Science.gov

Sample records for based fast bolometric

  1. Ultra fast combined bolometric and non-bolometric infrared detector

    SciTech Connect

    Ghis, A.; Villegier, J.C.; Nail, M.; Gilbert, P.; Sriby, S.

    1994-12-31

    Electrical photoresponse measurements on a Corbino type structure with thin epitaxial YBaCuO layer have been previously reported. They showed a very fast inductive reaction (rise time {<=}12ps, width 29ps), followed by the bolometric heating effect. New detector structures based on coplanar lines have been experimented with similar experimental apparatus. The performances of the different geometries of detector will be compared in terms of magnitude and sharpness of the inductive non-equilibrium voltage peek, and of bolometric relaxation constants. The influence of bias current, incident power, and operating temperature on the photoresponse mechanisms will be discussed. The feasibility of applying this type of fast superconducting detectors to far infrared radiation measurements has been demonstrated by using a Free Electron Laser pulses at a wavelength of 20{micro}m. The detector may be used as two simultaneous different sensors for describing very fast optical pulse: the fast part of the response voltage represents the envelope of the incident pulse, while the bolometric part is significant for the incident energy.

  2. Fast bolometric measurements on the TCV tokamak

    NASA Astrophysics Data System (ADS)

    Furno, I.; Weisen, H.; Mlynar, J.; Pitts, R. A.; Llobet, X.; Marmillod, Ph.; Pochon, G. P.

    1999-12-01

    The design and first results are presented from a bolometric diagnostic with high temporal resolution recently installed on the TCV tokamak. The system consists of two pinhole cameras viewing the plasma from above and below at the same toroidal location. Each camera is equipped with an AXUV-16ELO linear array of 16 p-n junction photodiodes, characterized by a flat spectral sensitivity from ultraviolet to x-ray energies, a high temporal response (<0.5 μs), and insensitivity to low-energy neutral particles emitted by the plasma. This high temporal resolution allows the study of transient phenomena such as fast magnetohydrodynamic (MHD) activity hitherto inaccessible with standard bolometry. In the case of purely electromagnetic radiation, good agreement has been found when comparing results from the new diagnostic with those from a standard metal foil bolometer system. This comparison has also revealed that the contribution of neutrals to the foil bolometer measurements can be extremely important under certain operating conditions, precluding the application of tomographic techniques for reconstruction of the radiation distribution.

  3. Colossal Magnetoresistive Manganite Based Fast Bolometric X-ray Sensors for Total Energy Measurements of Free Electron Lasers

    SciTech Connect

    Yong, G J; Kolagani, R M; Adhikari, S; Mundle, R M; Cox, D W; Davidson III, A L; Liang, Y; Drury, O B; Hau-Riege, S P; Gardner, C; Ables, E; Bionta, R M; Friedrich, S

    2008-12-17

    Bolometric detectors based on epitaxial thin films of rare earth perovskite manganites have been proposed as total energy monitors for X-ray pulses at the Linac Coherent Light Source free electron laser. We demonstrate such a detector scheme based on epitaxial thin films of the perovskite manganese oxide material Nd{sub 0.67}Sr{sub x0.33}MnO{sub 3}, grown by pulsed laser deposition on buffered silicon substrates. The substrate and sensor materials are chosen to meet the conflicting requirements of radiation hardness, sensitivity, speed and linearity over a dynamic range of three orders of magnitude. The key challenge in the material development is the integration of the sensor material with Si. Si is required to withstand the free electron laser pulse impact and to achieve a readout speed three orders of magnitude faster than conventional cryoradiometers for compatibility with the Linac Coherent Light Source pulse rate. We discuss sensor material development and the photoresponse of prototype devices. This Linac Coherent Light Source total energy monitor represents the first practical application of manganite materials as bolometric sensors.

  4. Bolometric Device Based on Fluxoid Quantization

    NASA Technical Reports Server (NTRS)

    Bonetti, Joseph A.; Kenyon, Matthew E.; Leduc, Henry G.; Day, Peter K.

    2010-01-01

    The temperature dependence of fluxoid quantization in a superconducting loop. The sensitivity of the device is expected to surpass that of other superconducting- based bolometric devices, such as superconducting transition-edge sensors and superconducting nanowire devices. Just as important, the proposed device has advantages in sample fabrication.

  5. Performance-Enhanced Bolometric Terahertz Detectors Based on V2O5 for 15 to 30 THz

    NASA Astrophysics Data System (ADS)

    Sumesh, M. A.; Karanth, S. P.; Thomas, Beno; Rao, G. M.; Viswanathan, M.; Chakraborty, P.; Rao, G. N.

    2017-02-01

    Terahertz (THz) radiation perception using uncooled detectors are gaining importance due to the increasing demands in the areas of military, space, and industrial, medical, and surveillance applications. In spite of the efforts of researchers to fill the THz gap, there exists a need for detectors in the range between 15 THz and 30 THz. In this paper, we discuss the development of bolometric detectors whose performance is enhanced by an optical immersion technique and their characterization in the aforesaid range of frequencies. These detectors are characterized by high specific detectivity ( D*) of 1.28 × 109 cmHz1/2 W-1 and high radiometric resolution (noise-equivalent temperature difference = 26 mK) and are fast enough for bolometric detectors (time constant = 1.7 ms), which make them suitable for spectroscopic and imaging applications.

  6. Performance-Enhanced Bolometric Terahertz Detectors Based on V2O5 for 15 to 30 THz

    NASA Astrophysics Data System (ADS)

    Sumesh, M. A.; Karanth, S. P.; Thomas, Beno; Rao, G. M.; Viswanathan, M.; Chakraborty, P.; Rao, G. N.

    2016-10-01

    Terahertz (THz) radiation perception using uncooled detectors are gaining importance due to the increasing demands in the areas of military, space, and industrial, medical, and surveillance applications. In spite of the efforts of researchers to fill the THz gap, there exists a need for detectors in the range between 15 THz and 30 THz. In this paper, we discuss the development of bolometric detectors whose performance is enhanced by an optical immersion technique and their characterization in the aforesaid range of frequencies. These detectors are characterized by high specific detectivity (D*) of 1.28 × 109 cmHz1/2 W-1 and high radiometric resolution (noise-equivalent temperature difference = 26 mK) and are fast enough for bolometric detectors (time constant = 1.7 ms), which make them suitable for spectroscopic and imaging applications.

  7. Updating quasar bolometric luminosity corrections - III. [O iii] bolometric corrections

    NASA Astrophysics Data System (ADS)

    Pennell, Alison; Runnoe, Jessie C.; Brotherton, M. S.

    2017-06-01

    We present quasar bolometric corrections using the [O III] λ 5007 narrow emission line luminosity based on the detailed spectral energy distributions of 53 bright quasars at low to moderate redshift (0.0345 < z < 1.0002). We adopted two functional forms to calculate Liso, the bolometric luminosity determined under the assumption of isotropy: {L_{iso}}=A {L_{[O III]}} for comparison with the literature and {log(L_{iso})}=B+C log(L_{[O III]}), which better characterizes the data. We also explored whether 'Eigenvector 1 (EV1)', which describes the range of quasar spectral properties and quantifies their diversity, introduces scatter into the L_{[O III]}-Liso relationship. We found that the {[O III]} bolometric correction can be significantly improved by adding a term including the equivalent width ratio R_{Fe II} ≡ EW_{{Fe II}}/EW_{Hβ }, which is an EV1 indicator. Inclusion of R_{Fe II} in predicting Liso is significant at nearly the 3σ level and reduces the scatter and systematic offset of the luminosity residuals. Typically, {[O III]} bolometric corrections are adopted for Type 2 sources where the quasar continuum is not observed and in these cases, R_{Fe II} cannot be measured. We searched for an alternative measure of EV1 that could be measured in the optical spectra of Type 2 sources but were unable to identify one. Thus, the main contribution of this work is to present an improved {[O III]} bolometric correction based on measured bolometric luminosities and highlight the EV1 dependence of the correction in Type 1 sources.

  8. Bandwidth in bolometric interferometry

    NASA Astrophysics Data System (ADS)

    Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.

    2010-05-01

    Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

  9. Arrays of Bolometric Detectors for Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Moseley, S. H.; Freund, M.; Allen, C.; Harper, A.; Loewenstein, R.; Dowell, C. D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Large format two dimensional arrays of bolometric detectors are required for many millimeter and submillimeter applications. We describe the development and testing of such arrays and the plans for using them in both a ground-based and airborne instrument.

  10. Time variability of Martian bolometric albedo

    NASA Astrophysics Data System (ADS)

    Pleskot, L. K.; Miner, E. D.

    1981-01-01

    A time series of calibrated bolometric albedo maps of Mars is presented which establish accurate values of surface bolometric albedo and demonstrate changes in the bolometric appearance of specific regions with time of year and atmospheric conditions. The maps were constructed from Viking infrared thermal mapping data and provide global coverage at latitudes between -60 and +60 deg at 1 x 1 deg spatial resolution for a period spanning a Martian year and including the global dust storms of 1977. During dust-free periods, the bolometric albedo maps are found to be similar to classical earth-based visual albedo maps. A distinctly bimodal distribution of bolometric surface albedos is obtained even during the dust storms, with typical Lambert albedos of 0.27 and 0.16 for the bright and dark Martian surfaces, respectively. Atmospheric effects including dust storms are found to influence strongly apparent surface albedos, especially for dark areas, while neither bright nor dark regions show measurable long-term variations of bolometric albedo during clear periods.

  11. Bolometric detection of neutrinos

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Krauss, L. M.; Wilczek, F.

    1985-01-01

    Elastic neutrino scattering off electrons in crystalline silicon at 1-10 mK results in measurable temperature changes in macroscopic amounts of material, even for low-energy (less than 0.41-MeV) pp neutrinos from the sun. New detectors for bolometric measurement of low-energy neutrino interactions, including coherent nuclear elastic scattering, are proposed. A new and more sensitive search for oscillations of reactor antineutrinos is practical (about 100 kg of Si), and would lay the groundwork for a more ambitious measurement of the spectrum of pp, Be-7, and B-8 solar neutrinos, and of supernovae anywhere in the Galaxy (about 10 tons of Si).

  12. The Millimeter-Wave Bolometric Interferometer

    NASA Technical Reports Server (NTRS)

    Ali, S.; Ade, P. A. R.; Bock, J. J.; Novak, G.; Piccirillo, L.; Timbie, P.; Tucker, G. S.

    2004-01-01

    The Millimeter-wave Bolometric Interferometer (MBI) is a proposed ground-based instrument designed for a wide range of cosmological and astrophysical observations including studies of the polarization of the cosmic microwave background (CMB). MBI combines the advantages of two well-developed technologies - interferometers and bolometric detectors. Interferometers have many advantages over .filled-aperture telescopes and are particularly suitable for high resolution imaging. Cooled bolometers are the highest sensitivity detectors at millimeter and sub-millimeter wavelengths. The combination of these two technologies results in an instrument with both high sensitivity and high angular resolution.

  13. An Aboveground Pulse-Tube-Based Bolometric Test Facility for the Validation of the LUMINEU $ {ZnMoO}_4$ ZnMoO 4 Crystals

    NASA Astrophysics Data System (ADS)

    Mancuso, M.; Chernyak, D. M.; Danevich, F. A.; Dumoulin, L.; Giachero, A.; Giuliani, A.; Godfrin, H.; Gotti, C.; Ivanov, I. M.; Maino, M.; Makarov, E. P.; Olivieri, E.; Pessina, G.; Shlegel, V. N.; Sultan, A.; Tenconi, M.; Vasiliev, Ya. V.

    2014-08-01

    The LUMINEU project aims at developing a pilot double beta decay experiment using scintillating bolometers based on ZnMoO crystals enriched in . In the next months regular deliveries of large-mass crystals are expected from the Nikolaev Institute of Inorganic Chemistry (Novosibirsk, Russia). It is therefore crucial for the LUMINEU program to test systematically and in real time these samples in terms of bolometric properties, light yield and internal radioactive contamination. In this paper we describe an aboveground cryogenic facility based on a dilution refrigerator coupled to a pulse-tube cooler capable performing these measurements. A 23.8 g crystal was fully characterised in this setup. We show also that macro-bolometers can be operated with high signal-to-noise ratio in liquid-free dilution refrigerators.

  14. Bolometric Light Curves of Peculiar Type II-P Supernovae

    NASA Astrophysics Data System (ADS)

    Lusk, Jeremy A.; Baron, E.

    2017-04-01

    We examine the bolometric light curves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E), which are thought to originate from blue supergiant progenitors like that of SN 1987A, using a new python package named SuperBoL. With this code, we calculate SNe light curves using three different common techniques common from the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the light curves calculated by SuperBoL, along with previously published light curves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction light curves largely agree with previously published light curves, but with what we believe to be more robust error calculations, with 0.2≲ δ {L}{bol}/{L}{bol}≲ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ∼5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric light curves from observed sets of broadband light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.

  15. Bolometric Lightcurves of Peculiar Type II-P Supernovae

    NASA Astrophysics Data System (ADS)

    Lusk, Jeremy A.; Baron, Edward A.

    2017-01-01

    We examine the bolometric lightcurves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au and 2009E) which are thought to originate from blue supergiant progenitors using a new python package named SuperBoL. With this code, we calculate SNe lightcurves using three different techniques common in the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the lightcurves calculated by SuperBoL along with previously published lightcurves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction lightcurves largely agree with previously published lightcurves, but with what we believe to be more robust error calculations, with 0.2 ≤ δL/L ≤ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ˜5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric lightcurves from observed sets of broad-band light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.

  16. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    NASA Astrophysics Data System (ADS)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (i.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and

  17. Bolometric and UV light curves of core-collapse supernovae

    SciTech Connect

    Pritchard, T. A.; Roming, P. W. A.; Brown, Peter J.; Bayless, Amanda J.; Frey, Lucille H.

    2014-06-01

    The Swift UV-Optical Telescope (UVOT) has been observing core-collapse supernovae (CCSNe) of all subtypes in the UV and optical since 2005. Here we present 50 CCSNe observed with the Swift UVOT, analyzing their UV properties and behavior. Where we have multiple UV detections in all three UV filters (λ {sub c} = 1928-2600 Å), we generate early time bolometric light curves, analyze the properties of these light curves and the UV contribution to them, and derive empirical corrections for the UV-flux contribution to optical-IR based bolometric light curves.

  18. Bolometric detection of magnetoplasma resonances in microwave absorption by two-dimensional electron systems based on doping layer conductivity measurements in GaAs/AlGaAs heterostructures

    SciTech Connect

    Dorozhkin, S. I. Sychev, D. V.; Kapustin, A. A.

    2014-11-28

    We have implemented a new bolometric method to detect resonances in magneto-absorption of microwave radiation by two-dimensional electron systems (2DES) in selectively doped GaAs/AlGaAs heterostructures. Radiation is absorbed by the 2DES and the thermally activated conductivity of the doping layer supplying electrons to the 2DES serves as a thermometer. The resonant absorption brought about by excitation of the confined magnetoplasma modes appears as peaks in the magnetic field dependence of the low-frequency impedance measured between the Schottky gate and 2DES.

  19. The Millimeter-Wave Bolometric Interferometer

    NASA Astrophysics Data System (ADS)

    Korotkov, Andrei; Ade, P. A.; Ali, S.; Bierman, E.; Bunn, E. F.; Calderon, C.; Gault, A. C.; Hyland, P. O.; Keating, B. G.; Kim, J.; Malu, S. S.; Mauskopf, P. D.; Murphy, J. A.; O'Sullivan, C.; Piccirillo, L.; Timbie, P. T.; Tucker, G. S.; Wandelt, B. D.

    2006-12-01

    We report on the status of the Millimeter-Wave Bolometric Interferometer (MBI), an instrument designed for polarization measurements of the cosmic microwave background (CMB). MBI combines the differencing capabilities of an interferometer with the high sensitivity of bolometers. The design of the ground-based four-channel version of the instrument with 7-degree-FOV corrugated horns (MBI-4) and first measurements results are discussed. Corrugated horn antennas with low sidelobes and nearly symmetric beam patterns minimize spurious instrumental polarization. The MBI-4 optical band is limited by filters with a central frequency of 90 GHz. The antenna separation is chosen so the instrument is sensitive over the multipole range l=150-270. In MBI-4, the signals from antennas are combined with a quasi-optical Fizeau beam combiner and interference fringes are detected by an array of spider-web bolometers with NTD germanium thermistors. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. First observations will be from the Pine Bluff Observatory outside Madison, WI. The project is supported by NASA.

  20. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    SciTech Connect

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-02-21

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO{sub 2} substrates, we confirm recent theoretical predictions of T{sup 2} temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  1. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    NASA Astrophysics Data System (ADS)

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-02-01

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO2 substrates, we confirm recent theoretical predictions of T2 temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

  2. The millimeter-wave bolometric interferometer

    NASA Astrophysics Data System (ADS)

    Korotkov, Andrei L.; Kim, Jaiseung; Tucker, Gregory S.; Gault, Amanda; Hyland, Peter; Malu, Siddharth; Timbie, Peter T.; Bunn, Emory F.; Bierman, Evan; Keating, Brian; Murphy, Anthony; O'Sullivan, Créidhe; Ade, Peter A. R.; Calderon, Carolina; Piccirillo, Lucio

    2006-06-01

    The Millimeter-Wave Bolometric Interferometer (MBI) is designed for sensitive measurements of the polarization of the cosmic microwave background (CMB). MBI combines the differencing capabilities of an interferometer with the high sensitivity of bolometers at millimeter wavelengths. It views the sky directly through corrugated horn antennas with low sidelobes and nearly symmetric beam patterns to avoid spurious instrumental polarization from reflective optics. The design of the first version of the instrument with four 7-degree-FOV corrugated horns (MBI-4) is discussed. The MBI-4 optical band is defined by filters with a central frequency of 90 GHz. The set of baselines determined by the antenna separation makes the instrument sensitive to CMB polarization fluctuations over the multipole range l=150-270. In MBI-4, the signals from antennas are combined with a Fizeau beam combiner and interference fringes are detected by an array of spider-web bolometers with NTD germanium thermistors. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. Observations are planned from the Pine Bluff Observatory outside Madison, WI.

  3. The millimeter-wave bolometric interferometer (MBI)

    NASA Astrophysics Data System (ADS)

    Tucker, Gregory S.; Korotkov, Andrei L.; Gault, Amanda C.; Hyland, Peter O.; Malu, Siddharth; Timbie, Peter T.; Bunn, Emory F.; Keating, Brian G.; Bierman, Evan; O'Sullivan, Créidhe; Ade, Peter A. R.; Piccirillo, Lucio

    2008-07-01

    We report on the design and tests of a prototype of the Millimeter-wave Bolometric Interferometer (MBI). MBI is designed to make sensitive measurements of the polarization of the cosmic microwave background (CMB). It combines the differencing capabilities of an interferometer with the high sensitivity of bolometers at millimeter wavelengths. The prototype, which we call MBI-4, views the sky directly through four corrugated horn antennas. MBI ultimately will have ~ 1000 antennas. These antennas have low sidelobes and nearly symmetric beam patterns, so spurious instrumental polarization from reflective optics is avoided. The MBI-4 optical band is defined by filters with a central frequency of 90 GHz. The set of baselines, determined by placement of the four antennas, results in sensitivity to CMB polarization fluctuations over the multipole range l = 150 - 270. The signals are combined with a Fizeau beam combiner and interference fringes are detected by an array of spider-web bolometers. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. Initial tests and observations have been made at Pine Bluff Observatory (PBO) outside Madison, WI.

  4. The Millimeter-wave Bolometric Interferometer (MBI)

    NASA Astrophysics Data System (ADS)

    Gault, Amanda C.; Ade, P. A. R.; Bierman, E.; Bunn, E. F.; Hyland, P. O.; Keating, B. G.; Korotkov, A. L.; Malu, S. S.; O'Sullivan, C.; Piccirillo, L.; Timbie, P. T.; Tucker, G. S.

    2009-01-01

    We report on the design and tests of a prototype of the Millimeter-wave Bolometric Interferometer (MBI). MBI is designed to make sensitive measurements of the polarization of the cosmic microwave background (CMB). It combines the differencing capabilities of an interferometer with the high sensitivity of bolometers at millimeter wavelengths. The prototype, which we call MBI-4, views the sky directly through four corrugated horn antennas. MBI ultimately will have 1000 antennas. These antennas have low sidelobes and nearly symmetric beam patterns, so spurious instrumental polarization from reflective optics is avoided. The MBI-4 optical band is defined by filters with a central frequency of 90 GHz. The set of baselines, determined by placement of the four antennas, results in sensitivity to CMB polarization fluctuations over the multipole range l = 150 - 270. The signals are combined with a Fizeau beam combiner and interference fringes are detected by an array of spiderweb bolometers. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. Initial tests and observations have been made at Pine Bluff Observatory (PBO) outside Madison, WI. This work was supported by NASA grants NAG5-12758, NNX07AG82G, the Rhode Island Space Grant and the Wisconsin Space Grant.

  5. Effective Temperature Scale and Bolometric Corrections

    NASA Astrophysics Data System (ADS)

    Gray, R.; Murdin, P.

    2000-11-01

    The conversion from an observational quantity, such as the color index or the spectral type, to the effective temperature (Teff) of a star is known as the effective TEMPERATURE SCALE. Bolometric corrections are required in the calculation of the luminosity of a star if the flux from the star has not been observed over the entire ELECTROMAGNETIC SPECTRUM....

  6. Observations of changes in the bolometric contrast of sunspots

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Cookson, A. M.; Dobias, J. J.

    1994-01-01

    Rapid changes in the total solar irradiance from space borne sensors are largely due to the passage of large sunspots across the disk. The effect of sunspots has often been modeled, using ground-based observations, by the use of a sunspot index such as the PSI, which assumes that all sunspots have the same thermal structure, which remains constant with time. In this paper, we report on photometric observations of sunspot groups that show significant differences in their mean bolometric contrast ( up to a factor of 2) and some of which show cooling or warming during their disk transit. Most of these changes can be ascribed to the changing ratio of umbral-to-prenumbral area. By measuring the mean temperature or bolometric contrast, together with corrected (hemispherical) areas, we can determine the instantaneous solar luminosity fluctuation and its diurnal change due to individual sunspot groups. These results show that the use of solar indices based on estimates of sunspot area and fixed sunspot contrast, such as the photometric sunspot index, do not remove all of the significant sunspot effects from satellite measurements of the total solar irradiance.

  7. Bolometric effect in a waveguide-integrated graphene photodetector

    NASA Astrophysics Data System (ADS)

    Wang, Yubing; Yin, Weihong; Han, Qin; Yang, Xiaohong; Ye, Han; Lv, Qianqian; Yin, Dongdong

    2016-11-01

    Graphene is an alternative material for photodetectors owing to its unique properties. These include its uniform absorption of light from ultraviolet to infrared and its ultrahigh mobility for both electrons and holes. Unfortunately, due to the low absorption of light, the photoresponsivity of graphene-based photodetectors is usually low, only a few milliamps per watt. In this letter, we fabricate a waveguide-integrated graphene photodetector. A photoresponsivity exceeding 0.11 A·W-1 is obtained which enables most optoelectronic applications. The dominating mechanism of photoresponse is investigated and is attributed to the photo-induced bolometric effect. Theoretical calculation shows that the bolometric photoresponsivity is 4.6 A·W-1. The absorption coefficient of the device is estimated to be 0.27 dB·μm-1. Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0402204), the High-Tech Research and Development Program of China (Grant Nos. 2013AA031401, 2015AA016902, and 2015AA016904), and the National Natural Science Foundation of China (Grant Nos. 61674136, 61176053, 61274069, and 61435002).

  8. Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project

    SciTech Connect

    Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; di Vacri, M. L.; Gorla, P.; Pavan, M.; Yeh, M.

