponse times. To help rule out a rehearsal-based account of these compound cuing effects, we conducted an experiment with immediate, delayed, and continual-distractor free recall conditions. Consistent with retrieved context theory but not with a rehearsal-based account, compound cuing was present in all conditions, and was not significantly influenced by the presence of interitem distractors.

  3. Compound cueing in free recall

    PubMed Central

    Lohnas, Lynn J.; Kahana, Michael J.

    2013-01-01

    According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cueing in free recall. Specifically, the temporal contiguity effect should be greater when the two most recently recalled items were studied in contiguous list positions. A meta-analysis of published free recall experiments demonstrates evidence for compound cueing in both conditional response probabilities and inter-response times. To help rule out a rehearsal-based account of these compound cueing effects, we conducted an experiment with immediate, delayed and continual-distractor free recall conditions. Consistent with retrieved context theory but not with a rehearsal-based account, compound cueing was present in all conditions, and was not significantly influenced by the presence of interitem distractors. PMID:23957364

  4. Computational approaches for drug discovery.

    PubMed

    Hung, Che-Lun; Chen, Chi-Chun

    2014-09-01

    Cellular proteins are the mediators of multiple organism functions being involved in physiological mechanisms and disease. By discovering lead compounds that affect the function of target proteins, the target diseases or physiological mechanisms can be modulated. Based on knowledge of the ligand-receptor interaction, the chemical structures of leads can be modified to improve efficacy, selectivity and reduce side effects. One rational drug design technology, which enables drug discovery based on knowledge of target structures, functional properties and mechanisms, is computer-aided drug design (CADD). The application of CADD can be cost-effective using experiments to compare predicted and actual drug activity, the results from which can used iteratively to improve compound properties. The two major CADD-based approaches are structure-based drug design, where protein structures are required, and ligand-based drug design, where ligand and ligand activities can be used to design compounds interacting with the protein structure. Approaches in structure-based drug design include docking, de novo design, fragment-based drug discovery and structure-based pharmacophore modeling. Approaches in ligand-based drug design include quantitative structure-affinity relationship and pharmacophore modeling based on ligand properties. Based on whether the structure of the receptor and its interaction with the ligand are known, different design strategies can be seed. After lead compounds are generated, the rule of five can be used to assess whether these have drug-like properties. Several quality validation methods, such as cost function analysis, Fisher's cross-validation analysis and goodness of hit test, can be used to estimate the metrics of different drug design strategies. To further improve CADD performance, multi-computers and graphics processing units may be applied to reduce costs. © 2014 Wiley Periodicals, Inc.

  5. Eudesmane and aromadendrane sesquiterpenoids from the Vietnamese soft coral Sinularia erecta.

    PubMed

    Huong, Nguyen Thi; Ngoc, Ninh Thi; Thanh, Nguyen Van; Dang, Nguyen Hai; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Thung, Do Cong; The, Ho Van; Tuan, Vo Sy; Kiem, Phan Van; Minh, Chau Van

    2017-11-16

    Using various chromatographic separations, eight sesquiterpenoids (1-8), including one new compound 3β,5α-dihydroxyeudesma-4(15),11-diene (1), were isolated from the MeOH extract of the Vietnamese soft coral Sinularia erecta. The structure elucidation was confirmed by spectroscopic experiments including 1D and 2D NMR and HR-ESI-MS. The cytotoxic activities against three human cancer cell lines (A-549, HeLa and PANC-1) of all isolated compounds were evaluated by MTT-based colorimetric assays. Compound 1 exhibited selective cytotoxicity against the A549 cell line with IC 50 of 14.79 ± 0.91 μM.

  6. PubChem promiscuity: a web resource for gathering compound promiscuity data from PubChem.

    PubMed

    Canny, Stephanie A; Cruz, Yasel; Southern, Mark R; Griffin, Patrick R

    2012-01-01

    Promiscuity counts allow for a better understanding of a compound's assay activity profile and drug potential. Although PubChem contains a vast amount of compound and assay data, it currently does not have a convenient or efficient method to obtain in-depth promiscuity counts for compounds. PubChem promiscuity fills this gap. It is a Java servlet that uses NCBI Entrez (eUtils) web services to interact with PubChem and provide promiscuity counts in a variety of categories along with compound descriptors, including PAINS-based functional group detection. http://chemutils.florida.scripps.edu/pcpromiscuity southern@scripps.edu

  7. PubChem promiscuity: a web resource for gathering compound promiscuity data from PubChem

    PubMed Central

    Canny, Stephanie A.; Cruz, Yasel; Southern, Mark R.; Griffin, Patrick R.

    2012-01-01

    Summary: Promiscuity counts allow for a better understanding of a compound's assay activity profile and drug potential. Although PubChem contains a vast amount of compound and assay data, it currently does not have a convenient or efficient method to obtain in-depth promiscuity counts for compounds. PubChem promiscuity fills this gap. It is a Java servlet that uses NCBI Entrez (eUtils) web services to interact with PubChem and provide promiscuity counts in a variety of categories along with compound descriptors, including PAINS-based functional group detection. Availability: http://chemutils.florida.scripps.edu/pcpromiscuity Contact: southern@scripps.edu PMID:22084255

  8. Phytochemical study of Helichrysum italicum (Roth) G. Don: Spectroscopic elucidation of unusual amino-phlorogucinols and antimicrobial assessment of secondary metabolites from medium-polar extract.

    PubMed

    D'Abrosca, Brigida; Buommino, Elisabetta; Caputo, Pina; Scognamiglio, Monica; Chambery, Angela; Donnarumma, Giovanna; Fiorentino, Antonio

    2016-12-01

    Three unusual amino-phloroglucinols, named helichrytalicines A-C, along with seventeen known compounds including acetophenones, tremetrone derivatives, low-molecular weight phenols, flavonol glucosides, have been isolated from the medium-polar extract of Helichrysum italicum (Roth) G. Don, a medicinal plant typical of the Mediterranean vegetation. The structures of the compounds have been elucidated based on extensive 2D-NMR spectroscopic analyses, including COSY, TOCSY, HSQC, CIGAR-HMBC, H2BC and HSQC-TOCSY, along with Q-TOF HRMS 2 analysis. Stereostructure of the new compounds has been elucidated by Mosher's method and NOESY experiment. Antimicrobial properties against Staphylococcus epidermidis of selected compounds have been evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Eunicellin-based diterpenoids from the Formosan soft coral Klyxum molle with inhibitory activity on superoxide generation and elastase release by neutrophils.

    PubMed

    Lin, Ming-Chang; Chen, Bo-Wei; Huang, Chiung-Yao; Dai, Chang-Feng; Hwang, Tsong-Long; Sheu, Jyh-Horng

    2013-09-27

    Eleven new eunicellin-based diterpenoids possessing a cladiellane skeleton with a C-2, C-9 ether bridge, klymollins I-S (1-11), have been isolated from the EtOAc extract of the soft coral Klyxum molle from Taiwan waters. The structures of compounds 1-11 were elucidated by extensive spectroscopic analysis, including 2D NMR spectroscopy (COSY, HSQC, HMBC, and NOESY). Compound 5 exhibited cytotoxicity toward several cancer cell lines. Compound 5 is the first eunicellin-based metabolite bearing a phenyl group and displays significant inhibition of both superoxide anion generation and elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced human neutrophils.

  10. Volatile organic compound (VOC) emissions during malting and beer manufacture

    NASA Astrophysics Data System (ADS)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  11. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor [alpha] Selective Agonist 2-((3-((2-(4-Chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic Acid (BMS-687453)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Kennedy, Lawrence J.; Shi, Yan

    2010-04-12

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and 410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystalmore » structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.« less

  12. An uncertainty and sensitivity analysis applied to the prioritisation of pharmaceuticals as surface water contaminants from wastewater treatment plant direct emissions.

    PubMed

    Morais, Sérgio Alberto; Delerue-Matos, Cristina; Gabarrell, Xavier

    2014-08-15

    In this study, the concentration probability distributions of 82 pharmaceutical compounds detected in the effluents of 179 European wastewater treatment plants were computed and inserted into a multimedia fate model. The comparative ecotoxicological impact of the direct emission of these compounds from wastewater treatment plants on freshwater ecosystems, based on a potentially affected fraction (PAF) of species approach, was assessed to rank compounds based on priority. As many pharmaceuticals are acids or bases, the multimedia fate model accounts for regressions to estimate pH-dependent fate parameters. An uncertainty analysis was performed by means of Monte Carlo analysis, which included the uncertainty of fate and ecotoxicity model input variables, as well as the spatial variability of landscape characteristics on the European continental scale. Several pharmaceutical compounds were identified as being of greatest concern, including 7 analgesics/anti-inflammatories, 3 β-blockers, 3 psychiatric drugs, and 1 each of 6 other therapeutic classes. The fate and impact modelling relied extensively on estimated data, given that most of these compounds have little or no experimental fate or ecotoxicity data available, as well as a limited reported occurrence in effluents. The contribution of estimated model input variables to the variance of freshwater ecotoxicity impact, as well as the lack of experimental abiotic degradation data for most compounds, helped in establishing priorities for further testing. Generally, the effluent concentration and the ecotoxicity effect factor were the model input variables with the most significant effect on the uncertainty of output results. Copyright © 2014. Published by Elsevier B.V.

  13. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    PubMed

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Theory of the magnetic susceptibility including zero-point spin fluctuations of itinerant nearly ferromagnetic compounds

    NASA Astrophysics Data System (ADS)

    Konno, Rikio; Hatayama, Nobukuni; Takahashi, Yoshinori

    2018-05-01

    We have investigated the temperature dependence of the magnetic susceptibility of itinerant nearly ferromagnetic compounds based on the spin fluctuation theory. It is based on the conservation of the local spin amplitude that consists of both the thermal and the zero-point components. The linear dependence of the zero-point spin fluctuation amplitude on the inverse of magnetic susceptibility is usually assumed. The purpose of our present study is to include its higher order terms and to see their effects on the magnetic susceptibility. For the thermal amplitude, it shows T2-linear temperature dependence at low temperatures.

  15. Characterizing fluorotelomer and polyfluoroalkyl substances in new and aged fluorotelomer-based polymers for degradation studies with GC/MS and LC/MS/MS.

    PubMed

    Washington, John W; Naile, Jonathan E; Jenkins, Thomas M; Lynch, David G

    2014-05-20

    Fluorotelomer-based polymers (FTPs), the dominant product of the fluorotelomer industry, are antistaining and antiwetting agents that permeate the products and surfaces of modern society. However, the degree to which these materials expose humans and the environment to fluorotelomer and perfluorinated compounds, including recalcitrant and toxic compounds such as perfluorooctanoic acid (PFOA), is ill-defined. The design intent of FTPs, to minimize interaction with other substances, including solvents, heretofore has stymied efforts to develop robust methods to characterize the content of monomers and associated compounds of new commercial FTPs, as well as commercial FTPs that have been aged in environmental media for degradation testing. Here we show that FTPs can be exhausted of these compounds and quantitated by (i) drying the FTP on a suitable substrate at elevated temperature to achieve low, constant monomer concentrations; (ii) serial extraction with MTBE for fluorotelomer-monomer analysis by GC/MS in PCI mode; followed by (iii) serial extraction with 90/10 ACN/H2O for polyfluorocompound analysis by LC/MS/MS in negative ESI mode. This approach yields exhaustive, internally consistent accounting of monomers and associated compounds for FTPs, either alone or in a soil matrix (representing an environmental medium), for both new and simulated-aged FTPs to allow degradation testing, and for fluorinated compounds at least as long as C12.

  16. Understanding the toxicological potential of aerosol organic compounds using informatics based screening

    NASA Astrophysics Data System (ADS)

    Topping, David; Decesari, Stefano; Bassan, Arianna; Pavan, Manuela; Ciacci, Andrea

    2016-04-01

    Exposure to atmospheric particulate matter is responsible for both short-term and long-term adverse health effects. So far, all efforts spent in achieving a systematic epidemiological evidence of specific aerosol compounds determining the overall aerosol toxicity were unsuccessful. The results of the epidemiological studies apparently conflict with the laboratory toxicological analyses which have highlighted very different chemical and toxicological potentials for speciated aerosol compounds. Speciation remains a problem, especially for organic compounds: it is impossible to conduct screening on all possible molecular species. At the same time, research on toxic compounds risks to be biased towards the already known compounds, such as PAHs and dioxins. In this study we present results from an initial assessment of the use of in silico methods (i.e. (Q)SAR, read-across) to predict toxicity of atmospheric organic compounds including evaluation of applicability of a variety of popular tools (e.g. OECD QSAR Toolbox) for selected endpoints (e.g. genotoxicity). Compounds are categorised based on the need of new experimental data for the development of in silico approaches for toxicity prediction covering this specific chemical space, namely the atmospheric aerosols. Whilst only an initial investigation, we present recommendations for continuation of this work.

  17. Discovery of a Broad-Spectrum Antiviral Compound That Inhibits Pyrimidine Biosynthesis and Establishes a Type 1 Interferon-Independent Antiviral State

    PubMed Central

    Adcock, Robert S.; Schroeder, Chad E.; Chu, Yong-Kyu; Sotsky, Julie B.; Cramer, Daniel E.; Chilton, Paula M.; Song, Chisu; Anantpadma, Manu; Davey, Robert A.; Prodhan, Aminul I.; Yin, Xinmin; Zhang, Xiang

    2016-01-01

    Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons. PMID:27185801

  18. Field Evaluation of Anti-Biofouling Compounds on Optical Instrumentation

    NASA Technical Reports Server (NTRS)

    McLean, Scott; Schofield, Bryan; Zibordi, Giuseppe; Lewis, Marlon; Hooker, Stanford; Weidemann, Alan

    1997-01-01

    Biofouling has been a serious question in the stability of optical measurements in the ocean, particularly in moored and drifting buoy applications. Many investigators coat optical surfaces with various compounds to reduce the amount of fouling; to our knowledge, however, there are no objective, in-situ comparative testing of these compounds to evaluate their effectiveness with respect to optical stability relative to untreated controls. We have tested a wide range of compounds at in-situ locations in Halifax Harbour and in the Adriatic Sea on passive optical sensors. Compounds tested include a variety of TBT formulations, antifungal agents, and low-friction silicone-based compounds; time-scales of up to four months were evaluated. The results of these experiments are discussed.

  19. Organic waste compounds in streams: Occurrence and aquatic toxicity in different stream compartments, flow regimes, and land uses in southeast Wisconsin, 2006–9

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Richards, Kevin D.; Geis, Steven W.; Magruder, Christopher

    2013-01-01

    An assessment of organic chemicals and aquatic toxicity in streams located near Milwaukee, Wisconsin, indicated high potential for adverse impacts on aquatic organisms that could be related to organic waste compounds (OWCs). OWCs used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewage overflows, among other sources. Many of these compounds are toxic at elevated concentrations and (or) known to have endocrine-disrupting potential, and often they occur as complex mixtures. There is still much to be learned about the chronic exposure effects of these compounds on aquatic populations. During 2006–9, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District (MMSD), conducted a study to determine the occurrence and potential toxicity of OWCs in different stream compartments and flow regimes for streams in the Milwaukee area. Samples were collected at 17 sites and analyzed for a suite of 69 OWCs. Three types of stream compartments were represented: water column, streambed pore water, and streambed sediment. Water-column samples were subdivided by flow regime into stormflow and base-flow samples. One or more compounds were detected in all 196 samples collected, and 64 of the 69 compounds were detected at least once. Base-flow samples had the lowest detection rates, with a median of 12 compounds detected per sample. Median detection rates for stormflow, pore-water, and sediment samples were more than double that of base-flow samples. Compounds with the highest detection rates include polycyclic aromatic hydrocarbons (PAHs), insecticides, herbicides, and dyes/pigments. Elevated occurrence and concentrations of some compounds were detected in samples from urban sites, as compared with more rural sites, especially during stormflow conditions. These include the PAHs and the domestic waste-water-indicator compounds, among others. Urban runoff and storm-related leaks of sanitary sewers and (or) septic systems may be important sources of these and other compounds to the streams. The Kinnickinnic River, a highly urbanized site, had the highest detection rates and concentrations of compounds of all the sampled sites. The Milwaukee River near Cedarburg—one of the least urban sites—and the Outer Milwaukee Harbor site had the lowest detection rates and concentrations. Aquatic-toxicity benchmarks were exceeded for 12 of the 25 compounds with known benchmarks. The compounds with the greatest benchmark exceedances were the PAHs, both in terms of exceedance frequency (up to 93 percent for some compounds in sediment samples) and magnitude (concentrations up to 1,024 times greater than the benchmark value). Other compounds with toxicity-benchmark exceedances include Bis(2-ethylhexyl) phthalate (a plasticizer), 2-Methylnapthalene (a component of fuel and oil), phenol (an antimicrobial disinfectant with diverse uses), and 4-Nonylphenol (sum of all isomers; a detergent metabolite, among other uses). Analyzed as a mixture, the suite of PAH compounds were found to be potentially toxic for most non-base-flow samples. Bioassay tests were conducted on samples from 14 streams: Ceriodaphnia dubia in base-flow samples, Ceriodaphnia dubia and Hyallela azteca in pore-water samples, and Hyallela azteca and Chironomus tentans in sediment samples. The greatest adverse effect was observed in tests with Chironomus tentans from sediment samples. The weight of Chironomus tentans after exposure to sediments decreased with increased OWC concentrations. This was most evident in the relation between PAH results and Chironomus tentans bioassay results for the majority of samples; however, solvents and flame retardants appeared to be important for one site each. These results for PAHs were consistent with assessment of PAH potency factors for sediment, indicating that PAHs were likely to have adverse effects on aquatic organisms in many of the streams studied.

  20. A Chemogenomic Analysis of Ionization Constants - Implications for Drug Discovery

    PubMed Central

    Manallack, David T.; Prankerd, Richard J.; Nassta, Gemma C.; Ursu, Oleg; Oprea, Tudor I.; Chalmers, David K.

    2013-01-01

    Chemogenomics methods seek to characterize the interaction between drugs and biological systems and are an important guide for the selection of screening compounds. The acid/base character of drugs has a profound influence on their affinity for the receptor, on their absorption, distribution, metabolism, excretion and toxicity (ADMET) profile and the way the drug can be formulated. In particular, the charge state of a molecule greatly influences its lipophilicity and biopharmaceutical characteristics. This study investigates the acid/base profile of human small molecule drugs, chemogenomics datasets and screening compounds including a natural products set. We estimate the ionization constants (pKa values) of these compounds and determine the identity of the ionizable functional groups in each set. We find substantial differences in acid/base profiles of the chemogenomic classes. In many cases, these differences can be linked to the nature of the target binding site and the corresponding functional groups needed for recognition of the ligand. Clear differences are also observed between the acid/base characteristics of drugs and screening compounds. For example, the proportion of drugs containing a carboxylic acid was 20%, in stark contrast to a value of 2.4% for the screening set sample. The proportion of aliphatic amines was 27% for drugs and only 3.4% for screening compounds. This suggests that there is a mismatch between commercially available screening compounds and the compounds that are likely to interact with a given chemogenomic target family. Our analysis provides a guide for the selection of screening compounds to better target specific chemogenomic families with regard to the overall balance of acids, bases and pKa distributions. PMID:23303535

  1. Literature-based compound profiling: application to toxicogenomics.

    PubMed

    Frijters, Raoul; Verhoeven, Stefan; Alkema, Wynand; van Schaik, René; Polman, Jan

    2007-11-01

    To reduce continuously increasing costs in drug development, adverse effects of drugs need to be detected as early as possible in the process. In recent years, compound-induced gene expression profiling methodologies have been developed to assess compound toxicity, including Gene Ontology term and pathway over-representation analyses. The objective of this study was to introduce an additional approach, in which literature information is used for compound profiling to evaluate compound toxicity and mode of toxicity. Gene annotations were built by text mining in Medline abstracts for retrieval of co-publications between genes, pathology terms, biological processes and pathways. This literature information was used to generate compound-specific keyword fingerprints, representing over-represented keywords calculated in a set of regulated genes after compound administration. To see whether keyword fingerprints can be used for assessment of compound toxicity, we analyzed microarray data sets of rat liver treated with 11 hepatotoxicants. Analysis of keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two peroxisome proliferators and two randomly generated gene sets, showed that each compound produced a specific keyword fingerprint that correlated with the experimentally observed histopathological events induced by the individual compounds. By contrast, the random sets produced a flat aspecific keyword profile, indicating that the fingerprints induced by the compounds reflect biological events rather than random noise. A more detailed analysis of the keyword profiles of diethylhexylphthalate, dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword fingerprints of these three compounds are based upon known distinct modes of action. Visualization of MPy-linked keywords and MPy-induced genes in a literature network enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with known effects of MPy in literature. Compound keyword fingerprinting based on information retrieved from literature is a powerful approach for compound profiling, allowing evaluation of compound toxicity and analysis of the mode of action.

  2. Recent advance in oxazole-based medicinal chemistry.

    PubMed

    Zhang, Hui-Zhen; Zhao, Zhi-Long; Zhou, Cheng-He

    2018-01-20

    Oxazole compounds containing nitrogen and oxygen atoms in the five-membered aromatic ring are readily able to bind with a variety of enzymes and receptors in biological systems via diverse non-covalent interactions, and thus display versatile biological activities. The related researches in oxazole-based derivatives including oxazoles, isoxazoles, oxazolines, oxadiazoles, oxazolidones, benzoxazoles and so on, as medicinal drugs have been an extremely active topic, and numerous excellent achievements have been acquired. Noticeably, a large number of oxazole compounds as clinical drugs or candidates have been frequently employed for the treatment of various types of diseases, which have shown their large development value and wide potential as medicinal agents. This work systematically reviewed the recent researches and developments of the whole range of oxazole compounds as medicinal drugs, including antibacterial, antifungal, antiviral, antitubercular, anticancer, anti-inflammatory and analgesic, antidiabetic, antiparasitic, anti-obesitic, anti-neuropathic, antioxidative as well as other biological activities. The perspectives of the foreseeable future in the research and development of oxazole-based compounds as medicinal drugs are also presented. It is hoped that this review will serve as a stimulant for new thoughts in the quest for rational designs of more active and less toxic oxazole medicinal drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81

    USGS Publications Warehouse

    Hochreiter, Joseph J.

    1982-01-01

    This report presents chemical-quality data collected from May 1980 to January 1981 at several locations within the Delaware River estuary and selected New Jersey tributaries. Samples of surface water were analyzed Environmental Protection Agency ' priority pollutants, ' including acid extractable, base/neutral extractable and volatile organic compounds, in addition to selected dissolved inorganic constituents. Surficial bed material at selected locations was examined for trace metals, insecticides, polychlorinated biphenyls, and base/neutral extractable organic compounds. Trace levels (1-50 micrograms per liter) of purgeable organic compounds, particularly those associated with the occurrence of hydrocarbons, were found in about 60% of the water samples taken. DDT, DDD, DDE, PCB 's and chlordane are present in most surficial bed material samples. Diazinon was the only organophosphorous insecticide detected in the study (1.6 micrograms per kilogram at one location). High values for select trace metals in bed material were discovered at two locations. Of the 10 sites sampled, the surficial bed material containing the most contamination was found along one cross section of Raccoon Creek at Bridgeport. An additional analysis of Raccoon Creek revealed bed material containing toluene, oil and grease, and trace quantities of 15 base/neutral extractable organic compounds, including polynuclear aromatic hydrocarbons, phthalate esters, and chlorinated benzenes.

  4. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    PubMed

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  5. Immunosuppressive Effects of Natural α,β-Unsaturated Carbonyl-Based Compounds, and Their Analogs and Derivatives, on Immune Cells: A Review.

    PubMed

    Arshad, Laiba; Jantan, Ibrahim; Bukhari, Syed Nasir Abbas; Haque, Md Areeful

    2017-01-01

    The immune system is complex and pervasive as it functions to prevent or limit infections in the human body. In a healthy organism, the immune system and the redox balance of immune cells maintain homeostasis within the body. The failure to maintain the balance may lead to impaired immune response and either over activity or abnormally low activity of the immune cells resulting in autoimmune or immune deficiency diseases. Compounds containing α,β-unsaturated carbonyl-based moieties are often reactive. The reactivity of these groups is responsible for their diverse pharmacological activities, and the most important and widely studied include the natural compounds curcumin, chalcone, and zerumbone. Numerous studies have revealed the mainly immunosuppressive and anti-inflammatory activities of the aforesaid compounds. This review highlights the specific immunosuppressive effects of these natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives on different types of immune cells of the innate (granulocytes, monocytes, macrophages, and dendritic cells) and adaptive (T cells, B cells, and natural killer cells) immune systems. The inhibitory effects of these compounds have been comprehensively studied on neutrophils, monocytes and macrophages but their effects on T cells, B cells, natural killer cells, and dendritic cells have not been well investigated. It is of paramount importance to continue generating experimental data on the mechanisms of action of α,β-unsaturated carbonyl-based compounds on immune cells to provide useful information for ensuing research to discover new immunomodulating agents.

  6. Immunosuppressive Effects of Natural α,β-Unsaturated Carbonyl-Based Compounds, and Their Analogs and Derivatives, on Immune Cells: A Review

    PubMed Central

    Arshad, Laiba; Jantan, Ibrahim; Bukhari, Syed Nasir Abbas; Haque, Md. Areeful

    2017-01-01

    The immune system is complex and pervasive as it functions to prevent or limit infections in the human body. In a healthy organism, the immune system and the redox balance of immune cells maintain homeostasis within the body. The failure to maintain the balance may lead to impaired immune response and either over activity or abnormally low activity of the immune cells resulting in autoimmune or immune deficiency diseases. Compounds containing α,β-unsaturated carbonyl-based moieties are often reactive. The reactivity of these groups is responsible for their diverse pharmacological activities, and the most important and widely studied include the natural compounds curcumin, chalcone, and zerumbone. Numerous studies have revealed the mainly immunosuppressive and anti-inflammatory activities of the aforesaid compounds. This review highlights the specific immunosuppressive effects of these natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives on different types of immune cells of the innate (granulocytes, monocytes, macrophages, and dendritic cells) and adaptive (T cells, B cells, and natural killer cells) immune systems. The inhibitory effects of these compounds have been comprehensively studied on neutrophils, monocytes and macrophages but their effects on T cells, B cells, natural killer cells, and dendritic cells have not been well investigated. It is of paramount importance to continue generating experimental data on the mechanisms of action of α,β-unsaturated carbonyl-based compounds on immune cells to provide useful information for ensuing research to discover new immunomodulating agents. PMID:28194110

  7. Portable spotter for fluorescent contaminants on surfaces

    DOEpatents

    Schuresko, Daniel D.

    1980-01-01

    A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.

  8. Compositions for, solutions for, and methods of use of siloxane based aromatic trisureas as viscosifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, Mark Daniel; O'Brien, Michael Joseph; Lee, Jason

    A compound represented by the following formula is provided: ##STR00001## Also provided is a solution including a compound disclosed herein, a volume of dense carbon dioxide (CO.sub.2), and a co-solvent, where the solution has an increased viscosity greater than the viscosity of dense CO.sub.2. Methods of increasing the viscosity of dense CO.sub.2 and natural gas liquids (NGLs) by, for example, dissolving a compound disclosed herein to form a solution, are also provided.

  9. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  10. Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics | Office of Cancer Genomics

    Cancer.gov

    High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics.

  11. Large-Scale Chemical Similarity Networks for Target Profiling of Compounds Identified in Cell-Based Chemical Screens

    PubMed Central

    Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z.

    2015-01-01

    Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/). PMID:25826798

  12. Tackling the conformational sampling of larger flexible compounds and macrocycles in pharmacology and drug discovery.

    PubMed

    Chen, I-Jen; Foloppe, Nicolas

    2013-12-15

    Computational conformational sampling underpins much of molecular modeling and design in pharmaceutical work. The sampling of smaller drug-like compounds has been an active area of research. However, few studies have tested in details the sampling of larger more flexible compounds, which are also relevant to drug discovery, including therapeutic peptides, macrocycles, and inhibitors of protein-protein interactions. Here, we investigate extensively mainstream conformational sampling methods on three carefully curated compound sets, namely the 'Drug-like', larger 'Flexible', and 'Macrocycle' compounds. These test molecules are chemically diverse with reliable X-ray protein-bound bioactive structures. The compared sampling methods include Stochastic Search and the recent LowModeMD from MOE, all the low-mode based approaches from MacroModel, and MD/LLMOD recently developed for macrocycles. In addition to default settings, key parameters of the sampling protocols were explored. The performance of the computational protocols was assessed via (i) the reproduction of the X-ray bioactive structures, (ii) the size, coverage and diversity of the output conformational ensembles, (iii) the compactness/extendedness of the conformers, and (iv) the ability to locate the global energy minimum. The influence of the stochastic nature of the searches on the results was also examined. Much better results were obtained by adopting search parameters enhanced over the default settings, while maintaining computational tractability. In MOE, the recent LowModeMD emerged as the method of choice. Mixed torsional/low-mode from MacroModel performed as well as LowModeMD, and MD/LLMOD performed well for macrocycles. The low-mode based approaches yielded very encouraging results with the flexible and macrocycle sets. Thus, one can productively tackle the computational conformational search of larger flexible compounds for drug discovery, including macrocycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Occurrence of Selected Pharmaceuticals, Personal-Care Products, Organic Wastewater Compounds, and Pesticides in the Lower Tallapoosa River Watershed near Montgomery, Alabama, 2005

    USGS Publications Warehouse

    Oblinger, Carolyn J.; Gill, Amy C.; McPherson, Ann K.; Meyer, Michael T.; Furlong, Edward T.

    2007-01-01

    Synthetic and natural organic compounds derived from agricultural operations, residential development, and treated and untreated sanitary and industrial wastewater discharges can contribute contaminants to surface and ground waters. To determine the occurrence of these compounds in the lower Tallapoosa River watershed, Alabama, new laboratory methods were used that can detect human and veterinary antibiotics; pharmaceuticals; and compounds found in personal-care products, food additives, detergents and their metabolites, plasticizers, and other industrial and household products in the environment. Well-established methods for detecting 47 pesticides and 19 pesticide degradates also were used. In all, 186 different compounds were analyzed by using four analytical methods. The lower Tallapoosa River serves as the water-supply source for more than 100,000 customers of the Montgomery Water Works and Sanitary Sewer Board. Source-water protection is a high priority for the Board, which is responsible for providing safe drinking water. The U.S. Geological Survey, in cooperation with the Montgomery Water Works and Sanitary Sewer Board, conducted this study to provide baseline data that could be used to assess the effects of agriculture and residential development on the occurrence of selected organic compounds in the lower Tallapoosa River watershed. Twenty samples were collected at 10 sites on the Tallapoosa River and its tributaries. Ten samples were collected in April 2005 during high base streamflow, and 10 samples were collected in October 2005 when base streamflow was low. Thirty-two of 186 compounds were detected in the lower Tallapoosa River watershed. Thirteen compounds, including atrazine, 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT), hexazinone, metalaxyl, metolachlor, prometryn, prometon, simazine, azithromycin, oxytetracycline, sulfamethoxazole, trimethoprim, and tylosin, had measurable concentrations above their laboratory reporting levels. Concentrations were estimated for an additional 19 compounds that were detected below their laboratory reporting levels. The two most frequently detected compounds were the pesticides atrazine (19 of 20 samples) and simazine (13 of 20 samples). Tylosin, a veterinary antibiotic, was detected in 8 of 20 samples. Other compounds frequently detected at very low concentrations included CIAT and hexazinone (a degradate of atrazine and a pesticide, respectively); camphor (derived from personal-care products or flavorants), para-cresol (various uses including solvent, wood preservative, and in household cleaning products), and N,N-diethyl-m-toluamide (DEET, an insect repellent).

  14. History of sterile compounding in U.S. hospitals: learning from the tragic lessons of the past.

    PubMed

    Myers, Charles E

    2013-08-15

    The evolution of sterile compounding in the context of hospital patient care, the evolution of related technology, past incidents of morbidity and mortality associated with preparations compounded in various settings, and efforts over the years to improve compounding practices are reviewed. Tightened United States Pharmacopeial Convention standards (since 2004) for sterile compounding made it difficult for hospitals to achieve all of the sterile compounding necessary for patient care. Shortages of manufactured injections added to the need for compounding. Non-hospital-based compounding pharmacies increased sterile compounding to meet the needs. Gaps in federal and state laws and regulations about compounding pharmacies led to deficiencies in their regulation. Lapses in sterility led to injuries and deaths. Perspectives offered include potential actions, including changes in practitioner education, better surveillance of sterile compounding, regulatory reforms, reexamination of the causes of drug shortages, and the development of new technologies. Over the years, there have been numerous exhortations for voluntary better performance in sterile compounding. In addition, professional leadership has been vigorous and extensive in the form of guidance, publications, education, enforceable standards, and development of various associations and organizations dealing with safe compounding practices. Yet problems continue to occur. We must engage in diligent learning from the injuries and tragedies that have occurred. Assuming that we are already doing all we can to avoid problems would be an abdication of the professional mission of pharmacists. It would be wrong thinking to assume that the recent problems in large-scale compounding pharmacies are the only problems that warrant attention. It is time for a systematic assessment of the nature and the dimensions of the problems in every type of setting where sterile compounding occurs. It also is time for some innovative thinking about ensuring safety in sterile compounding.

  15. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules.

    PubMed

    Dave, Vivek S; Gupta, Deepak; Yu, Monica; Nguyen, Phuong; Varghese Gupta, Sheeba

    2017-02-01

    The Biopharmaceutics Classification System (BCS) classifies pharmaceutical compounds based on their aqueous solubility and intestinal permeability. The BCS Class III compounds are hydrophilic molecules (high aqueous solubility) with low permeability across the biological membranes. While these compounds are pharmacologically effective, poor absorption due to low permeability becomes the rate-limiting step in achieving adequate bioavailability. Several approaches have been explored and utilized for improving the permeability profiles of these compounds. The approaches include traditional methods such as prodrugs, permeation enhancers, ion-pairing, etc., as well as relatively modern approaches such as nanoencapsulation and nanosizing. The most recent approaches include a combination/hybridization of one or more traditional approaches to improve drug permeability. While some of these approaches have been extremely successful, i.e. drug products utilizing the approach have progressed through the USFDA approval for marketing; others require further investigation to be applicable. This article discusses the commonly studied approaches for improving the permeability of BCS Class III compounds.

  16. Hydroxide catalysts for lignin depolymerization

    DOEpatents

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  17. Hydroxide catalysts for lignin depolymerization

    DOEpatents

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  18. Development and Application of a High-Performance Liquid Chromatography Stability-Indicating Assay for Beyond-Use Date Determination of Compounded Topical Gels Containing Multiple Active Drugs.

    PubMed

    Gorman, Gregory; Sokom, Simara; Coward, Lori; Arnold, John J

    2017-01-01

    Topical gels compounded by pharmacists are important clinical tools for the management of pain. Nevertheless, there is often a dearth of information about the chemical stability of drugs included in these topical formulations, complicating the assignment of beyond-use dating. The purpose of this study was to develop a high-performance liquid chromatography photodiode array-based stability-indicating assay that could simultaneously resolve six drugs (amitriptyline, baclofen, clonidine, gabapentin, ketoprofen, lidocaine) commonly included in topical gels for pain management and their potential degradation products. Furthermore, this method was applied to the determination of beyond-use dating of combinations of these drugs prepared in commonly utilized bases (Lipobase, Lipoderm, Pluronic organogel). Gabapentin was determined to be the least stable component in all formulations tested. Measured stability ranged between 7 to 49 days depending on the base and other active drugs present in the formulation. In the absence of gabapentin, baclofen was the next least stable component, lasting for 120 days, regardless of the type of formulating base used. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  19. A Dereplication and Bioguided Discovery Approach to Reveal New Compounds from a Marine-Derived Fungus Stilbella fimetaria

    PubMed Central

    Kildgaard, Sara; Subko, Karolina; Phillips, Emma; Goidts, Violaine; de la Cruz, Mercedes; Díaz, Caridad; Gotfredsen, Charlotte H.; Frisvad, Jens C.; Nielsen, Kristian F.; Larsen, Thomas O.

    2017-01-01

    A marine-derived Stilbella fimetaria fungal strain was screened for new bioactive compounds based on two different approaches: (i) bio-guided approach using cytotoxicity and antimicrobial bioassays; and (ii) dereplication based approach using liquid chromatography with both diode array detection and high resolution mass spectrometry. This led to the discovery of several bioactive compound families with different biosynthetic origins, including pimarane-type diterpenoids and hybrid polyketide-non ribosomal peptide derived compounds. Prefractionation before bioassay screening proved to be a great aid in the dereplication process, since separate fractions displaying different bioactivities allowed a quick tentative identification of known antimicrobial compounds and of potential new analogues. A new pimarane-type diterpene, myrocin F, was discovered in trace amounts and displayed cytotoxicity towards various cancer cell lines. Further media optimization led to increased production followed by the purification and bioactivity screening of several new and known pimarane-type diterpenoids. A known broad-spectrum antifungal compound, ilicicolin H, was purified along with two new analogues, hydroxyl-ilicicolin H and ilicicolin I, and their antifungal activity was evaluated. PMID:28805711

  20. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.

    PubMed

    Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata

    2018-01-01

    A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.

  1. Corrosion Behavior of Bi2Te3-Based Thermoelectric Materials Fabricated by Melting Method

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2017-05-01

    Bi2Te3-based compounds are used practically as thermoelectric cooling materials. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudobinary system compounds are usually applied as p- or n-type material, respectively. Atmospheric water may condense on the surface of thermoelectric materials constituting Peltier modules, depending on their operating environment. Very few studies on the corrosion resistance of Bi2Te3-based compounds have been reported in literature. Moreover, the detailed corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the corrosion behavior of cleavage planes of Bi2Te3-based compounds fabricated by a melting method has been investigated. Bi2Te3, Sb2Te3, and Bi2Se3 were prepared by the vertical Bridgman method, respectively. Their electrochemical properties evaluated at room temperature by cyclic voltammetry in a standard three-electrode cell with naturally aerated 0.6 mass% or 3.0 mass% NaCl solution as working electrolyte. The c-planes of Bi2Te3 and Sb2Te3 exhibited similar corrosion potential. The corrosion potential of c-plane of Bi2Se3 was more cathodic compared with that of the telluride. The passive current density of the Bi2Te3-based compounds was single or double digit lower than that of stainless steel. X-ray photoelectron spectroscopy results for the electrolyte after testing indicated the possibility that a corrosion product diffuses to the environment including NaCl for Sb2Te3 and Bi2Se3.

  2. Optimization of programmed-temperature vaporization injection preparative capillary GC for compound specific radiocarbon analysis.

    PubMed

    Zhang, Xinyu; Zhao, Liang; Wang, Yexin; Xu, Yunping; Zhou, Liping

    2013-07-01

    Preparative capillary GC (PCGC) is a powerful tool for the separation and purification of compounds from any complex matrix, which can be used for compound-specific radiocarbon analysis. However, the effect of PCGC parameters on the trapping efficiency is not well understood. Here, we present a comprehensive study on the optimization of parameters based on 11 reference compounds with different physicochemical properties. Under the optimum conditions, the trapping efficiencies of these 11 compounds (including high-boiling-point n-hentriacontane and methyl lignocerate) are about 80% (60-89%). The isolation of target compounds from standard solutions, plant and soil samples demonstrates that our optimized method is applicable for different classes of compounds including n-alkanes, fatty acid esters, long-chain fatty alcohol esters, polycyclic aromatic hydrocarbons (PAHs) and steranes. By injecting 25 μL in large volume injection mode, over 100 μg, high purity (>90%) target compounds are harvested within 24 h. The recovery ranges of two real samples are about 70% (59.9-83.8%) and about 83% (77.2-88.5%), respectively. Compared to previous studies, our study makes significant improvement in the recovery of PCGC, which is important for its wide application in biogeochemistry, environmental sciences, and archaeology. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Discovery of potent cytotoxic ortho-aryl chalcones as new scaffold targeting tubulin and mitosis with affinity-based fluorescence.

    PubMed

    Zhu, Cuige; Zuo, Yinglin; Wang, Ruimin; Liang, Baoxia; Yue, Xin; Wen, Gesi; Shang, Nana; Huang, Lei; Chen, Yu; Du, Jun; Bu, Xianzhang

    2014-08-14

    A series of new ortho-aryl chalcones have been designed and synthesized. Many of these compounds were found to exhibit significant antiproliferation activity toward a panel of cancer cell lines. Selected compounds show potent cytotoxicity against several drug resistant cell lines including paclitaxel (Taxol) resistant human ovarian carcinoma cells, vincristine resistant human ileocecum carcinoma cells, and doxorubicin resistant human breast carcinoma cells. Further investigation revealed that active analogues could inhibit the microtubule polymerization by binding to colchicine site and thus induce multipolar mitosis, G2/M phase arrest, and apoptosis of cancer cells. Furthermore, affinity-based fluorescence enhancement was observed during the binding of active compounds with tubulin, which greatly facilitated the determination of tubulin binding site of the compounds. Finally, selected compound 26 was found to exhibit obvious in vivo antitumor activity in A549 tumor xenografts model. Our systematic studies implied a new scaffold targeting tubulin and mitosis for novel antitumor drug discovery.

  4. [Discovery of potential LXRβ agonists from Chinese herbs using molecular simulation methods].

    PubMed

    Luo, Gang-Gang; Lu, Fang; Qiao, Lian-Sheng; Li, Yong; Zhang, Yan-Ling

    2016-08-01

    Liver X receptor β (LXRβ) has been a new target in the treatment of hyperlipemia, which was related to the cholesterol homeostasis. In this study, the quantitative pharmacophores were constructed by 3D-QSAR pharmacophore (Hypogen) method based on the LXRβ agonists. The optimal pharmacophore model containing one hydrogen bond acceptor, two hydrophobics and one ring aromatic was obtained based on five assessment indictors, including the correlation between predicted value and experimental value of the compounds in training set (correlation), Δcost of the models (Δcost), hit rate of active compounds (HRA), identification of effectiveness index (IEI) and comprehensive evaluation index (CAI). And the values of the five assessment indicators were 0.95, 128.65, 84.44%, 2.58 and 2.18 respectively. The best model as a query to screen the traditional Chinese medicine database (TCMD), a list of 309 compounds was obtained andwere then refined using Libdock program. Finally, based on the screening rules of the Libdock score of initial compound and the key interactions between initial compound and receptor, four compounds, demethoxycurcumin, isolicoflavonol, licochalcone E and silydianin, were selected as potential LXRβ agonists. The molecular simulation methods were high-efficiency and time-saving to obtainthe potential LXRβ agonists, which could provide assistance for further researchingnovel anti-hyperlipidemia drugs. Copyright© by the Chinese Pharmaceutical Association.

  5. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale

    DOE PAGES

    Das, Dhrubajyoti D.; St. John, Peter C.; McEnally, Charles S.; ...

    2017-12-27

    Databases of sooting indices, based on measuring some aspect of sooting behavior in a standardized combustion environment, are useful in providing information on the comparative sooting tendencies of different fuels or pure compounds. However, newer biofuels have varied chemical structures including both aromatic and oxygenated functional groups, which expands the chemical space of relevant compounds. In this work, we propose a unified sooting tendency database for pure compounds, including both regular and oxygenated hydrocarbons, which is based on combining two disparate databases of yield-based sooting tendency measurements in the literature. Unification of the different databases was made possible by leveragingmore » the greater dynamic range of the color ratio pyrometry soot diagnostic. This unified database contains a substantial number of pure compounds (≥ 400 total) from multiple categories of hydrocarbons important in modern fuels and establishes the sooting tendencies of aromatic and oxygenated hydrocarbons on the same numeric scale for the first time. Then, using this unified sooting tendency database, we have developed a predictive model for sooting behavior applicable to a broad range of hydrocarbons and oxygenated hydrocarbons. The model decomposes each compound into single-carbon fragments and assigns a sooting tendency contribution to each fragment based on regression against the unified database. The model’s predictive accuracy (as demonstrated by leave-one-out cross-validation) is comparable to a previously developed, more detailed predictive model. The fitted model provides insight into the effects of chemical structure on soot formation, and cases where its predictions fail reveal the presence of more complicated kinetic sooting mechanisms. Our work will therefore enable the rational design of low-sooting fuel blends from a wide range of feedstocks and chemical functionalities.« less

  6. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Dhrubajyoti D.; St. John, Peter C.; McEnally, Charles S.

    Databases of sooting indices, based on measuring some aspect of sooting behavior in a standardized combustion environment, are useful in providing information on the comparative sooting tendencies of different fuels or pure compounds. However, newer biofuels have varied chemical structures including both aromatic and oxygenated functional groups, which expands the chemical space of relevant compounds. In this work, we propose a unified sooting tendency database for pure compounds, including both regular and oxygenated hydrocarbons, which is based on combining two disparate databases of yield-based sooting tendency measurements in the literature. Unification of the different databases was made possible by leveragingmore » the greater dynamic range of the color ratio pyrometry soot diagnostic. This unified database contains a substantial number of pure compounds (≥ 400 total) from multiple categories of hydrocarbons important in modern fuels and establishes the sooting tendencies of aromatic and oxygenated hydrocarbons on the same numeric scale for the first time. Then, using this unified sooting tendency database, we have developed a predictive model for sooting behavior applicable to a broad range of hydrocarbons and oxygenated hydrocarbons. The model decomposes each compound into single-carbon fragments and assigns a sooting tendency contribution to each fragment based on regression against the unified database. The model’s predictive accuracy (as demonstrated by leave-one-out cross-validation) is comparable to a previously developed, more detailed predictive model. The fitted model provides insight into the effects of chemical structure on soot formation, and cases where its predictions fail reveal the presence of more complicated kinetic sooting mechanisms. Our work will therefore enable the rational design of low-sooting fuel blends from a wide range of feedstocks and chemical functionalities.« less

  7. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  8. How to Achieve Better Results Using Pass-Based Virtual Screening: Case Study for Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Pogodin, Pavel V.; Lagunin, Alexey A.; Rudik, Anastasia V.; Filimonov, Dmitry A.; Druzhilovskiy, Dmitry S.; Nicklaus, Mark C.; Poroikov, Vladimir V.

    2018-04-01

    Discovery of new pharmaceutical substances is currently boosted by the possibility of utilization of the Synthetically Accessible Virtual Inventory (SAVI) library, which includes about 283 million molecules, each annotated with a proposed synthetic one-step route from commercially available starting materials. The SAVI database is well-suited for ligand-based methods of virtual screening to select molecules for experimental testing. In this study, we compare the performance of three approaches for the analysis of structure-activity relationships that differ in their criteria for selecting of “active” and “inactive” compounds included in the training sets. PASS (Prediction of Activity Spectra for Substances), which is based on a modified Naïve Bayes algorithm, was applied since it had been shown to be robust and to provide good predictions of many biological activities based on just the structural formula of a compound even if the information in the training set is incomplete. We used different subsets of kinase inhibitors for this case study because many data are currently available on this important class of drug-like molecules. Based on the subsets of kinase inhibitors extracted from the ChEMBL 20 database we performed the PASS training, and then applied the model to ChEMBL 23 compounds not yet present in ChEMBL 20 to identify novel kinase inhibitors. As one may expect, the best prediction accuracy was obtained if only the experimentally confirmed active and inactive compounds for distinct kinases in the training procedure were used. However, for some kinases, reasonable results were obtained even if we used merged training sets, in which we designated as inactives the compounds not tested against the particular kinase. Thus, depending on the availability of data for a particular biological activity, one may choose the first or the second approach for creating ligand-based computational tools to achieve the best possible results in virtual screening.

  9. An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs.

    PubMed

    Kim, Wooseong; Hendricks, Gabriel Lambert; Lee, Kiho; Mylonakis, Eleftherios

    2017-06-01

    The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.

  10. Flavonoids and stilbenoids from Derris eriocarpa.

    PubMed

    Zhang, Hong-Xia; Lunga, Paul-Keilah; Li, Zhi-Jian; Dai, Qin; Du, Zhi-Zhi

    2014-06-01

    One new resveratrol analogue, 1-(3',4',5'-trimethoxyphenyl)-2-methoxy-2-(4″-methoxyphenyl)-ethane-1-ol (1), and two new prenylisoflavones, 4'-hydroxy-5,7-dimethoxy-6-(3-methyl-2-butenyl)-isoflavone (2), and derrubon 5-methyl ether (3), together with 17 known compounds including one new natural product, 5,7-dihydroxy-3-[4'-O-(3-methyl-2-butenyl)-phenyl]-isoflavone (4), were isolated from the stems of ethnomedicinal plant Derris eriocarpa How. (Leguminosae). Their structures were elucidated based on chemical evidence and spectroscopic techniques including two-dimensional NMR methods. All compounds are reported from this species for the first time. Antimicrobial activities of the new compounds were evaluated. Compound 2 exhibited good inhibitory activities against Candida guilliermondii, C. albicans and Microsporium gypseum with the minimal inhibitory concentration (MIC) values of 12.5 μg/ml. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Experimental design-based isotope-dilution SPME-GC/MS method development for the analysis of smoke flavouring products.

    PubMed

    Giri, Anupam; Zelinkova, Zuzana; Wenzl, Thomas

    2017-12-01

    For the implementation of Regulation (EC) No 2065/2003 related to smoke flavourings used or intended for use in or on foods a method based on solid-phase micro extraction (SPME) GC/MS was developed for the characterisation of liquid smoke products. A statistically based experimental design (DoE) was used for method optimisation. The best general conditions to quantitatively analyse the liquid smoke compounds were obtained with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre, 60°C extraction temperature, 30 min extraction time, 250°C desorption temperature, 180 s desorption time, 15 s agitation time, and 250 rpm agitation speed. Under the optimised conditions, 119 wood pyrolysis products including furan/pyran derivatives, phenols, guaiacol, syringol, benzenediol, and their derivatives, cyclic ketones, and several other heterocyclic compounds were identified. The proposed method was repeatable (RSD% <5) and the calibration functions were linear for all compounds under study. Nine isotopically labelled internal standards were used for improving quantification of analytes by compensating matrix effects that might affect headspace equilibrium and extractability of compounds. The optimised isotope dilution SPME-GC/MS based analytical method proved to be fit for purpose, allowing the rapid identification and quantification of volatile compounds in liquid smoke flavourings.

  12. Synthesis, antimicrobial evaluation and docking studies of some novel quinazolinone Schiff base derivatives

    PubMed Central

    Nasab, Rezvan Rezaee; Mansourian, Mahboubeh; Hassanzadeh, Farshid

    2018-01-01

    The quinazolin-4(3H)-one structural motif possesses a wide spectrum of biological activities. DNA gyrase play an important role in induction of bacterial death. It has been shown that many quinazolin-4(3H)-one derivatives have antibacterial effects through inhibition of DNA gyrase. Based on this information we decided to synthesize novel quinazolinone Schiff base derivatives in order to evaluate their antibacterial effects. A series of novel quinazolinone Schiff base derivatives were designed and synthesized from benzoic acid. The potential DNA gyrase inhibitory activity of these compounds was investigated using in silico molecular docking simulation. All new synthesized derivatives were screened for their antimicrobial activities against three species of Gram-negative bacteria including Escherichia coli, Pseudomonas aeruginosa, Salmonella entritidis and three species of Gram-positive bacteria comprising of Staphylococcus aurous, Bacillus subtilis, Listeria monocitogenes as well as for antifungal activities against Candida albicans using the conventional micro dilution method. Most of the compounds have shown good antibacterial activities, especially against E. coli at 128 µg/mL concentration while no remarkable antifungal activities were observed for these compounds. All the synthesized compounds exhibit dock score values between -5.96 and -8.58 kcal/mol. The highest dock score among them was -8.58 kcal/mol for compound 4c. PMID:29853931

  13. Synthesis and antitumour activity of 4-aminoquinazoline derivatives

    NASA Astrophysics Data System (ADS)

    Lipunova, G. N.; Nosova, E. V.; Charushin, V. N.; Chupakhin, O. N.

    2016-07-01

    Pieces of data on the synthesis and antitumour activity of 4-aminoquinazolines are summarized and analyzed. Key methods for the synthesis of these compounds are considered, primarily cyclocondensation of carboxylic acid derivatives, as well as the oxidation of quinazolines and the cyclization of disubstituted thioureas. Improvements of synthetic schemes for erlotinib, gefitinib and lapatinib, which are the best-known pharmaceuticals based on compounds of the title class, are also considered. Synthetic strategies and biological activities for new 4-aminoquinazoline derivatives that are EGFR-tyrosine kinase inhibitors, multiactive compounds, and labelled compounds for use as positron emission tomography (PET) imaging agents are discussed. The bibliography includes 263 references.

