Cannabis cultivation in Quebec: between space-time hotspots and coldspots.
Chadillon-Farinacci, Véronique; Apparicio, Philippe; Morselli, Carlo
2015-03-01
Cannabis cultivation has become increasingly localized, whether soil-based or hydroponic growing methods are used. Characteristics of a given location, such as its climate and the equipment it requires may influence general accessibility or attract different types of offenders based on potential profits. The location of crops, especially hydroponic crops, suggests a certain proximity to the consumer market via semi-urban and urban environments, while making it possible to avoid detection. This article examines the cannabis market through its cultivation. The stability of temporal and spatial clusters of cannabis cultivation, hotspots, and coldspots between 2001 and 2009 in the province of Quebec, Canada, are addressed. Studying the geography of crime is not a new endeavor, but coldspots are rarely documented in drug market research. Using arrests and general population data, as well as Kulldorff's scan statistics, results show that the temporal distribution of cannabis cultivation is highly seasonal for soil-based methods. Hydroponic production shows adaptation to its soil-based counterpart. Stable patterns are found for both spatial distributions. Hotspots for soil-based cultivation are found near several urban centers and the Ontario border. For hydroponic cannabis cultivation, a new hotspot suggests the emergence of an American demand for Quebec-grown cannabis between 2007 and 2009. Curiously, the region surrounding Montreal, the largest urban center in Quebec, is a recurrent and stable coldspot for both methods of cultivation. For all periods, spatial clusters are stronger for soil-based methods than in the hydroponic context. Temporal differences and spatial similarities between soil-based cultivation and hydroponic cultivation are discussed. The role of the metropolis is also addressed. Copyright © 2015 Elsevier B.V. All rights reserved.
The Use of Problem-Based Learning Model to Improve Quality Learning Students Morals
ERIC Educational Resources Information Center
Nurzaman
2017-01-01
Model of moral cultivation in MTsN Bangunharja done using three methods, classical cultivation methods, extra-curricular activities in the form of religious activities, scouting, sports, and Islamic art, and habituation of morals. Problem base learning models in MTsN Bangunharja applied using the following steps: find the problem, define the…
NASA Astrophysics Data System (ADS)
Qian, Qinghuan; Zhou, Dequan; Bai, Xiaoyong; Xiao, Jianyong; Chen, Fei; Zeng, Cheng
2018-01-01
In order to construct the indicators of the balance between supply and demand of the cultivated land ecological carrying capacity, basing on the relation of the cultivated land ecological carrying capacity supply and demand, applying the model of Cultivated Land Ecological Footprints and the method of CIS and considering the factors of cultivated land production, taking the statistical data of 2015 as an example, and then made a systematic evaluation of the balance between supply and demand of the cultivated land ecological carrying capacity in Guizhou Province. The results show that (1) the spatial distribution of supply and demand of cultivated land ecological carrying capacity in Guizhou is unbalanced, and the northern and eastern parts are the overloading area, the middle, the south and the west parts are the balance area. (2) From the perspective of cultivated land structure, the crops with ecological carrying capacity surplus were rice, vegetables and peanuts, among which rice was the highest and the ecological balance index was 0.7354. The crops with ecological carrying capacity overload were potato, wheat, maize, rapeseeds, soybeans and cured tobacco, of which the index of potato up to 7.11, other types of indices are less than 1.5. The research can provide the ecological security early warning, the overall plan of land use and sustainable development of the area cultivated land with scientific evidence and decision support.
Bao, Yilu; Wen, Shumei; Cong, Wei; Wu, Xia; Ning, Zhengxiang
2012-07-01
Cultivation of Spirulina platensis using ammonium salts or wastewater containing ammonium as alternative nitrogen sources is considered as a commercial way to reduce the production cost. In this research, by analyzing the relationship between biomass production and ammonium- N consumption in the fed-batch culture of Spirulina platensis using ammonium bicarbonate as a nitrogen nutrient source, an online adaptive control strategy based on optical density (OD) measurements for controlling ammonium feeding was presented. The ammonium concentration was successfully controlled between the cell growth inhibitory and limiting concentrations using this OD-based feedback feeding method. As a result, the maximum biomass concentration (2.98 g/l), productivity (0.237 g/l·d), nitrogen-to-cell conversion factor (7.32 gX/gN), and contents of protein (64.1%) and chlorophyll (13.4 mg/g) obtained by using the OD-based feedback feeding method were higher than those using the constant and variable feeding methods. The OD-based feedback feeding method could be recognized as an applicable way to control ammonium feeding and a benefit for Spirulina platensis cultivations.
Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts
Lammers, Peter J.; Huesemann, Michael; Boeing, Wiebke; ...
2016-12-12
The cultivation efforts within the National Alliance for Advanced Biofuels and Bioproducts (NAABB) were developed to provide four major goals for the consortium, which included biomass production for downstream experimentation, development of new assessment tools for cultivation, development of new cultivation reactor technologies, and development of methods for robust cultivation. The NAABB consortium testbeds produced over 1500 kg of biomass for downstream processing. The biomass production included a number of model production strains, but also took into production some of the more promising strains found through the prospecting efforts of the consortium. Cultivation efforts at large scale are intensive andmore » costly, therefore the consortium developed tools and models to assess the productivity of strains under various environmental conditions, at lab scale, and validated these against scaled outdoor production systems. Two new pond-based bioreactor designs were tested for their ability to minimize energy consumption while maintaining, and even exceeding, the productivity of algae cultivation compared to traditional systems. Also, molecular markers were developed for quality control and to facilitate detection of bacterial communities associated with cultivated algal species, including the Chlorella spp. pathogen, Vampirovibrio chlorellavorus, which was identified in at least two test site locations in Arizona and New Mexico. Finally, the consortium worked on understanding methods to utilize compromised municipal wastewater streams for cultivation. In conclusion, this review provides an overview of the cultivation methods and tools developed by the NAABB consortium to produce algae biomass, in robust low energy systems, for biofuel production.« less
ERIC Educational Resources Information Center
Hsu, Hui-Ching Kayla
2017-01-01
The purpose of this mixed-methods study was: (1) to document the design and implementation process of an online video-based pre-arrival course that was intended to cultivate Asian students' willingness to communicate in American Classrooms; (2) to assess the effectiveness of the course by measuring students' oral proficiency and willingness to…
Baudart, J; Guillaume, C; Mercier, A; Lebaron, P; Binet, M
2015-05-01
To develop a rapid and sensitive method to quantify viable Legionella spp. in cooling tower water samples. A rapid, culture-based method capable of quantifying as few as 600 Legionella microcolonies per litre within 2 days in industrial waters was developed. The method combines a short cultivation step of microcolonies on GVPC agar plate, specific detection of Legionella cells by a fluorescent in situ hybridization (FISH) approach, and a sensitive enumeration using a solid-phase cytometer. Following optimization of the cultivation conditions, the qualitative and quantitative performance of the method was assessed and the method was applied to 262 nuclear power plant cooling water samples. The performance of this method was in accordance with the culture method (NF-T 90-431) for Legionella enumeration. The rapid detection of viable Legionella in water is a major concern to the effective monitoring of this pathogenic bacterium in the main water sources involved in the transmission of legionellosis infection (Legionnaires' disease). The new method proposed here appears to be a robust, efficient and innovative means for rapidly quantifying cultivable Legionella in cooling tower water samples within 48 h. © 2015 The Society for Applied Microbiology.
Identification of suitable sites for mountain ginseng cultivation using GIS and geo-temperature.
Kang, Hag Mo; Choi, Soo Im; Kim, Hyun
2016-01-01
This study was conducted to explore an accurate site identification technique using a geographic information system (GIS) and geo-temperature (gT) for locating suitable sites for growing cultivated mountain ginseng (CMG; Panax ginseng), which is highly sensitive to the environmental conditions in which it grows. The study site was Jinan-gun, South Korea. The spatial resolution for geographic data was set at 10 m × 10 m, and the temperatures for various climatic factors influencing CMG growth were calculated by averaging the 3-year temperatures obtained from the automatic weather stations of the Korea Meteorological Administration. Identification of suitable sites for CMG cultivation was undertaken using both a conventional method and a new method, in which the gT was added as one of the most important factors for crop cultivation. The results yielded by the 2 methods were then compared. When the gT was added as an additional factor (new method), the proportion of suitable sites identified decreased by 0.4 % compared with the conventional method. However, the proportion matching real CMG cultivation sites increased by 3.5 %. Moreover, only 68.2 % corresponded with suitable sites identified using the conventional factors; i.e., 31.8 % were newly detected suitable sites. The accuracy of GIS-based identification of suitable CMG cultivation sites improved by applying the temperature factor (i.e., gT) in addition to the conventionally used factors.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
Monitoring and Evaluation of Cultivated Land Irrigation Guarantee Capability with Remote Sensing
NASA Astrophysics Data System (ADS)
Zhang, C., Sr.; Huang, J.; Li, L.; Wang, H.; Zhu, D.
2015-12-01
Abstract: Cultivated Land Quality Grade monitoring and evaluation is an important way to improve the land production capability and ensure the country food safety. Irrigation guarantee capability is one of important aspects in the cultivated land quality monitoring and evaluation. In the current cultivated land quality monitoring processing based on field survey, the irrigation rate need much human resources investment in long investigation process. This study choses Beijing-Tianjin-Hebei as study region, taking the 1 km × 1 km grid size of cultivated land unit with a winter wheat-summer maize double cropping system as study object. A new irrigation capacity evaluation index based on the ratio of the annual irrigation requirement retrieved from MODIS data and the actual quantity of irrigation was proposed. With the years of monitoring results the irrigation guarantee capability of study area was evaluated comprehensively. The change trend of the irrigation guarantee capability index (IGCI) with the agricultural drought disaster area in rural statistical yearbook of Beijing-Tianjin-Hebei area was generally consistent. The average of IGCI value, the probability of irrigation-guaranteed year and the weighted average which controlled by the irrigation demand index were used and compared in this paper. The experiment results indicate that the classification result from the present method was close to that from irrigation probability in the gradation on agriculture land quality in 2012, with overlap of 73% similar units. The method of monitoring and evaluation of cultivated land IGCI proposed in this paper has a potential in cultivated land quality level monitoring and evaluation in China. Key words: remote sensing, evapotranspiration, MODIS cultivated land quality, irrigation guarantee capability Authors: Chao Zhang, Jianxi Huang, Li Li, Hongshuo Wang, Dehai Zhu China Agricultural University zhangchaobj@gmail.com
Seaweed cultivation: Traditional way and its reformation
NASA Astrophysics Data System (ADS)
Fei, Xiu-Geng; Bao, Ying; Lu, Shan
1999-09-01
Seaweed cultivation or phycoculture has been developed rather fast in recent years. The total production of cultivated seaweed at present is about 6250×103 tons fresh weight. The total cultivation area is estimated as 200×103 hectare. The annual total value of cultivated seaweeds has been estimated to be more than 3 billion US dollars. Phycoculture provides many job opportunities for the coastal region people, has the potential to improve marine environments and thus even induce global change. All traditional cultivation methods and techniques are based on or start from the individual plant or the cultivated seaweed population. Modern biological science and biotechnology achievements have benefited agriculture a lot, but traditional seaweed cultivation has not changed much since its founding. This is because seaweed cultivation has been quite conservative for quite a long period and has accumulated many problems requiring solution. Four main problems might be the most universal ones holding back further development of the industry. New ways of seaweed cultivation must be developed, new techniques must be perfected, and new problems solved. This paper mainly discusses the main problems of traditional seaweed cultivation at present and its possible further development and reformation in the future.
Online automatic tuning and control for fed-batch cultivation
van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.
2007-01-01
Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554
NASA Astrophysics Data System (ADS)
Liu, Dan; Li, Yong-Guo; Xu, Hong; Sun, Su-Qin; Wang, Zheng-Tao
2008-07-01
Ginseng is one of the most widely used herbal medicines. Based on the grown environments and the cultivate method, three kinds of ginseng, Cultivated Ginseng (CG), Mountain Cultivated Ginseng (MCG) and Mountain Wild Ginseng (MWG) are classified. A novel and scientific-oriented method was developed and established to discriminate and identify three kinds of ginseng using Fourier transform infrared spectroscopy (FT-IR), secondary derivative IR spectra and two-dimensional correlation infrared spectroscopy (2D-IR). The findings indicated that the relative contents of starch in the CG were more than that in MCG and MWG, while the relative contents of calcium oxalate and lipids in MWG were more than that in CG and MCG, and the relative contents of fatty acid in MCG were more than that in CG and MWG. The hierarchical cluster analysis was applied to data analysis of MWG, CG and MWG, which could be classified successfully. The results demonstrated the macroscopic IR fingerprint method, including FT-IR, secondary derivative IR and 2D-IR, can be applied to discriminate different ginsengs rapidly, effectively and non-destructively.
Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region.
Li, Guisheng; Cui, Yan; Wang, Hongtao; Kwon, Woo-Saeng; Yang, Deok-Chun
2017-07-01
Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. The mitochondrial NADH dehydrogenase subunit 7 ( nad 7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad 7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.
Adenosine Monophosphate-Based Detection of Bacterial Spores
NASA Technical Reports Server (NTRS)
Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya
2009-01-01
A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.
How to Design and Present Texts to Cultivate Balanced Regional Images in Geography Education
ERIC Educational Resources Information Center
Lee, Dong-Min; Ryu, Jaemyong
2013-01-01
This article examines possibilities associated with the cultivation of balanced regional images via the use of simple methods. Two experiments based on the primacy effect and the painting picture rule, or visual depiction of regions, were conducted. The results show significant differences in the formation of regional images. More specifically,…
Detection and cultivation of circulating tumor cells in malignant pleural mesothelioma.
Bobek, Vladimir; Kacprzak, Grzegorz; Rzechonek, Adam; Kolostova, Katarina
2014-05-01
Malignant pleural mesothelioma (MPM) is an aggressive disease with very poor prognosis which tends to affect older patients. Progress in the management of this group of patients has been limited by the rarity of the disease and hence, difficulty in conducting randomized trials. The vast majority of cancer deaths occur due to metastasis of the primary tumor to distant sites via circulating tumor cells (CTCs) in the circulation. CTCs are extremely rare and limits in technology used to capture these cells hamper our complete understanding over the metastatic process. In the present study we present a new method for detection and cultivation of CTCs isolated from peripheral blood of MPM patients. Patients with diagnosed MPM were enrolled into this study. A size-based separation method for viable CTC enrichment from unclothed peripheral blood has been introduced; MetaCell. The size-based enrichment process was based on filtration of peripheral blood (PB) through porous polycarbonate membrane. The separated CTCs are cultured on the membrane in vitro under standard cancer cell culture conditions and observed by an inverted microscope. The reported methodology allows for quick and easy enrichment of CTCs and their cultivation. The cultivated cells can be used for next specification of gene expression and histological/biological specificity of concrete mesothelioma.
Unterseher, Martin; Schnittler, Martin
2009-05-01
Two cultivation-based isolation techniques - the incubation of leaf fragments (fragment plating) and dilution-to-extinction culturing on malt extract agar - were compared for recovery of foliar endophytic fungi from Fagus sylvatica near Greifswald, north-east Germany. Morphological-anatomical characters of vegetative and sporulating cultures and ITS sequences were used to assign morphotypes and taxonomic information to the isolates. Data analysis included species-accumulation curves, richness estimators, multivariate statistics and null model testing. Fragment plating and extinction culturing were significantly complementary with regard to species composition, because around two-thirds of the 35 fungal taxa were isolated with only one of the two cultivation techniques. The difference in outcomes highlights the need for caution in assessing fungal biodiversity based upon single isolation techniques. The efficiency of cultivation-based studies of fungal endophytes was significantly increased with the combination of the two isolation methods and estimations of species richness, when compared with a 20-years old reference study, which needed three times more isolates with fragment plating to attain the same species richness. Intensified testing and optimisation of extinction culturing in endophyte research is advocated.
Lysák, Daniel; Holubová, Monika; Bergerová, Tamara; Vávrová, Monika; Cangemi, Giuseppina Cristina; Ciccocioppo, Rachele; Kruzliak, Peter; Jindra, Pavel
2016-03-01
Cell therapy products represent a new trend of treatment in the field of immunotherapy and regenerative medicine. Their biological nature and multistep preparation procedure require the application of complex release criteria and quality control. Microbial contamination of cell therapy products is a potential source of morbidity in recipients. The automated blood culture systems are widely used for the detection of microorganisms in cell therapy products. However the standard 2-week cultivation period is too long for some cell-based treatments and alternative methods have to be devised. We tried to verify whether a shortened cultivation of the supernatant from the mesenchymal stem cell (MSC) culture obtained 2 days before the cell harvest could sufficiently detect microbial growth and allow the release of MSC for clinical application. We compared the standard Ph. Eur. cultivation method and the automated blood culture system BACTEC (Becton Dickinson). The time to detection (TTD) and the detection limit were analyzed for three bacterial and two fungal strains. The Staphylococcus aureus and Pseudomonas aeruginosa were recognized within 24 h with both methods (detection limit ~10 CFU). The time required for the detection of Bacillus subtilis was shorter with the automated method (TTD 10.3 vs. 60 h for 10-100 CFU). The BACTEC system reached significantly shorter times to the detection of Candida albicans and Aspergillus brasiliensis growth compared to the classical method (15.5 vs. 48 and 31.5 vs. 48 h, respectively; 10-100 CFU). The positivity was demonstrated within 48 h in all bottles, regardless of the size of the inoculum. This study validated the automated cultivation system as a method able to detect all tested microorganisms within a 48-h period with a detection limit of ~10 CFU. Only in case of B. subtilis, the lowest inoculum (~10 CFU) was not recognized. The 2-day cultivation technique is then capable of confirming the microbiological safety of MSC and allows their timely release for clinical application.
Molina-Calle, M; Sánchez de Medina, V; Delgado de la Torre, M P; Priego-Capote, F; Luque de Castro, M D
2016-07-01
Stevia is a currently well-known plant thanks to the presence of steviol glycosides, which are considered as sweeteners obtained from a natural source. In this research, a method based on LC-MS/MS by using a triple quadrupole detector was developed for quantitation of 8 steviol glycosides in extracts from Stevia leaves. The ionization and fragmentation parameters for selected reaction monitoring were optimized. Detection and quantitation limits ranging from 0.1 to 0.5ng/mL and from 0.5 to 1ng/mL, respectively, were achieved: the lowest attained so far. The steviol glycosides were quantified in extracts from leaves of seven varieties of Stevia cultivated in laboratory, greenhouse and field. Plants cultivated in field presented higher concentration of steviol glycosides than those cultivated in greenhouse. Thus, the way of cultivation clearly influences the concentration of these compounds. The inclusion of branches together with leaves as raw material was also evaluated, showing that this inclusion modifies, either positively or negatively, the concentration of steviol glycosides. Copyright © 2016 Elsevier B.V. All rights reserved.
Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun
2018-01-01
Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO2 in biogas. The microalgae–fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulgaris–Ganoderma lucidum > Chlorella vulgaris–activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m−2 s−1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology. PMID:29543784
Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun
2018-03-15
Abstract : Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO₂ in biogas. The microalgae-fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO 2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulga ris - Ganoderma lucidum > Chlorella vulga ris -activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m -2 s -1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology.
Kozma, Bence; Hirsch, Edit; Gergely, Szilveszter; Párta, László; Pataki, Hajnalka; Salgó, András
2017-10-25
In this study, near-infrared (NIR) and Raman spectroscopy were compared in parallel to predict the glucose concentration of Chinese hamster ovary cell cultivations. A shake flask model system was used to quickly generate spectra similar to bioreactor cultivations therefore accelerating the development of a working model prior to actual cultivations. Automated variable selection and several pre-processing methods were tested iteratively during model development using spectra from six shake flask cultivations. The target was to achieve the lowest error of prediction for the glucose concentration in two independent shake flasks. The best model was then used to test the scalability of the two techniques by predicting spectra of a 10l and a 100l scale bioreactor cultivation. The NIR spectroscopy based model could follow the trend of the glucose concentration but it was not sufficiently accurate for bioreactor monitoring. On the other hand, the Raman spectroscopy based model predicted the concentration of glucose in both cultivation scales sufficiently accurately with an error around 4mM (0.72g/l), that is satisfactory for the on-line bioreactor monitoring purposes of the biopharma industry. Therefore, the shake flask model system was proven to be suitable for scalable spectroscopic model development. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Chun-Yen; Yeh, Kuei-Ling; Aisyah, Rifka; Lee, Duu-Jong; Chang, Jo-Shu
2011-01-01
Microalgae have the ability to mitigate CO(2) emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ushakova, Sofya; Tikhomirov, Alexander A.; Tikhomirova, Natalia; Kudenko, Yurii; Griboskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe
The basic objective arising at use of mineralized human solid and liquid wastes serving as the source of mineral elements for plants cultivation in biological-technical life support systems appears to be NaCl presence in them. The given work is aimed at feasibility study of mineralized human metabolites' utilization for nutrient solutions' preparation for their further employment at a long-term cultivation of uneven-aged wheat and Salicornia europaea L. cenosis in a conveyer regime. Human solid and liquid wastes were mineralized by the "wet incineration" method developed by Yu. Kudenko. On their base the solutions were prepared which were used for cultivation of 5-aged wheat conveyer with the time step-interval of 14 days. Wheat was cultivated by hydroponics method on expanded clay aggregate. For partial demineralization of nutrient solution every two weeks after regular wheat harvesting 12 L of solution was withdrawn from the wheat irrigation tank and used for Salicornia europaea cultivation by the water culture method in a conveyer regime. The Salicornia europaea conveyer was represented by 2 ages with the time step-interval of 14 days. Resulting from repeating withdrawal of the solution used for wheat cultivation, sodium concentration in the wheat irrigation solution did not exceed 400 mg/l, and mineral elements contained in the taken solution were used for Salicornia europaea cultivation. The experiment lasted 7 months. Total wheat biomass productivity averaged 30.1 g*m-2*day-1 at harvest index equal to 36.8The work was carried out under support of SB RAS grant 132 and INTAS 05-1000008-8010
NASA Astrophysics Data System (ADS)
Purnomo, D.; Budiastuti, M. S.; Sakya, A. T.; Cholid, M. I.
2018-03-01
Turmeric (Curcuma xanthorrhiza Roxb.) is a traditional medicinal plant. In Indonesia, it is generally cultivated in village home gardens. Famers conducted very simpple cultivation method of turmeric, without specific maintenance and below varies tree. The experiment was conducted by cultivating turmeric below silk trees as in agroforetry system. The experiment was arranged split plot design, the first factor was three level of irradiation (turmeric monoculture/full irradiation, turmeric below silktree with pruning canopy, and turmeric below silk tree no pruning). The second factor was fertilizer NPK 15-15-15 with three levels of doses (100, 150, and 200 kg ha-1). Cultivating turmeric in agroforestry system based on silk tree which were one year old and not yet needed pruning, application of NPK 15-15-15 fertilizer 100 kg ha-1 was enough. The rhizome yield of turmeric 3 months age reaches 139 g per plant (fresh weight). Litter fall from a silk tree one year old in one year is 30 kg per tree per year.
Schulz, Julia C; Stumpf, Patrick S; Katsen-Globa, Alisa; Sachinidis, Agapios; Hescheler, Jürgen; Zimmermann, Heiko
2012-11-01
Miniaturization and parallelization of cell culture procedures are in focus of research in order to develop test platforms with low material consumption and increased standardization for toxicity and drug screenings. The cultivation in hanging drops (HDs) is a convenient and versatile tool for biological applications and represents an interesting model system for the screening applications due to its uniform shape, the advantageous gas supply, and the small volume. However, its application has so far been limited to non-adherent and aggregate forming cells. Here, we describe for the first time the proof-of-principle regarding the adherent cultivation of human embryonic stem cells in HD. For this microcarriers were added to the droplet as dynamic cultivation surfaces resulting in a maintained pluripotency and proliferation capacity for 10 days. This enables the HD technique to be extended to the cultivation of adherence-dependent stem cells. Also, the possible automation of this method by implementation of liquid handling systems opens new possibilities for miniaturized screenings, the improvement of cultivation and differentiation conditions, and toxicity and drug development.
Schulz, Julia C; Stumpf, Patrick S; Katsen-Globa, Alisa; Sachinidis, Agapios; Hescheler, Jürgen; Zimmermann, Heiko
2012-01-01
Miniaturization and parallelization of cell culture procedures are in focus of research in order to develop test platforms with low material consumption and increased standardization for toxicity and drug screenings. The cultivation in hanging drops (HDs) is a convenient and versatile tool for biological applications and represents an interesting model system for the screening applications due to its uniform shape, the advantageous gas supply, and the small volume. However, its application has so far been limited to non‐adherent and aggregate forming cells. Here, we describe for the first time the proof-of-principle regarding the adherent cultivation of human embryonic stem cells in HD. For this microcarriers were added to the droplet as dynamic cultivation surfaces resulting in a maintained pluripotency and proliferation capacity for 10 days. This enables the HD technique to be extended to the cultivation of adherence-dependent stem cells. Also, the possible automation of this method by implementation of liquid handling systems opens new possibilities for miniaturized screenings, the improvement of cultivation and differentiation conditions, and toxicity and drug development. PMID:23486530
Mining the oral mycobiome: Methods, components, and meaning
Diaz, Patricia I.; Hong, Bo-Young; Dupuy, Amanda K.; Strausbaugh, Linda D.
2017-01-01
ABSTRACT Research on oral fungi has centered on Candida. However, recent internal transcribed spacer (ITS)-based studies revealed a vast number of fungal taxa as potential oral residents. We review DNA-based studies of the oral mycobiome and contrast them with cultivation-based surveys, showing that most genera encountered by cultivation have also been detected molecularly. Some taxa such as Malassezia, however, appear in high prevalence and abundance in molecular studies but have not been cultivated. Important technical and bioinformatic challenges to ITS-based oral mycobiome studies are discussed. These include optimization of sample lysis, variability in length of ITS amplicons, high intra-species ITS sequence variability, high inter-species variability in ITS copy number and challenges in nomenclature and maintenance of curated reference databases. Molecular surveys are powerful first steps to characterize the oral mycobiome but further research is needed to unravel which fungi detected by DNA are true oral residents and what role they play in oral homeostasis. PMID:27791473
Li, Yan; Zhang, Ji; Li, Tao; Liu, Honggao
2016-01-01
Nowadays, Wolfiporia extensa as a popular raw material in food and medicine industry has received increasing interests. Due to supply shortage, this species of edible and medicinal mushroom has been cultivated in some provinces of China. In the present study, cultivated W. extensa collected from six regions in Yunnan Province of China were analyzed by an integrated method based on Fourier transform infrared (FT-IR) spectroscopy and ultra-fast liquid chromatography (UFLC) coupled with multivariate analysis including partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) in order to investigate the differences and similarities in different origins and parts. In the tested mushroom samples, characteristic FT-IR spectra were obtained for acquiring comprehensive fuzz chemical information and pachymic acid was determinated as a biomarker in the meantime. From the results, the comparison of samples was achieved successfully according to their geographical regions and different parts. All the samples displayed regional dependence and the inner parts showed better quality consistency. In addition, the chemical constituents of cultivated W. extensa could be also affected by the cultivation methods. Meanwhile, there was an interesting finding that the soil properties of cultivation regions may have a relationship with the chemical constituents of the epidermis of soil-cultured W. extensa, rather than the inner parts. Collectively, it demonstrated that the present study could provide comprehensive chemical evidence for the critical complement of quality evaluation on the cultivated W. extensa. Moreover, it may be available for the further researches of complicated mushrooms in practice. PMID:28036354
Mushroom cultivation, processing and value added products: a patent based review.
Singhal, Somya; Rasane, Prasad; Kaur, Sawinder; Garba, Umar; Singh, Jyoti; Raj, Nishant; Gupta, Neeru
2018-06-03
Edible mushrooms are an abundant source of carbohydrates, proteins, and multiple antioxidants and phytonutrients. This paper presents a general overview on the edible fungus describing the inventions made in the field of its cultivation, equipment and value added products. To understand and review the innovations and nutraceutical benefits of mushrooms as well as to develop interest regarding the edible mushrooms. Information provided in this review is based on the available research investigations and patents. Mushrooms are an edible source of a wide variety of antioxidants and phytonutrients with a number of nutraceutical properties including anti-tumor and anti-carcinogenic. Thus, several investigations are made for cultivation and improvement of the yield of mushrooms through improvisation of growth substrates and equipment used for mushroom processing. The mushroom has been processed into various products to increase its consumption, providing the health and nutritional benefit to mankind. This paper summarizes the cultivation practices of mushroom, its processing equipments, methods of preservation, value added based products, and its nutraceutical properties. The review also highlights the various scientific feats achieved in terms of patents and research publications promoting mushroom as a wholesome food. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
New insights into Prevotella diversity and medical microbiology.
Alauzet, Corentine; Marchandin, Hélène; Lozniewski, Alain
2010-11-01
In light of recent studies based on cultivation-independent methods, it appears that the diversity of Prevotella in human microbiota is greater than was previously assumed from cultivation-based studies, and that the implication of these bacteria in several human diseases was unrecognized. While some Prevotella taxa were found during opportunistic infections, changes in Prevotella abundance and diversity were discovered during dysbiosis-associated diseases. As member of the microbiota, Prevotella may also be considered as a reservoir for resistance genes. Greater knowledge on Prevotella diversity, as well as new insights into its pathogenic potential and implication in dysbiosis are expected from the use of human microbe identification microarrays, from whole-genome sequence analyse, and from the NIH Human Microbiome Project data. New approaches, including molecular-based methods, could contribute to improve the diagnosis of Prevotella infections.
NASA Astrophysics Data System (ADS)
Manurung, Hetty; Kustiawan, Wawan; Kusuma, Irawan W.; Marjenah
2017-02-01
Tabat barito (Ficus deltoidea Jack) is a name given by Dayak Tribe who lived in Borneo-Kalimantan and it is belongs to the moraceae. Almost all of the parts of F. deltoidea plant is widely used as a medicinal property. The total flavonoid content (TFC) and antioxidant activity from cultivated and wild F. deltoidea leaves and stems extract were assessed. Total flavonoid content was estimated by using Aluminium chloride colorimetric method and expressed as catechin equivalents (mg CE g-1 extract) and the antioxidant activity by the DPPH (2,2-diphenyl-1-picryl hydrazyl) method. The content of total flavonoid of leaves and stems (430.77 and 371.80 µg CE mg-1 extract) of cultivated F. deltoidea were higher than in the wild leaves and stems (114.82 and 66.67 µg CE mg-1 extract). The IC50 of leaves extract of cultivated and wild F. deltoidea, based on the DPPH assay, has a strong antioxidant activity (34.19 and 39.31 µg mL-1 extract) as compared to stems extract. These results showed that the cultivated F. deltoidea are suitable source for medicinal properties and the leaves could be exploited as source of natural antioxidants.
Knief, Claudia
2015-01-01
Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing “unknown methanotrophic bacteria.” This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities. PMID:26696968
Cooper, Moogega; La Duc, Myron T; Probst, Alexander; Vaishampayan, Parag; Stam, Christina; Benardini, James N; Piceno, Yvette M; Andersen, Gary L; Venkateswaran, Kasthuri
2011-08-01
A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.
[Status of termite-mushroom artificial domestication cultivation--a review].
Zhang, Yujin; Guo, Huachun; Li, Rongchun
2010-10-01
Two models of domestication and cultivation of termite-mushroom were discussed: the cultivation of termitomyces model, which method of woodrotting fungi cultivation was emphasized and the original ecological model, which multiplication of symbiotic termites was focused. The problems and possible solutions during termite-mushroom cultivation were also discussed.
2009-01-01
Background The Lactic Acid Bacteria (LAB) are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD) are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i) the initial cultivable LAB strain diversity in the human gut, and (ii) the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156) contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p < 0.05). Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be evaluated using a high throughput RAPD technique based on single bacterial colonies. Validation of this strategy paves the way for future systematic studies on the fate and efficacy of bacterial probiotics during human clinical trials. PMID:19968877
Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen
2015-10-01
Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance. © 2015 Wiley Periodicals, Inc.
Ma, S J; Sa, K J; Hong, T K; Lee, J K
2017-09-21
In this study, 21 simple sequence repeat (SSR) markers were used to evaluate the genetic diversity and population structure among 77 Perilla accessions from high-latitude and middle-latitude areas of China. Ninety-five alleles were identified with an average of 4.52 alleles per locus. The average polymorphic information content (PIC) and genetic diversity values were 0.346 and 0.372, respectively. The level of genetic diversity and PIC value for cultivated accessions of Perilla frutescens var. frutescens from middle-latitude areas were higher than accessions from high-latitude areas. Based on the dendrogram of unweighted pair group method with arithmetic mean (UPGMA), all accessions were classified into four major groups with a genetic similarity of 46%. All accessions of the cultivated var. frutescens were discriminated from the cultivated P. frutescens var. crispa. Furthermore, most accessions of the cultivated var. frutescens collected in high-latitude and middle-latitude areas were distinguished depending on their geographical location. However, the geographical locations of several accessions of the cultivated var. frutescens have no relation with their positions in the UPGMA dendrogram and population structure. This result implies that the diffusion of accessions of the cultivated Perilla crop in the northern areas of China might be through multiple routes. On the population structure analysis, 77 Perilla accessions were divided into Group I, Group II, and an admixed group based on a membership probability threshold of 0.8. Finally, the findings in this study can provide useful theoretical knowledge for further study on the population structure and genetic diversity of Perilla and benefit for Perilla crop breeding and germplasm conservation.
[Effects of cultivation environments on Dendrobium catenatum].
Lin, Yi-Kai; Zhu, Yu-Qiu; Si, Jin-Ping; Qin, Lang; Zhu, Yan; Wu, Ling-Shang; Liu, Jing-Jing
2017-08-01
The study was aimed to clarify the effect of three cultivation environments on the growth and metabolism of Dendrobium catenatum C13 group. There were three different cultivation conditions including rock epiphytic cultivation, pear epiphytic cultivation and pot cultivation. Morphological characteristics and agronomic characters of D. catenatum were observed and measured. Microstructure, contents of polysaccharide and alcohol-soluble extracts were measured by paraffin section method, phenol-sulfuric acid method and hot-dip method, respectively. The result showed that the cultivation environment significantly affected the growth of D. catenatum, the leaves of D. catenatum that cultivated on the rock and pear were sparse and small, the stems were short and purple and the root system was developed. Compare with potted cultivation, D. catenatum from rock epiphytic cultivation and pear epiphytic cultivation showed the following characteristics in the microstructure: the upper epidermis became thicker, the epidermal hair in the epidermis became denser, stomatal showed smaller and denser, the cell wall of exodermis, endoderm and medulla became thicker, the cell of velamen, exodermis, endoderm and medulla were smaller and arranged more closely, but the cultivation environment did not produce specific tissue structure, mainly changed in the structural parameters of size and quantity. The growth environments also influenced contents of polysaccharides and alcohol-soluble extracts. The dontents of polysaccharides and alcohol-soluble extracts in D. catenatum from rock epiphytic were the highest, reached 37.34% and 11.66%, the second was pear epiphytic, both higher than pot cultivation, alcohol-soluble extracts contents in D. catenatum from rock epiphytic are more complex, which shows that rock epiphytic is conducive to the accumulation of secondary metabolites in D. catenatum. Copyright© by the Chinese Pharmaceutical Association.
Adell, Elisa; Moset, Verónica; Zhao, Yang; Jiménez-Belenguer, Ana; Cerisuelo, Alba; Cambra-López, María
2014-01-01
Sampling techniques to detect airborne Salmonella species (spp.) in two pilot scale broiler houses were compared. Broilers were inoculated at seven days of age with a marked strain of Salmonella enteritidis. The rearing cycle lasted 42 days during the summer. Airborne Salmonella spp. were sampled weekly using impaction, gravitational settling, and impingement techniques. Additionally, Salmonella spp. were sampled on feeders, drinkers, walls, and in the litter. Environmental conditions (temperature, relative humidity, and airborne particulate matter (PM) concentration) were monitored during the rearing cycle. The presence of Salmonella spp. was determined by culture-dependent and molecular methods. No cultivable Salmonella spp. were recovered from the poultry houses' surfaces, the litter, or the air before inoculation. After inoculation, cultivable Salmonella spp. were recovered from the surfaces and in the litter. Airborne cultivable Salmonella spp. Were detected using impaction and gravitational settling one or two weeks after the detection of Salmonella spp. in the litter. No cultivable Salmonella spp. were recovered using impingement based on culture-dependent techniques. At low airborne concentrations, the use of impingement for the quantification or detection of cultivable airborne Salmonella spp. is not recommended. In these cases, a combination of culture-dependent and culture-independent methods is recommended. These data are valuable to improve current measures to control the transmission of pathogens in livestock environments and for optimising the sampling and detection of airborne Salmonella spp. in practical conditions.
Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content
Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou
2015-01-01
The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding. PMID:26483818
Modern Methods for Isolation, Purification, and Cultivation of Soil Cyanobacteria.
Temraleeva, A D; Dronova, S A; Moskalenko, S V; Didovich, S V
2016-07-01
Up-to-date methods for isolation of cyanobacteria from soil samples, removal of accompanying microflora, obtaining axenic strains, and -conditions and media for subsequnt cultivation are reviewed. Char acterization of soil as a specific habitat for cyanobacteria is provided. Comparative analysis of pH and ele- mental composition of the liquid phase of most soil types with the media for cultivating cyanobacteria is car- ried out. The functional role of the major components required for the cultivation of cyanobacteria is de- scribed. The problems associated with isolation, purification, and cultivation of soil cyanobacteria, as well as the relevant solutions, are discussed.
Resurreccion, Eleazer P; Colosi, Lisa M; White, Mark A; Clarens, Andres F
2012-12-01
Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nurmayani, S.; Sugiarti, Y.; Putra, R. H.
2016-04-01
Microalgae is one of biodiesel resources and call as third generation biofuel. Biodiesel is one alternative energy that being developed. So study about resource of biodiesel need a development, for the example is development the basic material such as microalgae. In this paper we explain the potential use of dairy waste from industry as a cultivation medium of microalgae for biodiesel production. Dairy waste from dairy industry contains 34.98% protein, 4.42% lactose, 9.77% fiber, 11.04% fat, 2.33% calcium, 1.05% phosfor, and 0.4 % magnesium, meaning that the dairy waste from dairy industry has a relatively high nutrient content and complete from a source of carbon, nitrogen and phosphorus as macro nutrients. The method in this paper is literature review to resulting a new conclusion about the potency of waste water from dairy industry as microalgae cultivation medium. Based on the study, the dairy waste from dairy industry has potency to be used as cultivation medium of Botryococcus braunii in the production of biodiesel, replacing the conventional cultivation medium.
[Dendrobium officinale stereoscopic cultivation method].
Si, Jin-Ping; Dong, Hong-Xiu; Liao, Xin-Yan; Zhu, Yu-Qiu; Li, Hui
2014-12-01
The study is aimed to make the most of available space of Dendrobium officinale cultivation facility, reveal the yield and functional components variation of stereoscopic cultivated D. officinale, and improve quality, yield and efficiency. The agronomic traits and yield variation of stereoscopic cultivated D. officinale were studied by operating field experiment. The content of polysaccharide and extractum were determined by using phenol-sulfuric acid method and 2010 edition of "Chinese Pharmacopoeia" Appendix X A. The results showed that the land utilization of stereoscopic cultivated D. officinale increased 2.74 times, the stems, leaves and their total fresh or dry weight in unit area of stereoscopic cultivated D. officinale were all heavier than those of the ground cultivated ones. There was no significant difference in polysaccharide content between stereoscopic cultivation and ground cultivation. But the extractum content and total content of polysaccharide and extractum were significantly higher than those of the ground cultivated ones. In additional, the polysaccharide content and total content of polysaccharide and extractum from the top two levels of stereoscopic culture matrix were significantly higher than that of the ones from the other levels and ground cultivation. Steroscopic cultivation can effectively improves the utilization of space and yield, while the total content of polysaccharides and extractum were significantly higher than that of the ground cultivated ones. The significant difference in Dendrobium polysaccharides among the plants from different height of stereo- scopic culture matrix may be associated with light factor.
Cejnar, Pavel; Kuckova, Stepanka; Prochazka, Ales; Karamonova, Ludmila; Svobodova, Barbora
2018-06-15
Explorative statistical analysis of mass spectrometry data is still a time-consuming step. We analyzed critical factors for application of principal component analysis (PCA) in mass spectrometry and focused on two whole spectrum based normalization techniques and their application in the analysis of registered peak data and, in comparison, in full spectrum data analysis. We used this technique to identify different metabolic patterns in the bacterial culture of Cronobacter sakazakii, an important foodborne pathogen. Two software utilities, the ms-alone, a python-based utility for mass spectrometry data preprocessing and peak extraction, and the multiMS-toolbox, an R software tool for advanced peak registration and detailed explorative statistical analysis, were implemented. The bacterial culture of Cronobacter sakazakii was cultivated on Enterobacter sakazakii Isolation Agar, Blood Agar Base and Tryptone Soya Agar for 24 h and 48 h and applied by the smear method on an Autoflex speed MALDI-TOF mass spectrometer. For three tested cultivation media only two different metabolic patterns of Cronobacter sakazakii were identified using PCA applied on data normalized by two different normalization techniques. Results from matched peak data and subsequent detailed full spectrum analysis identified only two different metabolic patterns - a cultivation on Enterobacter sakazakii Isolation Agar showed significant differences to the cultivation on the other two tested media. The metabolic patterns for all tested cultivation media also proved the dependence on cultivation time. Both whole spectrum based normalization techniques together with the full spectrum PCA allow identification of important discriminative factors in experiments with several variable condition factors avoiding any problems with improper identification of peaks or emphasis on bellow threshold peak data. The amounts of processed data remain still manageable. Both implemented software utilities are available free of charge from http://uprt.vscht.cz/ms. Copyright © 2018 John Wiley & Sons, Ltd.
Assessing the cleanliness of surfaces: Innovative molecular approaches vs. standard spore assays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, M.; Duc, M.T. La; Probst, A.
2011-04-01
A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarilymore » give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.« less
Preveena, Jagadesan; Bhore, Subhash J.
2013-01-01
Background: In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. Objective: The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Materials and Methods: Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Results: Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Conclusion: Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study. PMID:24501447
Huang, Ji; Long, Chunlin
2007-06-01
Coptis teeta (Ranunculaceae), is a nontimber forest product (NTFP) that only grows in northwest Yunnan and northeast India. Its tenuous rhizome, known as "Yunnan goldthread" in the traditional Chinese medicine system, has been used as an antibacterial and as an antiinflammatory medicine for a long time. The increasing demand has resulted in commercial harvesting pressure on wild populations that were already dwindling as a result of deforestation, and wild populations are at risk of extinction. Fortunately, there exists at least 2000 hectares of a C. teeta-based agroforestry system initiated by the Lisu people in Nujiang, northwest Yunnan. This cultivation supplies us with a valuable study case for the balance between conservation and sustainable use. This case study investigated the traditional management system and history of C. teeta in Nujiang through ethnobotanical methods and field investigation. We also contrasted initial costs, economic returns, and labor demands for C. teeta cultivation with other major land uses in the region. Compared with swidden agriculture, the major land-use type in the region, C. teeta cultivation offers high economic returns and low labor and initial costs; moreover, C. teeta cultivation does not interfere with subsistence agricultural duties. This agroforestry system reflected that the cultivation of NTFPs is a conservation strategy for maintaining forest diversity, while providing a stable economic return to local forest communities, and indicates how local people manage biodiversity effectively.
Analysis of Actinobacteria from mould-colonized water damaged building material.
Schäfer, Jenny; Jäckel, Udo; Kämpfer, Peter
2010-08-01
Mould-colonized water damaged building materials are frequently co-colonized by actinomycetes. Here, we report the results of the analyses of Actinobacteria on different wall materials from water damaged buildings obtained by both cultivation-dependent and cultivation-independent methods. Actinobacteria were detected in all but one of the investigated materials by both methods. The detected concentrations of Actinobacteria ranged between 1.8 x 10(4) and 7.6 x 10(7) CFUg(-1) of investigated material. A total of 265 isolates from 17 materials could be assigned to 31 different genera of the class Actinobacteria on the basis of 16S rRNA gene sequence analyses. On the basis of the cultivation-independent approach, 16S rRNA gene inserts of 800 clones (50%) were assigned to 47 different genera. Representatives of the genera Streptomyces, Amycolatopsis, Nocardiopsis, Saccharopolyspora, Promicromonospora, and Pseudonocardia were found most frequently. The results derived from both methods indicated a high abundance and variety of Actinobacteria in water damaged buildings. Four bioaerosol samples were investigated by the cultivation-based approach in order to compare the communities of Actinobacteria in building material and associated air samples. A comparison of the detected genera of bioaerosol samples with those directly obtained from material samples resulted in a congruent finding of 9 of the overall 35 detected genera (25%), whereas four genera were only detected in bioaerosol samples. Copyright 2010 Elsevier GmbH. All rights reserved.
The Profile Quality of Pond In Kendal Regency to Diversification Aquaculture
NASA Astrophysics Data System (ADS)
Ayuniar, Ligar Novi; Hidayat, Jafron Wasiq
2018-02-01
Water quality, particularly coastal areas, is systematically tropogenic. The decline in water quality is caused by industrial waste pollution, soil erosion carried by the river, and the depletion of mangrove areas. The decrease of water quality can affect the fishery cultivation activities that exist in the region. It also affects the quality of the cultivated fish. Fish cultivated in ponds with poor water quality can be harmful to the health of the people who consume the fish. One effort to manage the feasibility of pond waters is by identifying the quality. The purpose of this research is to know the profile of pond water quality and to know the diversity potential of aquaculture. Based on the nature of the problem this research is a field research, while the purpose of this study is descriptive and explanatory research. The method used in this research is research by using survey method. Aquatic profile results are essential to improve the quality and quantity of Fisheries, especially in diversifying fisheries.
Yang, Yan-Mei; Lin, Li; Lu, You-Yuan; Ma, Xiao-Hui; Jin, Ling; Zhu, Tian-Tian
2016-03-01
The study is aimed to analyze the commercial specifications and grades of wild and cultivated Gentianae Macrophllae Radix based on multi-indicative constituents. The seven kinds of main chemical components containing in Gentianae Macrophyllae Radix were determined by UPLC, and then the quality levels of chemical component of Gentianae Macrophyllae Radix were clustered and classified by modern statistical methods (canonical correspondence analysis, Fisher discriminant analysis and so on). The quality indices were selected and their correlations were analyzed. Lastly, comprehensively quantitative grade division for quality under different commodity-specifications and different grades of same commodity-specifications of wild and planting were divided. The results provide a basis for a reasonable division of specification and grade of the commodity of Gentianae Macrophyllae Radix. The range of quality evaluation of main index components (gentiopicrin, loganin acid and swertiamarin) was proposed, and the Herbal Quality Index (HQI) was introduced. The rank discriminant function was established based on the quality by Fisher discriminant analysis. According to the analysis, the quality of wild and cultivated Luobojiao, one of the commercial specification of Gentianae Macrophyllae Radix was the best, Mahuajiao, the other commercial specification, was average , Xiaoqinjiao was inferior. Among grades, the quality of first-class cultivated Luobojiao was the worst, of second class secondary, and the third class the best; The quality of the first-class of wild Luobojiao was secondary, and the second-class the best; The quality of the second-class of Mahuajiao was secondary, and the first-class was the best; the quality of first-class Xiaoqinjiao was secondary, and the second-class was the better one between the two grades, but not obvious significantly. The method provides a new idea and method for evaluation of comprehensively quantitative on the quality of Gentianae Macrophyllae Radix. Copyright© by the Chinese Pharmaceutical Association.
Lee, Sang-Hyo; Lee, Ju Eun; Kim, Yoori; Lee, Seung-Yop
2016-01-01
Phycocyanin is a photosynthetic pigment found in photosynthetic cyanobacteria, cryptophytes, and red algae. In general, production of phycocyanin depends mainly on the light conditions during the cultivation period, and purification of phycocyanin requires expensive and complex procedures. In this study, we propose a new two-stage cultivation method to maximize the quantitative content and purity of phycocyanin obtained from Spirulina platensis using red and blue light-emitting diodes (LEDs) under different light intensities. In the first stage, Spirulina was cultured under a combination of red and blue LEDs to obtain the fast growth rate until reaching an absorbance of 1.4-1.6 at 680 nm. Next, blue LEDs were used to enhance the concentration and purity of the phycocyanin in Spirulina. Two weeks of the two-stage cultivation of Spirulina yielded 1.28 mg mL(-1) phycocyanin with the purity of 2.7 (OD620/OD280).
Hollow-Fiber Membrane Chamber as a Device for In Situ Environmental Cultivation▿
Aoi, Yoshiteru; Kinoshita, Tomoyuki; Hata, Toru; Ohta, Hiroaki; Obokata, Haruko; Tsuneda, Satoshi
2009-01-01
A hollow-fiber membrane chamber (HFMC) was developed as an in situ cultivation device for environmental microorganisms. The HFMC system consists of 48 to 96 pieces of porous hollow-fiber membrane connected with injectors. The system allows rapid exchange of chemical compounds, thereby simulating a natural environment. Comparative analysis through the cultivation of three types of environmental samples was performed using this newly designed device and a conventional agar-based petri dish. The results show that the ratios of novel phylotypes in isolates, species-level diversities, and cultivabilities in HFMC-based cultivation are higher than those in an agar-based petri dish for all three samples, suggesting that the new in situ cultivation device is effective for cultivation of various environmental microorganisms. PMID:19329655
Cultivation of Marine Sponges.
Osinga; Tramper; Wijffels
1999-11-01
There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly influence culture success are evaluated. In situ sponge aquacultures, based on old methods for producing commercial bath sponges, are still the easiest and least expensive way to obtain sponge biomass in bulk. However, success of cultivation with this method strongly depends on the unpredictable and often suboptimal natural environment. Hence, a better-defined production system would be desirable. Some progress has been made with culturing sponges in semicontrolled systems, but these still use unfiltered natural seawater. Cultivation of sponges under completely controlled conditions has remained a problem. When designing an in vitro cultivation method, it is important to determine both qualitatively and quantitatively the nutritional demands of the species that is to be cultured. An adequate supply of food seems to be the key to successful sponge culture. Recently, some progress has been made with sponge cell cultures. The advantage of cell cultures is that they are completely controlled and can easily be manipulated for optimal production of the target metabolites. However, this technique is still in its infancy: a continuous cell line has yet to be established. Axenic cultures of sponge aggregates (primmorphs) may provide an alternative to cell culture. Some sponge metabolites are, in fact, produced by endosymbiotic bacteria or algae that live in the sponge tissue. Only a few of these endosymbionts have been cultivated so far. The biotechnology for the production of sponge metabolites needs further development. Research efforts should be continued to enable commercial exploitation of this valuable natural resource in the near future.
Junker, Astrid; Muraya, Moses M.; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Klukas, Christian; Melchinger, Albrecht E.; Meyer, Rhonda C.; Riewe, David; Altmann, Thomas
2015-01-01
Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time. Compared to small scale plant cultivations, HT systems have much higher demands, from a conceptual and a logistic point of view, on experimental design, as well as the actual plant cultivation conditions, and the image analysis and statistical methods for data evaluation. Furthermore, cultivation conditions need to be designed that elicit plant performance characteristics corresponding to those under natural conditions. This manuscript describes critical steps in the optimization of procedures for HT plant phenotyping systems. Starting with the model plant Arabidopsis, HT-compatible methods were tested, and optimized with regard to growth substrate, soil coverage, watering regime, experimental design (considering environmental inhomogeneities) in automated plant cultivation and imaging systems. As revealed by metabolite profiling, plant movement did not affect the plants' physiological status. Based on these results, procedures for maize HT cultivation and monitoring were established. Variation of maize vegetative growth in the HT phenotyping system did match well with that observed in the field. The presented results outline important issues to be considered in the design of HT phenotyping experiments for model and crop plants. It thereby provides guidelines for the setup of HT experimental procedures, which are required for the generation of reliable and reproducible data of phenotypic variation for a broad range of applications. PMID:25653655
Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study.
Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Cheng, Sibo; Mu, Dongyan; Liu, Yuhuan; Ding, Rijia; Chen, Paul; Ruan, Roger
2016-07-01
Combining algae cultivation and wastewater treatment for biofuel production is considered the feasible way for resource utilization. An updated comprehensive techno-economic analysis method that integrates resources availability into techno-economic analysis was employed to evaluate the wastewater-based algal biofuel production with the consideration of wastewater treatment improvement, greenhouse gases emissions, biofuel production costs, and coproduct utilization. An innovative approach consisting of microalgae cultivation on centrate wastewater, microalgae harvest through flocculation, solar drying of biomass, pyrolysis of biomass to bio-oil, and utilization of co-products, was analyzed and shown to yield profound positive results in comparison with others. The estimated break even selling price of biofuel ($2.23/gallon) is very close to the acceptable level. The approach would have better overall benefits and the internal rate of return would increase up to 18.7% if three critical components, namely cultivation, harvest, and downstream conversion could achieve breakthroughs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reyes, Teija; Quiroz, Roberto; Msikula, Shija
2005-11-01
The East Usambara Mountains, recognized as one of the 25 most important biodiversity hot spots in the world, have a high degree of species diversity and endemism that is threatened by increasing human pressure on resources. Traditional slash and burn cultivation in the area is no longer sustainable. However, it is possible to maintain land productivity, decrease land degradation, and improve rural people's livelihood by ameliorating cultivation methods. Improved agroforestry seems to be a very convincing and suitable method for buffer zones of conservation areas. Farmers could receive a reasonable net income from their farm with little investment in terms of time, capital, and labor. By increasing the diversity and production of already existing cultivations, the pressure on natural forests can be diminished. The present study shows a significant gap between traditional cultivation methods and improved agroforestry systems in socio-economic terms. Improved agroforestry systems provide approximately double income per capita in comparison to traditional methods. More intensified cash crop cultivation in the highlands of the East Usambara also results in double income compared to that in the lowlands. However, people are sensitive to risks of changing farming practices. Encouraging farmers to apply better land management and practice sustainable cultivation of cash crops in combination with multipurpose trees would be relevant in improving their economic situation in the relatively short term. The markets of most cash crops are already available. Improved agroforestry methods could ameliorate the living conditions of the local population and protect the natural reserves from human disturbance.
Scalable cultivation of human pluripotent stem cells on chemically-defined surfaces
NASA Astrophysics Data System (ADS)
Hsiung, Michael Chi-Wei
Human stem cells (SCs) are classified as self-renewing cells possessing great ability in therapeutic applications due of their ability to differentiate along any major cell lineage in the human body. Despite their restorative potential, widespread use of SCs is hampered by strenuous control issues. Along with the need for strict xeno-free environments to sustain growth in culture, current methods for growing human pluripotent stem cells (hPSCs) rely on platforms which impede large-scale cultivation and therapeutic delivery. Hence, any progress towards development of large-scale culture systems is severely hindered. In a concentrated effort to develop a scheme that can serve as a model precursor for large scale SC propagation in clinical use, we have explored methods for cultivating hPSCs on completely defined surfaces. We discuss novel approaches with the potential to go beyond the limitations presented by current methods. In particular, we studied the cultivation of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) on surface which underwent synthetic or chemical modification. Current methods for hPSCs rely on animal-based extracellular matrices (ECMs) such as mouse embryonic fibroblasts (MEFs) or feeders and murine sacoma cell-derived substrates to facilitate their growth. While these layers or coatings can be used to maximize the output of hPSC production, they cannot be considered for clinical use because they risk introducing foreign pathogens into culture. We have identified and developed conditions for a completely defined xeno-free substrate used for culturing hPSCs. By utilizing coupling chemistry, we can functionalize ester groups on a given surface and conjugate synthetic peptides containing the arginine-glycine-aspartic acid (RGD) motif, known for their role in cell adhesion. This method offers advantages over traditional hPSC culture by keeping the modified substrata free of xenogenic response and can be scaled up in adherent microcarrier culture. To treat a major organ such as the heart or kidney, producing large quantities of clinical-grade pluripotent cells is a necessity for cell-based therapy. Here we apply our approach to spherical beads or microcarriers for large-scale cultivation of hPSCs in a stirred-suspension bioreactor. Stem cells seeded on microcarriers and cultivated for multiple six day passages in a stirred-suspension bioreactors remained viable (≥90%) and increased by an average of 25.0+/-7.2-fold in concentration. The cells maintained their expression of pluripotency markers POU5F1 and NANOG as assessed by RT-PCR and quantitative PCR. These findings aim at the development of a flexible cost-effect method for the generation of pluripotent cells which can be repurposed and utilized for cell therapies. This work also aims to promote exploration into different methods of surface modification to develop new tactics for culturing hPSCs that can achieve higher fold growth while maintaining overall therapeutic potential.
Mapping soil total nitrogen of cultivated land at county scale by using hyperspectral image
NASA Astrophysics Data System (ADS)
Gu, Xiaohe; Zhang, Li Yan; Shu, Meiyan; Yang, Guijun
2018-02-01
Monitoring total nitrogen content (TNC) in the soil of cultivated land quantitively and mastering its spatial distribution are helpful for crop growing, soil fertility adjustment and sustainable development of agriculture. The study aimed to develop a universal method to map total nitrogen content in soil of cultivated land by HSI image at county scale. Several mathematical transformations were used to improve the expression ability of HSI image. The correlations between soil TNC and the reflectivity and its mathematical transformations were analyzed. Then the susceptible bands and its transformations were screened to develop the optimizing model of map soil TNC in the Anping County based on the method of multiple linear regression. Results showed that the bands of 14th, 16th, 19th, 37th and 60th with different mathematical transformations were screened as susceptible bands. Differential transformation was helpful for reducing the noise interference to the diagnosis ability of the target spectrum. The determination coefficient of the first order differential of logarithmic transformation was biggest (0.505), while the RMSE was lowest. The study confirmed the first order differential of logarithm transformation as the optimal inversion model for soil TNC, which was used to map soil TNC of cultivated land in the study area.
NASA Astrophysics Data System (ADS)
Rostika, Rita; Purba, Noir P.; Iskandar; Paradhita Dewanti, Lantun; Mahdiana Apriliani, Izza
2018-05-01
With a coastline length of 114 km, the utilization of the coastline areas is potential for especially shrimp and milkfish cultivations, which have a higher economic value. However, appropriate development strategies are highly required. The purpose of this research is to examine the existing conditions and organize integrated information for fishery household as well as the areas utilized for shrimp and milkfish cultivations, especially in coastal areas. The methods used include an analysis from Landsat 8 imaginary, field survey, and interviews with various sources. This research conducted in June-November 2015. Data from remote sensing were digitized and utilized as mark point to survey area of cultivation. The results show that the distributions of RTP data cover Windu and Vaname shrimp polycultures by 1,727 RTP, milkfish by 1,551 RTP, Vaname shrimp by 2,953 RTP, and Windu Shrimp by 88 RTP. The area, which may be utilized as ponds, is 9,854.1 ha. The area for milkfish ponds is 12,065.08 ha, while the digitation result is 10,801.92 ha. It shows that Indramayu coastal areas still have numerous and various potentials, which may be utilized for shrimp and milkfish cultivations.
Objective, Way and Method of Faculty Management Based on Ergonomics
ERIC Educational Resources Information Center
WANG, Hong-bin; Liu, Yu-hua
2008-01-01
The core problem that influences educational quality of talents in colleges and universities is the faculty management. Without advanced faculty, it is difficult to cultivate excellent talents. With regard to some problems in present faculty construction of colleges and universities, this paper puts forward the new objectives, ways and methods of…
Analyses on Regional Cultivated Land Changebased on Quantitative Method
NASA Astrophysics Data System (ADS)
Cao, Yingui; Yuan, Chun; Zhou, Wei; Wang, Jing
Three Gorges Project is the great project in the world, which accelerates economic development in the reservoir area of Three Gorges Project. In the process of development in the reservoir area of Three Gorges Project, cultivated land has become the important resources, a lot of cultivated land has been occupied and become the constructing land. In the same time, a lot of cultivated land has been flooded because of the rising of the water level. This paper uses the cultivated land areas and social economic indicators of reservoir area of Three Gorges in 1990-2004, takes the statistic analyses and example research in order to analyze the process of cultivated land, get the driving forces of cultivated land change, find the new methods to stimulate and forecast the cultivated land areas in the future, and serve for the cultivated land protection and successive development in reservoir area of Three Gorges. The results indicate as follow, firstly, in the past 15 years, the cultivated land areas has decreased 200142 hm2, the decreasing quantity per year is 13343 hm2. The whole reservoir area is divided into three different areas, they are upper reaches area, belly area and lower reaches area. The trends of cultivated land change in different reservoir areas are similar to the whole reservoir area. Secondly, the curve of cultivated land areas and per capita GDP takes on the reverse U, and the steps between the change rate of cultivated land and the change rate of GDP are different in some years, which indicates that change of cultivated land and change of GDP are decoupling, besides that, change of cultivated land is connection with the development of urbanization and the policy of returning forestry greatly. Lastly, the precision of multi-regression is lower than the BP neural network in the stimulation of cultivated land, then takes use of the BP neural network to forecast the cultivated land areas in 2005, 2010 and 2015, and the forecasting results are reasonable.