    2016-01-14

    Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation based technique for the rejection of surface alpha background in non- scintillating bolometric experiments is proposed in this work. The idea is to combine a scintillating and a high sensitivity photon detector with a non- scintillating absorber. Finally, we present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.

  9. Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project

    DOE PAGES

    Biassoni, M.; Brofferio, C.; Bucci, C.; ...

    2016-01-14

    Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation based technique for the rejection of surface alpha background in non- scintillating bolometric experiments is proposed in this work. The idea is to combinemore » a scintillating and a high sensitivity photon detector with a non- scintillating absorber. Finally, we present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.« less

  10. Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project

    NASA Astrophysics Data System (ADS)

    Biassoni, M.; Brofferio, C.; Bucci, C.; Canonica, L.; di Vacri, M. L.; Gorla, P.; Pavan, M.; Yeh, M.

    2016-08-01

    Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation-based technique for the rejection of surface alpha background in non-scintillating bolometric experiments is proposed in this work. The idea is to combine a scintillating and a high sensitivity photon detector with a non-scintillating absorber. We present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.

  11. An ac bridge readout for bolometric detectors

    NASA Technical Reports Server (NTRS)

    Rieke, F. M.; Lange, A. E.; Beeman, J. W.; Haller, E. E.

    1989-01-01

    The authors have developed a bolometer readout circuit which greatly improves the low-frequency stability of bolometric detectors. The circuit uses an ac bias voltage and two matched bolometers and allows stable dc bolometer operation for integration times greater than 10 s. In astronomical applications the readout allows for qualitatively different observation modes (e.g. staring or slow-drift scanning) which are particularly well suited for space observations and for the use of arrays. In many applications the readout can increase sensitivity. The authors present noise spectra for 4He temperature bolometers with no excess noise at frequencies greater than 0.1 Hz. The measured optical responsivity of a bolometer operated with the present readout is the same as that of a bolometer operated with a conventional readout.

  12. The millimeter-wave bolometric interferometer

    NASA Astrophysics Data System (ADS)

    Gault, Amanda Charlotte

    The Millimeter-wave Bolometric Interferometer (MBI) is a technology demonstrator for future searches for the B-mode polarization of the Cosmic Microwave Background (CMB). If observed, B-modes would be a direct probe of the energy scale of inflation, an energy scale that is impossible to reach with even the most sophisticated particle accelerators. In this thesis, I outline the technology differences between MBI and conventional interferometers, including the Faraday effect phase modulators (FPM) used both to control systematic effects and to allow for phase sensitive detection of signals. MBI is a four element adding interferometer with a Fizeau optical beam combiner. This allows simple scaling of the instrument to a large numbers of baselines without requiring complicated pair-wise correlations of signals. Interferometers have an advantage over imaging telescopes when measuring the CMB power spectrum as each baseline is sensitive to a single Fourier mode (angular scale) on the sky. Recovering individual baseline information with this combination scheme requires phase modulating the signal from each antenna. MBI performs this modulation with Faraday effect phase modulators. In these novel cryogenic devices a modulated magnetic field switches the phase of a millimeter-wave RF signal by +/- 90 degrees at frequencies up to a few Hertz. MBI's second season of observations occurred in the winter of 2009 at Pine Bluff Observatory a few miles west of Madsion, WI. We successfully observed interference fringes of a microwave test source located in the far field of the instrument that agree well with those expected from simulations. MBI has inspired a second generation bolometric interferometer, QUBIC, which will have hundreds of antennas and thousands of detectors. When it deploys in 2015, it will be sensitive enough to search for B-mode signals from the CMB.

  13. Detectivity comparison of bolometric optical antennas

    NASA Astrophysics Data System (ADS)

    Cuadrado, Alexander; López-Alonso, José M.; Martínez-Antón, Juan C.; Ezquerro, Jose M.; González, Francisco J.; Alda, Javier

    2015-08-01

    The practical application of optical antennas in detection devices strongly depends on its ability to produce an acceptable signal-to-noise ratio for the given task. It is known that, due to the intrinsic problems arising from its sub-wavelength dimensions, optical antennas produce very small signals. The quality of these signals depends on the involved transduction mechanism. The contribution of different types of noise should be adapted to the transducer and to the signal extraction regime. Once noise is evaluated and measured, the specific detectivity, D*, becomes the parameter of interest when comparing the performance of antenna coupled devices with other detectors. However, this parameter involves some magnitudes that can be defined in several ways for optical antennas. In this contribution we are interested in the evaluation and comparison of D_ values for several bolometric optical antennas working in the infrared and involving two materials. At the same time, some material and geometrical parameters involved in the definition of noise and detectivity will be discussed to analyze the suitability of D_ to properly account for the performance of optical antennas.

  14. Bolometric imager for solar irradiance studies

    NASA Astrophysics Data System (ADS)

    Foukal, Peter V.

    1998-11-01

    We are presently developing a solar imager with spectrally uniform photometric response over all wavelengths between the UV and IR. Such a Solar Bolometric Imager (SBI) will be capable of accurately measuring heat flow inhomogeneities at the sun's photosphere and will provide an innovative new tool for identifying mechanisms of long-term solar luminosity variation. Our work builds on recent advances in uncooled, relatively high-definition thermal arrays. We have shown that the spectral absorptance of these arrays can be modified by deposition of gold blacks, to provide spectrally uniform response over at least the wavelength range between about 0.3(mu) and 2.5(mu) containing over 95 percent of the total solar irradiance. Our ongoing work is intended to show that quantitative photometry of the solar disc can be performed with such a modified array. We are constructing a breadboard SBI for immediate use with an 8-bit ferro- electric camera, developing a 12-bit camera to make full use of the ferro-electric array's capabilities, and optimizing our process of gold-blacking the TI arrays. Much of the science potential of the SBI could be realized in a balloon experiment. The combination of the SBI and a cavity radiometer would also constitute an excellent SMEX experiment to address a key challenge identified in the Sun- Earth Connection Roadmap recently issued by NASA/OSS.

  15. Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays

    NASA Astrophysics Data System (ADS)

    Degl'Innocenti, Riccardo; Xiao, Long; Kindness, Stephen J.; Kamboj, Varun S.; Wei, Binbin; Braeuninger-Weimer, Philipp; Nakanishi, Kenichi; Aria, Adrianus I.; Hofmann, Stephan; E Beere, Harvey; Ritchie, David A.

    2017-05-01

    We present a fast room temperature terahertz detector based on graphene loaded plasmonic antenna arrays. The antenna elements, which are arranged in series and are shorted by graphene, are contacting source and drain metallic pads, thus providing both the optical resonant element and the electrodes. The distance between the antenna’s arms of approximately 300 nm allows a strong field enhancement in the graphene region, when the incident radiation is resonant with the antennas. The current passing through the source and drain is dependent on the graphene’s conductivity, which is modified by the power impinging onto the detector as well as from the biasing back-gate voltage. The incident radiation power is thus translated into a current modification, with the main detection mechanism being attributed to the bolometric effect. The device has been characterized and tested with two bound to continuum terahertz quantum cascade lasers emitting at a single frequency around 2 THz and 2.7 THz yielding a maximum responsivity of ~2 mA W-1.

  16. Search for dark matter with the bolometric technique

    NASA Astrophysics Data System (ADS)

    Giuliani, Andrea

    2014-07-01

    After a concise introduction about the dark matter issue and a discussion of the problematics related to its direct detection, the bolometric technique is presented in this context, with a special focus on double-readout devices. The bolometric experiments for the search for dark matter are then described and reviewed. Their present and future roles are discussed, arguing about pros and cons of this technology.

  17. Fast Forwarding for Content-Based Networking

    DTIC Science & Technology

    2001-11-01

    Fast Forwarding for Content-Based Networking Antonio Carzaniga Jing Deng Alexander L. Wolf Software Engineering Research Laboratory Department of...Computer Science Technical Report CU-CS-922-01 November 2001 c 2001 Antonio Carzaniga , Jing Deng, and Alexander L. Wolf Abstract This paper presents a...Proceedings of the 23th International Conference on Software Engineering, pages 443–452, Toronto, Canada, May 2001. [3] A. Carzaniga , D. S. Rosenblum

  18. A design study of a CMB polarization satellite S AMPAN and bolometric camera developments

    NASA Astrophysics Data System (ADS)

    Désert, F.-X.

    2007-03-01

    There is a strong theoretical case for measuring the primordial gravitational wave background that is expected in inflation-based Big Bang scenario. A promising route is via the polarization B-modes of the CMB anisotropies. We discuss a recent design study called S AMPAN for a moderate angular resolution (20 arcmin. at 217 GHz) but highly sensitive (5 μK arcmin.) polarization mapper satellite. In parallel, we describe recent efforts in France to build bolometric cameras.

  19. New readout system optimized for the Planck Surveyor bolometric instrument

    NASA Astrophysics Data System (ADS)

    Gaertner, Siegfried; Benoit, A.; Piat, M.

    1998-08-01

    We have developed a new readout system for bolometers optimized for the Planck Surveyor experiment, a satellite mission dedicated to survey the Cosmological Microwave Background. The bolometer resistance is measured in a bridge with a capacitance load, using a periodic square wave bias current in order to remove the 1/f noises of the electronics. The use of a capacitance allows to reduce the transient signal and to get rid of the Johnson noise. The bias voltages are fully controlled by computer, and the lock-in detection is digital. This system has been implemented and successfully tested on the Diabolo ground- based astronomical experiment. Using the advantages of our readout system, we have built and fully tested an engineering model of the space qualifiable electronics which fulfills the scientific and technical requirements of the Planck Surveyor bolometric instrument: low noise system down to 0.1 Hz, electrical power consumption lower than 40 Watts and volume lower than 15 liters. Our presentation will consist in a full description of this readout system and a review of the current test results. Our system could also be adapted, with some modifications, to other space born instruments which use bolometers.

  20. Modeling the intensity and polarization response of planar bolometric detectors.

    PubMed

    Thomas, Christopher N; Withington, Stafford; Chuss, David T; Wollack, Edward J; Moseley, S Harvey

    2010-05-01

    Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behavior precisely. We have studied the intensity and polarization response of free-space bolometers and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behavior. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behavior. The ability to model easily the intensity, polarization, and straylight characteristics of electrically small detectors will be of great value when designing high-performance polarimetric imaging arrays.

  1. Bolometric Array Detectors for Space-Borne Astronomy

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2000-01-01

    Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.

  2. Bolometric Array Detectors for Space-Borne Astronomy

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2000-01-01

    Funding from the NASA Innovative Research Grant was used to develop bolometric detectors. As described in the proposal, silicon nitride micromesh ('spider-web') absorbers had been demonstrated at U.C. Berkeley but not developed to be flight-worthy devices. We proceeded to first fabricate bolometers with Neutron Transmutation Doped (NTD) Ge thermistors that demonstrated high optical coupling (Church et al. 1996) and were developed for a ground-based millimeter-wave receiver (Mauskopf et al. 1997). The next generation of devices used In bump-bonded thermistors to achieve devices with performance product NEP*sqrt(tau) = 3e - 18 j at 300 mK, demonstrating a full order of magnitude improvement over pervious devices. These devices achieved an NEP = 1e-18 W/rtHz (Murray et al. 1996) as promised in the proposal. Sensitivities as good as 1e - 19 W/rtHz appear achievable with the silicon nitride architecture (Bock et al. 1997). Finally, arrays of micromesh bolometers were shown to be feasible in the last year of the program by etching a large number of devices on a single silicon wafer (75 mm). Full arrays were subsequently demonstrated for selection on the ESA/NASA Far-Infrared Space Telescope (FIRST) in competition with detectors provided by CEA in France and GSFC in the US Micromesh bolometer arrays are now baselined for both the ESA/NASA Planck and FIRST missions.

  3. Visibilities and bolometric corrections for stellar oscillation modes observed by Kepler

    NASA Astrophysics Data System (ADS)

    Ballot, J.; Barban, C.; van't Veer-Menneret, C.

    2011-07-01

    Context.Kepler produces a large amount of data used for asteroseismological analyses, particularly of solar-like stars and red giants. The mode amplitudes observed in the Kepler spectral band have to be converted into bolometric amplitudes to be compared to models. Aims: We give a simple bolometric correction for the amplitudes of radial modes observed with Kepler, as well as the relative visibilities of non-radial modes. Methods: We numerically compute the bolometric correction cK-bol and mode visibilities for different effective temperatures Teff within the range 4000-7500 K, using a similar approach to a recent one from the literature. Results: We derive a law for the correction to bolometric values: cK - bol = 1 + a1(Teff - To) + a2(Teff - To)2, with To = 5934 K, a1 = 1.349 × 10-4 K-1, and a2 = -3.120 × 10-9 K-2 or, alternatively, as the power law cK - bol = (Teff/To)α with α = 0.80. We give tabulated values for the mode visibilities based on limb-darkening (LD), computed from ATLAS9 model atmospheres for Teff ∈ [4000,7500] K, log g ∈ [2.5,4.5] , and [M/H] ∈ [ - 1.0, + 1.0] . We show that using LD profiles already integrated over the spectral band provides quick and good approximations for visibilities. We point out the limits of these classical visibility estimations. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A124

  4. Temperature, gravity, and bolometric correction scales for non-supergiant OB stars

    NASA Astrophysics Data System (ADS)

    Nieva, M.-F.

    2013-02-01

    , and in extreme cases, + 6000 K and ± 0.4 dex, respectively. A parameter calibration for sub-spectral types is also proposed. Moreover, we present a new bolometric correction relation to temperature based on our empirical data, rather than on synthetic grids. Conclusions: The photometric calibrations presented here are useful tools to estimate effective temperatures and surface gravities of non-supergiant OB stars in a fast manner. This is also applicable to some single-line spectroscopic binaries, but caution has to be taken for undetected double-lined spectroscopic binaries and single objects with anomalous reddening-law, dubious photometric quantities and/or luminosity classes, for which the systematic uncertainties may increase significantly. We recommend to use these calibrations only as a first step of the parameter estimation, with subsequent refinements based on spectroscopy. A larger sample covering more uniformly the parameter space under consideration will allow refinements to the present calibrations. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max- Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), proposals H2001-2.2-011 and H2005-2.2-016.Based on observations collected at the European Southern Observatory, Chile, ESO 074.B-0455(A) and from the ESO Archive.Based on spectral data retrieved from the ELODIE archive at Observatoire de Haute-Provence (OHP).Appendices A and B are available in electronic form at http://www.aanda.org

  5. Bolometric effect and phonon cooling in graphene-superconductor junctions

    NASA Astrophysics Data System (ADS)

    Vora, Heli

    Graphene, a two-dimensional allotrope of graphite, possesses remarkable electronic properties which stem from the fact that the electrons in graphene are described by the Dirac-Weyl Hamiltonian. As a result, graphene exhibits a linear energy dispersion relation with zero effective mass. With its single-atomic-layer thickness, not only electrons but also phonons are of a two dimensional nature, differentiating graphene from the conventional semiconductor based two-dimensional electron gas systems. The combination of two-dimensional phonons, ultra small volume, low density of states and linear energy spectrum allows graphene to have weak electron-phonon coupling and extremely small electronic heat capacity. These properties make it a desirable material for use in a bolometer device, which is a sensitive electromagnetic radiation detector. We present a novel device design, which combines graphene with superconducting contacts and investigate its bolometric response. Two configurations of superconductor (S)- graphene(G)- superconductor(S) Josephson junction (SGS) and superconductor(S)- insulator(I)- graphene(G) (SIGIS) tunnel junction are studied. Devices with aluminum, niobium and niobium nitride as superconducting contacts are studied. In SIGIS tunnel junctions, titanium oxide is used as the barrier oxide to achieve high efficiency impedance matched bolometers. In these devices, hot electrons are created via application of microwave radiation and their relaxation to the bath temperature is studied. With the hot electrons effectively confined by the superconducting contacts, we demonstrate electron cooling via phonon interactions. This device geometry allows us to study electron-phonon coupling in single and bilayer graphene at low temperatures. In single layer graphene, a disorder-modified temperature dependence of electron-phonon cooling power is observed. And in bilayer graphene, it is shown that the electron-phonon coupling parameter has an inverse dependence on

  6. Fast Beam-Based BPM Calibration

    SciTech Connect

    Bertsche, K.; Loos, H.; Nuhn, H.-D.; Peters, F.; /SLAC

    2012-10-15

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.

  7. Fast diffraction computation algorithms based on FFT

    NASA Astrophysics Data System (ADS)

    Logofatu, Petre Catalin; Nascov, Victor; Apostol, Dan

    2010-11-01

    The discovery of the Fast Fourier transform (FFT) algorithm by Cooley and Tukey meant for diffraction computation what the invention of computers meant for computation in general. The computation time reduction is more significant for large input data, but generally FFT reduces the computation time with several orders of magnitude. This was the beginning of an entire revolution in optical signal processing and resulted in an abundance of fast algorithms for diffraction computation in a variety of situations. The property that allowed the creation of these fast algorithms is that, as it turns out, most diffraction formulae contain at their core one or more Fourier transforms which may be rapidly calculated using the FFT. The key in discovering a new fast algorithm is to reformulate the diffraction formulae so that to identify and isolate the Fourier transforms it contains. In this way, the fast scaled transformation, the fast Fresnel transformation and the fast Rayleigh-Sommerfeld transform were designed. Remarkable improvements were the generalization of the DFT to scaled DFT which allowed freedom to choose the dimensions of the output window for the Fraunhofer-Fourier and Fresnel diffraction, the mathematical concept of linearized convolution which thwarts the circular character of the discrete Fourier transform and allows the use of the FFT, and last but not least the linearized discrete scaled convolution, a new concept of which we claim priority.

  8. The CUORE cryostat and its bolometric detector

    NASA Astrophysics Data System (ADS)

    Santone, D.; Alduino, C.; Alfonso, K.; Artusa, D. R.; Avignone, F. T., III; Azzolini, O.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; Biassoni, M.; Branca, A.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; Dafinei, I.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maino, M.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Napolitano, T.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sangiorgio, S.; Scielzo, N. D.; Singh, V.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.

    2017-02-01

    CUORE is a cryogenic detector that will be operated at LNGS to search for neutrinoless double beta decay (0νββ) of 130Te. The detector installation was completed in summer 2016. Before the installation, several cold runs were done to test the cryogenic system performance. In the last cold run the base temperature of 6.3 mK was reached in stable condition. CUORE-0, a CUORE prototype, has proven the feasibility of CUORE, demonstrating that the target background of 0.01 counts/keV/kg/y and the energy resolution of 5 keV are within reach.

  9. The CUORE cryostat and its bolometric detector

    DOE PAGES

    Santone, D.; Alduino, C.; Alfonso, K.; ...

    2017-02-16

    CUORE is a cryogenic detector that will be operated at LNGS to search for neutrinoless double beta decay (0νββ) of 130Te. The detector installation was completed in summer 2016. Before the installation, several cold runs were done to test the cryogenic system performance. In the last cold run the base temperature of 6.3 mK was reached in stable condition. CUORE-0, a CUORE prototype, has proven the feasibility of CUORE, demonstrating that the target background of 0.01 counts/keV/kg/y and the energy resolution of 5 keV are within reach.

  10. Empirical effective temperatures and bolometric corrections for early-type stars

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Bless, R. C.; Davis, J.; Brown, R. H.

    1976-01-01

    An empirical effective temperature for a star can be found by measuring its apparent angular diameter and absolute flux distribution. The angular diameters of 32 bright stars in the spectral range O5f to F8 have recently been measured with the stellar interferometer at Narrabri Observatory, and their absolute flux distributions have been found by combining observations of ultraviolet flux from the Orbiting Astronomical Observatory (OAO-2) with ground-based photometry. In this paper, these data have been combined to derive empirical effective temperatures and bolometric corrections for these 32 stars.

  11. Bolometric Luminosities of 3 New Bright Lensed Galaxies

    NASA Astrophysics Data System (ADS)

    Rigby, Jane; Chen, Hsiao-Wen; Gladders, Mike; Papovich, Casey

    2008-08-01

    We propose DDT observations of three recently--discovered, very bright, lensed galaxies. We propose IRAC, 24, and 70 um photometry and IRS LL1 spectra for SDSS1226+2152, an extremely bright UV--selected galaxy at z=2.93. Because this galaxy is a full magnitude brighter in g-band than cB58 (the longstanding Rosetta Stone), its optical spectrum provides a resolved, high-S/N window into stellar populations, star formation, and star formation history at high redshift. Spitzer observations will constrain the stellar mass, measure the bolometric luminosity, and measure the 7.7um aromatic luminosity. Because this galaxy was not discovered until Jan 2008, it could not have been proposed in Cycle 5. We also propose 70um photometry for two UV-selected lensed galaxies at z=1.7 and z=2.73, RCS0327-1326 and SDSS1527+0652. These galaxies were discovered in late 2007. Photometry at 70um will measure the bolometric luminosities of these three galaxies. LL1 spectroscopy for S1226 will accurately measure the 7.7um aromatic luminosity. Together, these observations will enable us to: * determine the spectral energy distributions of Lyman break galaxies; * test whether the strange SED of cB58 is anomalous or typical; * test whether the aromatic--to--bolometric luminosity ratios of these galaxies evolve with redshift (as do IR--selected lensed galaxies); compare near-IR, mid-IR, and optical diagnostics of star formation rate; * and work to understand the relationship between IR--selected and UV--selected star--forming galaxies.

  12. Characterization of bolometric light detectors for rare event searches

    NASA Astrophysics Data System (ADS)

    Beeman, J. W.; Bellini, F.; Casali, N.; Cardani, L.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Nagorny, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M.

    2013-07-01

    Bolometers have proven to be very good detectors to search for rare processes thanks to their excellent energy resolution and their low intrinsic background. Further active background rejection can be obtained by the simultaneous readout of the heat and light signals produced by particles interacting in scintillating bolometers, as proposed by the LUCIFER experiment. In this framework, the choice of the light detector and the optimization of its working conditions play a crucial role. In this paper, we report a study of the performances of a Germanium bolometric light detector in terms of signal amplitude, energy resolution and signal time development. The impact of various operational parameters on the detector performances is discussed.

  13. MEAN SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC CORRECTIONS FOR LUMINOUS QUASARS

    SciTech Connect

    Krawczyk, Coleman M.; Richards, Gordon T.; Mehta, Sajjan S.; Vogeley, Michael S.; Gallagher, S. C.; Leighly, Karen M.; Ross, Nicholas P.; Schneider, Donald P.

    2013-05-01

    We explore the mid-infrared (mid-IR) through ultraviolet (UV) spectral energy distributions (SEDs) of 119,652 luminous broad-lined quasars with 0.064 < z < 5.46 using mid-IR data from Spitzer and WISE, near-infrared data from the Two Micron All Sky Survey and UKIDSS, optical data from the Sloan Digital Sky Survey, and UV data from the Galaxy Evolution Explorer. The mean SED requires a bolometric correction (relative to 2500 A) of BC{sub 2500A} =2.75 {+-} 0.40 using the integrated light from 1 {mu}m-2 keV, and we further explore the range of bolometric corrections exhibited by individual objects. In addition, we investigate the dependence of the mean SED on various parameters, particularly the UV luminosity for quasars with 0.5 {approx}< z {approx}< 3 and the properties of the UV emission lines for quasars with z {approx}> 1.6; the latter is a possible indicator of the strength of the accretion disk wind, which is expected to be SED-dependent. Luminosity-dependent mean SEDs show that, relative to the high-luminosity SED, low-luminosity SEDs exhibit a harder (bluer) far-UV spectral slope ({alpha}{sub UV}), a redder optical continuum, and less hot dust. Mean SEDs constructed instead as a function of UV emission line properties reveal changes that are consistent with known Principal Component Analysis trends. A potentially important contribution to the bolometric correction is the unseen extreme UV (EUV) continuum. Our work suggests that lower-luminosity quasars and/or quasars with disk-dominated broad emission lines may require an extra continuum component in the EUV that is not present (or much weaker) in high-luminosity quasars with strong accretion disk winds. As such, we consider four possible models and explore the resulting bolometric corrections. Understanding these various SED-dependent effects will be important for accurate determination of quasar accretion rates.