  14. Organoelement chemistry: promising growth areas and challenges

    NASA Astrophysics Data System (ADS)

    Abakumov, G. A.; Piskunov, A. V.; Cherkasov, V. K.; Fedushkin, I. L.; Ananikov, V. P.; Eremin, D. B.; Gordeev, E. G.; Beletskaya, I. P.; Averin, A. D.; Bochkarev, M. N.; Trifonov, A. A.; Dzhemilev, U. M.; D'yakonov, V. A.; Egorov, M. P.; Vereshchagin, A. N.; Syroeshkin, M. A.; Jouikov, V. V.; Muzafarov, A. M.; Anisimov, A. A.; Arzumanyan, A. V.; Kononevich, Yu N.; Temnikov, M. N.; Sinyashin, O. G.; Budnikova, Yu H.; Burilov, A. R.; Karasik, A. A.; Mironov, V. F.; Storozhenko, P. A.; Shcherbakova, G. I.; Trofimov, B. A.; Amosova, S. V.; Gusarova, N. K.; Potapov, V. A.; Shur, V. B.; Burlakov, V. V.; Bogdanov, V. S.; Andreev, M. V.

    2018-05-01

    The chemistry of organoelement compounds is now one of the most rapidly developing fields of research, regarding both fundamental science and solution of applied problems. This review covers a variety of classes of organoelement compounds, ranging from molecules with highly labile carbon–element bonds to compounds with stable bonds that form the basis of novel structural materials and demonstrates their role in scientific research and industrial production. The use of Grignard reagents in modern organic synthesis and application of catalytic cyclomagnesiation and cycloalumination reactions for the preparation of difficult-to-access metallacycles are considered. The electron transfer processes in redox-active derivatives of Group 14 elements and the role of radical ions in these processes are discussed. Considerable attention is paid to organometallic compounds, first of all, as catalysts; the dynamic nature of catalysis with these compounds is noted. Unusual strained metallacycles of high thermal stability, zirconacyclocumulenes, which also exhibit catalytic activity, are described. Complexes with redox-active ligands that substantially affect the reactivity of the metal centre and directly participate in reactions with various substrates as well as organometallic compounds of lanthanides are considered. Modern environmentally benign methods for the synthesis of organosilicon compounds and production of unique materials based on them are discussed. Particular Sections are devoted to organophosphorus compounds, including those exhibiting therapeutic properties and possessing unusual optical characteristics, and organic chalcogen compounds, which find use as ligands and biologically active molecules. The bibliography includes 1045 references.

  15. Variable pressure ionization detector for gas chromatography

    DOEpatents

    Buchanan, Michelle V.; Wise, Marcus B.

    1988-01-01

    Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.

  16. Understanding interactions in the adsorption of gaseous organic compounds to indoor materials.

    PubMed

    Ongwandee, Maneerat; Chatsuvan, Thabtim; Suksawas Na Ayudhya, Wichitsawat; Morris, John

    2017-02-01

    We studied adsorption of organic compounds to a wide range of indoor materials, including plastics, gypsum board, carpet, and many others, under various relative humidity conditions by applying a conceptual model of the free energy of interfacial interactions of both van der Waals and Lewis acid-base (e-donor/acceptor) types. Data used for the analyses were partitioning coefficients of adsorbates between surface and gas phase obtained from three sources: our sorption experiments and two other published studies. Target organic compounds included apolars, monopolars, and bipolars. We established correlations of partitioning coefficients of adsorbates for a considered surface with the corresponding hexadecane/air partitioning coefficients of the adsorbates which are used as representative of a van der Waals descriptor instead of vapor pressure. The logarithmic adsorption coefficients of the apolars and weak bases, e.g., aliphatics and aromatics, to indoor materials linearly correlates well with the logarithmic hexadecane/air partitioning coefficients regardless of the surface polarity. The surface polarity in terms of e-donor/acceptor interactions becomes important for adsorption of the strong bases and bipolars, e.g., amines, phenols, and alcohols, to unpainted gypsum board. Under dry or humid conditions, the adsorption to flat plastic materials still linearly correlates well with the van der Waals interactions of the adsorbates, but no correlations were observed for the adsorption to fleecy or plush materials, e.g., carpet. Adsorption of highly bipolar compounds, e.g., phenol and isopropanol, is strongly affected by humidity, attributed to Lewis acid-base interactions with modified surfaces.

  17. Chemical Constituents of Murraya tetramera Huang and Their Repellent Activity against Tribolium castaneum.

    PubMed

    You, Chun-Xue; Guo, Shan-Shan; Zhang, Wen-Juan; Geng, Zhu-Feng; Liang, Jun-Yu; Lei, Ning; Du, Shu-Shan; Deng, Zhi-Wei

    2017-08-20

    Sixteen compounds were isolated from the leaves and stems of Murraya tetramera Huang. Based on the NMR and MS spectral results, the structures were determined. It was confirmed that the isolated compounds included three new compounds ( 9 , 10 and 13 ) and one new natural product ( 8 ), which were identified asmurratetra A ( 9 ), murratetra B ( 10 ), murratetra C ( 13 ) and [2-(7-methoxy-2-oxochromen-8-yl)-3-methylbut-2-enyl]3-methylbut-2-enoate ( 8 ), respectively. Meanwhile, the repellent activity against Tribolium castaneum was investigated for 13 of these isolated compounds. The results showed that the tested compounds had various levels of repellent activity against T. castaneum . Among them, compounds 1 (4(15)-eudesmene-1β,6α-diol), 11 (isoferulic acid) and 16 (2,3-dihydroxypropyl hexadecanoate) showed fair repellent activity against T. castaneum . They might be considered as potential leading compounds for the development of natural repellents.

  18. Microoptical artificial compound eyes: from design to experimental verification of two different concepts

    NASA Astrophysics Data System (ADS)

    Duparré, Jacques; Wippermann, Frank; Dannberg, Peter; Schreiber, Peter; Bräuer, Andreas; Völkel, Reinhard; Scharf, Toralf

    2005-09-01

    Two novel objective types on the basis of artificial compound eyes are examined. Both imaging systems are well suited for fabrication using microoptics technology due to the small required lens sags. In the apposition optics a microlens array (MLA) and a photo detector array of different pitch in its focal plane are applied. The image reconstruction is based on moire magnification. Several generations of demonstrators of this objective type are manufactured by photo lithographic processes. This includes a system with opaque walls between adjacent channels and an objective which is directly applied onto a CMOS detector array. The cluster eye approach, which is based on a mixture of superposition compound eyes and the vision system of jumping spiders, produces a regular image. Here, three microlens arrays of different pitch form arrays of Keplerian microtelescopes with tilted optical axes, including a field lens. The microlens arrays of this demonstrator are also fabricated using microoptics technology, aperture arrays are applied. Subsequently the lens arrays are stacked to the overall microoptical system on wafer scale. Both fabricated types of artificial compound eye imaging systems are experimentally characterized with respect to resolution, sensitivity and cross talk between adjacent channels. Captured images are presented.

  19. Efficient Synthesis and Discovery of Schiff Bases as Potent Cholinesterase Inhibitors.

    PubMed

    Razik, Basma M Abd; Osman, Hasnah; Ezzat, Mohammed O; Basiri, Alireza; Salhin, Abdussalam; Kia, Yalda; Murugaiyah, Vikneswaran

    2016-01-01

    The search for new cholinesterase inhibitors is still a promising approach for management of Alzheimer`s disease. Schiff bases are considered as important class of organic compounds, which have wide range of applications including as enzyme inhibitors. In the present study, a new green ionic liquid mediated strategy was developed for convenient synthesis of two series of Schiff bases 3(a-j) and 5(a-j) as potential cholinesterase inhibitors using aromatic aldehydes and primary amines in [bmim]Br. The synthesized compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential by modified Ellman's method. The molecular interactions between the most active compound and the enzyme were analyzed by molecular docking. Among them, 3j displayed higher inhibitory activities than reference drug, galanthamine, with IC50 values of 2.05 and 5.77 µM, for AChE and BChE, respectively. Interestingly, all the compounds except 3b displayed higher BChE inhibitions than galanthamine with IC50 values ranging from 5.77 to 18.52 µM. Molecular docking of compound 3j inside the TcAChE and hBChE completely coincided with the inhibitory activities observed. The compound forms strong hydrogen bonding at the peripheral anionic site of AChE whereas on BChE, it had hydrophobic and mild polar interactions. An efficient and eco-friendly synthetic methodology has been developed to synthesize Schiff bases in a very short reaction time and excellent yields in ionic solvent, whereby the compounds from series 3 showed promising cholinesterase inhibitory activity.

  20. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.

    PubMed

    Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M

    2007-01-01

    The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.

  1. Isolation and Quantification of Ginsenoside Rh23, a New Anti-Melanogenic Compound from the Leaves of Panax ginseng.

    PubMed

    Lee, Dae Young; Kim, Hyoung-Geun; Lee, Yeong-Geun; Kim, Jin Hee; Lee, Jae Won; Choi, Bo-Ram; Jang, In-Bae; Kim, Geum-Soog; Baek, Nam-In

    2018-01-29

    A new ginsenoside, named ginsenoside Rh23 ( 1 ), and 20- O -β-d-glucopyranosyl-3β,6α,12β,20β,25-pentahydroxydammar-23-ene ( 2 ) were isolated from the leaves of hydroponic Panax ginseng . Compounds were isolated by various column chromatography and their structures were determined based on spectroscopic methods, including high resolution quadrupole/time of flight mass spectrometry (HR-QTOF/MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. To determine anti-melanogenic activity, the change in the melanin content in melan-a cells treated with identified compounds was tested. Additionally, we investigated the melanin inhibitory effects of ginsenoside Rh23 on pigmentation in a zebrafish in vivo model. Compound 1 inhibited potent melanogenesis in melan-a cells with 37.0% melanogenesis inhibition at 80 µM and also presented inhibition on the body pigmentation in zebrafish model. Although compound 2 showed slightly lower inhibitory activity than compound 1 , it also showed significantly decreased melanogenesis in melan-a cell and in zebrafish model. These results indicated that compounds isolated from hydroponic P. ginseng may be used as new skin whitening compound through the in vitro and in vivo systems. Furthermore, this study demonstrated the utility of MS-based compound 1 for the quantitative analysis. Ginsenoside Rh23 ( 1 ) was found at a level of 0.31 mg/g in leaves of hydroponic P. ginseng .

  2. Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction.

    PubMed

    Dhanasekaran, A Ranjitha; Pearson, Jon L; Ganesan, Balasubramanian; Weimer, Bart C

    2015-02-25

    Mass spectrometric analysis of microbial metabolism provides a long list of possible compounds. Restricting the identification of the possible compounds to those produced by the specific organism would benefit the identification process. Currently, identification of mass spectrometry (MS) data is commonly done using empirically derived compound databases. Unfortunately, most databases contain relatively few compounds, leaving long lists of unidentified molecules. Incorporating genome-encoded metabolism enables MS output identification that may not be included in databases. Using an organism's genome as a database restricts metabolite identification to only those compounds that the organism can produce. To address the challenge of metabolomic analysis from MS data, a web-based application to directly search genome-constructed metabolic databases was developed. The user query returns a genome-restricted list of possible compound identifications along with the putative metabolic pathways based on the name, formula, SMILES structure, and the compound mass as defined by the user. Multiple queries can be done simultaneously by submitting a text file created by the user or obtained from the MS analysis software. The user can also provide parameters specific to the experiment's MS analysis conditions, such as mass deviation, adducts, and detection mode during the query so as to provide additional levels of evidence to produce the tentative identification. The query results are provided as an HTML page and downloadable text file of possible compounds that are restricted to a specific genome. Hyperlinks provided in the HTML file connect the user to the curated metabolic databases housed in ProCyc, a Pathway Tools platform, as well as the KEGG Pathway database for visualization and metabolic pathway analysis. Metabolome Searcher, a web-based tool, facilitates putative compound identification of MS output based on genome-restricted metabolic capability. This enables researchers to rapidly extend the possible identifications of large data sets for metabolites that are not in compound databases. Putative compound names with their associated metabolic pathways from metabolomics data sets are returned to the user for additional biological interpretation and visualization. This novel approach enables compound identification by restricting the possible masses to those encoded in the genome.

  3. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs

    PubMed Central

    Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-01-01

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC50 values < 5 μg/mL and LC50/EC50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities. PMID:28846626

  4. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs.

    PubMed

    Wang, Kai-Ling; Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-08-28

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC 50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC 50 values < 5 μg/mL and LC 50 /EC 50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities.

  5. Fragment-based screening by protein crystallography: successes and pitfalls.

    PubMed

    Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J

    2012-10-08

    Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality.

  6. Fragment-Based Screening by Protein Crystallography: Successes and Pitfalls

    PubMed Central

    Chilingaryan, Zorik; Yin, Zhou; Oakley, Aaron J.

    2012-01-01

    Fragment-based drug discovery (FBDD) concerns the screening of low-molecular weight compounds against macromolecular targets of clinical relevance. These compounds act as starting points for the development of drugs. FBDD has evolved and grown in popularity over the past 15 years. In this paper, the rationale and technology behind the use of X-ray crystallography in fragment based screening (FBS) will be described, including fragment library design and use of synchrotron radiation and robotics for high-throughput X-ray data collection. Some recent uses of crystallography in FBS will be described in detail, including interrogation of the drug targets β-secretase, phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These examples provide illustrations of projects where crystallography is straightforward or difficult, and where other screening methods can help overcome the limitations of crystallography necessitated by diffraction quality. PMID:23202926

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, G.B.; Baratta, M.; Wolfson, S.

    The New Jersey Department of Environmental Protection`s responsibilities related to health-based risk assessment are described, including its research projects and its development of health based compound specific standards and guidance levels. The resources used by the agency to support health risk assessment work are outlined.

  8. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, Foster A.

    1998-01-01

    A process for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400.degree. C. to about 600.degree. C. at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1-3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof.

  9. The role of within-compound associations in learning about absent cues.

    PubMed

    Witnauer, James E; Miller, Ralph R

    2011-05-01

    When two cues are reinforced together (in compound), most associative models assume that animals learn an associative network that includes direct cue-outcome associations and a within-compound association. All models of associative learning subscribe to the importance of cue-outcome associations, but most models assume that within-compound associations are irrelevant to each cue's subsequent behavioral control. In the present article, we present an extension of Van Hamme and Wasserman's (Learning and Motivation 25:127-151, 1994) model of retrospective revaluation based on learning about absent cues that are retrieved through within-compound associations. The model was compared with a model lacking retrieval through within-compound associations. Simulations showed that within-compound associations are necessary for the model to explain higher-order retrospective revaluation and the observed greater retrospective revaluation after partial reinforcement than after continuous reinforcement alone. These simulations suggest that the associability of an absent stimulus is determined by the extent to which the stimulus is activated through the within-compound association.

  10. The role of within-compound associations in learning about absent cues

    PubMed Central

    Witnauer, James E.

    2011-01-01

    When two cues are reinforced together (in compound), most associative models assume that animals learn an associative network that includes direct cue–outcome associations and a within-compound association. All models of associative learning subscribe to the importance of cue–outcome associations, but most models assume that within-compound associations are irrelevant to each cue's subsequent behavioral control. In the present article, we present an extension of Van Hamme and Wasserman's (Learning and Motivation 25:127–151, 1994) model of retrospective revaluation based on learning about absent cues that are retrieved through within-compound associations. The model was compared with a model lacking retrieval through within-compound associations. Simulations showed that within-compound associations are necessary for the model to explain higher-order retrospective revaluation and the observed greater retrospective revaluation after partial reinforcement than after continuous reinforcement alone. These simulations suggest that the associability of an absent stimulus is determined by the extent to which the stimulus is activated through the within-compound association. PMID:21264569

  11. Multi-volatile method for aroma analysis using sequential dynamic headspace sampling with an application to brewed coffee.

    PubMed

    Ochiai, Nobuo; Tsunokawa, Jun; Sasamoto, Kikuo; Hoffmann, Andreas

    2014-12-05

    A novel multi-volatile method (MVM) using sequential dynamic headspace (DHS) sampling for analysis of aroma compounds in aqueous sample was developed. The MVM consists of three different DHS method parameters sets including choice of the replaceable adsorbent trap. The first DHS sampling at 25 °C using a carbon-based adsorbent trap targets very volatile solutes with high vapor pressure (>20 kPa). The second DHS sampling at 25 °C using the same type of carbon-based adsorbent trap targets volatile solutes with moderate vapor pressure (1-20 kPa). The third DHS sampling using a Tenax TA trap at 80 °C targets solutes with low vapor pressure (<1 kPa) and/or hydrophilic characteristics. After the 3 sequential DHS samplings using the same HS vial, the three traps are sequentially desorbed with thermal desorption in reverse order of the DHS sampling and the desorbed compounds are trapped and concentrated in a programmed temperature vaporizing (PTV) inlet and subsequently analyzed in a single GC-MS run. Recoveries of the 21 test aroma compounds for each DHS sampling and the combined MVM procedure were evaluated as a function of vapor pressure in the range of 0.000088-120 kPa. The MVM provided very good recoveries in the range of 91-111%. The method showed good linearity (r2>0.9910) and high sensitivity (limit of detection: 1.0-7.5 ng mL(-1)) even with MS scan mode. The feasibility and benefit of the method was demonstrated with analysis of a wide variety of aroma compounds in brewed coffee. Ten potent aroma compounds from top-note to base-note (acetaldehyde, 2,3-butanedione, 4-ethyl guaiacol, furaneol, guaiacol, 3-methyl butanal, 2,3-pentanedione, 2,3,5-trimethyl pyrazine, vanillin, and 4-vinyl guaiacol) could be identified together with an additional 72 aroma compounds. Thirty compounds including 9 potent aroma compounds were quantified in the range of 74-4300 ng mL(-1) (RSD<10%, n=5). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Discovery and development of anticancer agents from marine sponges: perspectives based on a chemistry-experimental therapeutics collaborative program.

    PubMed

    Valeriote, Frederick A; Tenney, Karen; Media, Joseph; Pietraszkiewicz, Halina; Edelstein, Matthew; Johnson, Tyler A; Amagata, Taro; Crews, Phillip

    2012-01-01

    A collaborative program was initiated in 1990 between the natural product chemistry laboratory of Dr. Phillip Crews at the University of California Santa Cruz and the experimental therapeutics laboratory of Dr. Fred Valeriote at the Henry Ford Hospital in Detroit. The program focused on the discovery and development of anticancer drugs from sponge extracts. A novel in vitro disk diffusion, solid tumor selective assay was used to examine 2,036 extracts from 683 individual sponges. The bioassay-directed fractionation discovery component led to the identification of active pure compounds from many of these sponges. In most cases, pure compound was prepared in sufficient quantities to both chemically identify the active compound(s) as well as pursue one or more of the biological development components. The latter included IC50, clonogenic survival-concentration exposure, maximum tolerated dose, pharmacokinetics and therapeutic assessment studies. Solid tumor selective compounds included fascaplysin and 10-bromofascaplysin (Fascaplysinopsis), neoamphimedine, 5-methoxyneoamphimedine and alpkinidine (Xestospongia), makaluvamine C and makaluvamine H (Zyzzya), psymberin (Psammocinia and Ircinia), and ethylplakortide Z and ethyldidehydroplakortide Z (Plakortis). These compounds or analogs thereof continue to have therapeutic potential.

  13. Schiff bases in medicinal chemistry: a patent review (2010-2015).

    PubMed

    Hameed, Abdul; Al-Rashida, Mariya; Uroos, Maliha; Abid Ali, Syed; Khan, Khalid Mohammed

    2017-01-01

    Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications. Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015. Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.

  14. Parallel solution-phase synthesis of a 2-aminothiazole library including fully automated work-up.

    PubMed

    Buchstaller, Hans-Peter; Anlauf, Uwe

    2011-02-01

    A straightforward and effective procedure for the solution phase preparation of a 2-aminothiazole combinatorial library is described. Reaction, work-up and isolation of the title compounds as free bases was accomplished in a fully automated fashion using the Chemspeed ASW 2000 automated synthesizer. The compounds were obtained in good yields and excellent purities without any further purification procedure.

  15. Teaching Compound Words to a Spelling-Disabled Child via Smart Notebook Technology: ? Case Study Approach

    ERIC Educational Resources Information Center

    Tsesmeli, Styliani N.; Tsirozi, Theologia

    2015-01-01

    The case-study aims to examine the effectiveness of training of morphological structure on the spelling of compounds by a spelling-disabled primary school student. The experimental design of the intervention was based on the word-pair paradigm and included a pre-test, a training program and a post-test (n = 50 pairs). The Training Program aimed to…

  16. Structure and biological activity of a new rotenoid from Pongamia pinnata.

    PubMed

    Simin, K; Ali, Zulfiqar; Khaliq-Uz-Zaman, Syed Muhammad; Ahmad, Viqar Uddin

    2002-10-01

    Pongarotene (1), a new rotenoid and karanjin (2), a known flavonol, were isolated from the seeds of Pongamia pinnata. The structure determination of these compounds were based on spectral analyses including 2D-NMR. The antifungal, antibacterial and phytotoxicity results of pure compounds 1 and 2 as well as of the methanol (M) and ethyl acetate (E) crude extracts are also being reported.

  17. Two novel compounds from the root bark of Morus alba L.

    PubMed

    Li, Ming; Wu, Xuewei; Wang, Xiaoning; Shen, Tao; Ren, Dongmei

    2018-01-01

    Chemical investigation of the root bark of Morus alba led to the isolation of a new flavone, dioxycudraflavone A (1) and a new 2-arylbenzofuran, 5-hydroxyethyl moracin M (2), together with seven known compounds namely sanggenon V (3), morusin (4), morusignin L (5), licoflavone C (6), moracin C (7), alfafuran (8) and mulberrofuran G (9). The structure elucidation of these compounds was based on analyses of spectroscopic data including 1D, 2D NMR and HR-ESI-MS. All compounds were evaluated for the α-glucosidase inhibitory and cytotoxic activities. Compounds 2-4, 8 and 9 exhibited strong α-glucosidase inhibitory activities with IC 50 less than 10 μM, while only 4 and 9 showed moderate cytotoxic effects against lung cancer cells.

  18. Electrophysiological evidence for the morpheme-based combinatoric processing of English compounds

    PubMed Central

    Fiorentino, Robert; Naito-Billen, Yuka; Bost, Jamie; Fund-Reznicek, Ella

    2014-01-01

    The extent to which the processing of compounds (e.g., “catfish”) makes recourse to morphological-level representations remains a matter of debate. Moreover, positing a morpheme-level route to complex word recognition entails not only access to morphological constituents, but also combinatoric processes operating on the constituent representations; however, the neurophysiological mechanisms subserving decomposition, and in particular morpheme combination, have yet to be fully elucidated. The current study presents electrophysiological evidence for the morpheme-based processing of both lexicalized (e.g., “teacup”) and novel (e.g., “tombnote”) visually-presented English compounds; these brain responses appear prior to and are dissociable from the eventual overt lexical decision response. The electrophysiological results reveal increased negativities for conditions with compound structure, including effects shared by lexicalized and novel compounds, as well as effects unique to each compound type, which may be related to aspects of morpheme combination. These findings support models positing across-the-board morphological decomposition, counter to models proposing that putatively complex words are primarily or solely processed as undecomposed representations, and motivate further electrophysiological research toward a more precise characterization of the nature and neurophysiological instantiation of complex word recognition. PMID:24279696

  19. Bioreactor Steroid Production and Analysis of Date Palm Embryogenic Callus.

    PubMed

    El-Sharabasy, Sherif; El-Dawayati, Maiada

    2017-01-01

    Several compounds and families of compounds of date palm secondary metabolites have been investigated. The analysis of date palm tissue has shown the abundance of secondary metabolites including phytosterols, e.g., steroids, an important group of pharmaceutical compounds. Biotechnology offers the opportunity to utilize cells, tissues, and organs grown in vitro and manipulated to obtain desired compounds. This chapter presents a protocol for the production, determination, and identification of steroids in date palm callus tissue. The addition of 0.01 mg/L pyruvic acid as a precursor to MS liquid culture medium enhances steroid production. In addition, the chapter describes the sterol analytical techniques based on gas-liquid chromatography and gas chromatography-mass spectrometry.

  20. Method of plasma etching GA-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  1. A Risk-Based Strategy for Evaluating Mitigation Options for Process-Formed Compounds in Food: Workshop Proceedings.

    PubMed

    Hanlon, Paul; Brorby, Gregory P; Krishan, Mansi

    2016-05-01

    Processing (eg, cooking, grinding, drying) has changed the composition of food throughout the course of human history; however, awareness of process-formed compounds, and the potential need to mitigate exposure to those compounds, is a relatively recent phenomenon. In May 2015, the North American Branch of the International Life Sciences Institute (ILSI North America) Technical Committee on Food and Chemical Safety held a workshop on the risk-based process for mitigation of process-formed compounds. This workshop aimed to gain alignment from academia, government, and industry on a risk-based process for proactively assessing the need for and benefit of mitigation of process-formed compounds, including criteria to objectively assess the impact of mitigation as well as research needed to support this process. Workshop participants provided real-time feedback on a draft framework in the form of a decision tree developed by the ILSI North America Technical Committee on Food and Chemical Safety to a panel of experts, and they discussed the importance of communicating the value of such a process to the larger scientific community and, ultimately, the public. The outcome of the workshop was a decision tree that can be used by the scientific community and could form the basis of a global approach to assessing the risks associated with mitigation of process-formed compounds. © The Author(s) 2016.

  2. A Risk-Based Strategy for Evaluating Mitigation Options for Process-Formed Compounds in Food

    PubMed Central

    Brorby, Gregory P.; Krishan, Mansi

    2016-01-01

    Processing (eg, cooking, grinding, drying) has changed the composition of food throughout the course of human history; however, awareness of process-formed compounds, and the potential need to mitigate exposure to those compounds, is a relatively recent phenomenon. In May 2015, the North American Branch of the International Life Sciences Institute (ILSI North America) Technical Committee on Food and Chemical Safety held a workshop on the risk-based process for mitigation of process-formed compounds. This workshop aimed to gain alignment from academia, government, and industry on a risk-based process for proactively assessing the need for and benefit of mitigation of process-formed compounds, including criteria to objectively assess the impact of mitigation as well as research needed to support this process. Workshop participants provided real-time feedback on a draft framework in the form of a decision tree developed by the ILSI North America Technical Committee on Food and Chemical Safety to a panel of experts, and they discussed the importance of communicating the value of such a process to the larger scientific community and, ultimately, the public. The outcome of the workshop was a decision tree that can be used by the scientific community and could form the basis of a global approach to assessing the risks associated with mitigation of process-formed compounds. PMID:27102178

  3. Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air, Update Number 2 to October 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, D.M.

    1997-01-01

    The Solar Industrial Program has developed processes that destroy hazardous substances in or remove them from water and air. The processes of interest in this report are based on the application of heterogeneous photocatalysts, principally titanium dioxide or modifications thereof, but work on other heterogeneous catalysts is included in this compilation. This report continues bibliographies that were published in May, 1994, and October, 1995. The previous reports included 663 and 574 citations, respectively. This update contains an additional 518 references. These were published during the period from June 1995 to October 1996, or are references from prior years that weremore » not included in the previous reports. The work generally focuses on removing hazardous contaminants from air or water to meet environmental or health regulations. This report also references work on properties of semiconductor photocatalysts and applications of photocatalytic chemistry in organic synthesis. This report follows the same organization as the previous publications. The first part provides citations for work done in a few broad categories that are generic to the process. Three tables provide references to work on specific substances. The first table lists organic compounds that are included in various lists of hazardous substances identified by the US Environmental Protection Agency (EPA). The second table lists compounds not included in those categories, but which have been treated in a photocatalytic process. The third table covers inorganic compounds that are on EPA lists of hazardous materials or that have been treated by a photocatalytic process. A short update on companies that are active in providing products or services based on photocatalytic processes is provided.« less

  4. A Screening Assay Based on Host-Pathogen Interaction Models Identifies a Set of Novel Antifungal Benzimidazole Derivatives▿

    PubMed Central

    Burger-Kentischer, Anke; Finkelmeier, Doris; Keller, Petra; Bauer, Jörg; Eickhoff, Holger; Kleymann, Gerald; Abu Rayyan, Walid; Singh, Anurag; Schröppel, Klaus; Lemuth, Karin; Wiesmüller, Karl-Heinz; Rupp, Steffen

    2011-01-01

    Fungal infections are a serious health problem in clinics, especially in the immune-compromised patient. Disease ranges from widespread superficial infections like vulvovaginal infections to life-threatening systemic candidiasis. Especially for systemic mycoses, only a limited arsenal of antifungals is available. The most commonly used classes of antifungal compounds used include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapy, significant side effects, and high costs for several antifungals, there is a medical need for new antifungals in the clinic and general practice. In order to expand the arsenal of compounds with antifungal activities, we screened a compound library including more than 35,000 individual compounds derived from organic synthesis as well as combinatorial compound collections representing mixtures of compounds for antimycotic activity. In total, more than 100,000 compounds were screened using a new type of activity-selectivity assay, analyzing both the antifungal activity and the compatibility with human cells at the same time. One promising hit, an (S)-2-aminoalkyl benzimidazole derivative, was developed among a series of lead compounds showing potent antifungal activity. (S)-2-(1-Aminoisobutyl)-1-(3-chlorobenzyl) benzimidazole showed the highest antifungal activity and the best compatibility with human cells in several cell culture models and against a number of clinical isolates of several species of pathogenic Candida yeasts. Transcriptional profiling indicates that the newly discovered compound is a potential inhibitor of the ergosterol pathway, in contrast to other benzimidazole derivatives, which target microtubules. PMID:21746957

  5. Preparation of kinase-biased compounds in the search for lead inhibitors of kinase targets.

    PubMed

    Lai, Justine Y Q; Langston, Steven; Adams, Ruth; Beevers, Rebekah E; Boyce, Richard; Burckhardt, Svenja; Cobb, James; Ferguson, Yvonne; Figueroa, Eva; Grimster, Neil; Henry, Andrew H; Khan, Nawaz; Jenkins, Kerry; Jones, Mark W; Judkins, Robert; Major, Jeremy; Masood, Abid; Nally, James; Payne, Helen; Payne, Lloyd; Raphy, Gilles; Raynham, Tony; Reader, John; Reader, Valérie; Reid, Alison; Ruprah, Parminder; Shaw, Michael; Sore, Hannah; Stirling, Matthew; Talbot, Adam; Taylor, Jess; Thompson, Stephen; Wada, Hiroki; Walker, David

    2005-05-01

    This work describes the preparation of approximately 13,000 compounds for rapid identification of hits in high-throughput screening (HTS). These compounds were designed as potential serine/threonine or tyrosine kinase inhibitors. The library consists of various scaffolds, e.g., purines, oxindoles, and imidazoles, whereby each core scaffold generally includes the hydrogen bond acceptor/donor properties known to be important for kinase binding. Several of these are based upon literature kinase templates, or adaptations of them to provide novelty. The routes to their preparation are outlined. A variety of automation techniques were used to prepare >500 compounds per scaffold. Where applicable, scavenger resins were employed to remove excess reagents and when necessary, preparative high performance liquid chromatography (HPLC) was used for purification. These compounds were screened against an 'in-house' kinase panel. The success rate in HTS was significantly higher than the corporate compound collection. Copyright (c) 2004 Wiley Periodicals, Inc.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lin; Liu, Cong; Leibly, David

    Amyloid protein aggregates are associated with dozens of devastating diseases including Alzheimer’s, Parkinson’s, ALS, and diabetes type 2. While structure-based discovery of compounds has been effective in combating numerous infectious and metabolic diseases, ignorance of amyloid structure has hindered similar approaches to amyloid disease. Here we show that knowledge of the atomic structure of one of the adhesive, steric-zipper segments of the amyloid-beta (Aβ) protein of Alzheimer’s disease, when coupled with computational methods, identifies eight diverse but mainly flat compounds and three compound derivatives that reduce Aβ cytotoxicity against mammalian cells by up to 90%. Although these compounds bind tomore » Aβ fibers, they do not reduce fiber formation of Aβ. Structure-activity relationship studies of the fiber-binding compounds and their derivatives suggest that compound binding increases fiber stability and decreases fiber toxicity, perhaps by shifting the equilibrium of Aβ from oligomers to fibers.« less

  7. Semi-synthesis of dihydrochalcone derivatives and their in vitro antimicrobial activities.

    PubMed

    Awouafack, Maurice D; Kusari, Souvik; Lamshöft, Marc; Ngamga, Dieudonne; Tane, Pierre; Spiteller, Michael

    2010-04-01

    We describe the semi-synthesis of dihydrochalcone derivatives and their IN VITRO antimicrobial activities. These compounds were prepared by modifying two naturally occurring antimicrobial dihydrochalcones, erioschalcones A and B, reported by us earlier. The structures of the compounds were assigned on the basis of spectroscopic evidence and by comparing their physical and spectroscopic data with those reported in the literature. All the compounds were subjected to IN VITRO antimicrobial assays against a panel of pathogenic microorganisms, including gram-positive and gram-negative bacteria, and fungi. The antimicrobial efficacies of this class of compounds were established by correlating the activity profile of each compound with its structure and by comparing the activities of all the compounds with each other based on their structure. This should enable the development of other derivatives of the dihydrochalcone family that would serve as more potent antimicrobial agents against specific pathogens. Georg Thieme Verlag KG Stuttgart.New York.

  8. Methyl-3,4-dihydroxybenzoate and 9-10-dihydrophenanthrene-2,4,7-triol two phenolic compounds from Dioscorea alata L. and their antioxidant activity

    NASA Astrophysics Data System (ADS)

    Aminah, N. S.; Yulvia, A.; Tanjung, M.

    2017-09-01

    Two phenolic compounds namely: methyl-3,4-dihydroxybenzoate (1) and 9,10-dihydrophenanthrene-2,4,7-triol (2) had been isolated for the first time from the tuber of Dioscorea alata L. The extraction of two compounds were done by maceration method using methanol as solvent, followed by partition with n-hexane and ethyl acetate. The ethyl acetate extract was separated and purified using various chromatographic techniques yielded pure compounds. The structure of isolated compounds were determined based on spectroscopic data, including UV-Vis, 1D and 2D NMR spectra. Compounds (1), (2) and ascorbic acid as a comparator were evaluated for their antioxidant properties against DPPH, showing their IC50 were 9,41 ± 0,08; 23,52 ± 0,05; and 10,95 ± 0,08 ppm, respectively.

  9. Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna

    Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated themore » identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.« less

  10. Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species

    DOE PAGES

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; ...

    2015-04-09

    Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated themore » identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.« less

  11. Molecular Networking and Pattern-Based Genome Mining Improves discovery of biosynthetic gene clusters and their products from Salinispora species

    PubMed Central

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; Sarkar, Anindita; Li, Jie; Ziemert, Nadine; Wang, Mingxun; Bandeira, Nuno; Moore, Bradley S.; Dorrestein, Pieter C.; Jensen, Paul R.

    2015-01-01

    Summary Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. Here we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. These efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches. PMID:25865308

  12. Combining structure-based pharmacophore modeling, virtual screening, and in silico ADMET analysis to discover novel tetrahydro-quinoline based pyruvate kinase isozyme M2 activators with antitumor activity

    PubMed Central

    Chen, Can; Wang, Ting; Wu, Fengbo; Huang, Wei; He, Gu; Ouyang, Liang; Xiang, Mingli; Peng, Cheng; Jiang, Qinglin

    2014-01-01

    Compared with normal differentiated cells, cancer cells upregulate the expression of pyruvate kinase isozyme M2 (PKM2) to support glycolytic intermediates for anabolic processes, including the synthesis of nucleic acids, amino acids, and lipids. In this study, a combination of the structure-based pharmacophore modeling and a hybrid protocol of virtual screening methods comprised of pharmacophore model-based virtual screening, docking-based virtual screening, and in silico ADMET (absorption, distribution, metabolism, excretion and toxicity) analysis were used to retrieve novel PKM2 activators from commercially available chemical databases. Tetrahydroquinoline derivatives were identified as potential scaffolds of PKM2 activators. Thus, the hybrid virtual screening approach was applied to screen the focused tetrahydroquinoline derivatives embedded in the ZINC database. Six hit compounds were selected from the final hits and experimental studies were then performed. Compound 8 displayed a potent inhibitory effect on human lung cancer cells. Following treatment with Compound 8, cell viability, apoptosis, and reactive oxygen species (ROS) production were examined in A549 cells. Finally, we evaluated the effects of Compound 8 on mice xenograft tumor models in vivo. These results may provide important information for further research on novel PKM2 activators as antitumor agents. PMID:25214764

  13. The AMPK inhibitor Compound C is a potent AMPK-independent anti-glioma agent

    PubMed Central

    Liu, Xiaona; Chhipa, Rishi Raj; Nakano, Ichiro; Dasgupta, Biplab

    2014-01-01

    AMPK is an evolutionarily conserved energy sensor important for cell growth, proliferation, survival and metabolic regulation. Active AMPK inhibits biosynthetic enzymes like mTOR and acetyl CoA carboxylase (required for protein and lipid synthesis, respectively) to ensure that cells maintain essential nutrients and energy during metabolic crisis. Despite our knowledge about this incredibly important kinase, no specific chemical inhibitors are available to examine its function. However, one small molecule known as Compound C (also called dorsomorphin) has been widely used in cell-based, biochemical and in vivo assays as a selective AMPK inhibitor. In nearly all these reports including a recent study in glioma, the biochemical and cellular effects of Compound C has been attributed to its inhibitory action towards AMPK. While examining the status of AMPK activation in human gliomas, we observed that glioblastomas (GBMs) express copious amount of active AMPK. Compound C effectively reduced glioma viability in vitro both by inhibiting proliferation and inducing cell death. As expected, Compound C inhibited AMPK; however, all the antiproliferative effects of this compound were AMPK-independent. Instead, Compound C killed glioma cells by multiple mechanisms including activation of the Calpain/Cathepsin pathway, inhibition of AKT, mTORC1/C2, cell cycle block at G2M and induction of necroptosis and autophagy. Importantly, normal astrocytes were significantly less susceptible to Compound C. In summary, Compound C is an extremely potent anti-glioma agent but we suggest that caution should be taken in interpreting results when this compound is used as an AMPK inhibitor. PMID:24419061

  14. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes.

    PubMed

    Bullock, R Morris; Chambers, Geoffrey M

    2017-08-28

    This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).

  15. A library of atomically thin metal chalcogenides.

    PubMed

    Zhou, Jiadong; Lin, Junhao; Huang, Xiangwei; Zhou, Yao; Chen, Yu; Xia, Juan; Wang, Hong; Xie, Yu; Yu, Huimei; Lei, Jincheng; Wu, Di; Liu, Fucai; Fu, Qundong; Zeng, Qingsheng; Hsu, Chuang-Han; Yang, Changli; Lu, Li; Yu, Ting; Shen, Zexiang; Lin, Hsin; Yakobson, Boris I; Liu, Qian; Suenaga, Kazu; Liu, Guangtong; Liu, Zheng

    2018-04-01

    Investigations of two-dimensional transition-metal chalcogenides (TMCs) have recently revealed interesting physical phenomena, including the quantum spin Hall effect 1,2 , valley polarization 3,4 and two-dimensional superconductivity 5 , suggesting potential applications for functional devices 6-10 . However, of the numerous compounds available, only a handful, such as Mo- and W-based TMCs, have been synthesized, typically via sulfurization 11-15 , selenization 16,17 and tellurization 18 of metals and metal compounds. Many TMCs are difficult to produce because of the high melting points of their metal and metal oxide precursors. Molten-salt-assisted methods have been used to produce ceramic powders at relatively low temperature 19 and this approach 20 was recently employed to facilitate the growth of monolayer WS 2 and WSe 2 . Here we demonstrate that molten-salt-assisted chemical vapour deposition can be broadly applied for the synthesis of a wide variety of two-dimensional (atomically thin) TMCs. We synthesized 47 compounds, including 32 binary compounds (based on the transition metals Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Pt, Pd and Fe), 13 alloys (including 11 ternary, one quaternary and one quinary), and two heterostructured compounds. We elaborate how the salt decreases the melting point of the reactants and facilitates the formation of intermediate products, increasing the overall reaction rate. Most of the synthesized materials in our library are useful, as supported by evidence of superconductivity in our monolayer NbSe 2 and MoTe 2 samples 21,22 and of high mobilities in MoS 2 and ReS 2 . Although the quality of some of the materials still requires development, our work opens up opportunities for studying the properties and potential application of a wide variety of two-dimensional TMCs.

  16. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sagnik, E-mail: Sagnik.Chatterjee@pharm.kuleuven.be; Richert, Lysiane, E-mail: l.richert@kaly-cell.com; Augustijns, Patrick, E-mail: Patrick.Augustijns@pharm.kuleuven.be

    Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation bymore » hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids • Drug-induced cholestasis index (DICI) as measure of a drug's cholestatic signature • In vitro findings correlate well with clinical reports on cholestasis.« less

  17. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  18. Identification of compounds that modulate retinol signaling using a cell-based qHTS assay

    PubMed Central

    Chen, Yanling; Sakamuru, Srilatha; Huang, Ruili; Reese, David H.; Xia, Menghang

    2016-01-01

    In vertebrates, the retinol (vitamin A) signaling pathway (RSP) controls the biosynthesis and catabolism of all-trans retinoic acid (atRA), which regulates transcription of genes essential for embryonic development. Chemicals that interfere with the RSP to cause abnormal intracellular levels of atRA are potential developmental toxicants. To assess chemicals for the ability to interfere with retinol signaling, we have developed a cell-based RARE (Retinoic Acid Response Element) reporter gene assay to identify RSP disruptors. To validate this assay in a quantitative high-throughput screening (qHTS) platform, we screened the Library of Pharmacologically Active Compounds (LOPAC) in both agonist and antagonist modes. The screens detected known RSP agonists, demonstrating assay reliability, and also identified novel RSP agonists including kenpaullone, niclosamide, PD98059 and SU4312, and RSP antagonists including Bay 11-7085, LY294002, 3,4-Methylenedioxy-β-nitrostyrene, and topoisomerase inhibitors (camptothecin, topotecan, amsacrine hydrochloride, and idarubicin). When evaluated in the P19 pluripotent cell, these compounds were found to affect the expression of the Hoxa1 gene that is essential for embryo body patterning. These results show that the RARE assay is an effective qHTS approach for screening large compound libraries to identify chemicals that have the potential to adversely affect embryonic development through interference with retinol signaling. PMID:26820057

  19. PTP1B inhibitors from the seeds of Iris sanguinea and their insulin mimetic activities via AMPK and ACC phosphorylation.

    PubMed

    Yang, Jun Li; Ha, Thi Kim Quy; Lee, Ba Wool; Kim, Jinwoong; Oh, Won Keun

    2017-11-15

    To find PTP1B inhibitors from natural products, two new compounds (1 and 2), along with nine known compounds (3-11), were isolated from a methanol-soluble extract of Iris sanguinea seeds. The structures of compounds 1 and 2 were determined based on extensive spectroscopic data analysis including UV, IR, NMR, and MS. The IC 50 value of compound 5 on protein tyrosine phosphatase 1B (PTP1B) inhibitory activity is 7.30±0.88µM with a little activity compared to the IC 50 values of the tested positive compound. Compound 5 significantly enhanced glucose uptake and activation of pACC, pAMPK and partially Erk1/2 signaling. These results suggest that compound 5 from Iris sanguinea seeds are utilized as both PTP1B inhibitors and regulators of glucose uptake. These beneficial effects could be applied to treat metabolic diseases such as diabetes and obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prioritizing Environmental Risk of Prescription Pharmaceuticals

    PubMed Central

    Dong, Zhao; Senn, David B.; Moran, Rebecca E.

    2015-01-01

    Low levels of pharmaceutical compounds have been detected in aquatic environments worldwide, but their human and ecological health risks associated with low dose environmental exposure is largely unknown due to the large number of these compounds and a lack of information. Therefore prioritization and ranking methods are needed for screening target compounds for research and risk assessment. Previous efforts to rank pharmaceutical compounds have often focused on occurrence data and have paid less attention to removal mechanisms such as human metabolism. This study proposes a simple prioritization approach based on number of prescriptions and toxicity information, accounting for metabolism and wastewater treatment removal, and can be applied to unmeasured compounds. The approach was performed on the 200 most-prescribed drugs in the U.S. in 2009. Our results showed that under-studied compounds such as levothyroxine and montelukast sodium received the highest scores, suggesting the importance of removal mechanisms in influencing the ranking, and the need for future environmental research to include other less-studied but potentially harmful pharmaceutical compounds. PMID:22813724

  1. Revealing Individual Lifestyles through Mass Spectrometry Imaging of Chemical Compounds in Fingerprints.

    PubMed

    Hinners, Paige; O'Neill, Kelly C; Lee, Young Jin

    2018-03-26

    Fingerprints, specifically the ridge details within the print, have long been used in forensic investigations for individual identification. Beyond the ridge detail, fingerprints contain useful chemical information. The study of fingerprint chemical information has become of interest, especially with mass spectrometry imaging technologies. Mass spectrometry imaging visualizes the spatial relationship of each compound detected, allowing ridge detail and chemical information in a single analysis. In this work, a range of exogenous fingerprint compounds that may reveal a personal lifestyle were studied using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Studied chemical compounds include various brands of bug sprays and sunscreens, as well as food oils, alcohols, and citrus fruits. Brand differentiation and source determination were possible based on the active ingredients or exclusive compounds left in fingerprints. Tandem mass spectrometry was performed for the key compounds, so that these compounds could be confidently identified in a single multiplex mass spectrometry imaging data acquisition.

  2. Cuspidate A, new anti-fungal triterpenoid saponin from Lepidagathis cuspidata.

    PubMed

    Rattan, Rajeev; Inder Fozdar, Bharat; Gautam, Veena; Sharma, Ritika; Kumar, Dinesh; Sharma, Upendra

    2017-04-01

    One new triterpenoid saponin named cuspidate A (1) along with a known oleanane-based triterpenoid saponin clemontanoside-C were isolated from the roots of Lepidagathis cuspidata. The structure of new compound (1) was established after detailed analysis of spectroscopic data including 1D and 2D NMR spectra. This is the first report on clemontanoside-C from this genus. These saponins were found to be effective against the selected fungal strains Aspergillus flavus, Rhizopus stolinifer, Penicillum nodatum, Aspergillus fumigates. Compound 1 showed better activity, comparable to the synthetic drug, while compound 2 showed a moderate effect against all studied fungal strains.

  3. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, F.A.

    1998-09-15

    A process is described for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400 C to about 600 C at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1--3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof. 16 figs.

  4. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies

    PubMed Central

    Ni, Yan; Su, Mingming; Qiu, Yunping; Jia, Wei

    2017-01-01

    ADAP-GC is an automated computational pipeline for untargeted, GC-MS-based metabolomics studies. It takes raw mass spectrometry data as input and carries out a sequence of data processing steps including construction of extracted ion chromatograms, detection of chromatographic peak features, deconvolution of co-eluting compounds, and alignment of compounds across samples. Despite the increased accuracy from the original version to version 2.0 in terms of extracting metabolite information for identification and quantitation, ADAP-GC 2.0 requires appropriate specification of a number of parameters and has difficulty in extracting information of compounds that are in low concentration. To overcome these two limitations, ADAP-GC 3.0 was developed to improve both the robustness and sensitivity of compound detection. In this paper, we report how these goals were achieved and compare ADAP-GC 3.0 against three other software tools including ChromaTOF, AnalyzerPro, and AMDIS that are widely used in the metabolomics community. PMID:27461032

  5. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies.

    PubMed

    Ni, Yan; Su, Mingming; Qiu, Yunping; Jia, Wei; Du, Xiuxia

    2016-09-06

    ADAP-GC is an automated computational pipeline for untargeted, GC/MS-based metabolomics studies. It takes raw mass spectrometry data as input and carries out a sequence of data processing steps including construction of extracted ion chromatograms, detection of chromatographic peak features, deconvolution of coeluting compounds, and alignment of compounds across samples. Despite the increased accuracy from the original version to version 2.0 in terms of extracting metabolite information for identification and quantitation, ADAP-GC 2.0 requires appropriate specification of a number of parameters and has difficulty in extracting information on compounds that are in low concentration. To overcome these two limitations, ADAP-GC 3.0 was developed to improve both the robustness and sensitivity of compound detection. In this paper, we report how these goals were achieved and compare ADAP-GC 3.0 against three other software tools including ChromaTOF, AnalyzerPro, and AMDIS that are widely used in the metabolomics community.

  6. Carbonic anhydrase inhibitors: guaiacol and catechol derivatives effectively inhibit certain human carbonic anhydrase isoenzymes (hCA I, II, IX and XII).

    PubMed

    Scozzafava, Andrea; Passaponti, Maurizio; Supuran, Claudiu T; Gülçin, İlhami

    2015-01-01

    Carbonic anhydrases (CAs) are widespread metalloenzymes in higher vertebrates including humans. A series of phenolic compounds, including guaiacol, 4-methylguaiacol, 4-propylguaiacol, eugenol, isoeugenol, vanillin, syringaldehyde, catechol, 3-methyl catechol, 4-methyl catechol and 3-methoxy catechol were investigated for their inhibition of all the catalytically active mammalian isozymes of the Zn(2+)-containing CA (EC 4.2.1.1). All the phenolic compounds effectively inhibited human carbonic anhydrase isoenzymes (hCA I, II, IX and XII), with Kis in the range of 2.20-515.98 μM. The various isozymes showed diverse inhibition profiles. Among the tested phenolic derivatives, compounds 4-methyl catechol and 3-methoxy catechol showed potent activity as inhibitors of the tumour-associated transmembrane isoforms (hCA IX and XII) in the submicromolar range, with high selectivity. The results obtained from this research may lead to the design of more effective carbonic anhydrase isoenzyme inhibitors (CAIs) based on such phenolic compound scaffolds.

  7. A new carbon-based magnetic material for the dispersive solid-phase extraction of UV filters from water samples before liquid chromatography-tandem mass spectrometry analysis.

    PubMed

    Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-07-01

    Magnetic solid-phase extraction is one of the most promising new extraction methods for liquid samples before ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Several types of materials, including carbonaceous ones, have been prepared for this purpose. In this paper, for the first time, the preparation, characterization, and sorption capability of Fe 3 O 4 -graphitized carbon black (mGCB) composite toward some compounds of environmental interest were investigated. The synthesized mGCB consisted of micrometric GCB particles with 55 m 2  g -1 surface area bearing some carbonyl and hydroxyl functionalities and the surface partially decorated by Fe 3 O 4 microparticles. The prepared mGCB was firstly tested as an adsorbent for the extraction from surface water of 50 pollutants, including estrogens, perfluoroalkyl compounds, UV filters, and quinolones. The material showed good affinity to many of the tested compounds, except carboxylates and glucoronates; however, some compounds were difficult to desorb. Ten UV filters belonging to the chemical classes of benzophenones and p-aminobenzoates were selected, and parameters were optimized for the extraction of these compounds from surface water before UHPLC-MS/MS determination. Then, the method was validated in terms of linearity, trueness, intra-laboratory precision, and detection and quantification limits. In summary, the method performance (trueness, expressed as analytical recovery, 85-114%; RSD 5-15%) appears suitable for the determination of the selected compounds at the level of 10-100 ng L -1 , with detection limits in the range of 1-5 ng L -1 . Finally, the new method was compared with a published one, based on conventional solid-phase extraction with GCB, showing similar performance in real sample analysis. Graphical Abstract Workflow of the analytical method based on magnetic solid-phase extraction followed by LC-MS/MS determination.

  8. Structure Diversity, Synthesis, and Biological Activity of Cyathane Diterpenoids in Higher Fungi.

    PubMed

    Tang, Hao-Yu; Yin, Xia; Zhang, Cheng-Chen; Jia, Qian; Gao, Jin-Ming

    2015-01-01

    Cyathane diterpenoids, occurring exclusively in higher basidiomycete (mushrooms), represent a structurally diverse class of natural products based on a characteristic 5-6-7 tricyclic carbon scaffold, including 105 members reported to date. These compounds show a diverse range of biological activities, such as antimicrobial, anti-MRSA, agonistic toward the kappa-opioid receptor, antiinflammatory, anti-proliferative and nerve growth factor (NGF)-like properties. The present review focuses on the structure diversity, structure elucidation and biological studies of these compounds, including mechanisms of actions and structure-activity relationships (SARs). In addition, new progress in chemical synthesis of cyathane diterpenoids is discussed.

  9. Development of "one-pot" method for multi-class compounds in porcine formula feed by multi-function impurity adsorption cleaning followed ultra-performance liquid chromatography-tandem mass spectrometry detection.

    PubMed

    Wang, Peilong; Wang, Xiao; Zhang, Wei; Su, Xiaoou

    2014-02-01

    A novel and efficient determination method for multi-class compounds including β-agonists, sedatives, nitro-imidazoles and aflatoxins in porcine formula feed based on a fast "one-pot" extraction/multifunction impurity adsorption (MFIA) clean-up procedure has been developed. 23 target analytes belonging to four different class compounds could be determined simultaneously in a single run. Conditions for "one-pot" extraction were studied in detail. Under the optimized conditions, the multi-class compounds in porcine formula feed samples were extracted and purified with methanol contained ammonia and absorbents by one step. The compounds in extracts were purified by using multi types of absorbent based on MFIA in one pot. The multi-walled carbon nanotubes were employed to improved clean-up efficiency. Shield BEH C18 column was used to separate 23 target analytes, followed by tandem mass spectrometry (MS/MS) detection using an electro-spray ionization source in positive mode. Recovery studies were done at three fortification levels. Overall average recoveries of target compounds in porcine formula feed at each levels were >51.6% based on matrix fortified calibration with coefficients of variation from 2.7% to 13.2% (n=6). The limit of determination (LOD) of these compounds in porcine formula feed sample matrix was <5.0 μg/kg. This method was successfully applied in screening and confirmation of target drugs in >30 porcine formula feed samples. It was demonstrated that the integration of the MFIA protocol with the MS/MS instrument could serve as a valuable strategy for rapid screening and reliable confirmatory analysis of multi-class compounds in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Template-based de novo design for type II kinase inhibitors and its extented application to acetylcholinesterase inhibitors.