Shima, N; Xiao, L Z; Sakuramoto, F; Ichikawa, S
1997-12-12
The use of young inflorescence-bearing shoots with roots of Tradescantia clone BNL 4430 cultivated in a nutrient solution circulating (NSC) growth chamber was tested and developed as an alternative method for using Tradescantia plants in mutagenicity testings. The NSC growth chamber was designed for our requirements, based on trial cultivations of the shoots with roots in its smaller-sized prototype. The nutrient solution used was a 1/2500 Hyponex solution. The characteristics of this clone, i.e., many new shoots constantly emerging from the basal nodes one after another and its short height favorable for early flowering, made it possible to prepare many young inflorescence-bearing shoots with roots at one time. A simplified NSC cultivation system could also be developed at a lower cost, and by using it together with the NSC growth chamber, recycling of untreated materials was established for supplying steadily enough amounts of young inflorescence-bearing shoots with roots for mutagenicity testings. Compared with traditional methods of using potted plants or cuttings, the new method exhibited more stable flower production, better stamen-hair growth and a significantly lower spontaneous (background) mutation frequency, and could produce more inflorescences per space. The use of such young inflorescence-bearing shoots with roots was therefore judged to be satisfactory to serve as a new mutagenicity test system alternating with potted plants and cuttings.
NASA Astrophysics Data System (ADS)
Parviainen, Ville; Joenväärä, Sakari; Peltoniemi, Hannu; Mattila, Pirkko; Renkonen, Risto
2009-04-01
Mass spectrometry-based proteomic research has become one of the main methods in protein-protein interaction research. Several high throughput studies have established an interaction landscape of exponentially growing Baker's yeast culture. However, many of the protein-protein interactions are likely to change in different environmental conditions. In order to examine the dynamic nature of the protein interactions we isolated the protein complexes of mannose-1-phosphate guanyltransferase PSA1 from Saccharomyces cerevisiae at four different time points during batch cultivation. We used the tandem affinity purification (TAP)-method to purify the complexes and subjected the tryptic peptides to LC-MS/MS. The resulting peak lists were analyzed with two different methods: the database related protein identification program X!Tandem and the de novo sequencing program Lutefisk. We observed significant changes in the interactome of PSA1 during the batch cultivation and identified altogether 74 proteins interacting with PSA1 of which only six were found to interact during all time points. All the other proteins showed a more dynamic nature of binding activity. In this study we also demonstrate the benefit of using both database related and de novo methods in the protein interaction research to enhance both the quality and the quantity of observations.
Shigematsu, Toru; Ueno, Shigeaki; Tsuchida, Yasuharu; Hayashi, Mayumi; Okonogi, Hiroko; Masaki, Haruhiko; Fujii, Tomoyuki
2007-12-01
Bacterial counts under liquid cultivation using 96-well microplates were performed. The counts under liquid and under solid cultivation were equivalent in foods, although the counts under liquid cultivation exceeded those under solid cultivation in seawater, suggesting that some bacteria in seawater were viable but did not form detectable colonies. Phylogenetic analysis of bacteria obtained under liquid cultivation was also performed.
Reconstructing each cell's genome within complex microbial communities-dream or reality?
Clingenpeel, Scott; Clum, Alicia; Schwientek, Patrick; Rinke, Christian; Woyke, Tanja
2014-01-01
As the vast majority of microorganisms have yet to be cultivated in a laboratory setting, access to their genetic makeup has largely been limited to cultivation-independent methods. These methods, namely metagenomics and more recently single-cell genomics, have become cornerstones for microbial ecology and environmental microbiology. One ultimate goal is the recovery of genome sequences from each cell within an environment to move toward a better understanding of community metabolic potential and to provide substrate for experimental work. As single-cell sequencing has the ability to decipher all sequence information contained in an individual cell, this method holds great promise in tackling such challenge. Methodological limitations and inherent biases however do exist, which will be discussed here based on environmental and benchmark data, to assess how far we are from reaching this goal.
Yu, Chunhao; Wang, Chong-Zhi; Zhou, Chun-Jie; Wang, Bin; Han, Lide; Zhang, Chun-Feng; Wu, Xiao-Hui; Yuan, Chun-Su
2014-01-01
American ginseng (Panax quinquefolius) is originally grown in North America. Due to price difference and supply shortage, American ginseng recently has been cultivated in northern China. Further, in the market, some Asian ginsengs are labeled as American ginseng. In this study, forty-three American ginseng samples cultivated in the USA, Canada or China were collected and 14 ginseng saponins were determined using HPLC. HPLC coupled with hierarchical cluster analysis and principal component analysis was developed to identify the species. Subsequently, an HPLC-linear discriminant analysis was established to discriminate cultivation regions of American ginseng. This method was successfully applied to identify the sources of 6 commercial American ginseng samples. Two of them were identified as Asian ginseng, while 4 others were identified as American ginseng, which were cultivated in the USA (3) and China (1). Our newly developed method can be used to identify American ginseng with different cultivation regions. PMID:25044150
Efficacy of Group Based Learning in Learning Moral Value
ERIC Educational Resources Information Center
Singaravelu, G.
2008-01-01
The present study highlights the efficacy of Group Based Learning on cultivating moral value of the students at Standard VIII. Parallel group Experimental method was adopted in the study. Eighty students (control group = 40 students + experimental = 40 students) were selected as sample for the study. Researcher self-made achievement tool was…
Selective cultivation and rapid detection of Staphylococcus aureus by computer vision.
Wang, Yong; Yin, Yongguang; Zhang, Chaonan
2014-03-01
In this paper, we developed a selective growth medium and a more rapid detection method based on computer vision for selective isolation and identification of Staphylococcus aureus from foods. The selective medium consisted of tryptic soy broth basal medium, 3 inhibitors (NaCl, K2 TeO3 , and phenethyl alcohol), and 2 accelerators (sodium pyruvate and glycine). After 4 h of selective cultivation, bacterial detection was accomplished using computer vision. The total analysis time was 5 h. Compared to the Baird-Parker plate count method, which requires 4 to 5 d, this new detection method offers great time savings. Moreover, our novel method had a correlation coefficient of greater than 0.998 when compared with the Baird-Parker plate count method. The detection range for S. aureus was 10 to 10(7) CFU/mL. Our new, rapid detection method for microorganisms in foods has great potential for routine food safety control and microbiological detection applications. © 2014 Institute of Food Technologists®
Garavito, Andrea; Montagnon, Christophe; Guyot, Romain; Bertrand, Benoît
2016-11-04
The coffee species Coffea canephora is commercially identified as "Conilon" when produced in Brazil, or "Robusta" when produced elsewhere in the world. It represents approximately 40 % of coffee production worldwide. While the genetic diversity of wild C. canephora has been well studied in the past, only few studies have addressed the genetic diversity of currently cultivated varieties around the globe. Vietnam is the largest Robusta producer in the world, while Mexico is the only Latin American country, besides Brazil, that has a significant Robusta production. Knowledge of the genetic origin of Robusta cultivated varieties in countries as important as Vietnam and Mexico is therefore of high interest. Through the use of Sequencing-based diversity array technology-DArTseq method-on a collection of C. canephora composed of known accessions and accessions cultivated in Vietnam and Mexico, 4,021 polymorphic SNPs were identified. We used a multivariate analysis using SNP data from reference accessions in order to confirm and further fine-tune the genetic diversity of C. canephora. Also, by interpolating the data obtained for the varieties from Vietnam and Mexico, we determined that they are closely related to each other, and identified that their genetic origin is the Robusta Congo - Uganda group. The genetic characterization based on SNP markers of the varieties grown throughout the world, increased our knowledge on the genetic diversity of C. canephora, and contributed to the understanding of the genetic background of varieties from very important coffee producers. Given the common genetic origin of the Robusta varieties cultivated in Vietnam, Mexico and Uganda, and the similar characteristics of climatic areas and relatively high altitude where they are grown, we can state that the Vietnamese and the Mexican Robusta have the same genetic potential to produce good cup quality.
Stetter, Markus G; Schmid, Karl J
2017-04-01
The genus Amaranthus consists of 50-70 species and harbors several cultivated and weedy species of great economic importance. A small number of suitable traits, phenotypic plasticity, gene flow and hybridization made it difficult to establish the taxonomy and phylogeny of the whole genus despite various studies using molecular markers. We inferred the phylogeny of the Amaranthus genus using genotyping by sequencing (GBS) of 94 genebank accessions representing 35 Amaranthus species and measured their genome sizes. SNPs were called by de novo and reference-based methods, for which we used the distant sugarbeet Beta vulgaris and the closely related Amaranthus hypochondriacus as references. SNP counts and proportions of missing data differed between methods, but the resulting phylogenetic trees were highly similar. A distance-based neighbor joining tree of individual accessions and a species tree calculated with the multispecies coalescent supported a previous taxonomic classification into three subgenera although the subgenus A. Acnida consists of two highly differentiated clades. The analysis of the Hybridus complex within the A. Amaranthus subgenus revealed insights on the history of cultivated grain amaranths. The complex includes the three cultivated grain amaranths and their wild relatives and was well separated from other species in the subgenus. Wild and cultivated amaranth accessions did not differentiate according to the species assignment but clustered by their geographic origin from South and Central America. Different geographically separated populations of Amaranthus hybridus appear to be the common ancestors of the three cultivated grain species and A. quitensis might be additionally be involved in the evolution of South American grain amaranth (A. caudatus). We also measured genome sizes of the species and observed little variation with the exception of two lineages that showed evidence for a recent polyploidization. With the exception of two lineages, genome sizes are quite similar and indicate that polyploidization did not play a major role in the history of the genus. Copyright © 2016 Elsevier Inc. All rights reserved.
Adaptability and stability of soybean genotypes in off-season cultivation.
Batista, R O; Hamawaki, R L; Sousa, L B; Nogueira, A P O; Hamawaki, O T
2015-08-14
The oil and protein contents of soybean grains are important quantitative traits for use in breeding. However, few breeding programs perform selection based on these traits in different environments. This study assessed the adaptability and stability of 14 elite early soybean breeding lines in off-season cultivation with respect to yield, and oil and protein contents. A range of statistical methods was applied and these analyses indicated that for off-season cultivation, the lines UFUS 5 and UFUS 10 could be recommended due to their superior performance in grain yield, oil content, and specific adaptability to unfavorable environments along with high stability in these characteristics. Also recommended were UFUS 06, which demonstrated superior performance in all three tested characteristics and showed adaptation to favorable environments, and UFUS 13, which showed high adaptability and stability and a superior performance for protein content.
Design of an SolidWorks-based household substrate cultivation device
NASA Astrophysics Data System (ADS)
Yi, Guo; Yueying, Wang
2018-03-01
Rapid urbanization has caused increasingly severe environmental problems and smaller tillable land area. Even worse, negative reports on vegetable production are repeatedly found. In this case, home gardening has become an inexorable trend. To meet demand for vegetable cultivation in the home environment, an SolidWorks-based household substrate cultivation device has been designed. This device is composed of the cultivation tank, upright post, base, irrigation system, supplemental lighting system and control system. The household substrate cultivation device manufactured based on the design results has shown in practice that this device features an esthetic appearance, low cost, automatic irrigation and lighting supplementation, good vegetable growing conditions, full of ornamental value and practicability and thus is suitable for vegetable growing in the home environment. Hence it has a higher promotion value in the home gardening field.
ERIC Educational Resources Information Center
Jing,Lei; Cheng, Zixue; Wang, Junbo; Zhou, Yinghui
2011-01-01
Embedded system technologies are undergoing dramatic change. Competent embedded system engineers are becoming a scarce resource in the industry. Given this, universities should revise their specialist education to meet industry demands. In this paper, a spirally tight-coupled step-by-step educational method, based on an analysis of industry…
ERIC Educational Resources Information Center
Sunarto, M. J. Dewiyani; Sagirani, Tri
2014-01-01
"The rise of Indonesia Golden Generation" is the theme of National Education Day in 2012. In an effort to create a golden generation; education must be interpreted as a complex problem, in particular the cultivation of character education that was originally using indoctrination method. Given the shifting of the changing times,…
Picone, Gianfranco; Trimigno, Alessia; Tessarin, Paola; Donnini, Silvia; Rombolà, Adamo Domenico; Capozzi, Francesco
2016-12-15
The increasing demand for natural foods and beverages, i.e. prepared by excluding synthetic chemicals along the whole production chain, has boosted the adoption of organic and biodynamic cultivation methods which are based on protocols avoiding use of synthetic pesticides. This trend is striking in viticulture, since wine production is largely shaped by the varying drinking attitudes of environment-friendly consumers. Using (1)H NMR, the compositions of grape berries, collected at harvest in 2009 and 2011, in experimental plots cultivated either with biodynamic or organic methods, were compared. Although the analysis provides a comprehensive metabolic profile of berries, the resulting distinctive pattern consists of a few molecules. Lower content of sugars, coumaric and caffeic acids, as well as higher amount of γ-aminobutyric acid (GABA) were observed in biodynamic grapes. The (1)H NMR foodomics approach evidenced a diverse fruit metabolome that could be associated to a different physiological response of plants to the agronomic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bäcker, Anne; Erhardt, Olga; Wietbrock, Lukas; Schel, Natalia; Göppert, Bettina; Dirschka, Marian; Abaffy, Paul; Sollich, Thomas; Cecilia, Angelica; Gruhl, Friederike J
2017-02-01
In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze-drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition. The new composite scaffold with SSP1 showed an increased swelling degree and soft tissue like elastic properties. Whereas, in vitro cultivation of LNCaP cells demonstrated an increased growth behavior and spheroid formation within chitosan blended scaffolds based on its remarkable porosity, which supports nutrient supply matrix. Results of this study suggest that silk fibroin matrices are sufficient and certain SF composite scaffolds even improve 3D cell cultivation for prostate cancer research compared to matrices based on pure biomaterials or synthetic polymers. © 2016 Wiley Periodicals, Inc.
Rudi, Knut; Flateland, Signe L; Hanssen, Jon Fredrik; Bengtsson, Gunnar; Nissen, Hilde
2002-03-01
There is a clear need for new approaches in the field of microbial community analyses, since the methods used can be severely biased. We have developed a DNA array-based method that targets 16S ribosomal DNA (rDNA), enabling the direct detection and quantification of microorganisms from complex communities without cultivation. The approach is based on the construction of specific probes from the 16S rDNA sequence data retrieved directly from the communities. The specificity of the assay is obtained through a combination of DNA array hybridization and enzymatic labeling of the constructed probes. Cultivation-dependent assays (enrichment and plating) and cultivation-independent assays (direct fluorescence microscopy and scanning electron microscopy) were used as reference methods in the development and evaluation of the method. The description of microbial communities in ready-to-eat vegetable salads in a modified atmosphere was used as the experimental model. Comparisons were made with respect to the effect of storage at different temperatures for up to 12 days and with respect to the geographic origin of the crisphead lettuce (Spanish or Norwegian), the main salad component. The conclusion drawn from the method comparison was that the DNA array-based method gave an accurate description of the microbial communities. Pseudomonas spp. dominated both of the salad batches, containing either Norwegian or Spanish lettuce, before storage and after storage at 4 degrees C. The Pseudomonas population also dominated the batch containing Norwegian lettuce after storage at 10 degrees C. On the contrary, Enterobacteriaceae and lactic acid bacteria dominated the microbial community of the batch containing Spanish lettuce after storage at 10 degrees C. In that batch, the Enterobacteriaceae also were abundant after storage at 4 degrees C as well as before storage. The practical implications of these results are that microbial communities in ready-to-eat vegetable salads can be diverse and that microbial composition is dependent both on the origin of the raw material and on the storage conditions.
Rudi, Knut; Flateland, Signe L.; Hanssen, Jon Fredrik; Bengtsson, Gunnar; Nissen, Hilde
2002-01-01
There is a clear need for new approaches in the field of microbial community analyses, since the methods used can be severely biased. We have developed a DNA array-based method that targets16S ribosomal DNA (rDNA), enabling the direct detection and quantification of microorganisms from complex communities without cultivation. The approach is based on the construction of specific probes from the 16S rDNA sequence data retrieved directly from the communities. The specificity of the assay is obtained through a combination of DNA array hybridization and enzymatic labeling of the constructed probes. Cultivation-dependent assays (enrichment and plating) and cultivation-independent assays (direct fluorescence microscopy and scanning electron microscopy) were used as reference methods in the development and evaluation of the method. The description of microbial communities in ready-to-eat vegetable salads in a modified atmosphere was used as the experimental model. Comparisons were made with respect to the effect of storage at different temperatures for up to 12 days and with respect to the geographic origin of the crisphead lettuce (Spanish or Norwegian), the main salad component. The conclusion drawn from the method comparison was that the DNA array-based method gave an accurate description of the microbial communities. Pseudomonas spp. dominated both of the salad batches, containing either Norwegian or Spanish lettuce, before storage and after storage at 4°C. The Pseudomonas population also dominated the batch containing Norwegian lettuce after storage at 10°C. On the contrary, Enterobacteriaceae and lactic acid bacteria dominated the microbial community of the batch containing Spanish lettuce after storage at 10°C. In that batch, the Enterobacteriaceae also were abundant after storage at 4°C as well as before storage. The practical implications of these results are that microbial communities in ready-to-eat vegetable salads can be diverse and that microbial composition is dependent both on the origin of the raw material and on the storage conditions. PMID:11872462
Zang, Emerson; Brandes, Susanne; Tovar, Miguel; Martin, Karin; Mech, Franziska; Horbert, Peter; Henkel, Thomas; Figge, Marc Thilo; Roth, Martin
2013-09-21
The majority of today's antimicrobial therapeutics is derived from secondary metabolites produced by Actinobacteria. While it is generally assumed that less than 1% of Actinobacteria species from soil habitats have been cultivated so far, classic screening approaches fail to supply new substances, often due to limited throughput and frequent rediscovery of already known strains. To overcome these restrictions, we implement high-throughput cultivation of soil-derived Actinobacteria in microfluidic pL-droplets by generating more than 600,000 pure cultures per hour from a spore suspension that can subsequently be incubated for days to weeks. Moreover, we introduce triggered imaging with real-time image-based droplet classification as a novel universal method for pL-droplet sorting. Growth-dependent droplet sorting at frequencies above 100 Hz is performed for label-free enrichment and extraction of microcultures. The combination of both cultivation of Actinobacteria in pL-droplets and real-time detection of growing Actinobacteria has great potential in screening for yet unknown species as well as their undiscovered natural products.
A global view of shifting cultivation: Recent, current, and future extent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinimann, Andreas; Mertz, Ole; Frolking, Steve
Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing-based land cover and land use classifications, as these are unable to adequately capture such landscapes' dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation atmore » a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21 st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation$-$the majority in the Americas (41%) and Africa (37%)$-$this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and resilience among people currently depending on shifting cultivation.« less
A global view of shifting cultivation: Recent, current, and future extent
Heinimann, Andreas; Mertz, Ole; Frolking, Steve; ...
2017-09-08
Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing-based land cover and land use classifications, as these are unable to adequately capture such landscapes' dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation atmore » a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21 st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation$-$the majority in the Americas (41%) and Africa (37%)$-$this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and resilience among people currently depending on shifting cultivation.« less
Cultivating Life Skills at a Project-Based Charter School
ERIC Educational Resources Information Center
Wurdinger, Scott; Enloe, Walter
2011-01-01
Surveys that focused on academic and life skill development were collected from alumni who attended Avalon Charter School in St Paul, Minnesota. Avalon is a small public charter school that uses project-based learning as their primary teaching method. Forty-two alumni responded to the online survey. Students ranked life skills such as creativity,…
Schwendner, Petra; Moissl-Eichinger, Christine; Barczyk, Simon; Bohmeier, Maria; Pukall, Rüdiger; Rettberg, Petra
2013-12-01
In this study, samples from the spacecraft assembly clean room BAF (final assembly building), located at Centre Spatial Guyanais in Kourou, French Guiana, were characterized by qualitative and quantitative methods to determine the bioburden and biodiversity. The cultivation assays mainly focused on extremotolerant microorganisms that have special metabolic skills, such as the ability to grow without oxygen, fix nitrogen, grow autotrophically, or reduce sulfate. A broad range of media and growth conditions were used to simulate possible extraterrestrial environments and clean room buildings. In addition to these alternative cultivation assays, the ESA standard protocol for bioburden estimation was also applied. The phylogenetic analysis of the isolates (mainly facultative anaerobes) showed an extraordinarily broad cultivable biodiversity. Overall, 49 species were isolated and identified as members of the bacterial phyla Actinobacteria, Firmicutes, α-, β-, γ-Proteobacteria, and Bacteroidetes/Chlorobi. In addition to cultivation-based analyses, molecular techniques were also applied, including construction of a 16S rRNA gene clone library. The results indicate a wide-ranging microbial diversity (12 bacterial phyla, 34 families) that not only confirms the results of the cultivation efforts but also deepens our understanding of the noncultivable variety. Our investigations hint at a very broad, mainly uncultivated microbial diversity.
Microfluidic devices for stem-cell cultivation, differentiation and toxicity testing
NASA Astrophysics Data System (ADS)
Becker, Holger; Hansen-Hagge, Thomas; Kurtz, Andreas; Mrowka, Ralf; Wölfl, Stefan; Gärtner, Claudia
2017-02-01
The development of new drugs is time-consuming, extremely expensive and often promising drug candidates fail in late stages of the development process due to the lack of suitable tools to either predict toxicological effects or to test drug candidates in physiologically relevant environments prior to clinical tests. We therefore try to develop diagnostic multiorgan microfluidic chips based on patient specific induced pluripotent stem cell (iPS) technology to explore liver dependent toxic effects of drugs on individual human tissues such as liver or kidney cells. Based initially on standardized microfluidic modules for cell culture, we have developed integrated microfluidic devices which contain different chambers for cell/tissue cultivation. The devices are manufactured using injection molding of thermoplastic polymers such as polystyrene or cyclo-olefin polymer. In the project, suitable surface modification methods of the used materials had to be explored. We have been able to successfully demonstrate the seeding, cultivation and further differentiation of modified iPS, as shown by the use of differentiation markers, thus providing a suitable platform for toxicity testing and potential tissue-tissue interactions.
Tagami, Keiko; Uchida, Shigeo; Ishii, Nobuyoshi
2017-01-01
Radiocesium ( 134 Cs and 137 Cs) in mushrooms has been a matter of public concern after the accident at Fukushima Daiichi Nuclear Power Plant. To minimize the internal dose by ingestion of cultivated mushrooms, the Japanese government set a guideline level with respect to the radiocesium concentration in bed-logs and mushroom beds; however, the effects of indoor and outdoor cultivation methods on radiocesium concentrations in cultivated mushrooms were not clear. The effects of indoor and outdoor cultivation on the radiocesium concentrations in mushroom were examined using published food monitoring data. 137 Cs concentration data in Lentinula edodes from the Aizu area in Fukushima Prefecture and seven prefectures outside Fukushima were used for the analysis. No statistically significant 137 Cs concentration differences were found between these two cultivation methods. Using detected 137 Cs data in shiitake, the geometric means from each prefecture were less than one-quarter of the standard limit (100 Bq kg -1 ) for total radiocesium under both cultivation conditions. It was suspected that re-suspended radiocesium might have been taken up by mushrooms or that radiocesium might have been absorbed into the mushrooms from the soil in the outdoor cultures. However, neither effect was significant for cultivated mushrooms in the areas examined. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Enhanced Cultivation Of Stimulated Murine B Cells
NASA Technical Reports Server (NTRS)
Sammons, David W.
1994-01-01
Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.
Crowley, D Max; Greenberg, Mark T; Feinberg, Mark E; Spoth, Richard L; Redmond, Cleve R
2012-02-01
A substantial challenge in improving public health is how to facilitate the local adoption of evidence-based interventions (EBIs). To do so, an important step is to build local stakeholders' knowledge and decision-making skills regarding the adoption and implementation of EBIs. One EBI delivery system, called PROSPER (PROmoting School-community-university Partnerships to Enhance Resilience), has effectively mobilized community prevention efforts, implemented prevention programming with quality, and consequently decreased youth substance abuse. While these results are encouraging, another objective is to increase local stakeholder knowledge of best practices for adoption, implementation and evaluation of EBIs. Using a mixed methods approach, we assessed local stakeholder knowledge of these best practices over 5 years, in 28 intervention and control communities. Results indicated that the PROSPER partnership model led to significant increases in expert knowledge regarding the selection, implementation, and evaluation of evidence-based interventions. Findings illustrate the limited programming knowledge possessed by members of local prevention efforts, the difficulty of complete knowledge transfer, and highlight one method for cultivating that knowledge.
NASA Astrophysics Data System (ADS)
Li, Nan; Zhu, Xiufang
2017-04-01
Cultivated land resources is the key to ensure food security. Timely and accurate access to cultivated land information is conducive to a scientific planning of food production and management policies. The GaoFen 1 (GF-1) images have high spatial resolution and abundant texture information and thus can be used to identify fragmentized cultivated land. In this paper, an object-oriented artificial bee colony algorithm was proposed for extracting cultivated land from GF-1 images. Firstly, the GF-1 image was segmented by eCognition software and some samples from the segments were manually identified into 2 types (cultivated land and non-cultivated land). Secondly, the artificial bee colony (ABC) algorithm was used to search for classification rules based on the spectral and texture information extracted from the image objects. Finally, the extracted classification rules were used to identify the cultivated land area on the image. The experiment was carried out in Hongze area, Jiangsu Province using wide field-of-view sensor on the GF-1 satellite image. The total precision of classification result was 94.95%, and the precision of cultivated land was 92.85%. The results show that the object-oriented ABC algorithm can overcome the defect of insufficient spectral information in GF-1 images and obtain high precision in cultivated identification.
Surface modification of closed plastic bags for adherent cell cultivation
NASA Astrophysics Data System (ADS)
Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.
2011-07-01
In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.
Amidžić Klarić, Daniela; Klarić, Ilija; Mornar, Ana; Velić, Darko; Velić, Natalija
2015-08-01
This study brings out the data on the content of 21 mineral and heavy metal in 15 blackberry wines made of conventionally and organically grown blackberries. The objective of this study was to classify the blackberry wine samples based on their mineral composition and the applied cultivation method of the starting raw material by using chemometric analysis. The metal content of Croatian blackberry wine samples was determined by AAS after dry ashing. The comparison between an organic and conventional group of investigated blackberry wines showed statistically significant difference in concentrations of Si and Li, where the organic group contained higher concentrations of these compounds. According to multivariate data analysis, the model based on the original metal content data set finally included seven original variables (K, Fe, Mn, Cu, Ba, Cd and Cr) and gave a satisfactory separation of two applied cultivation methods of the starting raw material.
Tegel, Hanna; Yderland, Louise; Boström, Tove; Eriksson, Cecilia; Ukkonen, Kaisa; Vasala, Antti; Neubauer, Peter; Ottosson, Jenny; Hober, Sophia
2011-08-01
Protein production and analysis in a parallel fashion is today applied in laboratories worldwide and there is a great need to improve the techniques and systems used for this purpose. In order to save time and money, a fast and reliable screening method for analysis of protein production and also verification of the protein product is desired. Here, a micro-scale protocol for the parallel production and screening of 96 proteins in plate format is described. Protein capture was achieved using immobilized metal affinity chromatography and the product was verified using matrix-assisted laser desorption ionization time-of-flight MS. In order to obtain sufficiently high cell densities and product yield in the small-volume cultivations, the EnBase® cultivation technology was applied, which enables cultivation in as small volumes as 150 μL. Here, the efficiency of the method is demonstrated by producing 96 human, recombinant proteins, both in micro-scale and using a standard full-scale protocol and comparing the results in regard to both protein identity and sample purity. The results obtained are highly comparable to those acquired through employing standard full-scale purification protocols, thus validating this method as a successful initial screening step before protein production at a larger scale. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veteikytė, Aušra; Šiekštelė, Rimantas; Tvaska, Bronius; Matijošytė, Inga
2017-05-01
Currently, much attention is paid to technologies which can be drivers of the circular economy across different sectors, in particular, to develop technologies for utilization or reusability of biocompatible materials from industrial waste. One of such is the milk whey, which is a cheap biobased raw material, the disposal of which is a major problem for the dairy industry. Our proposed and investigated technology is based on a continuous exploitation of the whey combining microbiology and biotechnology. Primarily, whey was used as a nutrition source for the cultivation of Kluyveromyces lactis with the aim to produce the targeted biocatalyst-lipase. During cultivation, the whey was transformed into the hydrolyzed form, which was further successfully applied as a protein feeder (external linker) for immobilization of lipase by cross-linked enzyme aggregate (CLEA) method. The first time use of whey as a co-feeder for immobilization of enzymes by CLEA method has shown promising results and increased the stability of lipases for temperature and organic solvents. Hydrolysis of rapeseed oil catalyzed with immobilized derivatives was obtained with 45-96% efficiency at non-optimized conditions. Additionally, the determined kinetic parameters indicated that the rate of p-nitrophenyl palmitate hydrolysis was not changed drastically after immobilization.
Chang, Xiangwei; Zhang, Juanjuan; Li, Dekun; Zhou, Dazheng; Zhang, Yuling; Wang, Jincheng; Hu, Bing; Ju, Aichun; Ye, Zhengliang
2017-07-15
The adulteration or falsification of the cultivation age of mountain cultivated ginseng (MCG) has been a serious problem in the commercial MCG market. To develop an efficient discrimination tool for the cultivation age and to explore potential age-dependent markers, an optimized ultra high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS)-based metabolomics approach was applied in the global metabolite profiling of 156 MCG leaf (MGL) samples aged from 6 to 18 years. Multivariate statistical methods such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to compare the derived patterns between MGL samples of different cultivation ages. The present study demonstrated that 6-18-year-old MGL samples can be successfully discriminated using two simple successive steps, together with four PLS-DA discrimination models. Furthermore, 39 robust age-dependent markers enabling differentiation among the 6-18-year-old MGL samples were discovered. The results were validated by a permutation test and an external test set to verify the predictability and reliability of the established discrimination models. More importantly, without destroying the MCG roots, the proposed approach could also be applied to discriminate MCG root ages indirectly, using a minimum amount of homophyletic MGL samples combined with the established four PLS-DA models and identified markers. Additionally, to the best of our knowledge, this is the first study in which 6-18-year-old MCG root ages have been nondestructively differentiated by analyzing homophyletic MGL samples using UHPLC/QTOF-MS analysis and two simple successive steps together with four PLS-DA models. The method developed in this study can be used as a standard protocol for discriminating and predicting MGL ages directly and homophyletic MCG root ages indirectly. Copyright © 2017 Elsevier B.V. All rights reserved.
Preveena, Jagadesan; Bhore, Subhash J
2013-01-01
In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study.
Simplified and lower cost methods for culinary-medicinal mushrooms cultivation.
Cleaver, Phillip D; Bailey, Cody; Holliday, John C
2012-01-01
The importance and prospect of growing mushrooms through utilization of low-cost, technologically simple methods for developing Third World countries has recently been outlined. Three different species from genus Pleurotus (P. djamor, P. pulmonarius, and P. sajor-caju) and one from genus Hypsizygus (H. ulmarius) were studied. Whole stalk wheat straw, shredded wheat straw, and ground maize cob (Zea mays) were used as the substrates. Wheat straw is the post-harvest stalk of Triticum aestivum. Biological efficiency (BE), growth dynamics, and photographs are provided for each cultivated strain, on different substrates, and substrate treatment comparisons are made. From several experiments conducted with various technologically simple methods of cultivation, it was found that all above mentioned species can be successfully cultivated at the village level in any country, be it highly developed or the poorest country on earth.
Lehotsky, Á; Szilágyi, L; Bánsághi, S; Szerémy, P; Wéber, G; Haidegger, T
2017-09-01
Ultraviolet spectrum markers are widely used for hand hygiene quality assessment, although their microbiological validation has not been established. A microbiology-based assessment of the procedure was conducted. Twenty-five artificial hand models underwent initial full contamination, then disinfection with UV-dyed hand-rub solution, digital imaging under UV-light, microbiological sampling and cultivation, and digital imaging of the cultivated flora were performed. Paired images of each hand model were registered by a software tool, then the UV-marked regions were compared with the pathogen-free sites pixel by pixel. Statistical evaluation revealed that the method indicates correctly disinfected areas with 95.05% sensitivity and 98.01% specificity. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Marketing the dental practice: eight steps toward success.
McGuigan, Patrick J; Eisner, Alan B
2006-10-01
The authors provide a suggested framework for completing a comprehensive evaluation of practice processes and routines. Their approach focuses on improving the professional image of dentists and the methods they use to market themselves. A practice can benefit by implementing a program to understand the strengths and weaknesses of the practice and how these strengths and weaknesses affect patients' experiences. A word-of-mouth marketing campaign relies on the cultivation of opinion leaders, but opinion leaders cannot be cultivated until they have been identified. Dental practice marketing campaigns cannot be based on assumptions; they must be based on facts. Practice Implications. Improving relationships with patients will lead to increased patient retention, reduced marketing costs and greater personal satisfaction. By focusing on strengths, clinicians will improve patients' experiences in the dental office.
A global view of shifting cultivation: Recent, current, and future extent
Mertz, Ole; Frolking, Steve; Egelund Christensen, Andreas; Hurni, Kaspar; Sedano, Fernando; Parsons Chini, Louise; Sahajpal, Ritvik; Hansen, Matthew; Hurtt, George
2017-01-01
Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing–based land cover and land use classifications, as these are unable to adequately capture such landscapes’ dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation at a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation—the majority in the Americas (41%) and Africa (37%)—this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and resilience among people currently depending on shifting cultivation. PMID:28886132
United States’ Strategy and Strategic Partnerships - Understanding Others’ Perspective
2011-03-16
context that this paper seeks to delineate the way forward, based on a strategic approach that cultivates meaningful partnerships and fosters...delineate the way forward, based on a strategic approach that cultivates meaningful partnerships and fosters unrestrained cooperation among all...region.3 Such awareness would afford adoption of a regional approach that mitigates acrimony and cultivates unrestrained cooperation; amongst the
Danielson, Patrick; Yang, Limin; Jin, Suming; Homer, Collin G.; Napton, Darrell
2016-01-01
We developed a method that analyzes the quality of the cultivated cropland class mapped in the USA National Land Cover Database (NLCD) 2006. The method integrates multiple geospatial datasets and a Multi Index Integrated Change Analysis (MIICA) change detection method that captures spectral changes to identify the spatial distribution and magnitude of potential commission and omission errors for the cultivated cropland class in NLCD 2006. The majority of the commission and omission errors in NLCD 2006 are in areas where cultivated cropland is not the most dominant land cover type. The errors are primarily attributed to the less accurate training dataset derived from the National Agricultural Statistics Service Cropland Data Layer dataset. In contrast, error rates are low in areas where cultivated cropland is the dominant land cover. Agreement between model-identified commission errors and independently interpreted reference data was high (79%). Agreement was low (40%) for omission error comparison. The majority of the commission errors in the NLCD 2006 cultivated crops were confused with low-intensity developed classes, while the majority of omission errors were from herbaceous and shrub classes. Some errors were caused by inaccurate land cover change from misclassification in NLCD 2001 and the subsequent land cover post-classification process.
Biomek Cell Workstation: A Variable System for Automated Cell Cultivation.
Lehmann, R; Severitt, J C; Roddelkopf, T; Junginger, S; Thurow, K
2016-06-01
Automated cell cultivation is an important tool for simplifying routine laboratory work. Automated methods are independent of skill levels and daily constitution of laboratory staff in combination with a constant quality and performance of the methods. The Biomek Cell Workstation was configured as a flexible and compatible system. The modified Biomek Cell Workstation enables the cultivation of adherent and suspension cells. Until now, no commercially available systems enabled the automated handling of both types of cells in one system. In particular, the automated cultivation of suspension cells in this form has not been published. The cell counts and viabilities were nonsignificantly decreased for cells cultivated in AutoFlasks in automated handling. The proliferation of manual and automated bioscreening by the WST-1 assay showed a nonsignificant lower proliferation of automatically disseminated cells associated with a mostly lower standard error. The disseminated suspension cell lines showed different pronounced proliferations in descending order, starting with Jurkat cells followed by SEM, Molt4, and RS4 cells having the lowest proliferation. In this respect, we successfully disseminated and screened suspension cells in an automated way. The automated cultivation and dissemination of a variety of suspension cells can replace the manual method. © 2015 Society for Laboratory Automation and Screening.
Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry
2018-01-01
The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k-Nearest neighbours (k-NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet’s effects on fish skin. PMID:29596375
Saberioon, Mohammadmehdi; Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry
2018-03-29
The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout ( Oncorhynchus mykiss ) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k -Nearest neighbours ( k -NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k -NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.
NASA Astrophysics Data System (ADS)
Lei, Bing; Liu, Wei; Shi, Jianhua; Yao, Tianfu; Wang, Wei; Hu, Haojun
2017-08-01
The Students Innovation Training Program (SITP) has become an effective method to impel the teaching reform and improve undergraduate's innovative practical ability in Chinese colleges and universities, which is quite helpful for students to understand the social requirement, to grasp the basic means of scientific research and to improve their innovative practical ability and team work spirit. In this paper, three problems have been analyzed and discussed based on our organizing and instructing experience of SITP in recent years. Firstly, the SITP is a synthetically training project, and it is quite suitable to cultivate the students' innovative practical ability. Because SITP is similar to the real scientific research activity, and both of them include the steps of project application, solution design, research implementation and project summary etc. By making great efforts to these basic training steps, the undergraduates' innovative practical ability has been improved systemically. Secondly, a new talents cultivation system has been constructed based on SITP by integrating the subject competitions, graduation design and other conventional training activities, which is quite good to improve the training quality and decrease the total training class hours. Thirdly, a series of long-term effective operation and management guidelines have been established to ensure the SITP work normally, including doing a good job of project evaluation, setting up a reward and punishment system and creating a good atmosphere for innovation. In conclusion, great efforts have been made to enhance undergraduates' innovative ability, and the research results will provide useful reference for improving the training effects and reforming talents cultivating mode further.
High-throughput cultivation and screening platform for unicellular phototrophs.
Tillich, Ulrich M; Wolter, Nick; Schulze, Katja; Kramer, Dan; Brödel, Oliver; Frohme, Marcus
2014-09-16
High-throughput cultivation and screening methods allow a parallel, miniaturized and cost efficient processing of many samples. These methods however, have not been generally established for phototrophic organisms such as microalgae or cyanobacteria. In this work we describe and test high-throughput methods with the model organism Synechocystis sp. PCC6803. The required technical automation for these processes was achieved with a Tecan Freedom Evo 200 pipetting robot. The cultivation was performed in 2.2 ml deepwell microtiter plates within a cultivation chamber outfitted with programmable shaking conditions, variable illumination, variable temperature, and an adjustable CO2 atmosphere. Each microtiter-well within the chamber functions as a separate cultivation vessel with reproducible conditions. The automated measurement of various parameters such as growth, full absorption spectrum, chlorophyll concentration, MALDI-TOF-MS, as well as a novel vitality measurement protocol, have already been established and can be monitored during cultivation. Measurement of growth parameters can be used as inputs for the system to allow for periodic automatic dilutions and therefore a semi-continuous cultivation of hundreds of cultures in parallel. The system also allows the automatic generation of mid and long term backups of cultures to repeat experiments or to retrieve strains of interest. The presented platform allows for high-throughput cultivation and screening of Synechocystis sp. PCC6803. The platform should be usable for many phototrophic microorganisms as is, and be adaptable for even more. A variety of analyses are already established and the platform is easily expandable both in quality, i.e. with further parameters to screen for additional targets and in quantity, i.e. size or number of processed samples.
Figueredo, Carmen Julia; Casas, Alejandro; Colunga-GarcíaMarín, Patricia; Nassar, Jafet M; González-Rodríguez, Antonio
2014-09-16
Agave inaequidens and A. hookeri are anciently used species for producing the fermented beverage 'pulque', food and fiber in central Mexico. A. inaequidens is wild and cultivated and A. hookeri only cultivated, A. inaequidens being its putative wild relative. We analysed purposes and mechanisms of artificial selection and phenotypic divergences between wild and managed populations of A. inaequidens and between them and A. hookeri, hypothesizing phenotypic divergence between wild and domesticated populations of A. inaequidens in characters associated to domestication, and that A. hookeri would be phenotypically similar to cultivated A. inaequidens. We studied five wild and five cultivated populations of A. inaequidens, and three cultivated populations of A. hookeri. We interviewed agave managers documenting mechanisms of artificial selection, and measured 25 morphological characters. Morphological similarity and differentiation among plants and populations were analysed through multivariate methods and ANOVAs. People recognized 2-8 variants of A. inaequidens; for cultivation they select young plants collected in wild areas recognized as producing the best quality mescal agaves. Also, they collect seeds of the largest and most vigorous plants, sowing seeds in plant beds and then transplanting the most vigorous plantlets into plantations. Multivariate methods classified separately the wild and cultivated populations of A. inaequidens and these from A. hookeri, mainly because of characters related with plant and teeth size. The cultivated plants of A. inaequidens are significantly bigger with larger teeth than wild plants. A. hookeri are also significatly bigger plants with larger leaves but lower teeth density and size than A. inaequidens. Some cultivated plants of A. inaequidens were classified as A. hookeri, and nearly 10% of A. hookeri as cultivated A. inaequidens. Wild and cultivated populations of A. inaequidens differed in 13 characters, whereas A. hookeri differed in 23 characters with wild populations and only in 6 characters with cultivated populations of A. inaequidens. Divergence between wild and cultivated populations of A. inaequidens reflect artificial selection. A. hookeri is similar to the cultivated A. inaequidens, which supports the hypothesis that A. hookeri could be the extreme of a domestication gradient of a species complex.
Ferrari, Belinda C.; Binnerup, Svend J.; Gillings, Michael
2005-01-01
Traditional microbiological methods of cultivation recover less than 1% of the total bacterial species, and the culturable portion of bacteria is not representative of the total phylogenetic diversity. Classical cultivation strategies are now known to supply excessive nutrients to a system and therefore select for fast-growing bacteria that are capable of colony or biofilm formation. New approaches to the cultivation of bacteria which rely on growth in dilute nutrient media or simulated environments are beginning to address this problem of selection. Here we describe a novel microcultivation method for soil bacteria that mimics natural conditions. Our soil slurry membrane system combines a polycarbonate membrane as a growth support and soil extract as the substrate. The result is abundant growth of uncharacterized bacteria as microcolonies. By combining microcultivation with fluorescent in situ hybridization, previously “unculturable” organisms belonging to cultivated and noncultivated divisions, including candidate division TM7, can be identified by fluorescence microscopy. Successful growth of soil bacteria as microcolonies confirmed that the missing culturable majority may have a growth strategy that is not observed when traditional cultivation indicators are used. PMID:16332866
Kumar, Vinod; Nanda, Manisha; Verma, Monu
2017-11-01
In order to increase microalgal biomass productivity efficient cultivation and harvesting methods are needed against the available traditional methods. The present study focuses on the same by harvesting microalgae using agar gel. Agar medium containing bold's basal medium (BBM) undergoes a thermoreversible gel transition. As compared to the traditional protocols, this gel is used to cultivate microalgae without even affecting the total productivity. To develop the gel for microalgae cultivation, agar was boiled in BBM. Then the agar was cooled to 35°C and microalgae culture was added to it. After seeding the microalgae the temperature of the agar was further decreased by 10°C to induce gelation. Instead of isolated cells microalgae were grown in clusters within the agar gel. Microalgal clusters gravimetrically settle at the bottom within 2h. In this method agar can be reused. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tang, Wen-Tao; Dai, Ji; Liu, Rulong; Chen, Guang-Hao
2015-12-15
Our previous study has confirmed the feasibility of using seawater as an economical precipitant for urine phosphorus (P) precipitation. However, we still understand very little about the ureolysis in the Seawater-based Urine Phosphorus Recovery (SUPR) system despite its being a crucial step for urine P recovery. In this study, batch experiments were conducted to investigate the kinetics of microbial ureolysis in the seawater-urine system. Indigenous bacteria from urine and seawater exhibited relatively low ureolytic activity, but they adapted quickly to the urine-seawater mixture during batch cultivation. During cultivation, both the abundance and specific ureolysis rate of the indigenous bacteria were greatly enhanced as confirmed by a biomass-dependent Michaelis-Menten model. The period for fully ureolysis was decreased from 180 h to 2.5 h after four cycles of cultivation. Based on the successful cultivation, a lab-scale SUPR reactor was set up to verify the fast ureolysis and efficient P recovery in the SUPR system. Nearly complete urine P removal was achieved in the reactor in 6 h without adding any chemicals. Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis revealed that the predominant groups of bacteria in the SUPR reactor likely originated from seawater rather than urine. Moreover, batch tests confirmed the high ureolysis rates and high phosphorus removal efficiency induced by cultivated bacteria in the SUPR reactor under seawater-to-urine mixing ratios ranging from 1:1 to 9:1. This study has proved that the enrichment of indigenous bacteria in the SUPR system can lead to sufficient ureolytic activity for phosphate precipitation, thus providing an efficient and economical method for urine P recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gros-Balthazard, Muriel; Newton, Claire; Ivorra, Sarah; Pierre, Marie-Hélène; Terral, Jean-Frédéric
2016-01-01
Investigating crop origins is a priority to understand the evolution of plants under domestication, develop strategies for conservation and valorization of agrobiodiversity and acquire fundamental knowledge for cultivar improvement. The date palm (Phoenix dactylifera L.) belongs to the genus Phoenix, which comprises 14 species morphologically very close, sometimes hardly distinguishable. It has been cultivated for millennia in the Middle East and in North Africa and constitutes the keystone of oasis agriculture. Yet, its origins remain poorly understood as no wild populations are identified. Uncultivated populations have been described but they might represent feral, i.e. formerly cultivated, abandoned forms rather than truly wild populations. In this context, this study based on morphometrics applied to 1625 Phoenix seeds aims to (1) differentiate Phoenix species and (2) depict the domestication syndrome observed in cultivated date palm seeds using other Phoenix species as a “wild” reference. This will help discriminate truly wild from feral forms, thus providing new insights into the evolutionary history of this species. Seed size was evaluated using four parameters: length, width, thickness and dorsal view surface. Seed shape was quantified using outline analyses based on the Elliptic Fourier Transform method. The size and shape of seeds allowed an accurate differentiation of Phoenix species. The cultivated date palm shows distinctive size and shape features, compared to other Phoenix species: seeds are longer and elongated. This morphological shift may be interpreted as a domestication syndrome, resulting from the long-term history of cultivation, selection and human-mediated dispersion. Based on seed attributes, some uncultivated date palms from Oman may be identified as wild. This opens new prospects regarding the possible existence and characterization of relict wild populations and consequently for the understanding of the date palm origins. Finally, we here describe a pipeline for the identification of the domestication syndrome in seeds that could be used in other crops. PMID:27010707
Gros-Balthazard, Muriel; Newton, Claire; Ivorra, Sarah; Pierre, Marie-Hélène; Pintaud, Jean-Christophe; Terral, Jean-Frédéric
2016-01-01
Investigating crop origins is a priority to understand the evolution of plants under domestication, develop strategies for conservation and valorization of agrobiodiversity and acquire fundamental knowledge for cultivar improvement. The date palm (Phoenix dactylifera L.) belongs to the genus Phoenix, which comprises 14 species morphologically very close, sometimes hardly distinguishable. It has been cultivated for millennia in the Middle East and in North Africa and constitutes the keystone of oasis agriculture. Yet, its origins remain poorly understood as no wild populations are identified. Uncultivated populations have been described but they might represent feral, i.e. formerly cultivated, abandoned forms rather than truly wild populations. In this context, this study based on morphometrics applied to 1625 Phoenix seeds aims to (1) differentiate Phoenix species and (2) depict the domestication syndrome observed in cultivated date palm seeds using other Phoenix species as a "wild" reference. This will help discriminate truly wild from feral forms, thus providing new insights into the evolutionary history of this species. Seed size was evaluated using four parameters: length, width, thickness and dorsal view surface. Seed shape was quantified using outline analyses based on the Elliptic Fourier Transform method. The size and shape of seeds allowed an accurate differentiation of Phoenix species. The cultivated date palm shows distinctive size and shape features, compared to other Phoenix species: seeds are longer and elongated. This morphological shift may be interpreted as a domestication syndrome, resulting from the long-term history of cultivation, selection and human-mediated dispersion. Based on seed attributes, some uncultivated date palms from Oman may be identified as wild. This opens new prospects regarding the possible existence and characterization of relict wild populations and consequently for the understanding of the date palm origins. Finally, we here describe a pipeline for the identification of the domestication syndrome in seeds that could be used in other crops.
Lee, Byeong-Ju; Kim, Hye-Youn; Lim, Sa Rang; Huang, Linfang; Choi, Hyung-Kyoon
2017-01-01
Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values.
Lim, Sa Rang; Huang, Linfang
2017-01-01
Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values. PMID:29049369
Cultivation of moonmilk-born non-extremophilic Thaum and Euryarchaeota in mixed culture.
Reitschuler, Christoph; Lins, Philipp; Wagner, Andreas Otto; Illmer, Paul
2014-10-01
PCR-DGGE, qPCR and sequencing highlighted a quite homogenous archaeal community prevailing in secondary calcite deposits, so-called moonmilk, within the cold alpine Hundalm cave in Tyrol (Austria). Furthermore, the depth profile of this moonmilk could prove that the Archaea are located in oxygen-rich near- and oxygen-depleted sub-surface layers. To gather these communities we therefore applied an aerobic and anaerobic cultivation approach in oligotrophic and methanotrophic media. The mixed moonmilk community was analyzed with a combination of molecular methods using qPCR, PCR-DGGE and sequencing. Anaerobic and aerobic cultures were additionally investigated with GC and HPLC analyses. It was possible to initially cultivate and enrich the supposed aerobic/microaerophilic and anaerobic archaeal fraction, representing the natural archaeal community. While the naturally less abundant near-surface Archaea are closely related to members of the Thaumarchaeota (Nitrosopumilus maritimus), the highly abundant anaerobic Archaea are more distantly related to members within the Euryarchaeota. It is possible that these cultivable moonmilk-born Archaea represent new ecotypes or are so far undescribed. Based on the sequencing results and the production of very low amounts of methane, a corresponding methanogenic community is thought to represent only a minor abundant archaeal fraction. On a physiological level the cultivated moonmilk community is cold-adapted and basically of oligotrophic and organotrophic character. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meng, Jiang-Fei; Ning, Peng-Fei; Xu, Teng-Fei; Zhang, Zhen-Wen
2012-12-27
Rain-shelter cultivation is an effective cultural method to prevent rainfall damage during grape harvest and widely applied in the Chinese rainy regions. In this study we investigated the effect of rain-shelter cultivation on grape diseases and phenolic composition in the skins of Vitis vinifera cv. Cabernet Gernischet grape berries through the comparison with open-field cultivation at two vintages (2010 and 2011). The results showed that rain-shelter cultivation reduced the incidence of grape diseases significantly and delayed the maturation of Cabernet Gernischet fruits. With regards to most of the phenolic compounds identified in this study, their content in grape samples under rain-shelter cultivation was decreased compared to those under open-field cultivation. However, rain-shelter cultivation stimulated the accumulation of dihydroquercetin-3-O-rhamnoside in grape skins during grape maturation. These were related with micrometeorological alterations in vineyards by using plastic covering under rain-shelter cultivation. It suggests the rain-shelter cultivation makes possible the cultivation of "Cabernet Gernischet" grapes in an organic production system, for providing a decrease in the incidence of diseases and the dependence on chemical pesticides in the grape and wine industry.
Cultivating the power of partnerships in feminist participatory action research in women's health.
Ponic, Pamela; Reid, Colleen; Frisby, Wendy
2010-12-01
Feminist participatory action research integrates feminist theories and participatory action research methods, often with the explicit intention of building community-academic partnerships to create new forms of knowledge to inform women's health. Despite the current pro-partnership agenda in health research and policy settings, a lack of attention has been paid to how to cultivate effective partnerships given limited resources, competing agendas, and inherent power differences. Based on our 10+ years individually and collectively conducting women's health and feminist participatory action research, we suggest that it is imperative to intentionally develop power-with strategies in order to avoid replicating the power imbalances that such projects seek to redress. By drawing on examples from three of our recent feminist participatory action projects we reflect on some of the tensions and complexities of attempting to cultivate power-with research partnerships. We then offer skills and resources needed by academic researchers to effectively harness the collective resources, agendas, and knowledge that each partner brings to the table. We suggest that investing in the process of cultivating power-with research partnerships ultimately improves our collective ability to understand and address women's health issues. © 2010 Blackwell Publishing Ltd.
[Effects of grafting and nitrogen fertilization on melon yield and nitrogen uptake and utilization].
Xue, Liang; Ma, Zhong Ming; DU, Shao Ping
2017-06-18
A split-field design experiment was carried out using two main methods of cultivation (grafting and self-rooted cultivation) and subplots with different nitrogen application levels (0, 120, 240, and 360 kg N·hm -2 ) to investigate the effects of cultivation method and nitrogen application levels on the yield and quality of melons, nitrogen transfer, nitrogen distribution, and nitrogen utilization rate. The results showed that melons produced by grafting cultivation had a 7.3% increase in yield and a 0.16%-3.28% decrease in soluble solid content, compared to those produced by self-rooted cultivation. The amount of nitrogen accumulated in melons grafted in the early growth phase was lower than that in self-rooted melons, and higher after fruiting. During harvest, nitrogen accumulation amount in grafted melon plants was 5.2% higher than that in self-rooted plants and nitrogen accumulation amount in fruits was 10.3% higher. Grafting cultivation increased the amount of nitrogen transfer from plants to fruits by 20.9% compared to self-rooted cultivation. Nitrogen distribution in fruits was >80% in grafted melons, whereas that in self-rooted melons was <80%. Under the same level of nitrogen fertilization, melons cultivated by grafting showed 1.3%-4.2% increase in nitrogen absorption and utilization rate, 2.73-5.56 kg·kg -1 increase in nitrogen agronomic efficiency, and 7.39-16.18 kg·kg -1 increase in nitrogen physiological efficiency, compared to self-rooted cultivation. On the basis of the combined perspective of commercial melon yield, and nitrogen absorption and utilization rate, an applied nitrogen amount of 240 kg·hm -2 is most suitable for graf-ting cultivation in this region.
Van Reet, N; Pyana, P P; Deborggraeve, S; Büscher, P; Claes, F
2011-07-01
Trypanosoma brucei (T.b.) gambiense causes the chronic form of human African trypanosomiasis or sleeping sickness. One of the major problems with studying T.b. gambiense is the difficulty to isolate it from its original host and the difficult adaptation to in vivo and in vitro mass propagation. The objective of this study was to evaluate if an established method for axenic culture of pleomorphic bloodstream form T.b. brucei strains, based on methylcellulose containing HMI-9 medium, also facilitated the continuous in vitro propagation of other bloodstream form Trypanozoon strains, in particular of T.b. gambiense. Bloodstream form trypanosomes from one T.b. brucei, two T.b. rhodesiense, one T. evansi and seven T.b. gambiense strains were isolated from mouse blood and each was concurrently cultivated in liquid and methylcellulose-containing HMI-9 based medium, either with or without additional human serum supplementation, for over 10 consecutive sub passages. Although HMI-9 based medium supplemented with 1.1% (w/v) methylcellulose supported the continuous cultivation of all non-gambiense strains better than liquid media could, the in vitro cultivation of all gambiense strains was only achieved in HMI-9 based medium containing 1.1% (w/v) methylcellulose, 15% (v/v) fetal calf serum and 5% (v/v) heat-inactivated human serum. Copyright © 2011 Elsevier Inc. All rights reserved.
Influences of Urban Expansion on Cultivated Lands in China Since 1970S
NASA Astrophysics Data System (ADS)
Liu, F.; Zhang, Z.; Zhao, X.; Yu, S.; Wang, X.; Zuo, L.
2018-04-01
Urban expansion has far-reaching influences on cultivated lands, and has a serious effect on grain output and safety. However, relatively little attention has been paid to monitor cultivated land losses through urban expansion over a long timeframe and multi-frequency, especially its differences on national scale systematically. In this work, the characteristics of Chinese cultivated land dynamics were described using annual occupied area per city, contribution rate of cultivated lands to urban expansion and the classification method of basic trend of cultivated land losses. Results indicate that: (1) in the past four decades, large amount of cultivated lands have been occupied during the urban expansion process, and have become the first land source for Chinese urban expansion. (2) Cultivated land loss among municipalities, provincial capitals and other cities was obviously different. The higher of cities' administrative level was, the more obvious of cultivated land loss in these cities appeared, and the earlier of acceleration loss stage of cultivated lands occurred. (3) Cultivated land loss in five population-size cities was unbalanced, representing obviously different loss process and contribution on urban expansion. The bigger of cities' population size was, the more obvious of cultivated land loss in these cities appeared, and the earlier of acceleration loss stage of cultivated lands occurred. (4) Cultivated land losses during urban expansion process were imbalanced in China, and were classified into seven trends. (5) Chinese cultivated land protection has been carried out from the awakening stage to the deep implementation stage.
Determination of viable legionellae in engineered water systems: Do we find what we are looking for?
Kirschner, Alexander K.T.
2016-01-01
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health. PMID:26928563
Determination of viable legionellae in engineered water systems: Do we find what we are looking for?
Kirschner, Alexander K T
2016-04-15
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
Ahmed, Nishat Hussain
2014-07-01
Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites.
Ahmed, Nishat Hussain
2014-01-01
Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites. PMID:25250227
Tsochatzis, Emmanouil D; Bladenopoulos, Konstantinos; Papageorgiou, Maria
2012-06-01
Tocotrienols and tocopherols (tocols) are important phytochemical compounds with antioxidant activity and potential benefits for human health. Among cereals, barley is a good source of tocols. In the present study the effect of two cultivation methods, organic and conventional, on the tocol content in 12 Greek barley varieties was investigated. A validated reverse phase high-performance liquid chromatography method (RP-HPLC) with fluorescence detection (excitation at 292 nm, emission at 335 nm) was applied along with direct solvent extraction with acetonitrile at a 1:30 (w/v) sample/solvent ratio for tocol quantification. The results showed statistically significant differences (P < 0.05) between the two cultivation methods (except for δ-tocopherol) as well as among varieties. In the case of organic cultivation the four homologues of tocotrienol (α-, β + γ- and δ-) increased, by 3.05-37.14% for α-tocotrienol, 15.51-41.09% for (β + γ)-tocotrienol and 30.45-196.61% for δ-tocotrienol, while those of tocopherol (α- and β + γ- but not δ-) decreased, by 5.90-36.34% for α-tocopherol and 2.84-46.49% for (β + γ)-tocopherol. A simple correlation analysis between tocols revealed a good correlation between (β + γ)-tocotrienol and δ-tocotrienol. Although there was a significant decrease in the important α-tocopherol in the varieties studied under organic cultivation, there was an overall increase in tocotrienol content. The cultivation method (organic or conventional) had an important effect on tocotrienol and tocopherol concentrations in barley. An overall increase in total tocol content and a clear increment in the tocotrienol/tocopherol ratio were observed. Copyright © 2012 Society of Chemical Industry.
Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu
2018-03-29
Preventive measures against soil-borne diseases need to be implemented before cultivation because very few countermeasures are available after the development of diseases. Some soils suppress soil-borne diseases despite the presence of a high population density of pathogens. If the suppressiveness of soil against soil-borne diseases may be predicted and diagnosed for crop fields, it may be possible to reduce the labor and cost associated with excessive disinfection practices. We herein evaluated the suppressiveness of soils in fields with the long-term application of organic amendments by examining the growth of pathogenic Fusarium oxysporum co-cultivated with indigenous soil microorganisms on agar plates. Soils treated with coffee residue compost or rapeseed meal showed suppressiveness against spinach wilt disease by F. oxysporum f. sp. spinaciae or spinach wilt and lettuce root rot diseases by F. oxysporum f. sp. spinaciae and F. oxysporum f. sp. lactucae, respectively, and the growth of pathogenic Fusarium spp. on agar plates was suppressed when co-cultured with microorganisms in a suspension from these soils before crop cultivation. These results indicate the potential of the growth degree of pathogenic F. oxysporum estimated by this method as a diagnostic indicator of the suppressiveness of soil associated with the inhabiting microorganisms. A correlation was found between the incidence of spinach wilt disease in spinach and the growth degree of F. oxysporum f. sp. spinaciae by this co-cultivation method, indicating that suppressiveness induced by organic amendment applications against F. oxysporum f. sp. spinaciae is evaluable by this method. The co-cultivation method may be useful for predicting and diagnosing suppressiveness against soil-borne diseases.
Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu
2018-01-01
Preventive measures against soil-borne diseases need to be implemented before cultivation because very few countermeasures are available after the development of diseases. Some soils suppress soil-borne diseases despite the presence of a high population density of pathogens. If the suppressiveness of soil against soil-borne diseases may be predicted and diagnosed for crop fields, it may be possible to reduce the labor and cost associated with excessive disinfection practices. We herein evaluated the suppressiveness of soils in fields with the long-term application of organic amendments by examining the growth of pathogenic Fusarium oxysporum co-cultivated with indigenous soil microorganisms on agar plates. Soils treated with coffee residue compost or rapeseed meal showed suppressiveness against spinach wilt disease by F. oxysporum f. sp. spinaciae or spinach wilt and lettuce root rot diseases by F. oxysporum f. sp. spinaciae and F. oxysporum f. sp. lactucae, respectively, and the growth of pathogenic Fusarium spp. on agar plates was suppressed when co-cultured with microorganisms in a suspension from these soils before crop cultivation. These results indicate the potential of the growth degree of pathogenic F. oxysporum estimated by this method as a diagnostic indicator of the suppressiveness of soil associated with the inhabiting microorganisms. A correlation was found between the incidence of spinach wilt disease in spinach and the growth degree of F. oxysporum f. sp. spinaciae by this co-cultivation method, indicating that suppressiveness induced by organic amendment applications against F. oxysporum f. sp. spinaciae is evaluable by this method. The co-cultivation method may be useful for predicting and diagnosing suppressiveness against soil-borne diseases. PMID:29459498
Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen
2009-08-01
In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only +/- 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization.