  14. Resonant elements contactless coupled to bolometric micro-stripes

    NASA Astrophysics Data System (ADS)

    Cuadrado, Alexander; Silva-López, Manuel; López-Alonso, José M.; Martínez-Antón, Juan C.; Ezquerro, José M.; González, Francisco J.; Alda, Javier

    2015-08-01

    One of the main technical difficulties in the fabrication of optical antennas working as light detectors is the proper design and manufacture of auxiliary elements as load lines and signal extraction structures. These elements need to be quite small to reach the location of the antennas and should have a minimal effect on the response of the device. Unfortunately this is not an easy task and signal extraction lines resonate along with the antenna producing a complex signal that usually masks the one given by the antenna. In order to decouple the resonance from the transduction we present in this contribution a parametric analysis of the response of a bolometric stripe that is surrounded by resonant dipoles with different geometries and orientations. We have checked that these elements should provide a signal proportional to the polarization state of the incoming light.

  15. Fabrication of Ultrasensitive Transition Edge Sensor Bolometric Detectors for HIRMES

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan; hide

    2017-01-01

    The high resolution mid-infrared spectrometer (HIRMES) is a high resolving power (R approx. 100,000) instrument operating in the 25-122 micron spectral range and will fly on board the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA) in 2019. Central ot HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8x16 detector high resolution array and a 64x16 detector low resolution array. Both types of detectors consist of MoAu TES fabricated on leg-isolated Si membranes. Whereas the high resolution detectors, with noise equivalent power (NEP) approx. 2 aW/square root of (Hz), are fabricated on 0.45 micron Si substrates, the low resolution detectors, with NEP approx. 10 aW/square root of (Hz), are fabricated on 1.40 micron Si. Here we discuss the similarities and difference in the fabrication methodologies used to realize the two types of detectors.

  16. Bolometric detection of ferromagnetic resonance in YIG slab

    NASA Astrophysics Data System (ADS)

    Tu, Sa; Białek, Marcin; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Ansermet, Jean-Philippe

    2017-10-01

    The resistance of the Pt bar deposited on the YIG slab was monitored while the magnetic field was ramped through the ferromagnetic resonance with the YIG slab facing a coplanar waveguide resonator excited at 4.3 GHz excitation. The resistance change provides detection of the ferromagnetic resonance with a high signal-to-noise ratio. It is ascribed to a change in the temperature of the Pt bars. The thermal origin of the signal is confirmed by the observation that the signal vanishes when field modulation is applied at frequencies above 6 Hz. The spin pumping effect was vanishingly small, and the anisotropic magnetoresistance of the Pt bar, though quite easily observed, would imply a rectification voltage that is much smaller than the bolometric effect.

  17. On the effect of cosmic rays in bolometric cosmic microwave background measurements from the stratosphere

    NASA Astrophysics Data System (ADS)

    Masi, S.; Battistelli, E.; de Bernardis, P.; Lamagna, L.; Nati, F.; Nati, L.; Natoli, P.; Polenta, G.; Schillaci, A.

    2010-09-01

    Context. Precision measurements of the anisotropy of the cosmic microwave background (CMB) are able to detect low-level non-Gaussian features caused by either topological defects or the inflation process. These measurements are becoming feasable with the development of large arrays of ultra-sensitive bolometric detectors and their use in balloon-borne or satellite missions. However, the space environment includes a population of cosmic rays (CRs), which produce spurious spikes in bolometric signals. Aims: We analyze the effect of CRs on the measurement of CMB anisotropy maps and the estimate of cosmological non-Gaussianity and angular power spectra of the CMB. Methods: Using accurate simulations of noise and CR events in bolometric detectors, and de-spiking techniques, we produce simulated measured maps and analyze the Gaussianity and power spectrum of the maps for different levels and rates of CR events. Results: We find that a de-spiking technique based on outlier removal in the detector signals contributing to the same sky pixel is effective in removing CR events larger than the noise. However, low level events hidden in the noise produce a positive shift of the average power signal measured by a bolometer, and increase its variance. If the number of hits per pixel is large enough, the data distribution for each sky pixel is approximately Gaussian, but the skewness and the kurtosis of the temperatures of the pixels indicate the presence of some low-level non-Gaussianity. The standard noise estimation pipeline produces a positive bias in the power spectrum at high multipoles. Conclusions: In the case of a typical balloon-borne survey, the CR-induced non-Gaussianity will be marginally detectable in the membrane bolometer channels, but be negligible in the spider-web bolometer channels. In experiments with detector sensitivity better than 100 μK/√{Hz}, in an environment less favorable than the earth stratosphere, the CR-induced non-Gaussianity is likely to

  18. A high dynamic radiation measurements instrument: the Bolometric Oscillation Sensor (BOS)

    NASA Astrophysics Data System (ADS)

    Zhu, P.; van Ruymbeke, M.; Karatekin, Ö.; Noël, J.-P.; Thuillier, G.; Dewitte, S.; Chevalier, A.; Conscience, C.; Janssen, E.; Meftah, M.; Irbah, A.

    2014-12-01

    The bolometric oscillation sensor (BOS) is a broadband radiation measurement instrument onboard the PICARD satellite that has been active between 2010 and 2014. The main detector is a thermistor attached black coated surface, which was permanently exposed to space without any optical and aperture accessories. The temperature measurements are used within a transfer function to determine variations in incoming solar irradiance as well as the terrestrial radiation. In the present article, the measurement principle of BOS and its transfer function are presented. The performance of the instrument is discussed based on laboratory experiments and space observations from the PICARD satellite. The comparison of the short term variation of Total Solar Irradiance (TSI) with absolute radiometers such as VIRGO/SOHO and TIM/SORCE over the same period of time, suggests that BOS is a relatively much simpler but very effective sensor to monitor electromagnetic radiation variations from visible to infrared wavelengths.

  19. A high dynamic radiation measurement instrument: the Bolometric Oscillation Sensor (BOS)

    NASA Astrophysics Data System (ADS)

    Zhu, P.; van Ruymbeke, M.; Karatekin, Ö.; Noël, J.-P.; Thuillier, G.; Dewitte, S.; Chevalier, A.; Conscience, C.; Janssen, E.; Meftah, M.; Irbah, A.

    2015-05-01

    The Bolometric Oscillation Sensor (BOS) is a broadband radiation measurement instrument onboard the PICARD satellite that was active between 2010 and 2014. The main detector is a thermistor attached black coated surface, which was permanently exposed to space without any optical and aperture accessories. The temperature measurements are used within a transfer function to determine variations in incoming solar irradiance as well as the terrestrial radiation. In the present article, the measurement principle of the BOS and its transfer function are presented. The performance of the instrument is discussed based on laboratory experiments and space observations from the PICARD satellite. The comparison of the short-term variation of total solar irradiance (TSI) with absolute radiometers such as VIRGO/SOHO and TIM/SORCE over the same period of time suggests that the BOS is a relatively much simpler but very effective sensor for monitoring electromagnetic radiation variations from visible to infrared wavelengths.

  20. Fast Algorithms for Model-Based Diagnosis

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Barrett, Anthony; Vatan, Farrokh; Mackey, Ryan

    2005-01-01

    Two improved new methods for automated diagnosis of complex engineering systems involve the use of novel algorithms that are more efficient than prior algorithms used for the same purpose. Both the recently developed algorithms and the prior algorithms in question are instances of model-based diagnosis, which is based on exploring the logical inconsistency between an observation and a description of a system to be diagnosed. As engineering systems grow more complex and increasingly autonomous in their functions, the need for automated diagnosis increases concomitantly. In model-based diagnosis, the function of each component and the interconnections among all the components of the system to be diagnosed (for example, see figure) are represented as a logical system, called the system description (SD). Hence, the expected behavior of the system is the set of logical consequences of the SD. Faulty components lead to inconsistency between the observed behaviors of the system and the SD. The task of finding the faulty components (diagnosis) reduces to finding the components, the abnormalities of which could explain all the inconsistencies. Of course, the meaningful solution should be a minimal set of faulty components (called a minimal diagnosis), because the trivial solution, in which all components are assumed to be faulty, always explains all inconsistencies. Although the prior algorithms in question implement powerful methods of diagnosis, they are not practical because they essentially require exhaustive searches among all possible combinations of faulty components and therefore entail the amounts of computation that grow exponentially with the number of components of the system.

  1. Fast dual graph-based hotspot detection

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.; Park, Chul-Hong; Xu, Xu

    2006-10-01

    As advanced technologies in wafer manufacturing push patterning processes toward lower-k I subwavelength printing, lithography for mass production potentially suffers from decreased patterning fidelity. This results in generation of many hotspots, which are actual device patterns with relatively large CD and image errors with respect to on-wafer targets. Hotspots can be formed under a variety of conditions such as the original design being unfriendly to the RET that is applied, unanticipated pattern combinations in rule-based OPC, or inaccuracies in model-based OPC. When these hotspots fall on locations that are critical to the electrical performance of a device, device performance and parametric yield can be significantly degraded. Previous rule-based hotspot detection methods suffer from long runtimes for complicated patterns. Also, the model generation process that captures process variation within simulation-based approaches brings significant overheads in terms of validation, measurement and parameter calibration. In this paper, we first describe a novel detection algorithm for hotspots induced by lithographic uncertainty. Our goal is to rapidly detect all lithographic hotspots without significant accuracy degradation. In other words, we propose a filtering method: as long as there are no "false negatives", i.e., we successfully have a superset of actual hotspots, then our method can dramatically reduce the layout area for golden hotspot analysis. The first step of our hotspot detection algorithm is to build a layout graph which reflects pattern-related CD variation. Given a layout L, the layout graph G = (V, E c union E p) consists of nodes V, corner edges E c and proximity edges E p. A face in the layout graph includes several close features and the edges between them. Edge weight can be calculated from a traditional 2-D model or a lookup table. We then apply a three-level hotspot detection: (1) edge-level detection finds the hotspot caused by two close

  2. GPU-based fast gamma index calculation

    NASA Astrophysics Data System (ADS)

    Gu, Xuejun; Jia, Xun; Jiang, Steve B.

    2011-03-01

    The γ-index dose comparison tool has been widely used to compare dose distributions in cancer radiotherapy. The accurate calculation of γ-index requires an exhaustive search of the closest Euclidean distance in the high-resolution dose-distance space. This is a computational intensive task when dealing with 3D dose distributions. In this work, we combine a geometric method (Ju et al 2008 Med. Phys. 35 879-87) with a radial pre-sorting technique (Wendling et al 2007 Med. Phys. 34 1647-54) and implement them on computer graphics processing units (GPUs). The developed GPU-based γ-index computational tool is evaluated on eight pairs of IMRT dose distributions. The γ-index calculations can be finished within a few seconds for all 3D testing cases on one single NVIDIA Tesla C1060 card, achieving 45-75× speedup compared to CPU computations conducted on an Intel Xeon 2.27 GHz processor. We further investigated the effect of various factors on both CPU and GPU computation time. The strategy of pre-sorting voxels based on their dose difference values speeds up the GPU calculation by about 2.7-5.5 times. For n-dimensional dose distributions, γ-index calculation time on CPU is proportional to the summation of γn over all voxels, while that on GPU is affected by γn distributions and is approximately proportional to the γn summation over all voxels. We found that increasing the resolution of dose distributions leads to a quadratic increase of computation time on CPU, while less-than-quadratic increase on GPU. The values of dose difference and distance-to-agreement criteria also have an impact on γ-index calculation time.

  3. Fast Electromechanical Switches Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma

  4. Ultrasensitive and Fast All-Inorganic Perovskite-Based Photodetector via Fast Carrier Diffusion.

    PubMed

    Yang, Bin; Zhang, Fengying; Chen, Junsheng; Yang, Songqiu; Xia, Xusheng; Pullerits, Tõnu; Deng, Weiqiao; Han, Keli

    2017-09-01

    Low trap-state density, high carrier mobility, and efficient charge carrier collection are key parameters for photodetectors with high sensitivity and fast response time. This study demonstrates a simple solution growth method to prepare CsPbBr3 microcrystals (MCs) with low trap-state density. Time-dependent photoluminescence study with one-photon excitation (OPE) and two-photon excitation (TPE) indicates that CsPbBr3 MCs exhibit fast carrier diffusion with carrier mobility over 100 cm(2) V(-1) S(-1) . Furthermore, CsPbBr3 MC-based photodetectors with high charge carriers' collection efficiency are fabricated. Such photodetectors show ultrahigh responsivity (R) up to 6 × 10(4) A W(-1) with OPE and high R up to 6 A W(-1) with TPE. The R for OPE is over one order of magnitude higher (the R for TPE is three orders of magnitude higher) than that of previously reported all-inorganic perovskite-based photodetectors. Moreover, the photodetectors exhibit fast response time of ≈1 ms, which corresponds to a gain ≈10(5) and a gain- bandwidth product of 10(8) Hz for OPE (a gain ≈10(3) and a gain-bandwidth product of 10(6) Hz for TPE). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Basic concepts underlying fast-neutron-based contraband interrogation technology

    SciTech Connect

    Fink, C.L.; Guenther, P.T.; Smith, D.L.

    1992-01-01

    All accelerator-based fast-neutron contraband interrogation systems have many closely interrelated subsystems, whose performance parameters will be critically interdependent. For optimal overall performance, a systems analysis design approach is required. This paper provides a general overview of the interrelationships and the tradeoffs to be considered for optimization of nonaccelerator subsystems.

  6. Fast simulation method for airframe analysis based on big data

    NASA Astrophysics Data System (ADS)

    Liu, Dongliang; Zhang, Lixin

    2016-10-01

    In this paper, we employ the big data method to structural analysis by considering the correlations between loads and loads, loads and results and results and results. By means of fundamental mathematics and physical rules, the principle, feasibility and error control of the method are discussed. We then establish the analysis process and procedures. The method is validated by two examples. The results show that the fast simulation method based on big data is fast and precise when it is applied to structural analysis.

  7. CS-based fast ultrasound imaging with improved FISTA algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Jie; He, Yugao; Shi, Guangming; Han, Tingyu

    2015-08-01

    In ultrasound imaging system, the wave emission and data acquisition is time consuming, which can be solved by adopting the plane wave as the transmitted signal, and the compressed sensing (CS) theory for data acquisition and image reconstruction. To overcome the very high computation complexity caused by introducing CS into ultrasound imaging, in this paper, we propose an improvement of the fast iterative shrinkage-thresholding algorithm (FISTA) to achieve the fast reconstruction of the ultrasound imaging, in which a modified setting is done with the parameter of step size for each iteration. Further, the GPU strategy is designed for the proposed algorithm, to guarantee the real time implementation of imaging. The simulation results show that the GPU-based image reconstruction algorithm can achieve the fast ultrasound imaging without damaging the quality of image.

  8. FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program.

    PubMed

    Lefort, Vincent; Desper, Richard; Gascuel, Olivier

    2015-10-01

    FastME provides distance algorithms to infer phylogenies. FastME is based on balanced minimum evolution, which is the very principle of Neighbor Joining (NJ). FastME improves over NJ by performing topological moves using fast, sophisticated algorithms. The first version of FastME only included Nearest Neighbor Interchange. The new 2.0 version also includes Subtree Pruning and Regrafting, while remaining as fast as NJ and providing a number of facilities: Distance estimation for DNA and proteins with various models and options, bootstrapping, and parallel computations. FastME is available using several interfaces: Command-line (to be integrated in pipelines), PHYLIP-like, and a Web server (http://www.atgc-montpellier.fr/fastme/). © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. GEM-based detectors for thermal and fast neutrons

    NASA Astrophysics Data System (ADS)

    Croci, G.; Claps, G.; Cazzaniga, C.; Foggetta, L.; Muraro, A.; Valente, P.

    2015-06-01

    Lately the problem of 3He replacement for neutron detection stimulated an intense activity research on alternative technologies based on alternative neutron converters. This paper presents briefly the results obtained with new GEM detectors optimized for fast and thermal neutrons. For thermal neutrons, we realized a side-on GEM detector based on a series of boron-coated alumina sheets placed perpendicularly to the incident neutron beam direction. This prototype has been tested at n@BTF photo-production neutron facilty in order to test its effectiveness under a very high flux gamma background. For fast neutrons, we developed new GEM detectors (called nGEM) for the CNESM diagnostic system of the SPIDER NBI prototype for ITER (RFX-Consortium, Italy) and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a Triple GEM gaseous detector equipped with a polyethylene layer used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a medium size (30 × 25 cm2 active area) nGEM detector at the ISIS spallation source on the VESUVIO beam line.

  10. Fast pedestrian detection based on multiple instance hierarchical HOG matrices

    NASA Astrophysics Data System (ADS)

    Cheng, Guang; Meng, Long; Lin, Xinggang

    2013-12-01

    Many pedestrian detection research works focused on the improvement of detection performance, without considering the detection speed, making the detection algorithms not applicable for real-world requirement for real-time processing. To explore this problem, we first propose a pre-processing method Hierarchical HOG Matrices to replace the traditional integral histogram of gradients, which stores more data in the pre-processing phase to reduce computation time. A matrix-based detection computation structure is also proposed, which organize the massive data computations in the scanning detection process into matrix operations to optimize the overall speed. We then add multiple instance learning into the fast pedestrian detection algorithm to further enhance its accuracy. Experiments demonstrate that the proposed fast and robust pedestrian detection algorithm based on the multiple instance feature achieves an accuracy comparable to the latest algorithms, with the best speed among the algorithms with an accuracy of the same level.

  11. Fast wavelet based algorithms for linear evolution equations

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Osher, Stanley; Zhong, Sifen

    1992-01-01

    A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.

  12. Fast image matching algorithm based on projection characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  13. Laser-based fast-neutron spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pomerantz, Ishay; Kishon, Itay; Kleinschmidt, Annika; Schanz, Victor A.; Tebartz, Alexandra; Fernández, Juan Carlos; Gautier, Donald C.; Johnson, Randall Philip; Shimada, Tsutomu; Wurden, Glen Anthony; Roth, Markus

    2017-05-01

    Great progress has been made in recent years in realizing compact, laser-based neutron generators. These devices, however, are inapplicable for conducting energy-resolved fast-neutron radiography because of the electromagnetic noise produced by the interaction of a strong laser field with matter. To overcome this limitation, we developed a novel neutron time-of-flight detector, largely immune to electromagnetic noise. The detector is based on plastic scintillator, only a few mm in size, which is coupled to a silicon photo-multiplier by a long optical fiber. I will present results we obtained at the Trident Laser Facility at Los Alamos National Laboratory during the summer of 2016. Using this detector, we recorded high resolution, low-background fast neutron spectra generated by the interaction of laser accelerated deuterons with Beryllium. The quality of these spectra was sufficient to resolve the unique neutron absorption spectra of different elements and thus it is the first demonstration of laser-based fast neutron spectroscopy. I will discuss how this achievement paves the way to realizing compact neutron radiography systems for research, security, and commercial applications.

  14. Multichroic Bolometric Detector Architecture for Cosmic Microwave Background Polarimetry Experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Aritoki

    Characterization of the Cosmic Microwave Background (CMB) B-mode polarization signal will test models of inflationary cosmology, as well as constrain the sum of the neutrino masses and other cosmological parameters. The low intensity of the B-mode signal combined with the need to remove polarized galactic foregrounds requires a sensitive millimeter receiver and effective methods of foreground removal. Current bolometric detector technology is reaching the sensitivity limit set by the CMB photon noise. Thus, we need to increase the optical throughput to increase an experiment's sensitivity. To increase the throughput without increasing the focal plane size, we can increase the frequency coverage of each pixel. Increased frequency coverage per pixel has additional advantage that we can split the signal into frequency bands to obtain spectral information. The detection of multiple frequency bands allows for removal of the polarized foreground emission from synchrotron radiation and thermal dust emission, by utilizing its spectral dependence. Traditionally, spectral information has been captured with a multi-chroic focal plane consisting of a heterogeneous mix of single-color pixels. To maximize the efficiency of the focal plane area, we developed a multi-chroic pixel. This increases the number of pixels per frequency with same focal plane area. We developed multi-chroic antenna-coupled transition edge sensor (TES) detector array for the CMB polarimetry. In each pixel, a silicon lens-coupled dual polarized sinuous antenna collects light over a two-octave frequency band. The antenna couples the broadband millimeter wave signal into microstrip transmission lines, and on-chip filter banks split the broadband signal into several frequency bands. Separate TES bolometers detect the power in each frequency band and linear polarization. We will describe the design and performance of these devices and present optical data taken with prototype pixels and detector arrays. Our

  15. Bolometric correction and spectral energy distribution of cool stars in Galactic clusters

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Patelli, L.; Bellazzini, M.; Pecci, F. Fusi; Oliva, E.

    2010-04-01

    We have investigated the relevant trend of the bolometric correction (BC) at the cool-temperature regime of red giant stars and its possible dependence on stellar metallicity. Our analysis relies on a wide sample of optical-infrared spectroscopic observations, along the 3500 Å ==> 2.5μm wavelength range, for a grid of 92 red giant stars in five (three globular + two open) Galactic clusters, along the full metallicity range covered by the bulk of the stars, -2.2 <= [Fe/H] <= +0.4. Synthetic BVRCIC JHK photometry from the derived spectral energy distributions allowed us to obtain robust temperature (Teff) estimates for each star, within +/-100K or less. According to the appropriate temperature estimate, blackbody extrapolation of the observed spectral energy distribution allowed us to assess the unsampled flux beyond the wavelength limits of our survey. For the bulk of our red giants, this fraction amounted to 15 per cent of the total bolometric luminosity, a figure that raises up to 30 per cent for the coolest targets (Teff <~ 3500K). Overall, we obtain stellar Mbol values with an internal accuracy of a few percentages. Even neglecting any correction for lost luminosity etc., we would be overestimating Mbol by <~0.3mag, in the worst cases. Making use of our new data base, we provide a set of fitting functions for the V and K BC versus Teff and versus (B - V) and (V - K) broad-band colours, valid over the interval 3300 <= Teff <= 5000K, especially suited for red giants. The analysis of the BCV and BCK estimates along the wide range of metallicity spanned by our stellar sample shows no evident drift with [Fe/H]. Things may be different for the B-band correction, where the blanketing effects are more and more severe. A drift of Δ(B - V) versus [Fe/H] is in fact clearly evident from our data, with metal-poor stars displaying a `bluer' (B - V) with respect to the metal-rich sample, for fixed Teff. Our empirical bolometric corrections are in good overall agreement with

  16. Fast global image smoothing based on weighted least squares.

    PubMed

    Min, Dongbo; Choi, Sunghwan; Lu, Jiangbo; Ham, Bumsub; Sohn, Kwanghoon; Do, Minh N

    2014-12-01

    This paper presents an efficient technique for performing a spatially inhomogeneous edge-preserving image smoothing, called fast global smoother. Focusing on sparse Laplacian matrices consisting of a data term and a prior term (typically defined using four or eight neighbors for 2D image), our approach efficiently solves such global objective functions. In particular, we approximate the solution of the memory-and computation-intensive large linear system, defined over a d-dimensional spatial domain, by solving a sequence of 1D subsystems. Our separable implementation enables applying a linear-time tridiagonal matrix algorithm to solve d three-point Laplacian matrices iteratively. Our approach combines the best of two paradigms, i.e., efficient edge-preserving filters and optimization-based smoothing. Our method has a comparable runtime to the fast edge-preserving filters, but its global optimization formulation overcomes many limitations of the local filtering approaches. Our method also achieves high-quality results as the state-of-the-art optimization-based techniques, but runs ∼10-30 times faster. Besides, considering the flexibility in defining an objective function, we further propose generalized fast algorithms that perform Lγ norm smoothing (0 < γ < 2) and support an aggregated (robust) data term for handling imprecise data constraints. We demonstrate the effectiveness and efficiency of our techniques in a range of image processing and computer graphics applications.