    PubMed

    Su, Bo-Han; Huang, Yi-Syuan; Chang, Chia-Yun; Tu, Yi-Shu; Tseng, Yufeng J

    2013-10-31

    There is a compelling need to discover type II inhibitors targeting the unique DFG-out inactive kinase conformation since they are likely to possess greater potency and selectivity relative to traditional type I inhibitors. Using a known inhibitor, such as a currently available and approved drug or inhibitor, as a template to design new drugs via computational de novo design is helpful when working with known ligand-receptor interactions. This study proposes a new template-based de novo design protocol to discover new inhibitors that preserve and also optimize the binding interactions of the type II kinase template. First, sorafenib (Nexavar) and nilotinib (Tasigna), two type II inhibitors with different ligand-receptor interactions, were selected as the template compounds. The five-step protocol can reassemble each drug from a large fragment library. Our procedure demonstrates that the selected template compounds can be successfully reassembled while the key ligand-receptor interactions are preserved. Furthermore, to demonstrate that the algorithm is able to construct more potent compounds, we considered kinase inhibitors and other protein dataset, acetylcholinesterase (AChE) inhibitors. The de novo optimization was initiated using a template compound possessing a less than optimal activity from a series of aminoisoquinoline and TAK-285 inhibiting type II kinases, and E2020 derivatives inhibiting AChE respectively. Three compounds with greater potency than the template compound were discovered that were also included in the original congeneric series. This template-based lead optimization protocol with the fragment library can help to design compounds with preferred binding interactions of known inhibitors automatically and further optimize the compounds in the binding pockets.

  11. Drug metabolism and pharmacokinetic diversity of ranunculaceae medicinal compounds.

    PubMed

    Hao, Da-Cheng; Ge, Guang-Bo; Xiao, Pei-Gen; Wang, Ping; Yang, Ling

    2015-01-01

    The wide-reaching distributed angiosperm family Ranunculaceae has approximately 2200 species in around 60 genera. Chemical components of this family include several representative groups: benzylisoquinoline alkaloid (BIA), ranunculin, triterpenoid saponin and diterpene alkaloid, etc. Their extensive clinical utility has been validated by traditional uses of thousands of years and current evidence-based medicine studies. Drug metabolism and pharmacokinetic (DMPK) studies of plant-based natural products are an indispensable part of comprehensive medicinal plant exploration, which could facilitate conservation and sustainable utilization of Ranunculaceae pharmaceutical resources, as well as new chemical entity development with improved DMPK parameters. However, DMPK characteristics of Ranunculaceaederived medicinal compounds have not been summarized. Black cohosh (Cimicifuga) and goldenseal (Hydrastis) raise concerns of herbdrug interaction. DMPK studies of other Ranunculaceae genera, e.g., Nigella, Delphinium, Aconitum, Trollius, and Coptis, are also rapidly increasing and becoming more and more clinically relevant. In this contribution, we highlight the up-to-date awareness, as well as the challenges around the DMPK-related issues in optimization of drug development and clinical practice of Ranunculaceae compounds. Herb-herb interaction of Ranunculaceae herb-containing traditional Chinese medicine (TCM) formula could significantly influence the in vivo pharmacokinetic behavior of compounds thereof, which may partially explain the complicated therapeutic mechanism of TCM formula. Although progress has been made on revealing the absorption, distribution, metabolism, excretion and toxicity (ADME/T) of Ranunculaceae compounds, there is a lack of DMPK studies of traditional medicinal genera Aquilegia, Thalictrum and Clematis. Fluorescent probe compounds could be promising substrate, inhibitor and/or inducer in future DMPK studies of Ranunculaceae compounds. A better understanding of the important herb-drug/herb-herb interactions, bioavailability and metabolomics aspects of Ranunculaceae compounds will bolster future natural product-based drug design and the comprehensive investigation of inter-individual inconsistency of drug metabolism.

  12. Lead selection and characterization of antitubercular compounds using the Nested Chemical Library.

    PubMed

    Sipos, Anna; Pató, János; Székely, Rita; Hartkoorn, Ruben C; Kékesi, László; Őrfi, László; Szántai-Kis, Csaba; Mikušová, Katarína; Svetlíková, Zuzana; Korduláková, Jana; Nagaraja, Valakunja; Godbole, Adwait Anand; Bush, Natassja; Collin, Frédéric; Maxwell, Anthony; Cole, Stewart T; Kéri, György

    2015-06-01

    Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library™ using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 μM and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Structure-activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues.

    PubMed

    Van Baelen, Gitte; Hostyn, Steven; Dhooghe, Liene; Tapolcsányi, Pál; Mátyus, Péter; Lemière, Guy; Dommisse, Roger; Kaiser, Marcel; Brun, Reto; Cos, Paul; Maes, Louis; Hajós, György; Riedl, Zsuzsanna; Nagy, Ildikó; Maes, Bert U W; Pieters, Luc

    2009-10-15

    Based on the indoloquinoline alkaloids cryptolepine (1), neocryptolepine (2), isocryptolepine (3) and isoneocryptolepine (4), used as lead compounds for new antimalarial agents, a series of tricyclic and bicyclic analogues, including carbolines, azaindoles, pyrroloquinolines and pyrroloisoquinolines was synthesized and biologically evaluated. None of the bicyclic compounds was significantly active against the chloroquine-resistant strain Plasmodium falciparum K1, in contrast to the tricyclic derivatives. The tricyclic compound 2-methyl-2H-pyrido[3,4-b]indole (9), or 2-methyl-beta-carboline, showed the best in vitro activity, with an IC(50) value of 0.45 microM against P. falciparum K1, without apparent cytotoxicity against L6 cells (SI>1000). However, this compound was not active in the Plasmodium berghei mouse model. Structure-activity relationships are discussed and compared with related naturally occurring compounds.

  14. Non-traditional platinum compounds for improved accumulation, oral bioavailability, and tumor targeting.

    PubMed

    Lovejoy, Katherine S; Lippard, Stephen J

    2009-12-28

    The five platinum anticancer compounds currently in clinical use conform to structure-activity relationships formulated (M. J. Cleare and J. D. Hoeschele, Bioinorg. Chem., 1973, 2, 187-210) shortly after the discovery that cis-diamminedichloroplatinum(II), cisplatin, has antitumor activity in mice. These compounds are neutral platinum(II) species with two am(m)ine ligands or one bidentate chelating diamine and two additional ligands that can be replaced by water through aquation reactions. The resulting cations ultimately form bifunctional adducts on DNA. Information about the chemistry of these platinum compounds and correlations of their structures with anticancer activity have provided guidance for the design of novel anticancer drug candidates based on the proposed mechanisms of action. This article discusses advances in the synthesis and evaluation of such non-traditional platinum compounds, including cationic and tumor-targeting constructs.

  15. [Gadolinium-based contrast agents for magnetic resonance imaging].

    PubMed

    Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J

    2014-06-01

    Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  16. Design of chemical space networks on the basis of Tversky similarity

    NASA Astrophysics Data System (ADS)

    Wu, Mengjun; Vogt, Martin; Maggiora, Gerald M.; Bajorath, Jürgen

    2016-01-01

    Chemical space networks (CSNs) have been introduced as a coordinate-free representation of chemical space. In CSNs, nodes represent compounds and edges pairwise similarity relationships. These network representations are mostly used to navigate sections of biologically relevant chemical space. Different types of CSNs have been designed on the basis of alternative similarity measures including continuous numerical similarity values or substructure-based similarity criteria. CSNs can be characterized and compared on the basis of statistical concepts from network science. Herein, a new CSN design is introduced that is based upon asymmetric similarity assessment using the Tversky coefficient and termed TV-CSN. Compared to other CSNs, TV-CSNs have unique features. While CSNs typically contain separate compound communities and exhibit small world character, many TV-CSNs are also scale-free in nature and contain hubs, i.e., extensively connected central compounds. Compared to other CSNs, these hubs are a characteristic of TV-CSN topology. Hub-containing compound communities are of particular interest for the exploration of structure-activity relationships.

  17. A novel in vitro image-based assay identifies new drug leads for giardiasis.

    PubMed

    Hart, Christopher J S; Munro, Taylah; Andrews, Katherine T; Ryan, John H; Riches, Andrew G; Skinner-Adams, Tina S

    2017-04-01

    Giardia duodenalis is an intestinal parasite that causes giardiasis, a widespread human gastrointestinal disease. Treatment of giardiasis relies on a small arsenal of compounds that can suffer from limitations including side-effects, variable treatment efficacy and parasite drug resistance. Thus new anti-Giardia drug leads are required. The search for new compounds with anti-Giardia activity currently depends on assays that can be labour-intensive, expensive and restricted to measuring activity at a single time-point. Here we describe a new in vitro assay to assess anti-Giardia activity. This image-based assay utilizes the Perkin-Elmer Operetta ® and permits automated assessment of parasite growth at multiple time points without cell-staining. Using this new approach, we assessed the "Malaria Box" compound set for anti-Giardia activity. Three compounds with sub-μM activity (IC 50 0.6-0.9 μM) were identified as potential starting points for giardiasis drug discovery. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  19. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.

    1982-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  20. Structural relationship of curcumin derivatives binding to the BRCT domain of human DNA polymerase lambda.

    PubMed

    Takeuchi, Toshifumi; Ishidoh, Tomomi; Iijima, Hiroshi; Kuriyama, Isoko; Shimazaki, Noriko; Koiwai, Osamu; Kuramochi, Kouji; Kobayashi, Susumu; Sugawara, Fumio; Sakaguchi, Kengo; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2006-03-01

    We previously reported that phenolic compounds, petasiphenol and curcumin (diferuloylmethane), were a selective inhibitor of DNA polymerase lambda (pol lambda) in vitro. The purpose of this study was to investigate the molecular structural relationship of curcumin and 13 chemically synthesized derivatives of curcumin. The inhibitory effect on pol lambda (full-length, i.e. intact pol lambda including the BRCA1 C- terminal [BRCT] domain) by some derivatives was stronger than that by curcumin, and monoacetylcurcumin (compound 13) was the strongest pol lambda inhibitor of all the compounds tested, achieving 50% inhibition at a concentration of 3.9 microm. The compound did not influence the activities of replicative pols such as alpha, delta, and epsilon. It had no effect on pol beta activity either, although the three-dimensional structure of pol beta is thought to be highly similar to that of pol lambda. Compound 13 did not inhibit the activity of the C-terminal catalytic domain of pol lambda including the pol beta-like core, in which the BRCT motif was deleted from its N-terminal region. MALDI-TOF MS analysis demonstrated that compound 13 bound selectively to the N-terminal domain of pol lambda, but did not bind to the C-terminal region. Based on these results, the pol lambda-inhibitory mechanism of compound 13 is discussed.

  1. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012.

    PubMed

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-07

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development.

  2. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations.

    PubMed

    Jin, Xiannu; Luong, Thu-Lan; Reese, Necole; Gaona, Heather; Collazo-Velez, Vanessa; Vuong, Chau; Potter, Brittney; Sousa, Jason C; Olmeda, Raul; Li, Qigui; Xie, Lisa; Zhang, Jing; Zhang, Ping; Reichard, Greg; Melendez, Victor; Marcsisin, Sean R; Pybus, Brandon S

    2014-01-01

    Malaria is a major health concern and affects over 300million people a year. Accordingly, there is an urgent need for new efficacious anti-malarial drugs. A major challenge in developing new anti-malarial drugs is to design active molecules that have preferable drug-like characteristics. These "drug-like" characteristics include physiochemical properties that affect drug absorption, distribution, metabolism, and excretion (ADME). Compounds with poor ADME profiles will likely fail in vivo due to poor pharmacokinetics and/or other drug delivery related issues. There have been numerous assays developed in order to pre-screen compounds that would likely fail in further development due to poor absorption properties including PAMPA, Caco-2, and MDCK permeability assays. The use of cell-based permeability assays such as Caco-2 and MDCK serve as surrogate indicators of drug absorption and transport, with the two approaches often used interchangeably. We sought to evaluate both approaches in support of anti-malarial drug development. Accordingly, a comparison of both assays was conducted utilizing apparent permeability coefficient (Papp) values determined from liquid chromatography/tandem mass spectrometry (LC-MS) analyses. Both Caco-2 and MDCK permeability assays produced similar Papp results for potential anti-malarial compounds with low and medium permeability. Differences were observed for compounds with high permeability and compounds that were P-gp substrates. Additionally, the utility of MDCK-MDR1 permeability measurements was demonstrated in probing the role of P-glycoprotein transport in Primaquine-Chloroquine drug-drug interactions in comparison with in vivo pharmacokinetic changes. This study provides an in-depth comparison of the Caco-2 and MDCK-MDR1 cell based permeability assays and illustrates the utility of cell-based permeability assays in anti-malarial drug screening/development in regard to understanding transporter mediated changes in drug absorption/distribution. Published by Elsevier Inc.

  3. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm

    PubMed Central

    Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong

    2016-01-01

    The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request. PMID:26955638

  4. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm.

    PubMed

    Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong

    2016-01-01

    The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request.

  5. Wet scrubbing of biomass producer gas tars using vegetable oil

    NASA Astrophysics Data System (ADS)

    Bhoi, Prakashbhai Ramabhai

    The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale experimental data from the wet scrubbing system would be useful in the design and operation of a pilot scale vegetable oil based system. The process model, validated using experimental data, would be a key design tool for the design and optimization of a pilot scale vegetable oil based system.

  6. In vitro trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors.

    PubMed Central

    Brun, R; Bühler, Y; Sandmeier, U; Kaminsky, R; Bacchi, C J; Rattendi, D; Lane, S; Croft, S L; Snowdon, D; Yardley, V; Caravatti, G; Frei, J; Stanek, J; Mett, H

    1996-01-01

    A series of novel aromatic derivatives based on the structure of methylglyoxal bis(guanylhydrazone) (MGBG) was examined for in vitro antitrypanosomal activities and cytotoxicities for human cells. One-third of the compounds tested showed trypanocidal activity at concentrations below 0.5 microM after an incubation period of 72 h. Structure-activity analysis revealed that bicyclic compounds with homocyclic rings and unmodified termini were the most active compounds. Results obtained in three laboratories employing different methods and trypanosome populations consistently ranked compound CGP 40215A highest. This compound had a 50% inhibitory concentration of 0.0045 microM for Trypanosoma brucei rhodesiense, was also active against other trypanosome species, including a multidrug-resistant Trypanosoma brucei brucei, and was significantly less toxic than other compounds tested for a human adenocarcinoma cell line, with a 50% inhibitory concentration of 1.14 mM. The effect of CGP 40215A was time and dose dependent, and low concentrations of the compound required exposure times of > 2 days to exert trypanocidal activity. Compounds were inactive against Leishmania donovani and Trypanosoma cruzi amastigotes in murine macrophages in vitro. PMID:8726017

  7. Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium.

    PubMed

    Joshi, Janak Raj; Burdman, Saul; Lipsky, Alexander; Yedidia, Iris

    2015-01-01

    Pectobacterium spp. are among the most devastating necrotrophs, attacking more than 50% of angiosperm plant orders. Their virulence strategy is based mainly on the secretion of exoenzymes that degrade the cell walls of their hosts, providing nutrients to the bacteria, but conversely, exposing the bacteria to plant defense compounds. In the present study, we screened plant-derived antimicrobial compounds, mainly phenolic acids and polyphenols, for their ability to affect virulence determinants including motility, biofilm formation and extracellular enzyme activities of different Pectobacteria: Pectobacterium carotovorum, P. brasiliensis, P. atrosepticum and P. aroidearum. In addition, virulence assays were performed on three different plant hosts following exposure of the bacteria to selected phenolic compounds. These experiments showed that cinnamic, coumaric, syringic and salicylic acids and catechol can considerably reduce disease severity, ranging from 20 to 100%. The reduced disease severity was not only the result of reduced bacterial growth, but also of a direct effect of the compounds on important bacterial virulence determinants, including pectolytic and proteolytic exoenzyme activities, that were reduced by 50-100%. This is the first report revealing a direct effect of phenolic compounds on virulence factors in a wide range of Pectobacterium strains. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors

    NASA Astrophysics Data System (ADS)

    Hatch, Lindsay E.; Yokelson, Robert J.; Stockwell, Chelsea E.; Veres, Patrick R.; Simpson, Isobel J.; Blake, Donald R.; Orlando, John J.; Barsanti, Kelley C.

    2017-01-01

    Multiple trace-gas instruments were deployed during the fourth Fire Lab at Missoula Experiment (FLAME-4), including the first application of proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) for laboratory biomass burning (BB) measurements. Open-path Fourier transform infrared spectroscopy (OP-FTIR) was also deployed, as well as whole-air sampling (WAS) with one-dimensional gas chromatography-mass spectrometry (GC-MS) analysis. This combination of instruments provided an unprecedented level of detection and chemical speciation. The chemical composition and emission factors (EFs) determined by these four analytical techniques were compared for four representative fuels. The results demonstrate that the instruments are highly complementary, with each covering some unique and important ranges of compositional space, thus demonstrating the need for multi-instrument approaches to adequately characterize BB smoke emissions. Emission factors for overlapping compounds generally compared within experimental uncertainty, despite some outliers, including monoterpenes. Data from all measurements were synthesized into a single EF database that includes over 500 non-methane organic gases (NMOGs) to provide a comprehensive picture of speciated, gaseous BB emissions. The identified compounds were assessed as a function of volatility; 6-11 % of the total NMOG EF was associated with intermediate-volatility organic compounds (IVOCs). These atmospherically relevant compounds historically have been unresolved in BB smoke measurements and thus are largely missing from emission inventories. Additionally, the identified compounds were screened for published secondary organic aerosol (SOA) yields. Of the total reactive carbon (defined as EF scaled by the OH rate constant and carbon number of each compound) in the BB emissions, 55-77 % was associated with compounds for which SOA yields are unknown or understudied. The best candidates for future smog chamber experiments were identified based on the relative abundance and ubiquity of the understudied compounds, and they included furfural, 2-methyl furan, 2-furan methanol, and 1,3-cyclopentadiene. Laboratory study of these compounds will facilitate future modeling efforts.

  9. Borreria and Spermacoce species (Rubiaceae): A review of their ethnomedicinal properties, chemical constituents, and biological activities

    PubMed Central

    Conserva, Lucia Maria; Ferreira, Jesu Costa

    2012-01-01

    Borreira and Spermacoce are genera of Rubiaceae widespread in tropical and subtropical America, Africa, Asia, and Europe. Based on its fruits morphology they are considered by many authors to be distinct genera and most others, however, prefer to combine the two taxa under the generic name Spermacoce. Whereas the discussion is still unclear, in this work they were considered as synonyms. Some species of these genera play an important role in traditional medicine in Africa, Asia, Europe, and South America. Some of these uses include the treatment of malaria, diarrheal and other digestive problems, skin diseases, fever, hemorrhage, urinary and respiratory infections, headache, inflammation of eye, and gums. To date, more than 60 compounds have been reported from Borreria and Spermacoce species including alkaloids, iridoids, flavonoids, terpenoids, and other compounds. Studies have confirmed that extracts from Borreria and Spermacoce species as well as their isolated compounds possess diverse biological activities, including anti-inflammatory, antitumor, antimicrobial, larvicidal, antioxidant, gastrointestinal, anti-ulcer, and hepatoprotective, with alkaloids and iridoids as the major active principles. This paper briefly reviews the ethnomedicinal uses, phytochemistry, and biological activities of some isolated compounds and extracts of both genera. PMID:22654404

  10. Effect of ionic liquids on the interaction between liposomes and common wastewater pollutants investigated by capillary electrophoresis.

    PubMed

    Ruokonen, Suvi-Katriina; Duša, Filip; Lokajová, Jana; Kilpeläinen, Ilkka; King, Alistair W T; Wiedmer, Susanne K

    2015-07-31

    The effect of three phosphonium and imidazolium ionic liquids (ILs) on the interaction between liposomes and common pharmaceuticals found in wastewaters was studied. The liposomes comprised zwitterionic phosphatidyl choline and negatively charged phosphatidyl glycerol. A set of common cationic, anionic, and neutral compounds with varying chemical composition and unique structures were included in the study. The electrophoretic mobilities of the analytes were determined using conventional capillary electrophoresis (CE), using CE under reversed electroosmotic flow mobility conditions, and in the presence of ILs in the background electrolyte (BGE) solution by electrokinetic chromatography (EKC). In order to evaluate the impact of ILs on the interaction between the compounds and the liposomes, EKC was performed with liposome dispersions, with and without ILs. The retention factors of the compounds were calculated using BGEs including liposome dispersions with and without ILs. Two phosphonium based ILs, namely tributyl(tetradecyl)phosphonium chloride ([P14444]Cl) and octyltributylphosphonium chloride ([P8444]Cl), were chosen due to their long alkyl chains and their low aggregation concentrations. Another IL, i.e. 1-ethyl-3-methylimidazolium acetate ([emim][OAc]), was chosen based on our previous study, which suggests that it has a minimal or even nonexistent effect on liposomes at the used concentrations. The results indicate that the studied ILs have an effect on the interactions between wastewater compounds and liposomes, but the effect is highly dependent on the concentration of the IL and on the IL alkyl chain lengths. Most of the ILs hindered the interactions between the liposomes and the compounds, indicating strong interaction between ILs and liposomes. In addition, the nature of the studied compounds themselves affected the interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The nutritive and immunoprotective quality of human milk beyond 1 year postpartum: are lactation-duration-based donor exclusions justified?

    PubMed

    Perrin, Maryanne Tigchelaar; Fogleman, April; Allen, Jonathan C

    2013-08-01

    Donor human milk is critical for the fragile preterm infant who does not have access to his or her mother's milk, improving survival rates and quality of survival and decreasing hospital stay. Despite the opening of donor milk banks around the world, shortages continue as demand for donor milk exceeds supply. One potential means of increasing supply is by reducing exclusion criteria that prohibit mothers from donating milk based on duration of lactation. Minimal research has been done on the composition of human milk during the second year of lactation, with most research focusing on the nutritive compounds and not the immunoprotective compounds. Several immunoprotective compounds, including lysozyme, lactoferrin, secretory immunoglobulin A, and oligosaccharides, are abundant in human milk compared to bovine-based infant formula and are partially or fully retained during Holder pasteurization, making them an important differentiating feature of donor milk. A PubMed search was conducted to review studies in human milk composition during the second year of lactation. Limitations of existing research include sample collection protocols, small study sizes, and use of populations that may have been at risk for nutritional deficiencies. Stable concentrations of several components were reported including protein, lactose, iron, copper, lactoferrin, and secretory immunoglobulin A. Lysozyme concentration increased during extended lactation, while zinc and calcium concentrations declined into the second year. Conflicting findings were reported on fat content, and no information was available regarding oligosaccharide content. More research is needed to create evidence-based guidelines regarding the nutritive and immunoprotective value of donor milk throughout the course of lactation.

  12. Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design.

    PubMed

    Estevam, Ethiene Castellucci; Witek, Karolina; Faulstich, Lisa; Nasim, Muhammad Jawad; Latacz, Gniewomir; Domínguez-Álvarez, Enrique; Kieć-Kononowicz, Katarzyna; Demasi, Marilene; Handzlik, Jadwiga; Jacob, Claus

    2015-07-31

    Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA) and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS), they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium) compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.

  13. Conception through build of an automated liquids processing system for compound management in a low-humidity environment.

    PubMed

    Belval, Richard; Alamir, Ab; Corte, Christopher; DiValentino, Justin; Fernandes, James; Frerking, Stuart; Jenkins, Derek; Rogers, George; Sanville-Ross, Mary; Sledziona, Cindy; Taylor, Paul

    2012-12-01

    Boehringer Ingelheim's Automated Liquids Processing System (ALPS) in Ridgefield, Connecticut, was built to accommodate all compound solution-based operations following dissolution in neat DMSO. Process analysis resulted in the design of two nearly identical conveyor-based subsystems, each capable of executing 1400 × 384-well plate or punch tube replicates per batch. Two parallel-positioned subsystems are capable of independent execution or alternatively executed as a unified system for more complex or higher throughput processes. Primary ALPS functions include creation of high-throughput screening plates, concentration-response plates, and reformatted master stock plates (e.g., 384-well plates from 96-well plates). Integrated operations included centrifugation, unsealing/piercing, broadcast diluent addition, barcode print/application, compound transfer/mix via disposable pipette tips, and plate sealing. ALPS key features included instrument pooling for increased capacity or fail-over situations, programming constructs to associate one source plate to an array of replicate plates, and stacked collation of completed plates. Due to the hygroscopic nature of DMSO, ALPS was designed to operate within a 10% relativity humidity environment. The activities described are the collaborative efforts that contributed to the specification, build, delivery, and acceptance testing between Boehringer Ingelheim Pharmaceuticals, Inc. and the automation integration vendor, Thermo Scientific Laboratory Automation (Burlington, ON, Canada).

  14. Synthesis, characterization and biological application of four novel metal-Schiff base complexes derived from allylamine and their interactions with human serum albumin: Experimental, molecular docking and ONIOM computational study.

    PubMed

    Kazemi, Zahra; Rudbari, Hadi Amiri; Sahihi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Gharaghani, Sajjad

    2016-09-01

    Novel metal-based drug candidate including VOL2, NiL2, CuL2 and PdL2 have been synthesized from 2-hydroxy-1-allyliminomethyl-naphthalen ligand and have been characterized by means of elemental analysis (CHN), FT-IR and UV-vis spectroscopies. In addition, (1)H and (13)C NMR techniques were employed for characterization of the PdL2 complex. Single-crystal X-ray diffraction technique was utilized to characterise the structure of the complexes. The Cu(II), Ni(II) and Pd(II) complexes show a square planar trans-coordination geometry, while in the VOL2, the vanadium center has a distorted tetragonal pyramidal N2O3 coordination sphere. The HSA-binding was also determined, using fluorescence quenching, UV-vis spectroscopy, and circular dichroism (CD) titration method. The obtained results revealed that the HSA affinity for binding the synthesized compounds follows as PdL2>CuL2>VOL2>NiL2, indicating the effect of metal ion on binding constant. The distance between these compounds and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Furthermore, computational methods including molecular docking and our Own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) were carried out to investigate the HSA-binding of the compounds. Molecular docking calculation indicated the existence of hydrogen bond between amino acid residues of HSA and all synthesized compounds. The formation of the hydrogen bond in the HSA-compound systems leads to their stabilization. The ONIOM method was utilized in order to investigate HSA binding of compounds more precisely in which molecular mechanics method (UFF) and semi empirical method (PM6) were selected for the low layer and the high layer, respectively. The results show that the structural parameters of the compounds changed along with binding to HSA, indicating the strong interaction between the compounds and HSA. The value of binding constant depends on the extent of the resultant changes. This should be mentioned that both theoretical methods calculated the Kb values in the same sequence and are in a good agreement with the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Autoignition Studies of Diesel Alternative Biofuels

    NASA Astrophysics Data System (ADS)

    Wang, Weijing

    The autoignition of biofuel compounds that offer potential as diesel fuel alternatives was studied under high-pressure engine-like conditions using the shock tube technique. Ignition delay times were determined in reflected shock experiments using measured pressure and electronically-excited OH emission. Measurements were made at conditions ranging from 650 to 1350 K, pressures from 6 to 50 atm, and for fuel/air/diluent mixtures at equivalence ratios from 0.5 to 2. The wide range of temperatures examined provides observation of autoignition in three reactivity regimes, including the negative temperature coefficient (NTC) regime which is characteristic of fuels containing alkyl functionalities. Compounds studied include biodiesel-related compounds and real biodiesel fuels, dimethyl ether, and 3-methylheptane which is representative of compounds found in synthetic diesel fuels produced using the Fischer-Tropsch and hydrotreatment processes. Biodiesel compounds studied include biodiesel surrogates, methyl decanoate, methyl-5-decenoate, and methyl-9-decenoate; compounds found in large quantities in biodiesels, methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate; and soy-based and animal fat based methyl ester biodiesels. Comparison of biodiesel compounds illustrates the influence of molecular structure (e.g., chain length, double bonds, and ester functionality) on reactivity. For methyl decanoate, the effect of high pressure exhaust gas recirculation (EGR) conditions relevant to internal combustion engines was also determined. Results showed that the first-order influence of EGR by displacing fuel and O2 to decrease radical branching. Measurements were compared to kinetic modeling results from models available in the literature providing varying degrees of model validation. Reaction flux analyses were also carried out to further examine the kinetic differences in different temperature regimes for fuel compounds. For example, reaction flux analyses illustrates the importance of the long alkyl chain in controlling the overall reactivity of methyl ester biodiesel compounds and the subtle role the ester group has on inhibiting low-temperature reactivity as well as the influence of branching on reactivity for lightly branched alkanes. This thesis work provides a rich database of kinetic information for biofuel-related compounds at conditions relevant to real engine operations, offering quantitative kinetic targets for the development and evaluation of future kinetic models for important alternative fuel compounds. The results quantify the reactivity variability of biodiesel alternatives and illustrate that at temperature greater than 900 to 1000 K fuel structure has little influence on reactivity, as fuel fragmentation results in an intermediate pool that is largely the same for the fuels studied. On the other hand at temperature lower than 900 K, where fuel-specific low-temperature chemistry plays a role, different fuel structures can result in vast differences in reactivity, up to factors of three or more in ignition delay.

  16. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds.

    PubMed

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-17

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.

  17. Alchemical and structural distribution based representation for universal quantum machine learning

    NASA Astrophysics Data System (ADS)

    Faber, Felix A.; Christensen, Anders S.; Huang, Bing; von Lilienfeld, O. Anatole

    2018-06-01

    We introduce a representation of any atom in any chemical environment for the automatized generation of universal kernel ridge regression-based quantum machine learning (QML) models of electronic properties, trained throughout chemical compound space. The representation is based on Gaussian distribution functions, scaled by power laws and explicitly accounting for structural as well as elemental degrees of freedom. The elemental components help us to lower the QML model's learning curve, and, through interpolation across the periodic table, even enable "alchemical extrapolation" to covalent bonding between elements not part of training. This point is demonstrated for the prediction of covalent binding in single, double, and triple bonds among main-group elements as well as for atomization energies in organic molecules. We present numerical evidence that resulting QML energy models, after training on a few thousand random training instances, reach chemical accuracy for out-of-sample compounds. Compound datasets studied include thousands of structurally and compositionally diverse organic molecules, non-covalently bonded protein side-chains, (H2O)40-clusters, and crystalline solids. Learning curves for QML models also indicate competitive predictive power for various other electronic ground state properties of organic molecules, calculated with hybrid density functional theory, including polarizability, heat-capacity, HOMO-LUMO eigenvalues and gap, zero point vibrational energy, dipole moment, and highest vibrational fundamental frequency.

  18. Cytotoxic effects of new synthesis heterocyclic derivatives of Amoxicillin on some cancer cell lines

    NASA Astrophysics Data System (ADS)

    Al-Rawi, M. S.; Hussei, D. F.; Al-Taie, A. F.; Al-Halbosiy, M. M.; Hameed, B. A.

    2018-05-01

    A new Schiff base [I] was prepared by refluxing Amoxicillin trihydrate and 4-Hydroxy- 3,5-dimethoxybenzaldehyde in aqueous methanol solution using glacial acetic acid as a catalyst. The new 1,3-oxazepine derivative [II] was obtained by Diels- Alder reaction of Schiff base [I] with phthalic anhydride in dry benzene. The reaction of Schiff base [I] with thioglycolic acid in dry benzene led to the formation of thiazolidin-4-one derivative [III]. While the imidazolidin-4-one [IV] derivative was produced by reacting the mentioned Schiff base [I] with glycine and triethylamine in ethanol for 9 hrs. Tetrazole derivative [V] was synthesized by refluxing Schiff base [I] with sodium azide in dimethylformamid DMF. The structure of synthesized compounds[I-V] was characterized by their melting points, elemental analysis CHN-S and by their spectral data; FTIR and 1H NMR spectroscopy. Two cancer cell lines include: (RD) human pelvic rhabdomyosarcoma and (L20B) the mice intestines carcinoma cell line (which expresses the genes for human cellular receptor for Polio viruses) were used in this study. The cytotoxic effect of different concentrations of all the synthesized compounds for 48 hrs was examined. All compounds except [IV] and [V] showed less than 50% inhibition for (L20B), while these compounds exhibit inhibition more than 50% inhibition for (RD).

  19. Design new P-glycoprotein modulators based on molecular docking and CoMFA study of α, β-unsaturated carbonyl-based compounds and oxime analogs as anticancer agents

    NASA Astrophysics Data System (ADS)

    Sepehri, Bakhtyar; Ghavami, Raouf

    2017-02-01

    In this research, molecular docking and CoMFA were used to determine interactions of α, β-unsaturated carbonyl-based compounds and oxime analogs with P-glycoprotein and prediction of their activity. Molecular docking study shown these molecules establish strong Van der Waals interactions with side chain of PHE-332, PHE-728 and PHE-974. Based on the effect of component numbers on squared correlation coefficient for cross validation tests (including leave-one-out and leave-many-out), CoMFA models with five components were built to predict pIC50 of molecules in seven cancer cell lines (including Panc-1 (pancreas cancer cell line), PaCa-2 (pancreatic carcinoma cell line), MCF-7 (breast cancer cell line), A-549 (epithelial), HT-29 (colon cancer cell line), H-460 (lung cancer cell line), PC-3 (prostate cancer cell line)). R2 values for training and test sets were in the range of 0.94-0.97 and 0.84 to 0.92, respectively, and for LOO and LMO cross validation test, q2 values were in the range of 0.75-0.82 and 0.65 to 0.73, respectively. Based on molecular docking results and extracted steric and electrostatic contour maps for CoMFA models, four new molecules with higher activity with respect to the most active compound in data set were designed.

  20. Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.

    PubMed

    Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2018-03-21

    Blood-brain barrier (BBB) permeability of a compound determines whether the compound can effectively enter the brain. It is an essential property which must be accounted for in drug discovery with a target in the brain. Several computational methods have been used to predict the BBB permeability. In particular, support vector machine (SVM), which is a kernel-based machine learning method, has been used popularly in this field. For SVM training and prediction, the compounds are characterized by molecular descriptors. Some SVM models were based on the use of molecular property-based descriptors (including 1D, 2D, and 3D descriptors) or fragment-based descriptors (known as the fingerprints of a molecule). The selection of descriptors is critical for the performance of a SVM model. In this study, we aimed to develop a generally applicable new SVM model by combining all of the features of the molecular property-based descriptors and fingerprints to improve the accuracy for the BBB permeability prediction. The results indicate that our SVM model has improved accuracy compared to the currently available models of the BBB permeability prediction.

  1. Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis.

    PubMed

    Cao, Jun; Peng, Li-Qing; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing

    2017-04-22

    An ionic liquid-(IL) based micellar extraction combined with microcrystalline cellulose- (MCC) assisted dispersive micro solid-phase extraction method was developed to extract phenolic compounds from propolis. A total of 20 target compounds were identified by ultra-high- performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. The main extraction parameters were optimized and included the ultrasonic power, ultrasonic time, sample pH, type of IL, the concentration of [C12mim]Br, extraction time, concentration of MCC, type of sorbent and type of elution solvents. Under the optimum conditions, the proposed method exhibited good linearities (r 2  ≥ 0.999) for all plant phenolic compounds with the lower limits of detection in the range of 0.21-0.41 ng/mL. The recoveries ranged from 82.74% to 97.88% for pinocembrin, chrysin and galangin. Compared with conventional solvent extraction, the present method was simpler and more efficient and required less organic solvent and a shorter extraction time. Finally, the methodology was successfully used for the extraction and enrichment of phenolic compounds in propolis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. TR-DB: an open-access database of compounds affecting the ethylene-induced triple response in Arabidopsis.

    PubMed

    Hu, Yuming; Callebert, Pieter; Vandemoortel, Ilse; Nguyen, Long; Audenaert, Dominique; Verschraegen, Luc; Vandenbussche, Filip; Van Der Straeten, Dominique

    2014-02-01

    Small molecules which act as hormone agonists or antagonists represent useful tools in fundamental research and are widely applied in agriculture to control hormone effects. High-throughput screening of large chemical compound libraries has yielded new findings in plant biology, with possible future applications in agriculture and horticulture. To further understand ethylene biosynthesis/signaling and its crosstalk with other hormones, we screened a 12,000 compound chemical library based on an ethylene-related bioassay of dark-grown Arabidopsis thaliana (L.) Heynh. seedlings. From the initial screening, 1313 (∼11%) biologically active small molecules altering the phenotype triggered by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), were identified. Selection and sorting in classes were based on the angle of curvature of the apical hook, the length and width of the hypocotyl and the root. A MySQL-database was constructed (https://chaos.ugent.be/WE15/) including basic chemical information on the compounds, images illustrating the phenotypes, phenotype descriptions and classification. The research perspectives for different classes of hit compounds will be evaluated, and some general screening tips for customized high-throughput screening and pitfalls will be discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Engineering half-Heusler thermoelectric materials using Zintl chemistry

    NASA Astrophysics Data System (ADS)

    Zeier, Wolfgang G.; Schmitt, Jennifer; Hautier, Geoffroy; Aydemir, Umut; Gibbs, Zachary M.; Felser, Claudia; Snyder, G. Jeffrey

    2016-06-01

    Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.

  4. Sampling of atmospheric carbonyl compounds for determination by liquid chromatography after 2,4-dinitrophenylhydrazine labelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vairavamurthy, A.; Roberts, J.M.; Newman, L.

    1991-02-01

    Determination of carbonyl compounds in the ambient atmosphere is receiving increasing attention because of the critical role these compounds play as pollutants and as key participants in tropospheric photochemistry. Carbonyls are involved in photochemical reactions as products of the oxidation of hydrocarbons, precursors of oxidants including ozone and peroxycarboxylic nitric anhydrides (PANs), and as sources of free radicals and organic aerosols. A correct understanding and assessment of the role of carbonyls in tropospheric chemistry requires the accurate and precise measurement of these compounds along with their parent and product compounds. Here we discuss some of these important issues along withmore » the different techniques used for time-integrated collection of carbonyls in the DNPH based liquid chromatographic methods because of their complexity, variability and as well their importance; we emphasize the principles, advantages, and limitations of these techniques. 58 refs., 9 figs., 3 tabs.« less

  5. Synthesis and Anticancer Mechanism Investigation of Dual Hsp27 and Tubulin Inhibitors

    PubMed Central

    Zhong, Bo; Chennamaneni, Snigdha; Lama, Rati; Yi, Xin; Geldenhuys, Werner J.; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2013-01-01

    Heat shock protein 27 (Hsp27) is a chaperone protein, and its expression is increased in response to various stress stimuli including anticancer chemotherapy, which allows the cells to survive and causes drug resistance. We previously identified lead compounds that bound to Hsp27 and tubulin via proteomic approaches. Systematic ligand based optimization in the current study significantly increased the cell growth inhibition and apoptosis inducing activities of the compounds. Compared to the lead compounds, one of the new derivatives exhibited much better potency to inhibit tubulin polymerization but a decreased activity to inhibit Hsp27 chaperone function, suggesting that the structural modification dissected the dual targeting effects of the compound. The most potent compounds 20 and 22 exhibited strong cell proliferation inhibitory activities at subnanomolar concentration against 60 human cancer cell lines conducted by Developmental Therapeutic Program at the National Cancer Institute and represented promising candidates for anticancer drug development. PMID:23767669

  6. In vitro plant tissue culture: means for production of biological active compounds.

    PubMed

    Espinosa-Leal, Claudia A; Puente-Garza, César A; García-Lara, Silverio

    2018-05-07

    Plant tissue culture as an important tool for the continuous production of active compounds including secondary metabolites and engineered molecules. Novel methods (gene editing, abiotic stress) can improve the technique. Humans have a long history of reliance on plants for a supply of food, shelter and, most importantly, medicine. Current-day pharmaceuticals are typically based on plant-derived metabolites, with new products being discovered constantly. Nevertheless, the consistent and uniform supply of plant pharmaceuticals has often been compromised. One alternative for the production of important plant active compounds is in vitro plant tissue culture, as it assures independence from geographical conditions by eliminating the need to rely on wild plants. Plant transformation also allows the further use of plants for the production of engineered compounds, such as vaccines and multiple pharmaceuticals. This review summarizes the important bioactive compounds currently produced by plant tissue culture and the fundamental methods and plants employed for their production.

  7. Discovery of novel BTK inhibitors with carboxylic acids.

    PubMed

    Gao, Xiaolei; Wang, James; Liu, Jian; Guiadeen, Deodial; Krikorian, Arto; Boga, Sobhana Babu; Alhassan, Abdul-Basit; Selyutin, Oleg; Yu, Wensheng; Yu, Younong; Anand, Rajan; Liu, Shilan; Yang, Chundao; Wu, Hao; Cai, Jiaqiang; Cooper, Alan; Zhu, Hugh; Maloney, Kevin; Gao, Ying-Duo; Fischmann, Thierry O; Presland, Jeremy; Mansueto, My; Xu, Zangwei; Leccese, Erica; Zhang-Hoover, Jie; Knemeyer, Ian; Garlisi, Charles G; Bays, Nathan; Stivers, Peter; Brandish, Philip E; Hicks, Alexandra; Kim, Ronald; Kozlowski, Joeseph A

    2017-03-15

    We report the design and synthesis of a series of novel Bruton's Tyrosine Kinase (BTK) inhibitors with a carboxylic acid moiety in the ribose pocket. This series of compounds has demonstrated much improved off-target selectivities including adenosine uptake (AdU) inhibition compared to the piperidine amide series. Optimization of the initial lead compound 4 based on BTK enzyme inhibition, and human peripheral blood mononuclear cell (hPBMC) and human whole blood (hWB) activity led to the discovery of compound 40, with potent BTK inhibition, reduced off target activities, as well as favorable pharmacokinetic profile in both rat and dog. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Teucrium polium phenylethanol and iridoid glycoside characterization and flavonoid inhibition of biofilm-forming Staphylococcus aureus.

    PubMed

    Elmasri, Wael A; Yang, Tianjiao; Tran, Phat; Hegazy, Mohamed-Elamir F; Hamood, Abdul N; Mechref, Yehia; Paré, Paul W

    2015-01-23

    The chemical composition and biofilm regulation of 15 metabolites from Teucrium polium are reported. Compounds were isolated from a CH2Cl2-MeOH extract of the aerial parts of the plant and included iridoid and phenylethanol glycosides and a monoterpenoid, together with nine known compounds. The structures were elucidated based on standard spectroscopic (UV, (1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, HMQC, HMBC, and NOESY), and/or LC-ESIMS/MS data analyses. Inhibition of the biofilm-forming strain Staphylococcus aureus was observed with exposure to compounds 7 and 8.

  9. A new cerebroside from the fruiting bodies of Hericium erinaceus and its applicability to cancer treatment.

    PubMed

    Lee, Seoung Rak; Jung, Kiwon; Noh, Hyung Jun; Park, Yong Joo; Lee, Hye Lim; Lee, Kang Ro; Kang, Ki Sung; Kim, Ki Hyun

    2015-12-15

    A new cerebroside, cerebroside E (1) was isolated from the fruiting bodies of Hericium erinaceus (Hericiaceae). The structure of 1 was elucidated by a combination of extensive spectroscopic analyses, including extensive 2D NMR, HR-MS, and chemical reactions. Compound 1 was evaluated for its applicability to medicinal use in several human diseases using cell-based assays. As a result, compound 1 attenuated cisplatin-induced nephrotoxicity in LLC-PK1 cells and exhibited a significant inhibitory effect on angiogenesis in HUVECs. These results collectively reflect the beneficial effects of compound 1 in cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.

    PubMed

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D

    2016-06-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.

  11. A Cell-Based Screen Reveals that the Albendazole Metabolite, Albendazole Sulfone, Targets Wolbachia

    PubMed Central

    Bray, Walter M.; White, Pamela M.; Ruybal, Jordan; Lokey, R. Scott; Debec, Alain; Sullivan, William

    2012-01-01

    Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts. PMID:23028321

  12. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis

    NASA Astrophysics Data System (ADS)

    Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D.

    2016-03-01

    Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08116e

  13. [Perspectives in the treatments of poisonings by organophosphorus insecticides and warfare nerve agents].

    PubMed

    Sogorb-Sánchez, M A; Vilanova-Gisbert, E; Carrera-González, V

    Organophosphorus compounds are worldwide employed as insecticides and are yearly responsible of several millions of poisonings. The chemical structure of most of the warfare nerve agents also corresponds with an organophosphorus compound. Organophosphorus insecticides and warfare nerve agents exert their main toxicological effects through inhibition of acetylcholinesterase. Current treatments of patients poisoned with organophosphorus compounds include atropine (in order to protect muscarinic receptors), oximes (in order to accelerate the reactivation of the inhibited acetylcholinesterase) and benzodiazepines (in order to avoid convulsions). The administration of phosphotriesterases (enzymes involved in the detoxication of organophosphorus compounds through hydrolysis) is a very effective treatment against poisonings by organophosphorus insecticides and warfare nerve agents. There are experimental preventive treatments based on the simultaneous administration of carbamates and certain antimuscarinic drugs, different from atropine, which notably improve the efficacy of the classical treatments applied after poisonings by warfare nerve agents. The treatments based in the administration of phosphotriesterases might be the response to the call of the World Health Organization for searching new treatments with capability to reduce the high mortality recorded in the cases of poisonings by organophosphorus compounds. These treatments can be applied in a preventive way without the intrinsic neurotoxicity associated to the preventive treatments based on carbamates and antimuscarinic drugs. Therefore, these treatments are specially interesting for people susceptible to suffer severe exposures, i.e. sprayers in the farms.

  14. Similarities among receptor pockets and among compounds: analysis and application to in silico ligand screening.

    PubMed

    Fukunishi, Yoshifumi; Mikami, Yoshiaki; Nakamura, Haruki

    2005-09-01

    We developed a new method to evaluate the distances and similarities between receptor pockets or chemical compounds based on a multi-receptor versus multi-ligand docking affinity matrix. The receptors were classified by a cluster analysis based on calculations of the distance between receptor pockets. A set of low homologous receptors that bind a similar compound could be classified into one cluster. Based on this line of reasoning, we proposed a new in silico screening method. According to this method, compounds in a database were docked to multiple targets. The new docking score was a slightly modified version of the multiple active site correction (MASC) score. Receptors that were at a set distance from the target receptor were not included in the analysis, and the modified MASC scores were calculated for the selected receptors. The choice of the receptors is important to achieve a good screening result, and our clustering of receptors is useful to this purpose. This method was applied to the analysis of a set of 132 receptors and 132 compounds, and the results demonstrated that this method achieves a high hit ratio, as compared to that of a uniform sampling, using a receptor-ligand docking program, Sievgene, which was newly developed with a good docking performance yielding 50.8% of the reconstructed complexes at a distance of less than 2 A RMSD.

  15. Boron-based dual imaging probes, compositions and methods for rapid aqueous F-18 labeling, and imaging methods using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zibo; Gabbai, Francois P.; Conti, Peter S.

    A composition useful as a PET and/or fluorescence imaging probe a compound a compound of Formula I, including salts, hydrates and solvates thereof: ##STR00001## wherein R.sub.1-R.sub.7 may be independently selected from hydrogen, halogen, hydroxy, alkoxy, nitro, substituted and unsubstituted amino, cycloalkyl, carboxy, carboxylic acids and esters thereof, cyano, haloalkyl, aryl, X is selected from the group consisting of C and N; and A is selected of hydrogen, halogen, hydroxy, alkoxy, nitro, substituted and unsubstituted amino, alkyl, cycloalkyl, carboxy, carboxylic acids and esters thereof, cyano, haloalkyl, aryl, including phenyl and aminophenyl, and heteroaryl.

  16. Discovery of a novel and potent class of F. tularensis enoyl-reductase (FabI) inhibitors by molecular shape and electrostatic matching

    PubMed Central

    Hevener, Kirk E.; Mehboob, Shahila; Su, Pin-Chih; Truong, Kent; Boci, Teuta; Deng, Jiangping; Ghassemi, Mahmood; Cook, James L.; Johnson, Michael E.

    2011-01-01

    Enoyl-acyl carrier protein (ACP) reductase, FabI, is a key enzyme in the bacterial fatty acid biosynthesis pathway (FAS II). FabI is an NADH-dependent oxidoreductase that acts to reduce enoyl-ACP substrates in a final step of the pathway. The absence of this enzyme in humans makes it an attractive target for the development of new antibacterial agents. FabI is known to be unresponsive to structure-based design efforts due to a high degree of induced fit and a mobile flexible loop encompassing the active site. Here we discuss the development, validation, and careful application of a ligand-based virtual screen used for the identification of novel inhibitors of the Francisella tularensis FabI target. In this study, four known classes of FabI inhibitors were used as templates for virtual screens that involved molecular shape and electrostatic matching. The program ROCS was used to search a high-throughput screening library for compounds that matched any of the four molecular shape queries. Matching compounds were further refined using the program EON, which compares and scores compounds by matching electrostatic properties. Using these techniques, 50 compounds were selected, ordered, and tested. The tested compounds possessed novel chemical scaffolds when compared to the input query compounds. Several hits with low micromolar activity were identified and follow-up scaffold-based searches resulted in the identification of a lead series with sub-micromolar enzyme inhibition, high ligand efficiency, and a novel scaffold. Additionally, one of the most active compounds showed promising whole-cell antibacterial activity against several Gram-positive and Gram-negative species, including the target pathogen. The results of a preliminary structure-activity relationship analysis are presented. PMID:22098466

  17. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis sydowiana and Their 20S Proteasome Inhibitory Activities.

    PubMed

    Xia, Xuekui; Kim, Soonok; Liu, Changheng; Shim, Sang Hee

    2016-07-20

    Fungal endophytes have attracted attention due to their functional diversity. Secondary metabolites produced by Pestalotiopsis sydowiana from a halophyte, Phragmites communis Trinus, were investigated. Eleven compounds, including four penicillide derivatives (1-4) and seven α-pyrone analogues (5-10) were isolated from cultures of P. sydowiana. The compounds were identified based on spectroscopic data. The inhibitory activities against the 20S proteasome were evaluated. Compounds 1-3, 5, and 9-10 showed modest proteasome inhibition activities, while compound 8 showed strong activity with an IC50 of 1.2 ± 0.3 μM. This is the first study on the secondary metabolites produced by P. sydowiana and their proteasome inhibitory activities. The endophytic fungus P. sydowiana might be a good resource for proteasome inhibitors.

  18. Chemical constituents of the femoral gland secretions of male tegu lizards (Tupinambis merianae) (Family teiidae).

    PubMed

    Martín, José; Chamut, Silvia; Manes, Mario E; López, Pilar

    2011-01-01

    In spite of the importance of chemical signals (pheromones) in the reproductive behaviour of lizards, the chemical compounds secreted by their femoral glands, which may be used as sexual signals, are only known for a few lizard species. Based on mass spectra, obtained by GC-MS, we found 49 lipophilic compounds in femoral gland secretions of male tegu lizards (Tupinambis merianae) (fam. Teiidae), including a very high proportion of carboxylic acids and their esters ranging between n-C8 and n-C20 (mainly octadecanoic and 9,12-octadecadienoic acids), with much less proportions of steroids, tocopherol, aldehydes, and squalene. We discuss the potential function of these compounds in secretions, and compare the compounds found here with those documented for other lizard species.

  19. Synthesis, characterization and spectroscopic behavior of novel 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile dyes.

    PubMed

    Khan, Salman A; Asiri, Abdullah M; Al-Thaqafy, Saad H; Faidallah, Hassan M; El-Daly, Samy A

    2014-12-10

    Two synthetic pathways were adopted to synthesize the target 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydro-benzo[h]quinoline-3-carbonitriles. Structure of the synthesized compounds has been characterized based on FT-IR, (1)H NMR, (13)C NMR and elemental analyses. UV-Vis and fluorescence spectroscopy measurements provided that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, Stokes shift, oscillator strength and dipole moment were investigated in order to explore the analytical potential of synthesized compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012

    PubMed Central

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-01

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development. PMID:25574736

  1. Quinolones Modulate Ghrelin Receptor Signaling: Potential for a Novel Small Molecule Scaffold in the Treatment of Cachexia.