Zheng, Jia-wei; Cao, Xia; Feng, Xi-ping; Zhang, Zhi-yuan; Zhang, Jian-zhong
2009-10-01
The past decade has shown increasing demands for reforming dental education that would produce a graduate better equipped to work in the rapidly changing world of the twenty-first century. With the rapid development of social economy and more and more fierce competitive environment, teaching reform on stomatology is imperative nowadays. The existing curriculum of courses, teaching method, teaching medium, and mode of training must be improved and innovated based on cultivation of innovative talents with all-round development of moral, intellectual, physical, and aesthetic education. All the teaching should be student-centered rather than teacher-centered, with the purpose of enhancing the students' research ability, English ability, and clinical skills.
Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun
2016-01-01
Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071
Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun
2016-01-01
Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.
Kai, Marco; González, Ignacio; Genilloud, Olga; Singh, Sheo B; Svatoš, Aleš
2012-10-30
There is a need to find new antibiotic agents to fight resistant pathogenic bacteria. To search successfully for novel antibiotics from bacteria cultivated under diverse conditions, we need a fast and cost-effective screening method. A combination of Liquid Extraction Surface Analysis (LESA), automated chip-based nanoelectrospray ionization, and high-resolution mass or tandem mass spectrometry using an Orbitrap XL was tested as the screening platform. Actinobacteria, known to produce well-recognized thiazolyl peptide antibiotics, were cultivated on a plate of solid medium and the antibiotics were extracted by organic solvent mixtures from the surface of colonies grown on the plate and analyzed using mass spectrometry (MS). LESA combined with high-resolution MS is a powerful tool with which to extract and detect thiazolyl peptide antibiotics from different Actinobacteria. Known antibiotics were correctly detected with high mass accuracy (<4 ppm) and structurally characterized using tandem mass spectra. Our method is the first step toward the development of a novel high-throughput extraction and identification tool for antibiotics in particular and natural products in general. The method described in this paper is suitable for (1) screening the natural products produced by bacterial colonies on cultivation plates within the first 2 min following extraction and (2) detecting antibiotics at high mass accuracy; the cost is around 2 Euro per sample. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Roman, Monserrate C.; Jones, Kathy U.; Oubre, Cherie M.; Castro, Victoria; Ott, Mark C.; Birmele, Michele; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.
2013-01-01
Current methods for microbial detection: a) Labor & time intensive cultivation-based approaches that can fail to detect or characterize all cells present. b) Requires collection of samples on orbit and transportation back to ground for analysis. Disadvantages to current detection methods: a) Unable to perform quick and reliable detection on orbit. b) Lengthy sampling intervals. c) No microbe identification.
Central role of the cell in microbial ecology.
Zengler, Karsten
2009-12-01
Over the last few decades, advances in cultivation-independent methods have significantly contributed to our understanding of microbial diversity and community composition in the environment. At the same time, cultivation-dependent methods have thrived, and the growing number of organisms obtained thereby have allowed for detailed studies of their physiology and genetics. Still, most microorganisms are recalcitrant to cultivation. This review not only conveys current knowledge about different isolation and cultivation strategies but also discusses what implications can be drawn from pure culture work for studies in microbial ecology. Specifically, in the light of single-cell individuality and genome heterogeneity, it becomes important to evaluate population-wide measurements carefully. An overview of various approaches in microbial ecology is given, and the cell as a central unit for understanding processes on a community level is discussed.
Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.
Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini
2017-05-01
Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Bohus, Veronika; Tóth, Erika M; Székely, Anna J; Makk, Judit; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Márialigeti, Károly
2010-12-01
Ultra pure waters (UPW), characterized by extremely low salt and nutrient concentrations, can suffer from microbial contamination which causes biofouling and biocorrosion, possibly leading to reduced lifetime and increased operational costs. Samples were taken from an ultra pure supply water producing plant of a power plant. Scanning electron microscopic examination was carried out on the biofilms formed in the system. Biofilm, ion exchange resin, and water samples were characterized by culture-based methods and molecular fingerprinting (terminal restriction fragment length polymorphism [T-RFLP] analysis and molecular cloning). Identification of bacteria was based on 16S rDNA sequence comparison. A complex microbial community structure was revealed. Nearly 46% of the clones were related to as yet uncultured bacteria. The community profiles of the water samples were the most diverse and most of bacteria were recruited from bacterial communities of tube surface and ion exchange resin biofilms. Microbiota of different layers of the mixed bed ion exchange resin showed the highest similarity. Most of the identified taxa (dominated by β-Proteobacteria) could take part in microbially influenced corrosion. Copyright © 2010 Elsevier Ltd. All rights reserved.
Schulze, Christian; Reinhardt, Jakob; Wurster, Martina; Ortiz-Tena, José Guillermo; Sieber, Volker; Mundt, Sabine
2016-10-01
A one-stage cultivation process of the microalgae Scenedesmus obtusiusculus with medium based on natural water sources was developed to enhance lipids and carbohydrates. A medium based on artificial sea water, Baltic Sea water and river water with optimized nutrient concentrations compared to the standard BG-11 for nitrate (-75%), phosphate and iron (-90%) was used for cultivation. Although nitrate exhaustion over cultivation resulted in nitrate limitation, growth of the microalgae was not reduced. The lipid content increased from 6.0% to 19.9%, an increase in oleic and stearic acid was observed. The unsaponifiable matter of the lipid fraction was reduced from 19.5% to 11.4%. The carbohydrate yield rose from 45% to 50% and the protein content decreased from 32.4% to 15.9%. Using natural water sources with optimized nutrient concentrations could open the opportunity to modulate biomass composition and to reduce the cultivation costs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Taxonomy of cultivated potatoes (solanum section petota: solanaceae)
USDA-ARS?s Scientific Manuscript database
Solanum tuberosum, the cultivated potato of world commerce, is a primary food crop worldwide. Wild and cultivated potatoes form the germplasm base for international breeding efforts to improve potato in the face of variety of disease, environmental, and agronomic constraints. A series of national an...
Taxonomy of Cultivated Potatoes (Solanum section Petota: Solanaceae)
USDA-ARS?s Scientific Manuscript database
Solanum tuberosum, the cultivated potato of world commerce, is a primary food crop worldwide. Wild and cultivated potatoes form the germplasm base for international breeding efforts to improve potato in the face of variety of disease, environmental, and agronomic constraints. A series of national an...
Recruitment from an egg bank into the plankton in Baisha Bay, a mariculture base in Southern China
NASA Astrophysics Data System (ADS)
Wang, Qing; Luan, Lei-Lei; Chen, Liang-Dong; Yuan, Dan-Ni; Liu, Sheng; Hwang, Jiang-Shiou; Yang, Yu-Feng
2016-11-01
The potential recruitment of resting eggs of calanoid copepods and rotifers to planktonic populations was investigated in the surface and sub-surface sediments of three mariculture zones: an integrated seaweed Gracilaria lemaneiformis and shellfish cultivation area (G), a fish cultivation area (F), and a shellfish cultivation area (S), as well as the sediments of a nearby control sea area (C) in a mariculture base in Southern China. The potential recruitment of copepod and rotifer eggs in the sediments of C and G was significantly higher than in F and S. Potential recruitment in the sub-surface sediments of F and S was not observed, suggesting that fish and shellfish mariculture may be responsible for this decrease. The hatching success of resting eggs of copepods and rotifers was affected by mariculture type, and that large-scale seaweed cultivation may offset the adverse effect of fish and shellfish cultivation on the resting eggs if integrated cultivation is adopted.
NASA Astrophysics Data System (ADS)
Weber, C.; Pohl, S.; Poertner, R.; Pino-Grace, Pablo; Freimark, D.; Wallrapp, C.; Geigle, P.; Czermak, P.
Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.
Raybould, Alan; Caron-Lormier, Geoffrey; Bohan, David A
2011-06-08
Cost-effective and rigorous risk assessments for chemicals may be based on hazard quotients (HQs): the ratio of a measure of exposure to a substance and a measure of the effect of that substance. HQs have been used for many years in ecological risk assessments for the use of synthetic pesticides in agriculture, and methods for calculating pesticide HQs have been adapted for use with transgenic crops. This paper describes how laboratory methods for assessing the ecotoxicological effects of synthetic pesticides have been modified for the measurement of effects of insecticidal proteins, and how these effect measures are combined with exposure estimates to derive HQs for assessing the ecological risks from the cultivation of insect-resistant transgenic crops. The potential for ecological modeling to inform the design of laboratory effects tests for insecticidal proteins is also discussed.
Turkia, Heidi; Sirén, Heli; Penttilä, Merja; Pitkänen, Juha-Pekka
2015-01-01
The amino acid composition of cultivation broth is known to affect the biomass accumulation, productivity, and vitality of yeast during cultivation. A separation method based on capillary electrophoresis with laser-induced fluorescence (LIF) detection was developed for the determination of amino acid consumption by Saccharomyces cerevisiae during beer fermentation. Intraday relative standard deviations were less than 2.1% for migration times and between 2.9% and 9.9% for peak areas. Interday relative standard deviations were less than 2.5% for migration times and between 4.4% and 18.9% for peak areas. The quantification limit was even as low as 62.5 pM which equals to below attomole level detection. The method was applied to study the rate of amino acid utilization during beer fermentation. Copyright © 2014 Elsevier B.V. All rights reserved.
Bioreactor concepts for cell culture-based viral vaccine production.
Gallo-Ramírez, Lilí Esmeralda; Nikolay, Alexander; Genzel, Yvonne; Reichl, Udo
2015-01-01
Vaccine manufacturing processes are designed to meet present and upcoming challenges associated with a growing vaccine market and to include multi-use facilities offering a broad portfolio and faster reaction times in case of pandemics and emerging diseases. The final products, from whole viruses to recombinant viral proteins, are very diverse, making standard process strategies hardly universally applicable. Numerous factors such as cell substrate, virus strain or expression system, medium, cultivation system, cultivation method, and scale need consideration. Reviewing options for efficient and economical production of human vaccines, this paper discusses basic factors relevant for viral antigen production in mammalian cells, avian cells and insect cells. In addition, bioreactor concepts, including static systems, single-use systems, stirred tanks and packed-beds are addressed. On this basis, methods towards process intensification, in particular operational strategies, the use of perfusion systems for high product yields, and steps to establish continuous processes are introduced.
NASA Astrophysics Data System (ADS)
Baram, S.; Ronen, Z.; Kurtzman, D.; Peeters, A.; Dahan, O.
2013-12-01
Land cultivation and dairy waste lagoons are considered to be nonpoint and point sources of groundwater contamination by chloride (Cl-) and nitrate (NO3-). The objective of this work is to introduce a methodology to assess the past and future impacts of such agricultural activities on regional groundwater quality. The method is based on mass balances and on spatial statistical analysis of Cl- and NO3-concentration distributions in the saturated and unsaturated zones. The method enables quantitative analysis of the relation between the locations of pollution point sources and the spatial variability in Cl- and NO3- concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming along with land cultivation has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that leachates from lagoons and the cultivated land have contributed 6.0 and 89.4 % of the total mass of Cl- added to the aquifer and 12.6 and 77.4 % of the total mass of NO3-. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl- and NO3- to the groundwater. A low spatial correlation between the Cl- and NO3- concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl- and NO3-. Results demonstrate that analyzing vadose zone and groundwater data by spatial statistical analysis methods can significantly contribute to the understanding of the relations between groundwater contaminating sources, and to assessing appropriate remediation steps.
Generation of multicellular tumor spheroids by the hanging-drop method.
Timmins, Nicholas E; Nielsen, Lars K
2007-01-01
Owing to their in vivo-like characteristics, three-dimensional (3D) multicellular tumor spheroid (MCTS) cultures are gaining increasing popularity as an in vitro model of tumors. A straightforward and simple approach to the cultivation of these MCTS is the hanging-drop method. Cells are suspended in droplets of medium, where they develop into coherent 3D aggregates and are readily accessed for analysis. In addition to being simple, the method eliminates surface interactions with an underlying substratum (e.g., polystyrene plastic or agarose), requires only a low number of starting cells, and is highly reproducible. This method has also been applied to the co-cultivation of mixed cell populations, including the co-cultivation of endothelial cells and tumor cells as a model of early tumor angiogenesis.
Cultivating Compassion in Undergraduate College Students: Rhetoric or Reality?
ERIC Educational Resources Information Center
Lovette-Colyer, Michael
2013-01-01
While American colleges and universities are unparalleled in their ability to produce disciplinary-based knowledge through research and scholarship, their ability to encourage students to use the information and methods about which they are learning to create positive social change has lagged. Aware of the magnitude of today's global issues and…
NASA Astrophysics Data System (ADS)
Keller, Rebecca A.
The purpose of this study is to examine how educators are working to foster sustainability through cultivating nature awareness in young children. Data were collected in the form of qualitative semi-structured interviews, which were analyzed using descriptive and deductive coding methods. Findings were viewed through the lens of critical pedagogy and the methods and models of teaching for nature awareness, which included ecological literacy, place based education, and education for sustainable development. There were five major themes and findings that emerged from the interviews with the participants in this study: terms and definitions used, personal stories, strategies for teaching nature awareness and sustainability, barriers, and current issues. This study may benefit those wishing to begin or continue to foster sustainability through teaching nature awareness. The literature review presented in the study aims to address the gap between the practice and pedagogy in teaching for nature awareness and sustainability. Keywords: teaching, nature awareness, sustainability, educators, young children, elementary, preschool, school, natural world, ecological literacy, place-based education, education for sustainable development, critical pedagogy
Attached cultivation technology of microalgae for efficient biomass feedstock production.
Liu, Tianzhong; Wang, Junfeng; Hu, Qiang; Cheng, Pengfei; Ji, Bei; Liu, Jinli; Chen, Yu; Zhang, Wei; Chen, Xiaoling; Chen, Lin; Gao, Lili; Ji, Chunli; Wang, Hui
2013-01-01
The potential of microalgae biofuel has not been realized because of low productivity and high costs associated with the current cultivation systems. In this paper, an attached cultivation method was introduced, in which microalgae cells grew on the surface of vertical artificial supporting material to form algal film. Multiple of the algal films were assembled in an array fashion to dilute solar irradiation to facilitate high photosynthetic efficiency. Results showed that a broad range of microalgae species can grow with this attached method. A biomass productivity of 50-80 g m(-2) d(-1) was obtained outdoors for Scenedesmus obliquus, corresponding to the photosynthetic efficiency of 5.2-8.3% (total solar radiation). This attached method also offers lots of possible advantages over traditional open ponds, such as on water saving, harvesting, contamination controlling and scale-up. The attached cultivation represents a promising technology for economically viable production of microalgae biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fu, Yong-Bi
2012-01-01
Cultivated flax (Linum usitatissimum L.) is the earliest oil and fiber crop and its early domestication history may involve multiple events of domestication for oil, fiber, capsular indehiscence, and winter hardiness. Genetic studies have demonstrated that winter cultivated flax is closely related to oil and fiber cultivated flax and shows little relatedness to its progenitor, pale flax (L. bienne Mill.), but winter hardiness is one major characteristic of pale flax. Here, we assessed the genetic relationships of 48 Linum samples representing pale flax and four trait-specific groups of cultivated flax (dehiscent, fiber, oil, and winter) through population-based resequencing at 24 genomic regions, and revealed a winter group of cultivated flax that displayed close relatedness to the pale flax samples. Overall, the cultivated flax showed a 27% reduction of nucleotide diversity when compared with the pale flax. Recombination frequently occurred at these sampled genomic regions, but the signal of selection and bottleneck was relatively weak. These findings provide some insight into the impact and processes of flax domestication and are significant for expanding our knowledge about early flax domestication, particularly for winter hardiness. PMID:22822439
NASA Astrophysics Data System (ADS)
Fujiki, Shogoro; Okada, Kei-ichi; Nishio, Shogo; Kitayama, Kanehiro
2016-09-01
We developed a new method to estimate stand ages of secondary vegetation in the Bornean montane zone, where local people conduct traditional shifting cultivation and protected areas are surrounded by patches of recovering secondary vegetation of various ages. Identifying stand ages at the landscape level is critical to improve conservation policies. We combined a high-resolution satellite image (WorldView-2) with time-series Landsat images. We extracted stand ages (the time elapsed since the most recent slash and burn) from a change-detection analysis with Landsat time-series images and superimposed the derived stand ages on the segments classified by object-based image analysis using WorldView-2. We regarded stand ages as a response variable, and object-based metrics as independent variables, to develop regression models that explain stand ages. Subsequently, we classified the vegetation of the target area into six age units and one rubber plantation unit (1-3 yr, 3-5 yr, 5-7 yr, 7-30 yr, 30-50 yr, >50 yr and 'rubber plantation') using regression models and linear discriminant analyses. Validation demonstrated an accuracy of 84.3%. Our approach is particularly effective in classifying highly dynamic pioneer vegetation younger than 7 years into 2-yr intervals, suggesting that rapid changes in vegetation canopies can be detected with high accuracy. The combination of a spectral time-series analysis and object-based metrics based on high-resolution imagery enabled the classification of dynamic vegetation under intensive shifting cultivation and yielded an informative land cover map based on stand ages.
[Method of culturing microorganisms at constant concentrations of the nutrient components].
Markvichev, N S; Manakov, M N
1985-01-01
A method for batch cultivation of microorganisms in a flow medium is described, characterized by slight changes in concentrations of medium components in time and by the absence of products of vital activity of microorganisms in the fermentation medium. The conditions are achieved due to application of a fermentation installation with a microfiltrative membrane that separates the cells of cultivated microorganisms from the culture fluid and due to increasing the flow rate to a value at which the inlet and outlet concentrations of the medium components are almost equal. The cells of cultivated microorganisms under such conditions remain in the fermentation medium volume. The system was called "Ekostat". If the process is performed in "Ekostat" system, a positive deviation from the logarithmic law is observed for the growth rate of the yeast Candida utilis VSB-651 on ethanol cultivation.
Ganjurjav, Hasbagan; Hu, Guozheng; Wan, Yunfan; Li, Yue; Danjiu, Luobu; Gao, Qingzhu
2018-02-01
Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using open-top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai-Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO 2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber-based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming-induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.
NASA Astrophysics Data System (ADS)
Anggraini, Citrae Permata Kusuma; Sasongko, Nugroho Adi; Kuntjoro, Yanif Dwi
2018-02-01
NTT is a province located in strategic areas between Bali and South Sulawesi which has economic growth 5,08% in 2016. This causes air transportation in NTT to grow rapidly so the need for avtur is increased by 6% per year. To meet the needs of avtur in NTT would require energy diversification with bioavtur development in which one of them comes from microalgae. The content of lipid and hydrocarbon in microalgae can be used as a source of bioavtur feedstock. The suitability of location for cultivation will influence the success of microalgae cultivation that will be used as a source of bioavtur feedstock. The purpose of this research is to choose the best location for microalgae cultivation in NTT by AHP method. The criteria used in this research are nutrient, water and technology. Sub criteria of nutrient elements are coal power plant emission, cement industry emission and synthetic fertilizers, sub criteria from water that is sea water, brackish water and fresh water, while sub criteria of technology are Photobioreactor, Open Raceway Pond and membrane. The result of AHP analysis shows the selection of microalgae cultivation location in Kupang with the weight of 0.308, with the source of nutrient derived from coal power plant emission, the type of water used is sea water and the technology used is Photobioreactor. Microalgae species used were Nannochloropsis sp with a lipid content of 31-68%. Based on the author assumption, microalgae have the productivity for bioavtur manufacture which amount of 24.489kL/ha/ yr. That can be used to meet the needs of 2% avtur in NTT which amount of 1.052,22 kL/yr and the area requirement for microalgae cultivation is 2,14 hectare.
Biofilm based attached cultivation technology for microalgal biorefineries-A review.
Wang, Junfeng; Liu, Wen; Liu, Tianzhong
2017-11-01
The attached cultivation for microalga has many superiorities over the conventional aqua-suspend methods, which make it a promising pathway to supply feedstock for microalgae based bio-refinery attempts. In this review, the current reports on bioreactor, application, modeling, substratum material and engineering aspects were summarized and the future research and developments should be focused on the following aspects: 1) Build principles and guidelines for rational structure design by studying the relationship of physiological properties with typical structures and light regimes; 2) Set up theory foundation of substratum material selection by studying the physic-chemical properties of algal cells and substratum materials; 3) Further understanding the mass transfer behaviors of both CO 2 and nutrients in biofilm for enhanced growth rate and products accumulation; 4) New equipment and machines for inoculation, harvesting and moisture keeping should be developed and integrated with bioreactor structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aeration strategy for biofilm cultivation of the microalga Scenedesmus dimorphus.
Ji, Chunli; Wang, Junfeng; Liu, Tianzhong
2015-10-01
Biofilm cultivation of microalgae may be useful for biofuel production. However, many aspects for this cultivation method have not been well assessed. Accordingly, aeration strategy for biofilm cultivation of Scenedesmus dimorphus has been explored. Biomass, lipid and triacylglycerol (TAG) productivity in increased S. dimorphus as the CO2 concentration increased within 0.038-0.5% and kept constant with further increases. The biomass, lipid and TAG productivity increased with the speed increasing and an obvious threshold point was observed at 6.6 ml(-2) min(-1). The lipid and TAG content was unaffected by the aeration rate. Both the CO2 concentration as well as aeration speed affected the growth of S. dimorphus in biofilm cultivation. The optimized aeration strategy for biofilm cultivation was continuous air flow enriched with 1% CO2 (v/v) at 6.6 ml(-2) min(-1).
Sanitary Norms of the Design of Industrial Enterprises. SN 245-71.
1979-07-09
Plants of feed 4ntibiotics. 3. Fish trades. 4. Cattle bases to 1000 heads of given cattle. 5. Shops for production of ferments with surface method of...sirloin with scrap processing shops, fisheries. 9. Shops for production of ferments with deep method of cultivation. 10. Beet sugar plants without pulp...zone by size/dimension 50 a. 1. Confectionery factories. 2. Production of table vinegar . 3. Enterprises tobacco-lov-grade tobacco (tobacco
Joyce, Priya; Kuwahata, Melissa; Turner, Nicole; Lakshmanan, Prakash
2010-02-01
A reproducible method for transformation of sugarcane using various strains of Agrobacterium tumefaciens (A. tumefaciens) (AGL0, AGL1, EHA105 and LBA4404) has been developed. The selection system and co-cultivation medium were the most important factors determining the success of transformation and transgenic plant regeneration. Plant regeneration at a frequency of 0.8-4.8% occurred only when callus was transformed with A. tumefaciens carrying a newly constructed superbinary plasmid containing neomycin phosphotransferase (nptII) and beta-glucuronidase (gusA) genes, both driven by the maize ubiquitin (ubi-1) promoter. Regeneration was successful in plants carrying the nptII gene but not the hygromycin phosphotransferase (hph) gene. NptII gene selection was imposed at a concentration of 150 mg/l paromomycin sulphate and applied either immediately or 4 days after the co-cultivation period. Co-cultivation on Murashige and Skoog (MS)-based medium for a period of 4 days produced the highest number of transgenic plants. Over 200 independent transgenic lines were created using this protocol. Regenerated plants appeared phenotypically normal and contained both gusA and nptII genes. Southern blot analysis revealed 1-3 transgene insertion events that were randomly integrated in the majority of the plants produced.
Kusić, Dragana; Rösch, Petra; Popp, Jürgen
2016-03-01
Legionellae colonize biofilms, can form a biofilm by itself and multiply intracellularly within the protozoa commonly found in water distribution systems. Approximately half of the known species are pathogenic and have been connected to severe multisystem Legionnaires' disease. The detection methods for Legionella spp. in water samples are still based on cultivation, which is time consuming due to the slow growth of this bacterium. Here, we developed a cultivation-independent, label-free and fast detection method for legionellae in a biofilm matrix based on the Raman spectroscopic analysis of isolated single cells via immunomagnetic separation (IMS). A database comprising the Raman spectra of single bacterial cells captured and separated from the biofilms formed by each species was used to build the identification method based on a support vector machine (SVM) discriminative classifier. The complete method allows the detection of Legionella spp. in 100 min. Cross-reactivity of Legionella spp. specific immunomagnetic beads to the other studied genera was tested, where only small cell amounts of Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli compared to the initial number of cells were isolated by the immunobeads. Nevertheless, the Raman spectra collected from isolated non-targeted bacteria were well-discriminated from the Raman spectra collected from isolated Legionella cells, whereby the Raman spectra of the independent dataset of Legionella strains were assigned with an accuracy of 98.6%. In addition, Raman spectroscopy was also used to differentiate between isolated Legionella species. Copyright © 2016 Elsevier GmbH. All rights reserved.
Neves, Vinicius M; Heidrich, Graciela M; Hanzel, Flavia B; Muller, Edson I; Dressler, Valderi L
2018-05-01
Rare earth elements (REEs) have several applications but the effects on environment are not well known. Therefore, the aim of this work is to establish a method for direct solid sample analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) to evaluate the concentration and distribution of REEs in cultivated and non-cultivated soil. Samples were collected in two areas to 40 cm of depth. The LA-ICP-MS method is easy to be implemented and the sample treatment is very fast comprising only its drying, grounding and pressing as a pellet. The accuracy of the method was evaluated by using a certified reference material (BCR 667 - Estuarine Sediment, Institute for Reference Materials and Measurements (IRMM)) where good agreement with the certified values was obtained. Analyte recovery at two levels of concentration (2.5 and 15.0 μg g -1 ) was also performed and recoveries in the range of 85%-120% were achieved, values that are acceptable for LA-ICP-MS analysis. In general, the concentration of the REEs is higher in the cultivated soil and increased from the surface to deeper layers, which can be a consequence of fertilizer application. Copyright © 2018 Elsevier Ltd. All rights reserved.
Florencio, C; Cunha, F M; Badino, A C; Farinas, C S
2015-02-01
The development of new cost-effective bioprocesses for the production of cellulolytic enzymes is needed in order to ensure that the conversion of biomass becomes economically viable. The aim of this study was to determine whether a novel sequential solid-state and submerged fermentation method (SF) could be validated for different strains of the Trichoderma genus. Cultivation of the Trichoderma reesei Rut-C30 reference strain under SF using sugarcane bagasse as substrate was shown to be favorable for endoglucanase (EGase) production, resulting in up to 4.2-fold improvement compared with conventional submerged fermentation. Characterization of the enzymes in terms of the optimum pH and temperature for EGase activity and comparison of the hydrolysis profiles obtained using a synthetic substrate did not reveal any qualitative differences among the different cultivation conditions investigated. However, the thermostability of the EGase was influenced by the type of carbon source and cultivation system. All three strains of Trichoderma tested (T. reesei Rut-C30, Trichoderma harzianum, and Trichoderma sp INPA 666) achieved higher enzymatic productivity when cultivated under SF, hence validating the proposed SF method for use with different Trichoderma strains. The results suggest that this bioprocess configuration is a very promising development for the cellulosic biofuels industry.
2012-01-01
Background High-throughput methods are widely-used for strain screening effectively resulting in binary information regarding high or low productivity. Nevertheless achieving quantitative and scalable parameters for fast bioprocess development is much more challenging, especially for heterologous protein production. Here, the nature of the foreign protein makes it impossible to predict the, e.g. best expression construct, secretion signal peptide, inductor concentration, induction time, temperature and substrate feed rate in fed-batch operation to name only a few. Therefore, a high number of systematic experiments are necessary to elucidate the best conditions for heterologous expression of each new protein of interest. Results To increase the throughput in bioprocess development, we used a microtiter plate based cultivation system (Biolector) which was fully integrated into a liquid-handling platform enclosed in laminar airflow housing. This automated cultivation platform was used for optimization of the secretory production of a cutinase from Fusarium solani pisi with Corynebacterium glutamicum. The online monitoring of biomass, dissolved oxygen and pH in each of the microtiter plate wells enables to trigger sampling or dosing events with the pipetting robot used for a reliable selection of best performing cutinase producers. In addition to this, further automated methods like media optimization and induction profiling were developed and validated. All biological and bioprocess parameters were exclusively optimized at microtiter plate scale and showed perfect scalable results to 1 L and 20 L stirred tank bioreactor scale. Conclusions The optimization of heterologous protein expression in microbial systems currently requires extensive testing of biological and bioprocess engineering parameters. This can be efficiently boosted by using a microtiter plate cultivation setup embedded into a liquid-handling system, providing more throughput by parallelization and automation. Due to improved statistics by replicate cultivations, automated downstream analysis, and scalable process information, this setup has superior performance compared to standard microtiter plate cultivation. PMID:23113930
Production of microbial biosurfactants by solid-state cultivation.
Krieger, Nadia; Camilios Neto, Doumit; Mitchell, David Alexander
2010-01-01
In recent years biosurfactants have attracted attention because of their low toxicity, biodegradability and ecological acceptability. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Solid-state cultivation represents an alternative technology for biosurfactant production that can bring two important advantages: firstly, it allows the use of inexpensive substrates and, secondly, it avoids the problem of foaming that complicates submerged cultivation processes for biosurfactant production. In this chapter we show that, despite its potential, to date relatively little attention has been given to solid-state cultivation for biosurfactant production. We also note that this cultivation technique brings its own challenges, such as the selection of a bioreactor type that will allow adequate heat removal, of substrates with appropriate physico-chemical properties and of methods for monitoring of the cultivation process and recovering the biosurfactants from the fermented solid. With suitable efforts in research, solid-state cultivation can be used for large-scale production of biosurfactants.
Land use impact on soil quality in eastern Himalayan region of India.
Singh, A K; Bordoloi, L J; Kumar, Manoj; Hazarika, S; Parmar, Brajendra
2014-04-01
Quantitative assessment of soil quality is required to determine the sustainability of land uses in terms of environmental quality and plant productivity. Our objective was to identify the most appropriate soil quality indicators and to evaluate the impact of six most prevalent land use types (natural forestland, cultivated lowland, cultivated upland terrace, shifting cultivation, plantation land, and grassland) on soil quality in eastern Himalayan region of India. We collected 120 soil samples (20 cm depth) and analyzed them for 29 physical, chemical, and biological soil attributes. For selection of soil quality indicators, principal component analysis (PCA) was performed on the measured attributes, which provided four principal components (PC) with eigenvalues >1 and explaining at least 5% of the variance in dataset. The four PCs together explained 92.6% of the total variance. Based on rotated factor loadings of soil attributes, selected indicators were: soil organic carbon (SOC) from PC-1, exchangeable Al from PC-2, silt content from PC-3, and available P and Mn from PC-4. Indicators were transformed into scores (linear scoring method) and soil quality index (SQI) was determined, on a scale of 0-1, using the weighting factors obtained from PCA. SQI rating was the highest for the least-disturbed sites, i.e., natural forestland (0.93) and grassland (0.87), and the lowest for the most intensively cultivated site, i.e., cultivated upland terrace (0.44). Ratings for the other land uses were shifting cultivation (0.60) > cultivated low land (0.57) > plantation land (0.54). Overall contribution (in percent) of the indicators in determination of SQI was in the order: SOC (58%) > exch. Al (17.1%) > available P (8.9%) > available Mn (8.2%) > silt content (7.8%). Results of this study suggest SOC and exch. Al as the two most powerful indicators of soil quality in study area. Thus, organic C and soil acidity management holds the key to improve soil quality under many exploitatively cultivated land use systems in eastern Himalayan region of India.
Study on diversified cultivation orientation and pattern of optoelectronic major undergraduates
NASA Astrophysics Data System (ADS)
Liu, Zhiying
2017-08-01
To improve the research quality preparation for graduate study and looking for job competition ability of undergraduates students, the education orientation objective need to be explicit. Universities need develop undergraduates' cultivation plan according to students' classification. Based on analysis of students export characteristic, there will be corresponding cultivation plan. Keep tracking study during the cultivation plan implantation process, the Curriculum system and related manage documents are revised corresponding to exist problems. There are mainly three kinds of undergraduates' career direction plan for opto-electronic major undergraduates. In addition to the vast majority university graduates opting for direct employment, nearly one third of university students choose to take part in the postgraduate entrance exams and other further education abroad, and also one-tenth choose their own businesses, university chooses are diversified. The exports are further studying as graduates, working and study abroad. Because national defense students are also recruited, the cultivation plan will be diversified to four types. For students, who go to work directly after graduation, the "Excellence engineers plan" is implemented to enhance their practice ability. For students, who will study further as graduate student, the scientific innovation research ability cultivation is paid more attention to make good foundation for their subsequent development. For students, who want to study abroad after graduation, the bilingual teaching method is introduced, and the English environment is built. We asked foreign professionals to give lectures for students. The knowledge range is extending, and the exchange and cooperation chance is provided at the same time. And the cultivation plan is revised during docking with Universities abroad. For national defense students, combat training and other defense theory courses are added to make them familiar with force knowledge. And with national defense students' excellence engineer plan, more army practice chance is provided. The students can integrate into army life much faster. The advantages of national defense students are much more highlighted. The graduates can serve motherland better than before. It is shown from the practice process that the revised cultivation plan is suitable for diversified undergraduates. And the education result is improved in a large amount consequently.
Xiang, Xiaozhao; Wang, Xiaoxia; Bian, Yinbing; Xu, Zhangyi
2016-07-01
Wolfiporia cocos is a well-known medicinal mushroom, and its dried sclerotia has been widely used as a traditional medicine in China, Japan, and other Asian countries for centuries. However, long-term asexual reproduction of the breeding system in W. cocos results in a current universal degeneration of cultivated strains. To develop a W. cocos breeding program that will benefit commercial cultivation, we previously developed an optimum method for indoor induction of W. cocos fruiting bodies and clarified the nature of preponderant binuclear sexual basidiospores. In this paper, we first show that the majority of W. cocos single-spore isolates cannot form sclerotium in field cultivation. We then investigated the possibility of breeding new strains by crossbreeding. Three types of mating reactions were observed in both intra-strain pairings and inter-strain pairings, and a total of fifty-five hybrids were selected by antagonistic testing and allele-specific polymerase chain reaction (PCR). Field cultivation of hybrids demonstrated that some hybrids can form sclerotium via two cultivated methods. Two new high-yield strains were identified. This report will stimulate new thinking on W. cocos and promote further extensive studies on crossbreeding in W. cocos, a new topic related to the development of more efficient protocols for the discrimination of hybrids in W. cocos.
ERIC Educational Resources Information Center
Kemple, Martin T.
2000-01-01
Nonlinear imagination-based thinking draws on intuition to allow insight into the unseen realms that govern everyday life. Largely abandoned by Western education in favor of materialist rationalism, this faculty is being promoted by a sustainability center in Montpelier (Vermont) that demonstrates methods of harmonizing thinking, learning, and…
ERIC Educational Resources Information Center
Cheng, Kai Wen
2011-01-01
Background: Facing highly competitive and changing environment, cultivating citizens with problem-solving attitudes is one critical vision of education. In brief, the importance of education is to cultivate students with practical abilities. Realizing the advantages of web-based cooperative learning (web-based CL) and creative problem solving…
NASA Astrophysics Data System (ADS)
Tao, Zhanhua; Zhang, Pengfei; Qin, Zhaojun; Li, Yong-Qing; Wang, Guiwen
2016-09-01
Cupriavidus necator accumulates large amounts of poly(3-hydroxybutyrate) (PHB), a biodegradable substitute for petroleum-based plastics, under certain nutrient conditions. Conventional solvent-extraction-based methods for PHB quantification only obtain average information from cell populations and, thus, mask the heterogeneity among individual cells. Laser tweezers Raman spectroscopy (LTRS) was used to monitor dynamic changes in the contents of PHB, nucleic acids, and proteins in C. necator at the population and single-cell levels when the microorganism cells were cultivated at various carbon-to-nitrogen ratios. The biosynthetic activities of nucleic acids and proteins were maintained at high levels, and only a small amount of PHB was produced when the bacterial cells were cultured under balanced growth conditions. By contrast, the syntheses of nucleic acids and proteins were blocked, and PHB was accumulated in massive amount inside the microbial cells under nitrogen-limiting growth circumstances. Single-cell analysis revealed a relatively high heterogeneity in PHB level at the early stage of the bacterial growth. Additionally, bacterial cells in populations at certain cultivation stages were composed of two or three subpopulations on the basis of their PHB abundance. Overall, LTRS is a reliable single-cell analysis tool that can provide insights into PHB fermentation.
Suzuki, Ikurou; Sugio, Yoshihiro; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Yasuda, Kenji
2004-07-01
Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can provide detailed information on the relationship between the forward and feedback signaling. We have developed a method for topographical control of the direction of synaptic connections within a living neuronal network using a new type of individual-cell-based on-chip cell-cultivation system with an agarose microchamber array (AMCA). The advantages of this system include the possibility to control positions and number of cultured cells as well as flexible control of the direction of elongation of axons through stepwise melting of narrow grooves. Such micrometer-order microchannels are obtained by photo-thermal etching of agarose where a portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created neural network from individual Rat hippocampal cells. We were able to control elongation of individual axons during cultivation (from cells contained within the AMCA) by non-destructive stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell cultivation system for the controlled development of individual cell-based neural networks.
A Natural View of Microbial Biodiversity within Hot Spring Cyanobacterial Mat Communities
Ward, David M.; Ferris, Michael J.; Nold, Stephen C.; Bateson, Mary M.
1998-01-01
This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none of 31 unique 16S rRNA sequences detected in the Octopus Spring mat, Yellowstone National Park, matches that of any prokaryote previously cultivated from geothermal systems; 11 are contributed by genetically diverse cyanobacteria, even though a single cyanobacterial species was suspected based on morphologic and culture analysis. By studying the basis for the incongruity between culture and molecular samplings of community composition, we are beginning to cultivate isolates whose 16S rRNA sequences are readily detected. By placing the genetic diversity detected in context with the well-defined natural environmental gradients typical of hot spring mat systems, the relationship between gene and species diversity is clarified and ecological patterns of species occurrence emerge. By combining these ecological patterns with the evolutionary patterns inherently revealed by phylogenetic analysis of gene sequence data, we find that it may be possible to understand microbial biodiversity within these systems by using principles similar to those developed by evolutionary ecologists to understand biodiversity of larger species. We hope that such an approach guides microbial ecologists to a more realistic and predictive understanding of microbial species occurrence and responsiveness in both natural and disturbed habitats. PMID:9841675
A natural view of microbial biodiversity within hot spring cyanobacterial mat communities
NASA Technical Reports Server (NTRS)
Ward, D. M.; Ferris, M. J.; Nold, S. C.; Bateson, M. M.
1998-01-01
This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none of 31 unique 16S rRNA sequences detected in the Octopus Spring mat, Yellowstone National Park, matches that of any prokaryote previously cultivated from geothermal systems; 11 are contributed by genetically diverse cyanobacteria, even though a single cyanobacterial species was suspected based on morphologic and culture analysis. By studying the basis for the incongruity between culture and molecular samplings of community composition, we are beginning to cultivate isolates whose 16S rRNA sequences are readily detected. By placing the genetic diversity detected in context with the well-defined natural environmental gradients typical of hot spring mat systems, the relationship between gene and species diversity is clarified and ecological patterns of species occurrence emerge. By combining these ecological patterns with the evolutionary patterns inherently revealed by phylogenetic analysis of gene sequence data, we find that it may be possible to understand microbial biodiversity within these systems by using principles similar to those developed by evolutionary ecologists to understand biodiversity of larger species. We hope that such an approach guides microbial ecologists to a more realistic and predictive understanding of microbial species occurrence and responsiveness in both natural and disturbed habitats.
Rice cultivation and methane emission: Documentation of distributed geographic data sets
NASA Technical Reports Server (NTRS)
Matthews, Elaine; John, Jasmin; Fung, Inez
1994-01-01
High-resolution global data bases on the geographic and seasonal distribution of rice cultivation and associated methane emission, compiled by Matthews et al., were archived for public use. In addition to the primary data sets identifying location, seasonality, and methane emission from rice cultivation, a series of supporting data sets is included, allowing users not only to replicate the work of Matthews et al. but to investigate alternative cultivation and emission scenarios. The suite of databases provided, at 1 latitude by 1 longitude resolution for the globe, includes (1) locations of rice cultivation, (2) monthly arrays of actively growing rice areas, (3) countries and political subdivisions, and (4) monthly arrays of methane emission from rice cultivation. Ancillary data include (1) a listing, by country, of harvested rice areas and seasonal distribution of crop cycles and (2) country names and codes. Summary tables of zonal/monthly distributions of actively growing rice areas and of methane emissions are presented. Users should consult original publications for complete discussion of the data bases. This short paper is designed only to document formats of the distributed information and briefly describe the contents of the data sets and their initial application to evaluating the role of rice cultivation in the methane budget.
Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.
2014-01-01
Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer’s accuracy of 93% and a user’s accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.
NASA Astrophysics Data System (ADS)
Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.
2014-01-01
Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer's accuracy of 93% and a user's accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.
Microbial monitoring of spacecraft and associated environments
NASA Technical Reports Server (NTRS)
La Duc, M. T.; Kern, R.; Venkateswaran, K.
2004-01-01
Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained. Copyright 2004 Springer-Verlag.
Environmental Consequences of an Industry Based on Harvesting the Wild Desert Shrub Jojoba.
ERIC Educational Resources Information Center
Foster, Kennith E.
1980-01-01
Described are the economic and agricultural issues surrounding the cultivation of desert plants, principally the jojoba, as a source of fuel. The article examines the environmental impacts of an industry based on arid-region cultivation of such plants. (RE)
Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen
2009-01-01
Background In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. Results To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only ± 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. Conclusion The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization. PMID:19646274
On-Site Production of Cellulolytic Enzymes by the Sequential Cultivation Method.
Farinas, Cristiane S; Florencio, Camila; Badino, Alberto C
2018-01-01
The conversion of renewable lignocellulosic biomass into fuels, chemicals, and high-value materials using the biochemical platform has been considered the most sustainable alternative for the implementation of future biorefineries. However, the high cost of the cellulolytic enzymatic cocktails used in the saccharification step significantly affects the economics of industrial large-scale conversion processes. The on-site production of enzymes, integrated to the biorefinery plant, is being considered as a potential strategy that could be used to reduce costs. In such approach, the microbial production of enzymes can be carried out using the same lignocellulosic biomass as feedstock for fungal development and biofuels production. Most of the microbial cultivation processes for the production of industrial enzymes have been developed using the conventional submerged fermentation. Recently, a sequential solid-state followed by submerged fermentation has been described as a potential alternative cultivation method for cellulolytic enzymes production. This chapter presents the detailed procedure of the sequential cultivation method, which could be employed for the on-site production of the cellulolytic enzymes required to convert lignocellulosic biomass into simple sugars.
Teaching practice of the course of Laser Principle and Application based on PBL mode
NASA Astrophysics Data System (ADS)
Li, Yongliang; Lv, Beibei; Wang, Siqi
2017-08-01
The primary task of university education is to stimulate students' autonomic learning and cultivate students' creative thinking. This paper put to use problem based learning (PBL) teaching mode, to enable students master flexible knowledge as the goal, and a detailed analysis of the implementation method and concrete measures of PBL teaching reform in the course of Laser Principle and Application, then compared with the former teaching methods. From the feedback of students and teaching experience, we get good teaching effect and prove the feasibility of PBL teaching mode in practice.
A high throughput screen for biomining cellulase activity from metagenomic libraries.
Mewis, Keith; Taupp, Marcus; Hallam, Steven J
2011-02-01
Cellulose, the most abundant source of organic carbon on the planet, has wide-ranging industrial applications with increasing emphasis on biofuel production (1). Chemical methods to modify or degrade cellulose typically require strong acids and high temperatures. As such, enzymatic methods have become prominent in the bioconversion process. While the identification of active cellulases from bacterial and fungal isolates has been somewhat effective, the vast majority of microbes in nature resist laboratory cultivation. Environmental genomic, also known as metagenomic, screening approaches have great promise in bridging the cultivation gap in the search for novel bioconversion enzymes. Metagenomic screening approaches have successfully recovered novel cellulases from environments as varied as soils (2), buffalo rumen (3) and the termite hind-gut (4) using carboxymethylcellulose (CMC) agar plates stained with congo red dye (based on the method of Teather and Wood (5)). However, the CMC method is limited in throughput, is not quantitative and manifests a low signal to noise ratio (6). Other methods have been reported (7,8) but each use an agar plate-based assay, which is undesirable for high-throughput screening of large insert genomic libraries. Here we present a solution-based screen for cellulase activity using a chromogenic dinitrophenol (DNP)-cellobioside substrate (9). Our library was cloned into the pCC1 copy control fosmid to increase assay sensitivity through copy number induction (10). The method uses one-pot chemistry in 384-well microplates with the final readout provided as an absorbance measurement. This readout is quantitative, sensitive and automated with a throughput of up to 100X 384-well plates per day using a liquid handler and plate reader with attached stacking system.
NASA Astrophysics Data System (ADS)
Idris, Norfatiha; Aminah Lutpi, Nabilah; Ruhaizul Che Ridzuan, Che Mohd; Shian, Wong Yee; Nuraiti Tengku Izhar, Tengku
2018-03-01
Repeated batch cultivation is known as most attractive method in improving hydrogen productivity, due to the facts that this approach could minimize the reuse of the cell and the inoculum preparation. In addition, with the combination of attach growth system during the fermentation processes to produce biohydrogen, the density of cells will be increased and the cell washout could be avoided. Therefore, this study aimed to examine the effectiveness of repeated batch cultivation for enrichment of anaerobic mixed culture onto granular activated carbon (GAC) and investigate the effect of molasses concentration during immobilization of mixed culture onto the GAC. The molasses concentration using 50 %, 40 %, 30 %, 20 % and 10 % of diluted molasses were used as feedstock in the fermentation process. The maximum hydrogen production of 60 ml was obtained at 30 % of molasses concentration with 831 ppm of hydrogen concentration. Thus, the kinetic parameter obtained from the batch profiling based on modified Gompertz equation are, Hm= 58 ml for the maximum hydrogen production and Rm= 2.02 ml/h representing the hydrogen production rate.
Microbiologic tests in epidemiologic studies: are they reproducible?
Aass, A M; Preus, H R; Zambon, J J; Gjermo, P
1994-12-01
Microbiologic assessments are often included in longitudinal studies to elucidate the significance of the association of certain Gram-negative bacteria and the development of periodontal diseases. In such studies, the reliability of methods is crucial. There are several methods to identify putative pathogens, and some of them are commercially available. The purpose of the present study was to compare the reproducibility of four different methods for detecting Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia in order to evaluate their usefulness in epidemiologic studies. The test panel consisted of 10 young subjects and 10 adult periodontitis patients. Subgingival plaque was sampled from sites showing bone loss and "healthy" control sites. The four different methods for detecting the target bacteria were 1) cultivation, 2) Evalusite (a chair-side kit based on ELISA), 3) OmniGene, Inc, based on DNA probes, and 4) indirect immunofluorescence (IIF). The test procedure was repeated after a 1-wk interval and was performed by one examiner. Sites reported to be positive for a microorganism by any of the four methods at one or both examinations were considered to be positive for that organism and included in the analysis. The reproducibility of the four methods was low. The IIF and the cultivation methods showed somewhat higher reproducibility than did the commercial systems. A second test was done for Evalusite, three paper points for sampling being used instead of one as described in the manual. The reproducibility of the second test was improved, indicating that the detection level of the system may influence the reliability.
2009-10-19
20 Analysis of Results ........................................................................................................... 25...Process in a Conceptual Fischer-Tropsch Plant ......................... 8 Figure 2. Algae cultivation methods: PBR and open racetrack ponds (left to...proceeds to the results of the evaluation and the analysis of results. The argument focuses on each alternative fuel and how well it meets the
Advanced continuous cultivation methods for systems microbiology.
Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo
2015-09-01
Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.
USDA-ARS?s Scientific Manuscript database
Cultivated emmer wheat (Triticum turgidum ssp. dicoccum) is tetraploid and considered one of the eight founder crops that spawned the Agricultural Revolution about 10,000 years ago. Cultivated emmer has non-free-threshing seed and a somewhat fragile rachis, but mutations in genes governing these an...
Hernández-Macedo, Maria Lucila; Barancelli, Giovana Verginia; Contreras-Castillo, Carmen Josefina
2011-01-01
Gas production from microbial deterioration in vacuum-packs of chilled meat leads to pack distension, which is commonly referred as blown pack. This phenomenon is attributed to some psychrophilic and psychrotrophic Clostridium species, as well as Enterobacteria. The ability of these microorganisms to grow at refrigeration temperatures makes the control by the meat industry a challenge. This type of deterioration has been reported in many countries including some plants in the Midwestern and Southeastern regions of Brazil. In addition to causing economic losses, spoilage negatively impacts the commercial product brand, thereby impairing the meat industry. In the case of strict anaerobes species they are difficult to grow and isolate using culture methods in conventional microbiology laboratories. Furthermore, conventional culture methods are sometimes not capable of distinguishing species or genera. DNA-based molecular methods are alternative strategies for detecting viable and non-cultivable microorganisms and strict anaerobic microorganisms that are difficult to cultivate. Here, we review the microorganisms and mechanisms involved in the deterioration of vacuum-packaged chilled meat and address the use of molecular methods for detecting specific strict anaerobic microorganisms and microbial communities in meat samples.
Egger, Dominik; Schwedhelm, Ivo; Hansmann, Jan; Kasper, Cornelia
2017-05-23
Extensive expansion of mesenchymal stem cells (MSCs) for cell-based therapies remains challenging since long-term cultivation and excessive passaging in two-dimensional conditions result in a loss of essential stem cell properties. Indeed, low survival rate of cells, alteration of surface marker profiles, and reduced differentiation capacity are observed after in vitro expansion and reduce therapeutic success in clinical studies. Remarkably, cultivation of MSCs in three-dimensional aggregates preserve stem cell properties. Hence, the large scale formation and cultivation of MSC aggregates is highly desirable. Besides other effects, MSCs cultivated under hypoxic conditions are known to display increased proliferation and genetic stability. Therefore, in this study we demonstrate cultivation of adipose derived human MSC aggregates in a stirred tank reactor under hypoxic conditions. Although aggregates were exposed to comparatively high average shear stress of 0.2 Pa as estimated by computational fluid dynamics, MSCs displayed a viability of 78-86% and maintained their surface marker profile and differentiation potential after cultivation. We postulate that cultivation of 3D MSC aggregates in stirred tank reactors is valuable for large-scale production of MSCs or their secreted compounds after further optimization of cultivation parameters.
Li, Y; Saxena, D; Barnes, V M; Trivedi, H M; Ge, Y; Xu, T
2006-10-01
Clinical evaluation of oral microbial reduction after a standard prophylactic treatment has traditionally been based on bacterial cultivation methods. However, not all microbes in saliva or dental plaque can be cultivated. Polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) is a cultivation-independent molecular fingerprinting technique that allows the assessment of the predominant bacterial species present in the oral cavity. This study sought to evaluate the oral microbial changes that occurred after a standard prophylactic treatment with a conventional oral care product using PCR-DGGE. Twelve healthy adults participated in the study. Pooled plaque samples were collected at baseline, 24 h after prophylaxis (T1), and 4 days after toothbrushing with fluoride toothpaste (T4). The total microbial genomic DNA of the plaque was isolated. PCR was performed with a set of universal bacterial 16S rDNA primers. The PCR-amplified 16S rDNA fragments were separated by DGGE. The effects of the treatment and of dental brushing were assessed by comparing the PCR-DGGE fingerprinting profiles. The mean numbers of detected PCR amplicons were 22.3 +/- 6.1 for the baseline group, 13.0 +/- 3.1 for the T1 group, and 13.5 +/- 4.3 for the T4 group; the differences among the three groups were statistically significant (P < 0.01). The study also found a significant difference in the mean similarities of microbial profiles between the baseline and the treatment groups (P < 0.001). PCR-based DGGE has been shown to be an excellent means of rapidly and accurately assessing oral microbial changes in this clinical study.
Weed Control for Establishing Intensively Cultured Hybrid Poplar Plantations
Edward Hansen; Daniel Netzer; W.J. Rietveld
1984-01-01
Compares effeects of various wee-control methods, including hericides, cultivation, and legume cover crop, on tree survival and height growth of 2-year-old hybrid poplars. Cultivation and herbicides singly or in combination gave consistently better results than the other treatment tested.
Tembrock, Luke R; Simmons, Mark P; Richards, Christopher M; Reeves, Patrick A; Reilley, Ann; Curto, Manuel A; Meimberg, Harald; Ngugi, Grace; Demissew, Sebsebe; Al Khulaidi, Abdul Wali; Al-Thobhani, Mansoor; Simpson, Sheron; Varisco, Daniel M
2017-04-01
Qat ( Catha edulis , Celastraceae) is a woody plant species cultivated for its stimulant alkaloids. Qat is important to the economy and culture in large regions of Ethiopia, Kenya, and Yemen. Despite the importance of this species, the wild origins and dispersal of cultivars have only been described in often contradictory historical documents. We examined the wild origins, human-mediated dispersal, and genetic divergence of cultivated qat compared to wild qat. We sampled 17 SSR markers and 1561 wild and cultivated individuals across the historical areas of qat cultivation. On the basis of genetic structure inferred using Bayesian and nonparametric methods, two centers of origin in Kenya and one in Ethiopia were found for cultivated qat. The centers of origin in Ethiopia and northeast of Mt. Kenya are the primary sources of cultivated qat genotypes. Qat cultivated in Yemen is derived from Ethiopian genotypes rather than Yemeni wild populations. Cultivated qat with a wild Kenyan origin has not spread to Ethiopia or Yemen, whereas a small minority of qat cultivated in Kenya originated in Ethiopia. Hybrid genotypes with both Ethiopian and Kenyan parentage are present in northern Kenya. Ethiopian cultivars have diverged from their wild relatives, whereas Kenyan qat has diverged less. This pattern of divergence could be caused by the extinction of the wild-source qat populations in Ethiopia due to deforestation, undersampling, and/or artificial selection for agronomically important traits. © 2017 Tembrock et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).
Zhang, Zhen-Yu; Yuan, Yimin; Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu
2018-01-01
As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4', 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species.
Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu
2018-01-01
As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4’, 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species. PMID:29304141
Erosion Prediction Analysis and Landuse Planning in Gunggung Watershed, Bali, Indonesia
NASA Astrophysics Data System (ADS)
Trigunasih, N. M.; Kusmawati, T.; Yuli Lestari, N. W.
2018-02-01
The purpose of this research is to predict the erosion that occurs in Gunggung watershed and sustainable landuse management plan. This research used the USLE (Universal Soil Loss Equation) methodology. The method used observation / field survey and soil analysis at the Soil Laboratory of Faculty of Agriculture, Udayana University. This research is divided into 5 stages, (1) land unit determination, (2) Field observation and soil sampling, (3) Laboratory analysis and data collection, (4) Prediction of erosion using USLE (Universal Soil Loss Equation) method, (5) The permissible erosion determination (EDP) then (6) determines the level of erosion hazard based on the depth of the soil, as well as the soil conservation plan if the erosion is greater than the allowed erosion, and (7) determining landuse management plan for sustainable agriculture. Erosion which value is smaller than soil loss tolerance can be exploited in a sustainable manner, while erosion exceeds allowable erosion will be conservation measures. Conservation action is the improvement of vegetation and land management. Land management like improvements the terrace, addition of organic matter, increase plant density, planting ground cover and planting layered header system will increase the land capability classes. Land use recommended after management is mixed plantation high density with forest plants, mix plantation high density with patio bench construction, seasonal cultivation and perennial crops, cultivation of perennial crops and cultivation of seasonal crops.
Li, Li; Liu, Kai; Wei, Sheng-Li; Cheng, Xiao-Li; Liu, Juan; Ren, Guang-Xi; Wang, Wen-Quan
2014-04-01
This study was conducted to investigate the wild and cultivated resource situation of Rheum tanguticum in main production area of China, estimate its reserves, and put forward the feasible approach for the sustainable utilization of R. tanguticum. On the basis of the literature data about R. tanguticum, conbined with interview, investigation and sampling investigation, the total reserve of resources is estimated using the route-quadrat method and the vegetation and soil-type map area method proposed by our research group. The results indicate that there is no obvious change between the present distribution ranges of the wild R. tanguticum and its historical records, but its population density has changed clearly. The reserve of the wild R. tanguticum has seriously declined in lots of place, even faced the exhaustion in some regions. According to the investigation, the resource reserve of the wild R. tanguticum is no more than 5 000 t, and the cultivated is about 1 607 t. The resource reserve of the wild R. tanguticum is nearly depleted, and this suggests that the wild R. tanguticum should be enrolled in the protection plant list, and the cultivated will become the main resource of Rhubarb in the future. So it is extremely neccessary to collect and protect the germplasm resource of R. tanguticum, establish the germplasm nursery and repository, and conduct breeding research on those bases.
Balážová, Tereza; Makovcová, Jitka; Šedo, Ondrej; Slaný, Michal; Faldyna, Martin; Zdráhal, Zbyněk
2014-04-01
Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) represents a simple reliable approach for rapid bacterial identification based on specific peptide/protein fingerprints. However, cell-wall characteristics of mycobacterial species, and their well known stability, complicate MALDI-TOF MS profiling analysis. In this study, we tested two recently published protocols for inactivation and disruption of mycobacteria, and we also examined the influence of different culture conditions (four culture media and five cultivation times) on mass spectral quality and the discriminatory power of the method. We found a significant influence of sample pretreatment method and culture medium on species identification and differentiation for a total of 10 strains belonging to Mycobacterium phlei and Mycobacterium smegmatis. Optimum culture conditions yielding the highest identification success rate against the BioTyper database (Bruker Daltonics) and permitting the possibility of automatic acquisition of mass spectra were found to be distinct for the two mycobacterial species examined. Similarly, individual changes in growth conditions had diverse effects on the two species. For these reasons, thorough control over cultivation conditions should always be employed to maximize the performance and discriminatory power of MALDI-TOF MS profiling, and cultivation conditions must be optimized separately for individual groups of mycobacterial species/strains. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Kowalska, Anna; Boruta, Tomasz; Bizukojć, Marcin
2018-03-05
The application of microparticle-enhanced cultivation (MPEC) is an attractive method to control mycelial morphology, and thus enhance the production of metabolites and enzymes in the submerged cultivations of filamentous fungi. Unfortunately, most literature data deals with the spore-agglomerating species like aspergilli. Therefore, the detailed quantitative study of the morphological evolution of four different fungal species (Aspergillus terreus, Penicillium rubens, Chaetomium globosum, and Mucor racemosus) based on the digital analysis of microscopic images was presented in this paper. In accordance with the current knowledge, these species exhibit different mechanisms of agglomerates formation. The standard submerged shake flask cultivations (as a reference) and MPEC involving 10 μm aluminum oxide microparticles (6 g·L -1 ) were performed. The morphological parameters, including mean projected area, elongation, roughness, and morphology number were determined for the mycelial objects within the first 24 hr of growth. It occurred that heretofore observed and widely discussed effect of microparticles on fungi, namely the decrease in pellet size, was not observed for the species whose pellet formation mechanism is different from spore agglomeration. In the MPEC, C. globosum developed core-shell pellets, and M. racemosus, a nonagglomerative species, formed the relatively larger, compared to standard cultures, pellets with distinct cores. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Effects of organic and conventional cultivation methods on composition of eggplant fruits.
Raigón, María D; Rodríguez-Burruezo, Adrián; Prohens, Jaime
2010-06-09
Organic food is associated by the general public with improved nutritional properties, and this has led to increasing demand for organic vegetables. The effects of organic and conventional cultivation methods on dry matter, protein, minerals, and total phenolic content has been studied for two successive years in two landraces and one commercial hybrid of eggplant. In the first year, organically produced eggplants had higher mean contents (expressed on a fresh weight basis) of K (196 vs 171 mg 100 g(-1)), Ca (11.1 vs 8.7 mg 100 g(-1)), Mg (6.0 vs 4.6 mg 100 g(-1)), and total phenolics (49.8 vs 38.2 mg 100 g(-1)) than conventionally grown eggplants. In the second year, in which matched plots having a history of organic management were cultivated following organic or conventional fertilization practices, organically produced eggplants still had higher contents of K (272 vs 249 mg 100 g(-1)) and Mg (8.8 vs 7.6), as well as of Cu (0.079 vs 0.065 mg 100 g(-1)), than conventionally fertilized eggplants. Conventionally cultivated eggplants had a higher polyphenol oxidase activity than organically cultivated ones (3.19 vs 2.17 enzyme activity units), although no differences in browning were observed. Important differences in mineral concentrations between years were detected, which resulted in many correlations among mineral contents being significant. The first component of the principal component analysis separates the eggplants according to year, whereas the second component separates them according to the cultivation method (organic or conventional). Overall, the results show that organic management and fertilization have a positive effect on the accumulation of certain beneficial minerals and phenolic compounds in eggplant and that organically and conventionally produced eggplants might be distinguished according to their composition profiles.
[Study of "Bishu Yakuen Ransho-Roku (the origin of herb garden in Owari Clan)].
Goto, T; Yamaguchi, S; Tanaka, T
1995-01-01
"Bishu Yakuen Ransho-Roku (The origin of herb garden in Owari Clan)" is in the possession of the Institution of Tokugawa Rinseishi in Tokyo. This paper was written about the origin of the herb garden established by Mr. Shinken Mimura, an herbalist in the Owari clan between 1735 and 1746. Mr. Shinken Mimura cultivated ginseng by according to the guide issued by the shogunate, but he found the methods unsuitable. Therefore, he made efforts to improve the cultivation of ginseng. As a result, he succeeded in the cultivation of good ginseng. He had contributed to the development of the production of ginseng in the Owari clan. He write this document so that his methods could be handed down for posterity. This document has two parts: one is the growth of ginseng in the form of a diary and the other is the conditions of cultivation as to seeding, fertilization, the counter-measures for damage due to blight and insects, and so on.
Application of ozonated piggery wastewater for cultivation of oil-rich Chlorella pyrenoidosa.