  17. Electrical studies on silver based fast ion conducting glassy materials

    SciTech Connect

    Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.

    2014-04-24

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  18. On estimators of the jet bolometric luminosity of Fermi 2LAC blazars

    NASA Astrophysics Data System (ADS)

    Wang, Zerui; Xue, Rui; Du, Leiming; Xie, Zhaohua; Xiong, Dingrong; Yi, Tingfeng; Xu, Yunbing; Liu, Wenguang

    2017-10-01

    Bolometric luminosity is a basic physical parameter that is widely used in the study of blazars. Due to the lack of simultaneous full wavelength data, several estimators of the bolometric luminosity are being used in practice. In this paper, we study and evaluate the reliability and significance of six estimators, the 5GHz luminosity, the 1keV luminosity, the γ-ray luminosity, the 5GHz luminosity + the 1keV luminosity, the 5GHz luminosity + the γ-ray luminosity and the 1keV luminosity + the γ-ray luminosity, by analyzing the linear correlations between the integrated bolometric luminosity and them. Our main results are as follows. (i) All the six estimators are reliable in the sense that they are all significant correlated with the bolometric luminosity. (ii) Ranking from the higher significance of the reliability to lower one the six estimators are the 5GHz luminosity + the γ-ray luminosity, the 1keV luminosity + the γ-ray luminosity, γ-ray luminosity, the 5GHz luminosity + the 1keV luminosity, the 5GHz luminosity and the 1keV luminosity. (iii) We suggest that the bolometric luminosity can be well estimated by the γ-ray luminosity using the best linear equation that given in this paper for Fermi FSRQs. (iv) According to the linear regressions obtained in the analysis, we provide calibration for each estimator.

  19. Correlation-coefficient-based fast template matching through partial elimination.

    PubMed

    Mahmood, Arif; Khan, Sohaib

    2012-04-01

    Partial computation elimination techniques are often used for fast template matching. At a particular search location, computations are prematurely terminated as soon as it is found that this location cannot compete with an already known best match location. Due to the nonmonotonic growth pattern of the correlation-based similarity measures, partial computation elimination techniques have been traditionally considered inapplicable to speed up these measures. In this paper, we show that partial elimination techniques may be applied to a correlation coefficient by using a monotonic formulation, and we propose basic-mode and extended-mode partial correlation elimination algorithms for fast template matching. The basic-mode algorithm is more efficient on small template sizes, whereas the extended mode is faster on medium and larger templates. We also propose a strategy to decide which algorithm to use for a given data set. To achieve a high speedup, elimination algorithms require an initial guess of the peak correlation value. We propose two initialization schemes including a coarse-to-fine scheme for larger templates and a two-stage technique for small- and medium-sized templates. Our proposed algorithms are exact, i.e., having exhaustive equivalent accuracy, and are compared with the existing fast techniques using real image data sets on a wide variety of template sizes. While the actual speedups are data dependent, in most cases, our proposed algorithms have been found to be significantly faster than the other algorithms.

  20. Present and future of double-beta decay searches with bolometric detectors

    NASA Astrophysics Data System (ADS)

    Cardani, L.

    2016-01-01

    Thanks to the excellent energy resolution, high efficiency and versatility, bolometric detectors are primed for the search of neutrinoless double-beta decay (0 ν DBD). The most advanced bolometric experiment, CUORE, is studying the 0 ν DBD of 130Te using a 741kg array of TeO2 crystals. CUORE points to a 90% CL sensitivity on the half-life of 0 ν DBD of 9.5×1025 yr in 5yr, corresponding to an upper limit on the neutrino Majorana mass of 50-130meV. This sensitivity will allow to touch, but not to explore, the region corresponding to the inverted hierarchy mass scenario. In this document I present the status of CUORE and the possible upgrades of the bolometric technology in view of a next generation experiment.

  1. Terahertz bolometric detection by thermal noise in graphene field effect transistor

    NASA Astrophysics Data System (ADS)

    Mahjoub, Akram M.; Suzuki, Shinichi; Ouchi, Takahiro; Aoki, Nobuyuki; Miyamoto, Katsuhiko; Yamaguchi, Tomohiro; Omatsu, Takashige; Ishibashi, Koji; Ochiai, Yuichi

    2015-08-01

    Monolayer (MLG) and bilayer (BLG) graphene devices have been fabricated with integrated antennas and have been investigated for a wideband terahertz (THz) detection at room temperature (RT). The devices show opposite (metallic vs. semiconducting, respectively) temperature coefficients of their resistance, which enable us to achieve a reproducible THz response via bolometric heating. The bolometric nature of this response is inferred by determining the spectral density of the 1/f resistance noise exhibited by the devices, as a function of the incident THz power. With increasing power, the spectral density varies in the two devices in a manner that reflects the opposite signs of their resistance temperature coefficients. The bolometric response is furthermore confirmed for both devices by the variation of their Hooge parameter as a function of the THz power. Overall, these observations confirm the capacity of graphene devices for sensitive broadband THz detection near RT.

  2. Fast Waves at the Base of the Cochlea.

    PubMed

    Recio-Spinoso, Alberto; Rhode, William S

    2015-01-01

    Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy's results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy's theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM) responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves.

  3. Fast Waves at the Base of the Cochlea

    PubMed Central

    Recio-Spinoso, Alberto; Rhode, William S.

    2015-01-01

    Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy’s results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy’s theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM) responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves. PMID:26062000

  4. Digital image correlation based on a fast convolution strategy

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong

    2017-10-01

    In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.

  5. Parameter tuning for the NFFT based fast Ewald summation

    NASA Astrophysics Data System (ADS)

    Nestler, Franziska

    2016-07-01

    The computation of the Coulomb potentials and forces in charged particle systems under 3d-periodic boundary conditions is possible in an efficient way by utilizing the Ewald summation formulas and applying the fast Fourier transform (FFT). In this paper we consider the particle-particle NFFT (P^2NFFT) approach, which is based on the fast Fourier transform for nonequispaced data (NFFT) and compare the error behaviors regarding different window functions, which are used in order to approximate the given continuous charge distribution by a mesh based charge density. Typically B-splines are applied in the scope of particle mesh methods, as for instance within the well known particle-particle particle-mesh (P^3M) algorithm. The publicly available P^2NFFT algorithm allows the application of an oversampled FFT as well as the usage of different window functions. We consider for the first time also an approximation by Bessel functions and show how the resulting root mean square errors in the forces can be predicted precisely and efficiently. The results show that, if the parameters are tuned appropriately, the Bessel window function is in many cases even the better choice in terms of computational costs. Moreover, the results indicate that it is often advantageous in terms of efficiency to spend some oversampling within the NFFT while using a window function with a smaller support.

  6. A fast image encryption algorithm based on chaotic map

    NASA Astrophysics Data System (ADS)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  7. A fast quad-tree based two dimensional hierarchical clustering.

    PubMed

    Rajadurai, Priscilla; Sankaranarayanan, Swamynathan

    2012-01-01

    Recently, microarray technologies have become a robust technique in the area of genomics. An important step in the analysis of gene expression data is the identification of groups of genes disclosing analogous expression patterns. Cluster analysis partitions a given dataset into groups based on specified features. Euclidean distance is a widely used similarity measure for gene expression data that considers the amount of changes in gene expression. However, the huge number of genes and the intricacy of biological networks have highly increased the challenges of comprehending and interpreting the resulting group of data, increasing processing time. The proposed technique focuses on a QT based fast 2-dimensional hierarchical clustering algorithm to perform clustering. The construction of the closest pair data structure is an each level is an important time factor, which determines the processing time of clustering. The proposed model reduces the processing time and improves analysis of gene expression data.

  8. Fast-responding bio-based shape memory thermoplastic polyurethanes

    DOE PAGES

    Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan; ...

    2017-05-31

    Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less

  9. Statistical best bases for fast encoding in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Healy, Dennis M., Jr.; Warner, Douglas W.; Weaver, John B.

    1995-04-01

    We discuss the advantages and disadvantages of using a Karhunen-Loeve (K-L) expansion of a training set of images to reduce the number of encodes required for a magnetic resonance (MR) image of a new object. One form of this technique has been proposed and another implemented. We evaluate the error likely to be achieved as a function of the number of encodes and two technical problems: reduced SNR in the images and smoothing of the K-L functions in practice. As an alternative, we propose the use of joint best bases derived from the local trigonometric library as an approximation to the K-L basis. These bases approach the rate-distortion characteristic achieved by the K-L basis, but they are easier to use in MRI and can be applied with existing methods for fast acquisition.

  10. Fast model-based estimation of ancestry in unrelated individuals

    PubMed Central

    Alexander, David H.; Novembre, John; Lange, Kenneth

    2009-01-01

    Population stratification has long been recognized as a confounding factor in genetic association studies. Estimated ancestries, derived from multi-locus genotype data, can be used to perform a statistical correction for population stratification. One popular technique for estimation of ancestry is the model-based approach embodied by the widely applied program structure. Another approach, implemented in the program EIGENSTRAT, relies on Principal Component Analysis rather than model-based estimation and does not directly deliver admixture fractions. EIGENSTRAT has gained in popularity in part owing to its remarkable speed in comparison to structure. We present a new algorithm and a program, ADMIXTURE, for model-based estimation of ancestry in unrelated individuals. ADMIXTURE adopts the likelihood model embedded in structure. However, ADMIXTURE runs considerably faster, solving problems in minutes that take structure hours. In many of our experiments, we have found that ADMIXTURE is almost as fast as EIGENSTRAT. The runtime improvements of ADMIXTURE rely on a fast block relaxation scheme using sequential quadratic programming for block updates, coupled with a novel quasi-Newton acceleration of convergence. Our algorithm also runs faster and with greater accuracy than the implementation of an Expectation-Maximization (EM) algorithm incorporated in the program FRAPPE. Our simulations show that ADMIXTURE's maximum likelihood estimates of the underlying admixture coefficients and ancestral allele frequencies are as accurate as structure's Bayesian estimates. On real-world data sets, ADMIXTURE's estimates are directly comparable to those from structure and EIGENSTRAT. Taken together, our results show that ADMIXTURE's computational speed opens up the possibility of using a much larger set of markers in model-based ancestry estimation and that its estimates are suitable for use in correcting for population stratification in association studies. PMID:19648217

  11. Fast model-based estimation of ancestry in unrelated individuals.

    PubMed

    Alexander, David H; Novembre, John; Lange, Kenneth

    2009-09-01

    Population stratification has long been recognized as a confounding factor in genetic association studies. Estimated ancestries, derived from multi-locus genotype data, can be used to perform a statistical correction for population stratification. One popular technique for estimation of ancestry is the model-based approach embodied by the widely applied program structure. Another approach, implemented in the program EIGENSTRAT, relies on Principal Component Analysis rather than model-based estimation and does not directly deliver admixture fractions. EIGENSTRAT has gained in popularity in part owing to its remarkable speed in comparison to structure. We present a new algorithm and a program, ADMIXTURE, for model-based estimation of ancestry in unrelated individuals. ADMIXTURE adopts the likelihood model embedded in structure. However, ADMIXTURE runs considerably faster, solving problems in minutes that take structure hours. In many of our experiments, we have found that ADMIXTURE is almost as fast as EIGENSTRAT. The runtime improvements of ADMIXTURE rely on a fast block relaxation scheme using sequential quadratic programming for block updates, coupled with a novel quasi-Newton acceleration of convergence. Our algorithm also runs faster and with greater accuracy than the implementation of an Expectation-Maximization (EM) algorithm incorporated in the program FRAPPE. Our simulations show that ADMIXTURE's maximum likelihood estimates of the underlying admixture coefficients and ancestral allele frequencies are as accurate as structure's Bayesian estimates. On real-world data sets, ADMIXTURE's estimates are directly comparable to those from structure and EIGENSTRAT. Taken together, our results show that ADMIXTURE's computational speed opens up the possibility of using a much larger set of markers in model-based ancestry estimation and that its estimates are suitable for use in correcting for population stratification in association studies.

  12. Fast and accurate face recognition based on image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2017-05-01

    Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.

  13. A flexible fast 3D profilometry based on modulation measurement

    NASA Astrophysics Data System (ADS)

    Dou, Yunfu; Su, Xianyu; Chen, Yanfei; Wang, Ying

    2011-03-01

    This paper proposes a flexible fast profilometry based on modulation measurement. Two orthogonal gratings through a beam splitter are vertically projected on an object surface, and the measured object is placed between the imaging planes of the two gratings. Then the image of the object surface modulated by the orthogonal gratings can be obtained by a CCD camera in the same direction as the grating projection. This image is processed by the operations consisting of performing the Fourier transform, spatial frequency filtering and inverse Fourier transform. Using the modulation distributions of two grating patterns, we can reconstruct the 3D shape of the object. In the measurement process, we only need to capture one fringe pattern, so it is faster than the MMP and remains the advantages of it. In the article, the principle of this method, the setup of the measurement system, some simulations and primary experiment results are given. The simulative and experimental result proves it can restore the 3D shape of the complex object fast and comparatively accurate. Because only one fringe pattern is needed in the testing, our method has a promising extensive application prospect in real-time acquiring and dynamic measurement of 3D data of complex objects.

  14. Fast Field Calibration of MIMU Based on the Powell Algorithm

    PubMed Central

    Ma, Lin; Chen, Wanwan; Li, Bin; You, Zheng; Chen, Zhigang

    2014-01-01

    The calibration of micro inertial measurement units is important in ensuring the precision of navigation systems, which are equipped with microelectromechanical system sensors that suffer from various errors. However, traditional calibration methods cannot meet the demand for fast field calibration. This paper presents a fast field calibration method based on the Powell algorithm. As the key points of this calibration, the norm of the accelerometer measurement vector is equal to the gravity magnitude, and the norm of the gyro measurement vector is equal to the rotational velocity inputs. To resolve the error parameters by judging the convergence of the nonlinear equations, the Powell algorithm is applied by establishing a mathematical error model of the novel calibration. All parameters can then be obtained in this manner. A comparison of the proposed method with the traditional calibration method through navigation tests shows the classic performance of the proposed calibration method. The proposed calibration method also saves more time compared with the traditional calibration method. PMID:25177801

  15. A PDE-Based Fast Local Level Set Method

    NASA Astrophysics Data System (ADS)

    Peng, Danping; Merriman, Barry; Osher, Stanley; Zhao, Hongkai; Kang, Myungjoo

    1999-11-01

    We develop a fast method to localize the level set method of Osher and Sethian (1988, J. Comput. Phys.79, 12) and address two important issues that are intrinsic to the level set method: (a) how to extend a quantity that is given only on the interface to a neighborhood of the interface; (b) how to reset the level set function to be a signed distance function to the interface efficiently without appreciably moving the interface. This fast local level set method reduces the computational effort by one order of magnitude, works in as much generality as the original one, and is conceptually simple and easy to implement. Our approach differs from previous related works in that we extract all the information needed from the level set function (or functions in multiphase flow) and do not need to find explicitly the location of the interface in the space domain. The complexity of our method to do tasks such as extension and distance reinitialization is O(N), where N is the number of points in space, not O(N log N) as in works by Sethian (1996, Proc. Nat. Acad. Sci. 93, 1591) and Helmsen and co-workers (1996, SPIE Microlithography IX, p. 253). This complexity estimation is also valid for quite general geometrically based front motion for our localized method.

  16. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Lyman, J. D.; Bersier, D.; James, P. A.; Mazzali, P. A.; Eldridge, J. J.; Fraser, M.; Pian, E.

    2016-03-01

    Literature data are collated for 38 stripped-envelope core-collapse supernovae (SE SNe; i.e. SNe IIb, Ib, Ic and Ic-BL) that have good light-curve coverage in more than one optical band. Using bolometric corrections derived in previous work, the bolometric light curve of each SN is recovered and template bolometric light curves provided. Peak light distributions and decay rates are investigated; SNe subtypes are not cleanly distinguished in this parameter space, although some grouping of types does occur and there is a suggestion of a Phillips-like relation for most SNe Ic-BL. The bolometric light curves are modelled with a simple analytical prescription and compared to results from more detailed modelling. Distributions of the explosion parameters show the extreme nature of SNe Ic-BL in terms of their 56Ni mass and the kinetic energy, however ejected masses are similar to other subtypes. SNe Ib and Ic have very similar distributions of explosion parameters, indicating a similarity in progenitors. SNe IIb are the most homogeneous subtype and have the lowest average values for 56Ni mass, ejected mass, and kinetic energy. Ejecta masses for each subtype and SE SNe as a whole are inconsistent with those expected from very massive stars. The majority of the ejecta mass distribution is well described by more moderately massive progenitors in binaries, indicating these are the dominant progenitor channel for SE SNe.

  17. Piecing together the X-ray background: bolometric corrections for active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vasudevan, R. V.; Fabian, A. C.

    2007-11-01

    The X-ray background can be used to constrain the accretion history of supermassive black holes (SMBHs) in active galactic nuclei (AGN), with the SMBH mass density related to the energy density due to accretion. A knowledge of the hard X-ray bolometric correction, κ2-10keV, is a vital input into these studies, as it allows us to constrain the parameters of the accretion responsible for SMBH growth. Earlier studies assumed a constant bolometric correction for all AGN, and more recent work has suggested accounting for a dependence on AGN luminosity. Until recently, the variations in the disc emission in the ultraviolet (UV) have not been taken into account in this calculation; we show that such variations are important by construction of optical-to-X-ray spectral energy distributions for 54 AGN. In particular, we use Far Ultraviolet Spectroscopic Explorer (FUSE) UV and X-ray data from the literature to constrain the disc emission as well as possible. We find evidence for very significant spread in the bolometric corrections, with no simple dependence on luminosity being evident. Populations of AGN such as narrow-line Seyfert 1 nuclei, radio-loud and X-ray-weak AGN may have bolometric corrections which differ systematically from the rest of the AGN population. We identify other sources of uncertainty including intrinsic extinction in the optical-UV, X-ray and UV variability and uncertainties in SMBH mass estimates. Our results suggest a more well-defined relationship between the bolometric correction and Eddington ratio in AGN, with a transitional region at an Eddington ratio of ~0.1, below which the bolometric correction is typically 15-25, and above which it is typically 40-70. We consider the potential-implied parallels with the low/hard and high/soft states in Galactic black hole (GBH) accretion, and present bolometric corrections for the GBH binary GX 339-4 for comparison. Our findings reinforce previous studies proposing a multistate description of AGN

  18. Fast spectral color image segmentation based on filtering and clustering

    NASA Astrophysics Data System (ADS)

    Xing, Min; Li, Hongyu; Jia, Jinyuan; Parkkinen, Jussi

    2009-10-01

    This paper proposes a fast approach to spectral image segmentation. In the algorithm, two popular techniques are extended and applied to spectral color images: the mean-shift filtering and the kernel-based clustering. We claim that segmentation should be completed under illuminant F11 rather than directly using the original spectral reflectance, because such illumination can reduce data variability and expedite the following filtering. The modes obtained in the mean-shift filtering represent the local features of spectral images, and will be applied to segmentation in place of pixels. Since the modes are generally small in number, the eigendecomposition of kernel matrices, the crucial step in the kernelbased clustering, becomes much easier. The combination of these two techniques can efficiently enhance the performance of segmentation. Experiments show that the proposed segmentation method is feasible and very promising for spectral color images.

  19. [Fast Implementation Method of Protein Spots Detection Based on CUDA].

    PubMed

    Xiong, Bangshu; Ye, Yijia; Ou, Qiaofeng; Zhang, Haodong

    2016-02-01

    In order to improve the efficiency of protein spots detection, a fast detection method based on CUDA was proposed. Firstly, the parallel algorithms of the three most time-consuming parts in the protein spots detection algorithm: image preprocessing, coarse protein point detection and overlapping point segmentation were studied. Then, according to single instruction multiple threads executive model of CUDA to adopted data space strategy of separating two-dimensional (2D) images into blocks, various optimizing measures such as shared memory and 2D texture memory are adopted in this study. The results show that the operative efficiency of this method is obviously improved compared to CPU calculation. As the image size increased, this method makes more improvement in efficiency, such as for the image with the size of 2,048 x 2,048, the method of CPU needs 52,641 ms, but the GPU needs only 4,384 ms.

  20. Fast complex memory polynomial-based adaptive digital predistorter

    NASA Astrophysics Data System (ADS)

    Singh Sappal, Amandeep; Singh Patterh, Manjeet; Sharma, Sanjay

    2011-07-01

    Today's 3G wireless systems require both high linearity and high power amplifier (PA) efficiency. The high peak-to-average ratios of the digital modulation schemes used in 3G wireless systems require that the RF PA maintain high linearity over a large range while maintaining this high efficiency; these two requirements are often at odds with each other with many of the traditional amplifier architectures. In this article, a fast and easy-to-implement adaptive digital predistorter has been presented for Wideband Code Division Multiplexed signals using complex memory polynomial work function. The proposed algorithm has been implemented to test a Motorola LDMOSFET PA. The proposed technique also takes care of the memory effects of the PA, which have been ignored in many proposed techniques in the literature. The results show that the new complex memory polynomial-based adaptive digital predistorter has better linearisation performance than conventional predistortion techniques.

  1. Influence of ceramic package internal components on the performance of vacuum sealed uncooled bolometric detectors

    NASA Astrophysics Data System (ADS)

    Paquet, Alex; Deshaies, Sébastien; Desroches, Yan; Whalin, Jeff; Topart, Patrice

    2013-03-01

    INO has developed a hermetic vacuum packaging technology for uncooled bolometric detectors based on ceramic leadless chip carriers (LCC). Cavity pressures less than 3 mTorr are obtained. Processes are performed in a state-of-the art semi-automated vacuum furnace that allows for independent activation of non-evaporable thin film getters. The getter activation temperature is limited by both the anti-reflection coated silicon or germanium window and the MEMS device built on CMOS circuits. Temperature profiles used to achieve getter activation and vacuum sealing were optimized to meet lifetime and reliability requirements of packaged devices. Internal package components were carefully selected with respect to their outgassing behavior so that a good vacuum performance was obtained. In this paper, INO's packaging process is described. The influence of various package internal components, in particular the CMOS circuits, on vacuum performance is presented. The package cavity pressure was monitored using INO's pressure microsensors and the gas composition was determined by internal vapor analysis. Lifetime was derived from accelerated testing after storage of packaged detectors at various temperatures from room temperature to 120°C. A hermeticity yield over 80% was obtained for batches of twelve devices packaged simultaneously. Packaged FPAs submitted to standard MIL-STD-810 reliability testing (vibration, shock and temperature cycling) exhibited no change in IR response. Results show that vacuum performance strongly depends on CMOS circuit chips. Detectors packaged using a thin film getter show no change in cavity pressure after storage for more than 30 days at 120°C. Moreover, INO's vacuum sealing process is such that even without a thin film getter, a base pressure of less than 10 mTorr is obtained and no pressure change is observed after 40 days at 85°C.

  2. Refractive index fiber sensor based on Brillouin fast light

    NASA Astrophysics Data System (ADS)

    Chen, Jiali; Gan, Jiulin; Zhang, Zhishen; Yang, Tong; Deng, Huaqiu; Yang, Zhongmin

    2014-01-01

    A new type of refractive index fiber sensor was invented by combining the evanescent-field scattering sensing mechanism with the Brillouin fast light scheme. Superluminal light was realized using Brillouin lasing oscillation in a fiber ring cavity. The refractive index of the solution around the microfiber within the cavity is related to the group velocity of the fast light. This fast light refractive index sensor offers an alternative for high-accuracy sensing applications.