    PubMed

    Torres-Fuentes, Cristina; Pastor-Cavada, Elena; Cano, Rafael; Kandil, Dalia; Shanahan, Rachel; Juan, Rocio; Shaban, Hamdy; McGlacken, Gerard P; Schellekens, Harriët

    2018-05-30

    Cachexia is a metabolic wasting disorder characterized by progressive weight loss, muscle atrophy, fatigue, weakness, and appetite loss. Cachexia is associated with almost all major chronic illnesses including cancer, heart failure, obstructive pulmonary disease, and kidney disease and significantly impedes treatment outcome and therapy tolerance, reducing physical function and increasing mortality. Current cachexia treatments are limited and new pharmacological strategies are needed. Agonists for the growth hormone secretagogue (GHS-R1a), or ghrelin receptor, prospectively regulate the central regulation of appetite and growth hormone secretion, and therefore have tremendous potential as cachexia therapeutics. Non-peptide GHS-R1a agonists are of particular interest, especially given the high gastrointestinal degradation of peptide-based structures, including that of the endogenous ligand, ghrelin, which has a half-life of only 30 min. However, few compounds have been reported in the literature as non-peptide GHS-R1a agonists. In this paper, we investigate the in vitro potential of quinolone compounds to modulate the GHS-R1a in both transfected human cells and mouse hypothalamic cells. These chemically synthesized compounds demonstrate a promising potential as GHS-R1a agonists, shown by an increased intracellular calcium influx. Further studies are now warranted to substantiate and exploit the potential of these novel quinolone-based compounds as orexigenic therapeutics in conditions of cachexia and other metabolic and eating disorders.

  2. High-throughput Screening Identifies Aclacinomycin as a Radiosensitizer of EGFR-Mutant Non-Small Cell Lung Cancer1

    PubMed Central

    Bennett, Daniel C; Charest, Jonathan; Sebolt, Katrina; Lehrman, Mark; Rehemtulla, Alnawaz; Contessa, Joseph N

    2013-01-01

    The endoplasmic reticulum (ER) provides a specialized environment for the folding and modification of trans-membrane proteins, including receptor tyrosine kinases (RTKs), which are vital for the growth and survival of malignancies. To identify compounds which disrupt the function of the ER and thus could potentially impair cancer cell survival signaling, we adapted a set of glycosylation-sensitive luciferase reporters for the development and optimization of a cell-based high-throughput screen (HTS). Secondary screens for false-positive luciferase activation and tertiary lectin-based and biochemical analyses were also devised for compound triage. Through a pilot screen of 2802 compounds from the National Cancer Institute (NCI) chemical libraries, we identified aclacinomycin (Acm) as a compound that preferentially affects ER function. We report that Acm reduces plasma membrane expression of glycoproteins including epidermal growth factor receptor (EGFR) and Met but does not inhibit N-linked glycosylation or generalized protein translation. Fluorescence microscopy co-localization experiments were also performed and demonstrated Acm accumulation in the ER in further support of the overall HTS design. The consequences of Acm treatment on cell survival were analyzed through clonogenic survival analysis. Consistent with the reduction of EGFR levels, pretreatment with Acm sensitizes the EGFR-mutant non-small cell lung cancer (NSCLC) cell lines HCC827 and HCC2935 to ionizing radiation and did not affect the sensitivity of the RTK-independent and KRAS-mutant A549 NSCLC cell line. Thus, Acm and similar compounds targeting the ER may represent a novel approach for radiosensitizing tumor cells dependent on RTK function. PMID:23730419

  3. Implementation of an i.v.-compounding robot in a hospital-based cancer center pharmacy.

    PubMed

    Yaniv, Angela W; Knoer, Scott J

    2013-11-15

    The implementation of a robotic device for compounding patient-specific chemotherapy doses is described, including a review of data on the robot's performance over a 13-month period. The automated system prepares individualized i.v. chemotherapy doses in a variety of infusion bags and syringes; more than 50 drugs are validated for use in the machine. The robot is programmed to recognize the physical parameters of syringes and vials and uses photographic identification, barcode identification, and gravimetric measurements to ensure that the correct ingredients are compounded and the final dose is accurate. The implementation timeline, including site preparation, logistics planning, installation, calibration, staff training, development of a pharmacy information system (PIS) interface, and validation by the state board of pharmacy, was about 10 months. In its first 13 months of operation, the robot was used to prepare 7384 medication doses; 85 doses (1.2%) found to be outside the desired accuracy range (±4%) were manually modified by pharmacy staff. Ongoing system monitoring has identified mechanical and materials-related problems including vial-recognition failures (in many instances, these issues were resolved by the system operator and robotic compounding proceeded successfully), interface issues affecting robot-PIS communication, and human errors such as the loading of an incorrect vial or bag into the machine. Through staff training, information technology improvements, and workflow adjustments, the robot's throughput has been steadily improved. An i.v.-compounding robot was successfully implemented in a cancer center pharmacy. The robot performs compounding tasks safely and accurately and has been integrated into the pharmacy's workflow.

  4. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database.

    PubMed

    Wang, Jing; Qiao, Chunxia; Xiao, He; Lin, Zhou; Li, Yan; Zhang, Jiyan; Shen, Beifen; Fu, Tinghuan; Feng, Jiannan

    2016-01-01

    According to the three-dimensional (3D) complex structure of (hIL-6⋅hIL-6R⋅gp 130) 2 and the binding orientation of hIL-6, three compounds with high affinity to hIL-6R and bioactivity to block hIL-6 in vitro were screened theoretically from the chemical databases, including 3D-Available Chemicals Directory (ACD) and MDL Drug Data Report (MDDR), by means of the computer-guided virtual screening method. Using distance geometry, molecular modeling and molecular dynamics trajectory analysis methods, the binding mode and binding energy of the three compounds were evaluated theoretically. Enzyme-linked immunosorbent assay analysis demonstrated that all the three compounds could block IL-6 binding to IL-6R specifically. However, only compound 1 could effectively antagonize the function of hIL-6 and inhibit the proliferation of XG-7 cells in a dose-dependent manner, whereas it showed no cytotoxicity to SP2/0 or L929 cells. These data demonstrated that the compound 1 could be a promising candidate of hIL-6 antagonist.

  5. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds.

    PubMed

    Chen, Lei; Zhang, Yu-Hang; Zheng, Mingyue; Huang, Tao; Cai, Yu-Dong

    2016-12-01

    Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.

  6. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    PubMed

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nano-photocatalysts for the destruction of chloro-organic compounds and bacteria in water.

    PubMed

    Khaydarov, Rashid A; Khaydarov, Renat R; Gapurova, Olga

    2013-09-15

    The article deals with a novel electrochemical method of preparing nano-photocatalysts suspended in aqueous solution and their application for water treatment from chloro-organic compounds and bacteria. The nano-photocatalysts have been electrolytically synthesized in the cell with titanium and graphite electrodes. The synthesized nano-photocatalysts based on nanocarbon-titanium composition have the active functional groups including carbonyl (>C=O), hydroxyl (-OH), carboxyl (-COOH), and photocatalytic -Ti(OH)-O-Ti(OH)- formed on the surface of carbon nanoparticles. Here, we report that the synthesized nano-photocatalysts can destroy chloro-organic compounds including dichloro-diphenyl-trichloroethane (DDT), aldrin (C12H8Cl6), lindane (C6H6Cl6), and polychlorinated biphenyls (PCBs) and bacteria Escherichia coli in water under UV and sunlight. In addition, the method of nano-photocatalysts detection in water has been described. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  9. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  10. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-06-14

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  11. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-09-05

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  12. [Construction of NIRS-based total quality control system for compound Ejiao oral liquid and relative thinking].

    PubMed

    Zhang, Yan; Zhang, Lu; Tian, Shou-Sheng; Zhou, Xiang-Shan; Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    In this paper, near infrared spectroscopy (NIRS)-based total quality control system of compound Ejiao oral liquid is introduced briefly, including the quality control of raw traditional Chinese medicine (TCM) materials, monitoring and control of the extract and the alkaline precipitation technics, and also the inspection of finished products in both open bottle and non-opening modes. By analyzing and summing up the significance and difficulties, several important problems in the practical applications of NIRS technology are proposed, which will provide references for the similar studies of other TCM products. Copyright© by the Chinese Pharmaceutical Association.

  13. Design and realization of the compound text-based test questions library management system

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Feng, Lin; Zhao, Xin

    2011-12-01

    The test questions library management system is the essential part of the on-line examination system. The basic demand for which is to deal with compound text including information like images, formulae and create the corresponding Word documents. Having compared with the two current solutions of creating documents, this paper presents a design proposal of Word Automation mechanism based on OLE/COM technology, and discusses the way of Word Automation application in detail and at last provides the operating results of the system which have high reference value in improving the generated efficiency of project documents and report forms.

  14. High-symmetry organic scintillator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L.

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based onmore » the pulse shapes of the output signals.« less

  15. Inhibitory effects of benzimidazole containing new phenolic Mannich bases on human carbonic anhydrase isoforms hCA I and II.

    PubMed

    Gul, Halise Inci; Yazici, Zehra; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    New phenolic mono and bis Mannich bases incorporating benzimidazole, such as 2-(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol and 2,6-bis(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol were synthesized starting from 4-(1H-benzimidazol-2-yl)phenol. Amines used for the synthesis included dimethylamine, pyrrolidine, piperidine, N-methylpiperazine and morpholine. The CA inhibitory properties of these compounds were tested on the human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and hCA II. These new compounds, as many phenols show moderate CA inhibitory properties.

  16. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages overmore » some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.« less

  17. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  18. hERGCentral: a large database to store, retrieve, and analyze compound-human Ether-à-go-go related gene channel interactions to facilitate cardiotoxicity assessment in drug development.

    PubMed

    Du, Fang; Yu, Haibo; Zou, Beiyan; Babcock, Joseph; Long, Shunyou; Li, Min

    2011-12-01

    The unintended and often promiscous inhibition of the cardiac human Ether-à-go-go related gene (hERG) potassium channel is a common cause for either delay or removal of therapeutic compounds from development and withdrawal of marketed drugs. The clinical manifestion is prolongation of the duration between QRS complex and T-wave measured by surface electrocardiogram (ECG)-hence Long QT Syndrome. There are several useful online resources documenting hERG inhibition by known drugs and bioactives. However, their utilities remain somewhat limited because they are biased toward well-studied compounds and their number of data points tends to be much smaller than many commercial compound libraries. The hERGCentral ( www.hergcentral.org ) is mainly based on experimental data obtained from a primary screen by electrophysiology against more than 300,000 structurally diverse compounds. The system is aimed to display and combine three resources: primary electrophysiological data, literature, as well as online reports and chemical library collections. Currently, hERGCentral has annotated datasets of more than 300,000 compounds including structures and chemophysiological properties of compounds, raw traces, and biophysical properties. The system enables a variety of query formats, including searches for hERG effects according to either chemical structure or properties, and alternatively according to the specific biophysical properties of current changes caused by a compound. Therefore, the hERGCentral, as a unique and evolving resource, will facilitate investigation of chemically induced hERG inhibition and therefore drug development. © MARY ANN LIEBERT, INC.

  19. hERGCentral: A Large Database to Store, Retrieve, and Analyze Compound-Human Ether-à-go-go Related Gene Channel Interactions to Facilitate Cardiotoxicity Assessment in Drug Development

    PubMed Central

    Du, Fang; Yu, Haibo; Zou, Beiyan; Babcock, Joseph; Long, Shunyou

    2011-01-01

    Abstract The unintended and often promiscous inhibition of the cardiac human Ether-à-go-go related gene (hERG) potassium channel is a common cause for either delay or removal of therapeutic compounds from development and withdrawal of marketed drugs. The clinical manifestion is prolongation of the duration between QRS complex and T-wave measured by surface electrocardiogram (ECG)—hence Long QT Syndrome. There are several useful online resources documenting hERG inhibition by known drugs and bioactives. However, their utilities remain somewhat limited because they are biased toward well-studied compounds and their number of data points tends to be much smaller than many commercial compound libraries. The hERGCentral (www.hergcentral.org) is mainly based on experimental data obtained from a primary screen by electrophysiology against more than 300,000 structurally diverse compounds. The system is aimed to display and combine three resources: primary electrophysiological data, literature, as well as online reports and chemical library collections. Currently, hERGCentral has annotated datasets of more than 300,000 compounds including structures and chemophysiological properties of compounds, raw traces, and biophysical properties. The system enables a variety of query formats, including searches for hERG effects according to either chemical structure or properties, and alternatively according to the specific biophysical properties of current changes caused by a compound. Therefore, the hERGCentral, as a unique and evolving resource, will facilitate investigation of chemically induced hERG inhibition and therefore drug development. PMID:22149888

  20. Bioremediation of trace organic compounds found in precious metals refineries' wastewaters: a review of potential options.

    PubMed

    Barbosa, V L; Tandlich, R; Burgess, J E

    2007-07-01

    Platinum group metal (PGM) refining processes produce large quantities of wastewater, which is contaminated with the compounds that make up the solvents/extractants mixtures used in the process. These compounds often include solvesso, beta-hydroxyxime, amines, amides and methyl isobutyl ketone. A process to clean up PGM refinery wastewaters so that they could be re-used in the refining process would greatly contribute to continual water storage problems and to cost reduction for the industry. Based on the concept that organic compounds that are produced biologically can be destroyed biologically, the use of biological processes for the treatment of organic compounds in other types of waste stream has been favoured in recent years, owing to their low cost and environmental acceptability. This review examines the available biotechnologies and their effectiveness for treating compounds likely to be contained in precious metal extraction process wastewaters. The processes examined include: biofilters, fluidized bed reactors, trickle-bed bioreactors, bioscrubbers, two-phase partitioning bioreactors, membrane bioreactors and activated sludge. Although all processes examined showed adequate to excellent removal of organic compounds from various gaseous and fewer liquid waste streams, there was a variation in their effectiveness. Variations in performance of laboratory-scale biological processes are probably due to the inherent change in the microbial population composition due to selection pressure, environmental conditions and the time allowed for adaptation to the organic compounds. However, if these factors are disregarded, it can be established that activated sludge and membrane bioreactors are the most promising processes for use in the treatment of PGM refinery wastewaters.

  1. Synthesis of new 1,2,4-triazole compounds containing Schiff and Mannich bases (morpholine) with antioxidant and antimicrobial activities.

    PubMed

    Ünver, Yasemin; Deniz, Sadik; Çelik, Fatih; Akar, Zeynep; Küçük, Murat; Sancak, Kemal

    2016-01-01

    Compound 2 was synthesized by reacting CS 2 /KOH with compound 1. The treatment of compound 2 with hydrazine hydrate produced compound 3. Then, compound 3 was converted to Schiff bases (4a-d) by the handling with several aromatic aldehydes. The treatment of triazole compounds 4a-d containing Schiff base with morpholine gave compounds 5a-d. All compounds were tested for their antioxidant and antimicrobial activities. The antioxidant test results of DPPH• radical scavenging and ferric reducing/antioxidant power methods showed good antioxidant activity. The triazole-thiol (3) was the most active, and the effect of the substituent type of the thiophene ring on the activity was same for both Schiff bases (4a-d) and Mannich bases (5a-d). Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.

  2. Novel indole-2-carboxamide compounds are potent broad-spectrum antivirals active against western equine encephalitis virus in vivo.

    PubMed

    Delekta, Phillip C; Dobry, Craig J; Sindac, Janice A; Barraza, Scott J; Blakely, Pennelope K; Xiang, Jianming; Kirchhoff, Paul D; Keep, Richard F; Irani, David N; Larsen, Scott D; Miller, David J

    2014-10-01

    Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of neurotropic alphaviruses and, potentially, of other RNA viruses. IMPORTANCE There are currently no approved drugs to treat infections with alphaviruses. We previously identified a novel series of compounds with activity against these potentially devastating pathogens (J. A. Sindac et al., J. Med. Chem. 55:3535-3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; W. Peng et al., J. Infect. Dis. 199:950-957, 2009, doi:http://dx.doi.org/10.1086/597275; J. A. Sindac et al., J. Med. Chem. 56:9222-9241, 2013, http://dx.doi.org/10.1021/jm401330r). We have now produced third-generation compounds with enhanced potency, and this manuscript provides detailed information on the antiviral activity of these advanced-generation compounds, including activity in an animal model. The results of this study represent a notable achievement in the continued development of this novel class of antiviral inhibitors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Novel Indole-2-Carboxamide Compounds Are Potent Broad-Spectrum Antivirals Active against Western Equine Encephalitis Virus In Vivo

    PubMed Central

    Delekta, Phillip C.; Dobry, Craig J.; Sindac, Janice A.; Barraza, Scott J.; Blakely, Pennelope K.; Xiang, Jianming; Kirchhoff, Paul D.; Keep, Richard F.; Irani, David N.; Larsen, Scott D.

    2014-01-01

    ABSTRACT Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication, using a cell-based phenotypic assay (W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:http://dx.doi.org/10.1086/597275), and subsequently developed second- and third-generation indole-2-carboxamide derivatives with improved potency, solubility, and metabolic stability (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, http://dx.doi.org/10.1021/jm401330r). In this report, we describe the antiviral activity of the most promising third-generation lead compound, CCG205432, and closely related analogs CCG206381 and CCG209023. These compounds have half-maximal inhibitory concentrations of ∼1 μM and selectivity indices of >100 in cell-based assays using western equine encephalitis virus replicons. Furthermore, CCG205432 retains similar potency against fully infectious virus in cultured human neuronal cells. These compounds show broad inhibitory activity against a range of RNA viruses in culture, including members of the Togaviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Although their exact molecular target remains unknown, mechanism-of-action studies reveal that these novel indole-based compounds target a host factor that modulates cap-dependent translation. Finally, we demonstrate that both CCG205432 and CCG209023 dampen clinical disease severity and enhance survival of mice given a lethal western equine encephalitis virus challenge. These studies demonstrate that indole-2-carboxamide compounds are viable candidates for continued preclinical development as inhibitors of neurotropic alphaviruses and, potentially, of other RNA viruses. IMPORTANCE There are currently no approved drugs to treat infections with alphaviruses. We previously identified a novel series of compounds with activity against these potentially devastating pathogens (J. A. Sindac et al., J. Med. Chem. 55:3535–3545, 2012, doi:http://dx.doi.org/10.1021/jm300214e; W. Peng et al., J. Infect. Dis. 199:950–957, 2009, doi:http://dx.doi.org/10.1086/597275; J. A. Sindac et al., J. Med. Chem. 56:9222–9241, 2013, http://dx.doi.org/10.1021/jm401330r). We have now produced third-generation compounds with enhanced potency, and this manuscript provides detailed information on the antiviral activity of these advanced-generation compounds, including activity in an animal model. The results of this study represent a notable achievement in the continued development of this novel class of antiviral inhibitors. PMID:25031353

  4. Rule-based Approach on Extraction of Malay Compound Nouns in Standard Malay Document

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Zamri; Kamal Ismail, Normaly; Rawi, Mohd Izani Mohamed

    2017-08-01

    Malay compound noun is defined as a form of words that exists when two or more words are combined into a single syntax and it gives a specific meaning. Compound noun acts as one unit and it is spelled separately unless an established compound noun is written closely from two words. The basic characteristics of compound noun can be seen in the Malay sentences which are the frequency of that word in the text itself. Thus, this extraction of compound nouns is significant for the following research which is text summarization, grammar checker, sentiments analysis, machine translation and word categorization. There are many research efforts that have been proposed in extracting Malay compound noun using linguistic approaches. Most of the existing methods were done on the extraction of bi-gram noun+noun compound. However, the result still produces some problems as to give a better result. This paper explores a linguistic method for extracting compound Noun from stand Malay corpus. A standard dataset are used to provide a common platform for evaluating research on the recognition of compound Nouns in Malay sentences. Therefore, an improvement for the effectiveness of the compound noun extraction is needed because the result can be compromised. Thus, this study proposed a modification of linguistic approach in order to enhance the extraction of compound nouns processing. Several pre-processing steps are involved including normalization, tokenization and tagging. The first step that uses the linguistic approach in this study is Part-of-Speech (POS) tagging. Finally, we describe several rules-based and modify the rules to get the most relevant relation between the first word and the second word in order to assist us in solving of the problems. The effectiveness of the relations used in our study can be measured using recall, precision and F1-score techniques. The comparison of the baseline values is very essential because it can provide whether there has been an improvement in the result.

  5. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds

    PubMed Central

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed. PMID:27144573

  6. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

    PubMed

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-05-02

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

  7. Tripping with Synthetic Cannabinoids ("Spice"): Anecdotal and Experimental Observations in Animals and Man.

    PubMed

    Järbe, Torbjörn U C; Raghav, Jimit Girish

    2017-01-01

    The phenomenon of consuming synthetic cannabinoids ("Spice") for recreational purposes is a fairly recent trend. However, consumption of cannabis dates back millennia, with numerous accounts written on the experience of its consumption, and thousands of scientific reports published on the effects of its constituents in laboratory animals and humans. Here, we focus on consolidating the scientific literature on the effects of "Spice" compounds in various behavioral assays, including assessing abuse liability, tolerance, dependence, withdrawal, and potential toxicity. In most cases, the behavioral effects of "Spice" compounds are compared with those of Δ 9 -tetrahydrocannabinol. Methodological aspects, such as modes of administration and other logistical issues, are also discussed. As the original "Spice" molecules never were intended for human consumption, scientifically based information about potential toxicity and short- and long-term behavioral effects are very limited. Consequently, preclinical behavioral studies with "Spice" compounds are still in a nascent stage. Research is needed to address the addiction potential and other effects, including propensity for producing tissue/organ toxicity, of these synthetic cannabimimetic "Spice" compounds.

  8. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  9. Fluorescent Chemosensors for Toxic Organophosphorus Pesticides: A Review

    PubMed Central

    Obare, Sherine O.; De, Chandrima; Guo, Wen; Haywood, Tajay L.; Samuels, Tova A.; Adams, Clara P.; Masika, Noah O.; Murray, Desmond H.; Anderson, Ginger A.; Campbell, Keith; Fletcher, Kenneth

    2010-01-01

    Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction. PMID:22163587

  10. Fluorescent chemosensors for toxic organophosphorus pesticides: a review.

    PubMed

    Obare, Sherine O; De, Chandrima; Guo, Wen; Haywood, Tajay L; Samuels, Tova A; Adams, Clara P; Masika, Noah O; Murray, Desmond H; Anderson, Ginger A; Campbell, Keith; Fletcher, Kenneth

    2010-01-01

    Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction.

  11. Polymer-based sensor array for phytochemical detection

    NASA Astrophysics Data System (ADS)

    Weerakoon, Kanchana A.; Hiremath, Nitilaksha; Chin, Bryan A.

    2012-05-01

    Monitoring for the appearance of volatile organic compounds emitted by plants which correspond to time of first insect attack can be used to detect the early stages of insect infestation. This paper reports a chemical sensor array consisting of polymer based chemiresistor sensors that could detect insect infestation effectively. The sensor array consists of sensors with micro electronically fabricated interdigitated electrodes, and twelve different types of electro active polymer layers. The sensor array was cheap, easy to fabricate, and could be used easily in agricultural fields. The polymer array was found to be sensitive to a variety of volatile organic compounds emitted by plants including γ-terpinene α-pinene, pcymene, farnesene, limonene and cis-hexenyl acetate. The sensor array was not only able to detect but also distinguish between these compounds. The twelve sensors produced a resistance change for each of the analytes detected, and each of these responses together produced a unique fingerprint, enabling to distinguish among these chemicals.

  12. Kinetic studies of the impact of thiocyanate moiety on the catalytic properties of Cu(II) and Fe(III) complexes of a new Mannich base

    NASA Astrophysics Data System (ADS)

    Ayeni, Ayowole O.; Watkins, Gareth M.

    2018-04-01

    Four new metal complexes of a novel Mannich base 5-methyl-2-((4-(pyridin-2-yl)piperazin-1-yl)methyl)phenol (HL) have been prepared. The compounds were characterized by an array of analytical and spectroscopic methods including Nuclear Magnetic Resonance, Infra-red and UV-Visible spectroscopy. Compounds 1-4 behaved as effective catalysts towards the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to its corresponding quinone in the presence of molecular oxygen in DMF solution while compound 4 proved to be the best catalyst with a turnover rate of 17.93 ± 1.10 h-1 as other complexes showed lower rates of oxidation. Also with the exception of dinuclear iron complex (4); thiocyanate containing Cu(II) complex exhibited lower catecholase activity compared to the Cu(II) complex without it.

  13. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  14. Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery?

    PubMed Central

    2015-01-01

    High-throughput biology has contributed a wealth of data on chemicals, including natural products (NPs). Recently, attention was drawn to certain, predominantly synthetic, compounds that are responsible for disproportionate percentages of hits but are false actives. Spurious bioassay interference led to their designation as pan-assay interference compounds (PAINS). NPs lack comparable scrutiny, which this study aims to rectify. Systematic mining of 80+ years of the phytochemistry and biology literature, using the NAPRALERT database, revealed that only 39 compounds represent the NPs most reported by occurrence, activity, and distinct activity. Over 50% are not explained by phenomena known for synthetic libraries, and all had manifold ascribed bioactivities, designating them as invalid metabolic panaceas (IMPs). Cumulative distributions of ∼200,000 NPs uncovered that NP research follows power-law characteristics typical for behavioral phenomena. Projection into occurrence–bioactivity–effort space produces the hyperbolic black hole of NPs, where IMPs populate the high-effort base. PMID:26505758

  15. Discovery of pyridine-based agrochemicals by using Intermediate Derivatization Methods.

    PubMed

    Guan, Ai-Ying; Liu, Chang-Ling; Sun, Xu-Feng; Xie, Yong; Wang, Ming-An

    2016-02-01

    Pyridine-based compounds have been playing a crucial role as agrochemicals or pesticides including fungicides, insecticides/acaricides and herbicides, etc. Since most of the agrochemicals listed in the Pesticide Manual were discovered through screening programs that relied on trial-and-error testing and new agrochemical discovery is not benefiting as much from the in silico new chemical compound identification/discovery techniques used in pharmaceutical research, it has become more important to find new methods to enhance the efficiency of discovering novel lead compounds in the agrochemical field to shorten the time of research phases in order to meet changing market requirements. In this review, we selected 18 representative known agrochemicals containing a pyridine moiety and extrapolate their discovery from the perspective of Intermediate Derivatization Methods in the hope that this approach will have greater appeal to researchers engaged in the discovery of agrochemicals and/or pharmaceuticals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Phylogeny of Collembola based on cuticular compounds:inherent usefulness and limitation of a character type

    NASA Astrophysics Data System (ADS)

    Porco, David; Deharveng, Louis

    2009-08-01

    The phylogeny of Collembola, originally discussed from a morphological point of view, has more recently benefited from novel insights brought by molecular analyses. Both morphological and molecular characters produced a well-resolved phylogenetic hypothesis including all orders, most families, and a large number of genera. However, several conflicting points exist between molecular and morphological data, and new characters are clearly needed to resolve these inconsistencies. In this study the usefulness of a new character type not previously used in the phylogenetic study of Collembola was tested: the epicuticular chemical compounds. Our phylogenetic analysis was based on 380 compounds from 26 Collembola species. The results show good resolution for terminal branches but not for internal nodes. This is probably due to the partial involvement of epicuticular lipids in ecological functions such as water conservation and sexual attraction. Thus, this character type is appropriate for reconstructing phylogenetic relationships among recently diversified groups.

  17. Antibiofilm potential of synthetic 2-amino-5-chlorobenzophenone Schiff bases and its confirmation through fluorescence microscopy.

    PubMed

    Arshia; Khan, Anum Khalid; Khan, Khalid Mohammed; Ahmed, Ayaz; Taha, Muhammad; Perveen, Shahnaz

    2017-09-01

    Antibacterial/antibiofilm potential of microwave-assisted synthetic thirty-three 2-amino-5-chloro benzophenone Schiff bases have been carried out against four bacterial strains i.e. Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus and Streptococcus mutans. Among them compounds 5, 6, 8, 9, 14, 16, 22, 24, 26, and 30-32 showed antibiofilm activities against isolates at less than 100 μg/ml concentrations. These compounds showed enhanced antibiofilm activity against S. aureus as compared to cefixime used as control. However, remaining compounds were found to be active but at higher concentration. Fluorescence microscopy has been employed for confirmation of antibiofilm results. The structures of all synthetic molecules have been characterized on the basis of spectroscopic techniques including 1 H NMR, 13 C NMR, EI-MS, HREI-MS, and IR spectroscopy and their structure-activity relationship have been established. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Method and apparatus for hydrogen production from water

    NASA Technical Reports Server (NTRS)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH.sub.4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.

  19. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht; Institute for Risk Assessment Sciences

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol andmore » saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.« less

  20. The Mu.Ta.Lig. Chemotheca: A community-populated molecular database for multi-target ligands identification and compound-repurposing

    NASA Astrophysics Data System (ADS)

    Ortuso, Francesco; Bagetta, Donatella; Maruca, Annalisa; Talarico, Carmine; Bolognesi, Maria L.; Haider, Norbert; Borges, Fernanda; Bryant, Sharon; Langer, Thierry; Senderowitz, Hanoch; Alcaro, Stefano

    2018-04-01

    Abstract For every lead compound developed in medicinal chemistry research, numerous other inactive or less active candidates are synthetized/isolated and tested. The majority of these compounds will not be selected for further development due to a sub-optimal pharmacological profile. However, some poorly active or even inactive compounds could live a second life if tested against other targets. Thus, new therapeutic opportunities could emerge and synergistic activities could be identified and exploited for existing compounds by sharing information between researchers who are working on different targets. The Mu.Ta.Lig (Multi-Target Ligand) Chemotheca database aims to offer such opportunities by facilitating information exchange among researchers worldwide. After a preliminary registration, users can (a) virtually upload structures and activity data for their compounds with corresponding, and eventually known activity data, and (b) search for other available compounds uploaded by the users community. Each piece of information about given compounds is owned by the user who initially uploaded it and multiple ownership is possible (occurs if different users uploaded the same compounds or information pertaining to the same compounds). A web-based graphical user interface has been developed to assist compound uploading, compounds searching and data retrieval. Physico-chemical and ADME properties as well as substructure-based PAINS evaluations are computed on the fly for each uploaded compound. Samples of compounds that match a set of search criteria and additional data on these compounds could be requested directly from their owners with no mediation by the Mu.Ta.Lig Chemotheca team. Guest access provides a simplified search interface to retrieve only basic information such as compound IDs and related 2D or 3D chemical structures. Moreover, some compounds can be hidden from Guest users according to an owner’s decision. In contrast, registered users have full access to all of the Chemotheca data including the permission to upload new compounds and/or update experimental/theoretical data (e.g., activities against new targets tested) related to already stored compounds. In order to facilitate scientific collaborations, all available data are connected to the corresponding owner’s email address (available for registered users only). The Chemotheca web site is accessible at http://chemotheca.unicz.it.

  1. The Mu.Ta.Lig. Chemotheca: A Community-Populated Molecular Database for Multi-Target Ligands Identification and Compound-Repurposing.

    PubMed

    Ortuso, Francesco; Bagetta, Donatella; Maruca, Annalisa; Talarico, Carmine; Bolognesi, Maria L; Haider, Norbert; Borges, Fernanda; Bryant, Sharon; Langer, Thierry; Senderowitz, Hanoch; Alcaro, Stefano

    2018-01-01

    For every lead compound developed in medicinal chemistry research, numerous other inactive or less active candidates are synthetized/isolated and tested. The majority of these compounds will not be selected for further development due to a sub-optimal pharmacological profile. However, some poorly active or even inactive compounds could live a second life if tested against other targets. Thus, new therapeutic opportunities could emerge and synergistic activities could be identified and exploited for existing compounds by sharing information between researchers who are working on different targets. The Mu.Ta.Lig (Multi-Target Ligand) Chemotheca database aims to offer such opportunities by facilitating information exchange among researchers worldwide. After a preliminary registration, users can (a) virtually upload structures and activity data for their compounds with corresponding, and eventually known activity data, and (b) search for other available compounds uploaded by the users community. Each piece of information about given compounds is owned by the user who initially uploaded it and multiple ownership is possible (this occurs if different users uploaded the same compounds or information pertaining to the same compounds). A web-based graphical user interface has been developed to assist compound uploading, compounds searching and data retrieval. Physico-chemical and ADME properties as well as substructure-based PAINS evaluations are computed on the fly for each uploaded compound. Samples of compounds that match a set of search criteria and additional data on these compounds could be requested directly from their owners with no mediation by the Mu.Ta.Lig Chemotheca team. Guest access provides a simplified search interface to retrieve only basic information such as compound IDs and related 2D or 3D chemical structures. Moreover, some compounds can be hidden to Guest users according to an owner's decision. In contrast, registered users have full access to all of the Chemotheca data including the permission to upload new compounds and/or update experimental/theoretical data (e.g., activities against new targets tested) related to already stored compounds. In order to facilitate scientific collaborations, all available data are connected to the corresponding owner's email address (available for registered users only). The Chemotheca web site is accessible at http://chemotheca.unicz.it.

  2. Pyrrole-Based Macrocyclic Small-Molecule Inhibitors That Target Oocyte Maturation.

    PubMed

    Gunasekaran, Pethaiah; Lee, So-Rim; Jeong, Seung-Min; Kwon, Jeong-Woo; Takei, Toshiki; Asahina, Yuya; Bang, Geul; Kim, Seongnyeon; Ahn, Mija; Ryu, Eun Kyung; Kim, Hak Nam; Nam, Ki-Yub; Shin, Song Yub; Hojo, Hironobu; Namgoong, Suk; Kim, Nam-Hyung; Bang, Jeong Kyu

    2017-04-20

    Polo-like kinase 1 (PLK1) plays crucial roles in various stages of oocyte maturation. Recently, we reported that the peptidomimetic compound AB103-8, which targets the polo box domain (PBD) of PLK1, affects oocyte meiotic maturation and the resumption of meiosis. However, to overcome the drawbacks of peptidic compounds, we designed and synthesized a series of pyrrole-based small-molecule inhibitors and tested them for their effects on the rates of porcine oocyte maturation. Among them, the macrocyclic compound (E/Z)-3-(2,16-dioxo-19-(4-phenylbutyl)-3,19-diazabicyclo[15.2.1]icosa-1(20),6,17-trien-3-yl)propyl dihydrogen phosphate (4) showed the highest inhibitory activity with enhanced inhibition against embryonic blastocyst formation. Furthermore, the addition of this compound to culture media efficiently blocked the maturation of porcine and mouse oocytes, indicating its ability to penetrate the zona pellucida and cell membrane. We investigated mouse oocytes treated with compound 4, and the resulting impairment of spindle formation confirmed PLK1 inhibition. Finally, molecular modeling studies with PLK1 PBD also confirmed the presence of significant interactions between compound 4 and PLK1 PBD binding pocket residues, including those in the phosphate, tyrosine-rich, and pyrrolidine binding pockets. Collectively, these results suggest that the macrocyclic compound 4 may serve as a promising template for the development of novel contraceptive agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Improvement of the Pharmacokinetics and In Vivo Antibacterial Efficacy of a Novel Type IIa Topoisomerase Inhibitor by Formulation in Liposomes

    PubMed Central

    Newman, Joseph; Goteti, Kosalaram; Beaudoin, Marie-Eve; Harrison, Rane; Hopkins, Sussie; Agrawal, Nikunj; Rivin, Olga

    2013-01-01

    Several useful properties of liposome-based formulations of various existing antibacterial drugs have been reported. These properties include lower MICs, improved pharmacokinetics, lower toxicity, selective distribution to infected tissues, and enhanced in vivo efficacy. Here we report in vivo studies of a liposomal formulation of a member of a novel class of antibacterial type II topoisomerase inhibitors, others of which have progressed to early phases of clinical trials. The free (i.e., nonliposomal) compound has broad-spectrum MICs but suboptimal pharmacokinetics in rats and mice, characterized by a high volume of distribution and rapid clearance. The liposomal formulation of the compound had essentially unchanged MICs but greatly reduced volume of distribution and clearance in rats and mice. In an in vivo mouse model of Staphylococcus aureus infection of one thigh, the liposomal compound localized preferentially to the infected thigh, whereas the free compound showed no preference for the infected versus the uninfected thigh. Most importantly, the liposomal compound had enhanced efficacy at clearing the infection compared with the free compound. Delivery of this class of compounds as liposomal formulations may offer clinical advantages compared with free compounds. PMID:23877679

  4. Comparing magnetostructural transitions in Ni50Mn18.75Cu6.25Ga25 and Ni49.80Mn34.66In15.54 Heusler alloys

    NASA Astrophysics Data System (ADS)

    Dubenko, Igor; Granovsky, Alexander; Lahderanta, Erkki; Kashirin, Maxim; Makagonov, Vladimir; Aryal, Anil; Quetz, Abdiel; Pandey, Sudip; Rodionov, Igor; Samanta, Tapas; Stadler, Shane; Mazumdar, Dipanjan; Ali, Naushad

    2016-03-01

    The crystal structure, magnetic and transport properties, including resistivity and thermopower, of Ni50Mn18.75Cu6.25Ga25 and Ni49.80Mn34.66In15.54 Heusler alloys were studied in the (10-400) K temperature interval. We show that their physical properties are remarkably different, thereby pointing to different origin of their magnetostructural transition (MST). A Seebeck coefficient (S) was found to pass minimum of about -20 μV/K in respect of temperature for both compounds. It was shown that MST observed for both compounds results in jump-like changes in S for Ga-based compound and jump in resistivity of about 20 and 200 μΩ cm for Ga and In -based compounds, respectively. The combined analyzes of the present results with that from literature show that the density of states at the Fermi level does not change strongly at the MST in the case of Ni-Mn-In alloys as compared to that of Ni-Mn-Ga.

  5. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review

    PubMed Central

    Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai

    2017-01-01

    With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p-nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection. PMID:28956857

  6. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review.

    PubMed

    Zhou, Tuoyu; Han, Huawen; Liu, Pu; Xiong, Jian; Tian, Fake; Li, Xiangkai

    2017-09-28

    With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC)-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA) to water quality detection (e.g., COD, BOD). When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p -nitrophenol (PNP), formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection.

  7. Access to age-appropriate essential medicines: a retrospective survey of compounding of medicines for children in hospitals in Nigeria and implications for policy development.

    PubMed

    Orubu, Ebiowei Samuel F; Okwelogu, Chinyere; Opanuga, Olabisi; Nunn, Tony; Tuleu, Catherine

    2017-03-01

    Policies to improve access to medicines for children in Nigeria do not include compounding as a source of medicines. Compounding is often applied as a last resort in health institutions to provide age-appropriate formulations usually for oral use in young children; but it bears some risk. Some countries have adopted policies aimed at reducing the risk based on available data. There is not much data for Nigeria. This retrospective study examined compounding records from January to December 2011 in a sample of seven hospitals to describe what medicines for oral use were commonly compounded in Nigeria. It then determined if these medicines were commercially available in forms suitable for use in children in selected countries—the United Kingdom, United States and India. The study found that out of 2845 items compounded, over 65% were medicines for cardiovascular conditions, diarrhoea or tuberculosis. The main reason (96%, n = 2399) for compounding was the unavailability of age-appropriate formulations. Medicines were almost all compounded using simple syrup, vitamin C or vitamin B syrups as suspending vehicles. Final products were all oral liquids. Comprehensive stability testing was not reported for the products. Almost all of the commonly compounded medicines were found to be commercially available in dosage forms suitable for use in children in the selected countries. These medicines were all listed in the World Health Organization Essential Medicines List for children as well as in the current edition of the Essential Medicines List of Nigeria. The fact that they were compounded highlights the need for improved access to age-appropriate dosage forms for children in Nigeria. The study recommends policy expansion through a three-pronged approach to improving access: increased supply through facilitated importation/accelerated product registration, or in-country manufacturing; rational drug use including therapeutic substitution, and establishment of a national formulary for compounding.

  8. Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: a review.

    PubMed

    Butt, Craig M; Muir, Derek C G; Mabury, Scott A

    2014-02-01

    The study reviews the current state of knowledge regarding the biotransformation of fluorotelomer-based compounds, with a focus on compounds that ultimately degrade to form perfluoroalkyl carboxylates (PFCAs). Most metabolism studies have been performed with either microbial systems or rats and mice, and comparatively few studies have used fish models. Furthermore, biotransformation studies thus far have predominately used the 8:2 fluorotelomer alcohol (FTOH) as the substrate. However, there have been an increasing number of studies investigating 6:2 FTOH biotransformation as a result of industry's transition to shorter-chain fluorotelomer chemistry. Studies with the 8:2 FTOH metabolism universally show the formation of perfluorooctanoate (PFOA) and, to a smaller fraction, perfluorononanoate (PFNA) and lower-chain-length PFCAs. In general, the overall yield of PFOA is low, presumably because of the multiple branches in the biotransformation pathways, including conjugation reactions in animal systems. There have been a few studies of non-FTOH biotransformation, which include polyfluoroalkyl phosphates (PAPs), 8:2 fluorotelomer acrylate (8:2 FTAC), and fluorotelomer carboxylates (FTCAs, FTUCAs). The PAPs compounds and 8:2 FTAC were shown to be direct precursors to FTOHs and thus follow similar degradation pathways. © 2013 SETAC.

  9. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Chemomics-based marker compounds mining and mimetic processing for exploring chemical mechanisms in traditional processing of herbal medicines, a continuous study on Rehmanniae Radix.

    PubMed

    Zhou, Li; Xu, Jin-Di; Zhou, Shan-Shan; Shen, Hong; Mao, Qian; Kong, Ming; Zou, Ye-Ting; Xu, Ya-Yun; Xu, Jun; Li, Song-Lin

    2017-12-29

    Exploring processing chemistry, in particular the chemical transformation mechanisms involved, is a key step to elucidate the scientific basis in traditional processing of herbal medicines. Previously, taking Rehmanniae Radix (RR) as a case study, the holistic chemome (secondary metabolome and glycome) difference between raw and processed RR was revealed by integrating hyphenated chromatographic techniques-based targeted glycomics and untargeted metabolomics. Nevertheless, the complex chemical transformation mechanisms underpinning the holistic chemome variation in RR processing remain to be extensively clarified. As a continuous study, here a novel strategy by combining chemomics-based marker compounds mining and mimetic processing is proposed for further exploring the chemical mechanisms involved in herbal processing. First, the differential marker compounds between raw and processed herbs were rapidly discovered by untargeted chemomics-based mining approach through multivariate statistical analysis of the chemome data obtained by integrated metabolomics and glycomics analysis. Second, the marker compounds were mimetically processed under the simulated physicochemical conditions as in the herb processing, and the final reaction products were chemically characterized by targeted chemomics-based mining approach. Third, the main chemical transformation mechanisms involved were clarified by linking up the original marker compounds and their mimetic processing products. Using this strategy, a set of differential marker compounds including saccharides, glycosides and furfurals in raw and processed RR was rapidly found, and the major chemical mechanisms involved in RR processing were elucidated as stepwise transformations of saccharides (polysaccharides, oligosaccharides and monosaccharides) and glycosides (iridoid glycosides and phenethylalcohol glycosides) into furfurals (glycosylated/non-glycosylated hydroxymethylfurfurals) by deglycosylation and/or dehydration. The research deliverables indicated that the proposed strategy could advance the understanding of RR processing chemistry, and therefore may be considered a promising approach for delving into the scientific basis in traditional processing of herbal medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus – current status

    PubMed Central

    Ganesan, Palanivel; Arulselvan, Palanisamy; Choi, Dong-Kug

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is a major chronic disease that is prevalent worldwide, and it is characterized by an increase in blood glucose, disturbances in the metabolism, and alteration in insulin secretion. Nowadays, food-based therapy has become an important treatment mode for type 2 diabetes, and phytobioactive compounds have gained an increasing amount of attention to this end because they have an effect on multiple biological functions, including the sustained secretion of insulin and regeneration of pancreatic islets cells. However, the poor solubility and lower permeability of these phyto products results in a loss of bioactivity during processing and oral delivery, leading to a significant reduction in the bioavailability of phytobioactive compounds to treat T2DM. Recently, nanotechnological systems have been developed for use as various types of carrier systems to improve the delivery of bioactive compounds and thus obtain a greater bioavailability. Furthermore, carrier systems in most nanodelivery systems are highly biocompatible, with nonimmunologic behavior, a high degree of biodegradability, and greater mucoadhesive strength. Therefore, this review focuses on the various types of nanodelivery systems that can be used for phytobioactive compounds in treating T2DM with greater antidiabetic effects. There is also additional focus on improving the effects of various phytobioactive compounds through nanotechnological delivery to ensure a highly efficient treatment of type 2 diabetes. PMID:28223801

  12. Molecular diversity management strategies for building and enhancement of diverse and focused lead discovery compound screening collections.

    PubMed

    Schuffenhauer, A; Popov, M; Schopfer, U; Acklin, P; Stanek, J; Jacoby, E

    2004-12-01

    This publication describes processes for the selection of chemical compounds for the building of a high-throughput screening (HTS) collection for drug discovery, using the currently implemented process in the Discovery Technologies Unit of the Novartis Institute for Biomedical Research, Basel Switzerland as reference. More generally, the currently existing compound acquisition models and practices are discussed. Our informatics, chemistry and biology-driven compound selection consists of two steps: 1) The individual compounds are filtered and grouped into three priority classes on the basis of their individual structural properties. Substructure filters are used to eliminate or penalize compounds based on unwanted structural properties. The similarity of the structures to reference ligands of the main proven druggable target families is computed, and drug-similar compounds are prioritized for the following diversity analysis. 2) The compounds are compared to the archive compounds and a diversity analysis is performed. This is done separately for the prioritized, regular and penalized compounds with increasingly stringent dissimilarity criterion. The process includes collecting vendor catalogues and monitoring the availability of samples together with the selection and purchase decision points. The development of a corporate vendor catalogue database is described. In addition to the selection methods on a per single molecule basis, selection criteria for scaffold and combinatorial chemistry projects in collaboration with compound vendors are discussed.

  13. The Denver Aerosol Sources and Health (DASH) Study: Overview and Early Findings

    PubMed Central

    Vedal, S.; Hannigan, M.P.; Dutton, S.J.; Miller, S. L.; Milford, J.B.; Rabinovitch, N.; Kim, S.-Y.; Sheppard, L.

    2012-01-01

    Improved understanding of the sources of air pollution that are most harmful could aid in developing more effective measures for protecting human health. The Denver Aerosol Sources and Health (DASH) study was designed to identify the sources of ambient fine particulate matter (PM2.5) that are most responsible for the adverse health effects of short-term exposure to PM 2.5. Daily 24-hour PM2.5 sampling began in July 2002 at a residential monitoring site in Denver, Colorado, using both Teflon and quartz filter samplers. Sampling is planned to continue through 2008. Chemical speciation is being carried out for mass, inorganic ionic compounds (sulfate, nitrate and ammonium), and carbonaceous components, including elemental carbon, organic carbon, temperature-resolved organic carbon fractions and a large array of organic compounds. In addition, water soluble metals were measured daily for 12 months in 2003. A receptor-based source apportionment approach utilizing positive matrix factorization (PMF) will be used to identify PM 2.5 source contributions for each 24-hour period. Based on a preliminary assessment using synthetic data, the proposed source apportionment should be able to identify many important sources on a daily basis, including secondary ammonium nitrate and ammonium sulfate, diesel vehicle exhaust, road dust, wood combustion and vegetative debris. Meat cooking, gasoline vehicle exhaust and natural gas combustion were more challenging for PMF to accurately identify due to high detection limits for certain organic molecular marker compounds. Measurements of these compounds are being improved and supplemented with additional organic molecular marker compounds. The health study will investigate associations between daily source contributions and an array of health endpoints, including daily mortality and hospitalizations and measures of asthma control in asthmatic children. Findings from the DASH study, in addition to being of interest to policymakers, by identifying harmful PM2.5 sources may provide insights into mechanisms of PM effect. PMID:22723735

  14. The Denver Aerosol Sources and Health (DASH) study: Overview and early findings

    NASA Astrophysics Data System (ADS)

    Vedal, S.; Hannigan, M. P.; Dutton, S. J.; Miller, S. L.; Milford, J. B.; Rabinovitch, N.; Kim, S.-Y.; Sheppard, L.

    Improved understanding of the sources of air pollution that are most harmful could aid in developing more effective measures for protecting human health. The Denver Aerosol Sources and Health (DASH) study was designed to identify the sources of ambient fine particulate matter (PM 2.5) that are most responsible for the adverse health effects of short-term exposure to PM 2.5. Daily 24-h PM 2.5 sampling began in July 2002 at a residential monitoring site in Denver, Colorado, using both Teflon and quartz filter samplers. Sampling is planned to continue through 2008. Chemical speciation is being carried out for mass, inorganic ionic compounds (sulfate, nitrate and ammonium), and carbonaceous components, including elemental carbon, organic carbon, temperature-resolved organic carbon fractions and a large array of organic compounds. In addition, water-soluble metals were measured daily for 12 months in 2003. A receptor-based source apportionment approach utilizing positive matrix factorization (PMF) will be used to identify PM 2.5 source contributions for each 24-h period. Based on a preliminary assessment using synthetic data, the proposed source apportionment should be able to identify many important sources on a daily basis, including secondary ammonium nitrate and ammonium sulfate, diesel vehicle exhaust, road dust, wood combustion and vegetative debris. Meat cooking, gasoline vehicle exhaust and natural gas combustion were more challenging for PMF to accurately identify due to high detection limits for certain organic molecular marker compounds. Measurements of these compounds are being improved and supplemented with additional organic molecular marker compounds. The health study will investigate associations between daily source contributions and an array of health endpoints, including daily mortality and hospitalizations and measures of asthma control in asthmatic children. Findings from the DASH study, in addition to being of interest to policymakers, by identifying harmful PM 2.5 sources may provide insights into mechanisms of PM effect.

  15. Arbidol: a quarter-century after. Past, present and future of the original Russian antiviral

    NASA Astrophysics Data System (ADS)

    Balakin, K. V.; Filosa, R.; Lavrenov, S. N.; Mkrtchayn, A. S.; Nawrozkij, M. B.; Novakov, I. A.

    2018-06-01

    The present review is concerned with the synthesis and structure–activity relationship studies of Arbidol and its structural analogues. The latter are roughly divided into several unequal parts: indole- and benzofuran-based compounds, benzimidazole and imidazopyridine bioisosteres and ring-expanded quinoline derivatives. Much attention is focused on various types of antiviral activity of the above-mentioned Arbidol congeners, as well as of the parent compound itself. Features of Arbidol synthesis and metabolic changes are also discussed. The bibliography includes 166 references.

  16. Fluorescence Turn-on Enantioselective Recognition of both Chiral Acidic Compounds and α-Amino Acids by a Chiral Tetraphenylethylene Macrocycle Amine.

    PubMed

    Feng, Hai-Tao; Zhang, Xing; Zheng, Yan-Song

    2015-08-21

    New chiral tetraphenylethylene (TPE) macrocycles bearing optically pure amine groups were synthesized and found to have a discriminating ability between the two enantiomers of not only chiral acidic compounds but also α-amino acids by enantioselective aggregation and aggregation-induced emission (AIE) effects. NMR spectra, including 2D-NOESY, disclosed that the host-guest interaction of the macrocycle receptor played a key role in addition to the acid-base interactions.

  17. Methods and apparatuses for deoxygenating pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Lance Awender; Brandvold, Timothy A.; Frey, Stanley Joseph

    Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactormore » effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.« less

  18. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630.

    PubMed

    DeLorenzo, Drew M; Henson, William R; Moon, Tae Seok

    2017-10-20

    Rhodococcus opacus PD630 is a nonmodel, Gram-positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: (1) six fluorescent reporters for quantifying promoter output, (2) three chemically inducible promoters for variable gene expression, and (3) two classes of metabolite sensors derived from native R. opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.

  19. A refined method for the calculation of the Non-Methane Volatile Organic Compound emission estimate from Domestic Solvent Usage in Ireland from 1992 to 2014 - A case study for Ireland

    NASA Astrophysics Data System (ADS)

    Barry, Stephen; O'Regan, Bernadette

    2016-08-01

    This study describes a new methodology to calculate Non-Methane Volatile Organic Compounds from Domestic Solvent Use including Fungicides over the period 1992-2014. Improved emissions data compiled at a much more refined level can help policy-makers develop more effective policy's to address environmental issues. However, a number of problems were found when member states attempt to use national statistics for Domestic Solvent Use including Fungicides. For instance, EMEP/EEA (2013) provides no guidance regarding which activity data should be used, resulting in emission estimates being potentially inconsistent and un-comparable. Also, previous methods and emission factors described in the EMEP/EEA (2013) guidebook do not exactly match data collected by state agencies. This makes using national statistics difficult. In addition, EMEP/EEA (2013) use broader categories than necessary (e.g. Cosmetics Aerosol/Non Aerosol) to estimate emissions while activity data is available at a more refined level scale (e.g. Personal Cleaning Products, Hair Products, Cosmetics, Deodorants and Perfumes). This can make identifying the drivers of emissions unclear. This study builds upon Tzanidakis et al. (2012) whereby it provides a method for collecting activity data from state statistics, developed country specific emission factors based on a survey of 177 Irish products and importantly, used a new method to account for the volatility of organic compounds found in commonly available domestic solvent containing products. This is the first study to account for volatility based on the characteristics of organic compounds and therefore is considered a more accurate method of accounting for emissions from this emission source. The results of this study can also be used to provide a simple method for other member parties to account for the volatility of organic compounds using sectorial adjustment factors described here. For comparison purposes, emission estimates were calculated using the Tier 1 approach currently used in the emission inventory, using activity data and emission factors unadjusted for volatility and adjusted for volatility. The unadjusted estimate is useful, because it demonstrates the failure to properly account for volatility can produce significantly over-estimated emissions from the Domestic Solvent Usage sector. Unadjusted emissions were found to be 30% lower than the EMEP/EEA (2013) Tier 1 period in 2014. Emissions were found to reduce a further 20.9% when the volatility of the organic compounds was included. This new method shows that member parties may be significantly overestimating emissions from Domestic Solvent Use including pesticides and further work should include refining organic compound content and the sectorial adjustment factor of products.