Gan, Ke; Mou, Xiaoqing; Xu, Yan; Wang, Haiying
2014-11-01
Ozonated and autoclaved piggery wastewaters were compared for cultivation of oil-rich Chlorella pyrenoidosa by measuring nutrient removal from the medium and growth rate and lipid production of the microalgae. The removal rates of chemical oxygen demand, NH4(+)-N, total nitrogen and total phosphorus by C. pyrenoidosa were not influenced by both sterilisation methods. The specific growth rate and biomass of C. pyrenoidosa were determined by analysing the chlorophyll concentration for eliminating the disturbance of bacteria growth in culture system. Bacteria raised from the residue in the ozonated medium achieved 30% of the total microorganisms at the end of cultivation. They reduced the growth of C. pyrenoidosa by 10.4%, but contributed to a faster decline of the nutrient content on the first day. Lipid production and fatty acid profile did not change markedly in both sterilisation methods. The results suggest that ozonation is acceptable for piggery wastewater treatment for C. pyrenoidosa cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Work-Based Research Degrees: Systematic Cultivation through a University-Industry Network Space
ERIC Educational Resources Information Center
Sense, Andrew J.
2016-01-01
The purpose of this paper is to expound on an innovative approach to cultivating work-based Doctorates and Masters of Philosophy degrees, which involves close collaboration between industry organisations and a tertiary institution. This paper also reports on an examination of the programme's structural ability to help develop the learning…
ERIC Educational Resources Information Center
Wang, Lipeng; Li, Mingqiu
2012-01-01
Currently, it has become a fundamental goal for the engineering major to cultivate high-quality engineering technicians with innovation ability in scientific research which is an important academic ability necessary for them. This paper mainly explores the development of comprehensive and designing experiments in automation based on scientific…
ERIC Educational Resources Information Center
Tee, Meng Yew; Lee, Shuh Shing
2011-01-01
Recent studies on technology have shifted from the emphasis on technology skills alone to integrating pedagogy and content with technology--what Mishra and Koehler (2005) call technological pedagogical content knowledge (TPACK). Deeper understanding on how TPACK can be cultivated is needed. This design-based research explored how an improvised,…
[Exploration of influencing factors of price of herbal based on VAR model].
Wang, Nuo; Liu, Shu-Zhen; Yang, Guang
2014-10-01
Based on vector auto-regression (VAR) model, this paper takes advantage of Granger causality test, variance decomposition and impulse response analysis techniques to carry out a comprehensive study of the factors influencing the price of Chinese herbal, including herbal cultivation costs, acreage, natural disasters, the residents' needs and inflation. The study found that there is Granger causality relationship between inflation and herbal prices, cultivation costs and herbal prices. And in the total variance analysis of Chinese herbal and medicine price index, the largest contribution to it is from its own fluctuations, followed by the cultivation costs and inflation.
Interface problems between material recycling systems and plants
NASA Astrophysics Data System (ADS)
Nitta, Keiji; Oguchi, Mitsuo; Otsubo, Koji
A most important problem to creating a CELSS system to be used in space, for example, for a Lunar Base or Manned Mars mission, seems to be how to design and operate the various material recycling system to be used on the missions. Recent studies of a Lunar Base habitat have identified examples of CELSS configurations to be used for the Plant Cultivation Module. Material recycling subsystems to be installed in the Plant Cultivation Modules are proposed to consist of various sub-systems, such as dehumidifier, oxygen separation systems, catalytic wet oxidation systems, nitrogen adjusting systems, including tanks, and so on. The required performances of such various material recycling subsystems are determined based on precise metabolic data of derived from the various species of plants to be selected and investigated. The plant metabolic data, except that for wheat and potato, has not been fully collected at the present time. Therefore, much additional plant cultivation data is required to determine the performances of each material recycling subsystems introduced in Plant Cultivation Modules.
Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency.
Kim, Ga-Yeong; Heo, Jina; Kim, Hee-Sik; Han, Jong-In
2017-08-01
In this study, bicarbonate was proposed as an alternative carbon source to overcome exceedingly low CO 2 fixation efficiency of conventional microalgae cultivation system. 5gL -1 of sodium bicarbonate was found to well support the growth of Dunaliella salina, showing 2.84-fold higher specific growth rate than a bicarbonate-free control. This bicarbonate-fed cultivation also could yield biomass productivity similar to that of CO 2 -based system as long as pH was controlled. While the supplied CO 2 , because of its being a gas, was mostly lost and only 3.59% of it was used for biomass synthesis, bicarbonate was effectively incorporated into the biomass with 91.40% of carbon utilization efficiency. This study showed that the bicarbonate-based microalgae cultivation is indeed possible, and can even become a truly environment-friendly and workable approach, provided that a CO 2 mineralization technology is concomitantly established. Copyright © 2017 Elsevier Ltd. All rights reserved.
Small-molecule elicitation of microbial secondary metabolites.
Pettit, Robin K
2011-07-01
Microbial natural products continue to be an unparalleled resource for pharmaceutical lead discovery, but the rediscovery rate is high. Bacterial and fungal sequencing studies indicate that the biosynthetic potential of many strains is much greater than that observed by fermentation. Prodding the expression of such silent (cryptic) pathways will allow us to maximize the chemical diversity available from microorganisms. Cryptic metabolic pathways can be accessed in the laboratory using molecular or cultivation-based approaches. A targeted approach related to cultivation-based methods is the application of small-molecule elicitors to specifically affect transcription of secondary metabolite gene clusters. With the isolation of the novel secondary metabolites lunalides A and B, oxylipins, cladochromes F and G, nygerone A, chaetoglobosin-542, -540 and -510, sphaerolone, dihydrosphaerolone, mutolide and pestalone, and the enhanced production of known secondary metabolites like penicillin and bacitracin, chemical elicitation is proving to be an effective way to augment natural product libraries. © 2010 The Authors. Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Synthetic biology for microbial heavy metal biosensors.
Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun
2018-02-01
Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.
In Vitro Cultivation of Microsporidia of Clinical Importance
Visvesvara, Govinda S.
2002-01-01
Although attempts to develop methods for the in vitro cultivation of microsporidia began as early as 1937, the interest in the culture of these organisms was confined mostly to microsporidia that infect insects. The successful cultivation in 1969 of Encephalitozoon cuniculi, a microsporidium of mammalian origin, and the subsequent identification of these organisms as agents of human disease heightened interest in the cultivation of microsporidia. I describe the methodology as well as the cell lines, the culture media, and culture conditions used in the in vitro culture of microsporidia such as Brachiola (Nosema) algerae, Encephalitozoon cuniculi, E. hellem, E. intestinalis, Enterocytozoon bieneusi, Trachipleistophora hominis, and Vittaforma corneae that cause human disease. PMID:12097248
Bauermeister, Anja; Mahnert, Alexander; Auerbach, Anna; Böker, Alexander; Flier, Niwin; Weber, Christina; Probst, Alexander J; Moissl-Eichinger, Christine; Haberer, Klaus
2014-01-01
Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to jeopardize scientific exploration of other celestial bodies. This is particularly critical for spacecraft components intended for hard landing. So far, it remained unclear if polymers are indeed a source of microbial contamination. In addition, data with respect to survival of microbes during the embedding/polymerization process are sparse. In this study we developed testing strategies to quantitatively examine encapsulated bioburden in five different polymers used frequently and in large quantities on spaceflight hardware. As quantitative extraction of the bioburden from polymerized (solid) materials did not prove feasible, contaminants were extracted from uncured precursors. Cultivation-based analyses revealed <0.1-2.5 colony forming units (cfu) per cm3 polymer, whereas quantitative PCR-based detection of contaminants indicated considerably higher values, despite low DNA extraction efficiency. Results obtained from this approach reflect the most conservative proxy for encapsulated bioburden, as they give the maximum bioburden of the polymers irrespective of any additional physical and chemical stress occurring during polymerization. To address the latter issue, we deployed an embedding model to elucidate and monitor the physiological status of embedded Bacillus safensis spores in a cured polymer. Staining approaches using AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld 2216 B/A. Using the methods presented here, we were able to estimate the worst case contribution of encapsulated bioburden in different polymers to the bioburden of spacecraft. We demonstrated that spores were not affected by polymerization processes. Besides Planetary Protection considerations, our results could prove useful for the manufacturing of food packaging, pharmacy industry and implant technology.
Crahay, Charlotte; Munaut, Françoise; Colpaert, Jan V; Huret, Stéphanie; Declerck, Stéphane
2017-08-01
Cryopreservation is considered the most reliable method for storage of filamentous fungi including ectomycorrhizal (ECM) fungi. A number of studies, however, have reported genetic changes in fungus cultures following cryopreservation. In the present study, the genetic stability of six ECM fungus isolates was analyzed using amplified fragment length polymorphism (AFLP). The isolates were preserved for 2 years either by cryopreservation (at -130 °C) or by storage at 4 °C with regular sub-cultivation. A third preservation treatment consisting of isolates maintained on Petri dishes at 22-23 °C for 2 years (i.e., without any sub-cultivation) was included and used as a control. The differences observed in AFLP patterns between the three preservation methods remained within the range of the total error generated by the AFLP procedure (6.85%). Therefore, cryopreservation at -130 °C and cold storage with regular sub-cultivation did not affect the genetic stability of the ECM fungus isolates, and both methods can be used for the routine storage of ECM fungus isolates over a period of 2 years.
Bajaj, Deepak; Das, Shouvik; Badoni, Saurabh; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
We identified 82489 high-quality genome-wide SNPs from 93 wild and cultivated Cicer accessions through integrated reference genome- and de novo-based GBS assays. High intra- and inter-specific polymorphic potential (66–85%) and broader natural allelic diversity (6–64%) detected by genome-wide SNPs among accessions signify their efficacy for monitoring introgression and transferring target trait-regulating genomic (gene) regions/allelic variants from wild to cultivated Cicer gene pools for genetic improvement. The population-specific assignment of wild Cicer accessions pertaining to the primary gene pool are more influenced by geographical origin/phenotypic characteristics than species/gene-pools of origination. The functional significance of allelic variants (non-synonymous and regulatory SNPs) scanned from transcription factors and stress-responsive genes in differentiating wild accessions (with potential known sources of yield-contributing and stress tolerance traits) from cultivated desi and kabuli accessions, fine-mapping/map-based cloning of QTLs and determination of LD patterns across wild and cultivated gene-pools are suitably elucidated. The correlation between phenotypic (agromorphological traits) and molecular diversity-based admixed domestication patterns within six structured populations of wild and cultivated accessions via genome-wide SNPs was apparent. This suggests utility of whole genome SNPs as a potential resource for identifying naturally selected trait-regulating genomic targets/functional allelic variants adaptive to diverse agroclimatic regions for genetic enhancement of cultivated gene-pools. PMID:26208313
Tanaka, Yasuhiro; Matsuzawa, Hiroaki; Tamaki, Hideyuki; Tagawa, Masahiro; Toyama, Tadashi; Kamagata, Yoichi; Mori, Kazuhiro
2017-01-01
A number of novel bacteria including members of rarely cultivated phyla, Acidobacteria and Verrucomicrobia, were successfully isolated from the roots of two emergent plants, Iris pseudacorus and Scirpus juncoides, by a simple culturing method. A total of 47.1% (66 strains) for I. pseudacorus and 42.1% (59 strains) for S. juncoides of all isolates (140 strains from each sample) were phylogenetically novel. Furthermore, Acidobacteria and Verrucomicrobia occupied 10.7% (15 strains) and 2.9% (4 strains) of I. pseudacorus isolates, and 2.1% (3 strains) and 3.6% (5 strains) of S. juncoides isolates, respectively, indicating that plant roots are attractive sources for isolating rarely cultivated microbes. PMID:28740039
Gambaro, Veniero; Roda, Gabriella; Visconti, Giacomo Luca; Arnoldi, Sebastiano; Casagni, Eleonora; Dell'Acqua, Lucia; Farè, Fiorenza; Paladino, Eleonora; Rusconi, Chiara; Arioli, Stefania; Mora, Diego
2016-06-05
The taxonomic identification of the biological material contained in the hallucinogenic mushrooms culture media, was carried out using a DNA-based approach, thus highlighting the usefulness of this approach in the forensic identification of illegal samples also when they are present as basidiospores mixed in culture media and spore-bearing fruiting body are not present. This approach is very useful as it allows the unequivocal identification of potentially illicit material before the cultivation and it enables to stop the material to the Customs and to destroy it due to its dangerousness without cultivating the "grow-kits" and without instructing a criminal case. In fact, even if psilocin and psilocybin and the whole mushrooms are illegal in many countries, there is no specific indication in the law about the so called "grow-kits", containing the spores. To confirm the data obtained by the taxonomic identification, a simple, reliable, efficient LC-UV method, using tryptamine as internal standard, suitable for the forensic quali-quantitative determination of psilocin and psilocybin in hallucinogenic mushroom was optimized, validated and applied to the mushrooms grown after the cultivation of the grow-kits seized by the judicial authority, with the authorization of the Ministry of Health. A cation exchange column was used in a gradient elution mode (Phase A: 50mMK2HPO4; 100mM NaCl pH=3 Phase B: methanol). The developed method was linear over the calibration range with a R(2)>0.9992 for both the analytes. The detection and quantification limits were respectively 0.01 and 0.1μg/mL for psilocybin and 0.05μg/mL and 0.1μg/mL for psilocin and the intra- and inter-day precision was satisfactory (coefficients of variation <2.0% for both the analytes). The content of psilocybin in the mushrooms grown from the seized "grow-kits" ranged from 1.02 to 7.60mg/g of dry vegetable material, while the content of psilocin from 0.415 to 8.36mg/g. Copyright © 2016 Elsevier B.V. All rights reserved.
Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu
2016-09-29
Soil-borne diseases caused by pathogenic microorganisms are one of the main factors responsible for the decline in crop yields in farmlands. Pathogenic Fusarium oxysporum causes serious damage to various crops, and, thus, a feasible diagnostic method for soil-borne diseases is required. We herein examined a simple method to evaluate the suppressiveness of soil microorganisms against a pathogen by co-cultivating indigenous soil microorganisms and a pathogenic fungus (F. oxysporum f. sp. spinaciae). We inoculated F. oxysporum onto the center of agar medium plates mixed with a dilution series of a suspension of organic fertilizers or soil. After an approximately one-week cultivation, the growth degree of F. oxysporum was estimated based on the size of the colonies that formed on the plates. The growth degree of F. oxysporum significantly differed among the organic fertilizers tested, indicating the usefulness of the method for evaluating suppressiveness by organic fertilizers. Differences in the growth degrees of F. oxysporum were associated with the incidence of disease in spinach on soil treated with organic fertilizers and inoculated with a pathogenic F. oxysporum strain. These results suggested that this method provides some useful information on the suppressiveness of organic fertilizers and soil against Fusarium wilt.
Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu
2016-01-01
Soil-borne diseases caused by pathogenic microorganisms are one of the main factors responsible for the decline in crop yields in farmlands. Pathogenic Fusarium oxysporum causes serious damage to various crops, and, thus, a feasible diagnostic method for soil-borne diseases is required. We herein examined a simple method to evaluate the suppressiveness of soil microorganisms against a pathogen by co-cultivating indigenous soil microorganisms and a pathogenic fungus (F. oxysporum f. sp. spinaciae). We inoculated F. oxysporum onto the center of agar medium plates mixed with a dilution series of a suspension of organic fertilizers or soil. After an approximately one-week cultivation, the growth degree of F. oxysporum was estimated based on the size of the colonies that formed on the plates. The growth degree of F. oxysporum significantly differed among the organic fertilizers tested, indicating the usefulness of the method for evaluating suppressiveness by organic fertilizers. Differences in the growth degrees of F. oxysporum were associated with the incidence of disease in spinach on soil treated with organic fertilizers and inoculated with a pathogenic F. oxysporum strain. These results suggested that this method provides some useful information on the suppressiveness of organic fertilizers and soil against Fusarium wilt. PMID:27558588
A Comparison of Methods to Analyze Aquatic Heterotrophic Flagellates of Different Taxonomic Groups.
Jeuck, Alexandra; Nitsche, Frank; Wylezich, Claudia; Wirth, Olaf; Bergfeld, Tanja; Brutscher, Fabienne; Hennemann, Melanie; Monir, Shahla; Scherwaß, Anja; Troll, Nicole; Arndt, Hartmut
2017-08-01
Heterotrophic flagellates contribute significantly to the matter flux in aquatic and terrestrial ecosystems. Still today their quantification and taxonomic classification bear several problems in field studies, though these methodological problems seem to be increasingly ignored in current ecological studies. Here we describe and test different methods, the live-counting technique, different fixation techniques, cultivation methods like the liquid aliquot method (LAM), and a molecular single cell survey called aliquot PCR (aPCR). All these methods have been tested either using aquatic field samples or cultures of freshwater and marine taxa. Each of the described methods has its advantages and disadvantages, which have to be considered in every single case. With the live-counting technique a detection of living cells up to morphospecies level is possible. Fixation of cells and staining methods are advantageous due to the possible long-term storage and observation of samples. Cultivation methods (LAM) offer the possibility of subsequent molecular analyses, and aPCR tools might complete the deficiency of LAM in terms of the missing detection of non-cultivable flagellates. In summary, we propose a combination of several investigation techniques reducing the gap between the different methodological problems. Copyright © 2017 Elsevier GmbH. All rights reserved.
Drake, Tiffany; Keating, Mia; Summers, Rebecca; Yochikawa, Aline; Pitman, Tom
2016-01-01
Experimental research involving Arabidopsis thaliana often involves the quantification of phenotypic traits during cultivation on compost or other growing media. Many commercially-available growing media contain peat, but peat extraction is not sustainable due to its very slow rate of formation. Moreover, peat extraction reduces peatland biodiversity and releases stored carbon and methane into the atmosphere. Here, we compared the experimental performance of Arabidopsis on peat-based and several types of commercially-available peat-free growing media (variously formed from coir, composted bark, wood-fibre, and domestic compost), to provide guidance for reducing peat use in plant sciences research with Arabidopsis. Arabidopsis biomass accumulation and seed yield were reduced by cultivation on several types of peat-free growing media. Arabidopsis performed extremely poorly on coir alone, presumably because this medium was completely nitrate-free. Some peat-free growing media were more susceptible to fungal contamination. We found that autoclaving of control (peat-based) growing media had no effect upon any physiological parameters that we examined, compared with non-autoclaved control growing media, under our experimental conditions. Overall, we conclude that Arabidopsis performs best when cultivated on peat-based growing media because seed yield was almost always reduced when peat-free media were used. This may be because standard laboratory protocols and growth conditions for Arabidopsis are optimized for peat-based media. However, during the vegetative growth phase several phenotypic traits were comparable between plants cultivated on peat-based and some peat-free media, suggesting that under certain circumstances peat-free media can be suitable for phenotypic analysis of Arabidopsis. PMID:27088495
On Design Experiment Teaching in Engineering Quality Cultivation
ERIC Educational Resources Information Center
Chen, Xiao
2008-01-01
Design experiment refers to that designed and conducted by students independently and is surely an important method to cultivate students' comprehensive quality. According to the development and requirements of experimental teaching, this article carries out a study and analysis on the purpose, significance, denotation, connotation and…
Enumerating Spore-Forming Bacteria Airborne with Particles
NASA Technical Reports Server (NTRS)
Lin, Ying; Barengoltz, Jack
2006-01-01
A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.
Model Optimization Planting Pattern Agroforestry Forest Land Based on Pine Tree
ERIC Educational Resources Information Center
Rajati, Tati
2015-01-01
This study aims to determine cropping patterns in class slopes 0 - <15% and the grade slope slopes 15% - <30% and the slopes> 30%. The method used in this study is a description of the dynamic system approach using a software power sim. Forest areas where the research, which is a type of plant that is cultivated by the people in the study…
White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M.; Weightman, Andrew J.; Mahenthiralingam, Eshwar
2011-01-01
Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by “JW”) was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas. PMID:21602386
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, J.; Gilbert, J. A.; Hill, G.
2011-07-01
Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samplesmore » (indicated by 'JW') was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas.« less
Paper-based device for separation and cultivation of single microalga.
Chen, Chih-Chung; Liu, Yi-Ju; Yao, Da-Jeng
2015-12-01
Single-cell separation is among the most useful techniques in biochemical research, diagnosis and various industrial applications. Microalgae species have great economic importance as industrial raw materials. Microalgae species collected from environment are typically a mixed and heterogeneous population of species that must be isolated and purified for examination and further application. Conventional methods, such as serial dilution and a streaking-plate method, are intensive of labor and inefficient. We developed a paper-based device for separation and cultivation of single microalga. The fabrication was simply conducted with a common laser printer and required only a few minutes without lithographic instruments and clean-room. The driving force of the paper device was simple capillarity without a complicated pump connection that is part of most devices for microfluidics. The open-structure design of the paper device makes it operable with a common laboratory micropipette for sample transfer and manipulation with a naked eye or adaptable to a robotic system with functionality of high-throughput retrieval and analysis. The efficiency of isolating a single cell from mixed microalgae species is seven times as great as with a conventional method involving serial dilution. The paper device can serve also as an incubator for microalgae growth on simply rinsing the paper with a growth medium. Many applications such as highly expressed cell selection and various single-cell analysis would be applicable. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Zhi; Liu, Yaolin; Gong, Jian
2009-10-01
With currently China's farmland transformation for non-agricultural advancement is speeding up, such disadvantages as low standard and simplified mode of compensation obviously appears in our land expropriation (requisition) system. And land expropriation (requisition) price has been distorted seriously, which has caused a series of social problems aroused more attention from many fields. It's high time to establish new criteria of land compensation. This paper presents a new method to analyze the compensation standard of cultivated-land Expropriation and requisition respectively through defining and normalize the connotation of tenure system and relevant rights of cultivated land in China, and to explore the value composition of rights over cultivated land. Methods of logic analysis, comparison and empirical analysis were applied. The results show that the tenure system of cultivated land is composed of five parts: natural productive price, social security price, social stabilization price, ecological security price and development right price. The values of all these rights vary under different socio-economic conditions, and they have to be embodied gradually in the process of land Expropriation and requisition. Moreover, the new proposed methodology has been applied to a case study of paddy lands located in Nanyang City, Henan Province in order to demonstrate its goodness. From the results of this work we can conclude that the approach proposed stands out as a good alternative to current compensation standard of cultivated-land Expropriation (requisition).
Akavia, E; Beharav, A; Wasser, S P; Nevo, E
2009-05-01
Organic mushroom cultivation is one of the fastest growing segments of agriculture. At the core of the organic philosophy lies a ban on the use of synthetic fertilizers, pesticides and herbicides, in addition to such tenets as animal welfare, energy efficiency, and social justice. Hypsizygus marmoreus (HM) is a highly praised cultivated culinary and medicinal mushroom. The objective of this paper was to assess the suitability of different spawn media and then the potential of various cultivation substrates to support HM mushroom production compatible with organic standards. This objective was met through the setup of a low-cost cultivation infrastructure. First, seven types of spawn media were tested; then we tested 24 substrates made from organic by-products for their biological efficiency (BE) with strain HM 830, using the liquid inoculation method. The best substrate in terms of BE was corn cob with bran and olive press cake, with a BE of 85.6%. The BE of the same composition but without olive press cake was only 67.5%. The next best substrates were cotton straw combinations with a BE of 31.5-53%. The spent mushroom substrate provides a good method for the disposal of solid waste. The guidance provided in this research complies with organic mushroom cultivation standards and can be used to produce certified organic mushrooms. In addition, it allows responsible and beneficial disposal of a large amount of solid agro-industrial waste.
NASA Astrophysics Data System (ADS)
Chen, Ying; Huang, Jinfang; Yeap, Zhao Qin; Zhang, Xue; Wu, Shuisheng; Ng, Chiew Hoong; Yam, Mun Fei
2018-06-01
Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner.
Chen, Ying; Huang, Jinfang; Yeap, Zhao Qin; Zhang, Xue; Wu, Shuisheng; Ng, Chiew Hoong; Yam, Mun Fei
2018-06-15
Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner. Copyright © 2018 Elsevier B.V. All rights reserved.
Cultivating Empathy for the Mentally Ill Using Simulated Auditory Hallucinations
ERIC Educational Resources Information Center
Bunn, William; Terpstra, Jan
2009-01-01
Objective: The authors address the issue of cultivating medical students' empathy for the mentally ill by examining medical student empathy pre- and postsimulated auditory hallucination experience. Methods: At the University of Utah, 150 medical students participated in this study during their 6-week psychiatry rotation. The Jefferson Scale of…
USDA-ARS?s Scientific Manuscript database
Identifying effective weed control regimes for organic peanut has become paramount for improving the feasibility of organic production. Tine cultivation is a proven effective method at reducing in-row weed populations in several crops. Field trials were therefore conducted in 2008 and 2009 to asse...
Emergy and economic methods were used to evaluate and compare a traditional tropical fruit cultivation system, for bananas, and three newly introduced fruit cultivation systems, for papaya, guava and wampee, on reclaimed wetlands of the Pearl River Estuary, China. The evaluations...
Live/Dead Bacterial Spore Assay Using DPA-Triggered Tb Luminescence
NASA Technical Reports Server (NTRS)
Ponce, Adrian
2003-01-01
A method of measuring the fraction of bacterial spores in a sample that remain viable exploits DPA-triggered luminescence of Tb(3+) and is based partly on the same principles as those described earlier. Unlike prior methods for performing such live/dead assays of bacterial spores, this method does not involve counting colonies formed by cultivation (which can take days), or counting of spores under a microscope, and works whether or not bacterial spores are attached to other small particles (i.e., dust), and can be implemented on a time scale of about 20 minutes.
Knepper, Andreas; Heiser, Michael; Glauche, Florian; Neubauer, Peter
2014-12-01
The enormous variation possibilities of bioprocesses challenge process development to fix a commercial process with respect to costs and time. Although some cultivation systems and some devices for unit operations combine the latest technology on miniaturization, parallelization, and sensing, the degree of automation in upstream and downstream bioprocess development is still limited to single steps. We aim to face this challenge by an interdisciplinary approach to significantly shorten development times and costs. As a first step, we scaled down analytical assays to the microliter scale and created automated procedures for starting the cultivation and monitoring the optical density (OD), pH, concentrations of glucose and acetate in the culture medium, and product formation in fed-batch cultures in the 96-well format. Then, the separate measurements of pH, OD, and concentrations of acetate and glucose were combined to one method. This method enables automated process monitoring at dedicated intervals (e.g., also during the night). By this approach, we managed to increase the information content of cultivations in 96-microwell plates, thus turning them into a suitable tool for high-throughput bioprocess development. Here, we present the flowcharts as well as cultivation data of our automation approach. © 2014 Society for Laboratory Automation and Screening.
Antoninka, Anita; Bowker, Matthew A.; Chuckran, Peter; Barger, Nicole N.; Reed, Sasha C.; Belnap, Jayne
2017-01-01
AimsBiological soil crusts (biocrusts) are soil-surface communities in drylands, dominated by cyanobacteria, mosses, and lichens. They provide key ecosystem functions by increasing soil stability and influencing soil hydrologic, nutrient, and carbon cycles. Because of this, methods to reestablish biocrusts in damaged drylands are needed. Here we test the reintroduction of field-collected vs. greenhouse-cultured biocrusts for rehabilitation.MethodsWe collected biocrusts for 1) direct reapplication, and 2) artificial cultivation under varying hydration regimes. We added field-collected and cultivated biocrusts (with and without hardening treatments) to bare field plots and monitored establishment.ResultsBoth field-collected and cultivated cyanobacteria increased cover dramatically during the experimental period. Cultivated biocrusts established more rapidly than field-collected biocrusts, attaining ~82% cover in only one year, but addition of field-collected biocrusts led to higher species richness, biomass (as assessed by chlorophyll a) and level of development. Mosses and lichens did not establish well in either case, but late successional cover was affected by hardening and culture conditions.ConclusionsThis study provides further evidence that it is possible to culture biocrust components from later successional materials and reestablish cultured organisms in the field. However, more research is needed into effective reclamation techniques.
Klomp, Johanna M; Verbruggen, Banut-Sabine M; Korporaal, Hans; Boon, Mathilde E; de Jong, Pauline; Kramer, Gerco C; van Haaften, Maarten; Heintz, A Peter M
2008-05-01
Our objective was to determine the morphotype of the adherent bacteria in liquid-based cytology (LBC) in smears with healthy and disturbed vaginal flora. And to use PCR technology on the same fixed cell sample to establish DNA patterns of the 16S RNA genes of the bacteria in the sample. Thirty samples were randomly selected from a large group of cervical cell samples suspended in a commercial coagulant fixative "(BoonFix)." PCR was used to amplify DNA of five bacterial species: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus jensenii, Gardnerella vaginalis, and Mycoplasma hominis. The LBC slides were then analyzed by light microscopy to estimate bacterial adhesion. DNA of lactobacilli was detected in all cell samples. Seventeen smears showed colonization with Gardnerella vaginalis (range 2.6 x 10(2)-3.0 x 10(5) bacteria/mul BoonFix sample). Two cases were identified as dysbacteriotic with high DNA values for Gardnerella vaginalis and low values for Lactobacillus crispatus. The sample with the highest concentration for Gardnerella vaginalis showed an unequivocal Gardnerella infection. This study indicates that the adherence pattern of a disturbed flora in liquid-based cervical samples can be identified unequivocally, and that these samples are suitable for quantitative PCR analysis. This cultivation independent method reveals a strong inverse relationship between Gardnerella vaginalis and Lactobacillus crispatus in dysbacteriosis and unequivocal Gardnerella infection.
Wiegmann, Vincent; Martinez, Cristina Bernal; Baganz, Frank
2018-04-24
Establish a method to indirectly measure evaporation in microwell-based cell culture systems and show that the proposed method allows compensating for liquid losses in fed-batch processes. A correlation between evaporation and the concentration of Na + was found (R 2 = 0.95) when using the 24-well-based miniature bioreactor system (micro-Matrix) for a batch culture with GS-CHO. Based on these results, a method was developed to counteract evaporation with periodic water additions based on measurements of the Na + concentration. Implementation of this method resulted in a reduction of the relative liquid loss after 15 days of a fed-batch cultivation from 36.7 ± 6.7% without volume corrections to 6.9 ± 6.5% with volume corrections. A procedure was established to indirectly measure evaporation through a correlation with the level of Na + ions in solution and deriving a simple formula to account for liquid losses.
Wang, Hong-Ping; Zhang, You-Bo; Yang, Xiu-Wei; Yang, Xin-Bao; Xu, Wei; Xu, Feng; Cai, Shao-Qing; Wang, Ying-Ping; Xu, Yong-Hua; Zhang, Lian-Xue
2016-05-09
Ginseng, Panax ginseng C. A. Meyer, is an industrial crop in China and Korea. The functional components in ginseng roots and rhizomes are characteristic ginsenosides. This work developed a new high-performance liquid chromatography coupled with electrospray ionization ion trap time-of-flight multistage mass spectrometry (LC-ESI-IT-TOF-MS(n)) method to identify the triterpenoids. Sixty compounds (1-60) including 58 triterpenoids were identified from the ginseng cultivated in China. Substances 1, 2, 7, 15-20, 35, 39, 45-47, 49, 55-57, 59, and 60 were identified for the first time. To evaluate the quality of ginseng cultivated in Northeast China, this paper developed a practical liquid chromatography-diode array detection (LC-DAD) method to simultaneously quantify 14 interesting ginsenosides in ginseng collected from 66 different producing areas for the first time. The results showed the quality of ginseng roots and rhizomes from different sources was different due to growing environment, cultivation technology, and so on. The developed LC-ESI-IT-TOF-MS(n) method can be used to identify many more ginsenosides and the LC-DAD method can be used not only to assess the quality of ginseng, but also to optimize the cultivation conditions for the production of ginsenosides.
Wu, Hailong; Huo, Yuanzi; Zhang, Jianheng; Liu, Yuanyuan; Zhao, Yating; He, Peimin
2015-06-15
The bioremediation efficiency of China's largest scale Porphyra yezoensis cultivation for removing dissolved nutrients and controlling harmful algae was studied in the radial sandbanks waters of Jiangsu Province in the year 2012-2013. Mean nutrient concentration values in the P. yezoensis cultivation area were significantly lower than those in the non-cultivation area, especially during the cultivation season (p<0.05). Tissue nitrogen and phosphorus contents of seaweeds were 5.99-0.80% (dry weight (DW)) and 0.16-0.19% (DW), respectively. Production of P. yezoensis was 58950.87tons DW. Based on these values, 3688.15tons of tissue nitrogen and 105.61tons of tissue phosphorus were removed by harvesting P. yezoensis. The richness index of the red tide species Skeleton emacostatum declined from 0.32 to 0.05 during the P. yezoensis cultivation season. These results indicate that large-scale cultivation of P. yezoensis can be used to efficiently alleviate eutrophication and control harmful algae blooms in open sea. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Hong-Bo; Ma, Yan-Ji
2014-02-01
According to the cultivated land ecological security in major grain production areas of Northeast China, this paper selected 48 counties of Jilin Province as the research object. Based on the PSR-EES conceptual framework model, an evaluation index system of cultivated land ecological security was built. By using the improved TOPSIS, Markov chains, GIS spatial analysis and obstacle degree models, the spatial-temporal pattern of cultivated land ecological security and the obstacle factors were analyzed from 1995 to 2011 in Jilin Province. The results indicated that, the composite index of cultivated land ecological security appeared in a rising trend in Jilin Province from 1995 to 2011, and the cultivated land ecological security level changed from being sensitive to being general. There was a pattern of 'Club Convergence' in cultivated land ecological security level in each county and the spatial discrepancy tended to become larger. The 'Polarization' trend of cultivated land ecological security level was obvious. The distributions of sensitive level and critical security level with ribbon patterns tended to be dispersed, the general security level and relative security levels concentrated, and the distributions of security level scattered. The unstable trend of cultivated land ecological security level was more and more obvious. The main obstacle factors that affected the cultivated land ecological security level in Jilin Province were rural net income per capita, economic density, the proportion of environmental protection investment in GDP, degree of machinery cultivation and the comprehensive utilization rate of industrial solid wastes.
NASA Technical Reports Server (NTRS)
Mashinsky, A. L.; Oreshkin, V. I.; Nechitailo, G. S.
1994-01-01
The problems of plant cultivation with the use of artificial lighting are related to energetics and, initially, to the lack of effective sources for photosynthesis, secondly to the necessity to supply a system with a considerable power in the form of light energy and to remove transformed thermal energy, and finally to economic considerations. These problems are solved by three ways: by the choice of effective radiation sources, design approaches, and technological methods of cultivation. Here we shall consider the first two ways.
Rezaie, F; Davami, F; Mansouri, K; Agha Amiri, S; Fazel, R; Mahdian, R; Davoudi, N; Enayati, S; Azizi, M; Khalaj, V
2017-05-08
The Escherichia coli expression system is highly effective in producing recombinant proteins. However, there are some limitations in this system, especially in obtaining correctly folded forms of some complex proteins such as Fab fragments. To improve the solubility and folding quality of Fab fragments, we have examined the effect of simultaneous application of a SUMO fusion tag, EnBase ® cultivation mode and a redox mutant strain in the E. coli expression system. A bicistronic gene construct was designed to express an antivascular endothelial growth factor (VEGF) Fab fragment as a model system. The construct contained a dual SUMO fusion gene fragment to encode SUMO-tagged heavy and light chains. While the expression of the construct in batch cultures of BL21 or SHuffle ® transformants produced insoluble and unfolded products, the induction of the transformants in EnBase ® medium resulted in soluble and correctly folded Fab fragment, reaching as high as 19% of the total protein in shuffle strain. The functional assays indicated that the biological activity of the target Fab is similar to the commercial anti-VEGF, Lucentis ® . This study demonstrated that the combination of SUMO fusion technology, EnBase ® cultivation system and recruiting a redox mutant of E. coli can efficiently enhance the solubility and productivity of recombinant Fab fragments. The presented strategy provides not only a novel method to produce soluble and active form of an anti-VEGF Fab but also may use in the efficient production of other antibody fragments. © 2017 The Society for Applied Microbiology.
Antigen-specific CTLs: to produce autologous cells product for adoptive cellular therapy.
Liu, Sai; Shao, Yi; Xu, Jie; Jiang, Na; Dai, Yanchao; Wang, Yu; Sun, Huanqing; Sun, Jianping; Zhang, Yonghong
2017-06-01
As antiretroviral therapy provides long term viral suppression but no cure, alternative therapies such as adoptive cellular therapy have thus been investigated in the anti-AIDS field. This study sought to establish a HLA-A02 specific CTL cell culture method with comparison of the effects of different cytokines used in CTL cultivation to decide the best cultivation environment. In order to produce CTLs with targeted HLA-A02 restricted antigen specificity for adoptive cellular therapy, we evaluated autologous PBMC cultivation in different cytokine environment to select a better expansion condition to produce qualified CTL production. We co-cultivated PBMC and peptides of these patients with HLA-A02 allele with different cytokines. After cultivation, multiple parameters were tested. 1) Cytokines IL-2 alone can effectively amplify HLA-A02 specific CTL cells, and the count of CTLs was >85% all through the process. 2) The HLA-A02 specific cells at the end of the cultivation were mainly CD3+CD8+ cells. 3) The interferon stimulation test had shown that the expanded CTLs secreted more IFN-γ than before cultivation (0.9% -11.70%). This model of CTL cultivation is successful in redirecting the specificity of antigen recognition and safely for HLA-A02+ patients cell adoptive therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhang, Qiang; Wang, Tingting; Zhou, Qian; Zhang, Peng; Gong, Yanhai; Gou, Honglei; Xu, Jian; Ma, Bo
2017-01-23
Wider application of single-cell analysis has been limited by the lack of an easy-to-use and low-cost strategy for single-cell isolation that can be directly coupled to single-cell sequencing and single-cell cultivation, especially for small-size microbes. Herein, a facile droplet microfluidic platform was developed to dispense individual microbial cells into conventional standard containers for downstream analysis. Functional parts for cell encapsulation, droplet inspection and sorting, as well as a chip-to-tube capillary interface were integrated on one single chip with simple architecture, and control of the droplet sorting was achieved by a low-cost solenoid microvalve. Using microalgal and yeast cells as models, single-cell isolation success rate of over 90% and single-cell cultivation success rate of 80% were demonstrated. We further showed that the individual cells isolated can be used in high-quality DNA and RNA analyses at both gene-specific and whole-genome levels (i.e. real-time quantitative PCR and genome sequencing). The simplicity and reliability of the method should improve accessibility of single-cell analysis and facilitate its wider application in microbiology researches.
Zhang, Qiang; Wang, Tingting; Zhou, Qian; Zhang, Peng; Gong, Yanhai; Gou, Honglei; Xu, Jian; Ma, Bo
2017-01-01
Wider application of single-cell analysis has been limited by the lack of an easy-to-use and low-cost strategy for single-cell isolation that can be directly coupled to single-cell sequencing and single-cell cultivation, especially for small-size microbes. Herein, a facile droplet microfluidic platform was developed to dispense individual microbial cells into conventional standard containers for downstream analysis. Functional parts for cell encapsulation, droplet inspection and sorting, as well as a chip-to-tube capillary interface were integrated on one single chip with simple architecture, and control of the droplet sorting was achieved by a low-cost solenoid microvalve. Using microalgal and yeast cells as models, single-cell isolation success rate of over 90% and single-cell cultivation success rate of 80% were demonstrated. We further showed that the individual cells isolated can be used in high-quality DNA and RNA analyses at both gene-specific and whole-genome levels (i.e. real-time quantitative PCR and genome sequencing). The simplicity and reliability of the method should improve accessibility of single-cell analysis and facilitate its wider application in microbiology researches. PMID:28112223
NASA Astrophysics Data System (ADS)
Luo, Yunhan; Chen, Zhe; Li, Yan; Di, Hongwei; Li, Zhen; Bai, Chunhe; Tang, Jieyuan; Zhang, Jun; Yi, Xiao
2017-08-01
The course of optoelectronic information science is a diverse science and technology with wide range of disciplines, intensive technology, and strong applicability. As a result, the practice teaching in undergraduate education occupies the strategic important position, which is a key link in the process of innovative talents cultivation of photoelectric information, plays a unique and irreplaceable role by any other teaching methods. In order to meet the requirements of national innovative talents of photoelectric information, the complete teaching reform strategy was put forward by combining with the higher education policy and development strategy of teaching and professional characteristics. The goal of the experimental teaching reform is to cultivate innovative talents and to construct the photoelectric information industry chain system of experimental teaching platform and cultivating creative personnel. The key clue is the photoelectric information surrounding photoelectric information, like "generation - modulation - transformation - detection - procession" which will be realized by resource integration and complementary among cross disciplines, and focusing on scientific research support for the teaching and the combination of professional knowledge and practical application. This teaching reform scheme presented in the paper will provide very good demonstration effect in the curriculum reform of other photoelectric information related courses.
Gulden, Ashley W; Jennings, Len
2016-01-01
Trauma is ubiquitous in our society; therefore, it is important to explore how individuals cultivate healing after traumatic experiences. Yoga may be one avenue to cultivate healing. Qualitative methods were employed to study the role yoga practice played in the healing process of those who experienced interpersonal trauma. Eleven interpersonal trauma survivors who practiced yoga regularly were identified through a criterion sampling method. Data analysis revealed that the emphasis of yoga on mind and physical body fostered numerous positive outcomes, such as spiritual growth, self-acceptance, alleviation of trauma-related symptoms, and increased feelings of self-compassion, empowerment, and serenity. Our findings suggest that yoga may be helpful to regain mental and physical health, foster wellbeing, and cultivate personal growth after interpersonal trauma.
Gulden, Ashley W; Jennings, Len
2016-08-15
Trauma is ubiquitous in our society; therefore, it is important to explore how individuals cultivate healing after traumatic experiences. Yoga may be one avenue to cultivate healing. Qualitative methods were employed to study the role yoga practice played in the healing process of those who experienced interpersonal trauma. Eleven interpersonal trauma survivors who practiced yoga regularly were identified through a criterion sampling method. Data analysis revealed that the emphasis of yoga on mind and physical body fostered numerous positive outcomes, such as spiritual growth, self-acceptance, alleviation of trauma-related symptoms, and increased feelings of self-compassion, empowerment, and serenity. Our findings suggest that yoga may be helpful to regain mental and physical health, foster wellbeing, and cultivate personal growth after interpersonal trauma.
Jiang, Shuang; Zong, Yu; Yue, Xiaoyan; Postman, Joseph; Teng, Yuanwen; Cai, Danying
2015-02-01
Interspecific hybridization has been considered the major mode of evolution in Pyrus (pear), and thus, the genetic relationships within this genus have not been well documented. Retrotransposons are ubiquitous components of plant genomes and 42.4 % of the pear genome was reported to be long terminal repeat (LTR) retrotransposons, implying that retrotransposons might be significant in the evolution of Pyrus. In this study, 1,836 putative full-length LTR retrotransposons were isolated and 196 retrotransposon-based insertion polymorphism (RBIP) primers were developed, of which 24 pairs to the Ppcr1 subfamily of copia retrotransposons were used to analyze genetic diversity among 110 Pyrus accessions from Eurasia. Our results showed that Ppcr1 replicated many times in the development of cultivated Asian pears. The genetic structure analysis and the unweighted pair group method with arithmetic mean (UPGMA) dendrogram indicated that all accessions could be divided into Oriental and Occidental groups. In Oriental pears, wild pea pears clustered separately into independent groups in accordance with their morphological classifications. Cultivars of P. ussuriensis Maxim, P. pyrifolia Nakai, and P. pyrifolia Chinese white pear were mingled together, which inferred that hybridization events occurred during the development of the cultivated Asian pears. In Occidental pears, two clades were obtained in the UPGMA dendrogram in accordance with their geographical distribution; one contained the European species and the other included species from North Africa and West Asia. New findings in this study will be important to further understand the phylogeny of Pyrus and origins of cultivated pears.
Integrating cultivation history into EBIPM
USDA-ARS?s Scientific Manuscript database
Ecologically based invasive plant management (EBIPM) is a systematic thinking and planning process to assist with applying the appropriate combination of tools and strategies to addrress the underlying cause of invasion rather than simply controlling invasive annual grass abundance. Cultivation his...
Rumold, Claudia Ursula
2016-01-01
The data presented in this paper provide direct microbotanical evidence concerning the early use of potato (Solanum tuberosum) within its botanical locus of origin in the high south-central Andes. The data derive from Jiskairumoko, an early village site in the western Titicaca Basin dating to the Late Archaic to Early Formative periods (∼3,400 cal y BC to 1,600 cal y BC). Because the site reflects the transition to sedentism and food production, these data may relate to potato domestication and early cultivation. Of 141 starch microremains recovered from 14 groundstone tools from Jiskairumoko, 50 are identified as consistent with cultivated or domesticated potato, based on reference to published materials and a study of wild and cultivated potato starch morphology. Along with macro- and microbotanical evidence for chenopod consumption and grinding tool data reflecting intensive use of this technology throughout site occupation, the microbotanical data reported here suggest the intensive exploitation, if not cultivation, of plant resources at Jiskairumoko. Elucidating the details of the trajectory of potato domestication is necessary for an overall understanding of the development of highland Andean agriculture, as this crop is central to the autochthonous agricultural suite. A paucity of direct botanical evidence, however, has hindered research efforts. The results of the modern and archaeological starch analyses presented here underscore the utility of this method in addressing questions related to the timing, mode, and context of potato origins. PMID:27849582
Bogaard, Amy; Hodgson, John; Nitsch, Erika; Jones, Glynis; Styring, Amy; Diffey, Charlotte; Pouncett, John; Herbig, Christoph; Charles, Michael; Ertuğ, Füsun; Tugay, Osman; Filipovic, Dragana; Fraser, Rebecca
This investigation combines two independent methods of identifying crop growing conditions and husbandry practices-functional weed ecology and crop stable carbon and nitrogen isotope analysis-in order to assess their potential for inferring the intensity of past cereal production systems using archaeobotanical assemblages. Present-day organic cereal farming in Haute Provence, France features crop varieties adapted to low-nutrient soils managed through crop rotation, with little to no manuring. Weed quadrat survey of 60 crop field transects in this region revealed that floristic variation primarily reflects geographical differences. Functional ecological weed data clearly distinguish the Provence fields from those surveyed in a previous study of intensively managed spelt wheat in Asturias, north-western Spain: as expected, weed ecological data reflect higher soil fertility and disturbance in Asturias. Similarly, crop stable nitrogen isotope values distinguish between intensive manuring in Asturias and long-term cultivation with minimal manuring in Haute Provence. The new model of cereal cultivation intensity based on weed ecology and crop isotope values in Haute Provence and Asturias was tested through application to two other present-day regimes, successfully identifying a high-intensity regime in the Sighisoara region, Romania, and low-intensity production in Kastamonu, Turkey. Application of this new model to Neolithic archaeobotanical assemblages in central Europe suggests that early farming tended to be intensive, and likely incorporated manuring, but also exhibited considerable variation, providing a finer grained understanding of cultivation intensity than previously available.
Rumold, Claudia Ursula; Aldenderfer, Mark S
2016-11-29
The data presented in this paper provide direct microbotanical evidence concerning the early use of potato (Solanum tuberosum) within its botanical locus of origin in the high south-central Andes. The data derive from Jiskairumoko, an early village site in the western Titicaca Basin dating to the Late Archaic to Early Formative periods (∼3,400 cal y BC to 1,600 cal y BC). Because the site reflects the transition to sedentism and food production, these data may relate to potato domestication and early cultivation. Of 141 starch microremains recovered from 14 groundstone tools from Jiskairumoko, 50 are identified as consistent with cultivated or domesticated potato, based on reference to published materials and a study of wild and cultivated potato starch morphology. Along with macro- and microbotanical evidence for chenopod consumption and grinding tool data reflecting intensive use of this technology throughout site occupation, the microbotanical data reported here suggest the intensive exploitation, if not cultivation, of plant resources at Jiskairumoko. Elucidating the details of the trajectory of potato domestication is necessary for an overall understanding of the development of highland Andean agriculture, as this crop is central to the autochthonous agricultural suite. A paucity of direct botanical evidence, however, has hindered research efforts. The results of the modern and archaeological starch analyses presented here underscore the utility of this method in addressing questions related to the timing, mode, and context of potato origins.
Smýkal, P; Bačová-Kerteszová, N; Kalendar, R; Corander, J; Schulman, A H; Pavelek, M
2011-05-01
Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70-100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics.
Berrue, Fabrice; Withers, Sydnor T; Haltli, Brad; Withers, Jo; Kerr, Russell G
2011-03-21
Marine invertebrates have proven to be a rich source of secondary metabolites. The growing recognition that marine microorganisms associated with invertebrate hosts are involved in the biosynthesis of secondary metabolites offers new alternatives for the discovery and development of marine natural products. However, the discovery of microorganisms producing secondary metabolites previously attributed to an invertebrate host poses a significant challenge. This study describes an efficient chemical screening method utilizing a 96-well plate-based bacterial cultivation strategy to identify and isolate microbial producers of marine invertebrate-associated metabolites.
USDA-ARS?s Scientific Manuscript database
Ralstonia solanacearum race 3 biovar 2 strains have the ability to cause brown rot of potato in temperate climates. Since these strains are not established in the U.S. and because of the potential risk they pose to the potato industry, the U.S. government has listed them as select agents. Cultivated...
ATP as a biomarker of viable microorganisms in clean-room facilities
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T.; Kern, Roger
2003-01-01
A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.
Discrimination of wild-growing and cultivated Lentinus edodes by tri-step infrared spectroscopy
NASA Astrophysics Data System (ADS)
Lin, Haojian; Liu, Gang; Yang, Weimei; An, Ran; Ou, Quanhong
2018-01-01
It's not easy to discriminate dried wild-growing Lentinus edodes (WL) and cultivated Lentinus edodes (CL) by conventional method based on the morphological inspection of fruiting bodies. In this paper, fruiting body samples of WL and CL are discriminated by a tri-step IR spectroscopy method, including Fourier transform infrared (FT-IR) spectroscopy, second derivatives infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy under thermal perturbation. The results show that the FT-IR spectra of WL and CL are similar in holistic spectral profile. More significant differences are exhibited in their SD-IR spectra in the range of 1700 - 900 cm-1. Furthermore, more evident differences have been observed in their synchronous 2D-IR spectra in the range of 2970 - 2900, 1678 - 1390, 1250 -1104 and 1090 - 1030 cm-1. The CL has thirteen auto-peaks at 2958, 2921, 1649, 1563, 1450, 1218, 1192, 1161, 1140, 1110, 1082, 1065 and 1047 cm-1, in which the four strongest auto-peaks are at 2921, 1563, 1192 and 1082 cm-1. The WL shows fifteen auto-peaks at 2960, 2937, 2921, 1650, 1615, 1555, 1458, 1219, 1190, 1138, 1111, 1084, 1068, 1048 and 1033 cm-1, in which the four strongest auto-peaks are at 2921, 1650, 1190 and 1068 cm-1. This study shows the potential of FT-IR spectroscopy and 2D correlation analysis in a simple and quick distinction of wild-growing and cultivated mushrooms.
Riestra, A C; Vazquez, N; Chacon, M; Berisa, S; Sanchez-Avila, R M; Orive, G; Anitua, E; Meana, A; Merayo-Lloves, J
2017-04-01
Develop an autologous culture method for ex vivo expansion of human limbal epithelial progenitor cells (LEPCs) using Plasma Rich in Growth Factors (PRGF) as a growth supplement and as a scaffold for the culture of LEPCs. LEPCs were cultivated in different media supplemented with 10% fetal bovine serum (FBS) or 10% PRGF. The outgrowths, total number of cells, colony forming efficiency (CFE), morphology and immunocytochemistry against p63- α and cytokeratins 3 and 12 (CK3-CK12) were analyzed. PRGF was also used to elaborate a fibrin membrane. The effects of the scaffold on the preservation of stemness and the phenotypic characterization of LEPCs were investigated through analysis of CK3-CK12, ABCG-2 and p63. LEPCs cultivated with PRGF showed a significantly higher growth area than FBS cultures. Moreover, the number of cells were also higher in PRGF than FBS, while displaying a better morphology overall. CFE was found to be also higher in PRGF groups compared to FBS, and the p63-α expression also differed between groups. LEPCs cultivated on PRGF membranes appeared as a confluent monolayer of cells and still retained p63 and ABCG-2 expression, being negative for CK3-CK12. PRGF can be used in corneal tissue engineering, supplementing the culture media, even in a basal media without any other additives, as well as providing a scaffold for the culture. Copyright © 2017 Elsevier Inc. All rights reserved.
ATP as a biomarker of viable microorganisms in clean-room facilities.
Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T; Kern, Roger
2003-03-01
A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.
Identification of animal behavioral strategies by inverse reinforcement learning.
Yamaguchi, Shoichiro; Naoki, Honda; Ikeda, Muneki; Tsukada, Yuki; Nakano, Shunji; Mori, Ikue; Ishii, Shin
2018-05-01
Animals are able to reach a desired state in an environment by controlling various behavioral patterns. Identification of the behavioral strategy used for this control is important for understanding animals' decision-making and is fundamental to dissect information processing done by the nervous system. However, methods for quantifying such behavioral strategies have not been fully established. In this study, we developed an inverse reinforcement-learning (IRL) framework to identify an animal's behavioral strategy from behavioral time-series data. We applied this framework to C. elegans thermotactic behavior; after cultivation at a constant temperature with or without food, fed worms prefer, while starved worms avoid the cultivation temperature on a thermal gradient. Our IRL approach revealed that the fed worms used both the absolute temperature and its temporal derivative and that their behavior involved two strategies: directed migration (DM) and isothermal migration (IM). With DM, worms efficiently reached specific temperatures, which explains their thermotactic behavior when fed. With IM, worms moved along a constant temperature, which reflects isothermal tracking, well-observed in previous studies. In contrast to fed animals, starved worms escaped the cultivation temperature using only the absolute, but not the temporal derivative of temperature. We also investigated the neural basis underlying these strategies, by applying our method to thermosensory neuron-deficient worms. Thus, our IRL-based approach is useful in identifying animal strategies from behavioral time-series data and could be applied to a wide range of behavioral studies, including decision-making, in other organisms.
Brinckmann, J A
2013-11-01
Pharmacopoeial monographs providing specifications for composition, identity, purity, quality, and strength of a botanical are developed based on analysis of presumably authenticated botanical reference materials. The specimens should represent the quality traditionally specified for the intended use, which may require different standards for medicinal versus food use. Development of quality standards monographs may occur through collaboration between a sponsor company or industry association and a pharmacopoeial expert committee. The sponsor may base proposed standards and methods on their own preferred botanical supply which may, or may not, be geo-authentic and/or correspond to qualities defined in traditional medicine formularies and pharmacopoeias. Geo-authentic botanicals are those with specific germplasm, cultivated or collected in their traditional production regions, of a specified biological age at maturity, with specific production techniques and processing methods. Consequences of developing new monographs that specify characteristics of an 'introduced' cultivated species or of a material obtained from one unique origin could lead to exclusion of geo-authentic herbs and may have therapeutic implications for clinical practice. In this review, specifications of selected medicinal plants with either a geo-authentic or geographical indication designation are discussed and compared against official pharmacopoeial standards for same genus and species regardless of origin. Copyright © 2012 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
Excess nutrients in surfaces waters can result in undesirable consequences. Experiments were designed to quantify phosphorus and nitrogen transport with runoff from plots maintained as a golf course fairway to identify which cultural practice, solid tine or hollow tine core cultivation, will maximiz...
Phylogenetic perspective and the search for life on earth and elsewhere
NASA Technical Reports Server (NTRS)
Pace, Norman R.
1989-01-01
Any search for microbial life on Mars cannot rely upon cultivation of indigenous organisms. Only a minority of even terrestrial organisms that are observed in mixed, naturally-occurring microbial populations can be cultivated in the laboratory. Consequently, methods are being developed for analyzing the phylogenetic affiliations of the constituents of natural microbial populations without the need for their cultivation. This is more than an exercise in taxonomy, for the extent of phylogenetic relatedness between unknown and known organisms is some measure of the extent of their biochemical commonalities. In one approach, total DNA is isolated from natural microbial populations and 16S rRNA genes are shotgun cloned for rapid sequence determinations and phylogenetic analyses. A second approach employs oligodeoxynucleotide hybridization probes that bind to phylogenetic group-specific sequences in 16S rRNA. Since each actively growing cell contains about 104 ribosomes, the binding of the diagnostic probes to single cells can be visualized by radioactivity or fluorescence. The application of these methods and the use of in situ cultivation techniques is illustrated using submarine hydrothermal vent communities. Recommendations are made regarding planning toward future Mars missions.
Costa, Anna I G; Queiroz, Maria Eliana L R; Neves, Antônio A; de Assis, Roberta C; dos Soares, Carlos E S; da Silva, Antônio A; D'Antonino, Leonardo; de Oliveira, André F; Bellato, Carlos R
2015-03-01
A method has been optimized and validated for the determination of fomesafen in soils using solid-liquid extraction with low-temperature partitioning (SLE/LTP) and analysis by liquid chromatography with a high-efficiency diode array detector (HPLC/DAD). The method was used to evaluate the persistence and mobility of this herbicide in different soils cultivated with bean plants. Recovery values were ≥98.9 %, with variations in the repeatability coefficients of ≤15 %, and a detection limit of 7.3 μg kg(-1). Half-life values of fomesafen were between 60 and 71 days in soil cultivated using a no-till system and 99 and 114 days in soil cultivated using a conventional tillage system. The mobility of fomesafen was moderate and mainly influenced by the organic matter content, pH, and soil type. In Red-Yellow Argisol, which has a higher content of organic matter, the leaching of fomesafen was less pronounced. In Red-Yellow Latosol, which has smaller amounts of organic matter and high pH, the leaching of fomesafen was more pronounced.
Ofek-Lalzar, Maya; Gur, Yonatan; Ben-Moshe, Sapir; Sharon, Or; Kosman, Evsey; Mochli, Elad; Sharon, Amir
2016-10-01
Endophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. We hypothesized that endophytes in wild plants include beneficial endophytes that are absent or underrepresented in domesticated crops. In this work, we studied the structure of endophyte communities in wheat-related grasses, Triticum dicoccoides and Aegilops sharonensis, and compared it to an endophyte community from wheat (T. aeastivum). Endophytes were isolated by cultivation and by cultivation-independent methods. In total, 514 intergenic spacer region sequences from single cultures were analyzed. Categorization at 97% sequence similarity resulted in 67 operational taxonomic units (OTUs) that were evenly distributed between the different plant species. A narrow core community of Alternaria spp. was found in all samples, but each plant species also contained a significant portion of unique endophytes. The cultivation-independent analysis identified a larger number of OTUs than the cultivation method, half of which were singletons or doubletons. For OTUs with a relative abundance >0.5%, similar numbers were obtained by both methods. Collectively, our data show that wild grass relatives of wheat contain a wealth of taxonomically diverse fungal endophytes that are not found in modern wheat, some of which belong to taxa with known beneficial effects. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Huang, Long; Chen, Zhiqiang; Wen, Qinxue; Lee, Duu-Jong
2017-10-01
Low biomass output is a crucial reason for low polyhydroxyalkanoate (PHA) production in mixed microbial cultures (MMCs) PHA process. In this research, an extended cultivation strategy was proposed to rapidly expand the biomass yield of PHA accumulating MMCs and conserve the PHA accumulating ability simultaneously. High PHA content of the cultivated MMCs of 71.4% and 66.7% (higher than 62.1% of the seed biomass) in batch assays and biomass magnification of 43 and 52 were obtained after 10days of extended cultivation with and without sludge discharge, respectively. By embedding the extended cultivation process into the production process, a highly competitive PHA production performance in terms of overall PHA storage yield (0.49g CODPHA/gCODVFA) and volumetric productivity (1.21gPHA/L/d with final cell density of 17.22g/L) was achieved. The proposed PHA production process based on the extended cultivation can be a promising choice in industrial scale practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Largeteau, Michèle L; Llarena-Hernández, Régulo Carlos; Regnault-Roger, Catherine; Savoie, Jean-Michel
2011-12-01
Sun mushroom is a cultivated mushroom extensively studied for its medicinal properties for several years and literature abounds on the topic. Besides, agronomical aspects were investigated in Brazil, the country the mushroom comes from, and some studies focus on the biology of the fungus. This review aimed to present an overview of the non-medicinal knowledge on the mushroom. Areas of commercial production and marketing trends are presented. Its specific fragrance, taste, nutritional value and potential use of extracts as food additives are compared to those of the most cultivated fungi and laboratory models. The interest of the mushroom for lignocellulosic enzyme production and source of biomolecules for the control of plant pathogens are shown. Investigation of genetic variability among cultivars is reported. Growing and storage of mycelium, as well as cultivation conditions (substrate and casing generally based on local products; indoor and outdoor cultivation; diseases and disorders) are described and compared to knowledge on Agaricus bisporus.
Zhou, Guisheng; Wang, Mengyue; Li, Yang; Peng, Ying; Li, Xiaobo
2015-08-01
In the present study, a new strategy based on chemical analysis and chemometrics methods was proposed for the comprehensive analysis and profiling of underivatized free amino acids (FAAs) and small peptides among various Luo-Han-Guo (LHG) samples. Firstly, the ultrasound-assisted extraction (UAE) parameters were optimized using Plackett-Burman (PB) screening and Box-Behnken designs (BBD), and the following optimal UAE conditions were obtained: ultrasound power of 280 W, extraction time of 43 min, and the solid-liquid ratio of 302 mL/g. Secondly, a rapid and sensitive analytical method was developed for simultaneous quantification of 24 FAAs and 3 active small peptides in LHG at trace levels using hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry (HILIC-UHPLC-QTRAP(®)/MS(2)). The analytical method was validated by matrix effects, linearity, LODs, LOQs, precision, repeatability, stability, and recovery. Thirdly, the proposed optimal UAE conditions and analytical methods were applied to measurement of LHG samples. It was shown that LHG was rich in essential amino acids, which were beneficial nutrient substances for human health. Finally, based on the contents of the 27 analytes, the chemometrics methods of unsupervised principal component analysis (PCA) and supervised counter propagation artificial neural network (CP-ANN) were applied to differentiate and classify the 40 batches of LHG samples from different cultivated forms, regions, and varieties. As a result, these samples were mainly clustered into three clusters, which illustrated the cultivating disparity among the samples. In summary, the presented strategy had potential for the investigation of edible plants and agricultural products containing FAAs and small peptides.