  3. Fast and Secure Chaos-Based Cryptosystem for Images

    NASA Astrophysics Data System (ADS)

    Farajallah, Mousa; El Assad, Safwan; Deforges, Olivier

    Nonlinear dynamic cryptosystems or chaos-based cryptosystems have been attracting a large amount of research since 1990. The critical aspect of cryptography is to face the growth of communication and to achieve the design of fast and secure cryptosystems. In this paper, we introduce three versions of a chaos-based cryptosystem based on a similar structure of the Zhang and Fridrich cryptosystems. Each version is composed of two layers: a confusion layer and a diffusion layer. The confusion layer is achieved by using a modified 2-D cat map to overcome the fixed-point problem and some other weaknesses, and also to increase the dynamic key space. The 32-bit logistic map is used as a diffusion layer for the first version, which is more robust than using it in 8-bit. In the other versions, the logistic map is replaced by a modified Finite Skew Tent Map (FSTM) for three reasons: to increase the nonlinearity properties of the diffusion layer, to overcome the fixed-point problem, and to increase the dynamic key space. Finally, all versions of the proposed cryptosystem are more resistant against known attacks and faster than Zhang cryptosystems. Moreover, the dynamic key space is much larger than the one used in Zhang cryptosystems. Performance and security analysis prove that the proposed cryptosystems are suitable for securing real-time applications.

  4. Efficient Video Stitching Based on Fast Structure Deformation.

    PubMed

    Li, Jing; Xu, Wei; Zhang, Jianguo; Zhang, Maojun; Wang, Zhengming; Li, Xuelong

    2015-12-01

    In computer vision, video stitching is a very challenging problem. In this paper, we proposed an efficient and effective wide-view video stitching method based on fast structure deformation that is capable of simultaneously achieving quality stitching and computational efficiency. For a group of synchronized frames, firstly, an effective double-seam selection scheme is designed to search two distinct but structurally corresponding seams in the two original images. The seam location of the previous frame is further considered to preserve the interframe consistency. Secondly, along the double seams, 1-D feature detection and matching is performed to capture the structural relationship between the two adjacent views. Thirdly, after feature matching, we propose an efficient algorithm to linearly propagate the deformation vectors to eliminate structure misalignment. At last, image intensity misalignment is corrected by rapid gradient fusion based on the successive over relaxation iteration (SORI) solver. A principled solution to the initialization of the SORI significantly reduced the number of iterations required. We have compared favorably our method with seven state-of-the-art image and video stitching algorithms as well as traditional ones. Experimental results show that our method outperforms the existing ones compared in terms of overall stitching quality and computational efficiency.

  5. A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.

    PubMed

    Ramsson, Eric S

    2016-01-01

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri dish and pipettes, for the calibration of carbon fiber microelectrodes (CFMs) using FSCV.

  6. Preliminary Results Of the 2007 Flight of the Solar Bolometric Imager at Solar Minimum

    NASA Astrophysics Data System (ADS)

    Bernasconi, P. N.; Foukal, P. V.; Eaton, H. H.; Noble, M.

    2008-05-01

    On September 13 2007, the Solar Bolometric Imager (SBI) successfully observed the Sun for several hours while suspended from a balloon in the stratosphere above New Mexico. The SBI represents a totally new approach in finding the sources of the solar irradiance variation. The SBI detector is an array of 320x240 thermal IR elements whose spectral absorptance has been extended and flattened by a deposited layer of gold-black. The telescope is a 30-cm Dall-Kirkham with uncoated primary and secondary Pyrex mirrors. The combination of telescope and bolometric array provide an image of the Sun with a constant spectral response between ~ 280 and 2600 nm, over a field of view of 960 x 720 arcsec with a pixel size of 3 arcsec. This is the second successful flight of SBI, following a successful one on September 2003 which produced the first measurements in broad band of the center-to-limb variation of bolometric facular contrast (a flight attempt from Antarctica in 2006 was aborted). This latest flight provided bolometric (integrated light) maps of the solar photosphere during a time of minimum of solar activity. The SBI imagery will enable us to evaluate the photometric contribution of weak magnetic structures (e.g. network) more accurately than has been achievable with spectrally selective imaging over restricted wavebands. It will also enable us to investigate the presence, if any, of other thermal structures unrelated to magnetic activity, such as e.g. giant cells and pole-to-equator temperature gradients. During the 16 hour flight the SBI gathered several thousand bolometric images that are now being processed to produce full-disk maps of spatial variation in total solar output at solar minimum. The SBI flight is also providing important engineering data to validate the space worthiness of the novel gold-blackened thermal array detectors. In this paper we will briefly describe the characteristics of the SBI, its in-flight performance, and we will present the first

  7. A fast method for particle picking in cryo-electron micrographs based on fast R-CNN

    NASA Astrophysics Data System (ADS)

    Xiao, Yifan; Yang, Guangwen

    2017-06-01

    We propose a fast method to automatically pick protein particles in cryo-EM micrographs, which is now completed manually in practice. Our method is based on Fast R-CNN, with sliding window as the regions proposal solution. To reduce the false positive detections, we set a single class for the major contaminant ice, and pick out all the ice particles in the whole datasets. Tests on the recently-published cryo-EM data of three proteins have demonstrated that our approach can automatically accomplish the human-level particle picking task, and we successfully reduce the test time from 1.5 minutes of previous deep learning method to 2 seconds without any recall or precision losses. Our program is available under the MIT License at https://github.com/xiao1fan/FastParticlePicker.

  8. Biased Randomized Algorithm for Fast Model-Based Diagnosis

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vartan, Farrokh

    2005-01-01

    A biased randomized algorithm has been developed to enable the rapid computational solution of a propositional- satisfiability (SAT) problem equivalent to a diagnosis problem. The closest competing methods of automated diagnosis are described in the preceding article "Fast Algorithms for Model-Based Diagnosis" and "Two Methods of Efficient Solution of the Hitting-Set Problem" (NPO-30584), which appears elsewhere in this issue. It is necessary to recapitulate some of the information from the cited articles as a prerequisite to a description of the present method. As used here, "diagnosis" signifies, more precisely, a type of model-based diagnosis in which one explores any logical inconsistencies between the observed and expected behaviors of an engineering system. The function of each component and the interconnections among all the components of the engineering system are represented as a logical system. Hence, the expected behavior of the engineering system is represented as a set of logical consequences. Faulty components lead to inconsistency between the observed and expected behaviors of the system, represented by logical inconsistencies. Diagnosis - the task of finding the faulty components - reduces to finding the components, the abnormalities of which could explain all the logical inconsistencies. One seeks a minimal set of faulty components (denoted a minimal diagnosis), because the trivial solution, in which all components are deemed to be faulty, always explains all inconsistencies. In the methods of the cited articles, the minimal-diagnosis problem is treated as equivalent to a minimal-hitting-set problem, which is translated from a combinatorial to a computational problem by mapping it onto the Boolean-satisfiability and integer-programming problems. The integer-programming approach taken in one of the prior methods is complete (in the sense that it is guaranteed to find a solution if one exists) and slow and yields a lower bound on the size of the

  9. Fast implementation of window-based methods for stereo correspondence

    NASA Astrophysics Data System (ADS)

    Uddin, Mohammad Shorif; Son, Tran Thai; Mita, Seiichi

    2003-11-01

    Stereo correspondence is a common tool in computer or robot vision, with numerous applications, such as determination of three-dimensional depth information of objects for virtual reality, autonomous vehicle and robot navigation, using a pair of left and right images from a stereo camera system. Computation time is an important factor in estimating dense disparity for the above applications. For of a pixel in the left image, its correspondence has to be searched in the right image based on epipolar line and maximum disparity search range. The intensity of a pixel alone in the left image does not have sufficient discriminatory power to determine its correspondence uniquely from the right image, thus other pixels in its neighborhood comprising a window is used for accurate estimation. In window-based approaches, this correspondence or disparity is conventionally determined based on matching windows of pixels by using sum of square differences, sum of absolute differences, or normalized correlation techniques. With a view to reduce the computation time, we propose a fast algorithm where it is not necessary to compute the window costs for all candidate pixels in the right image within the search range. To determine the correspondence of a pixel in the left image we just compute the window costs for candidate pixels in the right image whose intensities are different within a certain value to the intensity of the pixel in the left image. We applied our proposal to standard stereo images and found that we can easily reduce the computation time of about 30% with almost no degradation of accuracy.

  10. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    PubMed

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.

  11. DUK - A Fast and Efficient Kmer Based Sequence Matching Tool

    SciTech Connect

    Li, Mingkun; Copeland, Alex; Han, James

    2011-03-21

    A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmer hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.

  12. Fast recognition of musical sounds based on timbre.

    PubMed

    Agus, Trevor R; Suied, Clara; Thorpe, Simon J; Pressnitzer, Daniel

    2012-05-01

    Human listeners seem to have an impressive ability to recognize a wide variety of natural sounds. However, there is surprisingly little quantitative evidence to characterize this fundamental ability. Here the speed and accuracy of musical-sound recognition were measured psychophysically with a rich but acoustically balanced stimulus set. The set comprised recordings of notes from musical instruments and sung vowels. In a first experiment, reaction times were collected for three target categories: voice, percussion, and strings. In a go/no-go task, listeners reacted as quickly as possible to members of a target category while withholding responses to distractors (a diverse set of musical instruments). Results showed near-perfect accuracy and fast reaction times, particularly for voices. In a second experiment, voices were recognized among strings and vice-versa. Again, reaction times to voices were faster. In a third experiment, auditory chimeras were created to retain only spectral or temporal features of the voice. Chimeras were recognized accurately, but not as quickly as natural voices. Altogether, the data suggest rapid and accurate neural mechanisms for musical-sound recognition based on selectivity to complex spectro-temporal signatures of sound sources.

  13. Fast Minimum Variance Beamforming Based on Legendre Polynomials.

    PubMed

    Bae, MooHo; Park, Sung Bae; Kwon, Sung Jae

    2016-09-01

    Currently, minimum variance beamforming (MV) is actively investigated as a method that can improve the performance of an ultrasound beamformer, in terms of the lateral and contrast resolution. However, this method has the disadvantage of excessive computational complexity since the inverse spatial covariance matrix must be calculated. Some noteworthy methods among various attempts to solve this problem include beam space adaptive beamforming methods and the fast MV method based on principal component analysis, which are similar in that the original signal in the element space is transformed to another domain using an orthonormal basis matrix and the dimension of the covariance matrix is reduced by approximating the matrix only with important components of the matrix, hence making the inversion of the matrix very simple. Recently, we proposed a new method with further reduced computational demand that uses Legendre polynomials as the basis matrix for such a transformation. In this paper, we verify the efficacy of the proposed method through Field II simulations as well as in vitro and in vivo experiments. The results show that the approximation error of this method is less than or similar to those of the above-mentioned methods and that the lateral response of point targets and the contrast-to-speckle noise in anechoic cysts are also better than or similar to those methods when the dimensionality of the covariance matrices is reduced to the same dimension.

  14. Fast CEUS image segmentation based on self organizing maps

    NASA Astrophysics Data System (ADS)

    Paire, Julie; Sauvage, Vincent; Albouy-Kissi, Adelaïde; Ladam Marcus, Viviane; Marcus, Claude; Hoeffel, Christine

    2014-03-01

    Contrast-enhanced ultrasound (CEUS) has recently become an important technology for lesion detection and characterization. CEUS is used to investigate the perfusion kinetics in tissue over time, which relates to tissue vascularization. In this paper, we present an interactive segmentation method based on the neural networks, which enables to segment malignant tissue over CEUS sequences. We use Self-Organizing-Maps (SOM), an unsupervised neural network, to project high dimensional data to low dimensional space, named a map of neurons. The algorithm gathers the observations in clusters, respecting the topology of the observations space. This means that a notion of neighborhood between classes is defined. Adjacent observations in variables space belong to the same class or related classes after classification. Thanks to this neighborhood conservation property and associated with suitable feature extraction, this map provides user friendly segmentation tool. It will assist the expert in tumor segmentation with fast and easy intervention. We implement SOM on a Graphics Processing Unit (GPU) to accelerate treatment. This allows a greater number of iterations and the learning process to converge more precisely. We get a better quality of learning so a better classification. Our approach allows us to identify and delineate lesions accurately. Our results show that this method improves markedly the recognition of liver lesions and opens the way for future precise quantification of contrast enhancement.

  15. Bolometric detector systems for IR and mm-wave space astronomy

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.

    1996-01-01

    Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.

  16. Bolometric detector systems for IR and mm-wave space astronomy

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.

    1996-01-01

    Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.

  17. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    NASA Technical Reports Server (NTRS)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  18. Extraordinary TCR in Carbon Nanotube-Polymer Composites and Device Implications in Bolometric Infrared Detection

    DTIC Science & Technology

    2015-03-24

    DATES COVERED (From - To) 4. TITLE AND SUBTITLE Extraordinary TCR in Carbon nanotube -polymer composites and device implications in bolometric...record of TCR achieved in VOx and introducing a new threshold- activation responsivity. This new material, made of polymer- carbon nanotube composite...Defense Technical Information Center (DTIC) 8725 John J. Kingman Road, Suite 0944 Ft. Belvoir, VA 22060-6218 Extraordinary TCR in Carbon nanotube

  19. Enhanced bolometric properties of TiO2-x thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Ashok Kumar Reddy, Y.; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul; Sreedhara Reddy, P.

    2015-07-01

    The effect of thermal annealing on the bolometric properties of TiO2-x films was investigated. The test-patterned TiO2-x samples were annealed at 300 °C temperature in order to enhance their structural and electrical properties for effective infrared image sensor device applications. The crystallinity was changed from amorphous to rutile/anatase in annealed TiO2-x films. Compared to the as-deposited samples, a decrement of the band gap and a decrease of the electrical resistivity were perceived in annealed samples. We found that the annealed samples show linear current-voltage (I-V) characteristic performance, which implies that ohmic contact was well formed at the interface between the TiO2-x and the Ti electrode. Moreover, the annealed TiO2-x sample had a significantly low 1/f noise parameter (1.21 × 10-13) with a high bolometric parameter (β) value compared to those of the as-deposited samples. As a result, the thermal annealing process can be used to prepare TiO2-x film for a high-performance bolometric device.

  20. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    SciTech Connect

    Artusa, D. R.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; Biasi, A. De; Deninno, M. M.; Domizio, S. Di; Vacri, M. L. di; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. In conclusion, we highlight the main challenges and identify priorities for an R&D program addressing them.

  1. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    DOE PAGES

    Artusa, D. R.; Azzolini, O.; Balata, M.; ...

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capablemore » of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. In conclusion, we highlight the main challenges and identify priorities for an R&D program addressing them.« less

  2. Fast and automatic watermark resynchronization based on zernike moments

    NASA Astrophysics Data System (ADS)

    Kang, Xiangui; Liu, Chunhui; Zeng, Wenjun; Huang, Jiwu; Liu, Congbai

    2007-02-01

    In some applications such as real-time video applications, watermark detection needs to be performed in real time. To address image watermark robustness against geometric transformations such as the combination of rotation, scaling, translation and/or cropping (RST), many prior works choose exhaustive search method or template matching method to find the RST distortion parameters, then reverse the distortion to resynchronize the watermark. These methods typically impose huge computation burden because the search space is typically a multiple dimensional space. Some other prior works choose to embed watermarks in an RST invariant domain to meet the real time requirement. But it might be difficult to construct such an RST invariant domain. Zernike moments are useful tools in pattern recognition and image watermarking due to their orthogonality and rotation invariance property. In this paper, we propose a fast watermark resynchronization method based on Zernike moments, which requires only search over scaling factor to combat RST geometric distortion, thus significantly reducing the computation load. We apply the proposed method to circularly symmetric watermarking. According to Plancherel's Theorem and the rotation invariance property of Zernike moments, the rotation estimation only requires performing DFT on Zernike moments correlation value once. Thus for RST attack, we can estimate both rotation angle and scaling factor by searching for the scaling factor to find the overall maximum DFT magnitude mentioned above. With the estimated rotation angle and scaling factor parameters, the watermark can be resynchronized. In watermark detection, the normalized correlation between the watermark and the DFT magnitude of the test image is used. Our experimental results demonstrate the advantage of our proposed method. The watermarking scheme is robust to global RST distortion as well as JPEG compression. In particular, the watermark is robust to print-rescanning and

  3. Fast generation of Fresnel holograms based on multirate filtering.

    PubMed

    Tsang, Peter; Liu, Jung-Ping; Cheung, Wai-Keung; Poon, Ting-Chung

    2009-12-01

    One of the major problems in computer-generated holography is the high computation cost involved for the calculation of fringe patterns. Recently, the problem has been addressed by imposing a horizontal parallax only constraint whereby the process can be simplified to the computation of one-dimensional sublines, each representing a scan plane of the object scene. Subsequently the sublines can be expanded to a two-dimensional hologram through multiplication with a reference signal. Furthermore, economical hardware is available with which sublines can be generated in a computationally free manner with high throughput of approximately 100 M pixels/second. Apart from decreasing the computation loading, the sublines can be treated as intermediate data that can be compressed by simply downsampling the number of sublines. Despite these favorable features, the method is suitable only for the generation of white light (rainbow) holograms, and the resolution of the reconstructed image is inferior to the classical Fresnel hologram. We propose to generate holograms from one-dimensional sublines so that the above-mentioned problems can be alleviated. However, such an approach also leads to a substantial increase in computation loading. To overcome this problem we encapsulated the conversion of sublines to holograms as a multirate filtering process and implemented the latter by use of a fast Fourier transform. Evaluation reveals that, for holograms of moderate size, our method is capable of operating 40,000 times faster than the calculation of Fresnel holograms based on the precomputed table lookup method. Although there is no relative vertical parallax between object points at different distance planes, a global vertical parallax is preserved for the object scene as a whole and the reconstructed image can be observed easily.

  4. VizieR Online Data Catalog: Type-2 AGN from XMM-COSMOS bolometric output (Lusso+, 2011)

    NASA Astrophysics Data System (ADS)

    Lusso, E.; Comastri, A.; Vignali, C.; Zamorani, G.; Treister, E.; Sanders, D.; Bolzonella, M.; Bongiorno, A.; Brusa, M.; Civano, F.; Gilli, R.; Mainieri, V.; Nair, P.; Aller, M.; Carollo, M.; Koekemoer, A. M.; Merloni, A.; Trump, J. R.

    2011-09-01

    Study of the multi-wavelength properties of a sample of 255 spectroscopically identified X-ray selected Type-2 AGN from the XMM-COSMOS survey. For each source, X-ray ID, spectroscopic redshift, logarithm of the 2-10keV luminosity, logarithm of the bolometric luminosity, bolometric correction, logarithm of the stellar mass, star formation rate, absolute magnitude MU, absolute magnitude MV, absolute magnitude MJ (Johnson-Kron-Cousin system), morphological class. (1 data file).

  5. A Randomized Field Trial of the Fast ForWord Language Computer-Based Training Program

    ERIC Educational Resources Information Center

    Borman, Geoffrey D.; Benson, James G.; Overman, Laura

    2009-01-01

    This article describes an independent assessment of the Fast ForWord Language computer-based training program developed by Scientific Learning Corporation. Previous laboratory research involving children with language-based learning impairments showed strong effects on their abilities to recognize brief and fast sequences of nonspeech and speech…

  6. Fast and accurate line scanner based on white light interferometry

    NASA Astrophysics Data System (ADS)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  7. FastEtch: A Fast Sketch-based Assembler for Genomes.

    PubMed

    Ghosh, Priyanka; Kalyanaraman, Ananth

    2017-09-11

    De novo genome assembly describes the process of reconstructing an unknown genome from a large collection of short (or long) reads sequenced from the genome. A single run of a Next-Generation Sequencing (NGS) technology can produce billions of short reads, making genome assembly computationally demanding (both in terms of memory and time). One of the major computational steps in modern day short read assemblers involves the construction and use of a string data structure called the de Bruijn graph. In fact, a majority of short read assemblers build the complete de Bruijn graph for the set of input reads, and subsequently traverse and prune low-quality edges, in order to generate genomic "contigs"-the output of assembly. These steps of graph construction and traversal, contribute to well over 90% of the runtime and memory. In this paper, we present a fast algorithm, FastEtch, that uses sketching to build an approximate version of the de Bruijn graph for the purpose of generating an assembly. The algorithm uses Count-Min sketch, which is a probabilistic data structure for streaming data sets. The result is an approximate de Bruijn graph that stores information pertaining only to a selected subset of nodes that are most likely to contribute to the contig generation step. In addition, edges are not stored; instead that fraction which contribute to our contig generation are detected on-the-fly. This approximate approach is intended to significantly improve performance (both execution time and memory footprint) whilst possibly compromising on the output assembly quality. We present two main versions of the assembler-one that generates an assembly, where each contig represents a contiguous genomic region from one strand of the DNA, and another that generates an assembly, where the contigs can straddle either of the two strands of the DNA. For further scalability, we have implemented a multi-threaded parallel code. Experimental results using our algorithm conducted on E

  8. INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS

    SciTech Connect

    Pecaut, Mark J.; Mamajek, Eric E.

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVI{sub C} , 2MASS JHK{sub S} and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T {sub eff}) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T {sub eff} and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T {sub eff} scale for pre-MS stars is within ≅100 K of dwarfs at a given spectral type for stars based on an extensive literature survey, (2) a revised Q-method relation for dereddening UBV photometry of OB-type stars, and (3) introduce two candidate spectral standard stars as representatives of spectral types K8V and K9V.

  9. Nonuniform fast Fourier transform-based fast back-projection algorithm for stepped frequency continuous wave ground penetrating radar imaging

    NASA Astrophysics Data System (ADS)

    Qu, Lele; Yin, Yuqing

    2016-10-01

    Stepped frequency continuous wave ground penetrating radar (SFCW-GPR) systems are becoming increasingly popular in the GPR community due to the wider dynamic range and higher immunity to radio interference. The traditional back-projection (BP) algorithm is preferable for SFCW-GPR imaging in layered mediums scenarios for its convenience and robustness. However, the existing BP imaging algorithms are usually very computationally intensive, which limits their practical applications to SFCW-GPR imaging. To solve the above problem, a fast SFCW-GPR BP imaging algorithm based on nonuniform fast Fourier transform (NUFFT) technique is proposed in this paper. By reformulating the traditional BP imaging algorithm into the evaluations of NUFFT, the computational efficiency of NUFFT is exploited to reduce the computational complexity of the imaging reconstruction. Both simulation and experimental results have verified the effectiveness and improvement of computational efficiency of the proposed imaging method.

  10. Application of Fast Dynamic Allan Variance for the Characterization of FOGs-Based Measurement While Drilling

    PubMed Central

    Wang, Lu; Zhang, Chunxi; Gao, Shuang; Wang, Tao; Lin, Tie; Li, Xianmu

    2016-01-01

    The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long (6×105 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series. PMID:27941600

  11. Application of Fast Dynamic Allan Variance for the Characterization of FOGs-Based Measurement While Drilling.

    PubMed

    Wang, Lu; Zhang, Chunxi; Gao, Shuang; Wang, Tao; Lin, Tie; Li, Xianmu

    2016-12-07

    The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long ( 6 × 10 5 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series.

  12. Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography

    PubMed Central

    Jbabdi, S.; Bellec, P.; Toro, R.; Daunizeau, J.; Pélégrini-Issac, M.; Benali, H.

    2008-01-01

    Using geodesics for inferring white matter fibre tracts from diffusion-weighted MR data is an attractive method for at least two reasons: (i) the method optimises a global criterion, and hence is less sensitive to local perturbations such as noise or partial volume effects, and (ii) the method is fast, allowing to infer on a large number of connexions in a reasonable computational time. Here, we propose an improved fast marching algorithm to infer on geodesic paths. Specifically, this procedure is designed to achieve accurate front propagation in an anisotropic elliptic medium, such as DTI data. We evaluate the numerical performance of this approach on simulated datasets, as well as its robustness to local perturbation induced by fiber crossing. On real data, we demonstrate the feasibility of extracting geodesics to connect an extended set of brain regions. PMID:18299703

  13. High power, fast, microwave components based on beam generated plasmas

    NASA Astrophysics Data System (ADS)

    Manheimer, W. M.; Fernsler, R. F.; Gitlin, M. S.