  20. Recent advances in hopanoids analysis: Quantification protocols overview, main research targets and selected problems of complex data exploration.

    PubMed

    Zarzycki, Paweł K; Portka, Joanna K

    2015-09-01

    Pentacyclic triterpenoids, particularly hopanoids, are organism-specific compounds and are generally considered as useful biomarkers that allow fingerprinting and classification of biological, environmental and geological samples. Simultaneous quantification of various hopanoids together with battery of related non-polar and low-molecular mass compounds may provide principal information for geochemical and environmental research focusing on both modern and ancient investigations. Target compounds can be derived from microbial biomass, water columns, sediments, coals, crude fossils or rocks. This create number of analytical problems due to different composition of the analytical matrix and interfering compounds and therefore, proper optimization of quantification protocols for such biomarkers is still the challenge. In this work we summarizing typical analytical protocols that were recently applied for quantification of hopanoids like compounds from different samples. Main steps including components of interest extraction, pre-purification, fractionation, derivatization and quantification involving gas (1D and 2D) as well as liquid separation techniques (liquid-liquid extraction, solid-phase extraction, planar and low resolution column chromatography, high-performance liquid chromatography) are described and discussed from practical point of view, mainly based on the experimental papers that were published within last two years, where significant increase in hopanoids research was noticed. The second aim of this review is to describe the latest research trends concerning determination of hopanoids and related low-molecular mass lipids analyzed in various samples including sediments, rocks, coals, crude oils and plant fossils as well as stromatolites and microbial biomass cultivated under different conditions. It has been found that majority of the most recent papers are based on uni- or bivariate approach for complex data analysis. Data interpretation involves number of physicochemical parameters and hopanoids quantities or given biomarkers mass ratios derived from high-throughput separation and detection systems, typically GC-MS and HPLC-MS. Based on quantitative data reported in recently published experimental works it has been demonstrated that multivariate data analysis using e.g. principal components computations may significantly extend our knowledge concerning proper biomarkers selection and samples classification by means of hopanoids and related non-polar compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    PubMed Central

    Adhikari, Bal-Ram; Govindhan, Maduraiveeran; Chen, Aicheng

    2015-01-01

    Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics. PMID:26404304

  2. Cancer and non-cancer health effects from food contaminant exposures for children and adults in California: a risk assessment

    PubMed Central

    2012-01-01

    Background In the absence of current cumulative dietary exposure assessments, this analysis was conducted to estimate exposure to multiple dietary contaminants for children, who are more vulnerable to toxic exposure than adults. Methods We estimated exposure to multiple food contaminants based on dietary data from preschool-age children (2–4 years, n=207), school-age children (5–7 years, n=157), parents of young children (n=446), and older adults (n=149). We compared exposure estimates for eleven toxic compounds (acrylamide, arsenic, lead, mercury, chlorpyrifos, permethrin, endosulfan, dieldrin, chlordane, DDE, and dioxin) based on self-reported food frequency data by age group. To determine if cancer and non-cancer benchmark levels were exceeded, chemical levels in food were derived from publicly available databases including the Total Diet Study. Results Cancer benchmark levels were exceeded by all children (100%) for arsenic, dieldrin, DDE, and dioxins. Non-cancer benchmarks were exceeded by >95% of preschool-age children for acrylamide and by 10% of preschool-age children for mercury. Preschool-age children had significantly higher estimated intakes of 6 of 11 compounds compared to school-age children (p<0.0001 to p=0.02). Based on self-reported dietary data, the greatest exposure to pesticides from foods included in this analysis were tomatoes, peaches, apples, peppers, grapes, lettuce, broccoli, strawberries, spinach, dairy, pears, green beans, and celery. Conclusions Dietary strategies to reduce exposure to toxic compounds for which cancer and non-cancer benchmarks are exceeded by children vary by compound. These strategies include consuming organically produced dairy and selected fruits and vegetables to reduce pesticide intake, consuming less animal foods (meat, dairy, and fish) to reduce intake of persistent organic pollutants and metals, and consuming lower quantities of chips, cereal, crackers, and other processed carbohydrate foods to reduce acrylamide intake. PMID:23140444

  3. A knowledge base of the chemical compounds of intermediary metabolism.

    PubMed

    Karp, P D

    1992-08-01

    This paper describes a publicly available knowledge base of the chemical compounds involved in intermediary metabolism. We consider the motivations for constructing a knowledge base of metabolic compounds, the methodology by which it was constructed, and the information that it currently contains. Currently the knowledge base describes 981 compounds, listing for each: synonyms for its name, a systematic name, CAS registry number, chemical formula, molecular weight, chemical structure and two-dimensional display coordinates for the structure. The Compound Knowledge Base (CompoundKB) illustrates several methodological principles that should guide the development of biological knowledge bases. I argue that biological datasets should be made available in multiple representations to increase their accessibility to end users, and I present multiple representations of the CompoundKB (knowledge base, relational data base and ASN. 1 representations). I also analyze the general characteristics of these representations to provide an understanding of their relative advantages and disadvantages. Another principle is that the error rate of biological data bases should be estimated and documented-this analysis is performed for the CompoundKB.

  4. Effectively identifying compound-protein interactions by learning from positive and unlabeled examples.

    PubMed

    Cheng, Zhanzhan; Zhou, Shuigeng; Wang, Yang; Liu, Hui; Guan, Jihong; Chen, Yi-Ping Phoebe

    2016-05-18

    Prediction of compound-protein interactions (CPIs) is to find new compound-protein pairs where a protein is targeted by at least a compound, which is a crucial step in new drug design. Currently, a number of machine learning based methods have been developed to predict new CPIs in the literature. However, as there is not yet any publicly available set of validated negative CPIs, most existing machine learning based approaches use the unknown interactions (not validated CPIs) selected randomly as the negative examples to train classifiers for predicting new CPIs. Obviously, this is not quite reasonable and unavoidably impacts the CPI prediction performance. In this paper, we simply take the unknown CPIs as unlabeled examples, and propose a new method called PUCPI (the abbreviation of PU learning for Compound-Protein Interaction identification) that employs biased-SVM (Support Vector Machine) to predict CPIs using only positive and unlabeled examples. PU learning is a class of learning methods that leans from positive and unlabeled (PU) samples. To the best of our knowledge, this is the first work that identifies CPIs using only positive and unlabeled examples. We first collect known CPIs as positive examples and then randomly select compound-protein pairs not in the positive set as unlabeled examples. For each CPI/compound-protein pair, we extract protein domains as protein features and compound substructures as chemical features, then take the tensor product of the corresponding compound features and protein features as the feature vector of the CPI/compound-protein pair. After that, biased-SVM is employed to train classifiers on different datasets of CPIs and compound-protein pairs. Experiments over various datasets show that our method outperforms six typical classifiers, including random forest, L1- and L2-regularized logistic regression, naive Bayes, SVM and k-nearest neighbor (kNN), and three types of existing CPI prediction models. Source code, datasets and related documents of PUCPI are available at: http://admis.fudan.edu.cn/projects/pucpi.html.

  5. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burtron Davis; Gary Jacobs; Wenping Ma

    The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on ironmore » and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.« less

  6. Discovery of potent and novel smoothened antagonists via structure-based virtual screening and biological assays.

    PubMed

    Lu, Wenfeng; Zhang, Dihua; Ma, Haikuo; Tian, Sheng; Zheng, Jiyue; Wang, Qin; Luo, Lusong; Zhang, Xiaohu

    2018-05-23

    The Hedgehog (Hh) signaling pathway plays a critical role in controlling patterning, growth and cell migration during embryonic development. Aberrant activation of Hh signaling has been linked to tumorigenesis in various cancers, such as basal cell carcinoma (BCC) and medulloblastoma. As a key member of the Hh pathway, the Smoothened (Smo) receptor, a member of the G protein-coupled receptor (GPCR) family, has emerged as an attractive therapeutic target for the treatment and prevention of human cancers. The recent determination of several crystal structures of Smo in complex with different antagonists offers the possibility to perform structure-based virtual screening for discovering potent Smo antagonists with distinct chemical scaffolds. In this study, based on the two Smo crystal complexes with the best capacity to distinguish the known Smo antagonists from decoys, the molecular docking-based virtual screening was conducted to identify promising Smo antagonists from ChemDiv library. A total of 21 structurally novel and diverse compounds were selected for experimental testing, and six of them exhibited significant inhibitory activity against the Hh pathway activation (IC 50  < 10 μM) in a GRE (Gli-responsive element) reporter gene assay. Specifically, the most potent compound (compound 20: 47 nM) showed comparable Hh signaling inhibition to vismodegib (46 nM). Compound 20 was further confirmed to be a potent Smo antagonist in a fluorescence based competitive binding assay. Optimization using substructure searching method led to the discovery of 12 analogues of compound 20 with decent Hh pathway inhibition activity, including four compounds with IC 50 lower than 1 μM. The important residues uncovered by binding free energy calculation (MM/GBSA) and binding free energy decomposition were highlighted and discussed. These findings suggest that the novel scaffold afforded by compound 20 can be used as a good starting point for further modification/optimization and the clarified interaction patterns may also guide us to find more potent Smo antagonists. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. A Flexible Workflow for Automated Bioluminescent Kinase Selectivity Profiling.

    PubMed

    Worzella, Tracy; Butzler, Matt; Hennek, Jacquelyn; Hanson, Seth; Simdon, Laura; Goueli, Said; Cowan, Cris; Zegzouti, Hicham

    2017-04-01

    Kinase profiling during drug discovery is a necessary process to confirm inhibitor selectivity and assess off-target activities. However, cost and logistical limitations prevent profiling activities from being performed in-house. We describe the development of an automated and flexible kinase profiling workflow that combines ready-to-use kinase enzymes and substrates in convenient eight-tube strips, a bench-top liquid handling device, ADP-Glo Kinase Assay (Promega, Madison, WI) technology to quantify enzyme activity, and a multimode detection instrument. Automated methods were developed for kinase reactions and quantification reactions to be assembled on a Gilson (Middleton, WI) PIPETMAX, following standardized plate layouts for single- and multidose compound profiling. Pipetting protocols were customized at runtime based on user-provided information, including compound number, increment for compound titrations, and number of kinase families to use. After the automated liquid handling procedures, a GloMax Discover (Promega) microplate reader preloaded with SMART protocols was used for luminescence detection and automatic data analysis. The functionality of the automated workflow was evaluated with several compound-kinase combinations in single-dose or dose-response profiling formats. Known target-specific inhibitions were confirmed. Novel small molecule-kinase interactions, including off-target inhibitions, were identified and confirmed in secondary studies. By adopting this streamlined profiling process, researchers can quickly and efficiently profile compounds of interest on site.

  8. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    Improvements in fuel economy for a broad spectrum of truck engines and waste heat utilization concepts are evaluated and compared. The engines considered are the diesel, spark ignition, gas turbine, and Stirling. The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions were based on fuel-air cycle analyses, computer simulation, and engine test data. The results reveal that diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either is approximately doubled if applied to an adiabatic diesel.

  9. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchangermore » optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.« less

  10. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay.

    PubMed

    Adcock, Robert S; Chu, Yong-Kyu; Golden, Jennifer E; Chung, Dong-Hoon

    2017-02-01

    Recent studies have clearly underscored the association between Zika virus (ZIKV) and severe neurological diseases such as microcephaly and Guillain-Barre syndrome. Given the historical complacency surrounding this virus, however, no significant antiviral screenings have been performed to specifically target ZIKV. As a result, there is an urgent need for a validated screening method and strategy that is focused on highlighting potential anti-ZIKV inhibitors that can be further advanced via rigorous validation and optimization. To address this critical gap, we sought to test whether a cell-based assay that measures protection from the ZIKV-induced cytopathic effect could serve as a high-throughput screen assay for discovering novel anti-ZIKV inhibitors. Employing this approach, we tested the anti-ZIKV activity of previously known broad-spectrum antiviral compounds and discovered several compounds (e.g., NITD008, SaliPhe, and CID 91632869) with anti-ZIKV activity. Interestingly, while GTP synthesis inhibitors (e.g., ribavirin or mycophenolic acid) were too toxic or showed no anti-ZIKV activity (EC 50  > 50 μM), ZIKV was highly susceptible to pyrimidine synthesis inhibitors (e.g., brequinar) in the assay. We amended the assay into a high-throughput screen (HTS)-compatible 384-well format and then screened the NIH Clinical Compound Collection library, which includes a total of 727 compounds organized, using an 8-point dose response format with two Zika virus strains (MR766 and PRVABC59, a recent human isolate). The screen discovered 6-azauridine and finasteride as potential anti-ZIKV inhibitors with EC 50 levels of 3.18 and 9.85 μM for MR766, respectively. We further characterized the anti-ZIKV activity of 6-azauridine and several pyrimidine synthesis inhibitors such as brequinar in various secondary assays including an antiviral spectrum test within flaviviruses and alphaviruses, Western blot (protein), real-time PCR (RNA), and plaque reduction assays (progeny virus). From these assays, we discovered that brequinar has potent anti-ZIKV activity. Our results show that a broad anti-ZIKV screen of compound libraries with our CPE-based HTS assay will reveal multiple chemotypes that could be pursued as lead compounds for therapies to treat ZIKV-associated diseases or as molecular probes to study the biology of the ZIKV replication mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Measurement and Modeling of Setschenow Constants for Selected Hydrophilic Compounds in NaCl and CaCl2 Simulated Carbon Storage Brines.

    PubMed

    Burant, Aniela; Lowry, Gregory V; Karamalidis, Athanasios K

    2017-06-20

    Carbon capture, utilization, and storage (CCUS), a climate change mitigation strategy, along with unconventional oil and gas extraction, generates enormous volumes of produced water containing high salt concentrations and a litany of organic compounds. Understanding the aqueous solubility of organic compounds related to these operations is important for water treatment and reuse alternatives, as well as risk assessment purposes. The well-established Setschenow equation can be used to determine the effect of salts on aqueous solubility. However, there is a lack of reported Setschenow constants, especially for polar organic compounds. In this study, the Setschenow constants for selected hydrophilic organic compounds were experimentally determined, and linear free energy models for predicting the Setschenow constant of organic chemicals in concentrated brines were developed. Solid phase microextraction was employed to measure the salting-out behavior of six selected hydrophilic compounds up to 5 M NaCl and 2 M CaCl 2 and in Na-Ca-Cl brines. All compounds, which include phenol, p-cresol, hydroquinone, pyrrole, hexanoic acid, and 9-hydroxyfluorene, exhibited log-linear behavior up to these concentrations, meaning Setschenow constants previously measured at low salt concentrations can be extrapolated up to high salt concentrations for hydrophilic compounds. Setschenow constants measured in NaCl and CaCl 2 brines are additive for the compounds measured here; meaning Setschenow constants measured in single salt solutions can be used in multiple salt solutions. The hydrophilic compounds in this study were selected to elucidate differences in salting-out behavior based on their chemical structure. Using data from this study, as well as literature data, linear free energy relationships (LFERs) for prediction of NaCl, CaCl 2 , LiCl, and NaBr Setschenow constants were developed and validated. Two LFERs were improved. One LFER uses the Abraham solvation parameters, which include the index of refraction of the organic compound, organic compound's polarizability, hydrogen bonding acidity and basicity of the organic compound, and the molar volume of the compound. The other uses an octanol-water partitioning coefficient to predict NaCl Setschenow constants. Improved models from this study now include organic compounds that are structurally and chemically more diverse than the previous models. The CaCl 2 , LiCl, and NaBr single parameter LFERs use concepts from the Hofmeister series to predict new, respective Setschenow constants from NaCl Setschenow constants. The Setschenow constants determined here, as well as the LFERs developed, can be incorporated into CCUS reactive transport models to predict aqueous solubility and partitioning coefficients of organic compounds. This work also has implications for beneficial reuse of water from CCUS; this can aide in determining treatment technologies for produced waters.

  12. Environmentally Friendly Procedure Based on Supercritical Fluid Chromatography and Tandem Mass Spectrometry Molecular Networking for the Discovery of Potent Antiviral Compounds from Euphorbia semiperfoliata.

    PubMed

    Nothias, Louis-Félix; Boutet-Mercey, Stéphanie; Cachet, Xavier; De La Torre, Erick; Laboureur, Laurent; Gallard, Jean-François; Retailleau, Pascal; Brunelle, Alain; Dorrestein, Pieter C; Costa, Jean; Bedoya, Luis M; Roussi, Fanny; Leyssen, Pieter; Alcami, José; Paolini, Julien; Litaudon, Marc; Touboul, David

    2017-10-27

    A supercritical fluid chromatography-based targeted purification procedure using tandem mass spectrometry and molecular networking was developed to analyze, annotate, and isolate secondary metabolites from complex plant extract mixture. This approach was applied for the targeted isolation of new antiviral diterpene esters from Euphorbia semiperfoliata whole plant extract. The analysis of bioactive fractions revealed that unknown diterpene esters, including jatrophane esters and phorbol esters, were present in the samples. The purification procedure using semipreparative supercritical fluid chromatography led to the isolation and identification of two new jatrophane esters (13 and 14) and one known (15) and three new 4-deoxyphorbol esters (16-18). The structure and absolute configuration of compound 16 were confirmed by X-ray crystallography. This compound was found to display antiviral activity against Chikungunya virus (EC 50 = 0.45 μM), while compound 15 proved to be a potent and selective inhibitor of HIV-1 replication in a recombinant virus assay (EC 50 = 13 nM). This study showed that a supercritical fluid chromatography-based protocol and molecular networking can facilitate and accelerate the discovery of bioactive small molecules by targeting molecules of interest, while minimizing the use of toxic solvents.

  13. Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3.

    PubMed

    Bonificio, W D; Clarke, D R

    2014-11-01

    Tellurium-based devices, such as photovoltaic (PV) modules and thermoelectric generators, are expected to play an increasing role in renewable energy technologies. Tellurium, however, is one of the scarcest elements in the earth's crust, and current production and recycling methods are inefficient and use toxic chemicals. This study demonstrates an alternative, bacterially mediated tellurium recovery process. We show that the hydrothermal vent microbe Pseudoalteromonas sp. strain EPR3 can convert tellurium from a wide variety of compounds, industrial sources and devices into metallic tellurium and a gaseous tellurium species. These compounds include metallic tellurium (Te(0)), tellurite (TeO3(2-)), copper autoclave slime, tellurium dioxide (TeO2), tellurium-based PV material (cadmium telluride, CdTe) and tellurium-based thermoelectric material (bismuth telluride, Bi2Te3). Experimentally, this was achieved by incubating these tellurium sources with the EPR3 in both solid and liquid media. Despite the fact that many of these tellurium compounds are considered insoluble in aqueous solution, they can nonetheless be transformed by EPR3, suggesting the existence of a steady state soluble tellurium concentration during tellurium transformation. These experiments provide insights into the processes of tellurium precipitation and volatilization by bacteria, and their implications on tellurium production and recycling. © 2014 The Society for Applied Microbiology.

  14. Recovering actives in multi-antitarget and target design of analogs of the myosin II inhibitor blebbistatin

    NASA Astrophysics Data System (ADS)

    Roman, Bart I.; Guedes, Rita C.; Stevens, Christian V.; García-Sosa, Alfonso T.

    2018-05-01

    In multitarget drug design, it is critical to identify active and inactive compounds against a variety of targets and antitargets. Multitarget strategies thus test the limits of available technology, be that in screening large databases of compounds versus a large number of targets, or in using in silico methods for understanding and reliably predicting these pharmacological outcomes. In this paper, we have evaluated the potential of several in silico approaches to predict the target, antitarget and physicochemical profile of (S)-blebbistatin, the best-known myosin II ATPase inhibitor, and a series of analogs thereof. Standard and augmented structure-based design techniques could not recover the observed activity profiles. A ligand-based method using molecular fingerprints was, however, able to select actives for myosin II inhibition. Using further ligand- and structure-based methods, we also evaluated toxicity through androgen receptor binding, affinity for an array of antitargets and the ADME profile (including assay-interfering compounds) of the series. In conclusion, in the search for (S)-blebbistatin analogs, the dissimilarity distance of molecular fingerprints to known actives and the computed antitarget and physicochemical profile of the molecules can be used for compound design for molecules with potential as tools for modulating myosin II and motility-related diseases.

  15. Automated Solid Phase Extraction (SPE) LC/NMR Applied to the Structural Analysis of Extractable Compounds from a Pharmaceutical Packaging Material of Construction.

    PubMed

    Norwood, Daniel L; Mullis, James O; Davis, Mark; Pennino, Scott; Egert, Thomas; Gonnella, Nina C

    2013-01-01

    The structural analysis (i.e., identification) of organic chemical entities leached into drug product formulations has traditionally been accomplished with techniques involving the combination of chromatography with mass spectrometry. These include gas chromatography/mass spectrometry (GC/MS) for volatile and semi-volatile compounds, and various forms of liquid chromatography/mass spectrometry (LC/MS or HPLC/MS) for semi-volatile and relatively non-volatile compounds. GC/MS and LC/MS techniques are complementary for structural analysis of leachables and potentially leachable organic compounds produced via laboratory extraction of pharmaceutical container closure/delivery system components and corresponding materials of construction. Both hyphenated analytical techniques possess the separating capability, compound specific detection attributes, and sensitivity required to effectively analyze complex mixtures of trace level organic compounds. However, hyphenated techniques based on mass spectrometry are limited by the inability to determine complete bond connectivity, the inability to distinguish between many types of structural isomers, and the inability to unambiguously determine aromatic substitution patterns. Nuclear magnetic resonance spectroscopy (NMR) does not have these limitations; hence it can serve as a complement to mass spectrometry. However, NMR technology is inherently insensitive and its ability to interface with chromatography has been historically challenging. This article describes the application of NMR coupled with liquid chromatography and automated solid phase extraction (SPE-LC/NMR) to the structural analysis of extractable organic compounds from a pharmaceutical packaging material of construction. The SPE-LC/NMR technology combined with micro-cryoprobe technology afforded the sensitivity and sample mass required for full structure elucidation. Optimization of the SPE-LC/NMR analytical method was achieved using a series of model compounds representing the chemical diversity of extractables. This study demonstrates the complementary nature of SPE-LC/NMR with LC/MS for this particular pharmaceutical application. The identification of impurities leached into drugs from the components and materials associated with pharmaceutical containers, packaging components, and materials has historically been done using laboratory techniques based on the combination of chromatography with mass spectrometry. Such analytical techniques are widely recognized as having the selectivity and sensitivity required to separate the complex mixtures of impurities often encountered in such identification studies, including both the identification of leachable impurities as well as potential leachable impurities produced by laboratory extraction of packaging components and materials. However, while mass spectrometry-based analytical techniques have limitations for this application, newer analytical techniques based on the combination of chromatography with nuclear magnetic resonance spectroscopy provide an added dimension of structural definition. This article describes the development, optimization, and application of an analytical technique based on the combination of chromatography and nuclear magnetic resonance spectroscopy to the identification of potential leachable impurities from a pharmaceutical packaging material. The complementary nature of the analytical techniques for this particular pharmaceutical application is demonstrated.

  16. Novel and rare prenyllipids - Occurrence and biological activity.

    PubMed

    Szymańska, Renata; Kruk, Jerzy

    2018-01-01

    The data presented indicate that there is a variety of unique prenyllipids, often of very limited taxonomic distribution, whose origin, biosynthesis, metabolism and biological function deserves to be elucidated. These compounds include tocoenols, tocochromanol esters, tocochromanol acids, plastoquinones and ubiquinones. Additionally, based on the available data, it can be assumed that there are still unrecognized prenyllipids, like prenylquinols fatty acid esters of the hydroquinone ring, including prenylquinol phosphates, and others, whose biological function might be of great importance. Our knowledge of these compounds is not only important from the scientific point of view, but may also be of practical significance to medicine, pharmacy or cosmetics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Measurement of infrared refractive indices of organic and organophosphorous compounds for optical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonkyn, Russell G.; Danby, Tyler O.; Birnbaum, Jerome C.

    The complex optical refractive index contains the optical constants, n(more » $$\\tilde{u}$$)and k($$\\tilde{u}$$), which correspond to the dispersion and absorption of light within a medium, respectively. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. We have developed improved protocols based on the use of multiple path lengths to determine the optical constants for dozens of liquids, including organic and organophosphorous compounds. Detailed description of the protocols to determine the infrared indices will be presented, along with preliminary results using the constants with their applications to optical modeling.« less

  18. Chemiluminescence Resonance Energy Transfer-based Detection for Microchip Electrophoresis

    PubMed Central

    Huang, Yong; Shi, Ming; Liu, Rongjun

    2010-01-01

    Since the channels in micro- and nanofluidic devices are extremely small, a sensitive detection is required following microchip electrophoresis (MCE). This work describes a highly sensitive and yet universal detection scheme based on chemiluminescence resonance energy transfer (CRET) for MCE. It was found that an efficient CRET occurred between a luminol donor and a CdTe quantum dot (QD) acceptor in the luminol-NaBrO-QD system, and that it was sensitively suppressed by the presence of certain organic compounds of biological interest including biogenic amines and thiols, amino acids, organic acids, and steroids. These findings allowed developing sensitive MCE-CL assays for the tested compounds. The proposed MCE-CL methods showed desired analytical figures of merit such as a wide concentration range of linear response. Detection limits obtained were ~10−9 M for biogenic amines including dopamine and epinephrine, and ~ 10−8 M for biogenic thiols (e.g. glutathione and acetylcysteine), organic acids (i.e. ascorbic acid and uric acid), estrogens, and native amino acids. These were 10 to 1000 times more sensitive than those of previously reported MCE-based methods with chemiluminescence, electrochemical, or laser induced fluorescence detection for quantifying corresponding compounds. To evaluate the applicability of the present MCE-CL method for analyzing real biological samples, it was used to determine amino acids in individual human red blood cells. Nine amino acids including Lys, Ser, Ala, Glu, Trp, etc. were detected. The contents ranged from 3 to 31 amol /cell. The assay proved to be simple, quick, reproducible, and very sensitive. PMID:20121202

  19. Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea.

    PubMed

    Karuppiah, Valliappan; Li, Yingxin; Sun, Wei; Feng, Guofang; Li, Zhiyong

    2015-07-01

    Phenazines represent a large group of nitrogen-containing heterocyclic compounds produced by the diverse group of bacteria including actinobacteria. In this study, a total of 197 actinobacterial strains were isolated from seven different marine sponge species in the South China Sea using five different culture media. Eighty-seven morphologically different actinobacterial strains were selected and grouped into 13 genera, including Actinoalloteichus, Kocuria, Micrococcus, Micromonospora, Mycobacterium, Nocardiopsis, Prauserella, Rhodococcus, Saccharopolyspora, Salinispora, Serinicoccus, and Streptomyces by the phylogenetic analysis of 16S rRNA gene. Based on the screening of phzE genes, ten strains, including five Streptomyces, two Nocardiopsis, one Salinispora, one Micrococcus, and one Serinicoccus were found to be potential for phenazine production. The level of phzE gene expression was highly expressed in Nocardiopsis sp. 13-33-15, 13-12-13, and Serinicoccus sp. 13-12-4 on the fifth day of fermentation. Finally, 1,6-dihydroxy phenazine (1) from Nocardiopsis sp. 13-33-15 and 13-12-13, and 1,6-dimethoxy phenazine (2) from Nocardiopsis sp. 13-33-15 were isolated and identified successfully based on ESI-MS and NMR analysis. The compounds 1 and 2 showed antibacterial activity against Bacillus mycoides SJ14, Staphylococcus aureus SJ51, Escherichia coli SJ42, and Micrococcus luteus SJ47. This study suggests that the integrated approach of gene screening and chemical analysis is an effective strategy to find the target compounds and lays the basis for the production of phenazine from the sponge-associated actinobacteria.

  20. Seeking new anti-cancer agents from autophagy-regulating natural products.

    PubMed

    Hua, Fang; Shang, Shuang; Hu, Zhuo-Wei

    2017-04-01

    Natural products are an important original source of many widely used drugs, including anti-cancer drugs. Early research efforts for seeking anti-cancer therapy from the natural products are mainly focused on the compounds with cytotoxicity capability. The good examples include vinblastine, vincristine, the camptothecin derivatives; topotecan, irinotecan, epipodophyllotoxin derivatives and paclitaxel. In a recent decade, the fundamental progression has been made in the understanding of molecular and cellular mechanisms regarding tumor initiation, metastasis, therapeutic resistance, immune escape, and relapse, which provide a great opportunity for the development of new mechanism-based anticancer drugs, especially drugs against new molecular and cellular targets. Autophagy, a critical cell homeostasis mechanism and promising drug target involved in a verity of human diseases including cancer, can be modulated by many compounds derived from natural products. In this review, we'll give a short introduction of autophagy and discuss the roles of autophagy in the tumorigenesis and progression. And then, we summarize the accumulated evidences to show the anti-tumor effects of several compounds derived from natural products through modulation of autophagy activity.

  1. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer

    PubMed Central

    Huang, Chih-Yang; Ju, Da-Tong; Chang, Chih-Fen; Muralidhar Reddy, P.; Velmurugan, Bharath Kumar

    2017-01-01

    Lung cancer is the leading cause of cancer deaths worldwide, and this makes it an attractive disease to review and possibly improve therapeutic treatment options. Surgery, radiation, chemotherapy, targeted treatments, and immunotherapy separate or in combination are commonly used to treat lung cancer. However, these treatment types may cause different side effects, and chemotherapy-based regimens appear to have reached a therapeutic plateau. Hence, effective, better-tolerated treatments are needed to address and hopefully overcome this conundrum. Recent advances have enabled biologists to better investigate the potential use of natural compounds for the treatment or control of various cancerous diseases. For the past 30 years, natural compounds have been the pillar of chemotherapy. However, only a few compounds have been tested in cancerous patients and only partial evidence is available regarding their clinical effectiveness. Herein, we review the research on using current chemotherapy drugs and natural compounds (Wortmannin and Roscovitine, Cordyceps militaris, Resveratrol, OSU03013, Myricetin, Berberine, Antroquinonol) and the beneficial effects they have on various types of cancers including non-small cell lung cancer. Based on this literature review, we propose the use of these compounds along with chemotherapy drugs in patients with advanced and/or refractory solid tumours. PMID:29130448

  2. Source apportionment of airborne particulate matter using organic compounds as tracers

    NASA Astrophysics Data System (ADS)

    Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

  3. Source apportionment of airborne particulate matter using organic compounds as tracers

    NASA Astrophysics Data System (ADS)

    Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    A chemical mass balance receptor model based on organic compounds has been developed that relates sours; contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution:; from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

  4. Hydrated Cations in the General Chemistry Course.

    ERIC Educational Resources Information Center

    Kauffman, George B.; Baxter, John F., Jr.

    1981-01-01

    Presents selected information regarding the descriptive chemistry of the common metal ions and their compounds, including the concepts of process of solution, polar molecules, ionic size and charge, complex ions, coordination number, and the Bronsted-Lowry acid-base theory. (CS)

  5. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds

    PubMed Central

    Fan, Meiqi; Nath, Amit Kumar; Tang, Yujiao; Choi, Young-Jin; Debnath, Trishna; Choi, Eun-Ju

    2018-01-01

    This review focuses on marine compounds with anti-prostate cancer properties. Marine species are unique and have great potential for the discovery of anticancer drugs. Marine sources are taxonomically diverse and include bacteria, cyanobacteria, fungi, algae, and mangroves. Marine-derived compounds, including nucleotides, amides, quinones, polyethers, and peptides are biologically active compounds isolated from marine organisms such as sponges, ascidians, gorgonians, soft corals, and bryozoans, including those mentioned above. Several compound classes such as macrolides and alkaloids include drugs with anti-cancer mechanisms, such as antioxidants, anti-angiogenics, antiproliferatives, and apoptosis-inducing drugs. Despite the diversity of marine species, most marine-derived bioactive compounds have not yet been evaluated. Our objective is to explore marine compounds to identify new treatment strategies for prostate cancer. This review discusses chemically and pharmacologically diverse marine natural compounds and their sources in the context of prostate cancer drug treatment. PMID:29757237

  6. Screening Hofmann Compounds as CO 2 Sorbents: Nontraditional Synthetic Route to Over 40 Different Pore-Functionalized and Flexible Pillared Cyanonickelates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Jeffrey T.; Madden, Catherine; Kauffman, Kristi

    2013-04-15

    A simple reaction scheme based on the heterogeneous intercalation of pillaring ligands (HIPLs) provides a convenient method for systematically tuning pore size, pore functionality, and network flexibility in an extended series of pillared cyanonickelates (PICNICs), commonly referred to as Hofmann compounds. The versatility of the approach is demonstrated through the preparation of over 40 different PICNICs containing pillar ligands ranging from 4 to 15 Å in length and modified with a wide range of functional groups, including fluoro, aldehyde, alkylamine, alkyl, aryl, trifluoromethyl, ester, nitro, ether, and nonmetalated 4,4'-bipyrimidine. The HIPL method involves reaction of a suspension of preformed polymericmore » sheets of powdered anhydrous nickel cyanide with an appropriate pillar ligand in refluxing organic solvent, resulting in the conversion of the planar [Ni{sub 2}(CN){sub 4}]{sub n} networks into polycrystalline three-dimensional porous frameworks containing the organic pillar ligand. Preliminary investigations indicate that the HIPL reaction is also amenable to forming Co(L)Ni(CN){sub 4}, Fe(L)Ni(CN){sub 4}, and Fe(L)Pd(CN){sub 4} networks. The materials show variable adsorption behavior for CO{sub 2} depending on the pillar length and pillar functionalization. Several compounds show structurally flexible behavior during the adsorption and desorption of CO{sub 2}. Interestingly, the newly discovered flexible compounds include two flexible Fe(L)Ni(CN){sub 4} derivatives that are structurally related to previously reported porous spin-crossover compounds. The preparations of 20 pillar ligands based on ring-functionalized 4,4'-dipyridyls, 1,4-bis(4-pyridyl)benzenes, and N-(4-pyridyl)isonicotinamides are also described.« less

  7. Screening Hofmann Compounds as CO 2 Sorbents: Nontraditional Synthetic Route to Over 40 Different Pore-Functionalized and Flexible Pillared Cyanonickelates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Jeffrey T.; Madden, Catherine; Kauffman, Kristi

    2013-04-15

    A simple reaction scheme based on the heterogeneous intercalation of pillaring ligands (HIPLs) provides a convenient method for systematically tuning pore size, pore functionality, and network flexibility in an extended series of pillared cyanonickelates (PICNICs), commonly referred to as Hofmann compounds. The versatility of the approach is demonstrated through the preparation of over 40 different PICNICs containing pillar ligands ranging from ~4 to ~15 Å in length and modified with a wide range of functional groups, including fluoro, aldehyde, alkylamine, alkyl, aryl, trifluoromethyl, ester, nitro, ether, and nonmetalated 4,4'-bipyrimidine. The HIPL method involves reaction of a suspension of preformed polymericmore » sheets of powdered anhydrous nickel cyanide with an appropriate pillar ligand in refluxing organic solvent, resulting in the conversion of the planar [Ni{sub 2}(CN){sub 4}]{sub n} networks into polycrystalline three-dimensional porous frameworks containing the organic pillar ligand. Preliminary investigations indicate that the HIPL reaction is also amenable to forming Co(L)Ni(CN){sub 4}, Fe(L)Ni(CN){sub 4}, and Fe(L)Pd(CN){sub 4} networks. The materials show variable adsorption behavior for CO{sub 2} depending on the pillar length and pillar functionalization. Several compounds show structurally flexible behavior during the adsorption and desorption of CO{sub 2}. Interestingly, the newly discovered flexible compounds include two flexible Fe(L)Ni(CN){sub 4} derivatives that are structurally related to previously reported porous spin-crossover compounds. The preparations of 20 pillar ligands based on ring-functionalized 4,4'-dipyridyls, 1,4-bis(4- pyridyl)benzenes, and N-(4-pyridyl)isonicotinamides are also described.« less

  8. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, R. Morris; Chambers, Geoffrey M.

    2017-07-24

    This Perspective examines the field of Frustrated Lewis Pairs (FLPs) in the context of transition metal mediated heterolytic cleavage of H2, with a particular emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with group compounds, yet many transition metal reactions support a broader classification of FLPs to include certain types of transition metal complexes with reactivity resembling main group based FLPs. This article surveys transition metal complexes that heterolytically cleave H2, which vary in the degree that the Lewis pairs within these systems interact. Particular attention is focused on complexes bearing a pendant aminemore » function as the base. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.« less

  9. Density functional theory for d- and f-electron materials and compounds

    DOE PAGES

    Mattson, Ann E.; Wills, John M.

    2016-02-12

    Here, the fundamental requirements for a computationally tractable Density Functional Theory-based method for relativistic f- and (nonrelativistic) d-electron materials and compounds are presented. The need for basing the Kohn–Sham equations on the Dirac equation is discussed. The full Dirac scheme needs exchange-correlation functionals in terms of four-currents, but ordinary functionals, using charge density and spin-magnetization, can be used in an approximate Dirac treatment. The construction of a functional that includes the additional confinement physics needed for these materials is illustrated using the subsystem-functional scheme. If future studies show that a full Dirac, four-current based, exchange-correlation functional is needed, the subsystemmore » functional scheme is one of the few schemes that can still be used for constructing functional approximations.« less

  10. ION COMPOSITION ELUCIDATION (ICE): AN INVESTIGATIVE ...

    EPA Pesticide Factsheets

    Ion Composition Elucidation (ICE) often leads to identification of compounds and provides high quality evidence for tracking compounds to their sources. Mass spectra for most organic compounds are not found in mass spectral libraries used to tentatively identify analytes. In addition, multiple matches are common. Ion Composition Elucidation provides the numbers of atoms of each element in the ions in the mass spectrum, greatly limiting the number of possible compounds that could produce the mass spectrum. Review of chemical and commercial literature then limits the number of possible compounds to one or a few that can be purchased to confirm tentative compound identifications by comparison of mass spectra and chromatographic retention times. Ion Composition Elucidation is conceptually simple relative to other analytical techniques and more easily explained to a judge or jury. It is based on sums of the exact masses of atoms and their isotopic abundances. Several applications of ICE are demonstrated for ultra-trace-level compounds in an extract of the effluent from a tertiary sewage treatment plant including: (i) measurement of five values to determine an ion's composition and to generate evidence for the compound's identity, (ii) rejection of incorrect library matches, (iii) rapid screening for a target compound in an extract, and (iv) a strategy for tracking unidentified compounds to their sources. The research focused on in the subtasks is the development and

  11. Soil- and groundwater-quality data for petroleum hydrocarbon compounds within Fuels Area C, Ellsworth Air Force Base, South Dakota, 2014

    USGS Publications Warehouse

    Bender, David A.; Rowe, Barbara L.

    2015-01-01

    Ellsworth Air Force Base is an Air Combat Command located approximately 10 miles northeast of Rapid City, South Dakota. Ellsworth Air Force Base occupies about 6,000 acres within Meade and Pennington Counties, and includes runways, airfield operations, industrial areas, housing, and recreational facilities. Fuels Area C within Ellsworth Air Force Base is a fuels storage area that is used to support the mission of the base. In fall of 2013, the U.S. Geological Survey began a study in cooperation with the U.S. Air Force, Ellsworth Air Force Base, to estimate groundwater-flow direction, select locations for permanent monitoring wells, and install and sample monitoring wells for petroleum hydrocarbon compounds within Fuels Area C. Nine monitoring wells were installed for the study within Fuels Area C during November 4–7, 2014. Soil core samples were collected during installation of eight of the monitoring wells and analyzed for benzene, toluene, ethylbenzene, total xylenes, naphthalene,m- and p-xylene, o-xylene, and gasoline- and diesel-range organic compounds. Groundwater samples were collected from seven of the nine wells (two of the monitoring wells did not contain enough water to sample or were dry) during November 19–21, 2014, and analyzed for select physical properties, benzene, toluene, ethylbenzene, total xylenes, naphthalene, m- and p-xylene, o-xylene, and gasoline- and diesel-range organic compounds. This report describes the nine monitoring well locations and presents the soil- and groundwater-quality data collected in 2014 for this study.

  12. A case study on the influences of long-range transport to Taiwan`s acid deposition using Taiwan air quality model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ken-Hui Chang; Fu-Tien Jeng

    1996-12-31

    The long-range and transboundary transport of precursors of add deposition in East Asia became important due to the industrial development around this area. We started to develop Taiwan Air Quality Model (TAQM) system since 1992, which is based on regional Acid Deposition Model (RADM) system. A typical episode in Mei-Yu season has been selected to study. A case considering all emissions within simulated domain has been run as a reference case, and another perturbed case, not including Taiwan`s emission, has been also run for analyzing quantitatively the influence of long-range transport to Taiwan`s wet deposition during the episode are 31%more » and 24% for total sulfur compounds and total nitrogen compounds respectively; but for dry deposition, only 6% is contributed by long range transport for sulfur compounds and 29% for total nitrogen compounds. Therefore, the percentages of total acid deposition contributed by long-range transport are 27% and 25% for total sulfur compounds and total nitrogen compounds, respectively.« less

  13. New isopimarane diterpenes and nortriterpene with cytotoxic activity from Ephorbia alatavica Boiss.

    PubMed

    Rozimamat, Rushangul; Hu, Rui; Aisa, Haji Akber

    2018-06-01

    Three new isopimarane diterpenes and one new nor-triterpenes, along with five known diterpenes were isolated from the whole areal part of Ephorbia alatavica Boiss. The structures of the new compounds (1-4) were determined based on extensive spectroscopic analysis, including HR-ESIMS, 1D and 2D NMR data. A plausible biosynthetic pathway for new compounds (1-4) were hypothesized. All isolated compounds were screen for cytotoxicity activity against MCF-8, HeLa and A549 cell lines in vitro by MTT assay. New compound 1 and known 9 showed potential cytotoxic activities with IC 50 values of 15.327 μg/mL, 23.066 μg/mL against MCF-8 cell lines, compound1 showed noteworthy cytotoxic activity with IC 50 13.033 μg/mL against A549 cancer cell line. New compounds 2, 4 and 4 showed moderate cytotoxic activities three human cancer lines with IC 50 value around 50 μg/mL, which compared with positive control doxorubicin (DOX). Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhu, Yingjie; Chen, Nuofu; Liu, Xinling; Sun, Zhengliang; Huang, Zhenghong; Kang, Feiyu; Gao, Qiuming; Jiang, Jun; Chen, Lidong

    2011-12-01

    A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi2Te3, Bi2Se3, and Bi2Se0.3Te2.7, through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.

  15. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants.

    PubMed

    Hutchinson, Laura; Sinclair, Marlene; Reid, Bernadette; Burnett, Kathryn; Callan, Bridgeen

    2018-06-01

    Saliva, as a matrix, offers many benefits over blood in therapeutic drug monitoring (TDM), in particular for infantile TDM. However, the accuracy of salivary TDM in infants remains an area of debate. This review explored the accuracy, applicability and advantages of using saliva TDM in infants and neonates. Databases were searched up to and including September 2016. Studies were included based on PICO as follows: P: infants and neonates being treated with any medication, I: salivary TDM vs. C: traditional methods and O: accuracy, advantages/disadvantages and applicability to practice. Compounds were assessed by their physicochemical and pharmacokinetic properties, as well as published quantitative saliva monitoring data. Twenty-four studies and their respective 13 compounds were investigated. Four neutral and two acidic compounds, oxcarbazepine, primidone, fluconazole, busulfan, theophylline and phenytoin displayed excellent/very good correlation between blood plasma and saliva. Lamotrigine was the only basic compound to show excellent correlation with morphine exhibiting no correlation between saliva and blood plasma. Any compound with an acid dissociation constant (pKa) within physiological range (pH 6-8) gave a more varied response. There is significant potential for infantile saliva testing and in particular for neutral and weakly acidic compounds. Of the properties investigated, pKa was the most influential with both logP and protein binding having little effect on this correlation. To conclude, any compound with a pKa within physiological range (pH 6-8) should be considered with extra care, with the extraction and analysis method examined and optimized on a case-by-case basis. © 2018 The British Pharmacological Society.

  16. Organic compounds in indoor air—their relevance for perceived indoor air quality?

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder; Nielsen, Gunnar D.

    It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.

  17. Compendium of Experimental Cetane Numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanowitz, Janet; Ratcliff, Matthew A.; McCormick, Robert L.

    This report is an updated version of the 2014 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single-compound cetane number data found in the scientific literature up until December 2016 as well as a number of previously unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This version of the compendium contains cetane values for 496 pure compounds, including 204 hydrocarbons and 292 oxygenates. 176 individual measurements are new to this version of the compendium, all of them collected using ASTMmore » Method D6890, which utilizes an Ignition Quality Tester (IQT) a type of constant-volume combustion chamber. For many compounds, numerous measurements are included, often collected by different researchers using different methods. The text of this document is unchanged from the 2014 version, except for the numbers of compounds in Section 3.1, the Appendices, Table 1. Primary Cetane Number Data Sources and Table 2. Number of Measurements Included in Compendium. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines. It is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant-volume combustion chamber. Values in the previous compendium derived from octane numbers have been removed and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane number has been expanded, and the data have been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.« less

  18. Fenofibrate Metabolism in the Cynomolgus Monkey using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based MetabolomicsS⃞

    PubMed Central

    Liu, Aiming; Patterson, Andrew D.; Yang, Zongtao; Zhang, Xinying; Liu, Wei; Qiu, Fayang; Sun, He; Krausz, Kristopher W.; Idle, Jeffrey R.; Gonzalez, Frank J.; Dai, Renke

    2009-01-01

    Fenofibrate, widely used for the treatment of dyslipidemia, activates the nuclear receptor, peroxisome proliferator-activated receptor α. However, liver toxicity, including liver cancer, occurs in rodents treated with fibrate drugs. Marked species differences occur in response to fibrate drugs, especially between rodents and humans, the latter of which are resistant to fibrate-induced cancer. Fenofibrate metabolism, which also shows species differences, has not been fully determined in humans and surrogate primates. In the present study, the metabolism of fenofibrate was investigated in cynomolgus monkeys by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS)-based metabolomics. Urine samples were collected before and after oral doses of fenofibrate. The samples were analyzed in both positive-ion and negative-ion modes by UPLC-QTOFMS, and after data deconvolution, the resulting data matrices were subjected to multivariate data analysis. Pattern recognition was performed on the retention time, mass/charge ratio, and other metabolite-related variables. Synthesized or purchased authentic compounds were used for metabolite identification and structure elucidation by liquid chromatographytandem mass spectrometry. Several metabolites were identified, including fenofibric acid, reduced fenofibric acid, fenofibric acid ester glucuronide, reduced fenofibric acid ester glucuronide, and compound X. Another two metabolites (compound B and compound AR), not previously reported in other species, were characterized in cynomolgus monkeys. More importantly, previously unknown metabolites, fenofibric acid taurine conjugate and reduced fenofibric acid taurine conjugate were identified, revealing a previously unrecognized conjugation pathway for fenofibrate. PMID:19251819

  19. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  20. Docking and Hydropathic Scoring of Polysubstituted Pyrrole Compounds with Anti-Tubulin Activity

    PubMed Central

    Tripathi, Ashutosh; Fornabaio, Micaela; Kellogg, Glen E.; Gupton, John T.; Gewirtz, David A.; Yeudall, W. Andrew; Vega, Nina E.; Mooberry, Susan L.

    2008-01-01

    Compounds that bind at the colchicine site of tubulin have drawn considerable attention with studies indicating that these agents suppress microtubule dynamics and inhibit tubulin polymerization. Data for eighteen polysubstituted pyrrole compounds are reported, including antiproliferative activity against human MDA-MB-435 cells and calculated free energies of binding following docking the compounds into models of αβ-tubulin. These docking calculations coupled with HINT interaction analyses are able to represent the complex structures and the binding modes of inhibitors such that calculated and measured free energies of binding correlate with an r2 of 0.76. Structural analysis of the binding pocket identifies important intermolecular contacts that mediate binding. As seen experimentally, the complex with JG-03-14 (3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2- carboxylic acid ethyl ester) is the most stable. These results illuminate the binding process and should be valuable in the design of new pyrrole-based colchicine site inhibitors as these compounds have very accessible syntheses. PMID:18083520

  1. Identification of biochemical features of defective Coffea arabica L. beans.

    PubMed

    Casas, María I; Vaughan, Michael J; Bonello, Pierluigi; McSpadden Gardener, Brian; Grotewold, Erich; Alonso, Ana P

    2017-05-01

    Coffee organoleptic properties are based in part on the quality and chemical composition of coffee beans. The presence of defective beans during processing and roasting contribute to off flavors and reduce overall cup quality. A multipronged approach was undertaken to identify specific biochemical markers for defective beans. To this end, beans were split into defective and non-defective fractions and biochemically profiled in both green and roasted states. A set of 17 compounds in green beans, including organic acids, amino acids and reducing sugars; and 35 compounds in roasted beans, dominated by volatile compounds, organic acids, sugars and sugar alcohols, were sufficient to separate the defective and non-defective fractions. Unsorted coffee was examined for the presence of the biochemical markers to test their utility in detecting defective beans. Although the green coffee marker compounds were found in all fractions, three of the roasted coffee marker compounds (1-methylpyrrole, 5-methyl- 2-furfurylfuran, and 2-methylfuran) were uniquely present in defective fractions. Published by Elsevier Ltd.

  2. Purification of coumarin compounds from Cortex fraxinus by adsorption chromatography.

    PubMed

    Yu, Minglan; Sun, Ailing; Zhang, Yongqing; Liu, Renmin

    2014-10-01

    In this paper, a chromatographic method for isolation and purification of coumarin compounds from Cortex fraxinus was established by using Superose 12 as the separation media for the first time. The conditions for separation were optimized. Four kinds of coumarin compounds including aesuletin, aesculin, fraxetin and fraxin were obtained. The purity of these compounds were 98.5, 99.1, 97.9 and 97.3%, respectively, which were determined by HPLC area normalization method. The chemical structures of the separated compounds were identified according to (1)H and (13)C nuclear magnetic resonance data. The retention behavior of the separated coumarin compounds on Superose 12 was also discussed. The retention is based on a mixture of hydrogen bonding and hydrophobic interactions between the coumarin compounds and the residues of the cross-linking reagents used in the manufacturing process of Superose 12. The results of this paper indicate that Superose 12 is not only suitable for size-exclusion chromatography of proteins and other biological macromolecules but also for low-molecular-weight natural products. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. 1-(substituted benzyl)-3,4,5,6-tetrahydro-2(1H)-pyrimidones: a series with stimulant and depressant activities.

    PubMed

    Ellis, K O; Schwan, T J; Wessels, F L; Miles, N J

    1980-10-01

    A series of 1-(substituted benzyl)-3,4,5,6-tetrahydro-2(1H)-pyrimidones was synthesized primarily by catalytic hydrogenation of the corresponding 1-(substituted benzyl)-2(1H)-pyrimidone. The pharmacological evaluation of these compounds in mice revealed a unique profile that included evidence of CNS stimulation and depression within the series and in the same compounds. Some members of this series induced signs of only CNS stimulation, some compounds caused signs of only CNS depression and skeletal muscle relaxation, and some caused signs of both stimulation and depression in the same animal. This apparent dual activity was assessed further in mice with antidepressant tests based on tetrabenazine antagonism and with antianxiety/anticonvulsant tests on the antagonism of a number of convulsants. The 4-chloro-, 4-fluoro-, 4-bromo-, and 3,4-dichlorobenzyl compounds exhibited antidepressant and antianxiety activities in the same dose range. Among these four compounds, the 3,4-dichlorobenzyl compound possessed the lowest antitetrabenazine (17 mg/kg po) and antipentylenetetrazol (23 mg/kg po) ED50 values. The 4-fluoro compound antagonized tetrabenazine-, pentylenetetrazol-, and isoniazid-induced tonic convulsions in the same dose range (congruent to 50 mg/kg po).