Koberg, Miri; Cohen, Moshe; Ben-Amotz, Ami; Gedanken, Aharon
2011-03-01
This work offers an optimized method for the direct conversion of harvested Nannochloropsis algae into bio-diesel using two novel techniques. The first is a unique bio-technology-based environmental system utilizing flue gas from coal burning power stations for microalgae cultivation. This method reduces considerably the cost of algae production. The second technique is the direct transesterification (a one-stage method) of the Nannochloropsis biomass to bio-diesel production using microwave and ultrasound radiation with the aid of a SrO catalyst. These two techniques were tested and compared to identify the most effective bio-diesel production method. Based on our results, it is concluded that the microwave oven method appears to be the most simple and efficient method for the one-stage direct transesterification of the as-harvested Nannochloropsis algae. Copyright © 2010 Elsevier Ltd. All rights reserved.
Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M
2017-02-01
The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells. © 2016 Blackwell Verlag GmbH.
Zhang, Laining; Yang, Xiaoyu; Tian, Li; Chen, Lei; Yu, Weichang
2016-09-01
The cultivated peanut Arachis hypogaea (AABB) is thought to have originated from the hybridization of Arachis duranensis (AA) and Arachis ipaënsis (BB) followed by spontaneous chromosome doubling. In this study, we cloned and analyzed chromosome markers from cultivated peanut and its wild relatives. A fluorescence in situ hybridization (FISH)-based karyotyping cocktail was developed with which to study the karyotypes and chromosome evolution of peanut and its wild relatives. Karyotypes were constructed in cultivated peanut and its two putative progenitors using our FISH-based karyotyping system. Comparative karyotyping analysis revealed that chromosome organization was highly conserved in cultivated peanut and its two putative progenitors, especially in the B genome chromosomes. However, variations existed between A. duranensis and the A genome chromosomes in cultivated peanut, especially for the distribution of the interstitial telomere repeats (ITRs). A search of additional A. duranensis varieties from different geographic regions revealed both numeric and positional variations of ITRs, which were similar to the variations in tetraploid peanut varieties. The results provide evidence for the origin of cultivated peanut from the two diploid ancestors, and also suggest that multiple hybridization events of A. ipaënsis with different varieties of A. duranensis may have occurred during the origination of peanut. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Kolostova, Katarina; Broul, Marek; Schraml, Jan; Cegan, Martin; Matkowski, Rafal; Fiutowski, Marek; Bobek, Vladimir
2014-07-01
The most promising near-term application of circulating tumor cells (CTCs) monitoring relates to the development of targeted cancer therapies, and the need to tailor such treatments to individual tumor characteristics. A high number of new innovative technologies to improve methods for detecting CTCs, with extraordinarily high sensitivity, have recently been presented. The identification and characterization of CTCs require extremely sensitive and specific methods that are able to isolate CTCs with the possibility of cultivation and downstream analysis of in vitro culture of separated CTCs. In this original research paper, we demonstrate that it is possible to isolate human CTCs from a patient with prostate cancer, with subsequent cultivation and proliferation in vitro. We show that the use of a filtration device implemented by MetaCell® can fulfil all the requirements mentioned above. Fifty-five patients with localized prostate cancer have so far been enrolled into the study. CTCs were detected in the blood samples of 28 (52%) out of the 55 patients. We report successful isolation of CTCs from patients with prostate cancer, capturing cells with a proliferative capacity in 18 (64.3%) out of the 28 CTC-positive patients. Direct correlation with Gleason score and T stage was not proven. The cells, captured by a size-based filtration approach, remain in a good state, unaffected by any antibodies or lysing solutions. During the filtration process, no interactions occurred between antibodies and antigens on the surface of CTCs. This biological interaction is specific for immunomagnetic methods. The MetaCell device provides the possibility of reaching virgin CTCs suitable for subsequent cultivation or single-cell analysis. This aspect will have an important impact on the future design of clinical trials testing new drugs against targets expressed on metastatic cancer cells. In addition to measurement of CTC counts, future trials with targeted therapies should also include the assessment of the specific therapeutic target on CTCs. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
NASA Astrophysics Data System (ADS)
Tikhomirova, Natalia; Tikhomirov, Alexander A.; Kalacheva, Galina; Ushakova, Sofya; Trifonov, Sergey V.; Pavlova, Anastasiya
2016-07-01
A possible way solving the inclusion problem of the human liquid wastes containing sodium chloride into intrasystem mass exchange of bio-technical life support system (BTLSS) is selection of such species of greenery plants that can utilize sodium chloride, be edible for a human and have rather a high productivity. Our previous works showed that salt-accumulating halophyte Salicornia europaea L. was a promising candidate for sodium chloride inclusion into BTLSS mass exchange. However, with the aim of creation of more various human diet possibilities a set of greenery plants cultivated by the water culture method was estimated. Based on preliminary experiments the plants Brassica juncea L., Nasturtium officinale R. Br., Lepidium sativum angustifolia L. and Salicornia europaea L. were chosen as the investigation objects. The nutrient solution for greenery plant's cultivation was obtained after harvesting the wheat plants grown on the solution with mineralized human wastes' addition. The results of the first stage of the investigations carried out showed that plants of Brassica juncea and Lepidium sativum angustifolia are unpromising for their inclusion into BTLSS because of a set of physiological characteristics. On the next stage of investigations, an experimental model of closed ecosystem was created. For that purpose the plants of Salicornia europaea and Nasturtium officinale were introduced in the phototroph unit structure. It was determined that there was deficiency of main macronutrients for Salicornia europaea and Nasturtium officinale including sodium for Salicornia europaea. The deficiency had an effect on plants productivity and on carry-over of sodium from solution by Salicornia europaea. Thus in the future experiment it is necessary to carry out desalinization of solution by Salicornia europaea plants. Nasturtium officinale, that is rich in essential fatty acids and contributes into variety of human vegetable diet is planned to be cultivated by the hydroponic method on expanded clay aggregate or by the method of plants cultivation on the soil-like substrate (SLS). The study was supported by the Russian Science Foundation (Project No. 14-14-00599).
Imanaka, Hiroyuki; Tanaka, Soukichi; Feng, Bin; Imamura, Koreyoshi; Nakanishi, Kazuhiro
2010-03-01
We cultivated a filamentous fungus, Aspergillus oryzae IAM 2706 by three different cultivation methods, i.e., shaking-flask culture (SFC), agar-plate culture (APC), and membrane-surface liquid culture (MSLC), to elucidate the differences of its behaviors by different cultivation methods under the same media, by measuring the growth, secretion of proteases and alpha-amylase, secreted protein level, and gene transcriptional profile by the DNA microarray analysis. The protease activities detected by MSLC and APC were much higher than that by SFC, using both modified Czapek-Dox (mCD) and dextrin-peptone-yeast extract (DPY) media. The alpha-amylase activity was detected in MSLC and APC in a much larger extent than that in SFC when DPY medium was used. On the basis of SDS-PAGE analyses and N-terminal amino acid sequences, 6 proteins were identified in the supernatants of the culture broths using DPY medium, among which oryzin (alkaline protease) and alpha-amylase were detected at a much higher extent for APC and MSLC than those for SFC while only oryzin was detected in mCD medium, in accordance with the activity measurements. A microarray analysis for the fungi cultivated by SFC, APC, and MSLC using mCD medium was carried out to elucidate the differences in the gene transcriptional profile by the cultivation methods. The gene transcriptional profile obtained for the MSLC sample showed a similar tendency to the APC sample while it was quite different from that for the SFC sample. Most of the genes specifically transcribed in the MSLC sample versus those in the SFC sample with a 10-fold up-regulation or higher were unknown or predicted proteins. However, transcription of oryzin gene was only slightly up-regulated in the MSLC sample and that of alpha-amylase gene, slightly down-regulated. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Abdul Khalil, Khalilah; Mustafa, Shuhaimi; Mohammad, Rosfarizan; Bin Ariff, Arbakariya; Shaari, Yamin; Abdul Manap, Yazid; Dahalan, Farrah Aini
2014-01-01
This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and β-galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 23 full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and β-galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract. PMID:24527457
Lagares, Antonio; Agaras, Betina; Bettiol, Marisa P; Gatti, Blanca M; Valverde, Claudio
2015-07-01
Species-specific genetic markers are crucial to develop faithful and sensitive molecular methods for the detection and identification of Pseudomonas aeruginosa (Pa). We have previously set up a PCR-RFLP protocol targeting oprF, the gene encoding the genus-specific outer membrane porin F, whose strong conservation and marked sequence diversity allowed detection and differentiation of environmental isolates (Agaras et al., 2012). Here, we evaluated the ability of the PCR-RFLP assay to genotype clinical isolates previously identified as Pa by conventional microbiological methods within a collection of 62 presumptive Pa isolates from different pediatric clinical samples and different sections of the Hospital de Niños "Sor María Ludovica" from La Plata, Argentina. All isolates, but one, gave an oprF amplicon consistent with that from reference Pa strains. The sequence of the smaller-sized amplicon revealed that the isolate was in fact a mendocina Pseudomonas strain. The oprF RFLP pattern generated with TaqI or HaeIII nucleases matched those of reference Pa strains for 59 isolates (96%). The other two Pa isolates (4%) revealed a different RFLP pattern based on HaeIII digestion, although oprF sequencing confirmed that Pa identification was correct. We next tested the effectiveness of the PCR-RFLP to detect pseudomonads on clinical samples of pediatric fibrocystic patients directly without sample cultivation. The expected amplicon and its cognate RFLP profile were obtained for all samples in which Pa was previously detected by cultivation-dependent methods. Altogether, these results provide the basis for the application of the oprF PCR-RFLP protocol to directly detect and identify Pa and other non-Pa pseudomonads in fibrocystic clinical samples. Copyright © 2015 Elsevier B.V. All rights reserved.
You, Qiushi; Li, Qingqing; Zheng, Hailing; Hu, Zhiwen; Zhou, Yang; Wang, Bing
2017-09-06
Recently, much interest has been paid to the separation of silk produced by Bombyx mori from silk produced by other species and tracing the beginnings of silk cultivation from wild silk exploitation. In this paper, significant differences between silks from Bombyx mori and other species were found by microscopy and spectroscopy, such as morphology, secondary structure, and amino acid composition. For further accurate identification, a diagnostic antibody was designed by comparing the peptide sequences of silks produced by Bombyx mori and other species. The results of the noncompetitive indirect enzyme-linked immunosorbent assay (ELISA) indicated that the antibody that showed good sensitivity and high specificity can definitely discern silk produced by Bombyx mori from silk produced by wild species. Thus, the antibody-based immunoassay has the potential to be a powerful tool for tracing the beginnings of silk cultivation. In addition, combining the sensitive, specific, and convenient ELISA technology with other conventional methods can provide more in-depth and accurate information for species identification.
Naito, Keisuke; Yamasaki, Kei; Yatera, Kazuhiro; Akata, Kentaro; Noguchi, Shingo; Kawanami, Toshinori; Fukuda, Kazumasa; Kido, Takashi; Ishimoto, Hiroshi; Mukae, Hiroshi
2017-01-01
Pulmonary emphysema is an important radiological finding in chronic obstructive pulmonary disease patients, but bacteriological differences in pneumonia patients according to the severity of emphysematous changes have not been reported. Therefore, we evaluated the bacteriological incidence in the bronchoalveolar lavage fluid (BALF) of pneumonia patients using cultivation and a culture-independent molecular method. Japanese patients with community-acquired pneumonia (83) and healthcare-associated pneumonia (94) between April 2010 and February 2014 were evaluated. The BALF obtained from pneumonia lesions was evaluated by both cultivation and a molecular method. In the molecular method, ~600 base pairs of bacterial 16S ribosomal RNA genes in the BALF were amplified by polymerase chain reaction, and clone libraries were constructed. The nucleotide sequences of 96 randomly selected colonies were determined, and a homology search was performed to identify the bacterial species. A qualitative radiological evaluation of pulmonary emphysema based on chest computed tomography (CT) images was performed using the Goddard classification. The severity of pulmonary emphysema based on the Goddard classification was none in 47.4% (84/177), mild in 36.2% (64/177), moderate in 10.2% (18/177), and severe in 6.2% (11/177). Using the culture-independent molecular method, Moraxella catarrhalis was significantly more frequently detected in moderate or severe emphysema patients than in patients with no or mild emphysematous changes. The detection rates of Haemophilus influenzae and Pseudomonas aeruginosa were unrelated to the severity of pulmonary emphysematous changes, and Streptococcus species - except for the S. anginosus group and S. pneumoniae - were detected more frequently using the molecular method we used for the BALF of patients with pneumonia than using culture methods. Our findings suggest that M. catarrhalis is more frequently detected in pneumonia patients with moderate or severe emphysema than in those with no or mild emphysematous changes on chest CT. M. catarrhalis may play a major role in patients with pneumonia complicating severe pulmonary emphysema.
Stereocontrolled reduction of alpha- and beta-keto esters with micro green algae, Chlorella strains.
Ishihara, K; Yamaguchi, H; Adachi, N; Hamada, H; Nakajima, N
2000-10-01
The stereocontrolled reduction of alpha- and beta-keto esters using micro green algae was accomplished by a combination of the cultivation method and the introduction of an additive. The reduction of ethyl pyruvate and ethyl benzoylformate by the photoautotrophically cultivated Chlorella sorokiniana gave the corresponding alcohol in high e.e. (>99% e.e. (S) and >99% e.e. (R), respectively). In the presence of glucose as an additive, the reduction of ethyl 3-methyl-2-oxobutanoate by the heterotrophically cultivated C. sorokiniana afforded the corresponding (R)-alcohol. On the other hand, the reduction in the presence of ethyl propionate gave the (S)-alcohol. Ethyl 2-methyl-3-oxobutanoate was reduced in the presence of glycerol by the photoautotrophically cultivated C. sorokiniana or the heterotrophically cultivated C. sorokiniana to the corresponding syn-(2R,3S)-hydroxy ester with high diastereo- and enantiomeric excess (e.e.). Some additives altered the stereochemical course in the reduction of alpha- and beta-keto esters.
Development of basic technologies for improvement of breeding and cultivation of Japanese gentian
Nishihara, Masahiro; Tasaki, Keisuke; Sasaki, Nobuhiro; Takahashi, Hideyuki
2018-01-01
Japanese gentians are the most important ornamental flowers in Iwate Prefecture and their breeding and cultivation have been actively conducted for half a century. With its cool climate and large hilly and mountainous area, more than 60% of gentian production in Japan occurs in Iwate Prefecture. Recent advances in gentian breeding and cultivation have facilitated the efficient breeding of new cultivars; disease control and improved cultivation conditions have led to the stable production of Japanese gentians. Molecular biology techniques have been developed and applied in gentian breeding, including the diagnosis of viral diseases and analysis of physiological disorders to improve gentian production. This review summarizes such recent approaches that will assist in the development of new cultivars and support cultivation. More recently, new plant breeding techniques, including several new biotechnological methods such as genome editing and viral vectors, have also been developed in gentian. We, therefore, present examples of their application to gentians and discuss their advantages in future studies of gentians. PMID:29681744
Progress and prospects for field cultivation of Iridaea cordata and Gigartina exasperata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumford, T.F. Jr.; Waaland, J.R.
1980-01-01
Research on cultivation of two carrageenan producing seaweeds, Iridaea cordatas and Gigartina exasperata, has resulted in 60 net units, each 1.2 x 18 m outplanted in the inland marine waters of Washington State. This paper traces the progress from beginning field and laboratory studies that demonstrated the biological feasibility of growing these species on artificial substrates, to current commercial sized net modules. The results achieved with these species are compared with other experimental, pilot, and commercial-scale red algal cultivation efforts. Methods are given here for inoculating nets and outplanting them in small, intermediate and commercial-scale net modules which can bemore » used to determine the feasibility of cultivating these or other species in various localities. A brief summary of supporting research which has been accomplished, which is in progress, and which needs to be done is also given. The outlook for expanded seaweed cultivation is promising and its potential great for providing new and expanded sources of chemicals, food, and biomass.« less
Autonomous benthic algal cultivator under feedback control of ecosystem metabolism
USDA-ARS?s Scientific Manuscript database
An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...
2010-01-01
Background Single-use rocking-motion-type bag bioreactors provide advantages compared to standard stirred tank bioreactors by decreased contamination risks, reduction of cleaning and sterilization time, lower investment costs, and simple and cheaper validation. Currently, they are widely used for cell cultures although their use for small and medium scale production of recombinant proteins with microbial hosts might be very attractive. However, the utilization of rocking- or wave-induced motion-type bioreactors for fast growing aerobic microbes is limited because of their lower oxygen mass transfer rate. A conventional approach to reduce the oxygen demand of a culture is the fed-batch technology. New developments, such as the BIOSTAT® CultiBag RM system pave the way for applying advanced fed-batch control strategies also in rocking-motion-type bioreactors. Alternatively, internal substrate delivery systems such as EnBase® Flo provide an opportunity for adopting simple to use fed-batch-type strategies to shaken cultures. Here, we investigate the possibilities which both strategies offer in view of high cell density cultivation of E. coli and recombinant protein production. Results Cultivation of E. coli in the BIOSTAT® CultiBag RM system in a conventional batch mode without control yielded an optical density (OD600) of 3 to 4 which is comparable to shake flasks. The culture runs into oxygen limitation. In a glucose limited fed-batch culture with an exponential feed and oxygen pulsing, the culture grew fully aerobically to an OD600 of 60 (20 g L-1 cell dry weight). By the use of an internal controlled glucose delivery system, EnBase® Flo, OD600 of 30 (10 g L-1 cell dry weight) is obtained without the demand of computer controlled external nutrient supply. EnBase® Flo also worked well in the CultiBag RM system with a recombinant E. coli RB791 strain expressing a heterologous alcohol dehydrogenase (ADH) to very high levels, indicating that the enzyme based feed supply strategy functions well for recombinant protein production also in a rocking-motion-type bioreactor. Conclusions Rocking-motion-type bioreactors may provide an interesting alternative to standard cultivation in bioreactors for cultivation of bacteria and recombinant protein production. The BIOSTAT® Cultibag RM system with the single-use sensors and advanced control system paves the way for the fed-batch technology also to rocking-motion-type bioreactors. It is possible to reach cell densities which are far above shake flasks and typical for stirred tank reactors with the improved oxygen transfer rate. For more simple applications the EnBase® Flo method offers an easy and robust solution for rocking-motion-systems which do not have such advanced control possibilities. PMID:20509968
Yanagi, Tomohiro; Shirasawa, Kenta; Terachi, Mayuko; Isobe, Sachiko
2017-01-01
Cultivated strawberry ( Fragaria × ananassa Duch.) has homoeologous chromosomes because of allo-octoploidy. For example, two homoeologous chromosomes that belong to different sub-genome of allopolyploids have similar base sequences. Thus, when conducting de novo assembly of DNA sequences, it is difficult to determine whether these sequences are derived from the same chromosome. To avoid the difficulties associated with homoeologous chromosomes and demonstrate the possibility of sequencing allopolyploids using single chromosomes, we conducted sequence analysis using microdissected single somatic chromosomes of cultivated strawberry. Three hundred and ten somatic chromosomes of the Japanese octoploid strawberry 'Reiko' were individually selected under a light microscope using a microdissection system. DNA from 288 of the dissected chromosomes was successfully amplified using a DNA amplification kit. Using next-generation sequencing, we decoded the base sequences of the amplified DNA segments, and on the basis of mapping, we identified DNA sequences from 144 samples that were best matched to the reference genomes of the octoploid strawberry, F. × ananassa , and the diploid strawberry, F. vesca . The 144 samples were classified into seven pseudo-molecules of F. vesca . The coverage rates of the DNA sequences from the single chromosome onto all pseudo-molecular sequences varied from 3 to 29.9%. We demonstrated an efficient method for sequence analysis of allopolyploid plants using microdissected single chromosomes. On the basis of our results, we believe that whole-genome analysis of allopolyploid plants can be enhanced using methodology that employs microdissected single chromosomes.
von Bomhard, Achim; Veit, Johannes; Bermueller, Christian; Rotter, Nicole; Staudenmaier, Rainer; Storck, Katharina; The, Hoang Nguyen
2013-01-01
The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE) three-dimensional (3D) cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D) cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15×8 cm) and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM) components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps and the implanted cultivated constructs were well neovascularized. The presented method is suggested as a promising alternative towards clinical application of engineered cartilaginous tissue for plastic and reconstructive surgery. PMID:23951215
Pudasaini, Sarita; Wilson, John; Ji, Mukan; van Dorst, Josie; Snape, Ian; Palmer, Anne S.; Burns, Brendan P.; Ferrari, Belinda C.
2017-01-01
Browning Peninsula is an ice-free polar desert situated in the Windmill Islands, Eastern Antarctica. The entire site is described as a barren landscape, comprised of frost boils with soils dominated by microbial life. In this study, we explored the microbial diversity and edaphic drivers of community structure across this site using traditional cultivation methods, a novel approach the soil substrate membrane system (SSMS), and culture-independent 454-tag pyrosequencing. The measured soil environmental and microphysical factors of chlorine, phosphate, aspect and elevation were found to be significant drivers of the bacterial community, while none of the soil parameters analyzed were significantly correlated to the fungal community. Overall, Browning Peninsula soil harbored a distinctive microbial community in comparison to other Antarctic soils comprised of a unique bacterial diversity and extremely limited fungal diversity. Tag pyrosequencing data revealed the bacterial community to be dominated by Actinobacteria (36%), followed by Chloroflexi (18%), Cyanobacteria (14%), and Proteobacteria (10%). For fungi, Ascomycota (97%) dominated the soil microbiome, followed by Basidiomycota. As expected the diversity recovered from culture-based techniques was lower than that detected using tag sequencing. However, in the SSMS enrichments, that mimic the natural conditions for cultivating oligophilic “k-selected” bacteria, a larger proportion of rare bacterial taxa (15%), such as Blastococcus, Devosia, Herbaspirillum, Propionibacterium and Methylocella and fungal (11%) taxa, such as Nigrospora, Exophiala, Hortaea, and Penidiella were recovered at the genus level. At phylum level, a comparison of OTU's showed that the SSMS shared 21% of Acidobacteria, 11% of Actinobacteria and 10% of Proteobacteria OTU's with soil. For fungi, the shared OTUs was 4% (Basidiomycota) and <0.5% (Ascomycota). This was the first known attempt to culture microfungi using the SSMS which resulted in an increase in diversity from 14 to 57 microfungi OTUs compared to standard cultivation. Furthermore, the SSMS offers the opportunity to retrieve a greater diversity of bacterial and fungal taxa for future exploitation. PMID:28439263
Microbiological determinations of some vegetables from the Xochimilco zone in Mexico City, Mexico.
García-Gómez, Rolando; Chávez-Espinosa, José; Mejía-Chávez, Adriana; Duránde-Bazúa, Carmen
2002-01-01
Vegetables intake is widely recommended because of its high content of vitamins, minerals and fiber. However, the irrigation of these vegetables, using wastewaters that have received inadequate treatment often carries unseen microbial pollution that becomes a high risk potential for humans. In the present research, two of the most consumed fresh vegetables cultivated in Mexico City were analyzed, lettuce (Lactuca sativa) and Mexican coriander (Eryngium foetidum). These vegetables are commonly consumed raw. The vegetable choice and the disinfection's method were carried out by the application of two tests to two hundred people in an aleatory form. Similarly, vegetable sampling was carried out by means of a random sampling from the cultivated areas in a chosen "chinampa" (from Náhuatl or Aztec, chinamitl, bulrush or cattail stalks lattice for hydroponics cultivation). Vegetable samples were transferred, in dark plastic bags and in cool boxes at 4 +/- 1.5 degrees C, to the laboratory. Microbiological analysis for Salmonella typhi, mesophilic microorganisms, and fecal coliforms were done according to the "NOM-093SSA1-1994" (Mexico). Results obtained demonstrated that samples treated with the most preferred disinfectant, a colloidal silver based one, had a partial elimination of pathogenic microorganisms found in both vegetables lettuce (Lactuca sativa) and coriander (Eryngium foetidum) samples (mesophyllic microorganisms from 200,000 to 96,500 UFC/g and from 175,000 to 125,000 UFC/g and fecal coliforms from 75 to 0.43 NMP/g and from 150 to 2.10 NMP/g, respectively). Salmonella typhi for all samples gave a positive result. Therefore, it was recommended to the cultivators of the Xochimilco (Náhuatl or Aztec name that means "place where flowers bloom") zone, either stop using contaminated water for irrigation or to use more efficient methods in order to eliminate pathogenic microorganisms, such as diluted chlorine solutions made with commercial cotton clothing bleachers.
von Bomhard, Achim; Veit, Johannes; Bermueller, Christian; Rotter, Nicole; Staudenmaier, Rainer; Storck, Katharina; The, Hoang Nguyen
2013-01-01
The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE) three-dimensional (3D) cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D) cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15 × 8 cm) and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM) components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps and the implanted cultivated constructs were well neovascularized. The presented method is suggested as a promising alternative towards clinical application of engineered cartilaginous tissue for plastic and reconstructive surgery.
Comparison of culture and qPCR methods in detection of mycobacteria from drinking waters.
Räsänen, Noora H J; Rintala, Helena; Miettinen, Ilkka T; Torvinen, Eila
2013-04-01
Environmental mycobacteria are common bacteria in man-made water systems and may cause infections and hypersensitivity pneumonitis via exposure to water. We compared a generally used cultivation method and a quantitative polymerase chain reaction (qPCR) method to detect mycobacteria in 3 types of drinking waters: surface water, ozone-treated surface water, and groundwater. There was a correlation between the numbers of mycobacteria obtained by cultivation and qPCR methods, but the ratio of the counts obtained by the 2 methods varied among the types of water. The qPCR counts in the drinking waters produced from surface or groundwater were 5 to 34 times higher than culturable counts. In ozone-treated surface waters, both methods gave similar counts. The ozone-treated drinking waters had the highest concentration of assimilable organic carbon, which may explain the good culturability. In warm tap waters, qPCR gave 43 times higher counts than cultivation, but both qPCR counts and culturable counts were lower than those in the drinking waters collected from the same sites. The TaqMan qPCR method is a rapid and sensitive tool for total quantitation of mycobacteria in different types of clean waters. The raw water source and treatments affect both culturability and total numbers of mycobacteria in drinking waters.
Johansson, Emma; Brandberg, Tomas; Larsson, Christer
2011-11-01
The cell viability and fermentation performance often deteriorate in fermentations of spent sulphite liquor (SSL). This investigation therefore addresses the question of how different cultivation conditions for yeast cells influence their ability to survive and boost the ethanol production capacity in an SSL-based fermentation process. The strains used as pitching agents were an industrially harvested Saccharomyces cerevisiae and commercial dry baker's yeast. This study therefore suggests that exposure to SSL in combination with nutrients, prior to the fermentation step, is crucial for the performance of the yeast. Supplying 0.5 g/l fresh yeast cultivated under appropriate cultivation conditions may increase ethanol concentration more than 200%.
A new environment-friendly hot pepper variety "Shiyan No. 1"
NASA Astrophysics Data System (ADS)
Han, Jianming; Xu, Shuzhen; Wang, Ruiling; Zhang, Yanzhao; Yun, Chao
2018-04-01
Hot pepper has rich genetic diversity which is the important base of breeding of new variety, and it is also one of the important vegetable in the word. In this study, we bred the "Shiyan No. 1" environment-friendly hot pepper variety using hybrid method on the basis of hot pepper genetic diversity. "Shiyan No. 1" is a new F1 hybrid of hot pepper variety with mid-early maturity. The new variety has a high productivity of 3000-5000kg(667m2)-1 with thick oxhorn shape fruits, green skin, thick flesh, mild-hot taste, good quality and marketable characters. It can reduce chemical pesticides usage and thereby protect environment because it is resistant to virus disease, highly resistant to phytophthora blight, anthracnose and bacterial wilt. In conclusion, the new bred "Shiyan No.1" is suitable for protected cultivation and open field cultivation in China.
USDA-ARS?s Scientific Manuscript database
Background: Theobroma cacao L. cultivar Matina 1-6 belongs to the most cultivated cacao type. The availability of its genome sequence and methods for identifying genes responsible for important cacao traits will aid cacao researchers and breeders. Results: We describe the sequencing and assembly of...
Buddhist Pedagogy in Teacher Education: Cultivating Wisdom by Skillful Means
ERIC Educational Resources Information Center
Ma Rhea, Zane
2018-01-01
This paper draws on research I have conducted about the cultivation of wisdom in Thailand and Australia. I examine the ancient pedagogy of pavi?aupaya skillful means investigating how this pedagogy can inform contemporary development of teacher educators and teachers. I examine the Panjaawi´tee Wisdom Method that has its foundations in the…
Vuran, Emre; Karaarslan, Aydın; Karasartova, Djursun; Turegun, Buse; Sahin, Fikret
2014-02-01
Despite the fact that a range of molecular methods have been developed as tools for the diagnosis of Malassezia species, there are several drawbacks associated with them, such as inefficiency of differentiating all the species, high cost, and questionable reproducibility. In addition, most of the molecular methods require cultivation to enhance sensitivity. Therefore, alternative methods eliminating cultivation and capable of identifying species with high accuracy and reliability are needed. Herein, a multiplex polymerase chain reaction (PCR)-based method was especially developed for the detection of eleven Malassezia species. The multiplex PCR was standardized by incorporating a consensus forward primer, along with Malassezia species-specific reverse primers considering the sizes of the PCR products. In the method, the multiplex-PCR primer content is divided into three parts to circumvent the problem of increased nonspecific background resulting from the use of a large number of primers. DNA extraction protocol described by Harju and colleagues was modified using liquid nitrogen instead of -80 °C to break down the yeast membrane. By a modified extraction procedure followed by multiplex PCR and electrophoresis, the method enables identification and differentiation of Malassezia species from both of the samples obtained directly from skin and yeast colonies grown in culture. Fifty-five patients who were confirmed with pityriasis versicolor were enrolled in the study. Multiplex PCR detected and differentiated all 55 samples obtained directly from the patients' skin. However, 50 out of 55 samples yielded Malassezia colony in the culture. In addition, eight of 50 colonies were misdiagnosed or not completely differentiated by conventional methods based on the sequence analysis of eight colonies. The method is capable of identifying species with high accuracy and reliability. In addition, it is simple, quick, and cost-effective. More importantly, the method works efficiently for the diagnosis of Malassezia species obtained directly from patient samples.
Pisani, Oliva; Haddix, Michelle L; Conant, Richard T; Paul, Eldor A; Simpson, Myrna J
2016-12-15
Soil organic matter (SOM) is critical for maintaining soil fertility and long-term agricultural sustainability. The molecular composition of SOM is likely altered due to global climate and land-use change; but rarely are these two aspects studied in tandem. Here we used molecular-level techniques to examine SOM composition along a bi-continental (from North to South America) mean annual temperature (MAT) gradient from seven native grassland/forest and cultivated/pasture sites. Biomarker methods included solvent extraction, base hydrolysis and cupric (II) oxide oxidation for the analysis of free lipids of plant and microbial origin, ester-bound lipids from cutin and suberin, and lignin-derived phenols, respectively. Solid-state 13 C nuclear magnetic resonance (NMR) was used to examine the overall composition of SOM. Soil cultivation was found to increase the amount of microbial-derived compounds at warmer temperatures (up to 17% increase). The cultivated soils were characterized by much lower contributions of plant-derived SOM components compared to the native soils (up to 64% lower at the coldest site). In addition, cultivation caused an increase in lignin and cutin degradation (up to 68 and 15% increase, respectively), and an increase in the amount of suberin-derived inputs (up to 54% increase). Clear differences in the molecular composition of SOM due to soil cultivation were observed in soils of varying mineral composition and were attributed to disturbance, different vegetation inputs, soil aggregate destruction and MAT. A high organic allophanic tropical soil was characterized by its protection of carbohydrates and nitrogen-containing compounds. The conversion of native to cultivated land shows significant shifts in the degradation stage of SOM. In particular, cutin-derived compounds which are believed to be part of the stable SOM pool may undergo enhanced degradation with long-term cultivation and disruption of soil aggregates. On a per year basis, the total amount of cutin decreased only at the two forest sites that were converted to pasture, likely due to cutin degradation or to changes in vegetation and litter quality associated with land-use change. Overall, our study highlights that the implementation of different agricultural management practices enhances the degradation of recalcitrant SOM compounds that may become a source of atmospheric CO 2 with increasing land-use and climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid identification of single microbes by various Raman spectroscopic techniques
NASA Astrophysics Data System (ADS)
Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen
2006-02-01
A fast and unambiguous identification of microorganisms is necessary not only for medical purposes but also in technical processes such as the production of pharmaceuticals. Conventional microbiological identification methods are based on the morphology and the ability of microbes to grow under different conditions on various cultivation media depending on their biochemical properties. These methods require pure cultures which need cultivation of at least 6 h but normally much longer. Recently also additional methods to identify bacteria are established e.g. mass spectroscopy, polymerase chain reaction (PCR), flow cytometry or fluorescence spectroscopy. Alternative approaches for the identification of microorganisms are vibrational spectroscopic techniques. With Raman spectroscopy a spectroscopic fingerprint of the microorganisms can be achieved. Using UV-resonance Raman spectroscopy (UVRR) macromolecules like DNA/RNA and proteins are resonantly enhanced. With an excitation wavelength of e.g. 244 nm it is possible to determine the ratio of guanine/cytosine to all DNA bases which allows a genotypic identification of microorganisms. The application of UVRR requires a large amount of microorganisms (> 10 6 cells) e.g. at least a micro colony. For the analysis of single cells micro-Raman spectroscopy with an excitation wavelength of 532 nm can be used. Here, the obtained information is from all type of molecules inside the cells which lead to a chemotaxonomic identification. In this contribution we show how wavelength dependent Raman spectroscopy yields significant molecular information applicable for the identification of microorganisms on a single cell level.
ERIC Educational Resources Information Center
Groen, Janet
2017-01-01
This chapter focuses on the role of religiously based spirituality in cultivating environmental awareness and citizenship by examining an adult environmental education program offered at the Ignatius Jesuit Centre, a religious retreat center in Guelph, Canada.
Park, Hyun; Ka, Kang-Hyeon; Ryu, Sung-Ryul
2014-03-01
The effectiveness of three kinds of enzymes (chitinase, β-glucuronidase, and lysing enzyme complex), employed as elicitors to enhance the β-glucan content in the sawdust-based cultivation of cauliflower mushroom (Sparassis latifolia), was examined. The elicitors were applied to the cauliflower mushroom after primordium formation, by spraying the enzyme solutions at three different levels on the sawdust-based medium. Mycelial growth was fully accomplished by the treatments, but the metabolic process during the growth of fruiting bodies was affected. The application of a lysing enzyme resulted in an increase in the β-glucan concentration by up to 31% compared to that of the control. However, the treatment resulted in a decrease in mushroom yield, which necessitated the need to evaluate its economic efficiency. Although we still need to develop a more efficient way for using elicitors to enhance functional metabolites in mushroom cultivation, the results indicate that the elicitation technique can be applied in the cultivation of medicinal/edible mushrooms.
Culture cultivating culture: the four products of the meaning-made world.
Carriere, Kevin R
2014-09-01
Culture, in a semiotic cultural psychology, is defined from the viewpoint of cultivation--the meaning making processes that give meaning to the world (Valsiner 2000, 2007a). However, the individual is not simply a process-machine in an empty world--there are both the external outcomes of meaning making (individual and group based) as well as the collective influence on the cultivation process. I argue to examine the cultivation process more completely, one must look at these external influences that catalyze future cultivation processes. By examining the power of the external (environmental Umwelten) and group-internal (myths, morals), a much greater understanding of the behavior of individuals can be accomplished beyond examining the individual's process of meaning making. Further work into examining the objects that affectively activate the individual as well as group action and meaning making is called for and examples of such studies are given.
Liu, Chunguang; Feng, Qingna; Yang, Jirui; Qi, Xinhua
2018-05-01
Duckweed (Lemna minor) with a high starch content of 50.4% was cultivated by uniconazole-induction method. The cultivated duckweed was used to produce value-added chemicals such as glucose, levulinic acid and formic acid in diluted HCl aqueous solution. A high glucose yield of 93.4% (471 g/kg based on loading duckweed mass) could be achieved at 180 °C in short reaction time, and the generated glucose was converted into levulinic acid and formic acid with yields of 52.0% and 34.1%, respectively, for 150 min, corresponding to 262 g/kg levulinic acid yield and 171 g/kg formic acid yield based on the mass of loading duckweed, respectively. Moreover, the duckweed was efficiently converted to ethyl levulinate with 55.2% yield (400.6 g/kg) at 200 °C in ethanol. This work provides a promising strategy for the production of value-added chemicals from phytoplankton that is able to purify the wastewater containing high content of P and N. Copyright © 2018 Elsevier Ltd. All rights reserved.
Promprasit, Daranee; Bumroongkit, Kanokkan; Tocharus, Chainarong; Mevatee, Umnat; Tananuvat, Napaporn
2015-03-01
To compare the morphology of cultured rabbit epithelial sheets and the expression of stem cells with differentiated cell markers of cultivated epithelial cells from fresh and cryopreserved limbal and oral mucosal biopsies. Six New Zealand white rabbits were divided into two groups of three, from which limbal and oral mucosal biopsies were taken. Harvested tissues from each rabbit were brought to immediate cultivation, while another set of tissues was cryopreserved. Cultivation was performed by the explant culture technique using human amniotic membrane as a culture substrate, co-culturing with 3T3 fibroblasts and using the air-lifting method. Cells were cultured for three weeks; then cultured epithelial sheets were stained with hematoxylin-eosin and examined for expression patterns of p63, keratin 3 (K3) and connexin 43 (Cx43). Cryopreservation was carried out using the vitrification method. Tissues were preserved in liquid nitrogen using 25% dimethyl sulfoxide combined with 25% propylene glycol in Dulbecco's Modified Eagle's Medium containing 20% fetal bovine serum. After two months, the tissues were warmed, cultured and stained using the same processes as for fresh tissue cultures. Cultivation of fresh limbal and fresh oral mucosal tissues showed epithelial stratification, with two to five cell layers. Immunohistochemical staining showed p63-positive cells in basal and intermediate cell layers. K3 staining was observed in cells in the suprabasal layer, while expression of Cx43 was scattered throughout all layers of the epithelia. All culture sheets expressed p63, K3 and Cx43 with the exception of one sheet from the oral mucosal culture that was p63-negative. Cultured epithelial sheets from cryopreserved tissues showed results similar to those from fresh tissue culture. This study found that cells in cultivated fresh limbal and oral mucosal tissues had similar morphology to cells in cultivated cryopreserved limbal and oral mucosal tissues, both containing a heterogeneous population of cells including stem cells and differentiated cells.
Histochemical study of brown-fat cells in the golden hamster (Mesocricetus auratus) in cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, V.E.; Boyadzhieva-Mikhailova, A.; Koncheva, L.
1985-11-01
The authors undertake the task of studying the synthesis of certain hormones by brown-fat cells. The authors used brown-fat cells from the golden hamster. The metabolism of brown-fat cells was studied on precultured cells, which made it possible to detect the synthesis of the studied substances rather than their accumulation in the organ. The authors conducted three experiments. First, fragments of brown fat were cultivated in diffusion chambers in vivo. Pieces of brown fat were cultivated in parallel in vitro on agar (organotypic cultures) and on plasma (histotypic cultures). During cultivation in diffusion chambers, the chambers were implanted in themore » abdominal cavity of young white rats. For in vitro cultivation, TCM 199 plus 15-20% calf serum was used. A total of 36 cultures with 12 cultures in each series of experiments were performed. The auto-radiographic studies of brown-fat cells were conducted on 24-hour cultures and on brown-fat fragments taken from the intact animal. The cultures were incubated with isotopes for 1 h. Either (/sup 3/H)lysine (87.3 Ci/mM specific activity), (/sup 3/H)arginine (16.7 Ci/mM), (/sup 3/H)glycerol (43 Ci/mM), or (/sup 3/H)cholesterol (43 Ci/mM) were added to the medium. After incubation, the cultures were washed three times in pure medium, fixed in Sierra fluid, and embedded in paraffin. The paraffin sections were covered with Ilford K/sub 2/ emulsion, and the preparations were exposed for 20 days at 4/sup 0/C temperature. Radio-immunological methods were used to study the accumulation of estradiol-17-beta in the culture medium by the Dobson method and that of testerone. The culture medium was taken on cultivation days 2,4,6,8, and 10. The medium was changed during cultivation every third day, which made it possible to judge the rates of accumulation of material with increase in the cultivation times.« less
Abu-Qaoud, Hassan; Shawarb, Nuha; Hussen, Fatima; Jaradat, Nidal; Shtaya, Munqez
2018-05-01
Borago officinalis plant is an important plant of high medicinal and nutritional values. This study designed to evaluate antioxidant activity, screen the existence of phytogenic chemical compounds and to determine the total flavonoid and phenol contents of wild and cultivated Borago officinalis. Total flavonoid contents of the wild and cultivated Borago officinalis were determined by using rutin reference standard method and total phenols determined by using Folin Ciocalteu's method while antioxidant activity evaluated by using 2, 2-diphenyl-1-picryl-hydrazyl-hydrate assay. Phytochemical analyses indicated the presence of carbohydrate, phenols, flavonoids, phytosteroids tannins and volatile oil. The total flavonoid content of the methanolic extract from the wild borage plant was 22.4mg RU/g this value was reduced to 13.1mg RU/g for the cultivated methanolic extract as well as the total phenols contents was dropped from 5.21mg GA/g to 2.37mg GA/g methanolic extracts. Total tannins content of the wild growing borage plant was 13.7mg GA/g methanolic extract. This value was higher in the cultivated borage with 21.33mg GA/g methanolic extract. The wild leaves extract had IC 50 =6.3μg/mL for wild leaves extract was closer to IC 50 value of Trolox (standard reference with high antioxidant activity), while the cultivated leaves extract had higher IC 50 = 8.7μg/mL which mean lower antioxidant activity than the wild growing one. The data of this study showed that the extracts of Borago officinalis possess antioxidant and free radical scavenging activities. Variation was clear between wild and cultivated species, these findings propose that such plant extract could have a wide range of applications in both food and pharmaceutical industries. Therefore, more research is necessary to investigate different cultural practices on the efficiency of borage plant.
Sahu, Kamlesh Kumar; Chattopadhyay, Debasis
2017-06-02
Cultivated tomato (Solanum lycopersicum L.) is the second most important vegetable crop after potato and a member of thirteen interfertile species of Solanum genus. Domestication and continuous selection for desirable traits made cultivated tomato species susceptible to many stresses as compared to the wild species. In this study, we analyzed and compared the genomes of wild and cultivated tomato accessions to identify the genomic regions that encountered changes during domestication. Analysis was based on SNP and InDel mining of twentynine accessions of twelve wild tomato species and forty accessions of cultivated tomato. Percentage of common SNPs among the accessions within a species corresponded with the reproductive behavior of the species. SNP profiles of the wild tomato species within a phylogenetic subsection varied with their geographical distribution. Interestingly, the ratio of genic SNP to total SNPs increased with phylogenetic distance of the wild tomato species from the domesticated species, suggesting that variations in gene-coding region play a major role in speciation. We retrieved 2439 physical positions in 1594 genes including 32 resistance related genes where all the wild accessions possessed a common wild variant allele different from all the cultivated accessions studied. Tajima's D analysis predicted a very strong purifying selection associated with domestication in nearly 1% of its genome, half of which is contributed by chromosome 11. This genomic region with a low Tajima's D value hosts a variety of genes associated with important agronomic trait such as, fruit size, tiller number and wax deposition. Our analysis revealed a broad-spectrum genetic base in wild tomato species and erosion of that in cultivated tomato due to recurrent selection for agronomically important traits. Identification of the common wild variant alleles and the genomic regions undergoing purifying selection during cultivation would facilitate future breeding program by introgression from wild species.
NASA Astrophysics Data System (ADS)
Li, Bowei; Dong, Chen; Chu, Zhengpei; Zhang, Weizhe; Wang, Minjuan; Liu, Hong; Xie, Beizhen
2016-10-01
In addition to the bio-regenerative air revitalization, water recycling and waste management systems and their associated challenges, enhancing the crop yield with less fertilizer input for sustainable food production in space is also a challenge that needs to be overcome. The purpose of this study is to investigate the feasibility of applying ion exchange resin as a slow-release fertilizer for wheat cultivation in space. Strong-acid cationic exchange resins and weak-base anion exchange resins soaked in 1X, 5X, 10X and 15X Hoagland nutrient solutions, respectively, were used as fertilizers in clinoptilolite to cultivate wheat plants, and the morphological and physiological characteristics of the wheat plants were studied and compared with that of the wheat planted in vermiculite and nutrient solutions. The results showed that more ions were attached on the surface of the ion exchange resins as the solution concentration increased. After 14 days, the fresh weight of wheat planted in the ion exchange resin-clinoptilolite (IER-clinoptilolite) treated with 10X and 15X solutions were 190% and 192% higher than that of wheat planted in nutrient solution with the same concentration. Chlorophyll content of wheat plants cultivated in the two kinds of solid medium is significantly higher than that of liquid cultivation. The lowest peroxidase (POD) activity and malondialdehyde (MDA) contents of wheat plants cultivated in the IER-clinoptilolite appeared on the 14th day. According to all the experimental data, it's promising to produce slow-release nutrient fertilizer by using strong-acid cationic exchange resins and weak-base anion exchange resins for wheat cultivation in space.
Rotundo, José L; Cipriotti, Pablo A
2017-04-01
The relationship between leaf photosynthesis and nitrogen is a critical production function for ecosystem functioning. Cultivated species have been studied in terms of this relationship, focusing on improving nitrogen (N) use, while wild species have been studied to evaluate leaf evolutionary patterns. A comprehensive comparison of cultivated vs wild species for this relevant function is currently lacking. We hypothesize that cultivated species show increased carbon assimilation per unit leaf N area compared with wild species as associated with artificial selection for resource-acquisition traits. We compiled published data on light-saturated photosynthesis (A max ) and leaf nitrogen (LN area ) for cultivated and wild species. The relationship between A max and LN area was evaluated using a frontier analysis (90 th percentile) to benchmark the biological limit of nitrogen use for photosynthesis. Carbon assimilation in relation to leaf N was not consistently higher in cultivated species; out of 14 cultivated species, only wheat, rice, maize and sorghum showed higher ability to use N for photosynthesis compared with wild species. Results indicate that cultivated species have not surpassed the biological limit on nitrogen use observed for wild species. Future increases in photosynthesis based on natural variation need to be assisted by bioengineering of key enzymes to increase crop productivity. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Irianto, H.; Mujiyo; Riptanti, E. W.; Qonita, A.
2018-03-01
Bojonegoro regency occupies the largest flood-prone rice fields of about 14,198 hectares, in East Java province. Floods commonly occur due to Bengawan Solo river over-burst, particularly in rainy season. The fields are potential for cultivating rice, but floods lasting for months causing these areas to be unproductive. The objective of this article is to examine the potential land use of flood prone rice fields in Bojonegoro regency using floating rice system as an effort to maintain productivity in rainy season. The method of this study is referential study about the rice production using floating cultivation system in other regions, which are later compared with the physical condition of the fields in Bojonegoro. The results of analysis show that rice cultivation using floating system can maintain rice production in flood prone areas during rainy season. The potential production of rice is 5-6 tons/ha. However, technical problems for cultivating rice cannot be ignored since farmers are not familiar with cultivating flooded fields. This article also explains alternatives of floating rice cultivation technique, which can be implemented effectively and efficiently. Pioneer work of developing floating rice in Bojonegoro that has been done by the Team of Faculty of Agriculture of UNS, Surakarta, is expected to serve as a medium for accelerating the adoption of cultivation technology innovation to farmers.
Effect of 3D Cultivation Conditions on the Differentiation of Endodermal Cells
Petrakova, O. S.; Ashapkin, V. V.; Voroteliak, E. A.; Bragin, E. Y.; Shtratnikova, V. Y.; Chernioglo, E. S.; Sukhanov, Y. V.; Terskikh, V. V.; Vasiliev, A. V.
2012-01-01
Cellular therapy of endodermal organs is one of the most important issues in modern cellular biology and biotechnology. One of the most promising directions in this field is the study of the transdifferentiation abilities of cells within the same germ layer. A method for anin vitroinvestigation of the cell differentiation potential (the cell culture in a three-dimensional matrix) is described in this article. Cell cultures of postnatal salivary gland cells and postnatal liver progenitor cells were obtained; their comparative analysis under 2D and 3D cultivation conditions was carried out. Both cell types have high proliferative abilities and can be cultivated for more than 20 passages. Under 2D cultivation conditions, the cells remain in an undifferentiated state. Under 3D conditions, they undergo differentiation, which was confirmed by a lower cell proliferation and by an increase in the differentiation marker expression. Salivary gland cells can undergo hepatic and pancreatic differentiation under 3D cultivation conditions. Liver progenitor cells also acquire a pancreatic differentiation capability under conditions of 3D cultivation. Thus, postnatal salivary gland cells exhibit a considerable differentiation potential within the endodermal germ layer and can be used as a promising source of endodermal cells for the cellular therapy of liver pathologies. Cultivation of cells under 3D conditions is a useful model for thein vitroanalysis of the cell differentiation potential. PMID:23346379
Liu, Zhi; Wang, Chong-Zhi; Zhu, Xing-You; Wan, Jin-Yi; Zhang, Jing; Li, Wei; Ruan, Chang-Chun; Yuan, Chun-Su
2017-05-04
In this study, dynamic changes in ginsenoside content and ratios in the Panax ginseng root were investigated with different cultivation ages and different collection months, using high-performance liquid chromatography (HPLC). Our data indicate that changes in ginsenoside Ro and malonyl ginsenosides content were dependent on the ginseng cultivation age ( p < 0.05); especially, the Ro content varied from 0.16 to 4.91 mg/g, with a difference about 30-fold. Further, we found that the samples of 5 and 6-year-old P. ginseng had high Ro/Re ratio, whereas two and three-year-old P. ginseng possessed low Ro/Re ratio. Thus, the Ro/Re ratio can be used as a characteristic marker for differentiating the age of the root. The relative content of ginsenosides Rg₁ and Re were affected by the ginseng's harvest season. The Re content was higher than the Rg₁ content in May and June, but lower than the Rg₁ content from August to October. Thus, the Rg₁/Re ratio can be used as a characteristic marker for differentiating the ginseng's harvest seasons. These results indicate that the chemical characteristics of P. ginseng at different cultivation ages and harvest seasons are clearly different, which may cause differences in pharmacological activities and therapeutic effects. In addition, we developed HPLC coupled with hierarchical cluster analysis and principal component analysis methods to identify the cultivation age and harvest season of P. ginseng using characteristic ginsenosides. Our results showed that this method can be used to discriminate the cultivation age and harvest season of P. ginseng.
Potter, Gary R; Barratt, Monica J; Malm, Aili; Bouchard, Martin; Blok, Thomas; Christensen, Anne-Sofie; Decorte, Tom; Frank, Vibeke Asmussen; Hakkarainen, Pekka; Klein, Axel; Lenton, Simon; Perälä, Jussi; Werse, Bernd; Wouters, Marije
2015-03-01
This article aims to provide an overview of: demographic characteristics; experiences with growing cannabis; methods and scale of growing operations; reasons for growing; personal use of cannabis and other drugs; participation in cannabis and other drug markets; contacts with the criminal justice system for respondents to an online survey about cannabis cultivation drawn from eleven countries (N=6530). Important similarities and differences between the national samples recruited will be discussed. This paper utilizes data from the online web survey of predominantly 'small-scale' cannabis cultivators in eleven countries conducted by the Global Cannabis Cultivation Research Consortium (GCCRC). Here we focus primarily on descriptive statistics to highlight key similarities and differences across the different national samples. Overall there was a great deal of similarity across countries in terms of: demographic characteristics; experiences with growing cannabis; methods and scale of growing operations; reasons for growing; use of cannabis and other drugs; participation in cannabis and other drug markets, and; contacts with the criminal justice system. In particular, we can recognise that a clear majority of those small-scale cannabis cultivators who responded to our survey are primarily motivated for reasons other than making money from cannabis supply and have minimal involvement in drug dealing or other criminal activities. These growers generally come from 'normal' rather than 'deviant' backgrounds. Some differences do exist between the samples drawn from different countries suggesting that local factors (political, geographical, cultural, etc.) may have some influence on how small-scale cultivators operate, although differences in recruitment strategies in different countries may also account for some differences observed. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Xiwen; Chen, Yuning; Yang, Qing; Wang, Yitao
2015-01-01
The usage amount of medicinal plant rapidly increased along with the development of traditional Chinese medicine industry. The higher market demand and the shortage of wild herbal resources enforce us to carry out large-scale introduction and cultivation. Herbal cultivation can ease current contradiction between medicinal resources supply and demand while they bring new problems such as pesticide residues and plant disease and pests. Researchers have recently placed high hopes on the application of natural fostering, a new method incorporated herbal production and diversity protecting practically, which can solve the problems brought by artificial cultivation. However no modes can solve all problems existing in current herbal production. This study evaluated different production modes including cultivation, natural fostering, and wild collection to guide the traditional Chinese medicine production for sustainable utilization of herbal resources. PMID:26074987
Optimized production planning model for a multi-plant cultivation system under uncertainty
NASA Astrophysics Data System (ADS)
Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng
2015-02-01
An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.
Monitoring System and Temperature Controlling on PID Based Poultry Hatching Incubator
NASA Astrophysics Data System (ADS)
Shafiudin, S.; Kholis, N.
2018-04-01
Poultry hatching cultivation is essential to be observed in terms of temperature stability by using artificial penetration incubator which applies On/Off control. The On/Off control produces relatively long response time to reach steady-state conditions. Moreover, how the system works makes the component worn out because the lamp is on-off periodically. Besides, the cultivation in the market is less suitable to be used in an environment which has fluctuating temperature because it may influence plant’s temperature stability. The study aims to design automatic poultry hatching cultivation that can repair the temperature’s response of plant incubator to keep stable and in line with the intended set-point temperature value by using PID controller. The method used in PID controlling is designed to identify plant using ARX (Auto Regressive eXogenous) MATLAB which is dynamic/non-linear to obtain mathematical model and PID constants value that is appropriate to system. The hardware design for PID-based egg incubator uses Arduino Uno R3, as the main controller that includes PID source, and PWM, to keep plant temperature stability, which is integrated with incandescent light actuators and sensors where DHTI 1 sensor as the reader as temperature condition and plant humidity. The result of the study showed that PID constants value of each plant is different. For parallel 15 Watt plant, Kp = 3.9956, Ki = 0.361, Kd = 0, while for parallel 25 Watt plant, the value of Kp = 5.714, Ki = 0.351, Kd = 0. The PID constants value were capable to produce stable system response which is based on set-point with steady state error’s value is around 5%, that is 2.7%. With hatching percentage of 70-80%, the hatching process is successful in air-conditioned environment (changeable).
Cui, Xiaonan; Ren, Lihui; Shan, Yufei; Wang, Xixian; Yang, Zhenlong; Li, Chunyu; Xu, Jian; Ma, Bo
2018-05-18
Standard plate count (SPC) has been recognized as the golden standard for the quantification of viable bacteria. However, SPC usually takes one to several days to grow individual cells into a visible colony, which greatly hampers its application in rapid bacteria enumeration. Here we present a microdroplet turbidity imaging based digital standard plate count (dSPC) method to overcome this hurdle. Instead of cultivating on agar plates, bacteria are encapsulated in monodisperse microdroplets for single-cell cultivation. Proliferation of the encapsulated bacterial cell produced a detectable change in microdroplet turbidity, which allowed, after just a few bacterial doubling cycles (i.e., a few hours), enumeration of viable bacteria by visible-light imaging. Furthermore, a dSPC platform integrating a power-free droplet generator with smartphone-based turbidity imaging was established. As proof-of-concept demonstrations, a series of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis) samples were quantified via the smartphone dSPC accurately within 6 hours, representing a detection sensitivity of 100 CFU ml-1 and at least 3 times faster. In addition, Enterobacter sakazakii (E. sakazakii) in infant milk powder as a real sample was enumerated within 6 hours, in contrast to the 24 hours needed in traditional SPC. Results with high accuracy and reproducibility were achieved, with no difference in counts found between dSPC and SPC. By enabling label-free, rapid, portable and low-cost enumeration and cultivation of viable bacteria onsite, smartphone dSPC forms the basis for a temporally and geographically trackable network for surveying live microbes globally where every citizen with a cellphone can contribute anytime and anywhere.
Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley.
Dai, Fei; Chen, Zhong-Hua; Wang, Xiaolei; Li, Zefeng; Jin, Gulei; Wu, Dezhi; Cai, Shengguan; Wang, Ning; Wu, Feibo; Nevo, Eviatar; Zhang, Guoping
2014-09-16
The domestication of cultivated barley has been used as a model system for studying the origins and early spread of agrarian culture. Our previous results indicated that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. Here we reveal multiple origins of domesticated barley using transcriptome profiling of cultivated and wild-barley genotypes. Approximately 48-Gb of clean transcript sequences in 12 Hordeum spontaneum and 9 Hordeum vulgare accessions were generated. We reported 12,530 de novo assembled transcripts in all of the 21 samples. Population structure analysis showed that Tibetan hulless barley (qingke) might have existed in the early stage of domestication. Based on the large number of unique genomic regions showing the similarity between cultivated and wild-barley groups, we propose that the genomic origin of modern cultivated barley is derived from wild-barley genotypes in the Fertile Crescent (mainly in chromosomes 1H, 2H, and 3H) and Tibet (mainly in chromosomes 4H, 5H, 6H, and 7H). This study indicates that the domestication of barley may have occurred over time in geographically distinct regions.
Motivation of farmers to cultivate organic rice in Central Java
NASA Astrophysics Data System (ADS)
Dalmiyatun, T.; Eddy, B. T.; Sumekar, W.; Mardiningsih, D.
2018-01-01
The consumer’s need for organic agricultural products increases sharply along with awareness of health, lifestyle and environmental concern. This research was intended to determine the relationship between social factors and the motivation of farmers for cultivating organic rice in Central Java. The research has been done by survey to farmers groups at three regions i.e. Semarang, Sragen and Demak. The determination of the location was carried out by means of purposive i.e. farmer groups that conduct organic rice cultivation (not semi organic). The determination of the sample was conducted purposively for a number of 50 people each regencies. Data were analyzed descriptive analysis and rank Spearman correlation analysis. The results showed that social factors include age, cultivated area, education, farming experience have correlation with motivation. education and cultivated area of land has a fairly close relation with correlation value 0,463% and 0,242%. Based on the motivation level, 33% of farmers have high motivation, motivation of farmers varied but most of them, 54% of total farmers stated that the motivation to cultivate organic rice is the quality of organic rice products and high income.
Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.
1982-01-01
A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.
[Dynamic evolution of landscape spatial pattern in Taihu Lake basin, China].
Wang, Fang; Xie, Xiao Ping; Chen, Zhi Cong
2017-11-01
Based on the land-use satellite image datasets of 2000, 2010 and 2015, the landscape index, dynamic change model, landscape transfer matrix and CLUE-S model were integrated to analyze the dynamic evolution of the landscape spatial pattern of Taihu Lake basin. The results showed that the landscape type of the basin was dominated by cultivated land and construction land, and the degree of landscape fragmentation was strengthened from 2000 to 2015, and the distribution showed a uniform trend. From the point of transfer dynamic change, the cultivated land and construction land changed significantly, which was reduced by 6761 km 2 (2.1%) and increased by 6615.33 km 2 (8.4%), respectively. From the landscape transfer, it could be seen that the main change direction of the cultivated land reduction was the construction land, and the cultivated land with 7866.30 km 2 was converted into construction land, accounting for 91.6% of the cultivated land change, and the contribution to the construction land was 96.5%. The trend of dynamic changes of cultivated and construction land in the counties and cities was the same as that of the whole Taihu Lake basin. For Shanghai Central Urban, as well as Pudong District, Lin'an City, Baoshan District, Minhang District, Jiading District and Changzhou City, the area of the cultivated land and construction land changed more prominently. However, compared with the CLUE-S model for the landscape pattern change in 2030, the change of cultivated and construction lands would be the largest in the natural development scenario. Under the ecological protection scenario, the area of grassland would increase and the dynamic degree would reach 54.5%. Under the situation of cultivated land protection, the conversion of cultivated land to construction land would be decreased.