    1998-10-01

    It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed.

  14. A novel fast full inversion based breast ultrasound elastography technique.

    PubMed

    Karimi, Hirad; Fenster, Aaron; Samani, Abbas

    2013-04-07

    Cancer detection and classification have been the focus of many imaging and therapeutic research studies. Elastography is a non-invasive technique to visualize suspicious soft tissue areas where tissue stiffness is used as image contrast mechanism. In this study, a breast ultrasound elastography system including software and hardware is proposed. Unlike current elastography systems that image the tissue strain and present it as an approximation to relative tissue stiffness, this system is capable of imaging the breast absolute Young's modulus in fast fashion. To improve the quality of elastography images, a novel system consisting of two load cells has been attached to the ultrasound probe. The load cells measure the breast surface forces to be used for calculating the tissue stress distribution throughout the breast. To facilitate fast imaging, this stress calculation is conducted by an accelerated finite element method. Acquired tissue displacements and surface force data are used as input to the proposed Young's modulus reconstruction technique. Numerical and tissue mimicking phantom studies were conducted for validating the proposed system. These studies indicated that fast imaging of breast tissue absolute Young's modulus using the proposed ultrasound elastography system is feasible. The tissue mimicking phantom study indicated that the system is capable of providing reliable absolute Young's modulus values for both normal tissue and tumour as the maximum Young's modulus reconstruction error was less than 6%. This demonstrates that the proposed system has a good potential to be used for clinical breast cancer assessment.

  15. A novel fast full inversion based breast ultrasound elastography technique

    NASA Astrophysics Data System (ADS)

    Karimi, Hirad; Fenster, Aaron; Samani, Abbas

    2013-04-01

    Cancer detection and classification have been the focus of many imaging and therapeutic research studies. Elastography is a non-invasive technique to visualize suspicious soft tissue areas where tissue stiffness is used as image contrast mechanism. In this study, a breast ultrasound elastography system including software and hardware is proposed. Unlike current elastography systems that image the tissue strain and present it as an approximation to relative tissue stiffness, this system is capable of imaging the breast absolute Young’s modulus in fast fashion. To improve the quality of elastography images, a novel system consisting of two load cells has been attached to the ultrasound probe. The load cells measure the breast surface forces to be used for calculating the tissue stress distribution throughout the breast. To facilitate fast imaging, this stress calculation is conducted by an accelerated finite element method. Acquired tissue displacements and surface force data are used as input to the proposed Young’s modulus reconstruction technique. Numerical and tissue mimicking phantom studies were conducted for validating the proposed system. These studies indicated that fast imaging of breast tissue absolute Young’s modulus using the proposed ultrasound elastography system is feasible. The tissue mimicking phantom study indicated that the system is capable of providing reliable absolute Young’s modulus values for both normal tissue and tumour as the maximum Young’s modulus reconstruction error was less than 6%. This demonstrates that the proposed system has a good potential to be used for clinical breast cancer assessment.

  16. Multiwavelength Energy Distributions and Bolometric Luminosities of the 12 Micron Galaxy Sample

    NASA Astrophysics Data System (ADS)

    Spinoglio, Luigi; Malkan, Matthew A.; Rush, Brian; Carrasco, Luis; Recillas-Cruz, Elsa

    1995-11-01

    Aperture photometry from our own observations and the literature is presented for the 12 microns galaxies in the near-infrared J, H, and K bands and, in some cases, in the L band. These data are corrected to "total" near-infrared magnitudes (with a typical uncertainty of 0.3 mag) for a direct comparison with our IRAS fluxes which apply to the entire galaxy. The corrected data are used to derive integrated total near-infrared and far-infrared luminosities. We then combine these with blue photometry and an estimate of the flux contribution from cold dust at wavelengths longward of 100 microns to derive the first bolometric luminosities for a large sample of galaxies. The presence of nonstellar radiation at 2-3 microns correlates very well with nonstellar IRAS colors. This enables us to identify a universal Seyfert nuclear continuum from near- to far-infrared wavelengths. Thus, there is a sequence of infrared colors which runs from a pure "normal galaxy" to a pure Seyfert/quasar nucleus. Seyfert 2 galaxies fall close to this same sequence, although only a few extreme narrow-line Seyfert galaxies have quasar-like colors, and these show strong evidence of harboring an obscured broad-line region. A corollary is that the host galaxies of Seyfert nuclei have normal near- to far-infrared spectra on average. Starburst galaxies lie significantly off the sequence, having a relative excess of 60 microns emission probably as a result of stochastically heated dust grains. We use these correlations to identify several combinations of infrared colors which discriminate between Seyfert 1 and 2 galaxies, LINERs, and ultraluminous starbursts. In the infrared, Seyfert 2 galaxies are much more like Seyfert 1s than they are like starbursts, presumably because both kinds of Seyferts are heated by a single central source, rather than a distributed region of star formation. Moreover, combining the [25-2.2 mum] color with the [60-12 mum] color, it appears that Seyfert 1 galaxies are

  17. Bolometric properties of reactively sputtered TiO2-x films for thermal infrared image sensors

    NASA Astrophysics Data System (ADS)

    Reddy, Y. Ashok Kumar; Kang, In-Ku; Shin, Young Bong; Lee, Hee Chul

    2015-09-01

    A heat-sensitive layer (TiO2-x ) was successfully deposited by RF reactive magnetron sputtering for infrared (IR) image sensors at different relative mass flow of oxygen gas (R O2) levels. The deposition rate was decreased with an increase in the percentage of R O2 from 3.4% to 3.7%. TiO2-x samples deposited at room temperature exhibited amorphous characteristics. Oxygen deficiency causes a change in the oxidation state and is assumed to decrease the Ti4+ component on the surfaces of TiO2-x films. The oxygen stoichiometry (x) in TiO2-x films decreased from 0.35 to 0.05 with increasing the R O2 level from 3.4% to 3.7%, respectively. In TiO2-x -test-patterned samples, the resistivity decreased with the temperature, confirming the typical semiconducting property. The bolometric properties of the resistivity, temperature coefficient of resistance (TCR), and the flicker (1/ f) noise parameter were determined at different x values in TiO2-x samples. The rate of TCR dependency with regard to the 1/ f noise parameter is a universal bolometric parameter (β), acting as the dynamic element in a bolometer. It is high when a sample has a relatively low resistivity (0.82 Ω·cm) and a lower 1/ f noise parameter (3.16   ×   10-12). The results of this study indicate that reactively sputtered TiO2-x is a viable bolometric material for uncooled IR image sensor devices.

  18. Solar disc radius determined from observations made during eclipses with bolometric and photometric instruments on board the PICARD satellite

    NASA Astrophysics Data System (ADS)

    Thuillier, G.; Zhu, P.; Shapiro, A. I.; Sofia, S.; Tagirov, R.; van Ruymbeke, M.; Perrin, J.-M.; Sukhodolov, T.; Schmutz, W.

    2017-07-01

    Context. Despite the importance of having an accurate measurement of the solar disc radius, there are large uncertainties of its value due to the use of different measurement techniques and instrument calibration. An item of particular importance is to establish whether the value of the solar disc radius correlates with the solar activity level. Aims: The main goal of this work is to measure the solar disc radius in the near-UV, visible, and near-IR regions of the solar spectrum. Methods: Three instruments on board the PICARD spacecraft, namely the Bolometric Oscillations Sensor (BOS), the PREcision MOnitoring Sensor (PREMOS), and a solar sensor (SES), are used to derive the solar disc radius using the light curves produced when the Sun is occulted by the Moon. Nine eclipses, from 2010 to 2013, resulted in 17 occultations as viewed from the moving satellite. The calculation of the solar disc radius uses a simulation of the light curve taking into account the center-to-limb variation provided by the Non-local thermodynamic Equilibrium Spectral SYnthesis (NESSY) code. Results: We derive individual values for the solar disc radius for each viewed eclipse. Tests for a systematic variation of the radius with the progression of the solar cycle yield no significant results during the three years of measurements within the uncertainty of our measurements. Therefore, we derive a more precise radius value by averaging these values. At one astronomical unit, we obtain 959.79 arcseconds (arcsec) from the bolometric experiment; from PREMOS measurements, we obtain 959.78 arcsec at 782 nm and 959.76 arcsec at 535 nm. We found 960.07 arcsec at 210 nm, which is a higher value than the other determinations given the photons at this wavelength originate from the upper photosphere and lower chromosphere. We also give a detailed comparison of our results with those previously published using measurements from space-based and ground-based instruments using the Moon angular radius

  19. X-Ray Bolometric Corrections for Compton-thick Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Baloković, M.; Ballantyne, D. R.; Bauer, F. E.; Boorman, P.; Buchner, J.; Brandt, W. N.; Comastri, A.; Del Moro, A.; Farrah, D.; Gandhi, P.; Harrison, F. A.; Koss, M.; Lanz, L.; Masini, A.; Ricci, C.; Stern, D.; Vasudevan, R.; Walton, D. J.

    2017-07-01

    We present X-ray bolometric correction factors, {κ }{Bol} (≡{L}{Bol}/{L}{{X}}), for Compton-thick (CT) active galactic nuclei (AGNs) with the aim of testing AGN torus models, probing orientation effects, and estimating the bolometric output of the most obscured AGNs. We adopt bolometric luminosities, {L}{Bol}, from literature infrared (IR) torus modeling and compile published intrinsic 2-10 keV X-ray luminosities, {L}{{X}}, from X-ray torus modeling of NuSTAR data. Our sample consists of 10 local CT AGNs, where both of these estimates are available. We test for systematic differences in {κ }{Bol} values produced when using two widely used IR torus models and two widely used X-ray torus models, finding consistency within the uncertainties. We find that the mean {κ }{Bol} of our sample in the range of {L}{Bol}≈ {10}42{--}{10}45 {erg} {{{s}}}-1 is log10 {κ }{Bol} = 1.44 ± 0.12 with an intrinsic scatter of ˜0.2 dex, and that our derived {κ }{Bol} values are consistent with previously established relationships between {κ }{Bol} and {L}{Bol} and {κ }{Bol} and Eddington ratio ({λ }{Edd}). We investigate if {κ }{Bol} is dependent on {N}{{H}} by comparing our results on CT AGNs to published results on less-obscured AGNs, finding no significant dependence. Since many of our sample are megamaser AGNs, known to be viewed edge-on, and furthermore under the assumptions of AGN unification whereby unobscured AGNs are viewed face-on, our result implies that the X-ray emitting corona is not strongly anisotropic. Finally, we present {κ }{Bol} values for CT AGNs identified in X-ray surveys as a function of their observed {L}{{X}}, where an estimate of their intrinsic {L}{{X}} is not available, and redshift, useful for estimating the bolometric output of the most obscured AGNs across cosmic time.

  20. Uncertainty Assessment for Fast Reactors Based on Nuclear Data Adjustment

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Ivanov, E.; Ecrabet, F.

    2014-04-01

    The paper presents IRSN's results of the OECD/NEA WPEC Subgroup 33 benchmark exercise which is focused upon combined use of differential and integral data using adjustment technique. The results are generated by BERING code using different sets of input data: integral parameters and sensitivity coefficients for fast benchmark experiments and applications computed by deterministic ERANOS code and Monte Carlo SCALE sequences, COMMARA-2.0 and JENDL-4.0 cross-section-covariance data and integral correlations provided by JAEA. The paper demonstrates results of the adjustment when using different input data and two adjustment algorithms implemented in BERING.

  1. Research of Fast 3D Imaging Based on Multiple Mode

    NASA Astrophysics Data System (ADS)

    Chen, Shibing; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda; Wang, Yu

    2016-02-01

    Three-dimensional (3D) imaging has received increasingly extensive attention and has been widely used currently. Lots of efforts have been put on three-dimensional imaging method and system study, in order to meet fast and high accurate requirement. In this article, we realize a fast and high quality stereo matching algorithm on field programmable gate array (FPGA) using the combination of time-of-flight (TOF) camera and binocular camera. Images captured from the two cameras own a same spatial resolution, letting us use the depth maps taken by the TOF camera to figure initial disparity. Under the constraint of the depth map as the stereo pairs when comes to stereo matching, expected disparity of each pixel is limited within a narrow search range. In the meanwhile, using field programmable gate array (FPGA, altera cyclone IV series) concurrent computing we can configure multi core image matching system, thus doing stereo matching on embedded system. The simulation results demonstrate that it can speed up the process of stereo matching and increase matching reliability and stability, realize embedded calculation, expand application range.

  2. Vision-based fast navigation of micro aerial vehicles

    NASA Astrophysics Data System (ADS)

    Loianno, Giuseppe; Kumar, Vijay

    2016-05-01

    We address the key challenges for autonomous fast flight for Micro Aerial Vehicles (MAVs) in 3-D, cluttered environments. For complete autonomy, the system must identify the vehicle's state at high rates, using either absolute or relative asynchronous on-board sensor measurements, use these state estimates for feedback control, and plan trajectories to the destination. State estimation requires information from different sensors to be fused, exploiting information from different, possible asynchronous sensors at different rates. In this work, we present techniques in the area of planning, control and visual-inertial state estimation for fast navigation of MAVs. We demonstrate how to solve on-board, on a small computational unit, the pose estimation, control and planning problems for MAVs, using a minimal sensor suite for autonomous navigation composed of a single camera and IMU. Additionally, we show that a consumer electronic device such as a smartphone can alternatively be employed for both sensing and computation. Experimental results validate the proposed techniques. Any consumer, provided with a smartphone, can autonomously drive a quadrotor platform at high speed, without GPS, and concurrently build 3-D maps, using a suitably designed app.

  3. [CUDA-based fast dose calculation in radiotherapy].

    PubMed

    Wang, Xianliang; Liu, Cao; Hou, Qing

    2011-10-01

    Dose calculation plays a key role in treatment planning of radiotherapy. Algorithms for dose calculation require high accuracy and computational efficiency. Finite size pencil beam (FSPB) algorithm is a method commonly adopted in the treatment planning system for radiotherapy. However, improvement on its computational efficiency is still desirable for such purpose as real time treatment planning. In this paper, we present an implementation of the FSPB, by which the most time-consuming parts in the algorithm are parallelized and ported on graphic processing unit (GPU). Compared with the FSPB completely running on central processing unit (CPU), the GPU-implemented FSPB can speed up the dose calculation for 25-35 times on a low price GPU (Geforce GT320) and for 55-100 times on a Tesla C1060, indicating that the GPU-implemented FSPB can provide fast enough dose calculations for real-time treatment planning.

  4. From FAST to E-FAST: an overview of the evolution of ultrasound-based traumatic injury assessment.

    PubMed

    Montoya, J; Stawicki, S P; Evans, D C; Bahner, D P; Sparks, S; Sharpe, R P; Cipolla, J

    2016-04-01

    Ultrasound is a ubiquitous and versatile diagnostic tool. In the setting of acute injury, ultrasound enhances the basic trauma evaluation, influences bedside decision-making, and helps determine whether or not an unstable patient requires emergent procedural intervention. Consequently, continued education of surgeons and other acute care practitioners in performing focused emergency ultrasound is of great importance. This article provides a synopsis of focused assessment with sonography for trauma (FAST) and the extended FAST (E-FAST) that incorporates basic thoracic injury assessment. The authors also review key pitfalls, limitations, controversies, and advances related to FAST, E-FAST, and ultrasound education.

  5. Accurate and fast narcissus calculation based on sequential ray trace.

    PubMed

    Liu, Yang; Zhong, Xiaobing; Zhong, Ning; Zheng, Changsheng; Wen, Lizhan

    2013-11-20

    A narcissus calculating method for cryogenic infrared imaging systems is proposed in this paper. The accuracy is largely improved compared to the traditional paraxial analysis, as ray blocking of the optical opertures is taken into account and real ray data are used during the calculation. The narcissus distribution on the full focal plane can be obtained via analyzing field by field. Meanwhile, it can be implemented simply and fast as sequential ray tracing is utilized and rays only pass through three surfaces during the cold return statistics for every retro-reflecting surface. According to this method, a general narcissus calculation package was realized using the macro language of optical design software Code V. The performance of the new method was tested by calculating an example system using this package and comparing it with traditional methods. The results showed that the new method produced the same result accuracy and information quantity as the nonsequential ray trace, while the whole analysis took only 5 s, which was significantly shortened compared with the nonsequential ray trace, which took about 30 min.

  6. An approach toward fast gradient-based image segmentation.

    PubMed

    Hell, Benjamin; Kassubeck, Marc; Bauszat, Pablo; Eisemann, Martin; Magnor, Marcus

    2015-09-01

    In this paper, we present and investigate an approach to fast multilabel color image segmentation using convex optimization techniques. The presented model is in some ways related to the well-known Mumford-Shah model, but deviates in certain important aspects. The optimization problem has been designed with two goals in mind. The objective function should represent fundamental concepts of image segmentation, such as incorporation of weighted curve length and variation of intensity in the segmented regions, while allowing transformation into a convex concave saddle point problem that is computationally inexpensive to solve. This paper introduces such a model, the nontrivial transformation of this model into a convex-concave saddle point problem, and the numerical treatment of the problem. We evaluate our approach by applying our algorithm to various images and show that our results are competitive in terms of quality at unprecedentedly low computation times. Our algorithm allows high-quality segmentation of megapixel images in a few seconds and achieves interactive performance for low resolution images.

  7. Single Pixel, Single Band Microstrip Antenna for Sub-Millimeter Wavelength Detection Using Transition Edge Superconducting Bolometric Receivers

    NASA Astrophysics Data System (ADS)

    Hunt, Cynthia; Bock, Jamie J.; Day, Peter K.; Goldin, Alexey; Lange, Andrew E.; Leduc, Henry G.; Vayonakis, Anastasios; Zmuidzinas, Jonas

    We are developing a single pixel antenna coupled bolometric detector as a precursor to the SAMBA (Superconducting Antenna-coupled Multi-frequency Bolometric Array) instrument. Our device consists of a dual slot microstrip antenna coupled to an Al/Ti/Au voltage-biased transition edge superconducting bolometer (TES). The coupling architecture involves propagating the signal along superconducting microstrip lines and terminating the lines at a normal metal resistor on a thermally isolated island. The device, which is inherently polarization sensitive, is optimized to for 100GHz band measurements, ideal for future implementation as an astronomical sub-millimeter instrument. We will present recent tests of these single pixel detectors.

  8. Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    SciTech Connect

    Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.

    2015-11-16

    Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.

  9. On fast iterative mapping algorithms for stripe based coarse-grained reconfigurable architectures

    NASA Astrophysics Data System (ADS)

    Mehta, Gayatri; Patel, Krunalkumar; Pollard, Nancy S.

    2015-01-01

    Reconfigurable devices have potential for great flexibility/efficiency, but mapping algorithms onto these architectures is a long-standing challenge. This paper addresses this challenge for stripe based coarse-grained reconfigurable architectures (CGRAs) by drawing on insights from graph drawing. We adapt fast, iterative algorithms from hierarchical graph drawing to the problem of mapping to stripe based architectures. We find that global sifting is 98 times as fast as simulated annealing and produces very compact designs with 17% less area on average, at a cost of 5% greater wire length. Interleaving iterations of Sugiyama and global sifting is 40 times as fast as simulated annealing and achieves somewhat more compact designs with 1.8% less area on average, at a cost of only 1% greater wire length. These solutions can enable fast design space exploration, rapid performance testing, and flexible programming of CGRAs "in the field."

  10. Fast Numerically Based Modeling for Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Sassen, D. S.; Everett, M. E.

    2007-05-01

    There is a need for computationally fast GPR numerical modeling. This includes circumstances where real time performance is needed, for example discrimination of landmines or UXO's, and in circumstances that require a high number of successive forward problems, for example inversion or imaging. Traditional numerical techniques such as finite difference or finite element are too slow for these applications, but they provide results from general scenarios such as scattering from very complicated shapes with high contrast. Neural networks may fit in the niche between analytical techniques and traditional numerical techniques. Our concept is training a neural network to associate the model inputs of electromagnetic properties of the background and targets, and the size and shape of the targets, with the output generated by a 3-D finite difference model. Successive examples from various electromagnetic properties and targets are displayed to the neural network, until the neural network has adapted itself though optimization. The trained neural network is now used as the forward model by displaying new input parameters and the neural network then generates the appropriate output. The results from the neural network are then compared to results from finite difference models to see how well the neural networks is performing and at what point it breaks down. Areas of poor fit can be addressed through further training. The neural network GPR model can be adapted by displaying additional finite difference results to the neural network, and can also be adapted to a specific field area by actual field data examples. Because of this adaptation ability the neural network GPR model can be optimized for specific environments and applications.

  11. FMFilter: A fast model based variant filtering tool.

    PubMed

    Akgün, Mete; Faruk Gerdan, Ö; Görmez, Zeliha; Demirci, Hüseyin

    2016-04-01

    The availability of whole exome and genome sequencing has completely changed the structure of genetic disease studies. It is now possible to solve the disease causing mechanisms within shorter time and budgets. For this reason, mining out the valuable information from the huge amount of data produced by next generation techniques becomes a challenging task. Current tools analyze sequencing data in various methods. However, there is still need for fast, easy to use and efficacious tools. Considering genetic disease studies, there is a lack of publicly available tools which support compound heterozygous and de novo models. Also, existing tools either require advanced IT expertise or are inefficient for handling large variant files. In this work, we provide FMFilter, an efficient sieving tool for next generation sequencing data produced by genetic disease studies. We develop a software which allows to choose the inheritance model (recessive, dominant, compound heterozygous and de novo), the affected and control individuals. The program provides a user friendly Graphical User Interface which eliminates the requirement of advanced computer techniques. It has various filtering options which enable to eliminate the majority of the false alarms. FMFilter requires negligible memory, therefore it can easily handle very large variant files like multiple whole genomes with ordinary computers. We demonstrate the variant reduction capability and effectiveness of the proposed tool with public and in-house data for different inheritance models. We also compare FMFilter with the existing filtering software. We conclude that FMFilter provides an effective and easy to use environment for analyzing next generation sequencing data from Mendelian diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. SACRD: a data base for fast reactor safety computer codes, operational procedures

    SciTech Connect

    Forsberg, V.M.; Arwood, J.W.; Greene, N.M.; Raiford, G.B.

    1980-09-01

    SACRD (Safety Analysis Computerized Reactor Data) is a data base of nondesign-related information used in computer codes for fast reactor safety analyses. This document reports the procedures used in SACRD to help assure a reasonable level of integrity of the material contained in the data base. It also serves to document much of the computer software used with the data base.

  13. Fast Algorithms for Earth Mover Distance Based on Optimal Transport and L1 Regularization II

    DTIC Science & Technology

    2016-09-01

    FAST ALGORITHMS FOR EARTH MOVER DISTANCE BASED ON OPTIMAL TRANSPORT AND L1 REGULARIZATION II WUCHEN LI, STANLEY OSHER, AND WILFRID GANGBO Abstract...We modify a fast algorithm which we designed in [15] for computing the Earth mover’s distance (EMD), whose cost is a Manhattan metric. From the theory...and converges very rapidly. Several numerical examples are presented. 1. Introduction The Earth Mover’s distance (EMD), also named the Monge problem

  14. Bolometric detectors for the high frequency instrument on the Planck surveyor

    NASA Technical Reports Server (NTRS)

    Koch, T. C.; Paine, C.; Husted, L.; Yun, M.; Lange, A.; Bock, J.; Jones, B.; Ade, P.; Sudiwala, R.