  4. Bayesian models trained with HTS data for predicting β-haematin inhibition and in vitro antimalarial activity.

    PubMed

    Wicht, Kathryn J; Combrinck, Jill M; Smith, Peter J; Egan, Timothy J

    2015-08-15

    A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this respect, methods that allow such data to be used for virtual screening maximise efficiency and reduce costs. In this study both in vitro antimalarial activity and inhibitory data for β-haematin formation, largely obtained from publically available sources, has been used to develop Bayesian models for inhibitors of β-haematin formation and in vitro antimalarial activity. These models were used to screen two in silico compound libraries. In the first, the 1510 U.S. Food and Drug Administration approved drugs available on PubChem were ranked from highest to lowest Bayesian score based on a training set of β-haematin inhibiting compounds active against Plasmodium falciparum that did not include any of the clinical antimalarials or close analogues. The six known clinical antimalarials that inhibit β-haematin formation were ranked in the top 2.1% of compounds. Furthermore, the in vitro antimalarial hit-rate for this prioritised set of compounds was found to be 81% in the case of the subset where activity data are available in PubChem. In the second, a library of about 5000 commercially available compounds (Aldrich(CPR)) was virtually screened for ability to inhibit β-haematin formation and then for in vitro antimalarial activity. A selection of 34 compounds was purchased and tested, of which 24 were predicted to be β-haematin inhibitors. The hit rate for inhibition of β-haematin formation was found to be 25% and a third of these were active against P. falciparum, corresponding to enrichments estimated at about 25- and 140-fold relative to random screening, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Identifying natural compounds as multi-target-directed ligands against Alzheimer's disease: an in silico approach.

    PubMed

    Ambure, Pravin; Bhat, Jyotsna; Puzyn, Tomasz; Roy, Kunal

    2018-04-23

    Alzheimer's disease (AD) is a multi-factorial disease, which can be simply outlined as an irreversible and progressive neurodegenerative disorder with an unclear root cause. It is a major cause of dementia in old aged people. In the present study, utilizing the structural and biological activity information of ligands for five important and mostly studied vital targets (i.e. cyclin-dependant kinase 5, β-secretase, monoamine oxidase B, glycogen synthase kinase 3β, acetylcholinesterase) that are believed to be effective against AD, we have developed five classification models using linear discriminant analysis (LDA) technique. Considering the importance of data curation, we have given more attention towards the chemical and biological data curation, which is a difficult task especially in case of big data-sets. Thus, to ease the curation process we have designed Konstanz Information Miner (KNIME) workflows, which are made available at http://teqip.jdvu.ac.in/QSAR_Tools/ . The developed models were appropriately validated based on the predictions for experiment derived data from test sets, as well as true external set compounds including known multi-target compounds. The domain of applicability for each classification model was checked based on a confidence estimation approach. Further, these validated models were employed for screening of natural compounds collected from the InterBioScreen natural database ( https://www.ibscreen.com/natural-compounds ). Further, the natural compounds that were categorized as 'actives' in at least two classification models out of five developed models were considered as multi-target leads, and these compounds were further screened using the drug-like filter, molecular docking technique and then thoroughly analyzed using molecular dynamics studies. Finally, the most potential multi-target natural compounds against AD are suggested.

  6. Phytochemical Properties and Nutrigenomic Implications of Yacon as a Potential Source of Prebiotic: Current Evidence and Future Directions

    PubMed Central

    Cao, Yang; Zhang, Hongxia; Jin, Yifan; Zhang, Yihe; Hayford, Frank

    2018-01-01

    The human gut is densely populated with diverse microbial communities that are essential to health. Prebiotics and fiber have been shown to possess the ability to modulate the gut microbiota. One of the plants being considered as a potential source of prebiotic is yacon. Yacon is an underutilized plant consumed as a traditional root-based fruit in South America. Yacon mainly contains fructooligosaccharides (FOS) and inulin. Therefore, it has bifidogenic benefits for gut health, because FOS are not easily broken down by digestive enzymes. Bioactive chemical compounds and extracts isolated from yacon have been studied for their various nutrigenomic properties, including as a prebiotic for intestinal health and their antimicrobial and antioxidant effects. This article reviewed scientific studies regarding the bioactive chemical compounds and nutrigenomic properties of extracts and isolated compounds from yacon. These findings may help in further research to investigate yacon-based nutritional products. Yacon can be considered a potential prebiotic source and a novel functional food. However, more detailed epidemiological, animal, and human clinical studies, particularly mechanism-based and phytopharmacological studies, are lacking for the development of evidence-based functional food products. PMID:29649123

  7. Phytochemical Properties and Nutrigenomic Implications of Yacon as a Potential Source of Prebiotic: Current Evidence and Future Directions.

    PubMed

    Cao, Yang; Ma, Zheng Feei; Zhang, Hongxia; Jin, Yifan; Zhang, Yihe; Hayford, Frank

    2018-04-12

    The human gut is densely populated with diverse microbial communities that are essential to health. Prebiotics and fiber have been shown to possess the ability to modulate the gut microbiota. One of the plants being considered as a potential source of prebiotic is yacon. Yacon is an underutilized plant consumed as a traditional root-based fruit in South America. Yacon mainly contains fructooligosaccharides (FOS) and inulin. Therefore, it has bifidogenic benefits for gut health, because FOS are not easily broken down by digestive enzymes. Bioactive chemical compounds and extracts isolated from yacon have been studied for their various nutrigenomic properties, including as a prebiotic for intestinal health and their antimicrobial and antioxidant effects. This article reviewed scientific studies regarding the bioactive chemical compounds and nutrigenomic properties of extracts and isolated compounds from yacon. These findings may help in further research to investigate yacon-based nutritional products. Yacon can be considered a potential prebiotic source and a novel functional food. However, more detailed epidemiological, animal, and human clinical studies, particularly mechanism-based and phytopharmacological studies, are lacking for the development of evidence-based functional food products.

  8. Perspective: n-type oxide thermoelectrics via visual search strategies

    DOE PAGES

    Xing, Guangzong; Sun, Jifeng; Ong, Khuong P.; ...

    2016-02-12

    We discuss and present search strategies for finding new thermoelectric compositions based on first principles electronic structure and transport calculations. We illustrate them by application to a search for potential n-type oxide thermoelectric materials. This includes a screen based on visualization of electronic energy isosurfaces. Lastly, we report compounds that show potential as thermoelectric materials along with detailed properties, including SrTiO 3, which is a known thermoelectric, and appropriately doped KNbO 3 and rutile TiO 2.

  9. Perspective: n-type oxide thermoelectrics via visual search strategies

    NASA Astrophysics Data System (ADS)

    Xing, Guangzong; Sun, Jifeng; Ong, Khuong P.; Fan, Xiaofeng; Zheng, Weitao; Singh, David J.

    2016-05-01

    We discuss and present search strategies for finding new thermoelectric compositions based on first principles electronic structure and transport calculations. We illustrate them by application to a search for potential n-type oxide thermoelectric materials. This includes a screen based on visualization of electronic energy isosurfaces. We report compounds that show potential as thermoelectric materials along with detailed properties, including SrTiO3, which is a known thermoelectric, and appropriately doped KNbO3 and rutile TiO2.

  10. Selective Sorbents For Purification Of Hydrocarbons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hernandez-Maldonado, Arturo J.

    2006-04-18

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal ion that is adapted to form p-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by p-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  11. Selective sorbents for purification of hydrocarbons

    DOEpatents

    Yang, Ralph T.; Hernandez-Maldonado, Arturo J.; Yang, Frances H.; Takahashi, Akira

    2006-08-22

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  12. Selective sorbents for purification of hydrocarbons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hernandez-Maldonado, Arturo J.

    2006-05-30

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  13. Selective sorbents for purification of hydrocartons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hermandez-Maldonado, Arturo J.

    2006-12-12

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal ion that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  14. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media,more » thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen E.; Moses, William W.

    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method ofmore » liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.« less

  16. Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment.

    PubMed

    Pinho, Brígida R; Ferreres, Federico; Valentão, Patrícia; Andrade, Paula B

    2013-12-01

    Alzheimer's disease (AD) is the most common cause of dementia, being responsible for high healthcare costs and familial hardships. Despite the efforts of researchers, no treatment able to delay or stop AD progress exists. Currently, the available treatments are only symptomatic, cholinesterase inhibitors being the most widely used drugs. Here we describe several natural compounds with anticholinesterase (acetylcholinesterase and butyrylcholinesterase) activity and also some synthetic compounds whose structures are based on those of natural compounds. Galantamine and rivastigmine are two cholinesterase inhibitors used in therapeutics: galantamine is a natural alkaloid that was extracted for the first time from Galanthus nivalis L., while rivastigmine is a synthetic alkaloid, the structure of which is modelled on that of natural physostigmine. Alkaloids include a high number of compounds with anticholinesterases activity at the submicromolar range. Quinones and stilbenes are less well studied regarding cholinesterase inhibition, although some of them, such as sargaquinoic acid or (+)-α-viniferin, show promising activity. Among flavonoids, flavones and isoflavones are the most potent compounds. Xanthones and monoterpenes are generally weak cholinesterase inhibitors. Nature is an almost endless source of bioactive compounds. Several natural compounds have anticholinesterase activity and others can be used as leader compounds for the synthesis of new drugs. © 2013 Royal Pharmaceutical Society.

  17. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L.

    PubMed

    Fernandes, Ana; Fernandes, Iva; Cruz, Luís; Mateus, Nuno; Cabral, Miguel; de Freitas, Victor

    2009-12-09

    Phenolic compounds, namely, hydrolyzable tannins and low molecular weight phenolic compounds, were isolated and purified from Portuguese cork from Quercus suber L. Some of these compounds were studied to evaluate their antioxidant activity, including free-radical scavenging capacity (DPPH method) and reducing capacity (FRAP method). All compounds tested showed significant antioxidant activity, namely, antiradical and reducing properties. The antiradical capacity seemed to increase with the presence of galloyl groups. Regarding the reducing capacity, this structure-activity relationship was not so clear. These compounds were also studied to evaluate the growth inhibitory effect on the estrogen responsive human breast cancer cell line (ER+) MCF-7 and two other colon cancer cell lines (Caco-2 and HT-29). Generally, all the compounds tested exhibited, after a continuous exposure during a 48 h period, a dose-dependent growth inhibitory effect. Relative inhibitory activity was primarily related to the number of phenolic hydroxyl groups (galloyl and HHDP moieties) found in the active structures, with more groups generally conferring increased effects, except for HHDP-di-galloyl-glucose. Mongolicain B showed a greater potential to inhibit the growth of the three cell lines tested, identical to the effect observed with castalagin. Since these compounds are structurally related with each other, this activity might be based within the C-glycosidic ellagitannin moiety.

  18. Metabolite Biometrics for the Differentiation of Individuals.

    PubMed

    Hair, Mindy E; Mathis, Adrianna I; Brunelle, Erica K; Halámková, Lenka; Halámek, Jan

    2018-04-17

    Sweat is a biological fluid present on the skin surface of every individual and is known to contain amino acids as well as other low molecular weight compounds. (1) Each individual is inherently different from one another based on certain factors including, but not limited to, his/her genetic makeup, environment, and lifestyle. As such, the biochemical composition of each person greatly differs. The concentrations of the biochemical content within an individual's sweat are largely controlled by metabolic processes within the body that fluctuate regularly based on attributes such as age, sex, and activity level. Therefore, the concentrations of these sweat components are person-specific and can be exploited, as presented here, to differentiate individuals based on trace amounts of sweat. For this concept, we analyzed three model compounds-lactate, urea, and glutamate. The average absorbance change from each compound in sweat was determined using three separate bioaffinity-based systems: lactate oxidase coupled with horseradish peroxidase (LOx-HRP), urease coupled with glutamate dehydrogenase (UR-GlDH), and glutamate dehydrogenase alone (GlDH). After optimization of a linear dependence for each assay to its respective analyte, analysis was performed on 50 mimicked sweat samples. Additionally, a collection and extraction method was developed and optimized by our group to evaluate authentic sweat samples from the skin surface of 25 individuals. A multivariate analysis of variance (MANOVA) test was performed to demonstrate that these three single-analyte enzymatic assays were effectively used to identify each person in both sample sets. This novel sweat analysis approach is capable of differentiating individuals, without the use of DNA, based on the collective responses from the chosen metabolic compounds in sweat. Applications for this newly developed, noninvasive analysis can include the field of forensic science in order to differentiate between individuals as well as the fields of homeland security and cybersecurity for personal authentication via unlocking mechanisms in smart devices that monitor metabolites. Through further development and analysis, this concept also has the potential to be clinically applicable in monitoring the health of individuals based on particular biomarker combinations.

  19. [Study on action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis based on techniques of gene expression profile and molecular fingerprint].

    PubMed

    Zhou, Wei; Song, Xiang-gang; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang

    2015-08-01

    Action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis were discussed based on gene expression profile and molecular fingerprint in this paper. First, gene expression profiles of atherosclerotic carotid artery tissues and histologically normal tissues in human body were collected, and were screened using significance analysis of microarray (SAM) to screen out differential gene expressions; then differential genes were analyzed by Gene Ontology (GO) analysis and KEGG pathway analysis; to avoid some genes with non-outstanding differential expression but biologically importance, Gene Set Enrichment Analysis (GSEA) were performed, and 7 chemical ingredients with higher negative enrichment score were obtained by Cmap method, implying that they could reversely regulate the gene expression profiles of pathological tissues; and last, based on the hypotheses that similar structures have similar activities, 336 ingredients of compound Danshen dripping pills were compared with 7 drug molecules in 2D molecular fingerprints method. The results showed that 147 differential genes including 60 up-regulated genes and 87 down regulated genes were screened out by SAM. And in GO analysis, Biological Process ( BP) is mainly concerned with biological adhesion, response to wounding and inflammatory response; Cellular Component (CC) is mainly concerned with extracellular region, extracellular space and plasma membrane; while Molecular Function (MF) is mainly concerned with antigen binding, metalloendopeptidase activity and peptide binding. KEGG pathway analysis is mainly concerned with JAK-STAT, RIG-I like receptor and PPAR signaling pathway. There were 10 compounds, such as hexadecane, with Tanimoto coefficients greater than 0.85, which implied that they may be the active ingredients (AIs) of compound Danshen dripping pills in treatment of carotid atherosclerosis (CAs). The present method can be applied to the research on material base and molecular action mechanism of TCM.

  20. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Treesearch

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  1. Assessment of drug-induced arrhythmic risk using limit cycle and autocorrelation analysis of human iPSC-cardiomyocyte contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, R. Jason

    2016-08-15

    Cardiac safety assays incorporating label-free detection of human stem-cell derived cardiomyocyte contractility provide human relevance and medium throughput screening to assess compound-induced cardiotoxicity. In an effort to provide quantitative analysis of the large kinetic datasets resulting from these real-time studies, we applied bioinformatic approaches based on nonlinear dynamical system analysis, including limit cycle analysis and autocorrelation function, to systematically assess beat irregularity. The algorithms were integrated into a software program to seamlessly generate results for 96-well impedance-based data. Our approach was validated by analyzing dose- and time-dependent changes in beat patterns induced by known proarrhythmic compounds and screening a cardiotoxicitymore » library to rank order compounds based on their proarrhythmic potential. We demonstrate a strong correlation for dose-dependent beat irregularity monitored by electrical impedance and quantified by autocorrelation analysis to traditional manual patch clamp potency values for hERG blockers. In addition, our platform identifies non-hERG blockers known to cause clinical arrhythmia. Our method provides a novel suite of medium-throughput quantitative tools for assessing compound effects on cardiac contractility and predicting compounds with potential proarrhythmia and may be applied to in vitro paradigms for pre-clinical cardiac safety evaluation. - Highlights: • Impedance-based monitoring of human iPSC-derived cardiomyocyte contractility • Limit cycle analysis of impedance data identifies aberrant oscillation patterns. • Nonlinear autocorrelation function quantifies beat irregularity. • Identification of hERG and non-hERG inhibitors with known risk of arrhythmia • Automated software processes limit cycle and autocorrelation analyses of 96w data.« less

  2. MINEs: Open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics

    DOE PAGES

    Jeffryes, James G.; Colastani, Ricardo L.; Elbadawi-Sidhu, Mona; ...

    2015-08-28

    Metabolomics have proven difficult to execute in an untargeted and generalizable manner. Liquid chromatography–mass spectrometry (LC–MS) has made it possible to gather data on thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottleneck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those available in curated biochemistry databases. Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite databases to include molecules that have not been observed, but are likelymore » to occur based on known metabolites and common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction rules based on the Enzyme Commission classification system to propose the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are not present in the PubChem database. However, these MINE compounds have on average higher structural similarity to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC–MS accurate mass data enabled the identity of an unknown peak to be confidently predicted. MINE databases are freely accessible for non-commercial use via user-friendly web-tools at http://minedatabase.mcs.anl.gov and developer-friendly APIs. MINEs improve metabolomics peak identification as compared to general chemical databases whose results include irrelevant synthetic compounds. MINEs complement and expand on previous in silico generated compound databases that focus on human metabolism. We are actively developing the database; future versions of this resource will incorporate transformation rules for spontaneous chemical reactions and more advanced filtering and prioritization of candidate structures.« less

  3. Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds.

    PubMed

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-05-22

    Preparation is described of a durable surface of cationic gold nanoparticles (AuNPs), covering commercial and custom-made MALDI targets, along with characterization of the nanoparticle surface properties and examples of the use in MS analyses and MS imaging (IMS) of low molecular weight (LMW) organic compounds. Tested compounds include nucleosides, saccharides, amino acids, glycosides, and nucleic bases for MS measurements, as well as over one hundred endogenous compounds in imaging experiment. The nanoparticles covering target plate were enriched in sodium in order to promote sodium-adduct formation. The new surface allows fast analysis, high sensitivity of detection and high mass determination accuracy. Example of application of new Au nanoparticle-enhanced target for fast and simple MS imaging of a fingerprint is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Isolation and Structure Elucidation of Cembranoids from a Dongsha Atoll Soft Coral Sarcophyton stellatum.

    PubMed

    Ahmed, Atallah F; Chen, Yi-Wei; Huang, Chiung-Yao; Tseng, Yen-Ju; Lin, Chi-Chen; Dai, Chang-Feng; Wu, Yang-Chang; Sheu, Jyh-Horng

    2018-06-14

    Six new polyoxygenated cembrane-based diterpenoids, stellatumolides A⁻C ( 1 ⁻ 3 ), stellatumonins A and B ( 4 and 5 ), and stellatumonone ( 6 ), were isolated together with ten known related compounds ( 7 ⁻ 16 ) from the ethyl acetate (EtOAc) extract of soft coral Sarcophyton stellatum . The structures of the new compounds were established by extensive spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and data comparison with related structures. Compounds 8 and 14 were isolated from a natural source for the first time. The isolated metabolites were shown to be not cytotoxic against a limited panel of cancer cells. Compound 9 showed anti-inflammatory activity by reducing the expression of proinflammatory cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proteins in lipopolysaccharide (LPS)-stimulated mouse leukaemic monocyte macrophage (RAW 264.7) cells.

  5. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis.

    PubMed

    Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D

    2016-03-14

    Nanoparticles entering the human body instantly become coated with a "protein corona" that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an "organic corona" containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.

  6. Effects of Compounded Stanford Modified Oral Rinse (MucoLox) on the Survival and Migration of Oral Keratinocytes and Fibroblasts: Implications for Wound Healing.

    PubMed

    Song, Guiyun; Banov, Daniel; Bassani, August S

    2018-01-01

    Several oral rinses are commercially available to alleviate the symptoms of oral mucositis. Prolonged retention of active pharmaceutical ingredients in the oral cavity is a major problem. In this study, we modified the Stanford oral rinse by including a proprietary mucoadhesive polymer called MucoLox, which we hypothesized would improve active pharmaceutical ingredient mucoadhesion. Characterization of this newly compounded oral rinse showed absence of cytotoxicity in human oral keratinocyte and fibroblast cell lines. The compounded formulation significantly stimulated the migration of these two cell lines in Oris Cell Migration Assay plates, better than the reference commercial product Magic mouthwash. Based on this in vitro study, the new Stanford modified oral rinse with MucoLox is safe and may promote healing of oral mucositis. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  7. Lipophilicity assessment of basic drugs (log P(o/w) determination) by a chromatographic method.

    PubMed

    Pallicer, Juan M; Sales, Joaquim; Rosés, Martí; Ràfols, Clara; Bosch, Elisabeth

    2011-09-16

    A previously reported chromatographic method to determine the 1-octanol/water partition coefficient (log P(o/w)) of organic compounds is used to estimate the hydrophobicity of bases, mainly commercial drugs with diverse chemical nature and pK(a) values higher than 9. For that reason, mobile phases buffered at high pH to avoid the ionization of the solutes and three different columns (Phenomenex Gemini NX, Waters XTerra RP-18 and Waters XTerra MS C(18)) with appropriate alkaline-resistant stationary phases have been used. Non-ionizable substances studied in previous works were also included in the set of compounds to evaluate the consistency of the method. The results showed that all the columns provide good estimations of the log P(o/w) for most of the compounds included in this study. The Gemini NX column has been selected to calculate log P(o/w) values of the set of studied drugs, and really good correlations between the determined log P(o/w) values and those considered as reference were obtained, proving the ability of the procedure for the lipophilicity assessment of bioactive compounds with very different structures and functionalities. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Hazard and risk assessment of chemical mixtures using the toxic equivalency factor approach.

    PubMed

    Safe, S H

    1998-08-01

    There is considerable public, regulatory, and scientific concern regarding human exposure to endocrine-disrupting chemicals, which include compounds that directly modulate steroid hormone receptor pathways (estrogens, antiestrogens, androgens, antiandrogens) and aryl hydrocarbon receptor (AhR) agonists, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Based on quantitative structure-activity relationships for both AhR and estrogen receptor (ER) agonists, the relative potency (RP) of individual compounds relative to a standard (e.g. TCDD and 17-beta-estradiol) have been determined for several receptor-mediated responses. Therefore, the TCDD or estrogenic equivalent (TEQ or EQ, respectively) of a mixture is defined as TEQ = sigma[T(i)]xRP(i)or EQ=sigma[E(i)]xRP(i), where T(i) and E(i) are concentrations of individual AhR or ER agonists in any mixture. This approach for risk assessment of endocrine-disrupting mixtures assumes that for each endocrine response pathway, the effects of individual compounds are essentially additive. This paper will critically examine the utility of the TEQ/EQ approach for risk assessment, the validity of the assumptions used for this approach, and the problems associated with comparing low dose exposures to xeno and natural (dietary) endocrine disruptors.

  9. [Discussion on efficacy evaluation thought and method for innovation medicine of Chinese herbal compound formula based on clinical application characteristics].

    PubMed

    Sun, Jian-Ning; Sun, Wen-Yan; Dong, Shi-Fen

    2017-03-01

    The Chinese herbal compound formula preparation was made based on theory of Chinese medicine, which was confirmed by long period clinical application, and with multi-compound and multi-target characteristics. During the exploitation process of innovation medicine of Chinese herbal compound formula, selecting and speeding up the research development of drugs with clinical value shall be paid more attention, and as request of rules involved in new drug research and development, the whole process management should be carried out, including project evaluation, manufacturing process determination, establishment of quality control standards, evaluation for pharmacological and toxic effect, as well as new drug application process. This reviews was aimed to give some proposals for pharmacodynamics research methods involved in exploration of Chinese herbal compound formula preparation, including: ①the endpoint criteria should meet the clinical attribution of new drugs; ②the pre-clinical pharmacodynamics evaluation should be carried on appropriate animal models according to the characteristics of diagnosis and therapy of Chinese medicine and observation indexes; ③during the innovation of drug for infants and children, information on drug action conforming to physiological characteristics of infants and children should be supplied, and the pharmacodynamics and toxicology research shall be conducted in immature rats according to the body weight of children. In a summary, the clinical application characteristics are the important criteria for evaluation of pharmacological effect of innovation medicine of Chinese herbal compound formula. Copyright© by the Chinese Pharmaceutical Association.

  10. Novel Apigenin Based Small Molecule that Targets Snake Venom Metalloproteases

    PubMed Central

    Anusha, Sebastian; Hemshekhar, Mahadevappa; Chandra Nayaka, Siddaiah; Kemparaju, Kempaiah; Basappa; Girish, Kesturu S.; Rangappa, Kanchugarakoppal S.

    2014-01-01

    The classical antivenom therapy has appreciably reduced snakebite mortality rate and thus is the only savior drug available. Unfortunately, it considerably fails to shield the viper bite complications like hemorrhage, local tissue degradation and necrosis responsible for severe morbidity. Moreover, the therapy is also tagged with limitations including anaphylaxis, serum sickness and poor availability. Over the last decade, snake venom metalloproteases (SVMPs) are reported to be the primary component responsible for hemorrhage and tissue degradation at bitten site. Thus, antivenom inability to offset viper venom-induced local toxicity has been a basis for an insistent search for SVMP inhibitors. Here we report the inhibitory effect of compound 5d, an apigenin based molecule against SVMPs both in silico and in vivo. Several apigenin analogues are synthesized using multicomponent Ugi reactions. Among them, compound 5d effectively abrogated Echis carinatus (EC) venom-induced local hemorrhage, tissue necrosis and myotoxicity in a dose dependant fashion. The histopathological study further conferred effective inhibition of basement membrane degradation, and accumulation of inflammatory leucocytes at the site of EC venom inoculation. The compound also protected EC venom-induced fibrin and fibrinogen degradation. The molecular docking of compound 5d and bothropasin demonstrated the direct interaction of hydroxyl group of compound with Glu146 present in hydrophobic pocket of active site and does not chelate Zn2+. Hence, it is concluded that compound 5d could be a potent agent in viper bite management. PMID:25184206

  11. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    PubMed

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  12. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-02-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a corrosion product diffuses to the environment including the salt was suggested in Bi0.5Sb1.5Te3. However, the amount of dissolved corrosion product was very low, and the chemical stability of the corrosion product was not changed or improved by element substitution.

  13. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-06-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a corrosion product diffuses to the environment including the salt was suggested in Bi0.5Sb1.5Te3. However, the amount of dissolved corrosion product was very low, and the chemical stability of the corrosion product was not changed or improved by element substitution.

  14. Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents.

    PubMed

    Montoya, Leticia A; Pluth, Michael D

    2014-06-17

    Sulfhydryl-containing compounds, including thiols and hydrogen sulfide (H2S), play important but differential roles in biological structure and function. One major challenge in separating the biological roles of thiols and H2S is developing tools to effectively separate the reactivity of these sulfhydryl-containing compounds. To address this challenge, we report the differential responses of common electrophilic fluorescent thiol labeling reagents, including nitrobenzofurazan-based scaffolds, maleimides, alkylating agents, and electrophilic aldehydes, toward cysteine and H2S. Although H2S reacted with all of the investigated scaffolds, the photophysical response to each scaffold was significantly different. Maleimide-based, alkylating, and aldehydic thiol labeling reagents provided a diminished fluorescence response when treated with H2S. By contrast, nitrobenzofurazan-based labeling reagents were deactivated by H2S addition. Furthermore, the addition of H2S to thiol-activated nitrobenzofurazan-based reagents reduced the fluorescence signal, thus establishing the incompatibility of nitrobenzofurazan-based thiol labeling reagents in the presence of H2S. Taken together, these studies highlight the differential reactivity of thiols and H2S toward common thiol-labeling reagents and suggest that sufficient care must be taken when labeling or measuring thiols in cellular environments that produce H2S due to the potential for both false-positive and eroded responses.

  15. Rhizovarins A-F, Indole-Diterpenes from the Mangrove-Derived Endophytic Fungus Mucor irregularis QEN-189.

    PubMed

    Gao, Shu-Shan; Li, Xiao-Ming; Williams, Katherine; Proksch, Peter; Ji, Nai-Yun; Wang, Bin-Gui

    2016-08-26

    Genome mining of the fungus Mucor irregularis (formerly known as Rhizomucor variabilis) revealed the presence of various gene clusters for secondary metabolite biosynthesis, including several terpene-based clusters. Investigation into the chemical diversity of M. irregularis QEN-189, an endophytic fungus isolated from the fresh inner tissue of the marine mangrove plant Rhizophora stylosa, resulted in the discovery of 20 structurally diverse indole-diterpenes including six new compounds, namely, rhizovarins A-F (1-6). Among them, compounds 1-3 represent the most complex members of the reported indole-diterpenes. The presence of an unusual acetal linked to a hemiketal (1) or a ketal (2 and 3) in an unprecedented 4,6,6,8,5,6,6,6,6-fused indole-diterpene ring system makes them chemically unique. Their structures and absolute configurations were elucidated by spectroscopic analysis, modified Mosher's method, and chemical calculations. Each of the isolated compounds was evaluated for antitumor activity against HL-60 and A-549 cell lines.

  16. Three New Isoprenylated Flavonoids from the Root Bark of Morus alba.

    PubMed

    Jung, Jae-Woo; Park, Ji-Hae; Lee, Yeong-Geun; Seo, Kyeong-Hwa; Oh, Eun-Ji; Lee, Dae-Young; Lim, Dong-Wook; Han, Daeseok; Baek, Nam-In

    2016-08-24

    Phytochemical investigation of the root bark of Morus alba has led to the isolation and identification of three new isoprenylated flavonoids, namely sanggenon U (1), sanggenon V (2), and sanggenon W (3), along with four known isoprenylated flavonoids: euchrenone a₇ (4), sanggenon J (5), kuwanon E (6), and kuwanon S (7). All compounds were isolated by repeated silica gel (SiO₂), octadecyl SiO₂ (ODS), and Sephadex LH-20 open column chromatography. The structure of the compounds were determined based on spectroscopic analyses, including nuclear magnetic resonance (NMR), mass spectrometry (MS), circular dichroism (CD), and infrared (IR). In addition, compounds 1-4 were isolated for the first time from the root bark of M. alba in this study.

  17. Discovery of novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus.

    PubMed

    Brincat, Jean Pierre; Carosati, Emanuele; Sabatini, Stefano; Manfroni, Giuseppe; Fravolini, Arnaldo; Raygada, Jose L; Patel, Diixa; Kaatz, Glenn W; Cruciani, Gabriele

    2011-01-13

    Four novel inhibitors of the NorA efflux pump of Staphylococcus aureus, discovered through a virtual screening process, are reported. The four compounds belong to different chemical classes and were tested for their in vitro ability to block the efflux of a well-known NorA substrate, as well as for their ability to potentiate the effect of ciprofloxacin (CPX) on several strains of S. aureus, including a NorA overexpressing strain. Additionally, the MIC values of each of the compounds individually are reported. A structure-activity relationship study was also performed on these novel chemotypes, revealing three new compounds that are also potent NorA inhibitors. The virtual screening procedure employed FLAP, a new methodology based on GRID force field descriptors.

  18. Hair product artifact in magnetic resonance imaging.

    PubMed

    Chenji, Sneha; Wilman, Alan H; Mah, Dennell; Seres, Peter; Genge, Angela; Kalra, Sanjay

    2017-01-01

    The presence of metallic compounds in facial cosmetics and permanent tattoos may affect the quality of magnetic resonance imaging. We report a case study describing a signal artifact due to the use of a leave-on powdered hair dye. On reviewing the ingredients of the product, it was found to contain several metallic compounds. In lieu of this observation, we suggest that MRI centers include the use of metal- or mineral-based facial cosmetics or hair products in their screening protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Compendium of Experimental Cetane Numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included,more » often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.« less

  20. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Correlation of intercalation potential with d-electron configurations for cathode compounds of lithium-ion batteries.

    PubMed

    Chen, Zhenlian; Zhang, Caixia; Zhang, Zhiyong; Li, Jun

    2014-07-14

    The d-electron localization is widely recognized as important to transport properties of transition metal compounds, but its role in the energy conversion of intercalation reactions of cathode compounds is still not fully explored. In this work, the correlation of intercalation potential with electron affinity, a key energy term controlling electron intercalation, then with d-electron configuration, is investigated. Firstly, we find that the change of the intercalation potential with respect to the transition metal cations within the same structure class is correlated in an approximately mirror relationship with the electron affinity, based on first-principles calculations on three typical categories of cathode compounds including layered oxides and polyoxyanions Then, by using a new model Hamiltonian based on the crystal-field theory, we reveal that the evolution is governed by the combination of the crystal-field splitting and the on-site d-d exchange interactions. Further, we show that the charge order in solid-solution composites and the compatibility of multi-electron redox steps could be inferred from the energy terms with the d-electron configuration alternations. These findings may be applied to rationally designing new chemistry for the lithium-ion batteries and other metal-ion batteries.

  2. Utility of Boron in Dermatology.

    PubMed

    Jackson, David G; Cardwell, Leah A; Oussedik, Elias; Feldman, Steven R

    2017-08-09

    Boron compounds are being investigated as therapies for dermatologic conditions. Several features of boron chemistry make this element an ideal component in dermatologic treatments. We review the published dermatologically-relevant clinical trials and case studies pertaining to boron compounds. PubMed was utilized to query terms boron, chemistry, drug, development, dermatology, atopic dermatitis, psoriasis, onychomycosis, tavaborole, AN 2690, crisaborole, and AN 2728. Clinical trials, case studies, animal studies and in vitro studies. pertaining to atopic dermatitis, psoriasis and onychomycosis were included. Crisaborole 2% topical solution reduced atopic dermatitis lesions by approximately 60% when compared to pre-treatment baseline. Crisaborole maintains its dose-dependent effect in treatment of psoriasis and significantly reduces psoriatic plaques when compared to controls. Adverse effects were mild, frequency of events varied between studies. Crisaborole was well tolerated when applied to sensitive skin. Topical tavaborole significantly reduced or eliminated onychomycosis with minimal side effects compared to placebo. Tavaborole was effective in treating recalcitrant onychomycosis. Boron-based compounds form stable interactions with enzyme targets and are safe medications for the treatment of atopic dermatitis, psoriasis, and onychomycosis. The mild and rare side effects of topical boron-based compounds may make them ideal treatments for individuals with sensitive skin and pediatric populations.

  3. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-02-01

    Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review.

  4. Environmental Health Standards for Human Spacecraft

    NASA Technical Reports Server (NTRS)

    James John T.

    2010-01-01

    The discussion of air and water quality standards includes evidence-based standards, factors unique to spaceflight, effects from exposures to combinations of compounds, contingency versus nominal standards, tables of ISO standards for air quality (ppm) and water quality (mg/L), and updating of standards.

  5. Remote and Onsite Direct Measurements of Emissions from Oil and Natural Gas Production

    EPA Science Inventory

    Environmentally responsible oil and gas production requires accurate knowledge of emissions from long-term production operations1, which can include methane, volatile organic compounds, and hazardous air pollutants. Well pad emissions vary based on the geologically-determined com...

  6. Chemotaxonomy of Hawaiian Anthurium cultivars based on multivariate analysis of phenolic metabolites

    USDA-ARS?s Scientific Manuscript database

    Thirty-six anthurium spathes, sampled from species and commercial cultivars, were extracted and profiled using liquid-chromatography-mass spectrometry (LC-MS). 315 compounds, including anthocyanins, flavonoid glycosides, and flavanols, were detected from these extracts and used in chemotaxonomic ana...

  7. Determination of steroid sex hormones in wastewater by stir bar sorptive extraction based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material and liquid chromatographic analysis.

    PubMed

    Huang, Xiaojia; Lin, Jianbin; Yuan, Dongxing; Hu, Rongzong

    2009-04-17

    In this study, a simple and rapid method was developed for the determination of seven steroid hormones in wastewater. Sample preparation and analysis were performed by stir bar sorptive extraction (SBSE) based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material (SBSEM) combined with high-performance liquid chromatography with diode array detection. To achieve the optimum extraction performance, several main parameters, including extraction and desorption time, pH value and contents of inorganic salt in the sample matrix, were investigated. Under the optimized experimental conditions, the method showed good linearity and repeatability, as well as advantages such as sensitivity, simplicity, low cost and high feasibility. The extraction performance of SBSEM to the target compounds also compared with commercial SBSE which used polydimethylsiloxane as coating. Finally, the proposed method was successfully applied to the determination of the target compounds in wastewater samples. The recoveries of spiked target compounds in real samples ranged from 48.2% to 110%.

  8. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution ofmore » the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.« less

  9. High-content screening for the discovery of pharmacological compounds: advantages, challenges and potential benefits of recent technological developments.

    PubMed

    Soleilhac, Emmanuelle; Nadon, Robert; Lafanechere, Laurence

    2010-02-01

    Screening compounds with cell-based assays and microscopy image-based analysis is an approach currently favored for drug discovery. Because of its high information yield, the strategy is called high-content screening (HCS). This review covers the application of HCS in drug discovery and also in basic research of potential new pathways that can be targeted for treatment of pathophysiological diseases. HCS faces several challenges, however, including the extraction of pertinent information from the massive amount of data generated from images. Several proposed approaches to HCS data acquisition and analysis are reviewed. Different solutions from the fields of mathematics, bioinformatics and biotechnology are presented. Potential applications and limits of these recent technical developments are also discussed. HCS is a multidisciplinary and multistep approach for understanding the effects of compounds on biological processes at the cellular level. Reliable results depend on the quality of the overall process and require strong interdisciplinary collaborations.

  10. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.

    PubMed

    Moses, Sara K; Harley, John R; Lieske, Camilla L; Muir, Derek C G; Whiting, Alex V; O'Hara, Todd M

    2015-11-15

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species

    PubMed Central

    Moses, Sara K.; Harley, John R.; Lieske, Camilla L.; Muir, Derek C.G.; Whiting, Alex V.; O'Hara, Todd M.

    2015-01-01

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. PMID:26440545

  12. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatilemore » organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.« less

  13. Titan Upper Atmosphere: A factory of hydrocarbons

    NASA Image and Video Library

    2005-04-22

    During its closest flyby of Saturn's moon Titan on April 16, the Cassini spacecraft came within 1,025 kilometers (637 miles) of the moon's surface and found that the outer layer of the thick, hazy atmosphere is brimming with complex hydrocarbons. This figure shows a mass spectrum of Titan's ionosphere near 1,200 kilometers (746 miles) above its surface. The mass range covered goes from hydrogen at 1 atomic mass unit per elementary charge (Dalton) to 99 Daltons. This mass range includes compounds with 1, 2, 3, 4, 5, 6, and 7 carbons as the base structure (as indicated in the figure label). The identified compounds include multiple carbon molecules and carbon-nitrogen bearing species as well. http://photojournal.jpl.nasa.gov/catalog/PIA07865

  14. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds

    PubMed Central

    Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-01-01

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions. PMID:28657595

  15. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds.

    PubMed

    Spinelle, Laurent; Gerboles, Michel; Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-06-28

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.

  16. Coaxial Compound Helicopter for Confined Urban Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Elmore, Joshua F.; Keen, Ernest B.; Gallaher, Andrew T.; Nunez, Gerardo F.

    2016-01-01

    A rotorcraft was designed for military operations in a confined urban environment. The specifications included major increases in useful load, range, and speed relative current aircraft capabilities, with a size constraint based on the dimensions of urban streets and intersections. Analysis showed that this combination of requirements is best satisfied by a coaxial main-rotor configuration, with lift compounding to off-load the rotors at high speed, and ducted fans under the rotor disk for propulsion. The baseline design is described, and the aircraft performance is summarized for utility, attack, MEDEVAC, and cargo delivery missions. The impact on size and performance is examined for a number of excursions, including lift-offset main rotors. Technology development required to achieve this advance in capability is recommended.

  17. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    PubMed

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 < y < 1), MMo(x)O(y) (M = Fe, Co, Ni, Ca, Mn, Zn, Mg, or Cd; x = 1, y = 4; x = 3, y = 8), MoS2, MoSe2, (MoO2)2P2O7, LiMoO2, Li2MoO3, etc. possess multiple valence states and exhibit rich chemistry. They are very attractive candidates for efficient electrochemical energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  18. The ``Missing Compounds'' affair in functionality-driven material discovery

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    2014-03-01

    In the paradigm of ``data-driven discovery,'' underlying one of the leading streams of the Material Genome Initiative (MGI), one attempts to compute high-throughput style as many of the properties of as many of the N (about 10**5- 10**6) compounds listed in databases of previously known compounds. One then inspects the ensuing Big Data, searching for useful trends. The alternative and complimentary paradigm of ``functionality-directed search and optimization'' used here, searches instead for the n much smaller than N configurations and compositions that have the desired value of the target functionality. Examples include the use of genetic and other search methods that optimize the structure or identity of atoms on lattice sites, using atomistic electronic structure (such as first-principles) approaches in search of a given electronic property. This addresses a few of the bottlenecks that have faced the alternative, data-driven/high throughput/Big Data philosophy: (i) When the configuration space is theoretically of infinite size, building a complete data base as in data-driven discovery is impossible, yet searching for the optimum functionality, is still a well-posed problem. (ii) The configuration space that we explore might include artificially grown, kinetically stabilized systems (such as 2D layer stacks; superlattices; colloidal nanostructures; Fullerenes) that are not listed in compound databases (used by data-driven approaches), (iii) a large fraction of chemically plausible compounds have not been experimentally synthesized, so in the data-driven approach these are often skipped. In our approach we search explicitly for such ``Missing Compounds''. It is likely that many interesting material properties will be found in cases (i)-(iii) that elude high throughput searches based on databases encapsulating existing knowledge. I will illustrate (a) Functionality-driven discovery of topological insulators and valley-split quantum-computer semiconductors, as well as (b) Use of ``first principles thermodynamics'' to discern which of the previously ``missing compounds'' should, in fact exist and in which structure. Synthesis efforts by Poeppelmeier group at NU realized 20 never-before-made half-Heusler compounds out of the 20 predicted ones, in our predicted space groups. This type of theory-led experimental search of designed materials with target functionalities may shorten the current process of discovery of interesting functional materials. Supported by DOE ,Office of Science, Energy Frontier Research Center for Inverse Design

  19. TMDB: a literature-curated database for small molecular compounds found from tea.

    PubMed

    Yue, Yi; Chu, Gang-Xiu; Liu, Xue-Shi; Tang, Xing; Wang, Wei; Liu, Guang-Jin; Yang, Tao; Ling, Tie-Jun; Wang, Xiao-Gang; Zhang, Zheng-Zhu; Xia, Tao; Wan, Xiao-Chun; Bao, Guan-Hu

    2014-09-16

    Tea is one of the most consumed beverages worldwide. The healthy effects of tea are attributed to a wealthy of different chemical components from tea. Thousands of studies on the chemical constituents of tea had been reported. However, data from these individual reports have not been collected into a single database. The lack of a curated database of related information limits research in this field, and thus a cohesive database system should necessarily be constructed for data deposit and further application. The Tea Metabolome database (TMDB), a manually curated and web-accessible database, was developed to provide detailed, searchable descriptions of small molecular compounds found in Camellia spp. esp. in the plant Camellia sinensis and compounds in its manufactured products (different kinds of tea infusion). TMDB is currently the most complete and comprehensive curated collection of tea compounds data in the world. It contains records for more than 1393 constituents found in tea with information gathered from 364 published books, journal articles, and electronic databases. It also contains experimental 1H NMR and 13C NMR data collected from the purified reference compounds or collected from other database resources such as HMDB. TMDB interface allows users to retrieve tea compounds entries by keyword search using compound name, formula, occurrence, and CAS register number. Each entry in the TMDB contains an average of 24 separate data fields including its original plant species, compound structure, formula, molecular weight, name, CAS registry number, compound types, compound uses including healthy benefits, reference literatures, NMR, MS data, and the corresponding ID from databases such as HMDB and Pubmed. Users can also contribute novel regulatory entries by using a web-based submission page. The TMDB database is freely accessible from the URL of http://pcsb.ahau.edu.cn:8080/TCDB/index.jsp. The TMDB is designed to address the broad needs of tea biochemists, natural products chemists, nutritionists, and members of tea related research community. The TMDB database provides a solid platform for collection, standardization, and searching of compounds information found in tea. As such this database will be a comprehensive repository for tea biochemistry and tea health research community.

  20. Isolation, identification, and quantification of potential defensive compounds in the viceroy butterfly and its larval host-plant, Carolina willow.

    PubMed

    Prudic, Kathleen L; Khera, Smriti; Sólyom, Anikó; Timmermann, Barbara N

    2007-06-01

    The viceroy-monarch and viceroy-queen butterfly associations are classic examples of mimicry. These relationships were originally classified as Batesian, or parasitic, but were later reclassified as Müllerian, or mutalistic, based on predator bioassays. The Müllerian reclassification implies that viceroy is unpalatable because it too is chemically defended like the queen and the monarch. However, unlike the queen and the monarch, the viceroy defensive chemistry has remained uncharacterized. We demonstrate that the viceroy butterfly (Limenitis archippus, Nymphalidae) not only sequesters nonvolatile defensive compounds from its larval host-plant, the Carolina willow (Salix caroliniana, Salicaceae), but also secretes volatile defensive compounds when disturbed. We developed liquid chromatography-mass spectrometry-mass spectrometry methods to identify a set of phenolic glycosides shared between the adult viceroy butterfly and the Carolina willow, and solid phase microextraction and gas chromatography-mass spectrometry methods to identify volatile phenolic compounds released from stressed viceroy butterflies. In both approaches, all structures were characterized based on their mass spectral fragmentation patterns and confirmed with authentic standards. The phenolics we found are known to deter predator attack in other prey systems, including other willow-feeding insect species. Because these compounds have a generalized defensive function at the concentrations we described, our results are consistent with the Müllerian reclassification put forth by other researchers based on bioassay results. It seems that the viceroy butterfly possesses chemical defenses different from its monarch and queen butterfly counterparts (phenolic glycosides vs. cardiac glycosides, respectively), an unusual phenomenon in mimicry warranting future study.

  1. The design of an environmentally relevant mixture of persistent organic pollutants for use in in vivo and in vitro studies.

    PubMed

    Berntsen, Hanne Friis; Berg, Vidar; Thomsen, Cathrine; Ropstad, Erik; Zimmer, Karin Elisabeth

    2017-01-01

    Amongst the substances listed as persistent organic pollutants (POP) under the Stockholm Convention on Persistent Organic Pollutants (SCPOP) are chlorinated, brominated, and fluorinated compounds. Most experimental studies investigating effects of POP employ single compounds. Studies focusing on effects of POP mixtures are limited, and often conducted using extracts from collected specimens. Confounding effects of unmeasured substances in such extracts may bias the estimates of presumed causal relationships being examined. The aim of this investigation was to design a model of an environmentally relevant mixture of POP for use in experimental studies, containing 29 different chlorinated, brominated, and perfluorinated compounds. POP listed under the SCPOP and reported to occur at the highest levels in Scandinavian food, blood, or breast milk prior to 2012 were selected, and two different mixtures representing varying exposure scenarios constructed. The in vivo mixture contained POP concentrations based upon human estimated daily intakes (EDIs), whereas the in vitro mixture was based upon levels in human blood. In addition to total in vitro mixture, 6 submixtures containing the same concentration of chlorinated + brominated, chlorinated + perfluorinated, brominated + perfluorinated, or chlorinated, brominated or perfluorinated compounds only were constructed. Using submixtures enables investigating the effect of adding or removing one or more chemical groups. Concentrations of compounds included in feed and in vitro mixtures were verified by chemical analysis. It is suggested that this method may be utilized to construct realistic mixtures of environmental contaminants for toxicity studies based upon the relative levels of POP to which individuals are exposed.

  2. Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis

    PubMed Central

    Wan, Minghui; Liao, Dongjiang; Peng, Guilin; Xu, Xin; Yin, Weiqiang; Guo, Guixin; Jiang, Funeng; Zhong, Weide

    2017-01-01

    Chloride intracellular channel 1 (CLIC1) is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM) database using structure-based virtual screening and molecular dynamics (MD) simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition. PMID:29147652

  3. Antibacterial effects of Traditional Chinese Medicine monomers against Streptococcus pneumoniae via inhibiting pneumococcal histidine kinase (VicK).

    PubMed

    Zhang, Shuai; Wang, Jianmin; Xu, Wenchun; Liu, Yusi; Wang, Wei; Wu, Kaifeng; Wang, Zhe; Zhang, Xuemei

    2015-01-01

    Two-component systems (TCSs) have the potential to be an effective target of the antimicrobials, and thus received much attention in recent years. VicK/VicR is one of TCSs in Streptococcus pneumoniae (S. pneumoniae), which is essential for pneumococcal survival. We have previously obtained several Traditional Chinese Medicine monomers using a computer-based screening. In this study, either alone or in combination with penicillin, their antimicrobial activities were evaluated based on in vivo and in vitro assays. The results showed that the MICs of 5'-(Methylthio)-5'-deoxyadenosine, octanal 2, 4-dinitrophenylhydrazone, deoxyshikonin, kavahin, and dodecyl gallate against S. pneumoniae were 37.1, 38.5, 17, 68.5, and 21 μg/mL, respectively. Time-killing assays showed that these compounds elicited bactericidal effects against S. pneumoniae D39 strain, which led to a 6-log reduction in CFU after exposure to compounds at four times of the MIC for 24 h. The five compounds inhibited the growth of Streptococcus pyogenes, Streptococcus mitis, Streptococcus mutans or Streptococcus pseudopneumoniae, meanwhile, deoxyshikonin and dodecyl gallate displayed strong inhibitory activities against Staphylococcus aureus. These compounds showed no obvious cytotoxicity effects on Vero cells. Survival time of the mice infected by S. pneumoniae strains was prolonged by the treatment with the compounds. Importantly, all of the five compounds exerted antimicrobial effects against multidrug-resistant clinical strains of S. pneumoniae. Moreover, even at sub-MIC concentration, they inhibited cell division and biofilm formation. The five compounds all have enhancement effect on penicillin. Deoxyshikonin and dodecyl gallate showed significantly synergic antimicrobial activity with penicillin in vivo and in vitro, and effectively reduced nasopharyngeal and lung colonization caused by different penicillin-resistant pneumococcal serotypes. In addition, the two compounds also showed synergic antimicrobial activity with erythromycin and tetracycline. Taken together, our results suggest that these novel VicK inhibitors may be promising compounds against the pneumococcus, including penicillin-resistant strains.

  4. Tracking 20 Years of Compound-to-Target Output from Literature and Patents

    PubMed Central

    Southan, Christopher; Varkonyi, Peter; Boppana, Kiran; Jagarlapudi, Sarma A.R.P.; Muresan, Sorel

    2013-01-01

    The statistics of drug development output and declining yield of approved medicines has been the subject of many recent reviews. However, assessing research productivity that feeds development is more difficult. Here we utilise an extensive database of structure-activity relationships extracted from papers and patents. We have used this database to analyse published compounds cumulatively linked to nearly 4000 protein target identifiers from multiple species over the last 20 years. The compound output increases up to 2005 followed by a decline that parallels a fall in pharmaceutical patenting. Counts of protein targets have plateaued but not fallen. We extended these results by exploring compounds and targets for one large pharmaceutical company. In addition, we examined collective time course data for six individual protease targets, including average molecular weight of the compounds. We also tracked the PubMed profile of these targets to detect signals related to changes in compound output. Our results show that research compound output had decreased 35% by 2012. The major causative factor is likely to be a contraction in the global research base due to mergers and acquisitions across the pharmaceutical industry. However, this does not rule out an increasing stringency of compound quality filtration and/or patenting cost control. The number of proteins mapped to compounds on a yearly basis shows less decline, indicating the cumulative published target capacity of global research is being sustained in the region of 300 proteins for large companies. The tracking of six individual targets shows uniquely detailed patterns not discernible from cumulative snapshots. These are interpretable in terms of events related to validation and de-risking of targets that produce detectable follow-on surges in patenting. Further analysis of the type we present here can provide unique insights into the process of drug discovery based on the data it actually generates. PMID:24204758

  5. Design, Synthesis, and Evaluation of Dihydrobenzo[cd]indole-6-sulfonamide as TNF-α Inhibitors.

    PubMed

    Deng, Xiaobing; Zhang, Xiaoling; Tang, Bo; Liu, Hongbo; Shen, Qi; Liu, Ying; Lai, Luhua

    2018-01-01

    Tumor necrosis factor-α (TNF-α) plays a pivotal role in inflammatory response. Dysregulation of TNF can lead to a variety of disastrous pathological effects, including auto-inflammatory diseases. Antibodies that directly targeting TNF-α have been proven effective in suppressing symptoms of these disorders. Compared to protein drugs, small molecule drugs are normally orally available and less expensive. Till now, peptide and small molecule TNF-α inhibitors are still in the early stage of development, and much more efforts should be made. In a previously study, we reported a TNF-α inhibitor, EJMC-1 with modest activity. Here, we optimized this compound by shape screen and rational design. In the first round, we screened commercial compound library for EJMC-1 analogs based on shape similarity. Out of the 68 compounds tested, 20 compounds showed better binding affinity than EJMC-1 in the SPR competitive binding assay. These 20 compounds were tested in cell assay and the most potent compound was 2-oxo-N-phenyl-1,2-dihydrobenzo[ cd ]indole-6-sulfonamide ( S10 ) with an IC 50 of 14 μM, which was 2.2-fold stronger than EJMC-1 . Based on the docking analysis of S10 and EJMC-1 binding with TNF-α, in the second round, we designed S10 analogs, purchased seven of them, and synthesized seven new compounds. The best compound, 4e showed an IC 50 -value of 3 μM in cell assay, which was 14-fold stronger than EJMC-1 . 4e was among the most potent TNF-α organic compound inhibitors reported so far. Our study demonstrated that 2-oxo-N-phenyl-1,2-dihydrobenzo[ cd ]indole-6-sulfonamide analogs could be developed as potent TNF-α inhibitors. 4e can be further optimized for its activity and properties. Our study provides insights into designing small molecule inhibitors directly targeting TNF-α and for protein-protein interaction inhibitor design.