Lee, Jae Won; Ji, Seung-Heon; Lee, Young-Seob; Choi, Doo Jin; Choi, Bo-Ram; Kim, Geum-Soog; Baek, Nam-In; Lee, Dae Young
2017-01-01
(1) Background: Panax ginseng root is one of the most important herbal products, and the profiling of ginsenosides is critical for the quality control of ginseng roots at different ages in the herbal markets. Furthermore, interest in assessing the contents as well as the localization of biological compounds has been growing. The objective of this study is to carry out the mass spectrometry (MS)-based profiling and imaging of ginsenosides to assess ginseng roots at different ages; (2) Methods: Optimal ultra performance liquid chromatography coupled to quadrupole time of flight/MS (UPLC-QTOF/MS) was used to profile various ginsenosides from P. ginseng roots. Matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF)/MS-based imaging was also optimized to visualize ginsenosides in ginseng roots; (3) Results: UPLC-QTOF/MS was used to profile 30 ginsenosides with high mass accuracy, with an in-house library constructed for the fast and exact identification of ginsenosides. Using this method, the levels of 14 ginsenosides were assessed in P. ginseng roots cultivated for 4, 5, and 6 years. The optimal MALDI-imaging MS (IMS) was also applied to visualize the 14 ginsenosides in ginseng roots. As a result, the MSI cross sections showed the localization of 4 ginsenoside ions ([M + K]+) in P. ginseng roots at different ages; (4) Conclusions: The contents and localization of various ginsenosides differ depending on the cultivation years of P. ginseng roots. Furthermore, this study demonstrated the utility of MS-based profiling and imaging of ginsenosides for the quality control of ginseng roots. PMID:28538661
Lee, Jae Won; Ji, Seung-Heon; Lee, Young-Seob; Choi, Doo Jin; Choi, Bo-Ram; Kim, Geum-Soog; Baek, Nam-In; Lee, Dae Young
2017-05-24
(1) Background: Panax ginseng root is one of the most important herbal products, and the profiling of ginsenosides is critical for the quality control of ginseng roots at different ages in the herbal markets. Furthermore, interest in assessing the contents as well as the localization of biological compounds has been growing. The objective of this study is to carry out the mass spectrometry (MS)-based profiling and imaging of ginsenosides to assess ginseng roots at different ages; (2) Methods: Optimal ultra performance liquid chromatography coupled to quadrupole time of flight/MS (UPLC-QTOF/MS) was used to profile various ginsenosides from P. ginseng roots. Matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF)/MS-based imaging was also optimized to visualize ginsenosides in ginseng roots; (3) Results: UPLC-QTOF/MS was used to profile 30 ginsenosides with high mass accuracy, with an in-house library constructed for the fast and exact identification of ginsenosides. Using this method, the levels of 14 ginsenosides were assessed in P. ginseng roots cultivated for 4, 5, and 6 years. The optimal MALDI-imaging MS (IMS) was also applied to visualize the 14 ginsenosides in ginseng roots. As a result, the MSI cross sections showed the localization of 4 ginsenoside ions ([M + K]⁺) in P. ginseng roots at different ages; (4) Conclusions: The contents and localization of various ginsenosides differ depending on the cultivation years of P. ginseng roots. Furthermore, this study demonstrated the utility of MS-based profiling and imaging of ginsenosides for the quality control of ginseng roots.
Dianou, Dayéri; Ueno, Chihoko; Ogiso, Takuya; Kimura, Makoto; Asakawa, Susumu
2012-01-01
The diversity of cultivable methane-oxidizing bacteria (MOB) in the rice paddy field ecosystem was investigated by combined culture-dependent and fluorescence in situ hybridization (FISH) techniques. Seven microsites of a Japanese rice paddy field were the focus of the study: floodwater, surface soil, bulk soil, rhizosphere soil, root, basal stem of rice plant, and rice stumps of previous harvest. Based on pmoA gene analysis and transmission electron microscopy (TEM), four type I, and nine type II MOB isolates were obtained from the highest dilution series of enrichment cultures. The type I MOB isolates included a novel species in the genus Methylomonas from floodwater and this is the first type I MOB strain isolated from floodwater of a rice paddy field. In the type I MOB, two isolates from stumps were closely related to Methylomonas spp.; one isolate obtained from rhizosphere soil was most related to Methyloccocus-Methylocaldum-Methylogaea clade. Almost all the type II MOB isolates were related to Methylocystis methanotrophs. FISH confirmed the presence of both types I and II MOB in all the microsites and in the related enrichment cultures. The study reported, for the first time, the diversity of cultivable methanotrophs including a novel species of type I MOB in rice paddy field compartments. Refining growth media and culture conditions, in combination with molecular approaches, will allow us to broaden our knowledge on the MOB community in the rice paddy field ecosystem and consequently to implement strategies for mitigating CH4 emission from this ecosystem. PMID:22446309
NASA Astrophysics Data System (ADS)
Akbar, M. S.; Sarker, M. H.; Sattar, M. A.; Sarwar, G. M.; Rahman, S. M. M.; Rahman, M. M.; Khan, Z. U.
2017-05-01
Cultivation of shrimp mostly in unplanned way has been considered as one of the major environmental disasters of Shamnagar. Villagers surrounding the rivers are mainly involved with fish (shrimp) cultivation. So, fertile agriculture land has been converted to shrimp cultivation. Conversion of agriculture land to other usage is a common but acute problem for land resources of the country like Bangladesh. Conventional methods for collecting this information are relatively costly and time consuming. Contrarily, Remote Sensing satellite observation with its unique capability to provide cost-effective support in compiling the latest information about the natural resource. Remote sensing, in conjunction with GIS, has been widely applied and been recognized as a powerful and effective tool in detecting land use and land cover changes. RapidEye, Landsat8 images were used to identify land use and land cover of the area during the period 2008 and 2015. Google images were used to identify the micro-level land use features of the same period. Multi-spectral classifications using unsupervised and supervised classification were done and results have been compared based on the field investigation. The study reveals that during the period 2008 to 2015 agricultural practice has been reduced from 35 % to 21 % and shrimp cultivation area increased from 38 % to 50 %. Due to the impact of high salinity and salt water intrusion caused by natural disaster, agricultural activities is reduced and farmers have been converted to other practices, as a result shrimp farming is gaining popularity in the area.
Molecular identification based on ITS sequences for Kappaphycus and Eucheuma cultivated in China
NASA Astrophysics Data System (ADS)
Zhao, Sufen; He, Peimin
2011-11-01
The systematic classification of the Eucheumatoideae is difficult because of their variable morphology and interpretation of reproductive structures. Kappaphycus and Eucheuma specimens cultivated on the Hainan and Fujian coast of China were introduced from Vietnam, the Philippines and Indonesia. Combined with morphological characteristics, all Kappaphycus and Eucheuma cultivated strains were identified by internal transcribed spacer (ITS) sequences. The phylogenetic tree was constructed using neighbor-joining and maximum likelihood methods. The results indicate that different ITS sequence lengths occurred in the different genera and species. An obvious difference in morphology could be found in the protuberance shape between Kappaphycus and Eucheuma. The protuberance in Eucheuma was thorn-like and in Kappaphycus was wartlike or papillate. Their ITS sequence lengths differed significantly in nucleotide variation rates up to 58.55%-63.90%. All nucleotide variations occurred in the ITS1 and ITS2 regions except for five nucleotide transversions in the 5.8S rDNA region. In addition, the difference was at the branches among congeneric species. Kappaphycus sp. had branches with small buds, while K. alvarezii did not have such a feature. The nucleotide variation rates varied from 7.02% to 7.48% among species; within the same species of the clades it was <1.20%. Eucheumatoideae algae cultivated in China consisted of three clades, K. alvarezii, Kappaphycus sp., and E. denticulatum. The results indicate that ITS sequence analysis was an effective way for identification of interspecies and intraspecies phylogenetic relationships and might provide a clue for molecular identification of algal Eucheumatoideae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, Wayne W.; Burton, Glenn W.
2000-06-25
We developed fundamental methods and techniques for transferring germplasm from wild to cultivated species. Germplasm transferred included diverse cytoplasms, new genes for pest resistance, genes controlling dry matter yield and apomixis. Some of the germplasm has been shown to be valuable in plant breeding and has been incorporated into commercial cultivators.
Zhang, Anping; Luo, Wenxiu; Sun, Jianqiang; Xiao, Hang; Liu, Weiping
2015-02-01
The application of greenhouse vegetable cultivation has dramatically expanded worldwide during the last several decades. However, little information is available on the distribution and uptake of pesticides in greenhouse vegetables. To bridge this knowledge gap, the present study was initiated to investigate the distribution and uptake of organochlorine pesticides (OCPs) in vegetables from plastic greenhouse and conventional cultivation methods. The uptake pathways of OCPs were not significantly different between these two cultivation methods. The arithmetic means of OCP concentrations in greenhouse vegetables were higher than those in conventional vegetables, although there was no significant difference. This small difference raised the concern of whether the tiny difference could be magnified to a significant difference by bioaccumulation in the food chain. The issue should be addressed by a well-designed scheme in future studies. Copyright © 2014 Elsevier B.V. All rights reserved.
The influence of co-cultivation on expression of the antifungal protein in Aspergillus giganteus.
Meyer, Vera; Stahl, Ulf
2003-01-01
The afp gene of Aspergillus giganteus encodes a small, highly basic polypeptide with antifungal activity, named Antifungal Protein (AFP). The protein is secreted by the mould and inhibits the growth of various filamentous fungi. In this paper we report that co-cultivation of A. giganteus with various microorganisms alters afp expression. It was found that co-cultivation modulates afp expression on the level of transcription, using a reporter system based on the beta-glucuronidase gene. The presence of Fusarium oxysporum triggered afp transcription whereas dual cultures of A. giganteus and A. niger resulted in suppression of afp transcription. Growth tests performed with several carbon and nitrogen sources, revealed that the influence of co-cultivation is strongly dependent on the medium composition.
NASA Astrophysics Data System (ADS)
Kim, Yongcheol; Lee, Bongju; Ha, Kucheol; Yoon, Yunyeol; Moon, Sangho; Cho, Suyoung; Kim, Seongyun
2013-04-01
Protected water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of the green house. But the issue is that the method results in groundwater level deterioration because it disposes the used groundwater to nearby stream. Reuse of the groundwater for water curtain cultivation is important Groundwater level, steam level, and groundwater usage rate are investigated at the five green house concentrated areas such as Cheongwon, Namyangju, Choongju, Namwon, Jinju. Groundwater usage rate is estimated using a ultrasonic flowmeter for a specific well and using the combination of pressure sensor and propeller type velocity counting equipment at a water disposal channel from November to April which is water curtain cultivating season. Groundwater usage rate ranges from 46.9m3/d to 108.0m3/d for a 10a greenhouse. Groundwater level change is strongly influenced by seasonal variation of rainfall and concentrated pumping activities in winter but the level is lower than stream level all year long resulting in all year around losing stream at Cheongwon, Namyangju, Jinju. At Nanwon, the stream is converted from losing one in winter to gaining one in summer. Groundwater level deterioration at concentrated water curtain cultivation area is found to be severe for some area where circulating water curtain cultivation system is need to be applied for groundwater restoration and sustainable cultivation in winter. Circulating water curtain cultivation system can restore the groundwater level by recharging the used groundwater through injection well and then pumping out from pumping well.
Airborne hyperspectral and LiDAR data integration for weed detection
NASA Astrophysics Data System (ADS)
Tamás, János; Lehoczky, Éva; Fehér, János; Fórián, Tünde; Nagy, Attila; Bozsik, Éva; Gálya, Bernadett; Riczu, Péter
2014-05-01
Agriculture uses 70% of global available fresh water. However, ca. 50-70% of water used by cultivated plants, the rest of water transpirated by the weeds. Thus, to define the distribution of weeds is very important in precision agriculture and horticulture as well. To survey weeds on larger fields by traditional methods is often time consuming. Remote sensing instruments are useful to detect weeds in larger area. In our investigation a 3D airborne laser scanner (RIEGL LMS-Q680i) was used in agricultural field near Sopron to scouting weeds. Beside the airborne LiDAR, hyperspectral imaging system (AISA DUAL) and air photos helped to investigate weed coverage. The LiDAR survey was carried out at early April, 2012, before sprouting of cultivated plants. Thus, there could be detected emerging of weeds and direction of cultivation. However airborne LiDAR system was ideal to detect weeds, identification of weeds at species level was infeasible. Higher point density LiDAR - Terrestrial laser scanning - systems are appropriate to distinguish weed species. Based on the results, laser scanner is an effective tool to scouting of weeds. Appropriate weed detection and mapping systems could contribute to elaborate water and herbicide saving management technique. This publication was supported by the OTKA project K 105789.
Algae-Based Carbon Sequestration
NASA Astrophysics Data System (ADS)
Haoyang, Cai
2018-03-01
Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.
Veena, S S; Pandey, Meera
2011-01-01
Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum, is generally cultivated on hardwood logs or sawdust/woodchips based formulations. More than 100 million tonnes of paddy straw is being produced in India per year, and almost 50% of the straw is potentially available for growing mushrooms. In the present study an attempt was made to use paddy straw as a substrate to cultivate G. lucidim. Different proportions of paddy straw were mixed with 0, 22.5%, 45%, and 67.5% sawdust and 10% rice bran. Spawn run period, fruiting initiation period, yield, moisture content, dry recovery, and fruiting body characteristics were recorded and compared. Fructification was observed with all the substrate formulations and they did not show any significant difference in yield. The highest biological efficiency (BE) (29.9%) was observed with the combination sawdust:paddy straw:rice bran 22.5:67.5:10, followed by saw dust:paddy straw:rice bran 45:45:10 with BE 27.3%. The current study demonstrated for the first time that the cultivation of G. lucidum is possible with paddy straw as the base substrate and indicated the enormous potential of paddy straw for the cultivation of G. lucidum.
Allelopathy as a potential strategy to improve microalgae cultivation.
Bacellar Mendes, Leonardo Brantes; Vermelho, Alane Beatriz
2013-10-21
One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production.
Allelopathy as a potential strategy to improve microalgae cultivation
2013-01-01
One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production. PMID:24499580
High-Yield Method for Dispersing Simian Kidneys for Cell Cultures
de Oca, H. Montes; Probst, P.; Grubbs, R.
1971-01-01
A technique for dispersion of animal tissue cells is described. The proposed technique is based on the concomitant use of trypsin and disodium ethylenediamine tetraacetate (EDTA). The use of the two dispersing agents (trypsin and disodium EDTA) markedly enhances cell yield as compared with the standard cell dispersion methods. Moreover, significant reduction in the amount of time required for complete tissue dispersal, presence of a very low number of nonviable cells, less cell clumping, and more uniform monolayer formation upon cultivation compare favorably with the results usually obtained with the standard trypsinization technique. Images PMID:4993235
Reform of experimental teaching based on quality cultivation
NASA Astrophysics Data System (ADS)
Wang, Wei; Yan, Xingwei; Liu, Wei; Yao, Tianfu; Shi, Jianhua; Lei, Bing; Hu, Haojun
2017-08-01
Experimental teaching plays an import part in quality education which devotes to cultivating students with innovative spirit, strong technological talents and practical ability. However, in the traditional experimental teaching mode, the experiments are treated as a vassal or supplementary mean of theoretical teaching, and students prefer focus on theory to practice. Therefore, the traditional experimental teaching mode is difficult to meet the requirements of quality education. To address this issue, the reform of experimental teaching is introduced in this paper taking the photoelectric detector experiment as the example. The new experimental teaching mode is designed from such aspects as experimental content, teaching method and experimental evaluation. With the purpose of cultivating students' practical ability, two different-level experimental content is designed. Not only the basic experiments used to verify the theory are set to consolidate the students' learned theoretical knowledge, but also comprehensive experiments are designed to encourage the students to apply their learned knowledge to solve practical problems. In the teaching process, heuristic teaching thought is adopt and the traditional `teacher-centered' teaching form is replaced by `student-centered' form, which aims to encourage students to design the experimental systems by their own with the teacher's guidance. In addition to depending on stimulating the students' interest of science research, experimental evaluation is necessary to urge students to complete the experiments efficiently. Multifaceted evaluation method is proposed to test the students' mastery of theoretical knowledge, practice ability, troubleshooting and problem solving skills, and innovation capability comprehensively. Practices demonstrated the satisfying effect of our experimental teaching mode.
Terral, Jean-Frédéric; Tabard, Elidie; Bouby, Laurent; Ivorra, Sarah; Pastor, Thierry; Figueiral, Isabel; Picq, Sandrine; Chevance, Jean-Baptiste; Jung, Cécile; Fabre, Laurent; Tardy, Christophe; Compan, Michel; Bacilieri, Roberto; Lacombe, Thierry; This, Patrice
2010-01-01
Background and Aims In spite of the abundance of archaeological, bio-archaeological, historical and genetic data, the origins, historical biogeography, identity of ancient grapevine cultivars and mechanisms of domestication are still largely unknown. Here, analysis of variation in seed morphology aims to provide accurate criteria for the discrimination between wild grapes and modern cultivars and to understand changes in functional traits in relation to the domestication process. This approach is also used to quantify the phenotypic diversity in the wild and cultivated compartments and to provide a starting point for comparing well-preserved archaeological material, in order to elucidate the history of grapevine varieties. Methods Geometrical analysis (elliptic Fourier transform method) was applied to grapevine seed outlines from modern wild individuals, cultivars and well-preserved archaeological material from southern France, dating back to the first to second centuries. Key Results and Conclusions Significant relationships between seed shape and taxonomic status, geographical origin (country or region) of accessions and parentage of varieties are highlighted, as previously noted based on genetic approaches. The combination of the analysis of modern reference material and well-preserved archaeological seeds provides original data about the history of ancient cultivated forms, some of them morphologically close to the current ‘Clairette’ and ‘Mondeuse blanche’ cultivars. Archaeobiological records seem to confirm the complexity of human contact, exchanges and migrations which spread grapevine cultivation in Europe and in Mediterranean areas, and argue in favour of the existence of local domestication in the Languedoc (southern France) region during Antiquity. PMID:20034966
A SSR-based genetic linkage map of cultivated peanut (Arachis hypogaea L.)
USDA-ARS?s Scientific Manuscript database
The objective of this study was to construct a molecular linkage map of cultivated tetraploid peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank. Three recombinant inbre...
Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili
2017-01-01
Abstract Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. PMID:28922794
Capacity-oriented curriculum system of optoelectronics in the context of large category cultivation
NASA Astrophysics Data System (ADS)
Luo, Yuan; Hu, Zhangfang; Zhang, Yi
2017-08-01
In order to cultivate the innovative talents with the comprehensive development to meet the talents demand for development of economic society, Chongqing University of Posts and Telecommunications implements cultivation based on broadening basic education and enrolment in large category of general education. Optoelectronic information science and engineering major belongs to the electronic engineering category. The "2 +2" mode is utilized for personnel training, where students are without major in the first and second year and assigned to a major within the major categories in the end of the second year. In the context of the comprehensive cultivation, for the changes in the demand for professionals in the global competitive environment with the currently rapid development, especially the demand for the professional engineering technology personnel suitable to industry and development of local economic society, the concept of CDIO engineering ability cultivation is used for reference. Thus the curriculum system for the three-node structure optoelectronic information science and engineering major is proposed, which attaches great importance to engineering practice and innovation cultivation under the background of the comprehensive cultivation. The conformity between the curriculum system and the personnel training objectives is guaranteed effectively, and the consistency between the teaching philosophy and the teaching behavior is enhanced. Therefore, the idea of major construction is clear with specific characteristics.
Val-Moraes, Silvana Pompeia; de Macedo, Helena Suleiman; Kishi, Luciano Takeshi; Pereira, Rodrigo Matheus; Navarrete, Acacio Aparecido; Mendes, Lucas William; de Figueiredo, Eduardo Barretto; La Scala, Newton; Tsai, Siu Mui; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto
2016-12-01
Here we show that both liming the burnt sugarcane and the green harvest practice alter bacterial community structure, diversity and composition in sugarcane fields in northeastern São Paulo state, Brazil. Terminal restriction fragment length polymorphism fingerprinting and 16S rRNA gene cloning and sequencing were used to analyze changes in soil bacterial communities. The field experiment consisted of sugarcane-cultivated soils under different regimes: green sugarcane (GS), burnt sugarcane (BS), BS in soil amended with lime applied to increase soil pH (BSL), and native forest (NF) as control soil. The bacterial community structures revealed disparate patterns in sugarcane-cultivated soils and forest soil (R = 0.786, P = 0.002), and overlapping patterns were shown for the bacterial community structure among the different management regimes applied to sugarcane (R = 0.194, P = 0.002). The numbers of operational taxonomic units (OTUs) found in the libraries were 117, 185, 173 and 166 for NF, BS, BSL and GS, respectively. Sugarcane-cultivated soils revealed higher bacterial diversity than NF soil, with BS soil accounting for a higher richness of unique OTUs (101 unique OTUs) than NF soil (23 unique OTUs). Cluster analysis based on OTUs revealed similar bacterial communities in NF and GS soils, while the bacterial community from BS soil was most distinct from the others. Acidobacteria and Alphaproteobacteria were the most abundant bacterial phyla across the different soils with Acidobacteria Gp1 accounting for a higher abundance in NF and GS soils than burnt sugarcane-cultivated soils (BS and BSL). In turn, Acidobacteria Gp4 abundance was higher in BS soils than in other soils. These differential responses in soil bacterial community structure, diversity and composition can be associated with the agricultural management, mainly liming practices, and harvest methods in the sugarcane-cultivated soils, and they can be detected shortly after harvest.
Yamada, Koji; Suzuki, Hideyuki; Takeuchi, Takuto; Kazama, Yusuke; Mitra, Sharbanee; Abe, Tomoko; Goda, Keisuke; Suzuki, Kengo; Iwata, Osamu
2016-01-01
Euglena gracilis, a microalgal species of unicellular flagellate protists, has attracted much attention in both the industrial and academic sectors due to recent advances in the mass cultivation of E. gracilis that have enabled the cost-effective production of nutritional food and cosmetic commodities. In addition, it is known to produce paramylon (β-1,3-glucan in a crystalline form) as reserve polysaccharide and convert it to wax ester in hypoxic and anaerobic conditions–a promising feedstock for biodiesel and aviation biofuel. However, there remain a number of technical challenges to be solved before it can be deployed in the competitive fuel market. Here we present a method for efficient selective breeding of live oil-rich E. gracilis with fluorescence-activated cell sorting (FACS). Specifically, the selective breeding method is a repetitive procedure for one-week heterotrophic cultivation, staining intracellular lipids with BODIPY505/515, and FACS-based isolation of top 0.5% lipid-rich E. gracilis cells with high viability, after inducing mutation with Fe-ion irradiation to the wild type (WT). Consequently, we acquire a live, stable, lipid-rich E. gracilis mutant strain, named B1ZFeL, with 40% more lipid content on average than the WT. Our method paves the way for rapid, cost-effective, energy-efficient production of biofuel. PMID:27212384
Ethics in nursing education: learning to reflect on care practices.
Vanlaere, Linus; Gastmans, Chris
2007-11-01
Providing good care requires nurses to reflect critically on their nursing practices. Ethics education must provide nurses with tools to accomplish such critical reflection. It must also create a pedagogical context in which a caring attitude can be taught and cultivated. To achieve this twofold goal, we argue that the principles of a right-action approach, within which nurses conform to a number of minimum principles, must be integrated into a virtue ethics approach that cultivates a caring attitude. Ethics education that incorporates both the ;critical companionship' method and the use of codes of ethics contributes positively to cultivating critical reflection by nurses.
A lysozyme and magnetic bead based method of separating intact bacteria.
Diler, Ebru; Obst, Ursula; Schmitz, Katja; Schwartz, Thomas
2011-07-01
As a response to environmental stress, bacterial cells can enter a physiological state called viable but noncultivable (VBNC). In this state, bacteria fail to grow on routine bacteriological media. Consequently, standard methods of contamination detection based on bacteria cultivation fail. Although they are not growing, the cells are still alive and are able to reactivate their metabolism. The VBNC state and low bacterial densities are big challenges for cultivation-based pathogen detection in drinking water and the food industry, for example. In this context, a new molecular-biological separation method for bacteria using point-mutated lysozymes immobilised on magnetic beads for separating bacteria is described. The immobilised mutated lysozymes on magnetic beads serve as bait for the specific capture of bacteria from complex matrices or water due to their remaining affinity for bacterial cell wall components. Beads with bacteria can be separated using magnetic racks. To avoid bacterial cell lysis by the lysozymes, the protein was mutated at amino acid position 35, leading to the exchange of the catalytic glutamate for alanine (LysE35A) and glutamine (LysE35Q). As proved by turbidity assay with reference bacteria, the muramidase activity was knocked out. The mutated constructs were expressed by the yeast Pichia pastoris and secreted into expression medium. Protein enrichment and purification were carried out by SO(3)-functionalised nanoscale cationic exchanger particles. For a proof of principle, the proteins were biotinylated and immobilised on streptavidin-functionalised, fluorescence dye-labelled magnetic beads. These constructs were used for the successful capture of Syto9-marked Microccocus luteus cells from cell suspension, as visualised by fluorescence microscopy, which confirmed the success of the strategy.
NASA Astrophysics Data System (ADS)
Zhong, Hairong; Xu, Wei; Hu, Haojun; Duan, Chengfang
2017-08-01
This article analyzes the features of fostering optoelectronic students' innovative practical ability based on the knowledge structure of optoelectronic disciplines, which not only reveals the common law of cultivating students' innovative practical ability, but also considers the characteristics of the major: (1) The basic theory is difficult, and the close combination of science and technology is obvious; (2)With the integration of optics, mechanics, electronics and computer, the system technology is comprehensive; (3) It has both leading-edge theory and practical applications, so the benefit of cultivating optoelectronic students is high ; (4) The equipment is precise and the practice is costly. Considering the concept and structural characteristics of innovative and practical ability, and adhering to the idea of running practice through the whole process, we put forward the construction of three-dimensional innovation and practice platform which consists of "Synthetically Teaching Laboratory + Innovation Practice Base + Scientific Research Laboratory + Major Practice Base + Joint Teaching and Training Base", and meanwhile build a whole-process progressive training mode to foster optoelectronic students' innovative practical ability, following the process of "basic experimental skills training - professional experimental skills training - system design - innovative practice - scientific research project training - expanded training - graduation project": (1) To create an in - class practical ability cultivation environment that has distinctive characteristics of the major, with the teaching laboratory as the basic platform; (2) To create an extra-curricular innovation practice activities cultivation environment that is closely linked to the practical application, with the innovation practice base as a platform for improvement; (3) To create an innovation practice training cultivation environment that leads the development of cutting-edge, with the scientific research laboratory as a platform to explore; (4) To create an out-campus expanded training environment of optoelectronic major practice and optoelectronic system teaching and training, with the major practice base as an expansion of the platform; (5) To break students' "pre-job training barriers" between school and work, with graduation design as the comprehensive training and testing link.
Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.
2008-01-01
Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering lowland forest clearing for agriculture. Copyright 2008 College of Arts and Sciences.
Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array.
Hinze, Lori L; Hulse-Kemp, Amanda M; Wilson, Iain W; Zhu, Qian-Hao; Llewellyn, Danny J; Taylor, Jen M; Spriggs, Andrew; Fang, David D; Ulloa, Mauricio; Burke, John J; Giband, Marc; Lacape, Jean-Marc; Van Deynze, Allen; Udall, Joshua A; Scheffler, Jodi A; Hague, Steve; Wendel, Jonathan F; Pepper, Alan E; Frelichowski, James; Lawley, Cindy T; Jones, Don C; Percy, Richard G; Stelly, David M
2017-02-03
Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured. A combination of both methods would greatly enhance our ability to characterize germplasm resources. Recent efforts have culminated in the identification of sufficient SNP markers to establish high-throughput genotyping systems, such as the CottonSNP63K array, which enables a researcher to efficiently analyze large numbers of SNP markers and obtain highly repeatable results. In the current investigation, we have utilized the SNP array for analyzing genetic diversity primarily among cotton cultivars, making comparisons to SSR-based phylogenetic analyses, and identifying loci associated with seed nutritional traits. The SNP markers distinctly separated G. hirsutum from other Gossypium species and distinguished the wild from cultivated types of G. hirsutum. The markers also efficiently discerned differences among cultivars, which was the primary goal when designing the CottonSNP63K array. Population structure within the genus compared favorably with previous results obtained using SSR markers, and an association study identified loci linked to factors that affect cottonseed protein content. Our results provide a large genome-wide variation data set for primarily cultivated cotton. Thousands of SNPs in representative cotton genotypes provide an opportunity to finely discriminate among cultivated cotton from around the world. The SNPs will be relevant as dense markers of genome variation for association mapping approaches aimed at correlating molecular polymorphisms with variation in phenotypic traits, as well as for molecular breeding approaches in cotton.
Ootsubo, M; Shimizu, T; Tanaka, R; Sawabe, T; Tajima, K; Ezura, Y
2003-01-01
A fluorescent in situ hybridization (FISH) technique using an Enterobacteriaceae-specific probe (probe D) to target 16S rRNA was improved in order to enumerate, within a single working day, Enterobacteriaceae present in food and environmental water samples. In order to minimize the time required for the FISH procedure, each step of FISH with probe D was re-evaluated using cultured Escherichia coli. Five minutes of ethanol treatment for cell fixation and hybridization were sufficient to visualize cultured E. coli, and FISH could be performed within 1 h. Because of the difficulties in detecting low levels of bacterial cells by FISH without cultivation, a FISH technique for detecting microcolonies on membrane filters was investigated to improve the bacterial detection limit. FISH with probe D following 6 h of cultivation to grow microcolonies on a 13 mm diameter membrane filter was performed, and whole Enterobacteriaceae microcolonies on the filter were then detected and enumerated by manual epifluorescence microscopic scanning at magnification of x100 in ca 5 min. The total time for FISH with probe D following cultivation (FISHFC) was reduced to within 7 h. FISHFC can be applied to enumerate cultivable Enterobacteriaceae in food (above 100 cells g-1) and environmental water samples (above 1 cell ml-1). Cultivable Enterobacteriaceae in food and water samples were enumerated accurately within 7 h using the FISHFC method. A FISHFC method capable of evaluating Enterobacteriaceae contamination in food and environmental water within a single working day was developed.
[Cultivated keratinocytes on micro-carriers: in vitro studies of a new carrier system].
Hecht, J; Hoefter, E A; Hecht, J; Haraida, S; Nerlich, A; Hartinger, A; Mühlbauer, W; Dimoudis, N
1997-03-01
Epidermal grafts from confluently cultivated keratinocytes have been used since the early eighties for the treatment of severe burns, where the shortage of donor sites for split-thickness skin grafts did not allow for adequate wound coverage. The difficult handling of these grafts as well as the advanced differentiation of their epithelial cells into a multilayer sheet poses a problem for their clinical application. The aim of the study was to characterize cultivated keratinocytes, as well as to observe their migration and proliferation from the MC onto a surface. Keratinocytes were isolated from human foreskin and cultivated in serum-free and serum-containing medium according to a modified method by Rheinwald and Green. Collagen-coated Dextran beads were used as MC. The MC were colonized with keratinocytes using the Spinner culture technique. After seeding the colonized MC into culture flasks, their migration and proliferation was monitored regularly through immunohistochemical studies and measurement of the metabolic cell activity. Immunohistological staining proved that the cells isolated from human foreskin represent keratinocytes of the basal type. Keratinocytes, cultivated with serum-containing and serum free medium, both adhered to the surface of the MC, then migrated onto the surface of the flasks and proliferated to form a multilayer of epithelial cells. In the long-term, a flexible epithelial graft consisting of poorly differentiated keratinocytes should be available, which is simple to produce and easy to handle. This would be an alternative method for treating wounds, where the conventional multilayer epithelial graft (ET) is insufficient.
Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping
2015-01-01
Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This strategy, combined with population-resolved model analysis and parameter extraction as described in the accompanying paper, offers new possibilities for studies of cell lines and processes at levels of cell cycle and population under physiological conditions. © 2014 American Institute of Chemical Engineers.
Assessing the harms of cannabis cultivation in Belgium.
Paoli, Letizia; Decorte, Tom; Kersten, Loes
2015-03-01
Since the 1990s, a shift from the importation of foreign cannabis to domestic cultivation has taken place in Belgium, as it has in many other countries. This shift has prompted Belgian policy-making bodies to prioritize the repression of cannabis cultivation. Against this background, the article aims to systematically map and assess for the first time ever the harms associated with cannabis cultivation, covering the whole spectrum of growers. This study is based on a web survey primarily targeting small-scale growers (N=1293) and on three interconnected sets of qualitative data on large-scale growers and traffickers (34 closed criminal proceedings, interviews with 32 criminal justice experts, and with 17 large-scale cannabis growers and three traffickers). The study relied on Greenfield and Paoli's (2013) harm assessment framework to identify the harms associated with cannabis cultivation and to assess the incidence, severity and causes of such harms. Cannabis cultivation has become endemic in Belgium. Despite that, it generates, for Belgium, limited harms of medium-low or medium priority. Large-scale growers tend to produce more harms than the small-scale ones. Virtually all the harms associated with cannabis cultivation are the result of the current criminalizing policies. Given the spread of cannabis cultivation and Belgium's position in Europe, reducing the supply of cannabis does not appear to be a realistic policy objective. Given the limited harms generated, there is scarce scientific justification to prioritize cannabis cultivation in Belgian law enforcement strategies. As most harms are generated by large-scale growers, it is this category of cultivator, if any, which should be the focus of law enforcement repression. Given the policy origin of most harms, policy-makers should seek to develop policies likely to reduce such harms. At the same time, further research is needed to comparatively assess the harms associated with cannabis cultivation (and trafficking) with those arising from use. Copyright © 2014 Elsevier B.V. All rights reserved.
Slimani, Sami; Robyns, Audrey; Jarraud, Sophie; Molmeret, Maëlle; Dusserre, Eric; Mazure, Céline; Facon, Jean Pierre; Lina, Gérard; Etienne, Jerome; Ginevra, Christophe
2012-02-01
A PMA (propidium monoazide) pretreatment protocol, in which PMA is applied directly to membrane filters, was developed for the PCR-based quantification (PMA-qPCR) of viable Legionella pneumophila. Using this method, the amplification of DNA from membrane-damaged L. pneumophila was strongly inhibited for samples containing a small number of dead bacteria. Copyright © 2011 Elsevier B.V. All rights reserved.
Ude, Christian; Schmidt-Hager, Jörg; Findeis, Michael; John, Gernot Thomas; Scheper, Thomas; Beutel, Sascha
2014-01-01
In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass). The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW) and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations. PMID:25232914
Lehmann, R; Gallert, C; Roddelkopf, T; Junginger, S; Wree, A; Thurow, K
2016-08-01
Cancer diseases are a common problem of the population caused by age and increased harmful environmental influences. Herein, new therapeutic strategies and compound screenings are necessary. The regular 2D cultivation has to be replaced by three dimensional cell culturing (3D) for better simulation of in vivo conditions. The 3D cultivation with alginate matrix is an appropriate method for encapsulate cells to form cancer constructs. The automated manufacturing of alginate beads might be an ultimate method for large-scaled manufacturing constructs similar to cancer tissue. The aim of this study was the integration of full automated systems for the production, cultivation and screening of 3D cell cultures. We compared the automated methods with the regular manual processes. Furthermore, we investigated the influence of antibiotics on these 3D cell culture systems. The alginate beads were formed by automated and manual procedures. The automated steps were processes by the Biomek(®) Cell Workstation (celisca, Rostock, Germany). The proliferation and toxicity were manually and automatically evaluated at day 14 and 35 of cultivation. The results visualized an accumulation and expansion of cell aggregates over the period of incubation. However, the proliferation and toxicity were faintly and partly significantly decreased on day 35 compared to day 14. The comparison of the manual and automated methods displayed similar results. We conclude that the manual production process could be replaced by the automation. Using automation, 3D cell cultures can be produced in industrial scale and improve the drug development and screening to treat serious illnesses like cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xuemei; Knurek, Emily; Goes, Nikki
2012-05-05
Cellana?s Kona Demonstration Facility (KDF) is a 2.5 hectare facility, with 17,000 sq. ft. under roof and 1 hectare of cultivation systems. KDF is designed to execute and support all stages of the production process at pilot scale, from cultivation through extraction. Since Feb. 2009, KDF has been producing up to 0.7MT dry weight of algal biomass per month, while at the same time optimizing processes of cultivation, harvesting, dewatering and extraction. The cultivation system at KDF uses ALDUO? technology, a hybrid system of photobioreactors (PBRs) and open ponds. All fluid transfers related to KDF cultivation and harvesting processes aremore » operated and monitored by a remote Process-Control System. Fluid transfer data, together with biochemical data, enable the mass balance calculations necessary to measure productivity. This poster summarizes methods to improve both biomass and lipids yield by 1) alleviating light limitation in open ponds, 2) de-oxygenation and 3) heterotrophic lipid production for post-harvesting cultures.« less
NASA Astrophysics Data System (ADS)
Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas
2015-04-01
The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation"
The quality of carp (Cyprinus carpio L.) cultured in various Polish regions.
Tkaczewska, Joanna; Migdał, Władysław; Kulawik, Piotr
2014-11-01
Although environmental factors greatly affect the quality of carp meat, no regulations impose labelling the place of cultivation of freshwater fish. That is why the purpose of this study was to determine the quality of carp meat cultivated in several regions of Poland as well as to assess the necessity of implementing such regulations. The influence of the cultivation region on colour, nutrition value, health safety and sensory quality of carp meat was assessed. The analysis included colour measurement, determination of fatty acid profile and sensory evaluation of carp muscle. Moreover, microbiological analysis of the fish surface was performed. The results show that the place of cultivation does not influence the lightness (L*) of fillet, but has an impact on other colour parameters (a*, b*). The microbiological quality of fish from all studied farms was satisfactory, since no pathogenic microorganisms were observed on the fish surface. The fatty acid profile was fairly varied (P < 0.01), depending on the place of cultivation. Since final results seem ambiguous, further analyses of quality features of carp from various regions and cultures should be performed, before any recommendation for the necessity of labelling the place and method of cultivation should be suggested. © 2014 Society of Chemical Industry.
Pumphrey, Graham M.; Ranchou-Peyruse, Anthony; Spain, Jim C.
2011-01-01
Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of 13CO2 was H2 dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from 13C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H2 concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation. PMID:21622787
Pumphrey, Graham M; Ranchou-Peyruse, Anthony; Spain, Jim C
2011-07-01
Knallgas bacteria are a physiologically defined group that is primarily studied using cultivation-dependent techniques. Given that current cultivation techniques fail to grow most bacteria, cultivation-independent techniques that selectively detect and identify knallgas bacteria will improve our ability to study their diversity and distribution. We used stable-isotope probing (SIP) to identify knallgas bacteria in rhizosphere soil of legumes and in a microbial mat from Obsidian Pool in Yellowstone National Park. When samples were incubated in the dark, incorporation of (13)CO(2) was H(2) dependent. SIP enabled the detection of knallgas bacteria that were not detected by cultivation, and the majority of bacteria identified in the rhizosphere soils were betaproteobacteria predominantly related to genera previously known to oxidize hydrogen. Bacteria in soil grew on hydrogen at concentrations as low as 100 ppm. A hydB homolog encoding a putative high-affinity NiFe hydrogenase was amplified from (13)C-labeled DNA from both vetch and clover rhizosphere soil. The results indicate that knallgas bacteria can be detected by SIP and populations that respond to different H(2) concentrations can be distinguished. The methods described here should be applicable to a variety of ecosystems and will enable the discovery of additional knallgas bacteria that are resistant to cultivation.
NASA Astrophysics Data System (ADS)
Kaimi, Etsuko; Kawakita, Morikazu; Mukaidani, Tsukasa; Fujiwara, Kazuhiro; Okada, Shin-Ichi; Yasuda, Yoshio
Phytoremediation has been identified as a potentially environmentally friendly and cost effective technique for the treatment of contaminated soil. However, phytoremediation has an unknown mechanism. In this study, we focus on the effects of the cultivation of Italian ryegrass on the soil microbes collected at oil showings, which were expected to have a variety of crude oil degradable microorganisms. We evaluated the number of crude oil degradable microorganism, microbial activity, microflora using the PCR-DGGE method and the change in the concentration of crude oil in the soil. The results indicated that the microflora was affected by the cultivation of Itarian ryegrass, and that the microbial activity and the number of crude oil degradable microorganisms were also improved by the cultivation. Moreover, the concentration of crude oil in the rhizosphere soil decreased significantly when compared to the uncultivated soil. These results suggested that cultivation could regulate microflora selectively, which degraded crude oil.
CHARACTERISTICS OF GROWTH OF SARCOMA AND CARCINOMA CULTIVATED IN VITRO
Lambert, Robert A.; Hanes, Frederic M.
1911-01-01
1. The transplantable sarcomata of rats and mice grow very readily by the method of cultivating tissues in vitro. 2. Sarcomatous tissue grows in conformity to a type which may be regarded as characteristic for tissues of mesenchymal origin. 3. The growth of sarcoma cells in vitro consists in ameboid wandering into the surrounding plasma, karyokinetic proliferation. and evidences of active metabolism on the part of the cells. 4. Mouse carcinomata can be cultivated in vitro. The outgrowth of carcinoma cells assumes a sheet-like form, only one cell in thickness. They migrate into the plasma by ameboid movement, the advancing edge showing numerous prolongations of the cytoplasm into pseudopods. 5. Karyokinetic figures are frequently seen in growing carcinoma cells. The cells show evidences of active metabolism. 6. Both sarcoma and carcinoma cells cultivated in vitro show active phagocytosis; carmin particles placed in the plasma are taken up rapidly by the growing cells. PMID:19867430
Use of extracts from oyster shell and soil for cultivation of Spirulina maxima.
Jung, Joo-Young; Kim, Sunmin; Lee, Hansol; Kim, Kyochan; Kim, Woong; Park, Min S; Kwon, Jong-Hee; Yang, Ji-Won
2014-12-01
Calcium ion and trace metals play important roles in various metabolisms of photosynthetic organisms. In this study, simple methods were developed to extract calcium ion and micronutrients from oyster shell and common soil, and the prepared extracts were tested as a replacement of the corresponding chemicals that are essential for growth of microalgae. The oyster shell and soil were treated with 0.1 M sodium hydroxide or with 10 % hydrogen peroxide, respectively. The potential application of these natural sources to cultivation was investigated with Spirulina maxima. When compared to standard Zarrouk medium, the Spirulina maxima cultivated in a modified Zarrouk media with elements from oyster shell and soil extract exhibited increases in biomass, chlorophyll, and phycocyanin by 17, 16, and 64 %, respectively. These results indicate that the extracts of oyster shell and soil provide sufficient amounts of calcium and trace metals for successful cultivation of Spirulina maxima.
Alzorqi, Ibrahim; Sudheer, Surya; Lu, Ting-Jang; Manickam, Sivakumar
2017-03-01
Ganoderma mushroom cultivated recently in Malaysia to produce chemically different nutritional fibers has attracted the attention of the local market. The extraction methods, molecular weight and degree of branching of (1-3; 1-6)-β-d-glucan polysaccharides is of prime importance to determine its antioxidant bioactivity. Therefore three extraction methods i.e. hot water extraction (HWE), soxhlet extraction (SE) and ultrasound assisted extraction (US) were employed to study the total content of (1-3; 1-6)-β-d-glucans, degree of branching, structural characteristics, monosaccharides composition, as well as the total yield of polysaccharides that could be obtained from the artificially cultivated Ganoderma. The physical characteristics by HPAEC-PAD, HPGPC and FTIR, as well as the antioxidant in vitro assays of DPPH scavenging activity and ferric reducing power (FRAP) indicated that (1-3; 1-6)-β-d-glucans of Malaysian mushroom have better antioxidant activity, higher molecular weight and optimal degree of branching when extracted by US in comparison with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Alessandro Pasqua
2016-01-01
Despite much of the environmental history of Wormsloe State Historic Site on the Isle of Hope, Georgia having previously been documented and described, there are still some aspects that require deeper investigation. For example, whether rice cultivation was ever performed at Wormsloe is a question which does not have a definitive answer.
Chouvy, Pierre-Arnaud; Afsahi, Kenza
2014-05-01
In less than a decade, Morocco reportedly saw cannabis cultivation decrease by 65%, and hashish production is widely believed to have followed the same trend. Yet large anomalies exist between the alleged fall of hashish production in Morocco and international seizure data. While no explanation for such a discrepancy existed, the main hypothesis was that cannabis cultivation and hashish production had not declined to the extent suggested by the available information. Based on existing data, on interviews with various actors, from European police sources to Moroccan cannabis cultivators, and on field research in Morocco, this article reviews contradictory available data and confronts it with observations made in the field. In the past decade cannabis cultivation underwent radical changes that could explain the discrepancy between official Moroccan cultivation and production data on the one hand, and international seizures on the other hand. The "traditional" kif cannabis variety is being rapidly replaced by hybrids with much larger resin yields and much higher potency. This unnoticed phenomenon, which slowly started in the early 2000s, explains how a two-third decline in cannabis cultivation was at least partially compensated for by three to five-fold yield increases. The fact that the massive ongoing switch to hybrid cultivation is largely unknown or unaccounted for is actually a serious issue, for it directly questions the economic strategies that are being implemented in part to reduce and suppress cannabis cultivation in the Rif. Copyright © 2014 Elsevier B.V. All rights reserved.
Pardo, José E; de Figueirêdo, Vinícius Reis; Alvarez-Ortí, Manuel; Zied, Diego C; Peñaranda, Jesús A; Dias, Eustáquio Souza; Pardo-Giménez, Arturo
2013-09-01
The Hazard analysis and critical control points (HACCP) is a preventive system which seeks to ensure food safety and security. It allows product protection and correction of errors, improves the costs derived from quality defects and reduces the final overcontrol. In this paper, the system is applied to the line of cultivation of mushrooms and other edible cultivated fungi. From all stages of the process, only the reception of covering materials (stage 1) and compost (stage 3), the pre-fruiting and induction (step 6) and the harvest (stage 7) have been considered as critical control point (CCP). The main hazards found were the presence of unauthorized phytosanitary products or above the permitted dose (stages 6 and 7), and the presence of pathogenic bacteria (stages 1 and 3) and/or heavy metals (stage 3). The implementation of this knowledge will allow the self-control of their productions based on the system HACCP to any plant dedicated to mushroom or other edible fungi cultivation.
The Art and the Science of Cultivation for Weed Control in Organic Peanut
USDA-ARS?s Scientific Manuscript database
Cultural weed control is the basis on which an integrated system of weed management in organic peanut is based. The cultural practices evaluated for weed control were row patterns and seeding rates, integrated with cultivation intensity. Results showed that peanut seeded in wide rows (two rows, 91...
Beyond Book Learning: Cultivating the Pedagogy of Experience through Field Trips.
ERIC Educational Resources Information Center
Jakubowski, Lisa Marie
2003-01-01
A pedagogy of experience can be cultivated by using a critically responsive approach based on experience, critical thinking, reflection, and action. A service-learning field trip to Cuba illustrates how experiential learning can bring classroom and community together in a way that invites students to engage in meaningful, active forms of learning…
Sinha, Snehal K; Kumar, Mithilesh; Guria, Chandan; Kumar, Anup; Banerjee, Chiranjib
2017-10-01
Algal model based multi-objective optimization using elitist non-dominated sorting genetic algorithm with inheritance was carried out for batch cultivation of Dunaliella tertiolecta using NPK-fertilizer. Optimization problems involving two- and three-objective functions were solved simultaneously. The objective functions are: maximization of algae-biomass and lipid productivity with minimization of cultivation time and cost. Time variant light intensity and temperature including NPK-fertilizer, NaCl and NaHCO 3 loadings are the important decision variables. Algal model involving Monod/Andrews adsorption kinetics and Droop model with internal nutrient cell quota was used for optimization studies. Sets of non-dominated (equally good) Pareto optimal solutions were obtained for the problems studied. It was observed that time variant optimal light intensity and temperature trajectories, including optimum NPK fertilizer, NaCl and NaHCO 3 concentration has significant influence to improve biomass and lipid productivity under minimum cultivation time and cost. Proposed optimization studies may be helpful to implement the control strategy in scale-up operation. Copyright © 2017 Elsevier Ltd. All rights reserved.
3D Cultivation Techniques for Primary Human Hepatocytes
Bachmann, Anastasia; Moll, Matthias; Gottwald, Eric; Nies, Cordula; Zantl, Roman; Wagner, Helga; Burkhardt, Britta; Sánchez, Juan J. Martínez; Ladurner, Ruth; Thasler, Wolfgang; Damm, Georg; Nussler, Andreas K.
2015-01-01
One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device. PMID:27600213
Archimedes' principle for characterisation of recombinant whole cell biocatalysts.
Schmitt, Steven; Walser, Marcel; Rehmann, Michael; Oesterle, Sabine; Panke, Sven; Held, Martin
2018-02-14
The ability of whole cells to catalyse multistep reactions, often yielding synthetically demanding compounds later used by industrial biotech or pharma, makes them an indispensable tool of synthetic chemistry. The complex reaction network employed by cellular catalysts and the still only moderate predictive power of modelling approaches leaves this tool challenging to engineer. Frequently, large libraries of semi-rationally generated variants are sampled in high-throughput mode in order to then identify improved catalysts. We present a method for space- and time-efficient processing of very large libraries (10 7 ) of recombinant cellular catalysts, in which the phenotypic characterisation and the isolation of positive variants for the entire library is done within one minute in a single, highly parallelized operation. Specifically, product formation in nanolitre-sized cultivation vessels is sensed and translated into the formation of catalase as a reporter protein. Exposure to hydrogen peroxide leads to oxygen gas formation and thus to a density shift of the cultivation vessel. Exploiting Archimedes' principle, this density shift and the resulting upward buoyancy force can be used for batch-wise library sampling. We demonstrate the potential of the method for both, screening and selection protocols, and envision a wide applicability of the system for biosensor-based assays.
Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley
Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou
2016-01-01
The origin and domestication of cultivated barley have long been under debate. A population-based resequencing and phylogenetic analysis of the single copy of RPB2 gene was used to address barley domestication, to explore genetic differentiation of barley populations on the worldwide scale, and to understand gene-pool exchanges during the spread and subsequent development of barley cultivation. Our results revealed significant genetic differentiation among three geographically distinct wild barley populations. Differences in haplotype composition among populations from different geographical regions revealed that modern cultivated barley originated from two major wild barley populations: one from the Near East Fertile Crescent and the other from the Tibetan Plateau, supporting polyphyletic origin of cultivated barley. The results of haplotype frequencies supported multiple domestications coupled with widespread introgression events that generated genetic admixture between divergent barley gene pools. Our results not only provide important insight into the domestication and evolution of cultivated barley, but also enhance our understanding of introgression and distinct selection pressures in different environments on shaping the genetic diversity of worldwide barley populations, thus further facilitating the effective use of the wild barley germplasm. PMID:27786300
Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin
2018-04-01
Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.
Kim, Ji-Sun; An, Chul Geon; Park, Jong-Suk; Lim, Yong Pyo; Kim, Suna
2016-06-15
In this study, we investigated carotenoid profiles and contents from 27 types of paprika with different colors (red, orange, and yellow), shapes (blocky and conical), and cultivation methods (soil and soilless). We simultaneously analyzed 12 kinds of carotenoids using UPLC equipped with an HSS T3 column for 30 min, and we identified six kinds of carotenoids in red paprika and nine types in orange and yellow paprika. Zeaxanthin concentrations in orange paprika were in the range of 85.06±23.37-151.39±5.94 mg/100 g dry weight (dw), which shows that orange paprika is a great source of zeaxanthin. Generally, red paprika is a great source of capsanthin. However, a new cultivar, 'Mini Goggal Red', contained large amounts of zeaxanthin (121.41±30.10 mg/100 g dw) even though its visible color is red. This is very meaningful considering that consumers have a preference for red color and the potent functional value of zeaxanthin. Carotenoid profiles and concentrations in blocky and conical type paprika were not significantly different in red paprika except the 'Mini Goggal Red' cultivar and yellow paprika. Blocky type orange paprika contains plenty of zeaxanthin, unlike conical type orange paprika. Three new cultivars of the conical type were cultivated in both soil culture and soilless culture in the same province, and carotenoid profiles and concentrations were similar, showing that both cultivations methods can be used. Copyright © 2016. Published by Elsevier Ltd.
Catón, Laura; Yurkov, Andrey; Giesbers, Marcel; Dijksterhuis, Jan; Ingham, Colin J.
2017-01-01
Fungi are strongly affected by their physical environment. Microfabrication offers the possibility of creating new culture environments and ecosystems with defined characteristics. Here, we report the isolation of a novel member of the fungal genus Acremonium using a microengineered cultivation chip. This isolate was unusual in that it organizes into macroscopic structures when initially cultivated within microwells with a porous aluminum oxide (PAO) base. These “templated mycelial bundles” (TMB) were formed from masses of parallel hyphae with side branching suppressed. TMB were highly hydrated, facilitating the passive movement of solutes along the bundle. By using a range of culture chips, it was deduced that the critical factors in triggering the TMB were growth in microwells from 50 to 300 μm in diameter with a PAO base. Cultivation experiments, using spores and pigments as tracking agents, indicate that bulk growth of the TMB occurs at the base. TMB morphology is highly coherent and is maintained after growing out of the microwells. TMB can explore their environment by developing unbundled lateral hyphae; TMB only followed if nutrients were available. Because of the ease of fabricating numerous microstructures, we suggest this is a productive approach for exploring morphology and growth in multicellular microorganisms and microbial communities. PMID:28769882
The Vineyard Yeast Microbiome, a Mixed Model Microbial Map
Setati, Mathabatha Evodia; Jacobson, Daniel; Andong, Ursula-Claire; Bauer, Florian
2012-01-01
Vineyards harbour a wide variety of microorganisms that play a pivotal role in pre- and post-harvest grape quality and will contribute significantly to the final aromatic properties of wine. The aim of the current study was to investigate the spatial distribution of microbial communities within and between individual vineyard management units. For the first time in such a study, we applied the Theory of Sampling (TOS) to sample gapes from adjacent and well established commercial vineyards within the same terroir unit and from several sampling points within each individual vineyard. Cultivation-based and molecular data sets were generated to capture the spatial heterogeneity in microbial populations within and between vineyards and analysed with novel mixed-model networks, which combine sample correlations and microbial community distribution probabilities. The data demonstrate that farming systems have a significant impact on fungal diversity but more importantly that there is significant species heterogeneity between samples in the same vineyard. Cultivation-based methods confirmed that while the same oxidative yeast species dominated in all vineyards, the least treated vineyard displayed significantly higher species richness, including many yeasts with biocontrol potential. The cultivatable yeast population was not fully representative of the more complex populations seen with molecular methods, and only the molecular data allowed discrimination amongst farming practices with multivariate and network analysis methods. Importantly, yeast species distribution is subject to significant intra-vineyard spatial fluctuations and the frequently reported heterogeneity of tank samples of grapes harvested from single vineyards at the same stage of ripeness might therefore, at least in part, be due to the differing microbiota in different sections of the vineyard. PMID:23300721
Establishment of Canine-Derived Giardia duodenalis Isolates in Culture.
Tysnes, Kristoffer R; Robertson, Lucy J
2016-06-01
Researchers continue to rely on axenic cultivation of Giardia duodenalis trophozoites in vitro to study the life cycle and host-parasite interactions of G. duodenalis and to develop vaccines and drugs to prevent and treat giardiasis. The majority of in vitro studies of G. duodenalis have used a small subset of isolates, mostly of assemblage A, and these isolates are usually originally isolated from humans. The most commonly used isolate for lab studies is known as WB. Canine giardiasis is a disease of veterinary importance, but it may also be of relevance in zoonotic transmission. Few G. duodenalis isolates from dogs have been adapted to in vitro culture, probably because the methods used are not suitable for the canine-specific genotypes that tend to dominate in most dog populations. In the current study, an experimental approach to cultivating canine-derived isolates of G. duodenalis was attempted by modification of the standard protocol based on physiological differences between the human and canine digestive system. An adapted method is described for improving the rate of in vitro excystation of cysts isolated from dogs by chemically weakening the cyst wall. A new canine-derived assemblage A G. duodenalis isolate was successfully adapted to axenic culture by using this method; the dog apparently had a mixed infection of assemblages A and D, but the assemblage A successfully outcompeted the assemblage D under conditions of in vitro culture. Based on the results, reasons regarding why humans do not seem to be suitable hosts for G. duodenalis in assemblages C and D are discussed.
Patra, Nivedita; Srivastava, Ashok K
2015-09-01
Artemisinin has been indicated to be a potent drug for the cure of malaria. Batch growth and artemisinin production kinetics of hairy root cultures of Artemisia annua were studied under shake flask conditions which resulted in accumulation of 12.49 g/L biomass and 0.27 mg/g artemisinin. Using the kinetic data, a mathematical model was identified to understand and optimize the system behavior. The developed model was then extrapolated to design nutrient feeding strategies during fed-batch cultivation for enhanced production of artemisinin. In one of the fed-batch cultivation, sucrose (37 g/L) feeding was done at a constant feed rate of 0.1 L/day during 10-15 days, which led to improved artemisinin accumulation of 0.77 mg/g. The second strategy of fed-batch hairy root cultivation involved maintenance of pseudo-steady state sucrose concentration (20.8 g/L) during 10-15 days which resulted in artemisinin accumulation of 0.99 mg/g. Fed-batch cultivation (with the maintenance of pseudo-steady state of substrate) of Artemisia annua hairy roots was, thereafter, implemented in bioreactor cultivation, which featured artemisinin accumulation of 1.0 mg/g artemisinin in 16 days of cultivation. This is the highest reported artemisinin yield by hairy root cultivation in a bioreactor.
Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili; Liu, Bao; Li, Lin-Feng
2017-09-01
Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Kwon, Yong-Kook; Ahn, Myung Suk; Park, Jong Suk; Liu, Jang Ryol; In, Dong Su; Min, Byung Whan; Kim, Suk Weon
2013-01-01
To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng. PMID:24558311
Wang, Xue; Bao, Keting; Cao, Weixing; Zhao, Yongjun; Hu, Chang Wei
2017-07-14
The microalgae-based technology has been developed to reduce biogas slurry nutrients and upgrade biogas simultaneously. In this work, five microalgal strains named Chlorella vulgaris, Scenedesmus obliquus, Selenastrum capricornutum, Nitzschia palea, and Anabaena spiroides under mono- and co-cultivation were used for biogas upgrading. Optimum biogas slurry nutrient reduction could be achieved by co-cultivating microalgae (Chlorella vulgaris, Scenedesmus obliquus, and Nitzschia palea) with fungi using the pelletization technology. In addition, the effects of different ratio of mixed LED light wavelengths applying mixed light-emitting diode during algae strains and fungi co-cultivation on CO 2 and biogas slurry nutrient removal efficiency were also investigated. The results showed that the COD (chemical oxygen demand), TN (total nitrogen), and TP (total phosphorus) removal efficiency were 85.82 ± 5.37%, 83.31 ± 4.72%, and 84.26 ± 5.58%, respectively at red: blue = 5:5 under the co-cultivation of S. obliquus and fungi. In terms of biogas upgrading, CH 4 contents were higher than 90% (v/v) for all strains, except the co-cultivation with S. obliquus and fungi at red: blue = 3:7. The results indicated that co-cultivation of microalgae with fungi under mixed light wavelengths treatments was most successful in nutrient removal from wastewater and biogas upgrading.
Landfill leachate--a water and nutrient resource for algae-based biofuels.
Edmundson, Scott J; Wilkie, Ann C
2013-01-01
There is a pressing need for sustainable renewable fuels that do not negatively impact food and water resources. Algae have great potential for the production of renewable biofuels but require significant water and fertilizer resources for large-scale production. Municipal solid waste (MSW) landfill leachate (LL) was evaluated as a cultivation medium to reduce both water and elemental fertilizer demands of algae cultivation. Daily growth rate and cell yield of two isolated species of algae (Scenedesmus cf. rubescens and Chlorella cf. ellipsoidea) were cultivated in MSW LL and compared with Bold's Basal Medium (BBM). Results suggest that LL can be used as a nutrient resource and medium for the cultivation of algae biomass. S. cf. rubescens grew well in 100% LL, when pH was regulated, with a mean growth rate and cell yield 91.2% and 92.8% of those observed in BBM, respectively. S. cf. rubescens was more adaptable than C. cf. ellipsoidea to the LL tested. The LL used in this study supported a maximum volumetric productivity of 0.55 g/L/day of S. cf. rubescens biomass. The leachate had sufficient nitrogen to supply 17.8 g/L of algae biomass, but was limited by total phosphorus. Cultivation of algae on LL offsets both water and fertilizer consumption, reducing the environmental footprint and increasing the potential sustainability of algae-based biofuels.
Influence of shifting cultivation practices on soil-plant-beetle interactions.
Ibrahim, Kalibulla Syed; Momin, Marcy D; Lalrotluanga, R; Rosangliana, David; Ghatak, Souvik; Zothansanga, R; Kumar, Nachimuthu Senthil; Gurusubramanian, Guruswami
2016-08-01
Shifting cultivation (jhum) is a major land use practice in Mizoram. It was considered as an eco-friendly and efficient method when the cycle duration was long (15-30 years), but it poses the problem of land degradation and threat to ecology when shortened (4-5 years) due to increased intensification of farming systems. Studying beetle community structure is very helpful in understanding how shifting cultivation affects the biodiversity features compared to natural forest system. The present study examines the beetle species diversity and estimates the effects of shifting cultivation practices on the beetle assemblages in relation to change in tree species composition and soil nutrients. Scarabaeidae and Carabidae were observed to be the dominant families in the land use systems studied. Shifting cultivation practice significantly (P < 0.05) affected the beetle and tree species diversity as well as the soil nutrients as shown by univariate (one-way analysis of variance (ANOVA), correlation and regression, diversity indices) and multivariate (cluster analysis, principal component analysis (PCA), detrended correspondence analysis (DCA), canonical variate analysis (CVA), permutational multivariate analysis of variance (PERMANOVA), permutational multivariate analysis of dispersion (PERMDISP)) statistical analyses. Besides changing the tree species composition and affecting the soil fertility, shifting cultivation provides less suitable habitat conditions for the beetle species. Bioindicator analysis categorized the beetle species into forest specialists, anthropogenic specialists (shifting cultivation habitat specialist), and habitat generalists. Molecular analysis of bioindicator beetle species was done using mitochondrial cytochrome oxidase subunit I (COI) marker to validate the beetle species and describe genetic variation among them in relation to heterogeneity, transition/transversion bias, codon usage bias, evolutionary distance, and substitution pattern. The present study revealed the fact that shifting cultivation practice significantly affects the beetle species in terms of biodiversity pattern as well as evolutionary features. Spatiotemporal assessment of soil-plant-beetle interactions in shifting cultivation system and their influence in land degradation and ecology will be helpful in making biodiversity conservation decisions in the near future.