    2002-01-01

    The High Frequency Instrument (HFI) on Planck will obtain all-sky images of the Cosmic Microwave Background (CMB) and other astrophysical sources of emission with resolution of 9 arcniin at 100 GHz, 7 arcmin at 143 GHz and 5 arcniin at 217, 353, 545 and 857 GHz. The HFI focal plane will contain 48 silicon nitride micromesh bolometric detectors operating from a 100 mK heat sink. Four detectors in each of the 6 bands will detect the sum of the power in both linear polarizations. An additional 4 pair of detectors will provide sensitivity to linear polarization of emission at 143, 217 and 353 GHz. We report on the development of these detectors, which are being produced at the JPL Micro Devices Laboratory, packaged at JPL Electronics Packaging, characterized at 100 mK before delivery to our HFI consortium partners at the UWCC, UK.

  15. A two-stage 3He- 4He fridge for bolometric photometry

    NASA Astrophysics Data System (ADS)

    Maiani, T.; de Bernardis, P.; De Petris, M.; Granata, S.; Masi, S.; Orlando, A.; Aquilini, E.; Cardoni, P.; Martinis, L.; Scaramuzzi, F.

    1999-09-01

    We describe the design, construction and performance of a double stage 3He- 4He refrigerator, built to cool down a multiband bolometric photometer at the MITO telescope. The fridge was optimized to work without external pumps, with the main cryostat providing a 4.2 K thermostat at sea level and a 4.0 K one at high mountain pressure conditions. The measured ultimate temperature of the fridge is 290 mK, with a hold time of 81 h. The external heat input on the cold flange is ˜35 μW, with the main bath at 4.0 K. The recycle time is 8 h with a heat input on the thermostat during recycling of ˜6800 J. The cryostat can operate without any relevant changes to performance tilted down to 50° from the vertical position, as needed at the telescope focal plane.

  16. The CUORE cryostat: a 10 mK infrastructure for large bolometric arrays

    NASA Astrophysics Data System (ADS)

    Dell’Oro, S.; Alessandria, F.; Bucci, C.; Caminata, A.; Canonica, L.; Cappelli, L.; Cereseto, R.; Chott, N.; Copello, S.; Cremonesi, O.; D’Addabbo, A.; Franceschi, M. A.; Gorla, P.; Guetti, M.; Ligi, C.; Napolitano, T.; Nucciotti, A.; Orlandi, D.; Pagliarone, C. E.; Pattavina, L.; Santone, D.; Singh, V.; Taffarello, L.; Terranova, F.

    2017-09-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) experiment is presently in the final phases of its commissioning at the Gran Sasso Underground Laboratory (Italy). The CUORE cryogenic system will have to guarantee the optimal operation temperature of the detector (∼ 10 mK) for a live-time of 5 years. Furthermore, to avoid radioactive background, about 7 tonnes of lead are cooled to below 4 K and only few construction materials are acceptable. The CUORE detector will be by far the largest mass ever cooled to 10 mK. A description of the CUORE cryostat is presented and the specific characteristics and the performances are illustrated. The results of the (recently concluded) cryostat commissioning are also reported. They show that the CUORE cryostat is now ready to host the detector, thus confirming the possibility of realizing large bolometric arrays for rare event physics.

  17. Estimates of the bolometric albedos and radiation balance of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Rages, K.; Baines, K. H.; Bergstralh, J. T.; Wenkert, D.

    1986-01-01

    Models possessing an upper haze layer of finite optical depth and a lower cloud layer of infinite optical depth at discrete altitudes are used to bound the wavelength-averaged phase integrals and bolometric albedos of Uranus and Neptune. The models differ in the assumed value of the particles' single scattering phase function and the wavelength dependence of the haze optical depth. A range of phase functions, from the isotropic to those characterizing Titan, Jupiter, and Saturn atmosphere particles, are discussed. The results obtained imply that the meteorological regimes in the observable atmospheres of Uranus and Neptune may differ considerably; internal heat flux could play a much more important role for Neptune than for Uranus.

  18. A fast and accurate FPGA based QRS detection system.

    PubMed

    Shukla, Ashish; Macchiarulo, Luca

    2008-01-01

    An accurate Field Programmable Gate Array (FPGA) based ECG Analysis system is described in this paper. The design, based on a popular software based QRS detection algorithm, calculates the threshold value for the next peak detection cycle, from the median of eight previously detected peaks. The hardware design has accuracy in excess of 96% in detecting the beats correctly when tested with a subset of five 30 minute data records obtained from the MIT-BIH Arrhythmia database. The design, implemented using a proprietary design tool (System Generator), is an extension of our previous work and uses 76% resources available in a small-sized FPGA device (Xilinx Spartan xc3s500), has a higher detection accuracy as compared to our previous design and takes almost half the analysis time in comparison to software based approach.

  19. Fast Marching Tree: a Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions*

    PubMed Central

    Janson, Lucas; Schmerling, Edward; Clark, Ashley; Pavone, Marco

    2015-01-01

    In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a “lazy” dynamic programming recursion on a predetermined number of probabilistically-drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n−1/d+ρ), where n is the number of sampled points, d is the dimension of the configuration space, and ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our the-oretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT

  20. Spectral Energy Distribution and Bolometric Luminosity of the Cool Brown Dwarf Gliese 229B

    NASA Technical Reports Server (NTRS)

    Matthews, K.; Nakajima, T.; Kulkarni, S. R.; Oppenheimer, B. R.

    1996-01-01

    Infrared broadband photometry of the cool brown dwarf Gliese 229B extending in wavelength from 0.8 to 10.5 micron is reported. These results are derived from both new data and reanalyzed, previously published data. Existing spectral data reported have been rereduced and recalibrated. The close proximity of the bright Gliese 229A to the dim Gliese 229B required the use of special techniques for the observations and also for the data analysis. We describe these procedures in detail. The observed luminosity between 0.8 and 10.5 micron is (4.9 +/- 0.6) x 10(exp -6) solar luminosity. The observed spectral energy distribution is in overall agreement with a dust-free model spectrum by Tsuji et al. for T(eff) approx. equal to 900 K. If this model is used to derive the bolometric correction, the best estimate of the bolometric luminosity is 6.4 x 10(exp -6) solar luminosity and 50% of this luminosity ties between 1 and 2.5 microns. Our best estimate of the effective temperature is 900 K. From the observed near-infrared spectrum and the spectral energy distribution, the brightness temperatures (T(sub B) are estimated. The highest, T(sub B) = 1640 K, is seen at the peak of the J band spectrum, while the lowest, T(sub B) is less than or equal to 600 K, is at 3.4 microns, which corresponds to the location of the fundamental methane band.

  1. How to Constrain Your M Dwarf: Measuring Effective Temperature, Bolometric Luminosity, Mass, and Radius

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Feiden, Gregory A.; Gaidos, Eric; Boyajian, Tabetha; von Braun, Kaspar

    2015-05-01

    Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars’ complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (Teff) and the Stefan-Boltzmann law to determine radii of 183 nearby K7-M7 single stars with a precision of 2%-5%. Our improved stellar parameters enable us to develop model-independent relations between Teff or absolute magnitude and radius, as well as between color and Teff. The derived Teff-radius relation depends strongly on [Fe/H], as predicted by theory. The relation between absolute KS magnitude and radius can predict radii accurate to ≃ 3%. We derive bolometric corrections to the V{{R}C}{{I}C}grizJH{{K}S} and Gaia passbands as a function of color, accurate to 1%-3%. We confront the reliability of predictions from Dartmouth stellar evolution models using a Markov chain Monte Carlo to find the values of unobservable model parameters (mass, age) that best reproduce the observed effective temperature and bolometric flux while satisfying constraints on distance and metallicity as Bayesian priors. With the inferred masses we derive a semi-empirical mass-absolute magnitude relation with a scatter of 2% in mass. The best-agreement models overpredict stellar Teff values by an average of 2.2% and underpredict stellar radii by 4.6%, similar to differences with values from low-mass eclipsing binaries. These differences are not correlated with metallicity, mass, or indicators of activity, suggesting issues with the underlying model assumptions, e.g., opacities or convective mixing length.

  2. Visual saliency-based fast intracoding algorithm for high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin

    2017-01-01

    Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.

  3. Fast Fragmentation of Networks Using Module-Based Attacks

    PubMed Central

    Requião da Cunha, Bruno; González-Avella, Juan Carlos; Gonçalves, Sebastián

    2015-01-01

    In the multidisciplinary field of Network Science, optimization of procedures for efficiently breaking complex networks is attracting much attention from a practical point of view. In this contribution, we present a module-based method to efficiently fragment complex networks. The procedure firstly identifies topological communities through which the network can be represented using a well established heuristic algorithm of community finding. Then only the nodes that participate of inter-community links are removed in descending order of their betweenness centrality. We illustrate the method by applying it to a variety of examples in the social, infrastructure, and biological fields. It is shown that the module-based approach always outperforms targeted attacks to vertices based on node degree or betweenness centrality rankings, with gains in efficiency strongly related to the modularity of the network. Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method breaks the original network in fragments which are twenty times smaller in size than the fragments left by betweenness-based attack. PMID:26569610

  4. Fast Fragmentation of Networks Using Module-Based Attacks.

    PubMed

    Requião da Cunha, Bruno; González-Avella, Juan Carlos; Gonçalves, Sebastián

    2015-01-01

    In the multidisciplinary field of Network Science, optimization of procedures for efficiently breaking complex networks is attracting much attention from a practical point of view. In this contribution, we present a module-based method to efficiently fragment complex networks. The procedure firstly identifies topological communities through which the network can be represented using a well established heuristic algorithm of community finding. Then only the nodes that participate of inter-community links are removed in descending order of their betweenness centrality. We illustrate the method by applying it to a variety of examples in the social, infrastructure, and biological fields. It is shown that the module-based approach always outperforms targeted attacks to vertices based on node degree or betweenness centrality rankings, with gains in efficiency strongly related to the modularity of the network. Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method breaks the original network in fragments which are twenty times smaller in size than the fragments left by betweenness-based attack.

  5. Influence of diurnal variation and fasting on serum iron concentrations in a community-based population.

    PubMed

    Nguyen, Leonard T; Buse, Joshua D; Baskin, Leland; Sadrzadeh, S M Hossein; Naugler, Christopher

    2017-09-23

    Serum iron is an important clinical test to help identify cases of iron deficiency or overload. Fluctuations caused by diurnal variation and diet are thought to influence test results, which may affect clinical patient management. We examined the impact of these preanalytical factors on iron concentrations in a large community-based cohort. Serum iron concentration, blood collection time, fasting duration, patient age and sex were obtained for community-based clinical testing from the Laboratory Information Service at Calgary Laboratory Services for the period of January 2011 to December 2015. A total of 276,307 individual test results were obtained. Iron levels were relatively high over a long period from 8:00 to 15:00. Mean concentrations were highest at blood collection times of 11:00 for adult men and 12:00 for adult women and children, however iron levels peaked as late as 15:00 in teenagers. With regard to fasting, iron levels required approximately 5h post-prandial time to return to a baseline, except for children and teenage females where no significant variation was seen until after 11h fasting. After 10h fasting, iron concentrations in all patient groups gradually increased to higher levels compared to earlier fasting times. Serum iron concentrations remain reasonably stable during most daytime hours for testing purposes. In adults, blood collection after 5 to 9h fasting provides a representative estimate of a patient's iron levels. For patients who have fasted overnight, i.e. ≥12h fasting, clinicians should be aware that iron concentrations may be elevated beyond otherwise usual levels. Copyright © 2017. Published by Elsevier Inc.

  6. Whisker Contact Detection of Rodents Based on Slow and Fast Mechanical Inputs

    PubMed Central

    Claverie, Laure N.; Boubenec, Yves; Debrégeas, Georges; Prevost, Alexis M.; Wandersman, Elie

    2017-01-01

    Rodents use their whiskers to locate nearby objects with an extreme precision. To perform such tasks, they need to detect whisker/object contacts with a high temporal accuracy. This contact detection is conveyed by classes of mechanoreceptors whose neural activity is sensitive to either slow or fast time varying mechanical stresses acting at the base of the whiskers. We developed a biomimetic approach to separate and characterize slow quasi-static and fast vibrational stress signals acting on a whisker base in realistic exploratory phases, using experiments on both real and artificial whiskers. Both slow and fast mechanical inputs are successfully captured using a mechanical model of the whisker. We present and discuss consequences of the whisking process in purely mechanical terms and hypothesize that free whisking in air sets a mechanical threshold for contact detection. The time resolution and robustness of the contact detection strategies based on either slow or fast stress signals are determined. Contact detection based on the vibrational signal is faster and more robust to exploratory conditions than the slow quasi-static component, although both slow/fast components allow localizing the object. PMID:28119582

  7. Fast vision-based catheter 3D reconstruction.

    PubMed

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D

    2016-07-21

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  8. Fast Dictionary-Based Reconstruction for Diffusion Spectrum Imaging

    PubMed Central

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F.; Yendiki, Anastasia; Wald, Lawrence L.; Adalsteinsson, Elfar

    2015-01-01

    Diffusion Spectrum Imaging (DSI) reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation (TV) transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using Matlab running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using Principal Component Analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm. PMID:23846466

  9. Fast vision-based catheter 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.

    2016-07-01

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  10. Fast rule-based bioactivity prediction using associative classification mining

    PubMed Central

    2012-01-01

    Relating chemical features to bioactivities is critical in molecular design and is used extensively in the lead discovery and optimization process. A variety of techniques from statistics, data mining and machine learning have been applied to this process. In this study, we utilize a collection of methods, called associative classification mining (ACM), which are popular in the data mining community, but so far have not been applied widely in cheminformatics. More specifically, classification based on predictive association rules (CPAR), classification based on multiple association rules (CMAR) and classification based on association rules (CBA) are employed on three datasets using various descriptor sets. Experimental evaluations on anti-tuberculosis (antiTB), mutagenicity and hERG (the human Ether-a-go-go-Related Gene) blocker datasets show that these three methods are computationally scalable and appropriate for high speed mining. Additionally, they provide comparable accuracy and efficiency to the commonly used Bayesian and support vector machines (SVM) methods, and produce highly interpretable models. PMID:23176548

  11. Fast dictionary-based reconstruction for diffusion spectrum imaging.

    PubMed

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar

    2013-11-01

    Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.

  12. Fast optical recording media based on semiconductor nanostructures for image recording and processing

    SciTech Connect

    Kasherininov, P. G. Tomasov, A. A.

    2008-11-15

    Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10{sup 6} cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10{sup -2}V/cm{sup 2}, and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.

  13. Ultra-fast cell counters based on microtubular waveguides

    PubMed Central

    Bausch, Cornelius S.; Heyn, Christian; Hansen, Wolfgang; Wolf, Insa M. A.; Diercks, Björn-Philipp; Guse, Andreas H.; Blick, Robert H.

    2017-01-01

    We present a radio-frequency impedance-based biosensor embedded inside a semiconductor microtube for the in-flow detection of single cells. An impedance-matched tank circuit and a tight wrapping of the electrodes around the sensing region, which creates a close, leakage current-free contact between cells and electrodes, yields a high signal-to-noise ratio. We experimentally show a twofold improved sensitivity of our three-dimensional electrode structure to conventional planar electrodes and support these findings by finite element simulations. Finally, we report on the differentiation of polystyrene beads, primary mouse T lymphocytes and Jurkat T lymphocytes using our device. PMID:28134293

  14. Fast, moment-based estimation methods for delay network tomography

    SciTech Connect

    Lawrence, Earl Christophre; Michailidis, George; Nair, Vijayan N

    2008-01-01

    Consider the delay network tomography problem where the goal is to estimate distributions of delays at the link-level using data on end-to-end delays. These measurements are obtained using probes that are injected at nodes located on the periphery of the network and sent to other nodes also located on the periphery. Much of the previous literature deals with discrete delay distributions by discretizing the data into small bins. This paper considers more general models with a focus on computationally efficient estimation. The moment-based schemes presented here are designed to function well for larger networks and for applications like monitoring that require speedy solutions.

  15. Ultra-fast cell counters based on microtubular waveguides

    NASA Astrophysics Data System (ADS)

    Bausch, Cornelius S.; Heyn, Christian; Hansen, Wolfgang; Wolf, Insa M. A.; Diercks, Björn-Philipp; Guse, Andreas H.; Blick, Robert H.

    2017-01-01

    We present a radio-frequency impedance-based biosensor embedded inside a semiconductor microtube for the in-flow detection of single cells. An impedance-matched tank circuit and a tight wrapping of the electrodes around the sensing region, which creates a close, leakage current-free contact between cells and electrodes, yields a high signal-to-noise ratio. We experimentally show a twofold improved sensitivity of our three-dimensional electrode structure to conventional planar electrodes and support these findings by finite element simulations. Finally, we report on the differentiation of polystyrene beads, primary mouse T lymphocytes and Jurkat T lymphocytes using our device.

  16. Improved Coomassie Blue Dye-Based Fast Staining Protocol for Proteins Separated by SDS-PAGE

    PubMed Central

    Májek, Pavel; Riedelová-Reicheltová, Zuzana; Pecánková, Klára; Dyr, Jan E.

    2013-01-01

    The time required to visualize proteins using Coomassie Blue dye has been significantly reduced with the introduction of fast staining protocols based on staining with a Coomassie Blue dye solution at boiling temperatures. However, fast stainings suffer from high gel backgrounds, reducing the signal-to-noise ratio and limiting the number of detectable spots in the case of 2D SDS-PAGE. The aim of this work was to eliminate the high gel background, and thus improve fast staining protocols based on Coomassie Blue dye. We show that merely replacing water with a 4 mM EDTA washing solution at boiling temperatures, results in a transparent gel background within 50 to 60 minutes of destaining. Moreover, when a combination of imidazole-zinc reverse staining and Coomassie Blue-based fast staining is used the sensitivity is improved significantly; nanogram amounts of proteins can be detected using 1D SDS-PAGE, and about 30% to 60% more spots can be detected with 2D SDS-PAGE in plasma, platelet, and rat brain tissue samples. This work represents an optimized fast staining protocol with improved sensitivity, requiring between 60 to 75 minutes to complete protein visualization. PMID:24278455

  17. Improved coomassie blue dye-based fast staining protocol for proteins separated by SDS-PAGE.

    PubMed

    Májek, Pavel; Riedelová-Reicheltová, Zuzana; Pecánková, Klára; Dyr, Jan E

    2013-01-01

    The time required to visualize proteins using Coomassie Blue dye has been significantly reduced with the introduction of fast staining protocols based on staining with a Coomassie Blue dye solution at boiling temperatures. However, fast stainings suffer from high gel backgrounds, reducing the signal-to-noise ratio and limiting the number of detectable spots in the case of 2D SDS-PAGE. The aim of this work was to eliminate the high gel background, and thus improve fast staining protocols based on Coomassie Blue dye. We show that merely replacing water with a 4 mM EDTA washing solution at boiling temperatures, results in a transparent gel background within 50 to 60 minutes of destaining. Moreover, when a combination of imidazole-zinc reverse staining and Coomassie Blue-based fast staining is used the sensitivity is improved significantly; nanogram amounts of proteins can be detected using 1D SDS-PAGE, and about 30% to 60% more spots can be detected with 2D SDS-PAGE in plasma, platelet, and rat brain tissue samples. This work represents an optimized fast staining protocol with improved sensitivity, requiring between 60 to 75 minutes to complete protein visualization.

  18. Fast Object Motion Estimation Based on Dynamic Stixels

    PubMed Central

    Morales, Néstor; Morell, Antonio; Toledo, Jonay; Acosta, Leopoldo

    2016-01-01

    The stixel world is a simplification of the world in which obstacles are represented as vertical instances, called stixels, standing on a surface assumed to be planar. In this paper, previous approaches for stixel tracking are extended using a two-level scheme. In the first level, stixels are tracked by matching them between frames using a bipartite graph in which edges represent a matching cost function. Then, stixels are clustered into sets representing objects in the environment. These objects are matched based on the number of stixels paired inside them. Furthermore, a faster, but less accurate approach is proposed in which only the second level is used. Several configurations of our method are compared to an existing state-of-the-art approach to show how our methodology outperforms it in several areas, including an improvement in the quality of the depth reconstruction. PMID:27483265

  19. GPU-based fast pencil beam algorithm for proton therapy.

    PubMed

    Fujimoto, Rintaro; Kurihara, Tsuneya; Nagamine, Yoshihiko

    2011-03-07

    Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.

  20. GPU-based fast pencil beam algorithm for proton therapy

    NASA Astrophysics Data System (ADS)

    Fujimoto, Rintaro; Kurihara, Tsuneya; Nagamine, Yoshihiko

    2011-03-01

    Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.

  1. Fast Solvers for Transient Hydraulic Tomography based on Laplace transform

    NASA Astrophysics Data System (ADS)

    Bakhos, T.; Saibaba, A.; Kitanidis, P. K.

    2013-12-01

    Transient Hydraulic Tomography (THT) is a method to estimate the parameters hydraulic conductivity and specific storage, from measurements of hydraulic heads or pressure obtained in a series of interference tests in aquifer geologic formation such as an aquifer (i.e., pumping at one location and depth while measuring the response at several others). These measurements can be used to reconstruct the spatial variation of hydraulic parameters by solving a nonlinear inverse problem, which we tackle using the geostatistical approach. A central challenge associated with the application of the geostatistical approach to THT, is the computational cost associated with constructing the Jacobian - which represents the sensitivity of the measurements to the unknown parameters. This essentially requires repeated solutions to the 'forward problem' and the 'adjoint problem' for determination of derivatives, which are both time-dependent parabolic partial differential equations. To solve the 'forward problem', we use a Laplace Transform based exponential time integrator combined with a Krylov subspace based method for solving shifted systems. This approach allows us to independently evaluate the transient problem at different time instants at (almost) the cost of solving one steady-state groundwater equation. A similar approach can be used to accelerate the solution of the 'adjoint problem' as well. As we demonstrate, this approach dramatically lowers the computational cost associated with evaluating the Jacobian and as a result, the reconstruction of the parameters. The performance of our algorithm is demonstrated on some challenging synthetic examples; in particular, we apply it to large-scale inverse problems arising from transient hydraulic tomography.

  2. Fast integrator based data acquisition system for the SST-1 Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Patel, Kiran; Kumar, Ajai

    2010-04-01

    An operational transconductance amplifier based fast charge-integrating module (FCIM) is designed and developed for an easy acquisition of fast Thomson scattered and background signal. FCIM based data acquisition technique can be used for the measurement of charge pulses of <20 ns duration. The response of the module is tested using a standard pulsed charge-generating module. The measuring charge range of the module depends on the integrating capacitor. Comparison of the performance of FCIM to commercially available module shows that it has better dynamic range with higher sensitivity and less measurement error. The module is quite cost effective and has many new features.

  3. Fast integrator based data acquisition system for the SST-1 Thomson scattering system.

    PubMed

    Patel, Kiran; Kumar, Ajai

    2010-04-01

    An operational transconductance amplifier based fast charge-integrating module (FCIM) is designed and developed for an easy acquisition of fast Thomson scattered and background signal. FCIM based data acquisition technique can be used for the measurement of charge pulses of <20 ns duration. The response of the module is tested using a standard pulsed charge-generating module. The measuring charge range of the module depends on the integrating capacitor. Comparison of the performance of FCIM to commercially available module shows that it has better dynamic range with higher sensitivity and less measurement error. The module is quite cost effective and has many new features.