  6. Design, Synthesis, and Evaluation of Dihydrobenzo[cd]indole-6-sulfonamide as TNF-alpha Inhibitors

    NASA Astrophysics Data System (ADS)

    Deng, Xiaobing; Zhang, Xiaoling; Tang, Bo; Liu, Hongbo; Shen, Qi; Liu, Ying; Lai, Luhua

    2018-04-01

    Tumor necrosis factor-α (TNF-α) plays a pivotal role in inflammatory response. Dysregulation of TNF can lead to a variety of disastrous pathological effects, including auto-inflammatory diseases. Antibodies that directly targeting TNF-α have been proven effective in suppressing symptoms of these disorders. Compared to protein drugs, small molecule drugs are normally orally available and less expensive. Till now, peptide and small molecule TNF-α inhibitors are still in the early stage of development, and much more efforts should be made. In a previously study, we reported a TNF-α inhibitor, EJMC-1 with modest activity. Here, we optimized this compound by shape screen and rational design. In the first round, we screened commercial compound library for EJMC-1 analogs based on shape similarity. Out of the 68 compounds tested, 20 compounds showed better binding affinity than EJMC-1 in the SPR competitive binding assay. These 20 compounds were tested in cell assay and the most potent compound was 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide (S10) with an IC50 of 14 M, which was 2.2-fold stronger than EJMC-1. Based on the docking analysis of S10 and EJMC-1 binding with TNF-α, in the second round, we designed S10 analogues, purchased 7 of them and synthesized 7 new compounds. The best compound, 4e showed an IC50 value of 3 M in cell assay, which was 14-fold stronger than EJMC-1. 4e was among the most potent TNF-α organic compound inhibitors reported so far. Our study demonstrated that 2-oxo-N-phenyl-1,2-dihydrobenzo[cd]indole-6-sulfonamide analogues could be developed as potent TNF-α inhibitors. 4e can be further optimized for its activity and properties. Our study provides insights into designing small molecule inhibitors directly targeting TNF-α and for protein-protein interaction inhibitor design.

  7. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    DOE PAGES

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.; ...

    2016-02-02

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less

  8. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage.

    PubMed

    Kosmider, Leon; Sobczak, Andrzej; Fik, Maciej; Knysak, Jakub; Zaciera, Marzena; Kurek, Jolanta; Goniewicz, Maciej Lukasz

    2014-10-01

    Glycerin (VG) and propylene glycol (PG) are the most common nicotine solvents used in e-cigarettes (ECs). It has been shown that at high temperatures both VG and PG undergo decomposition to low molecular carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. The aim of this study was to evaluate how various product characteristics, including nicotine solvent and battery output voltage, affect the levels of carbonyls in EC vapor. Twelve carbonyl compounds were measured in vapors from 10 commercially available nicotine solutions and from 3 control solutions composed of pure glycerin, pure propylene glycol, or a mixture of both solvents (50:50). EC battery output voltage was gradually modified from 3.2 to 4.8V. Carbonyl compounds were determined using the HPLC/DAD method. Formaldehyde and acetaldehyde were found in 8 of 13 samples. The amounts of formaldehyde and acetaldehyde in vapors from lower voltage EC were on average 13- and 807-fold lower than in tobacco smoke, respectively. The highest levels of carbonyls were observed in vapors generated from PG-based solutions. Increasing voltage from 3.2 to 4.8V resulted in a 4 to more than 200 times increase in formaldehyde, acetaldehyde, and acetone levels. The levels of formaldehyde in vapors from high-voltage device were in the range of levels reported in tobacco smoke. Vapors from EC contain toxic and carcinogenic carbonyl compounds. Both solvent and battery output voltage significantly affect levels of carbonyl compounds in EC vapors. High-voltage EC may expose users to high levels of carbonyl compounds. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    PubMed

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  10. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less

  11. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.

    PubMed

    Koutsoukas, Alexios; Paricharak, Shardul; Galloway, Warren R J D; Spring, David R; Ijzerman, Adriaan P; Glen, Robert C; Marcus, David; Bender, Andreas

    2014-01-27

    Chemical diversity is a widely applied approach to select structurally diverse subsets of molecules, often with the objective of maximizing the number of hits in biological screening. While many methods exist in the area, few systematic comparisons using current descriptors in particular with the objective of assessing diversity in bioactivity space have been published, and this shortage is what the current study is aiming to address. In this work, 13 widely used molecular descriptors were compared, including fingerprint-based descriptors (ECFP4, FCFP4, MACCS keys), pharmacophore-based descriptors (TAT, TAD, TGT, TGD, GpiDAPH3), shape-based descriptors (rapid overlay of chemical structures (ROCS) and principal moments of inertia (PMI)), a connectivity-matrix-based descriptor (BCUT), physicochemical-property-based descriptors (prop2D), and a more recently introduced molecular descriptor type (namely, "Bayes Affinity Fingerprints"). We assessed both the similar behavior of the descriptors in assessing the diversity of chemical libraries, and their ability to select compounds from libraries that are diverse in bioactivity space, which is a property of much practical relevance in screening library design. This is particularly evident, given that many future targets to be screened are not known in advance, but that the library should still maximize the likelihood of containing bioactive matter also for future screening campaigns. Overall, our results showed that descriptors based on atom topology (i.e., fingerprint-based descriptors and pharmacophore-based descriptors) correlate well in rank-ordering compounds, both within and between descriptor types. On the other hand, shape-based descriptors such as ROCS and PMI showed weak correlation with the other descriptors utilized in this study, demonstrating significantly different behavior. We then applied eight of the molecular descriptors compared in this study to sample a diverse subset of sample compounds (4%) from an initial population of 2587 compounds, covering the 25 largest human activity classes from ChEMBL and measured the coverage of activity classes by the subsets. Here, it was found that "Bayes Affinity Fingerprints" achieved an average coverage of 92% of activity classes. Using the descriptors ECFP4, GpiDAPH3, TGT, and random sampling, 91%, 84%, 84%, and 84% of the activity classes were represented in the selected compounds respectively, followed by BCUT, prop2D, MACCS, and PMI (in order of decreasing performance). In addition, we were able to show that there is no visible correlation between compound diversity in PMI space and in bioactivity space, despite frequent utilization of PMI plots to this end. To summarize, in this work, we assessed which descriptors select compounds with high coverage of bioactivity space, and can hence be used for diverse compound selection for biological screening. In cases where multiple descriptors are to be used for diversity selection, this work describes which descriptors behave complementarily, and can hence be used jointly to focus on different aspects of diversity in chemical space.

  12. Chemical compound-based direct reprogramming for future clinical applications

    PubMed Central

    Takeda, Yukimasa; Harada, Yoshinori; Yoshikawa, Toshikazu; Dai, Ping

    2018-01-01

    Recent studies have revealed that a combination of chemical compounds enables direct reprogramming from one somatic cell type into another without the use of transgenes by regulating cellular signaling pathways and epigenetic modifications. The generation of induced pluripotent stem (iPS) cells generally requires virus vector-mediated expression of multiple transcription factors, which might disrupt genomic integrity and proper cell functions. The direct reprogramming is a promising alternative to rapidly prepare different cell types by bypassing the pluripotent state. Because the strategy also depends on forced expression of exogenous lineage-specific transcription factors, the direct reprogramming in a chemical compound-based manner is an ideal approach to further reduce the risk for tumorigenesis. So far, a number of reported research efforts have revealed that combinations of chemical compounds and cell-type specific medium transdifferentiate somatic cells into desired cell types including neuronal cells, glial cells, neural stem cells, brown adipocytes, cardiomyocytes, somatic progenitor cells, and pluripotent stem cells. These desired cells rapidly converted from patient-derived autologous fibroblasts can be applied for their own transplantation therapy to avoid immune rejection. However, complete chemical compound-induced conversions remain challenging particularly in adult human-derived fibroblasts compared with mouse embryonic fibroblasts (MEFs). This review summarizes up-to-date progress in each specific cell type and discusses prospects for future clinical application toward cell transplantation therapy. PMID:29739872

  13. Release of (and lessons learned from mining) a pioneering large toxicogenomics database.

    PubMed

    Sandhu, Komal S; Veeramachaneni, Vamsi; Yao, Xiang; Nie, Alex; Lord, Peter; Amaratunga, Dhammika; McMillian, Michael K; Verheyen, Geert R

    2015-07-01

    We release the Janssen Toxicogenomics database. This rat liver gene-expression database was generated using Codelink microarrays, and has been used over the past years within Janssen to derive signatures for multiple end points and to classify proprietary compounds. The release consists of gene-expression responses to 124 compounds, selected to give a broad coverage of liver-active compounds. A selection of the compounds were also analyzed on Affymetrix microarrays. The release includes results of an in-house reannotation pipeline to Entrez gene annotations, to classify probes into different confidence classes. High confidence unambiguously annotated probes were used to create gene-level data which served as starting point for cross-platform comparisons. Connectivity map-based similarity methods show excellent agreement between Codelink and Affymetrix runs of the same samples. We also compared our dataset with the Japanese Toxicogenomics Project and observed reasonable agreement, especially for compounds with stronger gene signatures. We describe an R-package containing the gene-level data and show how it can be used for expression-based similarity searches. Comparing the same biological samples run on the Affymetrix and the Codelink platform, good correspondence is observed using connectivity mapping approaches. As expected, this correspondence is smaller when the data are compared with an independent dataset such as TG-GATE. We hope that this collection of gene-expression profiles will be incorporated in toxicogenomics pipelines of users.

  14. Exploring anti-bacterial compounds against intracellular Legionella.

    PubMed

    Harrison, Christopher F; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  15. In depth chemical investigation of Glycyrrhiza triphylla Fisch roots guided by a preliminary HPLC-ESIMSn profiling.

    PubMed

    Shakeri, Abolfazl; Masullo, Milena; D'Urso, Gilda; Iranshahi, Mehrdad; Montoro, Paola; Pizza, Cosimo; Piacente, Sonia

    2018-05-15

    Chemical investigations on Glycyrrhiza spp. have mostly been focused on G. glabra (typically cultivated in Europe, henceforth called European licorice), G. uralensis and G. inflata (known as Chinese licorice) with little information on the constituents of other Glycyrrhiza species. According to the growing interest in further Glycyrrhiza spp. to be used as sweeteners, the roots of G. triphylla have been investigated. The LC-ESI/LTQOrbitrap/MS profile of the methanolic extract of G. triphylla roots guided the isolation of 21 compounds, of which the structures were elucidated by 1D- and 2D-NMR experiments. Based on this approach, 6 previously unreported compounds including two isoflavones 7,5'-dihydroxy-6,3'-dimethoxy-isoflavone-7-O-β-d-glucopyranoside (4) and 7,5'-dihydroxy-6,3'-dimethoxy-isoflavone-7-O-(7,8-dihydro-p-hydroxycinnamoyl)-β-d-glucopyranoside (7) and four saponins, named licoricesaponins M3 (13), N2 (14), O2 (16) and P2 (18), have been characterized. It is to be noted that the accurate masses of some compounds here reported for the first time corresponded to those of compounds previously described in Glycyrrhiza spp. Thus an approach based only on MS analysis could be misleading; only isolation followed by NMR analysis allowed us to unambiguously assign the structures of these previously unreported compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 77 FR 76419 - Health and Safety Data Reporting; Addition of Certain Chemicals; Withdrawal of Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... importers) of cadmium or cadmium compounds, including as part of an article, that have been, or are... (including importer) of cadmium or cadmium compounds, including as part of an article, that have been, or are... reporting rule that would have required manufacturers (including importers) of cadmium or cadmium compounds...

  17. Nutrition therapy cost analysis in the US: pre-mixed multi-chamber bag vs compounded parenteral nutrition.

    PubMed

    Turpin, Robin S; Canada, Todd; Liu, Frank Xiaoqing; Mercaldi, Catherine J; Pontes-Arruda, Alessandro; Wischmeyer, Paul

    2011-09-01

    Bloodstream infections (BSI) occur in up to 350 000 inpatient admissions each year in the US, with BSI rates among patients receiving parenteral nutrition (PN) varying from 1.3% to 39%. BSI-attributable costs were estimated to approximate $US12 000 per episode in 2000. While previous studies have compared the cost of different PN preparation methods, this analysis evaluates both the direct costs of PN and the treatment costs for BSI associated with different PN delivery methods to determine whether compounded or manufactured pre-mixed PN has lower overall costs. The purpose of this study was to compare costs in the US associated with compounded PN versus pre-mixed multi-chamber bag (MCB) PN based on underlying infection risk. Using claims information from the Premier Perspective™ database, multivariate logistic regression was used to estimate the risk of infection. A total of 44 358 hospitalized patients aged ≥18 years who received PN between 1 January 2005 and 31 December 2007 were included in the analyses. A total of 3256 patients received MCB PN and 41 102 received compounded PN. The PN-associated costs and length of stay were analysed using multivariate ordinary least squares regression models constructed to measure the impact of infectious events on total hospital costs after controlling for baseline and clinical patient characteristics. There were 7.3 additional hospital days attributable to BSI. After adjustment for baseline variables, the probability of developing a BSI was 30% higher in patients receiving compounded PN than in those receiving MCB PN (16.1% vs 11.3%; odds ratio = 1.56; 95% CI 1.37, 1.79; p < 0.0001), demonstrating 2172 potentially avoidable infections. The observed daily mean PN acquisition cost for patients receiving MCB PN was $US164 (including all additives and fees) compared with $US239 for patients receiving compounded PN (all differences p < 0.001). With a mean cost attributable to BSI of $US16 141, the total per-patient savings (including avoided BSI and PN costs) was $US1545. In this analysis of real-world PN use, MCB PN is associated with lower costs than compounded PN with regards to both PN acquisition and potential avoidance of BSI. Our base case indicates that $US1545 per PN patient may be saved; even if as few as 50% of PN patients are candidates for standardized pre-mix formulations, a potential savings of $US773 per patient may be realized.

  18. Strategies, linkers and coordination polymers for high-performance sorbents

    DOEpatents

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver

    2015-09-15

    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  19. Activity of lycorine analogs against the fish bacterial pathogen Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    In a continuing effort to discover natural products and natural product-based compounds for the control of columnaris disease in channel catfish (Ictalurus punctatus), seventeen lycorine analogs were synthesized, including new benzoyl analogs 6 – 16, and evaluated for antibacterial activity against ...

  20. 40 CFR 63.1001 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the purposes of this subpart, means to take action for the purpose of stopping or reducing leakage of.... Liquids dripping means any visible leakage from the seal including dripping, spraying, misting, clouding... compounds based on a detection principle such as infra-red, photo ionization, or thermal conductivity...

  1. DISTRIBUTION OF DIOXINS, FURANS, AND COPLANAR PCBS IN DIFFERENT FAT MATRICES IN CATTLE

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) and the United States Department of Agriculture (USDA) recently collaborated on a statistically-based, national survey of dioxin-like compounds, including dioxins, furans, and coplanar PCBs, in the back fat from slaughtered ...

  2. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…

  3. 40 CFR 265.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., temperatures, flow rates or vent stream organic compounds and concentrations) that represent the conditions... -include the estimated or design flow rate and organic content of each vent stream and define the..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  4. 40 CFR 265.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...., temperatures, flow rates or vent stream organic compounds and concentrations) that represent the conditions... -include the estimated or design flow rate and organic content of each vent stream and define the..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  5. 40 CFR 265.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., temperatures, flow rates or vent stream organic compounds and concentrations) that represent the conditions... -include the estimated or design flow rate and organic content of each vent stream and define the..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  6. 40 CFR 265.1035 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...., temperatures, flow rates or vent stream organic compounds and concentrations) that represent the conditions... -include the estimated or design flow rate and organic content of each vent stream and define the..., drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of “APTI...

  7. Safe Disposal of Highly Reactive Chemicals.

    ERIC Educational Resources Information Center

    Lunn, George; Sansone, Eric B.

    1994-01-01

    Provides specific procedures for the disposal of a variety of highly reactive chemicals and reports the results of a study of their safe disposal. Disposal of some problematic sulfur-containing compounds are included. Procedures are based on a combination of literature review and author development. (LZ)

  8. New materials and structures for photovoltaics

    NASA Astrophysics Data System (ADS)

    Zunger, Alex; Wagner, S.; Petroff, P. M.

    1993-01-01

    Despite the fact that over the years crystal chemists have discovered numerous semiconducting substances, and that modern epitaxial growth techniques are able to produce many novel atomic-scale architectures, current electronic and opto-electronic technologies are based but on a handful of ˜10 traditional semiconductor core materials. This paper surveys a number of yet-unexploited classes of semiconductors, pointing to the much-needed research in screening, growing, and characterizing promising members of these classes. In light of the unmanageably large number of a-priori possibilities, we emphasize the role that structural chemistry and modern computer-aided design must play in screening potentially important candidates. The basic classes of materials discussed here include nontraditional alloys, such as non-isovalent and heterostructural semiconductors, materials at reduced dimensionality, including superlattices, zeolite-caged nanostructures and organic semiconductors, spontaneously ordered alloys, interstitial semiconductors, filled tetrahedral structures, ordered vacancy compounds, and compounds based on d and f electron elements. A collaborative effort among material predictor, material grower, and material characterizer holds the promise for a successful identification of new and exciting systems.

  9. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630

    DOE PAGES

    DeLorenzo, Drew M.; Henson, William R.; Moon, Tae Seok

    2017-07-26

    Rhodococcus opacus PD630 is a non-model, gram positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: 1) six fluorescent reporters for quantifying promoter output, 2) three chemically inducible promoters for variable gene expression, and 3) two classes of metabolite sensors derived from native R.more » opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.« less

  10. Towards a rational approach for heavy-atom derivative screening in protein crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agniswamy, Johnson; Joyce, M. Gordon; Hammer, Carl H.

    2008-04-01

    Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity of more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity ofmore » more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Met-, Cys- and His-containing peptides were derivatized against Hg, Au and Pt compounds, while Tyr-, Glu-, Asp-, Asn- and Gln-containing peptides were assessed against Pb compounds. A total of 1668 reactive conditions were examined using mass spectrometry and were compiled into heavy-atom reactivity tables. The results showed that heavy-atom derivatization reactions are highly linked to buffer and pH, with the most accommodating buffer being MES at pH 6. A group of 21 compounds were identified as most successful irrespective of ligand or buffer/pH conditions. To assess the applicability of the peptide heavy-atom reactivity to proteins, lysozyme crystals were derivatized with a list of peptide-reactive compounds that included both known and new compounds for lysozyme derivatization. The results showed highly consistent heavy-atom reactivities between the peptides and lysozyme.« less

  11. Synthesized of 2,7 dihydroxyxanthone from xanthone and antimalarial activities

    NASA Astrophysics Data System (ADS)

    Amanatie; Jumina; Mustofa; Hanafi

    2018-03-01

    The purpose of the research is to synthesize 2,7-di-hydroxyxanthone compounds from xanthone and to evaluate antiplasmodial against activities. The synthesize of 2,7-di-hydroxyxanthone compounds worked with chromatogramphy methods including Thin Layer Chromatography (TLC), Vacuum Liquid Chromatography (VLC). A compound structures were determined based on the spectroscopic evidences including, Infrared (IR), one dimension (1-D) and two dimension (2-D) Nuclear Magnetic Resonance (NMR) spectra and comparison the spectroscopy data with related data from references. The biological properties of compounds are evaluated towards antiplasmodial against activity. The result of the product was obtained as white solid in 63.49% yield. The IR spectrum showed the absorption at 3433 cm-1 Which was reinforced with a sharp attack at 1087cm-1 indicating the stretching of OH, while the stretching of aromatic C=C appeared at 1620 cm-1. The 1H-NMR (500MHz, and DMSO –d6) spectrum showed that the aryl protons appeared in the region of δ12.98 ppm. In this region, there were 2 singlet at δH 12.98 ppm (1H, 2-OH) and (1H,7-OH) and shows the presence of two OH groups. Based on spectroscopy analyses, it could be started that the reaction of 2.7 di-aminoxanthone with NaNO2/HCl and H3PO4 produced 2.7-di-hydroxyxanthone. In vitro antiplasmodial assay of the product synthesized 2,7 di-hydroxyxanthones against. Falciparum strain of 3D7 showed that the IC50 values of 2,7-di-hydroxy xanthone, were 0.31 μg/mL, respectively.

  12. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton Davis; Gary Jacobs; Wenping Ma

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased.more » Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities at different concentration levels of added contaminant.« less

  13. Computational ligand-based rational design: Role of conformational sampling and force fields in model development.

    PubMed

    Shim, Jihyun; Mackerell, Alexander D

    2011-05-01

    A significant number of drug discovery efforts are based on natural products or high throughput screens from which compounds showing potential therapeutic effects are identified without knowledge of the target molecule or its 3D structure. In such cases computational ligand-based drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to elucidate the relationship of a compound's structure and physicochemical attributes to its biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for the prediction of compounds with improved biological attributes. LBDD methods range from pharmacophore models identifying essential features of ligands responsible for their activity, quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities based on physiochemical properties, and to similarity searching, which explores compounds with similar properties as well as various combinations of the above. A number of recent LBDD approaches involve the use of multiple conformations of the ligands being studied. One of the basic components to generate multiple conformations in LBDD is molecular mechanics (MM), which apply an empirical energy function to relate conformation to energies and forces. The collection of conformations for ligands is then combined with functional data using methods ranging from regression analysis to neural networks, from which the SAR is determined. Accordingly, for effective application of LBDD for SAR determinations it is important that the compounds be accurately modelled such that the appropriate range of conformations accessible to the ligands is identified. Such accurate modelling is largely based on use of the appropriate empirical force field for the molecules being investigated and the approaches used to generate the conformations. The present chapter includes a brief overview of currently used SAR methods in LBDD followed by a more detailed presentation of issues and limitations associated with empirical energy functions and conformational sampling methods.

  14. A Systematic Review of the Efficacy of Bioactive Compounds in Cardiovascular Disease: Phenolic Compounds

    PubMed Central

    Rangel-Huerta, Oscar D.; Pastor-Villaescusa, Belen; Aguilera, Concepcion M.; Gil, Angel

    2015-01-01

    The prevalence of cardiovascular diseases (CVD) is rising and is the prime cause of death in all developed countries. Bioactive compounds (BAC) can have a role in CVD prevention and treatment. The aim of this work was to examine the scientific evidence supporting phenolic BAC efficacy in CVD prevention and treatment by a systematic review. Databases utilized were Medline, LILACS and EMBASE, and all randomized controlled trials (RCTs) with prospective, parallel or crossover designs in humans in which the effects of BAC were compared with that of placebo/control were included. Vascular homeostasis, blood pressure, endothelial function, oxidative stress and inflammatory biomarkers were considered as primary outcomes. Cohort, ecological or case-control studies were not included. We selected 72 articles and verified their quality based on the Scottish Intercollegiate Guidelines Network, establishing diverse quality levels of scientific evidence according to two features: the design and bias risk of a study. Moreover, a grade of recommendation was included, depending on evidence strength of antecedents. Evidence shows that certain polyphenols, such as flavonols can be helpful in decreasing CVD risk factors. However, further rigorous evidence is necessary to support the BAC effect on CVD prevention and treatment. PMID:26132993

  15. E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds.

    PubMed

    Tafrihi, Majid; Nakhaei Sistani, Roohollah

    2017-07-01

    Plants reputed to have cancer-inhibiting potential and putative active components derived from those plants have emerged as an exciting new field in cancer study. Some of these compounds have cancer-inhibiting potential in different clinical staging levels, especially metastasis. A few of them which stabilize cell-cell adhesions are controversial topics. This review article introduces some effective herbal compounds that target E-cadherin/β-catenin protein complex. In this article, at first, we briefly review the structure and function of E-cadherin and β-catenin proteins, Wnt signaling pathway, and its target genes. Then, effective compounds of the Teucrium persicum, Teucrium polium, Allium sativum (garlic), Glycine max (soy), and Brassica oleracea (broccoli) plants, which influence stability and cellular localization of E-cadherin/β-catenin complex, were studied. Based on literature review, there are some compounds in these plants, including genistein of soy, sulforaphane of broccoli, organosulfur compounds of garlic, and the total extract of Teucrium genus that change the expression of variety of Wnt target genes such as MMPs, E-cadherin, p21, p53, c-myc, and cyclin D1. So they may induce cell-cycle arrest, apoptosis and/or inhibition of Epithelial-Mesenchymal Transition (EMT) and metastasis.

  16. One-Pot Synthesis, Spectroscopic and Physicochemical Studies of Quinoline Based Blue Emitting Donor-Acceptor Chromophores with Their Biological Application.

    PubMed

    Asiri, Abdullah M; Khan, Salman A; Al-Thaqafya, Saad H

    2015-09-01

    Blue emitting cyano substituted isoquinoline dyes were synthesized by one-pot multicomponent reactions (MCRs) of aldehydes, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic (FT-IR, (1)H-NMR, (13)C-NMR, EI-MS) and elemental analysis of synthesized compounds was in good agreement with their chemical structures. UV-vis and fluorescence spectroscopy measurements proved that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, excitation coefficient, stokes shift, oscillator strength, transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of synthesized compounds. The anti-bacterial activity of these compounds were first studied in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria then the minimum inhibitory concentration (MIC) was determined with the reference of standard drug chloramphenicol. The results displayed that compound 3 was better inhibitors of both types of the bacteria (Gram-positive and Gram-negative) than chloramphenicol. Graphical Abstract ᅟ.

  17. A Non-lethal water-based removal-reapplication technique for behavioral analysis of cuticular compounds of ants.

    PubMed

    Roux, Olivier; Martin, Jean-Michel; Ghomsi, Nathan Tene; Dejean, Alain

    2009-08-01

    Interspecific relationships among insects are often mediated by chemical cues, including non-volatile cuticular compounds. Most of these compounds are hydrocarbons that necessitate the use of solvents for their extraction, identification, and manipulation during behavioral assays. The toxicity of these solvents often precludes the removal and reapplication of hydrocarbons from and to live insects. As a consequence, dummies often are used in behavioral assays, but their passivity can bias the behavior of the responding insects. To overcome these limitations, we propose a method where cuticular compounds are extracted from live ants by placing them into glass vials half-filled with tepid water (ca. 34 degrees C) and vigorously shaking the vials to form an emulsion whose supernatant can be analyzed and/or reapplied to other ants. We demonstrate that cuticular compounds can be extracted from workers of the red fire ant, Solenopsis saevissima, and reapplied to the cuticle of workers from a sympatric species, Camponotus blandus (both Hymenoptera: Formicidae), while keeping the ants alive. Gas chromatographic-mass spectrometric analysis and behavioral assays were used to confirm the successful transfer of the behaviorally active compounds.

  18. Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution.

    PubMed

    Zhao, Yan; Lu, Wenjing; Wang, Hongtao

    2015-12-30

    Odour pollution caused by municipal solid waste is a public concern. This study quantitatively evaluated the concentration, environmental impacts, and olfaction of volatile trace compounds released from a waste transfer station. Seventy-six compounds were detected, and ethanol presented the highest releasing rate and ratio of 14.76 kg/d and 12.30 g/t of waste, respectively. Life cycle assessment showed that trichlorofluoromethane and dichlorodifluoromethane accounted for more than 99% of impact potentials to global warming and approximately 70% to human toxicity (non-carcinogenic). The major contributor for both photochemical ozone formation and ecotoxicity was ethanol. A detection threshold method was also used to evaluate odour pollution. Five compounds including methane thiol, hydrogen sulphide, ethanol, dimethyl disulphide, and dimethyl sulphide, with dilution multiples above one, were considered the critical compounds. Methane thiol showed the highest contribution to odour pollution of more than 90%, as indicated by its low threshold. Comparison of the contributions of the compounds to different environmental aspects indicated that typical pollutants varied based on specific evaluation targets and therefore should be comprehensively considered. This study provides important information and scientific methodology to elucidate the impacts of odourant compounds to the environment and odour pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Optical properties of novel environmentally benign biologically active ferrocenyl substituted chromophores: A detailed insight via experimental and theoretical approach

    NASA Astrophysics Data System (ADS)

    Khan, Salman A.; Asiri, Abdullah M.; Al-Ghamdi, Najat Saeed M.; Zayed, Mohie E. M.; Sharma, Kamlesh; Parveen, Humaira

    2017-07-01

    Series of ferrocenyl substituted chromophores were synthesized via a reaction of acetyl ferrocene and a variety of aldehyde under microwave irradiation. The structure of synthesized compounds were established by spectroscopic (FT-IR, 1H NMR, 13C NMR, ESI-MS) and elemental analysis. UV-Vis and fluorescence spectroscopy measurements provided that all compounds have good absorbent and fluorescent properties. Fluorescence polarity studies demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, Stokes shift, oscillator strength and dipole moment, were investigated in order to explore the analytical potential of the synthesized compounds. The anti-bacterial activity of these compounds were first studied in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria. The minimum inhibitory concentration was then determined with the reference of standard drug chloramphenicol. The results displayed that compound 3 was better inhibitors for both types of the bacteria (Gram-positive and Gram-negative) than chloramphenicol. Based on the density functional theory; total energy, the atomic orbital contribution to frontier orbitals: LUMO and HOMO, of all synthesized compounds were calculated to support the antibacterial activities.

  20. 40 CFR 442.2 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., organic chemicals including: alcohols, aldehydes, formaldehydes, phenols, peroxides, organic salts, amines, amides, other nitrogen compounds, other aromatic compounds, aliphatic organic chemicals, glycols, glycerines, and organic polymers; refractory organic compounds including: ketones, nitriles, organo-metallic...

  1. EMERGING CONTAMINANTS IN BIOSOLIDS

    EPA Science Inventory

    Emerging contaminants are receiving increasing media and scientific attention. These chemicals are sometimes referred to as compounds of emerging concern or trace organic compounds, and include several groups of chemicals including endocrine disrupting compounds (EDCs), and phar...

  2. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2014-02-01

    Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS. © 2013 Elsevier B.V. All rights reserved.

  3. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work?

    PubMed Central

    Moura, Fabiana Andréa; de Andrade, Kívia Queiroz; dos Santos, Juliana Célia Farias; Araújo, Orlando Roberto Pimentel; Goulart, Marília Oliveira Fonseca

    2015-01-01

    Oxidative stress (OS) is considered as one of the etiologic factors involved in several signals and symptoms of inflammatory bowel diseases (IBD) that include diarrhea, toxic megacolon and abdominal pain. This systematic review discusses approaches, challenges and perspectives into the use of nontraditional antioxidant therapy on IBD, including natural and synthetic compounds in both human and animal models. One hundred and thirty four papers were identified, of which only four were evaluated in humans. Some of the challenges identified in this review can shed light on this fact: lack of standardization of OS biomarkers, absence of safety data and clinical trials for the chemicals and biological molecules, as well as the fact that most of the compounds were not repeatedly tested in several situations, including acute and chronic colitis. This review hopes to stimulate researchers to become more involved in this fruitful area, to warrant investigation of novel, alternative and efficacious antioxidant-based therapies. PMID:26520808

  4. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding: The ASPEN Model.

    PubMed

    Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi

    2016-08-01

    Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff. © 2016 American Society for Parenteral and Enteral Nutrition.

  5. Electronic, magnetic properties and phase diagrams of system with Fe4N compound: An ab initio calculations and Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.; Hlil, E. K.

    2018-05-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate the electronic and magnetic properties of the Fe4N compound. Polarized spin and spin-orbit coupling are included in calculations within the framework of the ferromagnetic state between Fe(I) and Fe(II) in Fe4N compound. We have used the obtained data from abinitio calculations as an input in Monte Carlo simulation to calculate the magnetic properties of this compounds such as the ground state phase diagrams, total and partial magnetization of Fe(I) and Fe(II) as well as the transition temperatures are computed. The variation of magnetization with the crystal field are also studied. The magnetic hysteresis cycle of the same Fe4N compound are determined for different values of temperatures and crystal field values. The two-step hysteresis loop are evidenced, which is typical for Fe4N structure. The ferromagnetic and superparamagnetic phase is observed as well.

  6. Bioassay-guided isolation of proanthocyanidins with antiangiogenic activities.

    PubMed

    Pesca, Maria S; Dal Piaz, Fabrizio; Sanogo, Rokia; Vassallo, Antonio; Bruzual de Abreu, Maryan; Rapisarda, Antonio; Germanò, Maria P; Certo, Giovanna; De Falco, Sandro; De Tommasi, Nunziatina; Braca, Alessandra

    2013-01-25

    The proangiogenic members of the vascular endothelial growth factor (VEGF) family and related receptors play a central role in the modulation of pathological angiogenesis. In order to identify plant compounds able to interfere in the VEGFs/VEGFR-1 (Flt-1) recognition by VEGF family members, the extracts of the aerial parts of Campsiandra guayanensis and Feretia apodanthera were screened by a competitive ELISA-based assay. By using this bioassay-oriented approach five proanthocyanindins, including the new natural compounds (2S)-4',5,7-trihydroxyflavan-(4β→8)-afzelechin (1) and (2S)-4',5,7-trihydroxyflavan-(4β→8)-epiafzelechin (2) and the known geranin B (3), proanthocyanidin A2 (4), and proanthocyanidin A1 (5), were isolated. The study of the antiangiogenic activities of compounds 1-5 using ELISA and SPR assays showed compound 1 as being the most active. The antiangiogenic activity of 1 was also confirmed in vivo by the chicken chorioallantoic membrane assay. Our results indicated 1 as a new antiangiogenic compound inhibiting the interaction between VEGF-A or PlGF and their receptor VEGRF-1.

  7. In vitro functional properties of crude extracts and isolated compounds from banana pseudostem and rhizome.

    PubMed

    Kandasamy, Saravanan; Ramu, Sasikala; Aradhya, Somaradhya Mallikarjuna

    2016-03-15

    Pseudostem and rhizome are the significant bio-waste generated (43.48%) from the banana plant post fruit harvest, which are usually left in the plantation or incinerated and wasted. Amounts used in production for consumption are negligible. However, the material has an important part to play in indigenous systems of medicine. Based on the huge volume of bio-waste generated and its traditional medicinal use, it is worth exploiting it as a source of natural bioactive compounds. In the current study, sequential extracts from banana pseudostem (BPS) and rhizome (BR), and isolated compounds including chlorogenic acid, 4-epicyclomusalenone and cycloeucalenol acetate, were tested for their antimicrobial activity, antiplatelet aggregation and cytotoxicity. Isolated compounds and crude extracts exhibited strong antimicrobial activity against a wide range of bacterial and fungal strains, platelet aggregation induced by collagen and cytotoxicity towards human liver cancer (HepG2) cells. Banana plant bio-waste, pseudostem and rhizome may serve as a potential source of multifunctional bioactive compounds and functional ingredient in food and other allied industries. © 2015 Society of Chemical Industry.

  8. Discovery of nonsteroidal 17beta-hydroxysteroid dehydrogenase 1 inhibitors by pharmacophore-based screening of virtual compound libraries.

    PubMed

    Schuster, Daniela; Nashev, Lyubomir G; Kirchmair, Johannes; Laggner, Christian; Wolber, Gerhard; Langer, Thierry; Odermatt, Alex

    2008-07-24

    17Beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) plays a pivotal role in the local synthesis of the most potent estrogen estradiol. Its expression is a prognostic marker for the outcome of patients with breast cancer and inhibition of 17beta-HSD1 is currently under consideration for breast cancer prevention and treatment. We aimed to identify nonsteroidal 17beta-HSD1 inhibitor scaffolds by virtual screening with pharmacophore models built from crystal structures containing steroidal compounds. The most promising model was validated by comparing predicted and experimentally determined inhibitory activities of several flavonoids. Subsequently, a virtual library of nonsteroidal compounds was screened against the 3D pharmacophore. Analysis of 14 selected compounds yielded four that inhibited the activity of human 17beta-HSD1 (IC 50 below 50 microM). Specificity assessment of identified 17beta-HSD1 inhibitors emphasized the importance of including related short-chain dehydrogenase/reductase (SDR) members to analyze off-target effects. Compound 29 displayed at least 10-fold selectivity over the related SDR enzymes tested.

  9. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp.

    PubMed

    Espada-Bellido, Estrella; Ferreiro-González, Marta; Carrera, Ceferino; Palma, Miguel; Barroso, Carmelo G; Barbero, Gerardo F

    2017-03-15

    New ultrasound-assisted extraction methods for the determination of anthocyanins and total phenolic compounds present in mulberries have been developed. Several extraction variables, including methanol composition (50-100%), temperature (10-70°C), ultrasound amplitude (30-70%), cycle (0.2-0.7s), solvent pH (3-7) and solvent-solid ratio (10:1.5-20:1.5) were optimized. A Box-Behnken design in conjunction with a response surface methodology was employed to optimize the conditions for the maximum response based on 54 different experiments. Two response variables were considered: total anthocyanins and total phenolic compounds. Extraction temperature and solvent composition were found to be the most influential parameters for anthocyanins (48°C and 76%) and phenolic compounds (64°C and 61%). The developed methods showed high reproducibility and repeatability (RSD<5%). Finally, the new methods were successfully applied to real samples in order to investigate the presence of anthocyanins and total phenolic compounds in several mulberry jams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions are based on fuel-air cycle analyses, computer simulation, and engine test data. All options are evaluated in terms of maximum theoretical improvements, but the Diesel and adiabatic Diesel are also compared on the basis of maximum expected improvement and expected improvement over a driving cycle. The study indicates that Diesels should be turbocharged and aftercooled to the maximum possible level. The results reveal that Diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either can be approximately doubled if applied to an adiabatic Diesel.

  11. N-cinnamoylated chloroquine analogues as dual-stage antimalarial leads.

    PubMed

    Pérez, Bianca C; Teixeira, Cátia; Albuquerque, Inês S; Gut, Jiri; Rosenthal, Philip J; Gomes, José R B; Prudêncio, Miguel; Gomes, Paula

    2013-01-24

    The control of malaria is challenged by drug resistance, and new antimalarial drugs are needed. New drug discovery efforts include consideration of hybrid compounds as potential multitarget antimalarials. Previous work from our group has demonstrated that hybrid structures resulting from cinnamic acid conjugation with heterocyclic moieties from well-known antimalarials present improved antimalarial activity. Now, we report the synthesis and SAR analysis of an expanded series of cinnamic acid derivatives displaying remarkably high activities against both blood- and liver-stage malaria parasites. Two compounds judged most promising, based on their in vitro activity and druglikeness according to the Lipinski rules and Veber filter, were active in vivo against blood-stage rodent malaria parasites. Therefore, the compounds reported represent a new entry as promising dual-stage antimalarial leads.

  12. ProTox: a web server for the in silico prediction of rodent oral toxicity

    PubMed Central

    Drwal, Malgorzata N.; Banerjee, Priyanka; Dunkel, Mathias; Wettig, Martin R.; Preissner, Robert

    2014-01-01

    Animal trials are currently the major method for determining the possible toxic effects of drug candidates and cosmetics. In silico prediction methods represent an alternative approach and aim to rationalize the preclinical drug development, thus enabling the reduction of the associated time, costs and animal experiments. Here, we present ProTox, a web server for the prediction of rodent oral toxicity. The prediction method is based on the analysis of the similarity of compounds with known median lethal doses (LD50) and incorporates the identification of toxic fragments, therefore representing a novel approach in toxicity prediction. In addition, the web server includes an indication of possible toxicity targets which is based on an in-house collection of protein–ligand-based pharmacophore models (‘toxicophores’) for targets associated with adverse drug reactions. The ProTox web server is open to all users and can be accessed without registration at: http://tox.charite.de/tox. The only requirement for the prediction is the two-dimensional structure of the input compounds. All ProTox methods have been evaluated based on a diverse external validation set and displayed strong performance (sensitivity, specificity and precision of 76, 95 and 75%, respectively) and superiority over other toxicity prediction tools, indicating their possible applicability for other compound classes. PMID:24838562

  13. Water-quality assessment of the Potomac River Basin: analysis of available pesticide data, 1972-1990

    USGS Publications Warehouse

    Zappia, Humbert; Fisher, Gary T.

    1997-01-01

    A study of available data for the period from 1972 to 1990 was conducted to characterize the occurrence and distribution of pesticides in sur-face water, bottom material, ground water, and fish tissue in the Potomac River Basin. The study was conducted by the Potomac River study unit of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) program. Exist-ing data coverage was evaluated to guide future data-collection activities. Data from computer data bases and from published and unpublished reports were obtained from local, State, and Fed-eral agencies in the four Potomac River Basin states and the District of Columbia. Data are available for all environmental media, but geo-graphic and temporal coverage are limited. Clusters of data occur in the north-central parts of the basin, with numerous samples at discrete loca-tions in the Shenandoah and Monocacy River Basins, along the mainstem Potomac River, in the Washington, D.C., area, and in streams along the Potomac Estuary. Much of the available surface-water and bottom-material data are from the ear-lier years of the period of interest, the ground-water data are from the middle years, and the fish-tissue data are distributed over much of the period. Overall, temporal coverage is not sufficient for analysis of trends. Comparisons between different sample media are possible in some areas of the Potomac River Basin, particularly in the northern end of the Great Valley. Residual concentrations of some pesticides have been found in surface water, bottom mate-rial, ground water, and fish tissue. Samples have been analyzed for a total of at least 69 pesticides and related compounds in surface water, bottom material, ground water, and fish tissue. Most con-centrations of the pesticides analyzed during the period from 1972 to 1990 were less than or equal to reporting limits. For surface-water samples, 13 out of 41 pes-ticides and related compounds analyzed had concentrations equal to or greater than the report-ing limits. Compounds reported in surface water included 2,4-D, atrazine, aldrin, chlordane, DDT and related compounds, dieldrin, endrin, lindane, prometone, prometryne, and simazine. For bottom material samples, 19 of 31 pesticides and related compounds analyzed had concentrations equal to or greater than the reporting limits. Compounds reported in bottom material included aldrin, chlor-dane, DDT and related compounds, diazinon, dieldrin, endosulfan, endrin, ethion, heptachlor, heptachlor epoxide, lindane, parathion, and tox-aphene. In ground-water samples, 14 of 39 pesticides and related compounds analyzed had concentrations equal to or greater than the report-ing limits. Compounds reported in ground water included 2,4-D, atrazine, chlordane, cyanazine, DDT and related compounds, diazinon, dieldrin, endosulfan, endrin, heptachlor epoxide, malathion, methyl parathion, simazine. For fish- tissue sam-ples, 30 of the 37 pesticides and related compounds analyzed had concentrations equal to or greater than the reporting limits. Compounds reported included aldrin, chlorpyrifos, dacthal, dieldrin, endrin, HCB, heptachlor, heptachlor epoxide, methoxychlor, mirex, PCA, toxaphene, and those compounds related to chlordane, DDT, and lindane.

  14. SAR studies on truxillic acid mono esters as a new class of antinociceptive agents targeting fatty acid binding proteins.

    PubMed

    Yan, Su; Elmes, Matthew W; Tong, Simon; Hu, Kongzhen; Awwa, Monaf; Teng, Gary Y H; Jing, Yunrong; Freitag, Matthew; Gan, Qianwen; Clement, Timothy; Wei, Longfei; Sweeney, Joseph M; Joseph, Olivia M; Che, Joyce; Carbonetti, Gregory S; Wang, Liqun; Bogdan, Diane M; Falcone, Jerome; Smietalo, Norbert; Zhou, Yuchen; Ralph, Brian; Hsu, Hao-Chi; Li, Huilin; Rizzo, Robert C; Deutsch, Dale G; Kaczocha, Martin; Ojima, Iwao

    2018-05-24

    Fatty acid binding proteins (FABPs) serve as critical modulators of endocannabinoid signaling by facilitating the intracellular transport of anandamide and whose inhibition potentiates anandamide signaling. Our previous work has identified a novel small-molecule FABP inhibitor, α-truxillic acid 1-naphthyl monoester (SB-FI-26, 3) that has shown efficacy as an antinociceptive and anti-inflammatory agent in rodent models. In the present work, we have performed an extensive SAR study on a series of 3-analogs as novel FABP inhibitors based on computer-aided inhibitor drug design and docking analysis, chemical synthesis and biological evaluations. The prediction of binding affinity of these analogs to target FABP3, 5 and 7 isoforms was performed using the AutoDock 4.2 program, using the recently determined co-crystal structures of 3 with FABP5 and FABP7. The compounds with high docking scores were synthesized and evaluated for their activities using a fluorescence displacement assay against FABP3, 5 and 7. During lead optimization, compound 3l emerged as a promising compound with the Ki value of 0.21 μM for FABP 5, 4-fold more potent than 3 (Ki, 0.81 μM). Nine compounds exhibit similar or better binding affinity than 3, including compounds 4b (Ki, 0.55 μM) and 4e (Ki, 0.68 μM). Twelve compounds are selective for FABP5 and 7 with >10 μM Ki values for FABP3, indicating a safe profile to avoid potential cardiotoxicity concerns. Compounds 4f, 4j and 4k showed excellent selectivity for FABP5 and would serve as other new lead compounds. Compound 3a possessed high affinity and high selectivity for FABP7. Compounds with moderate to high affinity for FABP5 displayed antinociceptive effects in mice while compounds with low FABP5 affinity lacked in vivo efficacy. In vivo pain model studies in mice revealed that exceeding hydrophobicity significantly affects the efficacy. Thus, among the compounds with high affinity to FABP5 in vitro, the compounds with moderate hydrophobicity were identified as promising new lead compounds for the next round of optimization, including compounds 4b and 4j. For select cases, computational analysis of the observed SAR, especially the selectivity of new inhibitors to particular FABP isoforms, by comparing docking poses, interaction map, and docking energy scores has provided useful insights. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens

    NASA Astrophysics Data System (ADS)

    Velikova, Nadya; Fulle, Simone; Manso, Ana Sousa; Mechkarska, Milena; Finn, Paul; Conlon, J. Michael; Oggioni, Marco Rinaldo; Wells, Jerry M.; Marina, Alberto

    2016-05-01

    Novel antibacterials are urgently needed to address the growing problem of bacterial resistance to conventional antibiotics. Two-component systems (TCS) are widely used by bacteria to regulate gene expression in response to various environmental stimuli and physiological stress and have been previously proposed as promising antibacterial targets. TCS consist of a sensor histidine kinase (HK) and an effector response regulator. The HK component contains a highly conserved ATP-binding site that is considered to be a promising target for broad-spectrum antibacterial drugs. Here, we describe the identification of putative HK autophosphorylation inhibitors following two independent experimental approaches: in vitro fragment-based screen via differential scanning fluorimetry and in silico structure-based screening, each followed up by the exploration of analogue compounds as identified by ligand-based similarity searches. Nine of the tested compounds showed antibacterial effect against multi-drug resistant clinical isolates of bacterial pathogens and include three novel scaffolds, which have not been explored so far in other antibacterial compounds. Overall, putative HK autophosphorylation inhibitors were found that together provide a promising starting point for further optimization as antibacterials.

  16. On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases.

    PubMed

    Mosiashvili, L; Chankvetadze, L; Farkas, T; Chankvetadze, B

    2013-11-22

    This article reports the systematic study of the effect of basic and acidic additives on HPLC separation of enantiomers of some basic chiral drugs on polysaccharide-based chiral columns under polar organic mobile-phase conditions. In contrary to generally accepted opinion that the basic additives improve the separation of enantiomers of basic compounds, the multiple scenarios were observed including the increase, decrease, disappearance and appearance of separation, as well as the reversal of the enantiomer elution order of studied basic compounds induced by the acidic additives. These effects were observed on most of the studied 6 chiral columns in 2-propanol and acetonitrile as mobile phases and diethylamine as a basic additive. As acidic additives formic acid was used systematically and acetic acid and trifluoroacetic acid were applied for comparative purposes. This study illustrates that the minor acidic additives to the mobile phase can be used as for the adjustment of separation selectivity and the enantiomer elution order of basic compounds, as well as for study of chiral recognition mechanisms with polysaccharide-based chiral stationary phases. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Comparison of five agro-industrial waste-based composts as growing media for lettuce: Effect on yield, phenolic compounds and vitamin C.

    PubMed

    Santos, Francielly T; Goufo, Piebiep; Santos, Cátia; Botelho, Donzilia; Fonseca, João; Queirós, Aurea; Costa, Mônica S S M; Trindade, Henrique

    2016-10-15

    Overall phenolic content in plants is on average higher in organic farming, including when renewable resources such as composts are used as soil amendments. In most cases, however, the composting process needs to be optimized to reach the desired outcome. Using composts obtained from chestnut, red and white grapes, olive and broccoli wastes, the relative antioxidative abilities of lettuces cultivated in greenhouse were examined. Results clearly coupled high phenolic levels with high yield in lettuce grown on the chestnut-based compost. A huge accumulation of phenolics was observed with the white grape-based compost, but this coincided with low yield. Three compounds were identified as discriminating factors between treated samples, namely quercetin 3-O-glucoside, luteolin 7-O-glucoside, and cyanidin 3-O-(6″-malonyl)-β-d-glucoside; these are also some of the compounds receiving health claims on lettuce consumption. On a negative note, all composts led to decreased vitamin C levels. Collectively, the data suggest that compost amendments can help add value to lettuce by increasing its antioxidant activity as compared to other organic resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. One-Compound-Multi-Target: Combination Prospect of Natural Compounds with Thrombolytic Therapy in Acute Ischemic Stroke

    PubMed Central

    Chen, Han-Sen; Qi, Su-Hua; Shen, Jian-Gang

    2017-01-01

    Abstract: Tissue plasminogen activator (t-PA) is the only FDA-approved drug for acute ischemic stroke treatment, but its clinical use is limited due to the narrow therapeutic time window and severe adverse effects, including hemorrhagic transformation (HT) and neurotoxicity. One of the potential resolutions is to use adjunct therapies to reduce the side effects and extend t-PA's therapeutic time window. However, therapies modulating single target seem not to be satisfied, and a multi-target strategy is warranted to resolve such complex disease. Recently, large amount of efforts have been made to explore the active compounds from herbal supplements to treat ischemic stroke. Some natural compounds revealed both neuro- and blood-brain-barrier (BBB)-protective effects by concurrently targeting multiple cellular signaling pathways in cerebral ischemia-reperfusion injury. Thus, those compounds are potential to be one-drug-multi-target agents as combined therapy with t-PA for ischemic stroke. In this review article, we summarize current progress about molecular targets involving in t-PA-mediated HT and neurotoxicity in ischemic brain injury. Based on these targets, we select 23 promising compounds from currently available literature with the bioactivities simultaneously targeting several important molecular targets. We propose that those compounds merit further investigation as combined therapy with t-PA. Finally, we discuss the potential drawbacks of the natural compounds' studies and raise several important issues to be addressed in the future for the development of natural compound as an adjunct therapy. PMID:27334020

  19. Is Your School Hazardous to Children's Health?

    ERIC Educational Resources Information Center

    Miller, Norma L.

    1993-01-01

    Children are at high risk of exposure to dangerous chemicals because of their low weight, incompletely developed body defenses, rapidly growing body tissues, and small passages susceptible to inflammations and spasms. Five areas of concern involving school maintenance include art supplies, lead-based compounds, hazardous cleaning substances,…

  20. Repellency of a wax-based catnip-oil formulation against stable flies

    USDA-ARS?s Scientific Manuscript database

    Our significant finds including: 1). EAG recordings showed that volatile catnip compounds elicit significant antennal responses from both sexes of stable flies; 2). The laboratory dispersal bioassay showed that stable flies avoided areas treated with catnip oil; 3). The relative concentration of cat...