Kuroda, Masaharu; Ikenaga, Sachiko
2015-01-01
We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.
Srinivasan, Sujatha; Munch, Matthew M.; Sizova, Maria V.; Fiedler, Tina L.; Kohler, Christina M.; Hoffman, Noah G.; Liu, Congzhou; Agnew, Kathy J.; Marrazzo, Jeanne M.; Epstein, Slava S.; Fredricks, David N.
2016-01-01
Background. Women with bacterial vaginosis (BV) have complex communities of anaerobic bacteria. There are no cultivated isolates of several bacteria identified using molecular methods and associated with BV. It is unclear whether this is due to the inability to adequately propagate these bacteria or to correctly identify them in culture. Methods. Vaginal fluid from 15 women was plated on 6 different media using classical cultivation approaches. Individual isolates were identified by 16S ribosomal RNA (rRNA) gene sequencing and compared with validly described species. Bacterial community profiles in vaginal samples were determined using broad-range 16S rRNA gene polymerase chain reaction and pyrosequencing. Results. We isolated and identified 101 distinct bacterial strains spanning 6 phyla including (1) novel strains with <98% 16S rRNA sequence identity to validly described species, (2) closely related species within a genus, (3) bacteria previously isolated from body sites other than the vagina, and (4) known bacteria formerly isolated from the vagina. Pyrosequencing showed that novel strains Peptoniphilaceae DNF01163 and Prevotellaceae DNF00733 were prevalent in women with BV. Conclusions. We isolated a diverse set of novel and clinically significant anaerobes from the human vagina using conventional approaches with systematic molecular identification. Several previously “uncultivated” bacteria are amenable to conventional cultivation. PMID:27449870
Nautiyal, Sunil; Kaechele, Harald; Umesh Babu, M S; Tikhile, Pavan; Baksi, Sangeeta
2017-04-01
This study was carried out to understand the ecological and economic sustainability of floriculture and other main crops in Indian agro-ecosystems. The cultivation practices of four major flower crops, namely Jasminum multiflorum, Crossandra infundibuliformis, Chrysanthemum and Tagetes erecta, were studied in detail. The production cost of flowers in terms of energy was calculated to be 99,622-135,996 compared to 27,681-69,133 MJ ha -1 for the main crops, namely Oryza sativa, Eleusine coracana, Zea mays and Sorghum bicolor. The highest-energy input amongst the crops was recorded for Z. mays (69,133 MJ ha -1 ) as this is a resource-demanding crop. However, flower cultivation requires approximately twice the energy required for the cultivation of Z. mays. In terms of both energy and monetary inputs, flower cultivation needs two to three times the requirements of the main crops cultivated in the region. The monetary inputs for main crop cultivation were calculated to be ₹ 27,349 to ₹ 46,930 as compared to flower crops (₹ 62,540 to ₹ 144,355). Floriculture was found to be more efficient in monetary terms when compared to the main crops cultivated in the region. However, the energy efficiency of flower crops is lower than that of the main crops, and the energy output from flower cultivation was found to be declining in tropical agro-ecosystems in India. Amongst the various inputs, farmyard manure accounts for the highest proportion, and for its preparation, most of the raw material comes from the surrounding ecosystems. Thus, flower cultivation has a direct impact on the ecosystem resource flow. Therefore, keeping the economic and environmental sustainability in view, this study indicates that a more field-based research is required to frame appropriate policies for flower cultivation to achieve sustainable socio-ecological development.
Kang, Bongmun; Yoon, Ho-Sung
2015-02-01
Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.
Tang, X; Li, Q; Wu, M; Lin, L; Scholz, M
2016-10-01
Cadmium-enrichment of farmland soil greatly threatens the sustainable use of soil resources and the safe cultivation of grain. This review paper briefly introduces the status of farmland soil as well as grain, which are both often polluted by cadmium (Cd) in China, and illustrates the major sources of Cd contaminants in farmland soil. In order to meet soil environmental quality standards and farmland environmental quality evaluation standards for edible agricultural products, Cd-enriched farmland soil is frequently remediated with the following prevailing techniques: dig and fill, electro-kinetic remediation, chemical elution, stabilisation and solidification, phytoremediation, field management and combined remediation. Most remediation techniques are still at the stage of small-scale trial experiments in China and few techniques are assessed in field trials. After comparing the technical and economical applicability among different Cd-enriched farmland soil remediation techniques, a novel ecological and hydraulic remediation technique has been proposed, which integrated the advantages of chemical elution, solidification and stabilisation, phytoremediation and field management. The ecological and hydraulic remediation concept is based on existing irrigation and drainage facilities, ecological ditches (ponds) and agronomic measures, which mainly detoxify the Cd-enriched soil during the interim period of crop cultivation, and guarantee the grain safety during its growth period. This technique may shift the challenge from soil to water treatment, and thus greatly enhances the remediation efficiency and shortens the remediation duration. Moreover, the proposed ecological and hydraulic remediation method matches well with the practical choice of cultivation while remediation for Cd-enriched soil in China, which has negligible impacts on the normal crop cultivation process, and thus shows great potential for large area applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stulberg, Michael J.; Huang, Qi
2015-01-01
Ralstonia solanacearum race 3 biovar 2 strains belonging to phylotype IIB, sequevars 1 and 2 (IIB-1&2) cause brown rot of potato in temperate climates, and are quarantined pathogens in Canada and Europe. Since these strains are not established in the U.S. and because of their potential risk to the potato industry, the U.S. government has listed them as select agents. Cultivated geraniums are also a host and have the potential to spread the pathogen through trade, and its extracts strongly inhibits DNA-based detection methods. We designed four primer and probe sets for an improved qPCR method that targets stable regions of DNA. RsSA1 and RsSA2 recognize IIB-1&2 strains, RsII recognizes the current phylotype II (the newly proposed R. solanacearum species) strains (and a non-plant associated R. mannitolilytica), and Cox1 recognizes eight plant species including major hosts of R. solanacearum such as potato, tomato and cultivated geranium as an internal plant control. We multiplexed the RsSA2 with the RsII and Cox1 sets to provide two layers of detection of a positive IIB-1&2 sample, and to validate plant extracts and qPCR reactions. The TaqMan-based uniplex and multiplex qPCR assays correctly identified 34 IIB-1&2 and 52 phylotype II strains out of 90 R. solanacearum species complex strains. Additionally, the multiplex qPCR assay was validated successfully using 169 artificially inoculated symptomatic and asymptomatic plant samples from multiple plant hosts including geranium. Furthermore, we developed an extraction buffer that allowed for a quick and easy DNA extraction from infected plants including geranium for detection of R. solanacearum by qPCR. Our multiplex qPCR assay, especially when coupled with the quick extraction buffer method, allows for quick, easy and reliable detection and differentiation of the IIB-1&2 strains of R. solanacearum. PMID:26426354
Khalil, Farghama; Yueyu, Xu; Naiyan, Xiao; Di, Liu; Tayyab, Muhammad; Hengbo, Wang; Islam, Waqar; Rauf, Saeed; Pinghua, Chen
2018-05-04
Sugarcane is an essential crop for sugar and biofuel. Globally, its production is severely affected by sugarcane yellow leaf disease (SCYLD) caused by Sugarcane Yellow Leaf Virus (SCYLV). Many aphid vectors are involved in the spread of the disease which reduced the effectiveness of cultural and chemical management. Empirical methods of plant breeding such as introgression from wild and cultivated germplasm were not possible or at least challenging due to the absence of resistance in cultivated and wild germplasm of sugarcane. RNA interference (RNAi) transformation is an effective method to create virus-resistant varieties. Nevertheless, limited progress has been made due to lack of comprehensive research program on SCYLV based on RNAi technique. In order to show improvement and to propose future strategies for the feasibility of the RNAi technique to cope SCYLV, genome-wide consensus sequences of SCYLV were analyzed through GenBank. The coverage rates of every consensus sequence in SCYLV isolates were calculated to evaluate their practicability. Our analysis showed that single consensus sequence from SCYLV could not work well for RNAi based sugarcane breeding programs. This may be due to high mutation rate and continuous recombination within and between various viral strains. Alternative multi-target RNAi strategy is suggested to combat several strains of the viruses and to reduce the silencing escape. The multi-target small interfering RNA (siRNA) can be used together to construct RNAi plant expression plasmid, and to transform sugarcane tissues to develop new sugarcane varieties resistant to SCYLV. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pla, Maria; La Paz, José-Luis; Peñas, Gisela; García, Nora; Palaudelmàs, Montserrat; Esteve, Teresa; Messeguer, Joaquima; Melé, Enric
2006-04-01
Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1-10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions.
ERIC Educational Resources Information Center
Lawson, John
This report is the fifth in a series on cultivating excellence in education for the purpose of training and retraining school leaders of the 1990s. The role of school administrators, and especially building principals; the characteristic administrative functions; the step-by-step procedures for implementation; and the advantages and possible…
ERIC Educational Resources Information Center
Jennings, Patricia A.; Frank, Jennifer L.; Snowberg, Karin E.; Coccia, Michael A.; Greenberg, Mark T.
2013-01-01
Cultivating Awareness and Resilience in Education (CARE for Teachers) is a mindfulness-based professional development program designed to reduce stress and improve teachers' performance and classroom learning environments. A randomized controlled trial examined program efficacy and acceptability among a sample of 50 teachers randomly assigned to…
Ikigai, H; Seki, K; Nishihara, S; Masuda, S
1988-01-01
A simplified method for preparation of concentrated exoproteins including protein A and alpha-toxin produced by Staphylococcus aureus was successfully devised. The concentrated proteins were obtained by cultivating S. aureus organisms on the surface of a liquid medium-containing cellophane bag enclosed in a sterilized glass flask. With the same amount of medium, the total amount of proteins obtained by the method presented here was identical with that obtained by conventional liquid culture. The concentration of proteins obtained by the method, however, was high enough to observe their distinct bands stained on polyacrylamide gel electrophoresis. This method was considered quite useful not only for large-scale cultivation for the purification of staphylococcal proteins but also for small-scale study using the proteins. The precise description of the method was presented and its possible usefulness was discussed.
[CONTEMPORARY MOLECULAR-GENETIC METHODS USED FOR ETIOLOGIC DIAGNOSTICS OF SEPSIS].
Gavrilov, S N; Skachkova, T S; Shipulina, O Yu; Savochkina, Yu A; Shipulin, G A; Maleev, V V
2016-01-01
Etiologic diagnostics of sepsis is one of the most difficult problems of contemporary medicine due to a wide variety of sepsis causative agents, many of which are components of normal human microflora. Disadvantages of contemporary "golden standard" of microbiologic diagnostics of sepsis etiology by seeding of blood for sterility are duration of cultivation, limitation in detection of non-cultivable forms of microorganisms, significant effect of preliminary empiric antibiotics therapy on results of the analysis. Methods of molecular diagnostics that are being actively developed and integrated during the last decade are deprived of these disadvantages. Main contemporary methods of molecular-biological diagnostics are examined in the review, actualdata on their diagnostic characteristic are provided. Special attention is given to methods of PCR-diagnostics, including novel Russian developments. Methods of nucleic acid hybridization and proteomic analysis are examined in comparative aspect. Evaluation of application and perspectives of development of methods of molecular diagnostics of sepsis is given.
Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo
2016-03-01
With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to batch cultivations, keeping high yields for extended production times is still a challenge. Overall, we demonstrate that process intensification of cell culture-based viral vaccine production can be realized by the consequent application of fed-batch, perfusion, and continuous systems with a significant increase in productivity. The potential for even further improvements is high, considering recent developments in establishment of new (designer) cell lines, better characterization of host cell metabolism, advances in media design, and the use of mathematical models as a tool for process optimization and control.
Cultivating healthy places and communities: evidenced-based nature contact recommendations.
Largo-Wight, Erin
2011-02-01
Cultivating healthful places is an important public health focus. This paper presents evidence-based recommendations related to nature contact. A multidisciplinary review was conducted in several fields of study and findings were organized into public health recommendations: (1) cultivate grounds for viewing, (2) maintain healing gardens, (3) incorporate wooded parks and green space in communities, (4) advocate for preservation of pristine wilderness, (5) welcome animals indoors, (6) provide a plethora of indoor potted plants within view, (7) light rooms with bright natural light, (8) provide a clear view of nature outside, (9) allow outside air and sounds in, (10) display nature photography and realistic nature art, (11) watch nature on TV or videos, and (12) listen to recorded sounds of nature. The findings should inform public health promoters in the design of healthy places and communities. Future research needs are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Jr., Michael S.
Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. In this paper, we present a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from themore » plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Finally, comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria.« less
Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis
Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Jr., Michael S.; ...
2016-07-15
Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. In this paper, we present a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from themore » plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Finally, comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria.« less
Chen, Junhui; Wei, Dong; Pohnert, Georg
2017-07-19
The green microalga Chromochloris zofingiensis can accumulate significant amounts of valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food, cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological diseases. To optimize the production of astaxanthin, it is essential to monitor the content of astaxanthin in algal cells during cultivation. The widely used HPLC (high-performance liquid chromatography) method for quantitative astaxanthin determination is time-consuming and laborious. In the present work, we present a method using flow cytometry (FCM) for in vivo determination of the astaxanthin content and the carotenoid-to-chlorophyll ratio (Car/Chl) in mixotrophic C. zofingiensis . The method is based on the assessment of fluorescent characteristics of cellular pigments. The mean fluorescence intensity (MFI) of living cells was determined by FCM to monitor pigment formation based on the correlation between MFI detected in particular channels (FL1: 533 ± 15 nm; FL2: 585 ± 20 nm; FL3: >670 nm) and pigment content in algal cells. Through correlation and regression analysis, a linear relationship was observed between MFI in FL2 (band-pass filter, emission at 585 nm in FCM) and astaxanthin content (in HPLC) and applied for predicting astaxanthin content. With similar procedures, the relationships between MFI in different channels and Car/Chl ratio in mixotrophic C. zofingiensis were also determined. Car/Chl ratios could be estimated by the ratios of MFI (FL1/FL3, FL2/FL3). FCM is thus a highly efficient and feasible method for rapid estimation of astaxanthin content in the green microalga C. zofingiensis . The rapid FCM method is complementary to the current HPLC method, especially for rapid evaluation and prediction of astaxanthin formation as it is required during the high-throughput culture in the laboratory and mass cultivation in industry.
Chen, Junhui; Pohnert, Georg
2017-01-01
The green microalga Chromochloris zofingiensis can accumulate significant amounts of valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food, cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological diseases. To optimize the production of astaxanthin, it is essential to monitor the content of astaxanthin in algal cells during cultivation. The widely used HPLC (high-performance liquid chromatography) method for quantitative astaxanthin determination is time-consuming and laborious. In the present work, we present a method using flow cytometry (FCM) for in vivo determination of the astaxanthin content and the carotenoid-to-chlorophyll ratio (Car/Chl) in mixotrophic C. zofingiensis. The method is based on the assessment of fluorescent characteristics of cellular pigments. The mean fluorescence intensity (MFI) of living cells was determined by FCM to monitor pigment formation based on the correlation between MFI detected in particular channels (FL1: 533 ± 15 nm; FL2: 585 ± 20 nm; FL3: >670 nm) and pigment content in algal cells. Through correlation and regression analysis, a linear relationship was observed between MFI in FL2 (band-pass filter, emission at 585 nm in FCM) and astaxanthin content (in HPLC) and applied for predicting astaxanthin content. With similar procedures, the relationships between MFI in different channels and Car/Chl ratio in mixotrophic C. zofingiensis were also determined. Car/Chl ratios could be estimated by the ratios of MFI (FL1/FL3, FL2/FL3). FCM is thus a highly efficient and feasible method for rapid estimation of astaxanthin content in the green microalga C. zofingiensis. The rapid FCM method is complementary to the current HPLC method, especially for rapid evaluation and prediction of astaxanthin formation as it is required during the high-throughput culture in the laboratory and mass cultivation in industry. PMID:28753934
Lee, Kyubock; Lee, So Yeun; Na, Jeong-Geol; Jeon, Sang Goo; Praveenkumar, Ramasamy; Kim, Dong-Myung; Chang, Won-Seok; Oh, You-Kwan
2013-12-01
The consumption of energy and resources such as water in the cultivation and harvesting steps should be minimized to reduce the overall cost of biodiesel production from microalgae. Here we present a biocompatible and rapid magnetophoretic harvesting process of oleaginous microalgae by using chitosan-Fe3O4 nanoparticle composites. Over 99% of microalgae was harvested by using the composites and the external magnetic field without changing the pH of culture medium so that it may be reused for microalgal culture without adverse effect on the cell growth. Depending on the working volume (20-500 mL) and the strength of surface magnetic-field (3400-9200 G), the process of harvesting microalgae took only 2-5 min. The method presented here not only utilizes permanent magnets without additional energy for fast harvesting but also recycles the medium effectively for further cultivation of microalgae, looking ahead to a large scale economic microalgae-based biorefinement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue
2017-11-01
Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.
Li, Penglin; Miao, Xiaoling; Li, Rongxiu; Zhong, Jianjiang
2011-01-01
Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90°C in 2-hour reaction time, under which over 99% methyl ester content and about 95% biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation. PMID:21318171
Impact of cover crops and tillage on porosity of podzolic soil
NASA Astrophysics Data System (ADS)
Błażewicz-Woźniak, M.; Konopiñski, M.
2013-09-01
The aim of the study was to determine the influence of cover crops biomass, mixed with the soil on different dates and with the use of different tools in field conditions. The cover crop biomass had a beneficial influence on the total porosity of the 0-20 cm layer of the soil after winter. The highest porosity was achievedwith cover crops of buckwheat, phacelia and mustard, the lowest with rye. During the vegetation period the highest porosity of soil was observed in the ridges. Among the remaining non-ploughing cultivations, pre-winter use of stubble cultivator proved to have a beneficial influence on the soil porosity, providing results comparable to those achieved in conventional tillage. The differential porosity of the soil was modified not only by the catch crops and the cultivation methods applied, but also by the sample collection dates, and it did change during the vegetation period. The highest content of macropores after winter was observed for the phacelia cover crop, and the lowest in the case of cultivation without any cover crops. Pre-winter tillage with the use of a stubble cultivator increased the amount of macropores in soil in spring, and caused the biggest participation of mesopores as compared with other non-ploughing cultivation treatments of the soil. The smallest amount of mesopores was found in the ridges.
Chong, Alice Ming Lin; Cheung, Chau-kiu; Woo, Jean; Kwan, Alex Yui-Huen
2012-01-01
Objectives. To examine the impact of the availability, use, and cultivation of a support network on the well-being of community-dwelling, middle-aged, and older Chinese. Methods. A total of 2,970 Hong Kong Chinese aged 40–74 years were interviewed using a structured questionnaire in 2004. Out of the original group of interviewees, 2,120 (71.4%) were interviewed again in 2005. Results. Structural equation modeling revealed a good fit of the model employing Wave 1 support network data and demographic characteristics to predict Wave 2 well-being. As hypothesized, the availability of important social ties and the cultivation of one's support networks were found to predict well-being one year later, but not the use of support networks to meet emotional, financial, or companion needs after controlling for demographic variables and baseline well-being. Discussion. Cultivating support networks can be interpreted as positive and active coping. Such cultivation is in line with what socioemotional selectivity theory predicts; specifically, when people age, they become more selective and concentrate on strengthening their relationship with those they are emotionally close to. We argue that network cultivation deserves more attention in theory, practice, and research to strengthen the resilience and adaptability of individuals approaching and experiencing old age. PMID:22645494
Socaci, Sonia A; Socaciu, Carmen; Tofană, Maria; Raţi, Ioan V; Pintea, Adela
2013-01-01
The health benefits of sea buckthorn (Hippophae rhamnoides L.) are well documented due to its rich content in bioactive phytochemicals (pigments, phenolics and vitamins) as well as volatiles responsible for specific flavours and bacteriostatic action. The volatile compounds are good biomarkers of berry freshness, quality and authenticity. To develop a fast and efficient GC-MS method including a minimal sample preparation technique (in-tube extraction, ITEX) for the discrimination of sea buckthorn varieties based on their chromatographic volatile fingerprint. Twelve sea buckthorn varieties (wild and cultivated) were collected from forestry departments and experimental fields, respectively. The extraction of volatile compounds was performed using the ITEX technique whereas separation and identification was performed using a GC-MS QP-2010. Principal component analysis (PCA) was applied to discriminate the differences among sample composition. Using GC-MS analysis, from the headspace of sea buckthorn samples, 46 volatile compounds were separated with 43 being identified. The most abundant derivatives were ethyl esters of 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, octanoic acid and butanoic acid, as well as 3-methylbutyl 3-methylbutanoate, 3-methylbutyl 2-methylbutanoate and benzoic acid ethyl ester (over 80% of all volatile compounds). Principal component analysis showed that the first two components explain 79% of data variance, demonstrating a good discrimination between samples. A reliable, fast and eco-friendly ITEX/GC-MS method was applied to fingerprint the volatile profile and to discriminate between wild and cultivated sea buckthorn berries originating from the Carpathians, with relevance to food science and technology. Copyright © 2013 John Wiley & Sons, Ltd.
Gugerell, Alfred; Neumann, Anne; Kober, Johanna; Tammaro, Loredana; Hoch, Eva; Schnabelrauch, Matthias; Kamolz, Lars; Kasper, Cornelia; Keck, Maike
2015-02-01
Generation of adipose tissue for burn patients that suffer from an irreversible loss of the hypodermis is still one of the most complex challenges in tissue engineering. Electrospun materials with their micro- and nanostructures are already well established for their use as extracellular matrix substitutes. Gelatin is widely used in tissue engineering to gain thickness and volume. Under conventional static cultivation methods the supply of nutrients and transport of toxic metabolites is controlled by diffusion and therefore highly dependent on size and porosity of the biomaterial. A widely used method in order to overcome these limitations is the medium perfusion of 3D biomaterial-cell-constructs. In this study we combined perfusion bioreactor cultivation techniques with electrospun poly(l-lactide-co-glycolide) (P(LLG)) and gelatin hydrogels together with adipose-derived stem cells (ASCs) for a new approach in soft tissue engineering. ASCs were seeded on P(LLG) scaffolds and in gelatin hydrogels and cultivated for 24 hours under static conditions. Thereafter, biomaterials were cultivated under static conditions or in a bioreactor system for three, nine or twelve days with a medium flow of 0.3ml/min. Viability, morphology and differentiation of cells was monitored. ASCs seeded on P(LLG) scaffolds had a physiological morphology and good viability and were able to migrate from one electrospun scaffold to another under flow conditions but not migrate through the mesh. Differentiated ASCs showed lipid droplet formations after 21 days. Cells in hydrogels were viable but showed rounded morphology. Under flow conditions, morphology of cells was more diffuse. ASCs could be cultivated on P(LLG) scaffolds and in gelatin hydrogels under flow conditions and showed good cell viability as well as the potential to differentiate. These results should be a next step to a physiological three-dimensional construct for soft tissue engineering and regeneration. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Growth of Dunaliella tertiolecta and associated bacteria in photobioreactors.
Lakaniemi, Aino-Maija; Intihar, Veera M; Tuovinen, Olli H; Puhakka, Jaakko A
2012-09-01
The aim of this study was to test three flat-plate photobioreactor configurations for cultivation of marine green alga Dunaliella tertiolecta under non-axenic growth conditions and to characterize and quantify the associated bacteria. The photobioreactor cultivations were conducted using tap water-based media. Static mixers intended to enhance mixing and light utilization did not generally increase algal growth at the low light intensities used. The maximum biomass concentration (measured as volatile suspended solids) and maximum specific growth rate achieved in the flat plate with no mixer were 2.9 g l⁻¹ and 1.3 day⁻¹, respectively. Based on quantitative polymerase chain reaction, bacterial growth followed the growth of D. tertiolecta. Based on 16S rDNA amplification and denaturing gradient gel electrophoresis profiling, heterotrophic bacteria in the D. tertiolecta cultures mainly originated from the non-axenic algal inocula, and tap water heterotrophs were not enriched in high chloride media (3 % salinity). Bacterial communities were relatively stable and reproducible in all flat-plate cultivations and were dominated by Gammaproteobacteria, Flavobacteria, and Alphaproteobacteria.
Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona
2015-06-05
Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed. Moringa oleifera shows diversity in many characters and extensive morphological variability, which may provide a resource for its improvement. Great genetic variability is present in the natural and cultivated accessions, but no collection of cultivated and wild accessions currently exists. A germplasm bank encompassing the genetic variability present in Moringa is needed to perform breeding programmes and develop elite varieties adapted to local conditions. Alimentary and medicinal uses of moringa are reviewed, alongside the production of biodiesel. Finally, being that the leaves are the most used part of the plant, their contents in terms of bioactive compounds and their pharmacological properties are discussed. Many studies conducted on cell lines and animals seem concordant in their support for these properties. However, there are still too few studies on humans to recommend Moringa leaves as medication in the prevention or treatment of diseases. Therefore, further studies on humans are recommended.
Zan, Ke; Huang, Li-Li; Guo, Li-Nong; Liu, Jie; Zheng, Jian; Ma, Shuang-Cheng; Qian, Zheng-Ming; Li, Wen-Jia
2017-10-01
This study is to establish the HPLC specific chromatogram and determine four main nucleosides of wild and cultivated Cordyceps sinensis. Uridine, inosine, guanosine and adenosine were selected as reference substance. HPLC analysis was performed on a Waters XSelect HSS T3 C₁₈ (4.6 mm×250 mm, 5 μm), with a mobile phase consisting of water(A)-acetonitrile (B) at a flow rate of 0.6 mL•min⁻¹ (0-5 min,0% B;5-15 min,0%-10% B, 15-30 min,10%-20% B, 30-33 min, 20%-50% B, 33-35 min, 50%-0% B, 35-40 min, 0% B). The detection wavelength was 260 nm and the column temperature was controlled at 30 ℃, and the injection volume was 5 μL. HPLC specific chromatogram of wild and cultivated C. sinensis was established and four main nucleosides were simultaneously determined by the above method. Specific chromatograms and contents of four main nucleosides showed no significant differences between cultivated and wild C. sinensis. These results can provide scientific evidences for further development and utilization of cultivated C. sinensis. Copyright© by the Chinese Pharmaceutical Association.
Leone, Alessandro; Spada, Alberto; Battezzati, Alberto; Schiraldi, Alberto; Aristil, Junior; Bertoli, Simona
2015-01-01
Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed. Moringa oleifera shows diversity in many characters and extensive morphological variability, which may provide a resource for its improvement. Great genetic variability is present in the natural and cultivated accessions, but no collection of cultivated and wild accessions currently exists. A germplasm bank encompassing the genetic variability present in Moringa is needed to perform breeding programmes and develop elite varieties adapted to local conditions. Alimentary and medicinal uses of moringa are reviewed, alongside the production of biodiesel. Finally, being that the leaves are the most used part of the plant, their contents in terms of bioactive compounds and their pharmacological properties are discussed. Many studies conducted on cell lines and animals seem concordant in their support for these properties. However, there are still too few studies on humans to recommend Moringa leaves as medication in the prevention or treatment of diseases. Therefore, further studies on humans are recommended. PMID:26057747
Naito, Keisuke; Yamasaki, Kei; Yatera, Kazuhiro; Akata, Kentaro; Noguchi, Shingo; Kawanami, Toshinori; Fukuda, Kazumasa; Kido, Takashi; Ishimoto, Hiroshi; Mukae, Hiroshi
2017-01-01
Pulmonary emphysema is an important radiological finding in chronic obstructive pulmonary disease patients, but bacteriological differences in pneumonia patients according to the severity of emphysematous changes have not been reported. Therefore, we evaluated the bacteriological incidence in the bronchoalveolar lavage fluid (BALF) of pneumonia patients using cultivation and a culture-independent molecular method. Japanese patients with community-acquired pneumonia (83) and healthcare-associated pneumonia (94) between April 2010 and February 2014 were evaluated. The BALF obtained from pneumonia lesions was evaluated by both cultivation and a molecular method. In the molecular method, ~600 base pairs of bacterial 16S ribosomal RNA genes in the BALF were amplified by polymerase chain reaction, and clone libraries were constructed. The nucleotide sequences of 96 randomly selected colonies were determined, and a homology search was performed to identify the bacterial species. A qualitative radiological evaluation of pulmonary emphysema based on chest computed tomography (CT) images was performed using the Goddard classification. The severity of pulmonary emphysema based on the Goddard classification was none in 47.4% (84/177), mild in 36.2% (64/177), moderate in 10.2% (18/177), and severe in 6.2% (11/177). Using the culture-independent molecular method, Moraxella catarrhalis was significantly more frequently detected in moderate or severe emphysema patients than in patients with no or mild emphysematous changes. The detection rates of Haemophilus influenzae and Pseudomonas aeruginosa were unrelated to the severity of pulmonary emphysematous changes, and Streptococcus species – except for the S. anginosus group and S. pneumoniae – were detected more frequently using the molecular method we used for the BALF of patients with pneumonia than using culture methods. Our findings suggest that M. catarrhalis is more frequently detected in pneumonia patients with moderate or severe emphysema than in those with no or mild emphysematous changes on chest CT. M. catarrhalis may play a major role in patients with pneumonia complicating severe pulmonary emphysema. PMID:28790814
Two phase sampling for wheat acreage estimation. [large area crop inventory experiment
NASA Technical Reports Server (NTRS)
Thomas, R. W.; Hay, C. M.
1977-01-01
A two phase LANDSAT-based sample allocation and wheat proportion estimation method was developed. This technique employs manual, LANDSAT full frame-based wheat or cultivated land proportion estimates from a large number of segments comprising a first sample phase to optimally allocate a smaller phase two sample of computer or manually processed segments. Application to the Kansas Southwest CRD for 1974 produced a wheat acreage estimate for that CRD within 2.42 percent of the USDA SRS-based estimate using a lower CRD inventory budget than for a simulated reference LACIE system. Factor of 2 or greater cost or precision improvements relative to the reference system were obtained.
Ettenauer, Jörg; Piñar, Guadalupe; Tafer, Hakim; Sterflinger, Katja
2014-01-01
The traditional methodology used for the identification of microbes colonizing our cultural heritage was the application of cultivation methods and/or microscopy. This approach has many advantages, as living microorganisms may be obtained for physiological investigations. In addition, these techniques allow the quantitative and qualitative assessment of the investigated environment. Quantitative analyses are done by plate count and the determination of abundance by the colony forming unit (CFU). Nevertheless, these techniques have many drawbacks that lead to an underestimation of the cell numbers and do not provide a comprehensive overview of the composition of the inhabiting microbiota. In the last decades, several molecular techniques have been developed enabling many advantages over the cultivation approach. Mainly PCR-based, fingerprinting techniques allow a qualitative detection and identification of the microbiota. In this study, we developed a real time PCR method as a simple, rapid and reliable tool to detect and quantify fungal abundance using the β-actin gene, which is known to appear as a single-copy gene in fungi. To this end, five different indoor thermal insulation materials applied for historical buildings that were previously tested for their bio-susceptibility against various fungi were subjected to qPCR analyses. The obtained results were compared with those obtained from a previous study investigating the bio-susceptibility of the insulation materials using classical cultivation experiments. Both results correlated well, revealing that Perlite plaster was the most suitable insulation material, showing the lowest fungal CFU and qPCR values. In contrast, insulations made of wood showed to be not recommendable from the microbiological point of view. In addition, the potential of qPCR was tested in other materials of cultural heritage, as old parchments, showing to be a suitable method for measuring fungal abundance in these delicate materials. PMID:24904567
Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco
2017-11-18
The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.
Chen, Meilan; Guo, Lanping; Yang, Guang; Chen, Min; Yang, Li; Huang, Luqi
2011-11-01
Applications of arbuscular mycorrhizal fungi in research of medicinal plant cultivation are increased in recent years. Medicinal plants habitat is complicated and many inclusions are in root, however crop habitat is simple and few inclusions in root. So appraisal methods and key technologies about the symbiotic system of crop and arbuscular mycorrhizal fungi can't completely suitable for the symbiotic system of medicinal plants and arbuscular mycorrhizal fungi. This article discuss the appraisal methods and key technologies about the symbiotic system of medicinal plant and arbuscular mycorrhizal fungi from the isolation and identification of arbuscular mycorrhiza, and the appraisal of colonization intensity. This article provides guidance for application research of arbuscular mycorrhizal fungi in cultivation of medicinal plants.
Changing land management practices and vegetation on the Central Plateau of Burkina Faso (1968-2002)
Reij, C.; Tappan, G.; Belemvire, A.
2005-01-01
In the early 1980s, the situation on the northern part of the Central Plateau of Burkina Faso was characterized by expanding cultivation on lands marginal to agriculture, declining rainfall, low and declining cereal yields, disappearing and impoverishing vegetation, falling ground-water levels and strong outmigration. This crisis situation provoked two reactions. Farmers, as well as technicians working for non-governmental organizations, started to experiment in improving soil and water conservation (SWC) techniques. When these experiments proved successful, donor agencies rapidly designed SWC projects based on simple, effective techniques acceptable to farmers. A study looked at the impact of SWC investments in nine villages and identified a number of major impacts, including: significant increases in millet and sorghum yields since the mid-1980s, cultivated fields treated with SWC techniques have more trees than 10-15 years ago, but the vegetation on most of the non-cultivated areas continues to degrade, greater availability of forage for livestock, increased investment in livestock by men and women and a beginning change in livestock management from extensive to semi-intensive methods, improved soil fertility management by farmers, locally rising ground-water tables, a decrease in outmigration and a significant reduction in rural poverty. Finally, data are presented on the evolution of land use in three villages between 1968 and 2002. ?? 2005 Elsevier Ltd. All rights reserved.
Bayati, Vahid; Gazor, Rohoullah; Nejatbakhsh, Reza; Negad Dehbashi, Fereshteh
2016-01-01
As stem cells play a critical role in tissue repair, their manipulation for being applied in regenerative medicine is of great importance. Skin-derived precursors (SKPs) may be good candidates for use in cell-based therapy as the only neural stem cells which can be isolated from an accessible tissue, skin. Herein, we presented a simple protocol to enrich neural SKPs by monolayer adherent cultivation to prove the efficacy of this method. To enrich neural SKPs from dermal cell populations, we have found that a monolayer adherent cultivation helps to increase the numbers of neural precursor cells. Indeed, we have cultured dermal cells as monolayer under serum-supplemented (control) and serum-supplemented culture, followed by serum free cultivation (test) and compared. Finally, protein markers of SKPs were assessed and compared in both experimental groups and differentiation potential was evaluated in enriched culture. The cells of enriched culture concurrently expressed fibronectin, vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors as compared to control culture. In addition, they possessed a multipotential capacity to differentiate into neurogenic, glial, adipogenic, osteogenic and skeletal myogenic cell lineages. It was concluded that serum-free adherent culture reinforced by growth factors have been shown to be effective on proliferation of skin-derived neural precursor cells (skin-NPCs) and drive their selective and rapid expansion.
Ude, Christian; Ben-Dov, Nadav; Jochums, André; Li, Zhaopeng; Segal, Ester; Scheper, Thomas; Beutel, Sascha
2016-05-01
The online monitoring of recombinant protein aggregate inclusion bodies during microbial cultivation is an immense challenge. Measurement of scattered and reflected light offers a versatile and non-invasive measurement technique. Therefore, we investigated two methods to detect the formation of inclusion bodies and monitor their production: (1) online 180° scattered light measurement (λ = 625 nm) using a sensor platform during cultivation in shake flask and (2) online measurement of the light reflective interference using a porous Si-based optical biosensor (SiPA). It could be shown that 180° scattered light measurement allows monitoring of alterations in the optical properties of Escherichia coli BL21 cells, associated with the formation of inclusion bodies during cultivation. A reproducible linear correlation between the inclusion body concentration of the non-fluorescent protein human leukemia inhibitory factor (hLIF) carrying a thioredoxin tag and the shift ("Δamp") in scattered light signal intensity was observed. This was also observed for the glutathione-S-transferase-tagged green fluorescent protein (GFP-GST). Continuous online monitoring of reflective interference spectra reveals a significant increase in the bacterium refractive index during hLIF production in comparison to a non-induced reference that coincide with the formation of inclusion bodies. These online monitoring techniques could be applied for fast and cost-effective screening of different protein expression systems.
Study on a pattern classification method of soil quality based on simplified learning sample dataset
Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.
2011-01-01
Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.
Chemical properties in fruits of mulberry species from the Xinjiang province of China.
Jiang, Yan; Nie, Wen-Jing
2015-05-01
Mulberries are a widely cultivated foodstuff both in China and worldwide. However, there are stark differences in the nutritional values of mulberry species. To better appreciate these differences, we here describe the chemical characteristics of white (Morus alba L.), Russian (M. alba var. tatarica L.), and black (Morus nigra L.) mulberry fruits cultivated in the Xinjiang province of China. The chemical composition analysis was performed by official methods procedures. The amino acids were analysed by the phenyl isothiocyanate method. The 2,6-dichloroindophenol titrimetric method, the aluminium chloride colorimetric method, and the pH differential method were also used in measuring the content of reduced ascorbic acid, total flavonoids, and total monomeric anthocyanins, respectively. The black mulberry fruits had the highest content of reduced ascorbic acid (48.4 mg/100 g fw), titratable acidity (47.1 mg/g fw), and Fe (11.9 mg/100 g fw) of these 3 species. The Russian mulberry fruits had the highest EAA/TAA (essential amino acid/total amino acid) ratio at 44% followed by the white mulberry (42%) and the black mulberry (29%). The black mulberry fruits had found to be richest in terms of total flavonoids and total monomeric anthocyanins. These results are helpful for selecting mulberry species with abundant nutrients and phytochemicals for commercial cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boschetti, M.; Nelson, A.; Manfrom, G.; Brivio, P. A.
2012-04-01
Timely and accurate information on crop typology and status are required to support suitable action to better manage agriculture production and reduce food insecurity. More specifically, regional crop masking and phenological information are important inputs for spatialized crop growth models for yield forecasting systems. Digital cartographic data available at global/regional scale, such as GLC2000, GLOBCOVER or MODIS land cover products (MOD12), are often not adequate for this crop modeling application. For this reason, there is a need to develop and test methods that can provide such information for specific cropsusing automated classification techniques.. In this framework we focused our analysis on the rice cultivation area detection due to the importance of this crop. Rice is a staple food for half of the world's population (FAO 2004). Over 90% of the world's rice is produced and consumed in Asia and the region is home to 70% of the world's poor, most of whom depend on rice for their livelihoods andor food security. Several initiatives are being promoted at the international level to provide maps of rice cultivated areas in South and South East Asia using different approaches available in literature for rice mapping in tropical regions. We contribute to these efforts by proposing an automatic method to detect rice cultivated areas in temperate regions exploiting MODIS 8-Day composite of Surface Reflectance at 500m spatial resolution (MOD09A1product). Temperate rice is cultivated worldwide in more than 20 countries covering around 16M ha for a total production of about 65M tons of paddy per year. The proposed method is based on a common approach available in literature that first identifies flood condition that can be related to rice agronomic practice and then checks for vegetation growth. The method presents innovative aspects related both to the flood detection, exploiting Short Wave Infrared spectral information, and to the crop grow monitoring analyzing vegetation index seasonal trend. Tests conducted in European Mediterranean environment demonstrated that our approach is able to provide accurate rice map (User Accuracy > 80%) when compared to available Corine Land Cover land use map (1:100.000 scale, MMU 25 ha). Map accuracy in term of omission and commission error has been analyzed in north of Italy where about 60 % of total European riceis produced. For this study area thematic cartography at 1:10.000scale allowed to analyze the type of commission errors and evaluate the entity of omission errors in relation to low resolution bias and/or algorithm performance. Pareto boundary method has been used to assess the level of accuracy of the method respect a maximum achievable accuracy with medium resolution MODIS data. Results demonstrate that the proposed approach outperform the method developed for tropical and sub-tropical environment.
Feder, Ingrid; Nietfeld, Jerome C.; Galland, John; Yeary, Teresa; Sargeant, Jan M.; Oberst, Richard; Tamplin, Mark L.; Luchansky, John B.
2001-01-01
A total of 150 fecal and water samples from four swine farms were tested for the presence of Salmonella enterica using different enrichment techniques as follows: (i) 92 fecal samples from nursery and farrowing barns at three swine farms were preenriched overnight in tryptic soy broth (TSB) at 37°C followed by overnight enrichment in Rappaport-Vassiliadis 10 broth (RV10) at 42°C; (ii) 24 water samples from the third farm were preenriched overnight in 3MC broth at 37°C followed by overnight enrichment in RV10 at 42°C; and (iii) 34 fecal samples from a fourth farm, a finishing farm, were enriched overnight in RV10 at 42°C with no additional enrichment. Following each of the enrichment techniques, samples were subcultured onto modified semisolid Rappaport-Vassiliadis (MSRV) agar prior to transfer to Hektoen Enteric agar plates for the recovery of viable Salmonella bacteria. Presumptive Salmonella isolates were biochemically and serologically confirmed. For the PCR detection of Salmonella, a 1-ml portion was removed from each sample after the first overnight enrichment and the DNA was extracted using a Sepharose CL-6B spin column. Amplicons (457 bp) derived from primers to the invA and invE genes were confirmed as Salmonella specific on ethidium bromide-stained agarose gels by Southern hybridization with a 20-mer oligonucleotide probe specific for the Salmonella invA gene. Neither the standard microbiological method nor the molecular method detected all of the 65 samples that tested positive by both methods or either method alone. Salmonella bacteria were detected by both cultivation and PCR-hybridization in 68% (17 of 25) of the positive samples that were preenriched in TSB, in 73% (11 of 15) of the positive samples preenriched in 3MC broth, and in 24% (6 of 25) of the positive samples enriched in RV10. Agreement between Salmonella detection using cultivation with preenrichment and detection by PCR was 76% using the kappa statistic. However, agreement between Salmonella detection using cultivation without preenrichment and detection by PCR was about 6%; the PCR assay detected 80% (20 of 25) of the 25 positive samples, while Salmonella bacteria were recovered from only 44% (11 of 25) by cultivation. Our results indicate that the PCR-hybridization approach is equivalent to or better than cultivation for detecting Salmonella in swine feces or water samples from swine farms when using the medium combinations evaluated in this study. PMID:11427557
Detection and Identification of Free-living Amoeba from Environmental Water in Taiwan by PCR Method
NASA Astrophysics Data System (ADS)
Tsai, H. F.; Hsu, B. M.; Huang, K. H.; She, C. Y.; Kao, P. M.; Shen, S. M.; Tseng, S. F.; Chen, J. S.
2012-04-01
Acanthamoeba, Naegleria, Balamuthia and Hartmannella all belong to free-living amoebae that are present ubiquitously in the environment including water, soil, and air. Free-living amoebae are parasites which can infect humans and can lead to serious illness and even death. The aim of this study is to investigate the presence of free-living amoebae in aquatic environment in Taiwan, and to compare the differences between Acanthamoeba and Naegleria in diverse cultivation methods and conditions. In this study, we used molecular method by PCR amplification with specific primers to analyze the occurrence of free-living amoebae. We collected 176 samples from environmental water including drinking water treatment plants, stream water, and hot spring recreational areas in Taiwan. Based on the results of PCR, 43 water samples (24.4%) were detected positive for free-living amoebae. The most common Acanthamoeba genotype isolated from samples including T2, T4, T5, T12, and T15. N. australiensis and N. lovaniensis were also identified by molecular biology techniques. Furthermore, we found that both Acanthamoeba and Naegleria can be cultured by PYG in 30° C, but not all free-living amoebae can be isolated and enriched by using storage-cultivation method. Because of the widespread presence of Acanthamoeba and Naegleria in aquatic environments, the water quality and safety of aquatic environments should be more conscious in Taiwan and worldwide. Keywords: free-living amoebae; Acanthamoeba; Naegleria; Balamuthia; Hartmannella; PCR
CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.
Adamczyk, Michał; Lasek, Janusz; Skawińska, Agnieszka
2016-08-01
CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 × 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 × 10(7) cells/ml, respectively.
Edlund, Anna; Jansson, Janet K.
2006-01-01
Bacteria residing in sediments have key functions in the marine food web. However, it has been difficult to correlate the identity and activity of bacteria in sediments due to lack of appropriate methods beyond cultivation-based techniques. Our aim was to use a combination of molecular approaches, bromodeoxyuridine incorporation and immunocapture, terminal restriction fragment length polymorphism, and cloning and sequencing of 16S rRNA genes to assess the composition of growing bacteria in Baltic Sea sediments. The study site was a highly polluted area off the Swedish coast. The sediments were sampled in two consecutive years, before and after remediation, by dredging of the top sediments. Levels of polyaromatic hydrocarbons (PAHs), mercury, and polychlorinated biphenyls were dramatically reduced as a result of the cleanup project. The compositions of growing members of the communities were significantly different at the two sampling periods. In particular, members from the class Deltaproteobacteria and genus Spirochaeta were more dominant before dredging, but members of the classes Gammaproteobacteria and the Flavobacteria represented the most dominant growing populations after dredging. We also cultivated isolates from the polluted sediments that could transform the model PAH compound, phenanthrene. Some of these isolates were confirmed as dominant growing populations by the molecular methods as well. This suite of methods enabled us to link the identity and activity of the members of the sediment communities. PMID:16950911
Edlund, Anna; Jansson, Janet K
2006-10-01
Bacteria residing in sediments have key functions in the marine food web. However, it has been difficult to correlate the identity and activity of bacteria in sediments due to lack of appropriate methods beyond cultivation-based techniques. Our aim was to use a combination of molecular approaches, bromodeoxyuridine incorporation and immunocapture, terminal restriction fragment length polymorphism, and cloning and sequencing of 16S rRNA genes to assess the composition of growing bacteria in Baltic Sea sediments. The study site was a highly polluted area off the Swedish coast. The sediments were sampled in two consecutive years, before and after remediation, by dredging of the top sediments. Levels of polyaromatic hydrocarbons (PAHs), mercury, and polychlorinated biphenyls were dramatically reduced as a result of the cleanup project. The compositions of growing members of the communities were significantly different at the two sampling periods. In particular, members from the class Deltaproteobacteria and genus Spirochaeta were more dominant before dredging, but members of the classes Gammaproteobacteria and the Flavobacteria represented the most dominant growing populations after dredging. We also cultivated isolates from the polluted sediments that could transform the model PAH compound, phenanthrene. Some of these isolates were confirmed as dominant growing populations by the molecular methods as well. This suite of methods enabled us to link the identity and activity of the members of the sediment communities.
Bacterial identification in real samples by means of micro-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Rösch, Petra; Stöckel, Stephan; Meisel, Susann; Bossecker, Anja; Münchberg, Ute; Kloss, Sandra; Schumacher, Wilm; Popp, Jürgen
2011-07-01
Pathogen detection is essential without time delay especially for severe diseases like sepsis. Here, the survival rate is dependent on a prompt antibiosis. For sepsis three hours after the onset of shock the survival rate of the patient drops below 60 %. Unfortunately, the results from standard diagnosis methods like PCR or microbiology can normally be received after 12 or 36 h, respectively. Therefore diagnosis methods which require less cultivation or even no cultivation at all have to be established for medical diagnosis. Here, Raman spectroscopy, as a vibrational spectroscopic method, is a very sensitive and selective approach and monitors the biochemical composition of the investigated sample. Applying micro-Raman spectroscopy allows for a spatial resolution below 1 μm and is therefore in the size range of bacteria. Raman spectra of bacteria depend on the physiological status. Therefore, the databases require the inclusion of the necessary environmental parameters such as temperature, pH, nutrition, etc. Such large databases therefore require a specialized chemometric approach, since the variation between different strains is small. In this contribution we will demonstrate the capability of Raman spectroscopy to identify pathogens without cultivation even from real environmental or medical samples.
Iijima, Hiroko; Nakaya, Yuka; Kuwahara, Ayuko; Hirai, Masami Yokota; Osanai, Takashi
2015-01-01
Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW) medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW) were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria. PMID:25954257
Anton, Dea; Matt, Darja; Pedastsaar, Priit; Bender, Ingrid; Kazimierczak, Renata; Roasto, Mati; Kaart, Tanel; Luik, Anne; Püssa, Tõnu
2014-06-04
In the present study, four tomato cultivars were grown under organic and conventional conditions in separate unheated greenhouses in three consecutive years. The objective was to assess the influence of the cultivation system on the content of individual polyphenols, total phenolics, and antioxidant capacity of tomatoes. The fruits were analyzed for total phenolic content by the Folin-Ciocalteau method and antioxidant capacity by the DPPH free radical scavenging assay. Individual phenolic compounds were analyzed using HPLC-DAD-MS/MS. Among 30 identified and quantified polyphenols, significantly higher contents of apigenin acetylhexoside, caffeic acid hexoside I, and phloretin dihexoside were found in all organic samples. The content of polyphenols was more dependent on year and cultivar than on cultivation conditions. Generally, the cultivation system had minor impact on polyphenols content, and only a few compounds were influenced by the mode of cultivation in all tested cultivars during all three years.
Bacterial Diversity in Human Subgingival Plaque
Paster, Bruce J.; Boches, Susan K.; Galvin, Jamie L.; Ericson, Rebecca E.; Lau, Carol N.; Levanos, Valerie A.; Sahasrabudhe, Ashish; Dewhirst, Floyd E.
2001-01-01
The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria. Subgingival plaque was analyzed from healthy subjects and subjects with refractory periodontitis, adult periodontitis, human immunodeficiency virus periodontitis, and acute necrotizing ulcerative gingivitis. 16S ribosomal DNA (rDNA) bacterial genes from DNA isolated from subgingival plaque samples were PCR amplified with all-bacterial or selective primers and cloned into Escherichia coli. The sequences of cloned 16S rDNA inserts were used to determine species identity or closest relatives by comparison with sequences of known species. A total of 2,522 clones were analyzed. Nearly complete sequences of approximately 1,500 bases were obtained for putative new species. About 60% of the clones fell into 132 known species, 70 of which were identified from multiple subjects. About 40% of the clones were novel phylotypes. Of the 215 novel phylotypes, 75 were identified from multiple subjects. Known putative periodontal pathogens such as Porphyromonas gingivalis, Bacteroides forsythus, and Treponema denticola were identified from multiple subjects, but typically as a minor component of the plaque as seen in cultivable studies. Several phylotypes fell into two recently described phyla previously associated with extreme natural environments, for which there are no cultivable species. A number of species or phylotypes were found only in subjects with disease, and a few were found only in healthy subjects. The organisms identified only from diseased sites deserve further study as potential pathogens. Based on the sequence data in this study, the predominant subgingival microbial community consisted of 347 species or phylotypes that fall into 9 bacterial phyla. Based on the 347 species seen in our sample of 2,522 clones, we estimate that there are 68 additional unseen species, for a total estimate of 415 species in the subgingival plaque. When organisms found on other oral surfaces such as the cheek, tongue, and teeth are added to this number, the best estimate of the total species diversity in the oral cavity is approximately 500 species, as previously proposed. PMID:11371542
USDA-ARS?s Scientific Manuscript database
Cultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single polyploidization event. Accordingly molecular markers have low levels of polymorphism and t...
"Lixue" (?? "Ihak") the Lost Art: Confucianism as a Form of Cultivation of Mind
ERIC Educational Resources Information Center
Han, Hyong-Jo
2016-01-01
This article approaches Confucianism as a lost art of living and asks how we can make it relevant again for us. Central to this approach is the cultivation of heart-mind ("Xinxue," ??) designed to help cure ourselves of self-oblivion and self-centeredness so prevalent in our culture today. It is based on the idea of "Li" (?),…
Cultivating strategic thinking skills.
Shirey, Maria R
2012-06-01
This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author presents an overview of strategic leadership and offers approaches for cultivating strategic thinking skills.
Some personal observations on cultivating the Heliamphora
Robert R. Ziemer
1979-01-01
The following note is based on some 7 years experience growing three species of Heliamphora - H. heterodoxa, H. nutans, and H. minor. This information is not intended to be a definitive or even a comprehensive guide to the cultivation of these species, but simply some observations on what I have found to work for me through trial and error. I have not conducted...
USDA-ARS?s Scientific Manuscript database
We will present an ultra-dense genetic linkage map for the octoploid, cultivated strawberry (Fragaria x ananassa) consisting of over 13K Axiom® based SNP markers and 150 previously mapped reference SSR loci. The high quality of the map is demonstrated by the short sizes of each of the 28 linkage gro...
ERIC Educational Resources Information Center
Cosner, Shelby
2010-01-01
Research has revealed the importance of trust to schools and pointed to the central role that principals play in cultivating within-school trust, yet less is known about the ways that principals cultivate such trust. Moreover, divergent perspectives and varied contexts for examining trust have limited the transfer of trust scholarship to practice…
Oparinde, Adewale; Abdoulaye, Tahirou; Mignouna, Djana Babatima; Bamire, Adebayo Simeon
2017-01-01
Analysis of market segments within a population remains critical to agricultural systems and policy processes for targeting new innovations. Patterns in attitudes and intentions toward cultivating Provitamin A GM cassava are examined through the use of a combination of behavioural theory and k-means cluster analysis method, investigating the interrelationship among various behavioural antecedents. Using a state-level sample of smallholder cassava farmers in Nigeria, this paper identifies three distinct classes of attitude and intention denoted as low opposition, medium opposition and high opposition farmers. It was estimated that only 25% of the surveyed population of farmers was highly opposed to cultivating Provitamin A GM cassava.
Abdoulaye, Tahirou; Mignouna, Djana Babatima; Bamire, Adebayo Simeon
2017-01-01
Analysis of market segments within a population remains critical to agricultural systems and policy processes for targeting new innovations. Patterns in attitudes and intentions toward cultivating Provitamin A GM cassava are examined through the use of a combination of behavioural theory and k-means cluster analysis method, investigating the interrelationship among various behavioural antecedents. Using a state-level sample of smallholder cassava farmers in Nigeria, this paper identifies three distinct classes of attitude and intention denoted as low opposition, medium opposition and high opposition farmers. It was estimated that only 25% of the surveyed population of farmers was highly opposed to cultivating Provitamin A GM cassava. PMID:28700605
Automated Chemotactic Sorting and Single-cell Cultivation of Microbes using Droplet Microfluidics
NASA Astrophysics Data System (ADS)
Dong, Libing; Chen, Dong-Wei; Liu, Shuang-Jiang; Du, Wenbin
2016-04-01
We report a microfluidic device for automated sorting and cultivation of chemotactic microbes from pure cultures or mixtures. The device consists of two parts: in the first part, a concentration gradient of the chemoeffector was built across the channel for inducing chemotaxis of motile cells; in the second part, chemotactic cells from the sample were separated, and mixed with culture media to form nanoliter droplets for encapsulation, cultivation, enumeration, and recovery of single cells. Chemotactic responses were assessed by imaging and statistical analysis of droplets based on Poisson distribution. An automated procedure was developed for rapid enumeration of droplets with cell growth, following with scale-up cultivation on agar plates. The performance of the device was evaluated by the chemotaxis assays of Escherichia coli (E. coli) RP437 and E. coli RP1616. Moreover, enrichment and isolation of non-labelled Comamonas testosteroni CNB-1 from its 1:10 mixture with E. coli RP437 was demonstrated. The enrichment factor reached 36.7 for CNB-1, based on its distinctive chemotaxis toward 4-hydroxybenzoic acid. We believe that this device can be widely used in chemotaxis studies without necessarily relying on fluorescent labelling, and isolation of functional microbial species from various environments.
Automated Chemotactic Sorting and Single-cell Cultivation of Microbes using Droplet Microfluidics.
Dong, Libing; Chen, Dong-Wei; Liu, Shuang-Jiang; Du, Wenbin
2016-04-14
We report a microfluidic device for automated sorting and cultivation of chemotactic microbes from pure cultures or mixtures. The device consists of two parts: in the first part, a concentration gradient of the chemoeffector was built across the channel for inducing chemotaxis of motile cells; in the second part, chemotactic cells from the sample were separated, and mixed with culture media to form nanoliter droplets for encapsulation, cultivation, enumeration, and recovery of single cells. Chemotactic responses were assessed by imaging and statistical analysis of droplets based on Poisson distribution. An automated procedure was developed for rapid enumeration of droplets with cell growth, following with scale-up cultivation on agar plates. The performance of the device was evaluated by the chemotaxis assays of Escherichia coli (E. coli) RP437 and E. coli RP1616. Moreover, enrichment and isolation of non-labelled Comamonas testosteroni CNB-1 from its 1:10 mixture with E. coli RP437 was demonstrated. The enrichment factor reached 36.7 for CNB-1, based on its distinctive chemotaxis toward 4-hydroxybenzoic acid. We believe that this device can be widely used in chemotaxis studies without necessarily relying on fluorescent labelling, and isolation of functional microbial species from various environments.
A conceptual mitigation model for asymmetric information of supply chain in seaweed cultivation
NASA Astrophysics Data System (ADS)
Teniwut, Wellem A.; Betaubun, Kamilius D.; Marimin; Djatna, Taufik
2017-10-01
Seaweed cultivation has a better advantage over other fisheries activity in terms of easiness on conducting the production and multiplier effect on coastal community welfare. The effect of seaweed farming on the prosperity of coastal community in Southeast Maluku started to take place in 2008, although in 2012 either number of production and workforce is declining rapidly. By solving this problem, this article also provided with identifying and analyzing the supply chain of seaweed cultivation in Southeast Maluku. Based on this analysis we have found that one of the main reasons of declining seaweed production and the number seaweed farmers was asymmetric information that occurred on seaweed supply chain in Southeast Maluku. The component of asymmetric risk was the quality of the seeds, price, information and technology and the knowledge of actual market of seaweed, especially by seaweed farmers. Therefore, it is essential to make a conceptual model on mitigation of asymmetric information on the supply chain of seaweed production. We proposed a conceptual model based on four perspectives, first was goal, criteria and sub-criteria, actor and the solution to mitigate asymmetric information supply chain on seaweed cultivation.
Kim, So-Hyun; Shin, Yoo-Soo; Choi, Hyung-Kyoon
2016-03-01
Korean ginseng (Panax ginseng C.A. Meyer) is one of the most popular medicinal herbs used in Asia, including Korea and China. In the present study lipid profiling of two officially registered cultivars (P. ginseng 'Chunpoong' and P. ginseng 'Yunpoong') was performed at different cultivation ages (5 and 6 years) and on different parts (tap roots, lateral roots, and rhizomes) using nano-electrospray ionization-mass spectrometry (nanoESI-MS). In total, 30 compounds including galactolipids, phospholipids, triacylglycerols, and ginsenosides were identified. Among them, triacylglycerol 54:6 (18:2/18:2/18:2), phosphatidylglycerol 34:3 (16:0/18:3), monogalactosyldiacylglycerol 36:4 (18:2/18:2), phosphatidic acid species 36:4 (18:2/18:2), and 34:1 (16:0/18:1) were selected as biomarkers to discriminate cultivars, cultivation ages, and parts. In addition, an unknown P. ginseng sample was successfully predicted by applying validated partial least squares projection to latent structures regression models. This is the first study regarding the identification of intact lipid species from P. ginseng and to predict cultivars, cultivation ages, and parts of P. ginseng using nanoESI-MS-based lipidomic profiling with a multivariate statistical analysis.
Microcontroller based automatic temperature control for oyster mushroom plants
NASA Astrophysics Data System (ADS)
Sihombing, P.; Astuti, T. P.; Herriyance; Sitompul, D.
2018-03-01
In the cultivation of Oyster Mushrooms need special treatment because oyster mushrooms are susceptible to disease. Mushroom growth will be inhibited if the temperature and humidity are not well controlled because temperature and inertia can affect mold growth. Oyster mushroom growth usually will be optimal at temperatures around 22-28°C and humidity around 70-90%. This problem is often encountered in the cultivation of oyster mushrooms. Therefore it is very important to control the temperature and humidity of the room of oyster mushroom cultivation. In this paper, we developed an automatic temperature monitoring tool in the cultivation of oyster mushroom-based Arduino Uno microcontroller. We have designed a tool that will control the temperature and humidity automatically by Android Smartphone. If the temperature increased more than 28°C in the room of mushroom plants, then this tool will turn on the pump automatically to run water in order to lower the room temperature. And if the room temperature of mushroom plants below of 22°C, then the light will be turned on in order to heat the room. Thus the temperature in the room oyster mushrooms will remain stable so that the growth of oyster mushrooms can grow with good quality.
Skin microbiome: genomics-based insights into the diversity and role of skin microbes
Kong, Heidi H.
2011-01-01
Recent advances in DNA sequencing methodology have enabled studies of human skin microbes that circumvent difficulties in isolating and characterizing fastidious microbes. Sequence-based approaches have identified greater diversity of cutaneous bacteria than studies using traditional cultivation techniques. However, improved sequencing technologies and analytical methods are needed to study all skin microbes, including bacteria, archaea, fungi, viruses, and mites, and how they interact with each other and their human hosts. This review discusses current skin microbiome research, with a primary focus on bacteria, and the challenges facing investigators striving to understand how skin micro-organisms contribute to health and disease. PMID:21376666
The temporal changes in saturated hydraulic conductivity of forest soils
NASA Astrophysics Data System (ADS)
Kornél Szegedi, Balázs
2015-04-01
I investigated the temporal variability of forest soils infiltration capacity through compaction. I performed the measurements of mine in The Botanical Garden of Sopron between 15.09.2014 - 15.10.2014. I performed the measurements in 50-50 cm areas those have been cleaned of vegetation, where I measured the bulk density and volume of soil hydraulic conductivity with Tension Disk Infiltrometer (TDI) in 3-3 repetitions. I took undisturbed 160 cm3 from the upper 5 cm layer of the cleaned soil surface for the bulk density measurements. Then I loosened the top 10-15 cm layer of the soil surface with spade. After the cultivation of the soil I measured the bulk density and volume of water conductivity also 3-3 repetitions. Later I performed the hydraulic conductivity (Ksat) using the TDI and bulk density measurements on undisturbed samples on a weekly basis in the study area. I illustrated the measured hydraulic conductivity and bulk density values as a function of cumulative rainfall by using simple graphical and statistical methods. The rate of the soil compaction pace was fast and smooth based on the change of the measured bulk density values. There was a steady downward trend in hydraulic conductivity parallel the compaction. The cultivation increased the hydraulic conductivity nearly fourfold compared to original, than decreased to half by 1 week. In the following the redeposition rate declined, but based on the literature data, almost 3-4 months enough to return the original state before cultivation of the soil hydraulic conductivity and bulk density values. This publication has been supported by AGRARKLIMA.2 VKSZ_12-1-2013-0034 project.
Increase of a BLSS closure using mineralized human waste in plant cultivation on a neutral substrate
NASA Astrophysics Data System (ADS)
Gros, Jean-Bernard; Ushakova, Sofya; Tikhomirov, Alexander A.; Kudenko, Yurii; Lasseur, Christophe; Shikhov, V.; Anischenko, O.
The purpose of this work was to study the full-scale potential use of human mineralized waste (feces and urine) as a source of mineral elements for plants cultivation in a Biological Life Support System. The plants which are potential candidates for a photosynthesizing link were grown on a neutral solution containing human mineralized waste. Spring wheat Triticum aestivum L., peas Pisum sativum L. Ambrosia cultivar and leaf lettuce Lactuca sativa L., Vitamin variety, were taken as the investigation objects. The plants were grown by hydroponics method on expanded clay aggregates in a vegetation chamber in constant environmental conditions. During the plants growth a definite amount of human mineralized waste was added daily in the nutrient solution. The nutrient solution was not changed during the entire vegetation period. Estimation of the plant needs in macro elements was based on a total biological productivity equal to 0.04 kg.day--1 .m-2 . As the plant requirements in potassium exceeded the potassium content in human waste, water extract of wheat straw containing the required potassium amount was added to the nutrient solution. Knop's solution was used in the control experiments. The experiment and control plants did not show significant differences in their photosynthetic apparatus state and productivity. A small decrease in total productivity of the experimental plants was observed which can result in some reduction of ˆ2 production in a BLSS. Most I probably it is due to the reduced nitrogen use. Therefore in a real BLSS after the mineralization of human feces and urine, it will be efficient to implement a more complete oxidation of nitrogencontaining compounds system, including nitrification. In this case the plants, prospective representatives of the BLSS photosynthesizing unit, could be cultivated on the solutions mainly based on human mineralized waste.
Hosford, Eve; Ong, Ana; Richesson, Douglas; Fraser, Susan; Kwak, Yoon; Miller, Sonia; Julius, Michael; McGann, Patrick; Lesho, Emil
2016-01-01
Objectives The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Design Before-after trial. Setting Newly built community hospital. Intervention 90 minute training refresher with surface-specific performance results. Methods Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. Results 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. Conclusion At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences. PMID:27196635
Tai, Chao; Zhang, Kun-Feng; Zhou, Tian-Jian; Zhao, Tong-Qian; Wang, Qing-Qing; He, Xiao-Qi
2011-07-01
The distribution characteristics of polycyclic aromatic hydrocarbons in runoff from the middle line source area of south-to-north water diversion project were studied. Five groups of artificial runoff fields were established to collect runoff based on the different types of land-use, the contents of 16 USEPA priority PAHs in the runoff were determined using GC/MS method. The results showed that the average concentrations of PAHs of the aqueous phase in the collected runoff samples of different land-use types decreased in the order:cultivated land (26.53 ng x L(-1)) > oak forest (20.91 ng x L(-1)) > orchard (17.59 ng x L(-1)), and the average concentrations of PAHs of the particle phase were cultivated land (1 073.72 ng x g(-1)) > orchard (652.29 ng x g(-1)) > oak forest (385.46 ng x g(-1)). The high carcinogenic components Bap were detected in both run off of cultivated land and orchard with a detected rate of 30%. According to National Recommended Water Quality Standards of priority toxic pollutants (2006 USEPA), it was found that Chr exceed standard 40%, with a detected rate of 100%. It was also found that the runoff volume and the total PAHs content in runoff increase with the slope, and PAHs loss and slope were closely related in same land-use types. Based on the Molecular Markers Indicative Law, it can be concluded that the dominant source of PAHs in runoff of study area was combustion of coal, and a small amount came from vehicle exhaust emissions. There is a certain degree of ecological risk about runoff PAHs pollution in the study area, which is worth further attention.
Zhu, Xudong; Arman, Bessembayev; Chu, Ju; Wang, Yonghong; Zhuang, Yingping
2017-05-01
To develop an efficient cost-effective screening process to improve production of glucoamylase in Aspergillus niger. The cultivation of A. niger was achieved with well-dispersed morphology in 48-deep-well microtiter plates, which increased the throughput of the samples compared to traditional flask cultivation. There was a close negative correlation between glucoamylase and its pH of the fermentation broth. A novel high-throughput analysis method using Methyl Orange was developed. When compared to the conventional analysis method using 4-nitrophenyl α-D-glucopyranoside as substrate, a correlation coefficient of 0.96 by statistical analysis was obtained. Using this novel screening method, we acquired a strain with an activity of 2.2 × 10 3 U ml -1 , a 70% higher yield of glucoamylase than its parent strain.
[Effects of Different Terrain Farmland on Codonopsis pilosula Growth in Loess Plateau Dry Areas].
Wang, Hua-dong; Wu, Fa-ming
2014-12-01
To study the effects of different terrain farmland on Codonopsis pilosula growth in arid regions, and then to provide basis for choosing appropriate terrain for Codonopsis pilosula cultivation in the northwest region. Based on the observation of field production,plot cultivation experiment was designed to observe and record the effects of different terrain farmland on Codonopsis pilosula growth period and yeild, and to analyze the terrain effects on Codonopsis pilosula production comprehensively. There were no significant differences between field production and plot cultivation experiment. The results both showed that different terrain farmland significantly affected Codonopsis pilosula growth. Shade slope was the best, then sunny slope followed, terrace and ridge were not suitable for Codonopsis pilosula growth. The terrain is a critical part in Codonopsis pilosula production. To ensure the stability of Codonopsis pilosula production and economic benefits, it is best to choose the shade slope for cultivation.
Study on light and thermal energy of illumination device for plant factory design
NASA Astrophysics Data System (ADS)
Yoshida, A.; Moriuchi, K.; Ueda, Y.; Kinoshita, S.
2018-01-01
To investigate the effect of illumination devices on the yield of crops cultivated in a plant factory, it is necessary to measure the actual cultivation environmental factors related to the plant growth and understand the distribution ratio of light and thermal energy to the electrical energy injected into the illumination device. Based on cultivation results, we found that light intensity greatly affected the growth of plant weight. Regarding the selection of illumination device, its spectral components also affected the morphological change. Lighting experiments using a high frequency (Hf) fluorescent lamp and a light emitting diode (LED) bulb were performed. A certain difference was found in the distribution ratio of light energy to electrical energy between Hf and LED. It was showed that by placing the safety equipment or internal circuits outside the cultivated site, the air conditioning load could be reduced.
Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas
2014-01-01
A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid and precise evaluation of root lengths in diameter classes, but had weaknesses with respect to image segmentation and analysis of root system architecture. A new technique has been established for non-destructive root growth studies and quantification of architectural traits beyond seedlings stages. However, automation of the scanning process and appropriate software remains the bottleneck for high throughput analysis.
Outside the pipeline: reimagining science education for nonscientists.
Feinstein, Noah Weeth; Allen, Sue; Jenkins, Edgar
2013-04-19
Educational policy increasingly emphasizes knowledge and skills for the preprofessional "science pipeline" rather than helping students use science in daily life. We synthesize research on public engagement with science to develop a research-based plan for cultivating competent outsiders: nonscientists who can access and make sense of science relevant to their lives. Schools should help students access and interpret the science they need in response to specific practical problems, judge the credibility of scientific claims based on both evidence and institutional cues, and cultivate deep amateur involvement in science.
Barratt, Monica J; Potter, Gary R; Wouters, Marije; Wilkins, Chris; Werse, Bernd; Perälä, Jussi; Pedersen, Michael Mulbjerg; Nguyen, Holly; Malm, Aili; Lenton, Simon; Korf, Dirk; Klein, Axel; Heyde, Julie; Hakkarainen, Pekka; Frank, Vibeke Asmussen; Decorte, Tom; Bouchard, Martin; Blok, Thomas
2015-03-01
Internet-mediated research methods are increasingly used to access hidden populations. The International Cannabis Cultivation Questionnaire (ICCQ) is an online survey designed to facilitate international comparisons into the relatively under-researched but increasingly significant phenomenon of domestic cannabis cultivation. The Global Cannabis Cultivation Research Consortium has used the ICCQ to survey over 6000 cannabis cultivators across 11 countries. In this paper, we describe and reflect upon our methodological approach, focusing on the digital and traditional recruitment methods used to access this hidden population and the challenges of working across multiple countries, cultures and languages. Descriptive statistics showing eligibility and completion rates and recruitment source by country of residence. Over three quarters of eligible respondents who were presented with the survey were included in the final sample of n=6528. English-speaking countries expended more effort to recruit participants than non-English-speaking countries. The most effective recruitment modes were cannabis websites/groups (33%), Facebook (14%) and news articles (11%). While respondents recruited through news articles were older, growing practice variables were strikingly similar between these main recruitment modes. Through this process, we learnt that there are trade-offs between hosting multiple surveys in each country vs. using one integrated database. We also found that although perceived anonymity is routinely assumed to be a benefit of using digital research methodologies, there are significant limits to research participant anonymity in the current era of mass digital surveillance, especially when the target group is particularly concerned about evading law enforcement. Finally, we list a number of specific recommendations for future researchers utilising Internet-mediated approaches to researching hidden populations. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dutrieux, Loïc P.; Jakovac, Catarina C.; Latifah, Siti H.; Kooistra, Lammert
2016-05-01
We developed a method to reconstruct land use history from Landsat images time-series. The method uses a breakpoint detection framework derived from the econometrics field and applicable to time-series regression models. The Breaks For Additive Season and Trend (BFAST) framework is used for defining the time-series regression models which may contain trend and phenology, hence appropriately modelling vegetation intra and inter-annual dynamics. All available Landsat data are used for a selected study area, and the time-series are partitioned into segments delimited by breakpoints. Segments can be associated to land use regimes, while the breakpoints then correspond to shifts in land use regimes. In order to further characterize these shifts, we classified the unlabelled breakpoints returned by the algorithm into their corresponding processes. We used a Random Forest classifier, trained from a set of visually interpreted time-series profiles to infer the processes and assign labels to the breakpoints. The whole approach was applied to quantifying the number of cultivation cycles in a swidden agriculture system in Brazil (state of Amazonas). Number and frequency of cultivation cycles is of particular ecological relevance in these systems since they largely affect the capacity of the forest to regenerate after land abandonment. We applied the method to a Landsat time-series of Normalized Difference Moisture Index (NDMI) spanning the 1984-2015 period and derived from it the number of cultivation cycles during that period at the individual field scale level. Agricultural fields boundaries used to apply the method were derived using a multi-temporal segmentation approach. We validated the number of cultivation cycles predicted by the method against in-situ information collected from farmers interviews, resulting in a Normalized Residual Mean Squared Error (NRMSE) of 0.25. Overall the method performed well, producing maps with coherent spatial patterns. We identified various sources of error in the approach, including low data availability in the 90s and sub-object mixture of land uses. We conclude that the method holds great promise for land use history mapping in the tropics and beyond.
Birmeta, Genet; Nybom, Hilde; Bekele, Endashaw
2004-01-01
In southwest Ethiopia, the cultivation area of Ensete ventricosum (enset) overlaps with the natural distribution area of this species. Analyses of genetic diversity were undertaken using RAPD to provide information for conservation strategies as well as evidence of possible gene flow between the different gene pools, which can be of interest for future improvement of cultivated enset. The extent of RAPD variation in wild enset was investigated in 5 populations in the Bonga area (Kefficho administrative region) and 9 cultivated clones. Comparisons were also made with some Musa samples of potential relevance for crop improvement. Nine oligonucleotide primers amplified 72 polymorphic loci. Population differentiation was estimated with the Shannon index (G'(ST)=0.10), Nei's G(ST) (0.12) and AMOVA (Phi(ST)=0.12), and appears to be relatively low when compared with outbreeding, perennial species in general. Cluster analysis (UPGMA) and principal component analysis (PCA) similarly indicated low population differentiation, and also demonstrated that cultivated clones essentially clustered distinctly from wild enset samples, suggesting that the present-day cultivated enset clones have been introduced to domestication from a limited number of wild progenitors. In addition, subsequent gene flow between wild and cultivated enset may have been prohibited by differences between modes of propagation and harvesting time; cultivated enset is propagated vegetatively through sucker production and the plant is generally harvested before maturity or flower set, thereby hindering pollination by wild enset or vice versa. A significant correlation was not found between genetic and geographical distances. The relatively high total RAPD diversity suggests that wild enset populations in the Bonga area harbour genetic variability which could potentially act as a source for useful or rare genes in the improvement of cultivated enset. As expected, E. ventricosum was clearly differentiated from the analysed Musa samples, that clustered in accordance with the present morphology- and molecular marker-based taxonomy of the genus.
[A new species of Blastocystis anseri (Protista: Rhizopoda) from domestic geese].
Belova, L M
1992-01-01
A new species, Blastocystis anseri, was found in domestic goose. Sizes of blastocyst in culture are 7.5-46.2 x 7.5-46.2 m. Method of cultivation of Blastocystis anseri on biphase egg medium was worked out. Liquid phase can be made of Hank's solution or 199 medium with an addition of 30-40% hen or bovine serum. Optimum temperature for cultivation is 39 +/- 0.5 degree, ph 7.0-7.2.
Selection of the Methods of Soil Analysis for Phyto-available Arsenic
NASA Astrophysics Data System (ADS)
Yoon, Junghwan; Lee, Dan-Bi; Kim, Kwon-Rae; Kim, Won-Il; Kim, Kye-Hoon
2016-04-01
Arsenic (As) is a trace element of major public health concern. Many of As contaminated agricultural lands in the Republic of Korea (ROK) are located at the areas nearby abandoned mines. Therefore, management of contaminated agricultural lands is important for safe crop cultivation. In ROK, soils contaminated with As have managed according to the As concentration determined after aqua regia digestion (total As). Many soil scientists reported that management of As in soils by phyto-available As is more effective than that by total As for safety of the crop cultivation point-of-view since As concentration in crops has a significant correlation with phyto-available As. Therefore, this study was carried out to select method of soil analysis for phyto-available As. For that purpose, five extracting solutions (0.1M Ca(NO?), 0.1M (NH?)?HPO?), 0.5M EDTA, Mehlich 3, 0.5M NaHCO?) were examined with 35 soil samples used for cultivation of three crops (bean, red pepper, rice). Correlation analysis was conducted between phyto-available As concentrations in soils and As concentration in edible part of the crops. Results of the correlation analysis showed that phyto-available As concentrations in soils using Mehlich 3 solution and As concentrations in edible part of red pepper and rice were significantly correlated. For soils used for bean cultivation, Mehlich 3 (R
NASA Astrophysics Data System (ADS)
Nedukha, E. M.
The pyroantimonate method was used to study the localization of free and weakly bound calcium in cells of moss protonema of Funaria hygrometrica Hedw. cultivated on a clinostat (2 rev/min). Electroncytochemical study of control cells cultivated at 1 g revealed that granular precipitate marked chloroplasts, mitochondria, Golgi apparatus, lipid drops, nucleoplasma, nucleolus, nucleus membranes, cell walls and endoplasmic reticulum. In mitochondria the precipitate was revealed in stroma, in chloroplast it was found on thylakoids and envelope membranes. The cultivation of protonema on clinostat led to the intensification in cytochemical reaction product deposit. A considerable intensification of the reaction was noted in endomembranes, vacuoles, periplasmic space and cell walls. At the same time analysis of pectinase localization was made using the electroncytochemical method. A high reaction intensity in walls in comparison to that in control was found out to be a distinctive pecularity of the cells cultivated on clinostat. It testifies to the fact that increasing of freee calcium concentrations under conditions of clinostation is connected with pectinic substances hydrolysis and breaking of methoxy groups of pectins. Data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance of plant cells and the role of cell walls in gomeostasis of cell grown under conditions of simulated weighlessness.
Comparative analysis of 3D culture methods on human HepG2 cells.
Luckert, Claudia; Schulz, Christina; Lehmann, Nadja; Thomas, Maria; Hofmann, Ute; Hammad, Seddik; Hengstler, Jan G; Braeuning, Albert; Lampen, Alfonso; Hessel, Stefanie
2017-01-01
Human primary hepatocytes represent a gold standard in in vitro liver research. Due to their low availability and high costs alternative liver cell models with comparable morphological and biochemical characteristics have come into focus. The human hepatocarcinoma cell line HepG2 is often used as a liver model for toxicity studies. However, under two-dimensional (2D) cultivation conditions the expression of xenobiotic-metabolizing enzymes and typical liver markers such as albumin is very low. Cultivation for 21 days in a three-dimensional (3D) Matrigel culture system has been reported to strongly increase the metabolic competence of HepG2 cells. In our present study we further compared HepG2 cell cultivation in three different 3D systems: collagen, Matrigel and Alvetex culture. Cell morphology, albumin secretion, cytochrome P450 monooxygenase enzyme activities, as well as gene expression of xenobiotic-metabolizing and liver-specific enzymes were analyzed after 3, 7, 14, and 21 days of cultivation. Our results show that the previously reported increase of metabolic competence of HepG2 cells is not primarily the result of 3D culture but a consequence of the duration of cultivation. HepG2 cells grown for 21 days in 2D monolayer exhibit comparable biochemical characteristics, CYP activities and gene expression patterns as all 3D culture systems used in our study. However, CYP activities did not reach the level of HepaRG cells. In conclusion, the increase of metabolic competence of the hepatocarcinoma cell line HepG2 is not due to 3D cultivation but rather a result of prolonged cultivation time.
Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi
2013-10-01
The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation, stabilize agricultural production, promote sustainable use of cultivated land and guarantee food security.
2013-01-01
Background High supply of raw, residual glycerol from biodiesel production plants promote the search for novel biotechnological methods of its utilization. In this study we attempted modification of glycerol catabolism in a nonconventional yeast species Yarrowia lipolytica through genetic engineering approach. Results To address this, we developed a novel genetic construct which allows transferring three heterologous genes, encoding glycerol dehydratase, its reactivator and a wide-spectrum alcohol oxidoreductase under the control of glycerol-induced promoter. The three genes, tandemly arrayed in an expression cassette with a marker gene ura3, regulatory and targeting sequences (G3P dh promoter and XPR-like terminator, 28S rDNA as a target locus), were transferred into Yarrowia lipolytica cells. The obtained recombinant strain NCYC3825 was characterized at the molecular level and with respect to its biotechnological potential. Our experiments indicated that the novel recombinant strain stably borne one copy of the expression cassette and efficiently expressed heterologous alcohol oxidoreductase, while glycerol dehydratase and its reactivator were expressed at lower level. Comparative shake flask cultivations in glucose- and glycerol-based media demonstrated higher biomass production by the recombinant strain when glycerol was the main carbon source. During bioreactor (5 L) fed-batch cultivation in glycerol-based medium, the recombinant strain was characterized by relatively high biomass and lipids accumulation (up to 42 gDCW L-1, and a peak value of 38%LIPIDS of DCW, respectively), and production of high titers of citric acid (59 g L-1) and 2-phenylethanol (up to 1 g L-1 in shake flask cultivation), which are industrially attractive bioproducts. Conclusions Due to heterogeneous nature of the observed alterations, we postulate that the main driving force of the modified phenotype was faster growth in glycerol-based media, triggered by modifications in the red-ox balance brought by the wide spectrum oxidoreductase. Our results demonstrate the potential multidirectional use of a novel Yarrowia lipolytica strain as a microbial cell factory. PMID:24188724
NASA Astrophysics Data System (ADS)
Ben, D.; Langdon, C. J.
2016-02-01
Pacific dulse (Palmaria mollis) is a candidate for aquaculture production in Oregon due to its high protein content, fast growth rate, and ability to fare in cold water conditions. Current cultivation methods use the F/2 medium to supply nutrients to macroalgae cultures. The F/2 medium is a costly mixture of nitrate, phosphate, trace metals and vitamins. The F/2 medium has been the standard for microalgae cultivation, but research has lacked on the necessity of all or part of this mixture for macroalgae cultivation. This study is designed to contribute to the development of Pacific dulse cultivation by measuring how different fertilizer regimens affect the growth, biochemical composition, and quality of Palmaria mollis (C-3 variety) in hopes to reduce the production cost. I hypothesis that dulse will not require additional nutrients during summer cultivation, due to summer upwelling conditions. Experiments were conducted in a flow-through water system, controlling for flow rate, stocking density, and nutrient supplementation. To test this, two replicates of four nutrient regimes were organized: no supplemental nutrients, all nutrients (standard F/2 medium), nitrate/phosphate only, and nitrate/phosphate with trace metals. Each tank was monitored weekly for color quality, epiphytic growth, specific growth rate, production and a final biochemical analysis. This study has preliminarily concluded that supplemental nutrients have no significant effect on production or biochemical quality, but does have an effect quality of epiphytic growth.
Zan, Ke; Gao, Yu-Ming; Cui, Gan; Liu, Jie; Guo, Li-Nong; Zheng, Jian; Ma, Shuang-Cheng
2017-08-01
The present study is to compare specific chromatograms and main acitive components between wild and cultivated rhizomes of Paris polyphylla var. yunnanensis by HPLC. HPLC analysis was performed on a Waters XSelect HSS T3 C₁₈ clumn (4.6 mm×250 mm, 5 μm), with a mobile phase consisting of acetonitrile (A)-water (B) at a flow rate of 1 mL•min⁻¹ (0-50 min,30%-50%A;50-80 min,50% A,80-85 min,50%-30%A;85-100 min,30% A). The detection wavelength was 203 nm and the column temperature was controlled at 30 ℃, and the injection volume was 10 μL. HPLC specific chromatograms of wild and cultivated rhizomes of P. polyphylla var. yunnanensis were established and nine steroidal saponins were simultaneously determined by the above method. The mean contents of paris saponin Ⅶ, paris saponin H and total average contents of four pennogenyl saponins in Rhizomes of wild samples were significantly higher than those of cultivated ones. However, this result is opposite from the average content of paris saponin Ⅰ and total average contents of five dioscins in the wild and cultivated samples. Because the significant differences occurred for the specific chromatograms and main active components between the wild and cultivated P. polyphylla var. yunnanensis, much more pharmacological and clinical researches are therefore necessary. Copyright© by the Chinese Pharmaceutical Association.
Flow cytometry and real-time quantitative PCR as tools for assessing plasmid persistence.
Loftie-Eaton, Wesley; Tucker, Allison; Norton, Ann; Top, Eva M
2014-09-01
The maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in three Pseudomonas hosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
ERIC Educational Resources Information Center
Chang, Pei-Fen; Wang, Dau-Chung
2011-01-01
In May 2008, the worst earthquake in more than three decades struck southwest China, killing more than 80,000 people. The complexity of this earthquake makes it an ideal case study to clarify the intertwined issues of ethics in engineering and to help cultivate critical thinking skills. This paper first explores the need to encourage engineering…
Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production
Patel, Vinay R.; Dumancas, Gerard G.; Kasi Viswanath, Lakshmi C.; Maples, Randall; Subong, Bryan John J.
2016-01-01
Castor oil, produced from castor beans, has long been considered to be of important commercial value primarily for the manufacturing of soaps, lubricants, and coatings, among others. Global castor oil production is concentrated primarily in a small geographic region of Gujarat in Western India. This region is favorable due to its labor-intensive cultivation method and subtropical climate conditions. Entrepreneurs and castor processors in the United States and South America also cultivate castor beans but are faced with the challenge of achieving high castor oil production efficiency, as well as obtaining the desired oil quality. In this manuscript, we provide a detailed analysis of novel processing methods involved in castor oil production. We discuss novel processing methods by explaining specific processing parameters involved in castor oil production. PMID:27656091
Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production.
Patel, Vinay R; Dumancas, Gerard G; Kasi Viswanath, Lakshmi C; Maples, Randall; Subong, Bryan John J
2016-01-01
Castor oil, produced from castor beans, has long been considered to be of important commercial value primarily for the manufacturing of soaps, lubricants, and coatings, among others. Global castor oil production is concentrated primarily in a small geographic region of Gujarat in Western India. This region is favorable due to its labor-intensive cultivation method and subtropical climate conditions. Entrepreneurs and castor processors in the United States and South America also cultivate castor beans but are faced with the challenge of achieving high castor oil production efficiency, as well as obtaining the desired oil quality. In this manuscript, we provide a detailed analysis of novel processing methods involved in castor oil production. We discuss novel processing methods by explaining specific processing parameters involved in castor oil production.
Rapid Analysis of Microalgal Triacylglycerols with Direct-Infusion Mass Spectrometry
Christensen, Earl; Sudasinghe, Nilusha; Dandamudi, Kodanda Phani Raj; ...
2015-09-01
Cultivation of microalgae has the potential to provide lipid-derived feedstocks for conversion to liquid transportation fuels. Lipid extracts from microalgae are significantly more complex than those of traditional seed oils, and their composition changes significantly throughout the microalgal growth period. With three acyl side chains per molecule, triglycerides (TAGs) are an important fuel precursor, and the distribution of acyl chain composition for TAGs has a significant impact on fuel properties and processing. Therefore, determination of the distribution of microalgal TAG production is needed to assess the value of algal extracts designed for fuel production and to optimize strain, cultivation, andmore » harvesting practices. Methods utilized for TAG speciation commonly involve complicated and time-consuming chromatographic techniques. Here we present a method for TAG speciation and quantification based on direct-infusion mass spectrometry, which provides rapid characterization of TAG profiles without chromatographic separation. Specifically, we utilize Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to provide a reference library of TAGs for the microalgae Nannochloropsis sp. that provides the basis for high-throughput TAG quantitation by time-of-flight mass spectrometry (TOF MS). In conclusion, we demonstrate the application of this novel approach for lipid characterization with respect to TAG compound distribution, which informs both immediate and future strain and process optimization strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Earl; Sudasinghe, Nilusha; Dandamudi, Kodanda Phani Raj
Cultivation of microalgae has the potential to provide lipid-derived feedstocks for conversion to liquid transportation fuels. Lipid extracts from microalgae are significantly more complex than those of traditional seed oils, and their composition changes significantly throughout the microalgal growth period. With three acyl side chains per molecule, triglycerides (TAGs) are an important fuel precursor, and the distribution of acyl chain composition for TAGs has a significant impact on fuel properties and processing. Therefore, determination of the distribution of microalgal TAG production is needed to assess the value of algal extracts designed for fuel production and to optimize strain, cultivation, andmore » harvesting practices. Methods utilized for TAG speciation commonly involve complicated and time-consuming chromatographic techniques. Here we present a method for TAG speciation and quantification based on direct-infusion mass spectrometry, which provides rapid characterization of TAG profiles without chromatographic separation. Specifically, we utilize Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to provide a reference library of TAGs for the microalgae Nannochloropsis sp. that provides the basis for high-throughput TAG quantitation by time-of-flight mass spectrometry (TOF MS). In conclusion, we demonstrate the application of this novel approach for lipid characterization with respect to TAG compound distribution, which informs both immediate and future strain and process optimization strategies.« less
A method to estimate the biomass of Spirulina platensis cultivated on a solid medium.
Pelizer, Lúcia Helena; Moraes, Iracema de Oliveira
2014-01-01
This paper presents a method to estimate the biomass of Spirulina cultivated on solid medium with sugarcane bagasse as a support, in view of the difficulty in determining biomass concentrations in bioprocesses, particularly those conducted in semi-solid or solid media. The genus Spirulina of the family Oscillatoriaceae comprises the group of multicellular filamentous cyanobacteria (blue-green microalgae). Spirulina is used as fish feed in aquaculture, as a food supplement, a source of vitamins, pigments, antioxidants and fatty acids. Therefore, its growth parameters are extremely important in studies of the development and optimization of bioprocesses. For studies of biomass growth, Spirulina platensis was cultured on solid medium using sugarcane bagasse as a support. The biomass thus produced was estimated by determining the protein content of the material grown during the process, based on the ratio of dry weight to protein content obtained in the surface growth experiments. The protein content of the biomass grown in Erlenmeyer flasks on surface medium was examined daily to check the influence of culture time on the protein content of the biomass. The biomass showed an average protein content of 42.2%. This methodology enabled the concentration of biomass adhering to the sugarcane bagasse to be estimated from the indirect measurement of the protein content associated with cell growth.
Schneider, K D; van Straaten, P; de Orduña, R Mira; Glasauer, S; Trevors, J; Fallow, D; Smith, P S
2010-01-01
Phosphorus deficiencies are limiting crop production in agricultural soils worldwide. Locally available sources of raw phosphate rock (PR) are being recognized for their potential role in soil fertility improvement. Phosphorus bioavailability is essential for the efficiency of PRs and can be increased by acid treatments. The utilization of organic acid producing micro-organisms, notably Aspergillus niger, presents a sustainable alternative to the use of strong inorganic acids, but acid production of A. niger strongly depends on the mineral content of the growth media. This study compared the phosphorus mobilization efficiency of two biological treatments, namely addition of acidic cell-free supernatants from A. niger cultivations to PRs and the direct cultivation of A. niger with PRs. The results show that addition of PR to cultivations leads to significant differences in the profile of organic acids produced by A. niger. Additions of PR, especially igneous rocks containing high amounts of iron and manganese, lead to reduced citric acid concentrations. In spite of these differences, phosphorus mobilization was similar between treatments, suggesting that the simpler direct cultivation method was not inferior. In addition to citric acid, it is suggested that oxalic acid contributes to PR solubilization in direct cultivations with A. niger, which would benefit farmers in developing countries where conventional fertilizers are not adequately accessible.
Expansion and Harvesting of hMSC-TERT
Weber, Christian; Pohl, Sebastian; Pörtner, Ralf; Wallrapp, Christine; Kassem, Moustapha; Geigle, Peter; Czermak, Peter
2007-01-01
The expansion of human mesenchymal stem cells as suspension culture by means of spinner flasks and microcarriers, compared to the cultivation in tissue culture flasks, offers the advantage of reducing the requirements of large incubator capacities as well as reducing the handling effort during cultivation and harvesting. Nonporous microcarriers are preferable when the cells need to be kept in viable condition for further applications like tissue engineering or cell therapy. In this study, the qualification of Biosilon, Cytodex 1, Cytodex 3, RapidCell and P102-L for expansion of hMSC-TERT with an associated harvesting process using either trypsin, accutase, collagenase or a trypsin-accutase mixture was investigated. A subsequent adipogenic differentiation of harvested hMSC-TERT was performed in order to observe possible negative effects on their (adipogenic) differentiation potential as a result of the cultivation and harvesting method. The cultivated cells showed an average growth rate of 0.52 d-1. The cells cultivated on Biosilon, RapidCell and P102-L were harvested succesfully achieving high cell yield and vitalities near 100%. This was not the case for cells on Cytodex 1 and Cytodex 3. The trypsin-accutase mix was most effective. After spinner expansion and harvesting the cells were successfully differentiated to adipocytes. PMID:19662126
Genetic progress in homogeneous regions of wheat cultivation in Rio Grande do Sul State, Brazil.
Follmann, D N; Cargnelutti Filho, A; Lúcio, A D; de Souza, V Q; Caraffa, M; Wartha, C A
2017-03-30
The State of Rio Grande do Sul (RS) stands out as the largest wheat producer in Brazil. Wheat is the most emphasized winter cereal in RS, attracting public and private investments directed to wheat genetic breeding. The study of genetic progress should be performed routinely at breeding programs to study the behavior of cultivars developed for homogeneous regions of cultivation. The objectives of this study were: 1) to evaluate the genetic progress of wheat grain yield in RS; 2) to evaluate the influence of cultivar competition trial stratification in homogeneous regions of cultivation on the study of genetic progress. Grain yield data of 122 wheat cultivars evaluated in 137 trials arranged in randomized block design with three or four replications were used. Field trials were carried out in 23 locations in RS divided into two homogeneous regions during the period from 2002 to 2013. Genetic progress for RS and homogeneous regions was studied utilizing the method proposed by Vencovsky. Annual genetic progress for wheat grain yield during the period of 12 years in the State of RS was 2.86%, oscillating between homogeneous regions of cultivation. The difference of annual genetic progress in region 1 (1.82%) in relation to region 2 (4.38%) justifies the study of genetic progress by homogeneous regions of cultivation.
Zhao, Tian Xin; Mao, Xin Wei; Cheng, Min; Chen, Jun Hui; Qin, Hua; Li, Yong Chun; Liang, Chen Fei; Xu, Qiu Fang
2017-11-01
This study examined how soil bacterial and fungal communities responded to the cultivation history of Moso bamboo in Anji and Changxing counties, Huzhou, Zhejiang, China. Soil samples (0-20 and 20-40 cm) were taken from bamboo plantations subjected to different cultivation histories and analyzed the community structures of soil bacterial and fungal by PCR-DGGE methods. It was found that soil bacterial and fungal communities varied greatly with the development of bamboo plantations which converted from Masson pine forest or formed via invading adjacent broadleaf shrub forest. Soil bacterial community structures exhibited a greater response to bamboo cultivation time than fungal community, but bacteria structure of surface soil displayed an ability of resiliency to disturbance and the tendency to recover to the original state. The cultivation time, sampling site and soil layer significantly affected the biodiversity of soil bacteria and fungi, especially the latter two factors. Redundancy analysis (RDA) of soil properties and bacteria or fungi communities showed that there were no accordant factors to drive the alteration of microbial structure, and the first two axes explained less than 65.0% of variance for most of the sampling sites and soil layers, indicating there existed soil parameters besides the five examined that contributed to microbial community alteration.
Rapid spectrophotometric method for determining surface free energy of microalgal cells.
Zhang, Xinru; Jiang, Zeyi; Li, Mengyin; Zhang, Xinxin; Wang, Ge; Chou, Aihui; Chen, Liang; Yan, Hai; Zuo, Yi Y
2014-09-02
Microalgae are one of the most promising renewable energy sources with environmental sustainability. The surface free energy of microalgal cells determines their biofouling and bioflocculation behavior and hence plays an important role in microalgae cultivation and harvesting. To date, the surface energetic properties of microalgal cells are still rarely studied. We developed a novel spectrophotometric method for directly determining the surface free energy of microalgal cells. The principles of this method are based on analyzing colloidal stability of microalgae suspensions. We have shown that this method can effectively differentiate the surface free energy of four microalgal strains, i.e., marine Chlorella sp., marine Nannochloris oculata, freshwater autotrophic Chlorella sp., and freshwater heterotrophic Chlorella sp. With advantages of high-throughput and simplicity, this new spectrophotometric method has the potential to evolve into a standard method for measuring the surface free energy of cells and abiotic particles.
NASA Astrophysics Data System (ADS)
Ramlan, A.; Baja, S.; Arif, S.; Neswati, R.
2018-05-01
Agriculture has long become a prime sector for regional development in Buton Island, although local government emphasis on perennial crops. Food crop have been developed in very limited land areas, mainly on transmigration areas, as parts of central government programs. Today, the central government has launched a national strategic program on food self-sufficiency and has imposed the local government to optimize available land for cultivating food crop. The primary aim of study is to develop rapid assessment on a spatial basis using GIS for agricultural land suitability evaluation of agriculture commodities, i.e., rice (irrigated paddy field, rainfed rice) and corn (Zea maize L.). The study was undertaken using the following procedures: (i) conducting reconnaissance soil survey based on land units; (ii) constructing soil database in a GIS; and (iii) classifying land suitability using the FAO method. Spatial data were generated from digital topographic map, soil survey, soil characteristics, as well as climate data. Preliminary results indicate that quite large area available for food crop cultivation both in the context of land suitability (mostly in S2 and S3 classes) and land availability. All data bases were managed in GIS, then it is amenable to various operations in GIS to accommodate possible additional assessment including socio-economic and policy assessment.
Selective laser sintering of cermet mixtures Ti and B4C
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.; Malikov, A. G.; Orishich, A. M.
2016-10-01
The work is dedicated to the creation of a new heterogeneous ceramic-composite materials based on boron carbide and titanium, using a laser, in order to further layer-growing 3D products from these materials. The paper discussed two methods for obtaining ceramic-composite material: laser sintering of boron carbide powder and a metal-melting the powder mixture. We study the microstructure of the samples at various energy process modes. An attempt was made to justify the applicability of the regime used for the cultivation of layered products.
Hegab, Hanaa M.; ElMekawy, Ahmed; Stakenborg, Tim
2013-01-01
Microbial fermentation process development is pursuing a high production yield. This requires a high throughput screening and optimization of the microbial strains, which is nowadays commonly achieved by applying slow and labor-intensive submerged cultivation in shake flasks or microtiter plates. These methods are also limited towards end-point measurements, low analytical data output, and control over the fermentation process. These drawbacks could be overcome by means of scaled-down microfluidic microbioreactors (μBR) that allow for online control over cultivation data and automation, hence reducing cost and time. This review goes beyond previous work not only by providing a detailed update on the current μBR fabrication techniques but also the operation and control of μBRs is compared to large scale fermentation reactors. PMID:24404006
Xue, Chuizhao; Wang, Libo; Wu, Tong; Zhang, Shiping; Tang, Tao; Wang, Liang; Zhao, Quanyu; Sun, Yuhan
2017-01-01
Cyanobacteria as biofertilizers are benefit to reduce the use of chemical fertilizers and reestablish the ecological system in soil. In general, several strains of cyanobacteria were involved in the biofertilizers. The co-cultivation of cyanobacteria were characterized on growth profile, production of polysaccharides and extracellular proteins, nitrogenase activity, and photosynthetic activity for three selected N 2 -fixing cyanobacteria, Anabaena cylindrica (B1611 and F243) and Nostoc sp. (F280). After eight-day culture, the highest dry weights were obtained in F280 pure culture and co-cultivation of B1611 and F280. Higher production of extracellular proteins and cell-bonding polysaccharides (CPS) were observed in co-cultivations compared with pure culture. The highest released polysaccharides (RPS) contents were obtained in pure culture of F280 and co-cultivation of F280 and F243. Galactose and glucose were major components of CPS and RPS in all samples. Trehalose was a specific component of RPS in F280 pure culture. Based on the monosaccharide contents of CPS and RPS, F280 was the dominant species in the related treatments of co-cultivation. The nitrogenase activities in all treatments exhibited a sharp rise at the late stage while a significant decrease existed when three cyanobacteria strains were mixed. Photosynthetic activities for all treatments were determined with rapid light curve, and the related parameters were estimated.
Effect of Rice Cultivation Systems on Indigenous Arbuscular Mycorrhizal Fungal Community Structure
Watanarojanaporn, Nantida; Boonkerd, Nantakorn; Tittabutr, Panlada; Longtonglang, Aphakorn; Young, J. Peter W.; Teaumroong, Neung
2013-01-01
Arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem are necessary for proper management of beneficial symbiosis. Here we explored how the patterns of the AMF community in rice roots were affected by rice cultivation systems (the system of rice intensification [SRI] and the conventional rice cultivation system [CS]), and by compost application during growth stages. Rice plants harvested from SRI-managed plots exhibited considerably higher total biomass, root dry weight, and seed fill than those obtained from conventionally managed plots. Our findings revealed that all AMF sequences observed from CS plots belonged (only) to the genus Glomus, colonizing in rice roots grown under this type of cultivation, while rice roots sown in SRI showed sequences belonging to both Glomus and Acaulospora. The AMF community was compared between the different cultivation types (CS and SRI) and compost applications by principle component analysis. In all rice growth stages, AMF assemblages of CS management were not separated from those of SRI management. The distribution of AMF community composition based on T-RFLP data showed that the AMF community structure was different among four cultivation systems, and there was a gradual increase of Shannon-Weaver indices of diversity (H′) of the AMF community under SRI during growth stages. The results of this research indicated that rice grown in SRI-managed plots had more diverse AMF communities than those grown in CS plots. PMID:23719585
NASA Astrophysics Data System (ADS)
Ma, Zhen; Wan, Rong; Song, Xiefa; Gao, Lei
2013-09-01
Different culture methods may affect the intensive culture system of Pacific white shrimp ( Litopenaeus vannamei) regarding water quality and growth and economic performance. This study evaluated the potential effects of three culture methods through cultivation of juvenile shrimps under consistent tank management conditions for 84 d. The three methods involved shrimp cultivation in different tanks, i.e., outdoor tanks with cement bottom (mode-C), greenhouse tanks with cement bottom (mode-G) and outdoor tanks with mud-substrate (mode-M). Results showed that water temperature was significantly higher in mode-G than that in mode-C ( P < 0.05). In contrast to the other two treatments, mode-M had stable pH after 50 d cultivation of shrimps. In the mid-late period, the average concentrations of TAN, NO2-N, DIP and COD were significantly lower in mode-M and mode-G compared with those in mode-C ( P < 0.05). Despite lack of differences in the final shrimp weight among different treatments ( P > 0.05), mode-M had significantly higher shrimp yield, survival rate and feed conversion rate ( P < 0.05) than other modes. There were significant differences in revenue and net return among different treatments ( P < 0.05). These demonstrated that the treatments of mode-G and mode-M were conductive to the intensive culture system of L. vannamei.
Species distribution modeling based on the automated identification of citizen observations.
Botella, Christophe; Joly, Alexis; Bonnet, Pierre; Monestiez, Pascal; Munoz, François
2018-02-01
A species distribution model computed with automatically identified plant observations was developed and evaluated to contribute to future ecological studies. We used deep learning techniques to automatically identify opportunistic plant observations made by citizens through a popular mobile application. We compared species distribution modeling of invasive alien plants based on these data to inventories made by experts. The trained models have a reasonable predictive effectiveness for some species, but they are biased by the massive presence of cultivated specimens. The method proposed here allows for fine-grained and regular monitoring of some species of interest based on opportunistic observations. More in-depth investigation of the typology of the observations and the sampling bias should help improve the approach in the future.
NASA Astrophysics Data System (ADS)
Song, X. P.; Potapov, P.; Adusei, B.; King, L.; Khan, A.; Krylov, A.; Di Bella, C. M.; Pickens, A. H.; Stehman, S. V.; Hansen, M.
2016-12-01
Reliable and timely information on agricultural production is essential for ensuring world food security. Freely available medium-resolution satellite data (e.g. Landsat, Sentinel) offer the possibility of improved global agriculture monitoring. Here we develop and test a method for estimating in-season crop acreage using a probability sample of field visits and producing wall-to-wall crop type maps at national scales. The method is first illustrated for soybean cultivated area in the US for 2015. A stratified, two-stage cluster sampling design was used to collect field data to estimate national soybean area. The field-based estimate employed historical soybean extent maps from the U.S. Department of Agriculture (USDA) Cropland Data Layer to delineate and stratify U.S. soybean growing regions. The estimated 2015 U.S. soybean cultivated area based on the field sample was 341,000 km2 with a standard error of 23,000 km2. This result is 1.0% lower than USDA's 2015 June survey estimate and 1.9% higher than USDA's 2016 January estimate. Our area estimate was derived in early September, about 2 months ahead of harvest. To map soybean cover, the Landsat image archive for the year 2015 growing season was processed using an active learning approach. Overall accuracy of the soybean map was 84%. The field-based sample estimated area was then used to calibrate the map such that the soybean acreage of the map derived through pixel counting matched the sample-based area estimate. The strength of the sample-based area estimation lies in the stratified design that takes advantage of the spatially explicit cropland layers to construct the strata. The success of the mapping was built upon an automated system which transforms Landsat images into standardized time-series metrics. The developed method produces reliable and timely information on soybean area in a cost-effective way and could be implemented in an operational mode. The approach has also been applied for other crops in other regions, such as winter wheat in Pakistan, soybean in Argentina and soybean in the entire South America. Similar levels of accuracy and timeliness were achieved as in the US.
Liu, Xin; Yang, Yan-Fang; Song, Hong-Ping; Zhang, Xiao-Bo; Huang, Lu-Qi; Wu, He-Zhen
2016-09-01
At the urgent request of Coptis chinensis planting,growth suitability as assessment indicators for C. chinensis cultivation was proposed and analyzed in this paper , based on chemical quality determination and ecological fators analysis by Maxent and ArcGIS model. Its potential distribution areas at differernt suitability grade and regionalization map were formulated based on statistical theory and growth suitability theory. The results showed that the most suitable habitats is some parts of Chongqing and Hubei province, such as Shizhu, Lichuan, Wulong, Wuxi, Enshi. There are seven ecological factor is the main ecological factors affect the growth of Coptidis Rhizoma, including altitude, precipitation in February and September and the rise of precipitation and altitude is conducive to the accumulation of total alkaloid content in C. chinensis. Therefore, The results of the study not only illustrates the most suitable for the surroundings of Coptidis Rhizoma, also helpful to further research and practice of cultivation regionalization, wild resource monitoring and large-scale cultivation of traditional Chinese medicine plants. Copyright© by the Chinese Pharmaceutical Association.
Laboratory Cultivation and Maintenance of Borrelia miyamotoi.
Stone, Brandee L; Brissette, Catherine A
2016-08-12
Borrelia miyamotoi is a relapsing fever tick-borne pathogen found in Ixodes spp. (hard) ticks. In vitro culturing has proven difficult despite initial reports of cultures maintained in Barbour-Stoenner-Kelly-II (BSK-II) medium. The ability to culture in vitro opens many avenues for investigating the genetics and physiology of bacterial species. This unit describes methods for the maintenance and cultivation of B. miyamotoi in liquid medium. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Methods for the cultivation of ciliated protozoa from the large intestine of horses.
Bełżecki, Grzegorz; Miltko, Renata; Michałowski, Tadeusz; McEwan, Neil R
2016-01-01
This paper describes cultivation methods for ciliates from the digestive tract of horses. Members of three different genera were successfully grown in vitro for short periods of time. However, only cells belonging to the genus Blepharocorys, which resides in the horse's large intestine, were maintained for longer periods. This Blepharocorys culture was successfully grown in vitro after inoculation of freshly excreted horse faeces in culture medium containing a population of bacteria. The ciliates survived for over six months, and the density of their population varied between 1.7 × 10(3) and 2.4 × 10(3) cells mL(-1). Favourable conditions for the prolonged cultivation of this ciliate were observed when the medium was prepared by mixing horse faeces and 'caudatum' salt solution in a 1:1 V/V ratio together with food (60% powdered meadow hay, 16% wheat gluten, 12% barley flour and 12% microcrystalline cellulose) supplied as 0.20 mg mL(-1) culture per day. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Using robust Bayesian network to estimate the residuals of fluoroquinolone antibiotic in soil.
Li, Xuewen; Xie, Yunfeng; Li, Lianfa; Yang, Xunfeng; Wang, Ning; Wang, Jinfeng
2015-11-01
Prediction of antibiotic pollution and its consequences is difficult, due to the uncertainties and complexities associated with multiple related factors. This article employed domain knowledge and spatial data to construct a Bayesian network (BN) model to assess fluoroquinolone antibiotic (FQs) pollution in the soil of an intensive vegetable cultivation area. The results show: (1) The relationships between FQs pollution and contributory factors: Three factors (cultivation methods, crop rotations, and chicken manure types) were consistently identified as predictors in the topological structures of three FQs, indicating their importance in FQs pollution; deduced with domain knowledge, the cultivation methods are determined by the crop rotations, which require different nutrients (derived from the manure) according to different plant biomass. (2) The performance of BN model: The integrative robust Bayesian network model achieved the highest detection probability (pd) of high-risk and receiver operating characteristic (ROC) area, since it incorporates domain knowledge and model uncertainty. Our encouraging findings have implications for the use of BN as a robust approach to assessment of FQs pollution and for informing decisions on appropriate remedial measures.
Morita, Masakazu; Shimamura, Hiroko; Ishida, Natsuko; Imamura, Koreyoshi; Sakiyama, Takaharu; Nakanishi, Kazuhiro
2004-01-01
alpha-Glucosidase was produced using recombinant Aspergillus oryzae by membrane-surface liquid culture (MSLC), a method previously developed by the authors and the results compared with other methods, including shaking flask culture (SFC), agar-plate culture (APC), culture on urethane sponge supports (USC), and liquid surface culture (LSC) to determine possible reasons for the advantageous features of MSLC. When yeast extract was used as a nitrogen source, the amount of enzyme produced by MSLC was 5 or more times higher than those for SFC and LSC, but similar to that using APC. Enzyme production in USC was slightly lower than in MSLC and APC. Cell growth was similar irrespective of the cultivation method used. When NaNO3, a typical inorganic nitrogen source was used, enzyme production in all the cultures was lower than that using yeast extract. However, even using NaNO3, the amount of the enzyme produced by MSLC was 8 to 20 times higher than those by SFC, APC, USC, and LSC. Although cell growth using NaNO3 was similar to that for yeast extract in MSLC, it was markedly decreased in SFC, APC, and LSC. The reason for the difference in enzyme productivity for various cultivation methods using yeast extract and NaNO3 as a nitrogen source is discussed, on the basis of the experimental findings. The role of the oxygen transfer effect and gene expression levels in enzyme production were also examined.
NASA Astrophysics Data System (ADS)
Dutrieux, L.; Jakovac, C. C.; Siti, L. H.; Kooistra, L.
2015-12-01
We developed a method to reconstruct land use history from Landsat images time-series. The method uses a breakpoint detection framework derived from the econometrics field and applicable to time-series regression models. The BFAST framework is used for defining the time-series regression models which may contain trend and phenology, hence appropriately modelling vegetation intra and inter-annual dynamics. All available Landsat data are used, and the time-series are partitioned into segments delimited by breakpoints. Segments can be associated to land use regimes, while the breakpoints then correspond to shifts in regimes. To further characterize these shifts, we classified the unlabelled breakpoints returned by the algorithm into their corresponding processes. We used a Random Forest classifier, trained from a set of visually interpreted time-series profiles to infer the processes and assign labels to the breakpoints. The whole approach was applied to quantifying the number of cultivation cycles in a swidden agriculture system in Brazil. Number and frequency of cultivation cycles is of particular ecological relevance in these systems since they largely affect the capacity of the forest to regenerate after abandonment. We applied the method to a Landsat time-series of Normalized Difference Moisture Index (NDMI) spanning the 1984-2015 period and derived from it the number of cultivation cycles during that period at the individual field scale level. Agricultural fields boundaries used to apply the method were derived using a multi-temporal segmentation. We validated the number of cultivation cycles predicted against in-situ information collected from farmers interviews, resulting in a Normalized RMSE of 0.25. Overall the method performed well, producing maps with coherent patterns. We identified various sources of error in the approach, including low data availability in the 90s and sub-object mixture of land uses. We conclude that the method holds great promise for land use history mapping in the tropics and beyond. Spatial and temporal patterns were further analysed with an ecological perspective in a follow-up study. Results show that changes in land use patterns such as land use intensification and reduced agricultural expansion reflect the socio-economic transformations that occurred in the region
Chung, Ill-Min; Lim, Ju-Jin; Ahn, Mun-Seob; Jeong, Haet-Nim; An, Tae-Jin; Kim, Seung-Hyun
2015-01-01
Background The study of phenolic compounds profiles and antioxidative activity in ginseng fruit, leaves, and roots with respect to cultivation years, and has been little reported to date. Hence, this study examined the phenolic compounds profiles and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free-radical-scavenging activities in the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) as a function of cultivation year. Methods Profiling of 23 phenolic compounds in ginseng fruit, leaves, and roots was investigated using ultra-high performance liquid chromatography with the external calibration method. Antioxidative activity of ginseng fruit, leaves, and roots were evaluated using the method of DPPH free-radical-scavenging activity. Results The total phenol content in ginseng fruit and leaves was higher than in ginseng roots (p < 0.05), and the phenol content in the ginseng samples was significantly correlated to the DPPH free-radical-scavenging activity (r = 0.928****). In particular, p-coumaric acid (r = 0.847****) and ferulic acid (r = 0.742****) greatly affected the DPPH activity. Among the 23 phenolic compounds studied, phenolic acids were more abundant in ginseng fruit, leaves, and roots than the flavonoids and other compounds (p < 0.05). In particular, chlorogenic acid, gentisic acid, p- and m-coumaric acid, and rutin were the major phenolic compounds in 3–6-yr-old ginseng fruit, leaves, and roots. Conclusion This study provides basic information about the antioxidative activity and phenolic compounds profiles in fruit, leaves, and roots of Korean ginseng with cultivation years. This information is potentially useful to ginseng growers and industries involved in the production of high-quality and nutritional ginseng products. PMID:26843824
Kaplan, Drora; Maymon, Maskit; Agapakis, Christina M; Lee, Andrew; Wang, Andrew; Prigge, Barry A; Volkogon, Mykola; Hirsch, Ann M
2013-09-01
Plant roots comprise more than 50% of the plant's biomass. Part of that biomass includes the root microbiome, the assemblage of bacteria and fungi living in the 1-3 mm region adjacent to the external surface of the root, the rhizosphere. We hypothesized that the microorganisms living in the rhizosphere and in bulk soils of the harsh environment of the Negev Desert of Israel had potential for use as plant-growth-promoting bacteria (PGPB) to improve plant productivity in nutrient-poor, arid soils that are likely to become more common as the climate changes. • We used cultivation-dependent methods including trap experiments with legumes to find nitrogen-fixing rhizobia, specialized culture media to determine iron chelation via siderophores and phosphate-solubilizing and cellulase activities; cultivation-independent methods, namely 16S rDNA cloning and sequencing; and also community-level physiological profiling to discover soil microbes associated with the Negev desert perennials Zygophyllum dumosum and Atriplex halimus during the years 2009-2010. • We identified a number of PGPB, both epiphytes and endophytes, which fix nitrogen, chelate iron, solubilize phosphate, and secrete cellulase, as well as many other bacteria and some fungi, thereby providing a profile of the microbiomes that support the growth of two desert perennials. • We generated a snapshot of the microbial communities in the Negev Desert, giving us an insight in its natural state. This desert, like many arid environments, is vulnerable to exploitation for other purposes, including solar energy production and dry land farming.
An equilibrium analysis of the land use structure in the Yunnan Province, China
NASA Astrophysics Data System (ADS)
van Aken, H. M.; van Veldhoven, A. K.; Veth, C.; de Ruijter, W. P. M.; van Leeuwen, P. J.; Drijfhout, S. S.; Whittle, C. P.; Rouault, M.
2014-06-01
Global land use structure is changing rapidly due to unceasing population growth and accelerated urbanization, which leads to fierce competition between the rigid demand for built-up area and the protection of cultivated land, forest, and grassland. It has been a great challenge to realize the sustainable development of land resources. Based on a computable general equilibrium model of land use change with a social accounting matrix dataset, this study implemented an equilibrium analysis of the land use structure in the Yunnan Province during the period of 2008-2020 under three scenarios, the baseline scenario, low TFP (total factor productivity) scenario, and high TFP scenario. The results indicated that under all three scenarios, area of cultivated land declined significantly along with a remarkable expansion of built-up area, while areas of forest, grassland, and unused land increased slightly. The growth rate of TFP had first negative and then positive effects on the expansion of built-up area and decline of cultivated land as it increased. Moreover, the simulated changes of both cultivated land and built-up area were the biggest under the low TFP scenario, and far exceeded the limit in the Overall Plan for Land Utilization in the Yunnan Province in 2020. The scenario-based simulation results are of important reference value for policy-makers in making land use decisions, balancing the fierce competition between the protection of cultivated land and the increasing demand for built-up area, and guaranteeing food security, ecological security, and the sustainable development of land resources.
An equilibrium analysis of the land use structure in the Yunnan Province, China
NASA Astrophysics Data System (ADS)
Luo, Jiao; Zhan, Jinyan; Lin, Yingzhi; Zhao, Chunhong
2014-09-01
Global land use structure is changing rapidly due to unceasing population growth and accelerated urbanization, which leads to fierce competition between the rigid demand for built-up area and the protection of cultivated land, forest, and grassland. It has been a great challenge to realize the sustainable development of land resources. Based on a computable general equilibrium model of land use change with a social accounting matrix dataset, this study implemented an equilibrium analysis of the land use structure in the Yunnan Province during the period of 2008-2020 under three scenarios, the baseline scenario, low TFP (total factor productivity) scenario, and high TFP scenario. The results indicated that under all three scenarios, area of cultivated land declined significantly along with a remarkable expansion of built-up area, while areas of forest, grassland, and unused land increased slightly. The growth rate of TFP had first negative and then positive effects on the expansion of built-up area and decline of cultivated land as it increased. Moreover, the simulated changes of both cultivated land and built-up area were the biggest under the low TFP scenario, and far exceeded the limit in the Overall Plan for Land Utilization in the Yunnan Province in 2020. The scenario-based simulation results are of important reference value for policy-makers in making land use decisions, balancing the fierce competition between the protection of cultivated land and the increasing demand for built-up area, and guaranteeing food security, ecological security, and the sustainable development of land resources.
NASA Astrophysics Data System (ADS)
Tang, Huaxiu; Zhan, Jinyan; Deng, Xiangzheng; Ma, Jinsong
2007-11-01
By using the GIS technologies, we interpolate the site-based meteorological data into climatic surface data, which are the main input parameters for the CropWat model, used to estimate the reference evapotranspiration (ET 0). And then by combining the ET 0 with the information on share of cultivated land decoded from the Landsat TM/ETM digital imagines covering the entire case study area, the Huang-Huai-Hai plain, we estimate the amount of irrigation water requirements (IWRs) in the years of 1991 and 2000. We then introduce the potential yield (PY) of cultivated land estimated from the Estimation Model for the Agricultural Productivity Potential (EMAPP) to explore the relationship between the IWRs and the PY . By conducting GIS-based spatial overlay analyses, we explore the positive correlation relationship between the IWRs and the PY of cultivated land. Finally, we conclude that the IWRs is now a constrain factor on the PY of cultivated land in the Huang-Huai-Hai plain in those areas with the irrigation water constrains. The result has offered a scientific basis for the decision makings in the exploitation and utilization of resources and energy as well as the land use planning, protection of the potential yields and the managements of irrigation water at the regional level.
NASA Astrophysics Data System (ADS)
Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix
2016-09-01
Potato is one of the staple foods and cash crops in Bangladesh. It is widely cultivated in all of the districts and ranks second after rice in production. Bangladesh is the fourth largest potato producer in Asia and is among the world's top 15 potato producing countries. The weather condition for potato cultivation is favorable during the sowing, growing and harvesting period. It is a winter crop and is cultivated during the period of November to March. Bangladesh is mainly an agricultural based country with respect to agriculture's contribution to GDP, employment and consumption. Potato is a prominent crop in consideration of production, its internal demand and economic value. Bangladesh has a big economic activities related to potato cultivation and marketing, especially the economic relations among farmers, traders, stockers and cold storage owners. Potato yield prediction before harvest is an important issue for the Government and the stakeholders in managing and controlling the potato market. Advanced very high resolution radiometer (AVHRR) based satellite data product vegetation health indices VCI (vegetation condition index) and TCI (temperature condition index) are used as predictors for early prediction. Artificial neural network (ANN) is used to develop a prediction model. The simulated result from this model is encouraging and the error of prediction is less than 10%.
Ghosh, Sudeshna; Osman, Shariff; Vaishampayan, Parag; Venkateswaran, Kasthuri
2010-04-01
The microbial burden of the Phoenix spacecraft assembly environment was assessed in a systematic manner via several cultivation-based techniques and a suite of NASA-certified, cultivation-independent biomolecule-based detection assays. Extremotolerant bacteria that could potentially survive conditions experienced en route to Mars or on the planet's surface were isolated with a series of cultivation-based assays that promoted the growth of a variety of organisms, including spore formers, mesophilic heterotrophs, anaerobes, thermophiles, psychrophiles, alkaliphiles, and bacteria resistant to UVC radiation and hydrogen peroxide exposure. Samples were collected from the clean room where Phoenix was housed at three different time points, before (1P), during (2P), and after (3P) Phoenix's presence at the facility. There was a reduction in microbial burden of most bacterial groups, including spore formers, in samples 2P and 3P. Analysis of 262 isolates from the facility demonstrated that there was also a shift in predominant cultivable bacterial populations accompanied by a reduction in diversity during 2P and 3P. It is suggested that this shift was a result of increased cleaning when Phoenix was present in the assembly facility and that certain species, such as Acinetobacter johnsonii and Brevundimonas diminuta, may be better adapted to environmental conditions found during 2P and 3P. In addition, problematic bacteria resistant to multiple extreme conditions, such as Bacillus pumilus, were able to survive these periods of increased cleaning.
Lacerda, Vánia A; Pereira, Leandro O; Hirata JUNIOR, Raphael; Perez, Cesar R
2015-12-01
To evaluate the effectiveness of disinfection/sterilization methods and their effects on polishing capacity, micomorphology, and composition of two different composite fiishing and polishing instruments. Two brands of finishing and polishing instruments (Jiffy and Optimize), were analyzed. For the antimicrobial test, 60 points (30 of each brand) were used for polishing composite restorations and submitted to three different groups of disinfection/sterilization methods: none (control), autoclaving, and immersion in peracetic acid for 60 minutes. The in vitro tests were performed to evaluate the polishing performance on resin composite disks (Amelogen) using a 3D scanner (Talyscan) and to evaluate the effects on the points' surface composition (XRF) and micromorphology (MEV) after completing a polishing and sterilizing routine five times. Both sterilization/disinfection methods were efficient against oral cultivable organisms and no deleterious modification was observed to point surface.