  1. Mannich bases in medicinal chemistry and drug design.

    PubMed

    Roman, Gheorghe

    2015-01-07

    The biological activity of Mannich bases, a structurally heterogeneous class of chemical compounds that are generated from various substrates through the introduction of an aminomethyl function by means of the Mannich reaction, is surveyed, with emphasis on the relationship between structure and biological activity. The review covers extensively the literature reports that have disclosed Mannich bases as anticancer and cytotoxic agents, or compounds with potential antibacterial and antifungal activity in the last decade. The most relevant studies on the activity of Mannich bases as antimycobacterial agents, antimalarials, or antiviral candidates have been included as well. The review contains also a thorough coverage of anticonvulsant, anti-inflammatory, analgesic and antioxidant activities of Mannich bases. In addition, several minor biological activities of Mannich bases, such as their ability to regulate blood pressure or inhibit platelet aggregation, their antiparasitic and anti-ulcer effects, as well as their use as agents for the treatment of mental disorders have been presented. The review gives in the end a brief overview of the potential of Mannich bases as inhibitors of various enzymes or ligands for several receptors. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Anthropogenic Organic Compounds in Source and Finished Groundwater of Community Water Systems in the Piedmont Physiographic Province, Potomac River Basin, Maryland and Virginia, 2003-04

    USGS Publications Warehouse

    Banks, William S.L.; Reyes, Betzaida

    2009-01-01

    A source- and finished-water-quality assessment of groundwater was conducted in the Piedmont Physiographic Province of Maryland and Virginia in the Potomac River Basin during 2003-04 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This assessment used a two-phased approach to sampling that allowed investigators to evaluate the occurrence of more than 280 anthropogenic organic compounds (volatile organic compounds, pesticides and pesticide degradates, and other anthropogenic organic compounds). Analysis of waters from 15 of the largest community water systems in the study area were included in the assessment. Source-water samples (raw-water samples collected prior to treatment) were collected at the well head. Finished-water samples (raw water that had been treated and disinfected) were collected after treatment and prior to distribution. Phase one samples, collected in August and September 2003, focused on source water. Phase two analyzed both source and finished water, and samples were collected in August and October of 2004. The results from phase one showed that samples collected from the source water for 15 community water systems contained 92 anthropogenic organic compounds (41 volatile organic compounds, 37 pesticides and pesticide degradates, and 14 other anthropogenic organic compounds). The 5 most frequently occurring anthropogenic organic compounds were detected in 11 of the 15 source-water samples. Deethylatrazine, a degradate of atrazine, was present in all 15 samples and metolachlor ethanesulfonic acid, a degradate of metolachlor, and chloroform were present in 13 samples. Atrazine and metolachlor were present in 12 and 11 samples, respectively. All samples contained a mixture of compounds with an average of about 14 compounds per sample. Phase two sampling focused on 10 of the 15 community water systems that were selected for resampling on the basis of occurrence of anthropogenic organic compounds detected most frequently during the first phase. A total of 48 different anthropogenic organic compounds were detected in samples collected from source and finished water. There were a similar number of compounds detected in finished water (41) and in source water (39). The most commonly detected group of anthropogenic organic compounds in finished water was trihalomethanes - compounds associated with the disinfection of drinking water. This group of compounds accounted for 30 percent of the detections in source water and 44 percent of the detections in finished water, and were generally found in higher concentrations in finished water. Excluding trihalomethanes, the number of total detections was about the same in source-water samples (33) as it was in finished-water samples (35). During both phases of the study, two measurements for human-health assessment were used. The first, the Maximum Contaminant Level for drinking water, is set by the U.S. Environmental Protection Agency and represents a legally enforceable maximum concentration of a contaminant permitted in drinking water. The second, the Health-Based Screening Level, was developed by the U.S. Geological Survey, is not legally enforceable, and represents a limit for more chronic exposures. Maximum concentrations for each detected compound were compared with either the Maximum Contaminant Level or the Health-Based Screening Level when available. More than half of the compounds detected had either a Maximum Contaminant Level or a Health-Based Screening Level. A benchmark quotient was set at 10 percent (greater than or equal to 0.1) of the ratio of the detected concentration of a particular compound to its Maximum Contaminant Level, or Health-Based Screening Level. This was considered a threshold for further monitoring. During phase one, when only source water was sampled, seven compounds (chloroform, benzene, acrylonitrile, methylene chloride, atrazine, alachlor, and dieldrin) met or exceeded a benchmark quotient. No de

  3. Ultra high performance liquid chromatography tandem mass spectrometry for rapid analysis of trace organic contaminants in water

    PubMed Central

    2013-01-01

    Background The widespread utilization of organic compounds in modern society and their dispersion through wastewater have resulted in extensive contamination of source and drinking waters. The vast majority of these compounds are not regulated in wastewater outfalls or in drinking water while trace amounts of certain compounds can impact aquatic wildlife. Hence it is prudent to monitor these contaminants in water sources until sufficient toxicological data relevant to humans becomes available. A method was developed for the analysis of 36 trace organic contaminants (TOrCs) including pharmaceuticals, pesticides, steroid hormones (androgens, progestins, and glucocorticoids), personal care products and polyfluorinated compounds (PFCs) using a single solid phase extraction (SPE) technique with ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The method was applied to a variety of water matrices to demonstrate method performance and reliability. Results UHPLC-MS/MS in both positive and negative electrospray ionization (ESI) modes was employed to achieve optimum sensitivity while reducing sample analysis time (<20 min) compared with previously published methods. The detection limits for most compounds was lower than 1.0 picogram on the column while reporting limits in water ranged from 0.1 to 15 ng/L based on the extraction of a 1 L sample and concentration to 1 mL. Recoveries in ultrapure water for most compounds were between 90-110%, while recoveries in surface water and wastewater were in the range of 39-121% and 38-141% respectively. The analytical method was successfully applied to analyze samples across several different water matrices including wastewater, groundwater, surface water and drinking water at different stages of the treatment. Among several compounds detected in wastewater, sucralose and TCPP showed the highest concentrations. Conclusion The proposed method is sensitive, rapid and robust; hence it can be used to analyze a large variety of trace organic compounds in different water matrixes. PMID:23777604

  4. Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities

    PubMed Central

    Ahmed-Belkacem, Abdelhakim; Colliandre, Lionel; Ahnou, Nazim; Nevers, Quentin; Gelin, Muriel; Bessin, Yannick; Brillet, Rozenn; Cala, Olivier; Douguet, Dominique; Bourguet, William; Krimm, Isabelle; Pawlotsky, Jean-Michel; Guichou, Jean- François

    2016-01-01

    Cyclophilins are peptidyl-prolyl cis/trans isomerases (PPIase) that catalyse the interconversion of the peptide bond at proline residues. Several cyclophilins play a pivotal role in the life cycle of a number of viruses. The existing cyclophilin inhibitors, all derived from cyclosporine A or sanglifehrin A, have disadvantages, including their size, potential for side effects unrelated to cyclophilin inhibition and drug–drug interactions, unclear antiviral spectrum and manufacturing issues. Here we use a fragment-based drug discovery approach using nucleic magnetic resonance, X-ray crystallography and structure-based compound optimization to generate a new family of non-peptidic, small-molecule cyclophilin inhibitors with potent in vitro PPIase inhibitory activity and antiviral activity against hepatitis C virus, human immunodeficiency virus and coronaviruses. This family of compounds has the potential for broad-spectrum, high-barrier-to-resistance treatment of viral infections. PMID:27652979

  5. DFT-BASED AB INITIO STUDY OF THE ELECTRONIC AND OPTICAL PROPERTIES OF CESIUM BASED FLUORO-PEROVSKITE CsMF3 (M = Ca AND Sr)

    NASA Astrophysics Data System (ADS)

    Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.

    2012-12-01

    Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.

  6. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    PubMed Central

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707

  7. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    NASA Astrophysics Data System (ADS)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  8. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang

    2018-03-01

    Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.

  9. Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects.

    PubMed

    Mestankova, Hana; Parker, Austa M; Bramaz, Nadine; Canonica, Silvio; Schirmer, Kristin; von Gunten, Urs; Linden, Karl G

    2016-04-15

    The removal of emerging contaminants during water treatment is a current issue and various technologies are being explored. These include UV- and ozone-based advanced oxidation processes (AOPs). In this study, AOPs were explored for their degradation capabilities of 25 chemical contaminants on the US Environmental Protection Agency's Contaminant Candidate List 3 (CCL3) in drinking water. Twenty-three of these were found to be amenable to hydroxyl radical-based treatment, with second-order rate constants for their reactions with hydroxyl radicals (OH) in the range of 3-8 × 10(9) M(-1) s(-1). The development of biological activity of the contaminants, focusing on mutagenicity and estrogenicity, was followed in parallel with their degradation using the Ames and YES bioassays to detect potential changes in biological effects during oxidative treatment. The majority of treatment cases resulted in a loss of biological activity upon oxidation of the parent compounds without generation of any form of estrogenicity or mutagenicity. However, an increase in mutagenic activity was detected by oxidative transformation of the following CCL3 parent compounds: nitrobenzene (OH, UV photolysis), quinoline (OH, ozone), methamidophos (OH), N-nitrosopyrolidine (OH), N-nitrosodi-n-propylamine (OH), aniline (UV photolysis), and N-nitrosodiphenylamine (UV photolysis). Only one case of formation of estrogenic activity was observed, namely, for the oxidation of quinoline by OH. Overall, this study provides fundamental and practical information on AOP-based treatment of specific compounds of concern and represents a framework for evaluating the performance of transformation-based treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Quaternary Chalcogenide-Based Misfit Nanotubes LnS(Se)-TaS(Se)2 (Ln = La, Ce, Nd, and Ho): Synthesis and Atomic Structural Studies.

    PubMed

    Lajaunie, Luc; Radovsky, Gal; Tenne, Reshef; Arenal, Raul

    2018-01-16

    We have synthesized quaternary chalcogenide-based misfit nanotubes LnS(Se)-TaS 2 (Se) (Ln = La, Ce, Nd, and Ho). None of the compounds described here were reported in the literature as a bulk compound. The characterization of these nanotubes, at the atomic level, has been developed via different transmission electron microscopy techniques, including high-resolution scanning transmission electron microscopy, electron diffraction, and electron energy-loss spectroscopy. In particular, quantification at sub-nanometer scale was achieved by acquiring high-quality electron energy-loss spectra at high energy (∼between 1000 and 2500 eV). Remarkably, the sulfur was found to reside primarily in the distorted rocksalt LnS lattice, while the Se is associated with the hexagonal TaSe 2 site. Consequently, these quaternary misfit layered compounds in the form of nanostructures possess a double superstructure of La/Ta and S/Se with the same periodicity. In addition, the interlayer spacing between the layers and the interatomic distances within the layer vary systematically in the nanotubes, showing clear reduction when going from the lightest (La atom) to the heaviest (Ho) atom. Amorphous layers, of different nature, were observed at the surface of the nanotubes. For La-based NTs, the thin external amorphous layer (inferior to 10 nm) can be ascribed to a Se deficiency. Contrarily, for Ho-based NTs, the thick amorphous layer (between 10 and 20 nm) is clearly ascribed to oxidation. All of these findings helped us to understand the atomic structure of these new compounds and nanotubes thereof.

  11. Classification of white wine aromas with an electronic nose.

    PubMed

    Lozano, J; Santos, J P; Horrillo, M C

    2005-09-15

    This paper reports the use of a tin dioxide multisensor array based electronic nose for recognition of 29 typical aromas in white wine. Headspace technique has been used to extract aroma of the wine. Multivariate analysis, including principal component analysis (PCA) as well as probabilistic neural networks (PNNs), has been used to identify the main aroma added to the wine. The results showed that in spite of the strong influence of ethanol and other majority compounds of wine, the system could discriminate correctly the aromatic compounds added to the wine with a minimum accuracy of 97.2%.

  12. Aromatic ring generation as a dust precursor in acetylene discharges

    NASA Astrophysics Data System (ADS)

    De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim

    2006-04-01

    Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.

  13. Guideline series: Control of volatile organic compound emissions from wood furniture manufacturing operations, April 1996. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    This Control Techniques Guideline (CTG) provides the necessary guidance for development of regulations to limit emissions of volatile organic compounds (VOC) from wood furniture finishing and cleaning operations. This guidance includes emission limits for specific wood furniture finishing steps and work practices to reduce waste and evaporation through pollution prevention methods; these represent available control technology for wood furniture finishing and cleaning operations. This document is intended to provide State and local air pollution authorities with an information base for proceeding with their own analyses of RACT to meet statutory requirements.

  14. Guideline series: Control of volatile organic compound emissions from wood furniture manufacturing operations. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    This draft Control Techniques Guidelines (CTG) provides necessary guidance for development of regulations to limit emissions of volatile organic compounds (VOC`s) from wood furniture finishing and cleaning operations. This guidance includes emission limits for specific wood furniture finishing steps and work pratices to reduce waste and evaporation through pollution prevention methods; these represent reasonably available control technology for wood furniture finishing and cleaning operations. This document is intended to provide State and local air pollution authorities with an information base for proceeding with their own analyses of RACT to meet statutory requirements.

  15. Retention Indices for Frequently Reported Compounds of Plant Essential Oils

    NASA Astrophysics Data System (ADS)

    Babushok, V. I.; Linstrom, P. J.; Zenkevich, I. G.

    2011-12-01

    Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl silicone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals.

  16. New phenethyl alcohol glycosides from Stachys parviflora.

    PubMed

    Ahmad, Viqar Uddin; Arshad, Saima; Bader, Sadia; Ahmed, Amir; Iqbal, Shazia; Tareen, Rasool Buksh

    2006-01-01

    Phytochemical investigations of the whole plant of Stachys parviflora (Lamiaceae) resulted in the isolation of two new phenethyl alcohol glycosides. The structures of the new compounds named parviflorosides A and B were established as 2-(3,4-dihydroxyphenyl)-ethyl-O-alpha-L-rhamnopyranosyl-(1 --> 2)-4-O-E-caffeoyl-beta-D-glucopyranoside (1) and 2-(3,4-dihydroxyphenyl)-ethyl-O-alpha-L-rhamnopyranosyl-(1 --> 2)-6-O-E-caffeoyl-beta-D-glucopyranoside (2), respectively. The structure elucidation of the new compounds was based primarily on 1D and 2D NMR analysis, including COSY, HMBC and HMQC correlations.

  17. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy.

    PubMed

    Ganesan, Palanivel; Choi, Dong-Kug

    2016-01-01

    Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.

  18. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy

    PubMed Central

    Ganesan, Palanivel; Choi, Dong-Kug

    2016-01-01

    Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy. PMID:27274231

  19. Facilitating high resolution mass spectrometry data processing for screening of environmental water samples: An evaluation of two deconvolution tools.

    PubMed

    Bade, Richard; Causanilles, Ana; Emke, Erik; Bijlsma, Lubertus; Sancho, Juan V; Hernandez, Felix; de Voogt, Pim

    2016-11-01

    A screening approach was applied to influent and effluent wastewater samples. After injection in a LC-LTQ-Orbitrap, data analysis was performed using two deconvolution tools, MsXelerator (modules MPeaks and MS Compare) and Sieve 2.1. The outputs were searched incorporating an in-house database of >200 pharmaceuticals and illicit drugs or ChemSpider. This hidden target screening approach led to the detection of numerous compounds including the illicit drug cocaine and its metabolite benzoylecgonine and the pharmaceuticals carbamazepine, gemfibrozil and losartan. The compounds found using both approaches were combined, and isotopic pattern and retention time prediction were used to filter out false positives. The remaining potential positives were reanalysed in MS/MS mode and their product ions were compared with literature and/or mass spectral libraries. The inclusion of the chemical database ChemSpider led to the tentative identification of several metabolites, including paraxanthine, theobromine, theophylline and carboxylosartan, as well as the pharmaceutical phenazone. The first three of these compounds are isomers and they were subsequently distinguished based on their product ions and predicted retention times. This work has shown that the use deconvolution tools facilitates non-target screening and enables the identification of a higher number of compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice.

    PubMed

    Kelebek, Hasim; Selli, Serkan

    2011-08-15

    Orange flavour is the results of a natural combination of volatile compounds in a well-balanced system including sugars, acids and phenolic compounds. This paper reports the results of the first determination of aroma, organic acids, sugars, and phenolic components in Dortyol yerli orange juices. A total of 58 volatile components, including esters (nine), terpenes (19), terpenols (13), aldehydes (two), ketones (three), alcohols (four) and acids (eight) were identified and quantified in Dortyol yerli orange juice by GC-FID and GC-MS. Organic acids, sugars and phenolic compositions were also determined by HPLC methods. The major organic acid and sugar found were citric acid and sucrose, respectively. With regard to phenolics, 14 compounds were identified and quantified in the orange juice. Terpenes and terpenols were found as the main types of volatile components in Dortyol yerli orange juice. In terms of aroma contribution to orange juice, 12 compounds were prominent based on the odour activity values (OAVs). The highest OAV values were recorded for ethyl butanoate, nootkatone, linalool and DL-limonene. When we compare the obtained results of cv. Dortyol orange juice with the other orange juice varieties, the composition of Dortyol orange juice was similar to Valencia and Navel orange juices. Copyright © 2011 Society of Chemical Industry.

  1. Phytochemical Analysis, Identification and Quantification of Antibacterial Active Compounds in Betel Leaves, Piper betle Methanolic Extract.

    PubMed

    Syahidah, A; Saad, C R; Hassan, M D; Rukayadi, Y; Norazian, M H; Kamarudin, M S

    2017-01-01

    The problems of bacterial diseases in aquaculture are primarily controlled by antibiotics. Medicinal plants and herbs which are seemed to be candidates of replacements for conventional antibiotics have therefore gained increasing interest. Current study was performed to investigate the presence of phytochemical constituents, antibacterial activities and composition of antibacterial active compounds in methanolic extract of local herb, Piper betle . Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method. The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1. Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.

  2. The Screening Compound Collection: A Key Asset for Drug Discovery.

    PubMed

    Boss, Christoph; Hazemann, Julien; Kimmerlin, Thierry; von Korff, Modest; Lüthi, Urs; Peter, Oliver; Sander, Thomas; Siegrist, Romain

    2017-10-25

    In this case study on an essential instrument of modern drug discovery, we summarize our successful efforts in the last four years toward enhancing the Actelion screening compound collection. A key organizational step was the establishment of the Compound Library Committee (CLC) in September 2013. This cross-functional team consisting of computational scientists, medicinal chemists and a biologist was endowed with a significant annual budget for regular new compound purchases. Based on an initial library analysis performed in 2013, the CLC developed a New Library Strategy. The established continuous library turn-over mode, and the screening library size of 300'000 compounds were maintained, while the structural library quality was increased. This was achieved by shifting the selection criteria from 'druglike' to 'leadlike' structures, enriching for non-flat structures, aiming for compound novelty, and increasing the ratio of higher cost 'Premium Compounds'. Novel chemical space was gained by adding natural compounds, macrocycles, designed and focused libraries to the collection, and through mutual exchanges of proprietary compounds with agrochemical companies. A comparative analysis in 2016 provided evidence for the positive impact of these measures. Screening the improved library has provided several highly promising hits, including a macrocyclic compound, that are currently followed up in different Hit-to-Lead and Lead Optimization programs. It is important to state that the goal of the CLC was not to achieve higher HTS hit rates, but to increase the chances of identified hits to serve as the basis of successful early drug discovery programs. The experience gathered so far legitimates the New Library Strategy.

  3. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOEpatents

    Yang, Liyou

    1993-10-26

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  4. Photophysical Properties of Organoplatinum(II) Compounds and Derived Self-Assembled Metallacycles and Metallacages: Fluorescence and its Applications.

    PubMed

    Saha, Manik Lal; Yan, Xuzhou; Stang, Peter J

    2016-11-15

    Over the past couple of decades, coordination-driven self-assembly has evolved as a broad multidisciplinary domain that not only covers the syntheses of aesthetically pleasing supramolecular architectures but also emerges as a method to form new optical materials, chemical sensors, theranostic agents, and compounds with light-harvesting and emissive properties. The majority of these applications depend upon investigations that reveal the photophysical nature and electronic structure of supramolecular coordination complexes (SCCs), including two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages. As such, well-defined absorption and emission spectra are important for a given SCC to be used for sensing, bioimaging, and other applications with molecular fluorescence being an important component. In this Account, we summarize the photophysical properties of some bis(phosphine)organoplatinum(II) compounds and their discrete SCCs. The platinum(II) based organometallic precursors typically display spectral red-shifts and have low fluorescence quantum yields and short fluorescence lifetimes compared to their organic counterparts because the introduction of metal centers enhances both intersystem crossing (ISC) and intramolecular charge transfer (ICT) processes, which can compete with the fluorescence emissions. Likewise ligands with conjugation can also increase the ICT process; hence the corresponding organoplatinum(II) compounds undergo a further decrease in fluorescence lifetimes. The use of endohedral amine functionalized 120°-bispyridyl ligands can dramatically enhance the emission properties of the resultant organoplatinum(II) based SCCs. As such these SCCs display emissions in the visible region (ca. 400-500 nm) and are significantly red-shifted (ca. 80-100 nm) compared to the ligands. This key feature makes them suitable as supramolecular theranostic agents wherein these unique emission properties provide diagnostic spectroscopic handles and the organoplatinum(II) centers act as potential anticancer agents. Using steady state and time-resolved-spectroscopic techniques and quantum computations in concert, we have determined that the emissive properties stem from the ligand-centered transitions involving π-type molecular orbitals with modest contributions from the metal-based orbitals. The self-assembly and the photophysics of organoplatinum(II) ← 3-substituted pyridyl based SCCs are highly diverse. Subtle changes in the ligands' structures can form molecular congener systems with distinct conformational and photophysical properties. Furthermore, the heterometallic SCCs described herein possess rich photophysical properties and can be used for sensing based applications. Tetraphenylethylene (TPE) based SCCs display emissions in the aggregated state as well as in dilute solutions. This is a unique phenomenon that bridges the aggregation caused quenching (ACQ) and aggregation induced emission (AIE) effects. Moreover, a TPE based metallacage exhibits solvatoluminescence, including white light emission in THF solvent, and can act as a fluorescence-sensor for structurally similar ester compounds.

  5. Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding: predicting affinity and conformational sampling.

    PubMed

    Bazeley, Peter S; Prithivi, Sridevi; Struble, Craig A; Povinelli, Richard J; Sem, Daniel S

    2006-01-01

    Cytochrome P450 2D6 (CYP2D6) is used to develop an approach for predicting affinity and relevant binding conformation(s) for highly flexible binding sites. The approach combines the use of docking scores and compound properties as attributes in building a neural network (NN) model. It begins by identifying segments of CYP2D6 that are important for binding specificity, based on structural variability among diverse CYP enzymes. A family of distinct, low-energy conformations of CYP2D6 are generated using simulated annealing (SA) and a collection of 82 compounds with known CYP2D6 affinities are docked. Interestingly, docking poses are observed on the backside of the heme as well as in the known active site. Docking scores for the active site binders, along with compound-specific attributes, are used to train a neural network model to properly bin compounds as strong binders, moderate binders, or nonbinders. Attribute selection is used to preselect the most important scores and compound-specific attributes for the model. A prediction accuracy of 85+/-6% is achieved. Dominant attributes include docking scores for three of the 20 conformations in the ensemble as well as the compound's formal charge, number of aromatic rings, and AlogP. Although compound properties were highly predictive attributes (12% improvement over baseline) in the NN-based prediction of CYP2D6 binders, their combined use with docking score attributes is synergistic (net increase of 23% above baseline). Beyond prediction of affinity, attribute selection provides a way to identify the most relevant protein conformation(s), in terms of binding competence. In the case of CYP2D6, three out of the ensemble of 20 SA-generated structures are found to be the most predictive for binding.

  6. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    NASA Astrophysics Data System (ADS)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions.

  7. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.

    PubMed

    Mizutani, Miho Yamada; Itai, Akiko

    2004-09-23

    A method of easily finding ligands, with a variety of core structures, for a given target macromolecule would greatly contribute to the rapid identification of novel lead compounds for drug development. We have developed an efficient method for discovering ligand candidates from a number of flexible compounds included in databases, when the three-dimensional (3D) structure of the drug target is available. The method, named ADAM&EVE, makes use of our automated docking method ADAM, which has already been reported. Like ADAM, ADAM&EVE takes account of the flexibility of each molecule in databases, by exploring the conformational space fully and continuously. Database screening has been made much faster than with ADAM through the tuning of parameters, so that computational screening of several hundred thousand compounds is possible in a practical time. Promising ligand candidates can be selected according to various criteria based on the docking results and characteristics of compounds. Furthermore, we have developed a new tool, EVE-MAKE, for automatically preparing the additional compound data necessary for flexible docking calculation, prior to 3D database screening. Among several successful cases of lead discovery by ADAM&EVE, the finding of novel acetylcholinesterase (AChE) inhibitors is presented here. We performed a virtual screening of about 160 000 commercially available compounds against the X-ray crystallographic structure of AChE. Among 114 compounds that could be purchased and assayed, 35 molecules with various core structures showed inhibitory activities with IC(50) values less than 100 microM. Thirteen compounds had IC(50) values between 0.5 and 10 microM, and almost all their core structures are very different from those of known inhibitors. The results demonstrate the effectiveness and validity of the ADAM&EVE approach and provide a starting point for development of novel drugs to treat Alzheimer's disease.

  8. Detecting and Eliminating Interfering Organic Compounds in Waters Analyzed for Isotopic Composition by Crds

    NASA Astrophysics Data System (ADS)

    Richman, B. A.; Hsiao, G. S.; Rella, C.

    2010-12-01

    Optical spectroscopy based CRDS technology for isotopic analysis of δD and δ18O directly from liquid water has greatly increased the number and type of liquid samples analyzed. This increase has also revealed a previously unrecognized sample contamination problem. Recently West[1] and Brand[2] identified samples containing ethanol, methanol, plant extracts and other organic compounds analyzed by CRDS and other spectroscopy based techniques as yielding erroneous results for δD and δ18O (especially δD) due to spectroscopic interference. Not all organic compounds generate interference. Thus, identifying which samples are contaminated by which organic compounds is of key importance for data credibility and correction. To address this problem a new approach in the form of a software suite, ChemCorrect™, has been developed. A chemometrics component uses a spectral library of water isotopologues and interfering organic compounds to best fit the measured spectra. The best fit values provide a quantitative assay of the actual concentrations of the various species and are then evaluated to generate a visual flag indicating samples affected by organic contamination. Laboratory testing of samples spiked with known quantities of interfering organic compounds such as methanol, ethanol, and terpenes was performed. The software correctly flagged and identified type of contamination for all the spiked samples without any false positives. Furthermore the reported values were a linear function of actual concentration with an R^2>0.99 even for samples which contained multiple organic compounds. Further testing was carried out against a range of industrial chemical compounds which can contaminate ground water as well as a variety of plant derived waters and juices which were also analyzed by IRMS. The excellent results obtained give good insight into which organic compounds cause interference and which classes of plants are likely to contain interfering compounds. Finally approaches to minimize the effect of interfering compounds will be discussed including methods to assess the confidence level of an isotopic value obtained from a contaminated sample. [1] Rapid Commun. Mass Spectrom. 2010; 24: 1-7 [2] Rapid Commun. Mass Spectrom. 2009; 23: 1879-1884 Results from laboratory samples, most of which were spiked with interfering organic compounds. Samples are color coded as follows: blue=standard, green=no contamination, yellow=slight contamination, red=heavily contaminated.

  9. Organic compounds in Elm Fork Trinity River water used for public supply near Carrollton, Texas, 2002-05

    USGS Publications Warehouse

    Ging, Patricia B.; Delzer, Gregory C.; Hamilton, Pixie A.

    2009-01-01

    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including pesticides, solvents, gasoline hydrocarbons, personal-care and domestic-use products, refrigerants, and propellants. A total of 103 of 277 compounds were detected at least once among the 30 samples of source water for a community water system on the Elm Fork Trinity River near Carrollton, Texas, collected approximately monthly during 2002-05. The diversity of compounds detected indicates a variety of different sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including overland runoff and groundwater discharge) to drinking-water supplies. Nine compounds were detected year-round in source-water samples, including chloroform, methyl tert-butyl ether (MTBE), and selected herbicide compounds commonly used in the Trinity River Basin and in other urban areas across the United States. About 90 percent of the 42 compounds detected most frequently in source water (in at least 20 percent of the samples) also were detected most frequently in finished water (after treatment but before distribution). Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the detected compounds.

  10. Antimicrobial Activity of Chlorhexidine, Peracetic acid/ Peroxide hydrogen and Alcohol based compound on Isolated Bacteria in Madani Heart Hospital, Tabriz, Azerbaijan, Iran

    PubMed Central

    Ghotaslou, Reza; Bahrami, Nashmil

    2012-01-01

    Purpose: The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. Methods: The minimum bactericide concentration (MBC) of disinfectants including chlorhexidine (Fort), peracetic acid (Micro) and an alcohol based compound (Deconex) on selected bacteria at various dilutions were determined by the standard suspension technique. Results: MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. Conclusion: The results showed that these agents are able to eradicate the bacteria and they can be used lonely. PMID:24312771

  11. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities

    PubMed Central

    Kumano, Takuto; Richard, Stéphane B.; Noel, Joseph P.; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2010-01-01

    NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon–carbon-based and carbon–oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism. PMID:18682327

  12. Amonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMark, B.R.; Klein, P.D.

    1981-01-01

    The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of thesemore » studies for the detection and quantitation of bile acids is discussed. 2 tables.« less

  13. Self-consistent method for quantifying indium content from X-ray spectra of thick compound semiconductor specimens in a transmission electron microscope.

    PubMed

    Walther, T; Wang, X

    2016-05-01

    Based on Monte Carlo simulations of X-ray generation by fast electrons we calculate curves of effective sensitivity factors for analytical transmission electron microscopy based energy-dispersive X-ray spectroscopy including absorption and fluorescence effects, as a function of Ga K/L ratio for different indium and gallium containing compound semiconductors. For the case of InGaN alloy thin films we show that experimental spectra can thus be quantified without the need to measure specimen thickness or density, yielding self-consistent values for quantification with Ga K and Ga L lines. The effect of uncertainties in the detector efficiency are also shown to be reduced. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi.

    PubMed

    Wang, Yan-Ting; Xue, Ya-Rong; Liu, Chang-Hong

    2015-07-23

    Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development.

  15. A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi

    PubMed Central

    Wang, Yan-Ting; Xue, Ya-Rong; Liu, Chang-Hong

    2015-01-01

    Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development. PMID:26213949

  16. Identifying potential selective fluorescent probes for cancer-associated protein carbonic anhydrase IX using a computational approach.

    PubMed

    Kamstra, Rhiannon L; Floriano, Wely B

    2014-11-01

    Carbonic anhydrase IX (CAIX) is a biomarker for tumor hypoxia. Fluorescent inhibitors of CAIX have been used to study hypoxic tumor cell lines. However, these inhibitor-based fluorescent probes may have a therapeutic effect that is not appropriate for monitoring treatment efficacy. In the search for novel fluorescent probes that are not based on known inhibitors, a database of 20,860 fluorescent compounds was virtually screened against CAIX using hierarchical virtual ligand screening (HierVLS). The screening database contained 14,862 compounds tagged with the ATTO680 fluorophore plus an additional 5998 intrinsically fluorescent compounds. Overall ranking of compounds to identify hit molecular probe candidates utilized a principal component analysis (PCA) approach. Four potential binding sites, including the catalytic site, were identified within the structure of the protein and targeted for virtual screening. Available sequence information for 23 carbonic anhydrase isoforms was used to prioritize the four sites based on the estimated "uniqueness" of each site in CAIX relative to the other isoforms. A database of 32 known inhibitors and 478 decoy compounds was used to validate the methodology. A receiver-operating characteristic (ROC) analysis using the first principal component (PC1) as predictive score for the validation database yielded an area under the curve (AUC) of 0.92. AUC is interpreted as the probability that a binder will have a better score than a non-binder. The use of first component analysis of binding energies for multiple sites is a novel approach for hit selection. The very high prediction power for this approach increases confidence in the outcome from the fluorescent library screening. Ten of the top scoring candidates for isoform-selective putative binding sites are suggested for future testing as fluorescent molecular probe candidates. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A systematic data acquisition and mining strategy for chemical profiling of Aster tataricus rhizoma (Ziwan) by UHPLC-Q-TOF-MS and the corresponding anti-depressive activity screening.

    PubMed

    Sun, Yupeng; Li, Li; Liao, Man; Su, Min; Wan, Changchen; Zhang, Lantong; Zhang, Hailin

    2018-05-30

    In this study, a systematic data acquisition and mining strategy aimed at the traditional Chinese medicine (TCM) complex system based on ultra high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) was reported. The workflow of this strategy is as follows: First, the high resolution mass data are acquired by both data-dependent acquisition mode (DDA) and data-independent acquisition mode (DIA). Then a global data mining that combined targeted and non-targeted compound finding is applied to analyze mass spectral data. Furthermore, some assistant tools, such as key product ions (KPIs), are employed for compound hunting and identification. The TCM Ziwan (ZW, Aster tataricus rhizoma) was used to illustrate this strategy for the first time. In this research, total 131 compounds including organic acids, peptides, terpenes, steroids, flavonoids, coumarins, anthraquinones and aldehydes were identified or tentatively characterized in ZW based on accurate mass measurements within ±5 ppm error, and 50 of them were unambiguously confirmed by comparing standard compounds. Afterwards, based on the traditional Chinese medical theory and the key determinants of firing patterns of ventral tegmental area (VTA) dopamine (DA) neurons in the development of depression, the confirmed compounds were subsequently evaluated the pharmacological effect of activity of VTA DA neurons and anti-depressive efficacy. This research provided not only a chemical profiling for further in vivo study of ZW, but also an efficient data acquisition and mining strategy to profile the chemical constituents and find new bioactive substances for other TCM complex system. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Chemical constituents of Phragmanthera austroarabica A. G. Mill and J. A. Nyberg with potent antioxidant activity

    PubMed Central

    Badr, Jihan M.

    2015-01-01

    Background: Phragmanthera austroarabica A.G. Mill. and J. A. Nyberg is a semi parasitic plant belonging to family Loranthaceae. It was collected from Saudi Arabia. It is widely used in folk medicine among the kingdom in treatment of various diseases including diabetes mellitus. Objective: The total alcoholic extract of P. austroarabica collected from Saudi Arabia was investigated for the chemical structure and prominent biological activity of the main constituents. Materials and Methods: Isolation of the active constituents was performed using different chromatographic techniques including column chromatography packed with silica or sephadex and preparative thin layer chromatography. The structures of the isolated compounds were established based on different spectroscopic data as mass spectrum, one-dimensional and two-dimensional nuclear magnetic resonance (correlation spectroscopy, heteronuclear single quantum coherence, and heteronuclear multiple-bond correlation). Results: Phytochemical investigation of the plant resulted in isolation of 12 compounds. The isolated compounds were identified as chrysophanic acid, emodin, chrysophanic acid-8-O-glucoside, emodin-8-O-glucoside, pectolinarigenin, quercetin, dillenetin-3-O-glucoside, catechin, catechin-4’-O-gallate, methyl gallate, lupeol and ursolic acid. All the isolated phenolic compounds revealed significant free radical scavenging activities when tested using 2,2-diphenyl-1-picrylhydrazyl reagent. Conclusion: The antioxidant activities of the isolated compounds can justify the use of P. austroarabica in traditional medicine for treatment of diabetes and verify its possible application as an antihyperglycemic drug. PMID:26692747

  19. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase.

    PubMed

    Ortalli, Margherita; Ilari, Andrea; Colotti, Gianni; De Ionna, Ilenia; Battista, Theo; Bisi, Alessandra; Gobbi, Silvia; Rampa, Angela; Di Martino, Rita M C; Gentilomi, Giovanna A; Varani, Stefania; Belluti, Federica

    2018-05-02

    All currently used first-line and second-line drugs for the treatment of leishmaniasis exhibit several drawbacks including toxicity, high costs and route of administration. Furthermore, some drugs are associated with the emergence of drug resistance. Thus, the development of new treatments for leishmaniasis is a priority in the field of neglected tropical diseases. The present work highlights the use of natural derived products, i.e. chalcones, as potential source of antileishmanial agents. Thirty-one novel chalcone compounds have been synthesized and their activity has been evaluated against promastigotes of Leishmania donovani; 16 compounds resulted active against L. donovani in a range from 3.0 to 21.5 μM, showing low toxicity against mammalian cells. Among these molecules, 6 and 16 showed good inhibitory activity on both promastigotes and intracellular amastigotes, coupled with an high selectivity index. Furthermore, compounds 6 and 16 inhibited the promastigote growth of other leishmanial species, including L. tropica, L. major and L. infantum. Finally, 6 and 16 interacted with high affinity with trypanothione reductase (TR), an essential enzyme for the leishmanial parasite and compound 6 inhibited TR with sub-micromolar potency. Thus, the effective inhibitory activity against Leishmania, the lack of toxicity on mammalian cells and the ability to block a crucial parasite's enzyme, highlight the potential for compound 6 to be optimized as novel drug candidate against leishmaniasis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Results of the basewide monitoring program at Wright-Patterson Air Force Base, Ohio, 1993-1994

    USGS Publications Warehouse

    Schalk, C.W.; Cunningham, W.L.

    1996-01-01

    Geologic and hydrologic data were collected at Wright-Patterson Air Force Base (WPAFB), Ohio, as part of Basewide Monitoring Program (BMP) that began in 1992. The BMP was designed as a long-term project to character ground-water and surface-water quality (including streambed sediments), describe water-quality changes as water enters, flows across, and exits the Base, and investigate the effects of activities at WPAFB on regional water quality. Ground water, surface ware, and streambed sediment were sampled in four rounds between August 1993 and September 1994 to provide the analytical data needed to address the objectives of the BMP. Surface-water-sampling rounds were designed to include most of the seasonal hydrologic conditions encountered in southwestern Ohio, including baseflow conditions and spring runoff. Ground-water-sampling rounds were scheduled for times of recession and recharfe. Ground-water data were used to construct water-table, potentiometric, and vertical gradient maps of the WPAFB area. Water levels have not changed significantly since 1987, but the effects of pumping on and near the Base can have a marked effect on water levels in localized areas. Ground-ware gradients generally were downward throughout Area B (the southwestern third of the Base) and in the eastern third of Areas A and C (the northeastern two-thirds of the Base), and were upward in the vicinity of Mad River. Stream-discharge measurements verified these gradients. Many of the U.S. Environmental Protection Agency maximum contaminant level (MCL) exceedances of inorganic constituents in ground water were associated with water from the bedrock. Exceedances of concentrations of chromium and nickel were found consistently in five wells completed in the glacial aquifer beneath the Base. Five organic compounds [trichloroethylene (TCE), tetrachloroethylene (PCE), vinyl chloride, benzene, and bis(2-ethylhexyl) phthalate] were detected at concentrations that exceeded MCLs; all of the TCE, PCE, and vinyl chloride exceedances were in water from glacial aquifer, whereas the benzene exceedance and most of the bis(2-ethylhexyl) phthalate exceedances were in water from the bedrock. TCE (16 exceedances) and PCE (11 exceedances) most frequently exceeded the MCLs and were detected in the most samples. A decrease in concentrations of inorganic and organic compounds with depth suggest that many constituents detected in ground-water samples are associated partly with human activities, in addition to their natural occurrence. Included in the list of these constituents are nickel, chromium, copper, lead vanadium, zinc, bromide, and nitrate. Many constituents are not found at depths greater than 60 to 80 feet, possibly indicating that human effects on ground-water quality are limited to shallow flow systems. Organic compounds detected in shallow or intermediate-depth wells were aligned mostly with flowpaths that pass through or near identified hazardous-waste sites. Few organic contaminants were detected in surface water. The only organic compound to exceed MCLs for drinking water was bis(2-ethylhexyl) phthalate, but it was detected at concentrations just above the MCL. Inorganic constituents detected at concentration exceeding MCLs include beryllium (twice), lead (once), thallium (once), and gross alpha radiation (once). No polycyclic aromatic (PAHs) were detected in surface-water samples. The highest concentrations of contaminants detected during a storm event were in samples from upgradient locations, indicating that off-Base sources may contribute to surface-water contamination. Inorganic and organic contaminants were found in streambed sediments at WPAFB, primarily in Areas A and C. Trace metals such as lead, mercury, arsenic, and cadmium were detected at 16 locations at concentrations considered 'elevated' according to a ranking scheme for sediments. PAHS were the organic compounds detected most frequently and in highest concentrations organo

  1. Inhibitors of Fatty Acid Synthase for Prostate Cancer

    DTIC Science & Technology

    2012-05-01

    structure, Figure 3) is highly susceptible to nucelophi lic attack. In addition, well- established Diels - Alder chemistry will b e used to crea te...including each of the precurso rs leading to the compounds. Based on multiple criteria including ability to inhibit recombinant enzyme , ability to...The specificity or hydrophobic channel binds the growing fatty acid chain and guides substrate specificity of the enzyme . The short-chain pock et

  2. A Mechanism-based 3D-QSAR Approach for Classification ...

    EPA Pesticide Factsheets

    Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π–π interaction with Trp86

  3. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    PubMed Central

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201

  4. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    NASA Astrophysics Data System (ADS)

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.

  5. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR.

    PubMed

    Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. Published by Elsevier Inc.

  6. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds

    NASA Astrophysics Data System (ADS)

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-01

    The novel class of luminescent Al3 +-based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2‧:6‧,2″-terpyridine]-4‧-ylbenzoic acid (Hcptpy) with Al3 + under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467 nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0 μM with a detection limit of 4.64 μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA.

  7. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds.

    PubMed

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-05

    The novel class of luminescent Al 3+ -based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2':6',2″-terpyridine]-4'-ylbenzoic acid (Hcptpy) with Al 3+ under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0μM with a detection limit of 4.64μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Investigation of the Effect of Some Optically Active Imine Compounds on the Enzyme Activities of hCA-I and hCA-II under In Vitro Conditions: An Experimental and Theoretical Study.

    PubMed

    Tektas, Osman; Akkemik, Ebru; Baykara, Haci

    2016-06-01

    Inhibitors of carbonic anhydrase (hCA; EC 4.2.1.1) are used as medicines for many diseases. Therefore, they are very important. In this study, a known series of Schiff bases were synthesized and their effects on the activities of hCA-I and hCA-II, which are cytosolic isoenzymes of carbonic anhydrase, were investigated under in vitro conditions. The synthesized compounds (H1, H2, H3, and H4) were found to cause inhibition on enzyme activities of hCA-1 and hCA-II. IC50 values of H1, H2, H3, and H4 compounds were 140, 88, 201, and 271 μM for hCA-I enzyme activity and 134, 251, 79, and 604 μM for hCA-II enzyme activity, respectively. The synthesized Schiff bases were characterized by several methods, including (1) H NMR, FT-IR, elemental analysis, and polarimetric measurements. Correlation coefficient square values (R(2) ) of comparison of the theoretical and experimental (1) H NMR shifts for H1, H2, H3, and H4 compounds were found as 0.9781, 0.9814, 0.9758, and 0.8635, respectively. © 2016 Wiley Periodicals, Inc.

  9. GENOMIC AND PROTEOMIC BASIS FOR INTERSPECIES EXTRAPOLATIONS BASED UPON ESTROGEN AND ANDROGEN RECEPTORSTRUCTURE AND FUNCTION AMONG ANIMALS

    EPA Science Inventory

    Most in vitro hazard assessments for the screening and identification of endocrine disrupting compounds (EDCs), including those outlined in the EDSP Tier 1 Screening (T1S) protocols, use mammalian steroid hormone receptors. There is uncertainty, however, concerning differences th...

  10. Identification of unique volatile compounds associated with repelling whiteflies (Hemiptera: Aleyrodidae) in desert watermelon (Citrullus colocynthis)

    USDA-ARS?s Scientific Manuscript database

    Commercial watermelon cultivars (Citrullus lanatus var. lanatus) share a narrow genetic base and are susceptible to many insect pests and diseases. The insects include whiteflies which cause serious economic damages to this important cucurbit crop. However, several United States Plant Introduction a...

  11. EVALUATION OF THE JOINT TOXIC ACTION OF MIXTURES OF HALOACETIC ACIDS CONSTRUCTED USING ENVIRONMENTAL CONCENTRATION/EXPOSURE DATA

    EPA Science Inventory

    Disinfection byproducts (DBPs) are formed by reactions between chemicals used to disinfect water and organic compounds present in source water. The composition of DBP mixtures varies based on a number of factors, including treatment scenario, with different DBP mixtures contain...

  12. Sorption behavior of 20 wastewater originated micropollutants in groundwater — Column experiments with pharmaceutical residues and industrial agents

    NASA Astrophysics Data System (ADS)

    Burke, Victoria; Treumann, Svantje; Duennbier, Uwe; Greskowiak, Janek; Massmann, Gudrun

    2013-11-01

    Since sorption is an essential process with regard to attenuation of organic pollutants during subsurface flow, information on the sorption properties of each pollutant are essential for assessing their environmental fate and transport behavior. In the present study, the sorption behavior of 20 wastewater originated organic micropollutants was assessed by means of sediment column experiments, since experimentally determined data for these compounds are not or sparsely represented in the literature. Compounds investigated include various psychoactive drugs, phenazone-type pharmaceuticals and β-blockers, as well as phenacetine, N-methylphenacetine, tolyltriazole and para-toluenesulfonamide. While for most of the compounds no or only a low sorption affinity was observed, an elevated tendency to sorb onto aquifer sand was obtained for the β-blockers atenolol, propranolol and metoprolol. A comparison between experimental data and data estimated based on the octanol/water partition coefficient following the QSAR approach demonstrated the limitations of the latter to predict the adsorption behavior in natural systems for the studied compounds.

  13. Oligosaccharides in Food and Agriculture

    NASA Astrophysics Data System (ADS)

    Collins, Michelle E.; Rastall, Robert A.

    Oligosaccharides are an integral part of the daily diet for humans and animals. They are primarily used for their nutritional properties, however they are currently receiving much attention due to their physiological effect on the microflora of the gastrointestinal tract. Galacto-oligosaccharides and the fructan-type oligosaccharides, namely FOS and inulin are well established as beneficial to the host and are classified as prebiotic based on data from clinical studies. These compounds dominate this sector of the market, although there are oligosaccharides emerging which have produced very interesting in vitro results in terms of prebiotic status and human trials are required to strengthen the claim. Such compounds include pectic oligosaccharides, gluco-oligosaccharides, gentio-oligosaccharides, kojio-oligosaccharides, and alternan oligosaccharides. The raw materials for production of these prebiotic compounds are derived from natural sources such as plants but also from by products of the food processing industry. In addition to being prebiotic these compounds can be incorporated into foodstuffs due to the physiochemical properties they possess.

  14. Mining of the Pyrrolamide Antibiotics Analogs in Streptomyces netropsis Reveals the Amidohydrolase-Dependent “Iterative Strategy” Underlying the Pyrrole Polymerization

    PubMed Central

    Deng, Zixin; Zhao, Changming; Yu, Yi

    2014-01-01

    In biosynthesis of natural products, potential intermediates or analogs of a particular compound in the crude extracts are commonly overlooked in routine assays due to their low concentration, limited structural information, or because of their insignificant bio-activities. This may lead into an incomplete and even an incorrect biosynthetic pathway for the target molecule. Here we applied multiple compound mining approaches, including genome scanning and precursor ion scan-directed mass spectrometry, to identify potential pyrrolamide compounds in the fermentation culture of Streptomyces netropsis. Several novel congocidine and distamycin analogs were thus detected and characterized. A more reasonable route for the biosynthesis of pyrrolamides was proposed based on the structures of these newly discovered compounds, as well as the functional characterization of several key biosynthetic genes of pyrrolamides. Collectively, our results implied an unusual “iterative strategy” underlying the pyrrole polymerization in the biosynthesis of pyrrolamide antibiotics. PMID:24901640

  15. Separation-oriented derivatization of native fluorescent compounds through fluorous labeling followed by liquid chromatography with fluorous-phase.

    PubMed

    Sakaguchi, Yohei; Yoshida, Hideyuki; Todoroki, Kenichiro; Nohta, Hitoshi; Yamaguchi, Masatoshi

    2009-06-15

    We have developed a new and simple method based on "fluorous derivatization" for LC of native fluorescent compounds. This method involves the use of a column with a fluorous stationary phase. Native fluorescent analytes with target functional groups are precolumn derivatized with a nonfluorescent fluorous tag, and the fluorous-labeled analytes are retained in the column, whereas underivatized substances are not. Only the retained fluorescent analytes are detected fluorometrically at appropriate retention times, and retained substrates without fluorophores are not detected. In this study, biologically important carboxylic acids (homovanillic acid, vanillylmandelic acid, and 5-hydroxyindoleacetic acid) and drugs (naproxen, felbinac, flurbiprofen, and etodolac) were used as model native fluorescent compounds. Experimental results indicate that the fluorous-phase column can selectively retain fluorous compounds including fluorous-labeled analytes on the basis of fluorous separation. We believe that separation-oriented derivatization presented here is the first step toward the introduction of fluorous derivatization in quantitative LC analysis.

  16. Identification of novel peroxisome proliferator-activated receptor-gamma (PPARγ) agonists using molecular modeling method

    NASA Astrophysics Data System (ADS)

    Gee, Veronica M. W.; Wong, Fiona S. L.; Ramachandran, Lalitha; Sethi, Gautam; Kumar, Alan Prem; Yap, Chun Wei

    2014-11-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) plays a critical role in lipid and glucose homeostasis. It is the target of many drug discovery studies, because of its role in various disease states including diabetes and cancer. Thiazolidinediones, a synthetic class of agents that work by activation of PPARγ, have been used extensively as insulin-sensitizers for the management of type 2 diabetes. In this study, a combination of QSAR and docking methods were utilised to perform virtual screening of more than 25 million compounds in the ZINC library. The QSAR model was developed using 1,517 compounds and it identified 42,378 potential PPARγ agonists from the ZINC library, and 10,000 of these were selected for docking with PPARγ based on their diversity. Several steps were used to refine the docking results, and finally 30 potentially highly active ligands were identified. Four compounds were subsequently tested for their in vitro activity, and one compound was found to have a K i values of <5 μM.

  17. Analysis of flavonoid glycosides with potential medicinal properties on Bauhinia uruguayensis and Bauhinia forficata subspecies pruinosa.

    PubMed

    Santos, Marina; Fortunato, Renée H; Spotorno, Viviana G

    2018-04-05

    Several Bauhinia species are widely used in Southern South America in the treatment of infections, pain and several diseases including diabetes. Flavonoid compounds based on quercetin and kaempferol glycoside derivatives are believed to be responsible for their therapeutic properties. To investigate this, we have studied two native species from Argentina: B. uruguayensis (BU) and B. forficata subsp. pruinosa (BF). We have analyzed the major polyphenol components in hydro-methanolic extracts of leaves, by high performance liquid chromatography tandem mass spectrometry. Chromatographic analysis yielded five main compounds in BF, corresponding to rutinosides and rhamnosides derivatives of kaempferol and quercetin, which are considered chemotaxonomic markers and responsible for antioxidant activity. The presence of kaempferitrin, an antidiabetic agent, has been confirmed. In extracts of BU, four major compounds were identified as rhamnosides and galloyl derivates from quercetin and kaempferol. One of these compounds, quercitrin-3-rhamnoside may confer anti-inflammatory and analgesic properties to BU extracts.

  18. Development of a common priority list of pharmaceuticals relevant for the water cycle.

    PubMed

    de Voogt, P; Janex-Habibi, M-L; Sacher, F; Puijker, L; Mons, M

    2009-01-01

    Pharmaceutically active compounds (PhACs), including prescription drugs, over-the-counter medications, drugs used in hospitals and veterinary drugs, have been found throughout the water cycle. A desk study was initiated by the Global Water Research Coalition to consolidate a uniform selection of such compounds in order to judge risks of PhACs for the water cycle. By identifying major existing prioritization efforts and evaluating the criteria they use, this study yields a representative and qualitative profile ('umbrella view') of priority pharmaceuticals based on an extensive set of criteria. This can then be used for further studies on analytical methods, occurrence, treatability and potential risks associated with exposure to PhACs in water supply, identifying compounds most likely to be encountered and that may have significant impact on human health. For practical reasons, the present study excludes veterinary drugs. The pragmatic approach adopted provides an efficient tool to manage risks related to pharmaceuticals and provides assistance for selecting compounds for future studies.

  19. Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products.

    PubMed

    Zhuo, Rongjie; Liu, Hao; Liu, Ningning; Wang, Yi

    2016-11-11

    Identification of active compounds from natural products is a critical and challenging task in drug discovery pipelines. Besides commonly used bio-guided screening approaches, affinity selection strategy coupled with liquid chromatography or mass spectrometry, known as ligand fishing, has been gaining increasing interest from researchers. In this review, we summarized this emerging strategy and categorized those methods as off-line or on-line mode according to their features. The separation principles of ligand fishing were introduced based on distinct analytical techniques, including biochromatography, capillary electrophoresis, ultrafiltration, equilibrium dialysis, microdialysis, and magnetic beads. The applications of ligand fishing approaches in the discovery of lead compounds were reviewed. Most of ligand fishing methods display specificity, high efficiency, and require less sample pretreatment, which makes them especially suitable for screening active compounds from complex mixtures of natural products. We also summarized the applications of ligand fishing in the modernization of Traditional Chinese Medicine (TCM), and propose some perspectives of this remarkable technique.

  20. Sorption behavior of 20 wastewater originated micropollutants in groundwater--column experiments with pharmaceutical residues and industrial agents.

    PubMed

    Burke, Victoria; Treumann, Svantje; Duennbier, Uwe; Greskowiak, Janek; Massmann, Gudrun

    2013-11-01

    Since sorption is an essential process with regard to attenuation of organic pollutants during subsurface flow, information on the sorption properties of each pollutant are essential for assessing their environmental fate and transport behavior. In the present study, the sorption behavior of 20 wastewater originated organic micropollutants was assessed by means of sediment column experiments, since experimentally determined data for these compounds are not or sparsely represented in the literature. Compounds investigated include various psychoactive drugs, phenazone-type pharmaceuticals and β-blockers, as well as phenacetine, N-methylphenacetine, tolyltriazole and para-toluenesulfonamide. While for most of the compounds no or only a low sorption affinity was observed, an elevated tendency to sorb onto aquifer sand was obtained for the β-blockers atenolol, propranolol and metoprolol. A comparison between experimental data and data estimated based on the octanol/water partition coefficient following the QSAR approach demonstrated the limitations of the latter to predict the adsorption behavior in natural systems for the studied compounds. © 2013.

Top