  4. Fasting time and vitamin B12 levels in a community-based population.

    PubMed

    Orton, Dennis J; Naugler, Christopher; Sadrzadeh, S M Hossein

    2016-07-01

    Vitamin B12, also known as cobalamin (Cbl), is an essential vitamin that manifests with numerous severe but non-specific symptoms in cases of deficiency. Assessing Cbl status often requires fasting, although this requirement is not standard between institutions. This study evaluated the impact of fasting on Cbl levels in a large community-based cohort in an effort to promote standardization of Cbl testing between sites. Laboratory data for Cbl, fasting time, patient age and sex were obtained from laboratory information service from Calgary Laboratory Services (CLS) for the period of April 2011 to June 2015. CLS is the sole supplier of laboratory services in the Southern Alberta region in Canada (population, approximately 1.4 million). To investigate potential sex-specific effects of fasting on Cbl levels, males and females were analyzed separately using linear regression models. A total of 346,957 individual patient results (196,849 females, 146,085 males) were obtained. The mean plasma Cbl level was 386.5 (±195.6) pmol/L and 412.0 (±220.8) pmol/L for males and females, respectively. Linear regression analysis showed fasting had no significant association with Cbl levels in females; however a statistically significant decrease of 0.9pmol/L/hour fasting (p<0.001) was noted in males. The broad population variance in Cbl suggests the slight gender-specific differences noted in this study are insignificant. Despite this, fasting has the potential to contribute to higher rates of Cbl deficiency in men. Together, these data suggest fasting should be excluded as a requirement for evaluating plasma Cbl. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Suzaku view of highly ionized outflows in AGN - II. Location, energetics and scalings with bolometric luminosity

    NASA Astrophysics Data System (ADS)

    Gofford, J.; Reeves, J. N.; McLaughlin, D. E.; Braito, V.; Turner, T. J.; Tombesi, F.; Cappi, M.

    2015-08-01

    Ongoing studies with XMM-Newton have shown that powerful accretion disc winds, as revealed through highly ionized Fe K-shell absorption at E ≥ 6.7 keV, are present in a significant fraction of active galactic nuclei (AGNs) in the local Universe (Tombesi et al. 2010a). In Gofford et al., we analysed a sample of 51 Suzaku-observed AGNs and independently detected Fe K absorption in ˜40 per cent of the sample, and we measured the properties of the absorbing gas. In this work, we build upon these results to consider the properties of the associated wind. On average, the fast winds (vw > 0.01c) are located ˜ 1015-18 cm (typically ˜102-4 rs) from their black hole, their mass outflow rates are of the order of < dot{M}_w > ˜ 0.01-1 M⊙ yr-1 or {˜ }(0.01-1)dot{M}_Edd and kinetic power is constrained to ˜ 1043-45 erg s-1, equivalent to ˜(0.1-10 per cent)LEdd. We find a fundamental correlation between the source bolometric luminosity and the wind velocity, with v_w ∝ L_bol^{α } and α =0.4^{+0.3}_{-0.2} (90 per cent confidence), which indicates that more luminous AGN tend to harbour faster Fe K winds. The mass outflow rate dot{M}_w, kinetic power Lw and momentum flux dot{p}_w of the winds are also consequently correlated with Lbol, such that more massive and more energetic winds are present in more luminous AGN. We investigate these properties in the framework of a continuum-driven wind, showing that the observed relationships are broadly consistent with a wind being accelerated by continuum-scattering. We find that, globally, a significant fraction (˜85 per cent) of the sample can plausibly exceed the Lw/Lbol ˜ 0.5 per cent threshold thought necessary for feedback, while 45 per cent may also exceed the less conservative ˜5 per cent of Lbol threshold as well. This suggests that the winds may be energetically significant for AGN-host-galaxy feedback processes.

  6. Fast Outlier Detection Using a Grid-Based Algorithm.

    PubMed

    Lee, Jihwan; Cho, Nam-Wook

    2016-01-01

    As one of data mining techniques, outlier detection aims to discover outlying observations that deviate substantially from the reminder of the data. Recently, the Local Outlier Factor (LOF) algorithm has been successfully applied to outlier detection. However, due to the computational complexity of the LOF algorithm, its application to large data with high dimension has been limited. The aim of this paper is to propose grid-based algorithm that reduces the computation time required by the LOF algorithm to determine the k-nearest neighbors. The algorithm divides the data spaces in to a smaller number of regions, called as a "grid", and calculates the LOF value of each grid. To examine the effectiveness of the proposed method, several experiments incorporating different parameters were conducted. The proposed method demonstrated a significant computation time reduction with predictable and acceptable trade-off errors. Then, the proposed methodology was successfully applied to real database transaction logs of Korea Atomic Energy Research Institute. As a result, we show that for a very large dataset, the grid-LOF can be considered as an acceptable approximation for the original LOF. Moreover, it can also be effectively used for real-time outlier detection.

  7. Fast spot-based multiscale simulations of granular drainage

    SciTech Connect

    Rycroft, Chris H.; Wong, Yee Lok; Bazant, Martin Z.

    2009-05-22

    We develop a multiscale simulation method for dense granular drainage, based on the recently proposed spot model, where the particle packing flows by local collective displacements in response to diffusing"spots'" of interstitial free volume. By comparing with discrete-element method (DEM) simulations of 55,000 spheres in a rectangular silo, we show that the spot simulation is able to approximately capture many features of drainage, such as packing statistics, particle mixing, and flow profiles. The spot simulation runs two to three orders of magnitude faster than DEM, making it an appropriate method for real-time control or optimization. We demonstrateextensions for modeling particle heaping and avalanching at the free surface, and for simulating the boundary layers of slower flow near walls. We show that the spot simulations are robust and flexible, by demonstrating that they can be used in both event-driven and fixed timestep approaches, and showing that the elastic relaxation step used in the model can be applied much less frequently and still create good results.

  8. [Fast discrimination of varieties of sugar based on spectroscopy technology].

    PubMed

    Lin, Ping; Chen, Yong-Ming; He, Yong

    2009-02-01

    Visible and near-infrared reflectance spectroscopy (NIRS) was applied in the discrimination of sugar varieties. NIRS is a pollution-free, rapid, quantitative and qualitative analysis method, with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. Four kinds of sugar were gained from the local market and each species was divided into 40 samples. One hundred twenty samples were used as the training set and the remainders (total 40 samples) formed the prediction set. Samples were scanned by a spectroradiometer within a wavelength region of 325-1 075 nm. Three pre-processing methods were applied on the spectra prior to building the PLS regression model. The multivariable analysis using partial least square (PLS) was applied to abstract characteristics of the pattern. Through full cross validation, 11 principal components presenting important information of spectra were confirmed. The correlation coefficient (R), residual variance (Rv) and standard error of calibration (SEC) were 0.999 916, 0. 00 985 and 0.014 538 respectively. Then, these 11 principal components were taken as the input of BP neural network. This model was used to predict the varieties of 40 unknown samples. Through training and prediction, the recognition rate of 100% was achieved by BP neural network. This model has come to be reliable and practicable. Thus, it is concluded that PLS analysis combined with BP neural network is an available alternative for pattern recognition based on the spectroscopy technology.

  9. Fast magneto-optic switch based on nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Weng, Zi-Hua; Ruan, Jian-Jian; Lin, Shao-Han; Chen, Zhi-Min

    2011-09-01

    The paper studies an all fiber high-speed magneto-optic switch which includes an optical route, a nanosecond pulse generator, and a magnetic field module in order to reduce the switching time of the optical switch in the all optical network. A compact nanosecond pulse generator can be designed based on the special character of the avalanche transistor. The output current pulse of the nanosecond pulse generator is less than 5 ns, while the pulse amplitude is more than 100 V and the pulse width is about 10 to 20 ns, which is able to drive a high-speed magnetic field. A solenoid is used as the magnetic field module, and a bismuth-substituted rare-earth iron garnet single crystal is chosen as the Faraday rotator. By changing the direction of current in the solenoid quickly, the magnetization of the magneto-optic material is reversed, and the optical beam can be rapidly switched. The experimental results indicate that the switching time of the device is about 100 to 400 ns, which can partially meet the demand of the rapid development of the all optical network.

  10. Fast ice image retrieval based on a multilayer system

    NASA Astrophysics Data System (ADS)

    Lu, Guoyu; Sorensen, Scott; Kambhamettu, Chandra

    2014-02-01

    We propose a multilayer system to perform ice image retrieval. Ice images are typically texture-less, which adds difficulty in retrieving the images. To achieve high accuracy, high level local features are usually used in retrieving the images. However, most high level features contain high dimensionality that slows down the retrieval process. To overcome this problem, we divide the retrieval process into 3 steps. Each step filters out a large portion of images. As the features are constructed according to the ice image properties, one image can be quickly localized compared with the use of high-level features. The ice images are captured in Arctic, where the ice state changes dramatically due to the environmental and other influences. We build the first layer of the system on the utilization of color information and edges, as the color and the edges are the most critical characteristics of ice images. We divide the second layer into two sub-layers. The first sublayer is on the use of edge histogram. For the second sublayer, we detect salient points based on pixel values on the edge position and connect every adjacent points with straight lines. A new feature is built on the basis of distance scale of every adjacent salient points and the angles between connected lines. Our new feature is invariant to transformation, rotation and scaling. As the features in the first two layers are holistic features, the time performance is much better than high-level local features. The third layer is to apply Harris detector to find the correspondences between two features on a small set of filtered images. The experiments show that our system achieves good accuracy while maintaining much better time performance.

  11. Fast shape-based nearest-neighbor search for brain MRIs using hierarchical feature matching.

    PubMed

    Zhu, Peihong; Awate, Suyash P; Gerber, Samuel; Whitaker, Ross

    2011-01-01

    This paper presents a fast method for quantifying shape differences/similarities between pairs of magnetic resonance (MR) brain images. Most shape comparisons in the literature require some kind of deformable registration or identification of exact correspondences. The proposed approach relies on an optimal matching of a large collection of features, using a very fast, hierarchical method from the literature, called spatial pyramid matching (SPM). This paper shows that edge-based image features in combination with SPM results in a fast similarity measure that captures relevant anatomical information in brain MRI. We present extensive comparisons against known methods for shape-based, k-nearest-neighbor lookup to evaluate the performance of the proposed method. Finally, we show that the method compares favorably with more computation-intensive methods in the construction of local atlases for use in brain MR image segmentation.

  12. Fast L1-based sparse representation of EEG for motor imagery signal classification.

    PubMed

    Younghak Shin; Heung-No Lee; Balasingham, Ilangko

    2016-08-01

    Improvement of classification performance is one of the key challenges in electroencephalogram (EEG) based motor imagery brain-computer interface (BCI). Recently, sparse representation based classification (SRC) method has been shown to provide satisfactory classification accuracy in motor imagery classification. In this paper, we aim to evaluate the performance of the SRC method in terms of not only its classification accuracy but also of its computation time. For this purpose, we investigate the performance of recently developed fast L1 minimization methods for their use in SRC, such as homotopy and fast iterative soft-thresholding algorithm (FISTA). From experimental analysis, we note that the SRC method with the fast L1 minimization algorithms is shown to provide robust classification performance, compared to support vector machine (SVM), both in time and accuracy.

  13. Nanorod-Based Fast-Response Pressure-Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy; VanderWal, Randall

    2007-01-01

    A proposed program of research and development would be devoted to exploitation of nanomaterials in pressuresensitive paints (PSPs), which are used on wind-tunnel models for mapping surface pressures associated with flow fields. Heretofore, some success has been achieved in measuring steady-state pressures by use of PSPs, but success in measuring temporally varying pressures has been elusive because of the inherent slowness of the optical responses of these materials. A PSP contains a dye that luminesces in a suitable wavelength range in response to photoexcitation in a shorter wavelength range. The luminescence is quenched by oxygen at a rate proportional to the partial pressure of oxygen and thus proportional to the pressure of air. As a result, the intensity of luminescence varies inversely with the pressure of air. The major problem in developing a PSP that could be easily applied to a wind-tunnel model and could be useful for measuring rapidly varying pressure is to provide very high gas diffusivity for rapid, easy transport of oxygen to and from active dye molecules. Most PSPs include polymer-base binders, which limit the penetration of oxygen to dye molecules, thereby reducing responses to pressure fluctuations. The proposed incorporation of nanomaterials (somewhat more specifically, nanorods) would result in paints having nanostructured surfaces that, relative to conventional PSP surfaces, would afford easier and more nearly complete access of oxygen molecules to dye molecules. One measure of greater access is effective surface area: For a typical PSP as proposed applied to a given solid surface, the nanometer-scale structural features would result in an exposed surface area more than 100 times that of a conventional PSP, and the mass of proposed PSP needed to cover the surface would be less than tenth of the mass of the conventional PSP. One aspect of the proposed development would be to synthesize nanorods of Si/SiO2, in both tangle-mat and regular- array

  14. Optical design and modelling of the QUBIC instrument, a next-generation quasi-optical bolometric interferometer for cosmology

    NASA Astrophysics Data System (ADS)

    Scully, S.; Burke, D.; O'Sullivan, C.; Gayer, D.; Gradziel, M.; Murphy, J. A.; De Petris, M.; Buzi, D.; Zannoni, M.; Mennella, A.; Gervasi, M.; Tartari, A.; Maffei, B.; Aumont, J.; Banfi, S.; Battaglia, P.; Battistelli, E. S.; Baó, A.; Bélier, B.; Bennet, D.; Bergé, L.; Bernard, J.-Ph.; Bersanelli, M.; Bigot-Sazy, M.-A.; Bleurvacq, N.; Bordier, G.; Brossard, J.; Bunn, E. F.; Cammileri, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Coppolecchia, A.; Couchot, F.; D'Alessandro, G.; De Bernardis, P.; Decourcelle, T.; Del Torto, F.; Dumoulin, L.; Franceschet, C.; Gault, A.; Ghribi, A.; Giard, M.; Giraud-Héraud, Y.; Grandsire, L.; Hamilton, J. C.; Haynes, V.; Henrot-Versillé, S.; Holtzer, N.; Kaplan, J.; Korotkov, A.; Lande, J.; Lowitz, A.; Marnieros, S.; Martino, J.; Masi, S.; McCulloch, Mark; Melhuish, Simon; Montier, L.; Néel, D.; Ng, M. W.; Pajot, F.; Passerini, A.; Perbost, C.; Perdereau, O.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pisano, G.; Prêle, D.; Puddu, R.; Rambaud, D.; Rigaut, O.; Salatino, M.; Schillaci, A.; Stolpovskiy, M.; Timbie, P.; Tristram, M.; Tucker, G.; Viganò, D.; Voisin, F.; Watson, B.

    2016-07-01

    Big Bang cosmologies predict that the cosmic microwave background (CMB) contains faint temperature and polarisation anisotropies imprinted in the early universe. ESA's PLANCK satellite has already measured the temperature anisotropies1 in exquisite detail; the next ambitious step is to map the primordial polarisation signatures which are several orders of magnitude lower. Polarisation E-modes have been measured2 but the even-fainter primordial B-modes have so far eluded detection. Their magnitude is unknown but it is clear that a sensitive telescope with exceptional control over systematic errors will be required. QUBIC3 is a ground-based European experiment that aims to exploit the novel concept of bolometric interferometry in order to measure B-mode polarisation anisotropies in the CMB. Beams from an aperture array of corrugated horns will be combined to form a synthesised image of the sky Stokes parameters on two focal planes: one at 150 GHz the other at 220 GHz. In this paper we describe recent optical modelling of the QUBIC beam combiner, concentrating on modelling the instrument point-spread-function and its operation in the 220-GHz band. We show the effects of optical aberrations and truncation as successive components are added to the beam path. In the case of QUBIC, the aberrations introduced by off-axis mirrors are the dominant contributor. As the frequency of operation is increased, the aperture horns allow up to five hybrid modes to propagate and we illustrate how the beam pattern changes across the 25% bandwidth. Finally we describe modifications to the QUBIC optical design to be used in a technical demonstrator, currently being manufactured for testing in 2016.

  15. Bolometric temperature and young stars in the Taurus and Ophiuchus complexes

    NASA Technical Reports Server (NTRS)

    Chen, H.; Myers, P. C.; Ladd, E. F.; Wood, D. O. S.

    1995-01-01

    We calculated bolometric temperature (T(sub bol)) and luminosity (L(sub bol)) for 128 young stellar objects (YSOs) in Taurus, 74 in the Ophiuchus 'core', and 33 in the Ophiuchus 'off-core' region. We have constructed the bolometric luminosity-temperature (BLT) diagram, the log-log plot of L(sub bol) versus T(sub bol), for the three samples. T(sub bol) is defined as the temperature of a blackbody having the same frequency as the observed continuum spectrum. It measures the redness (or coldness) of an astronomical source. The BLT diagram is analogous to the H-R diagram and allows for a direct and quantitative comparison of YSOs at a wide variety of evolutionary states, ranging from the most deeply embedded stars to T Tauri stars nearly on the main sequence. We found (1) T(sub bol) increases monotonically from embedded sources (approximately 60-500 K) to classical T Tauri stars (approximately 1000-3000 K) to weak-line T Tauri stars (approximately 2000-5000 K); (2) T(sub bol) correlates reasonably well with the age inferred from the evolutionary models of pre-main-sequence stars and protostars for embedded 'protostars' and weak-line T Tauri stars. There is no significant correlation for the classical T Tauri stars. These results can be understood in terms of dissipation of circumstellar dust envelope and disk during the early stages of stellar evolution. Sources in the three regions have different distributions in the BLT diagram. The Ophiuchus core has the highest fraction of cold sources among the three regions. These cold sources are also more luminous than the YSOs in the other regions. The Ophiuchus off-core sample is dominated by the more evolved pre-main-sequence stars. The Taurus sources have distributions intermediate in L(sub bol), T(sub bol), and age between the Ophiuchus core and off-core distributions. These may suggest differences in the star formation history, and possibly in the stellar masses and mass accretion rates in these star-forming regions.

  16. A rate-constrained fast full-search algorithm based on block sum pyramid.

    PubMed

    Song, Byung Cheol; Chun, Kang-Wook; Ra, Jong Beom

    2005-03-01

    This paper presents a fast full-search algorithm (FSA) for rate-constrained motion estimation. The proposed algorithm, which is based on the block sum pyramid frame structure, successively eliminates unnecessary search positions according to rate-constrained criterion. This algorithm provides the identical estimation performance to a conventional FSA having rate constraint, while achieving considerable reduction in computation.

  17. Fast neutron mutants database and web displays at SoyBase

    USDA-ARS?s Scientific Manuscript database

    SoyBase, the USDA-ARS soybean genetics and genomics database, has been expanded to include data for the fast neutron mutants produced by Bolon, Vance, et al. In addition to the expected text and sequence homology searches and visualization of the indels in the context of the genome sequence viewer, ...

  18. Basic concepts underlying fast-neutron-based contraband interrogation technology. A systems viewpoint

    SciTech Connect

    Fink, C.L.; Guenther, P.T.; Smith, D.L.

    1992-12-01

    All accelerator-based fast-neutron contraband interrogation systems have many closely interrelated subsystems, whose performance parameters will be critically interdependent. For optimal overall performance, a systems analysis design approach is required. This paper provides a general overview of the interrelationships and the tradeoffs to be considered for optimization of nonaccelerator subsystems.

  19. Child and Parent Voices on a Community-Based Prevention Program (FAST)

    ERIC Educational Resources Information Center

    Fearnow-Kenney, Melodie; Hill, Patricia; Gore, Nicole

    2016-01-01

    Families and Schools Together (FAST) is a collaborative program involving schools, families, and community-based partners in efforts to prevent substance use, juvenile delinquency, school failure, child abuse and neglect, mental health problems, and violence. Although evaluated extensively, there remains a dearth of qualitative data on child and…

  20. Common and Specific Factors Approaches to Home-Based Treatment: I-FAST and MST

    ERIC Educational Resources Information Center

    Lee, Mo Yee; Greene, Gilbert J.; Fraser, J. Scott; Edwards, Shivani G.; Grove, David; Solovey, Andrew D.; Scott, Pamela

    2013-01-01

    Objectives: This study examined the treatment outcomes of integrated families and systems treatment (I-FAST), a moderated common factors approach, in reference to multisystemic therapy (MST), an established specific factor approach, for treating at risk children and adolescents and their families in an intensive community-based setting. Method:…

  1. Image dehazing based on partitioning reconstruction and entropy-based alternating fast-weighted guided filters

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyu; Yuen, Peter

    2017-05-01

    A robust image dehazing algorithm based on the first-order scattering of the image degradation model is proposed. In this work, there are three contributions toward image dehazing: (i) a robust method for assessing the global irradiance from the most hazy-opaque regions of the imagery is proposed; (ii) more detailed depth information of the scene can be recovered through the enhancement of the transmission map using scene partitions and entropy-based alternating fast-weighted guided filters; and (iii) crucial model parameters are extracted from in-scene information. This paper briefly outlines the principle of the proposed technique and compares the dehazed results with four other dehazing algorithms using a variety of different types of imageries. The dehazed images have been assessed through a quality figure-of-merit, and experiments have shown that the proposed algorithm effectively removes haze and has achieved a much better quality of dehazed images than all other state-of-the-art dehazing methods employed in this work.

  2. Time-driven Activity-based Cost of Fast-Track Total Hip and Knee Arthroplasty.

    PubMed

    Andreasen, Signe E; Holm, Henriette B; Jørgensen, Mira; Gromov, Kirill; Kjærsgaard-Andersen, Per; Husted, Henrik

    2017-06-01

    Fast-track total hip and knee arthroplasty (THA and TKA) has been shown to reduce the perioperative convalescence resulting in less postoperative morbidity, earlier fulfillment of functional milestones, and shorter hospital stay. As organizational optimization is also part of the fast-track methodology, the result could be a more cost-effective pathway altogether. As THA and TKA are potentially costly procedures and the numbers are increasing in an economical limited environment, the aim of this study is to present baseline detailed economical calculations of fast-track THA and TKA and compare this between 2 departments with different logistical set-ups. Prospective data collection was analyzed using the time-driven activity-based costing method (TDABC) on time consumed by different staff members involved in patient treatment in the perioperative period of fast-track THA and TKA in 2 Danish orthopedic departments with standardized fast-track settings, but different logistical set-ups. Length of stay was median 2 days in both departments. TDABC revealed minor differences in the perioperative settings between departments, but the total cost excluding the prosthesis was similar at USD 2511 and USD 2551, respectively. Fast-track THA and TKA results in similar cost despite differences in the organizational set-up. Compared to cost associated with longer more conventional published pathways, fast-track is cheaper, which on top of the favorable published clinical outcome adds to cost efficiency and the potential for economic savings. Detailed baseline TDABC calculations are provided for comparison and further optimization of cost-benefit effectiveness. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ultra Fast X-ray Streak Camera for TIM Based Platforms

    SciTech Connect

    Marley, E; Shepherd, R; Fulkerson, E S; James, L; Emig, J; Norman, D

    2012-05-02

    Ultra fast x-ray streak cameras are a staple for time resolved x-ray measurements. There is a need for a ten inch manipulator (TIM) based streak camera that can be fielded in a newer large scale laser facility. The LLNL ultra fast streak camera's drive electronics have been upgraded and redesigned to fit inside a TIM tube. The camera also has a new user interface that allows for remote control and data acquisition. The system has been outfitted with a new sensor package that gives the user more operational awareness and control.

  4. Tunable temporal gap based on simultaneous fast and slow light in electro-optic photonic crystals.

    PubMed

    Li, Guangzhen; Chen, Yuping; Jiang, Haowei; Liu, Yi'an; Liu, Xiao; Chen, Xianfeng

    2015-07-13

    We demonstrated a tunable temporal gap based on simultaneous fast and slow light in electro-optic photonic crystals. The light experiences an anomalous dispersion near the transmission center and a normal dispersion away from the center, where it can be accelerated and slowed down, respectively. We also obtained the switch between fast and slow light by adjusting the external electric filed. The observed largest temporal gap is 541 ps, which is crucial in practical event operation inside the gap. The results offer a new solution for temporal cloak.

  5. Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Hu, Wei; Chigrinov, V. G.; Kiselev, A. D.; Lu, Yan-Qing

    2012-07-01

    We demonstrate a fast switchable grating based on ferroelectric liquid crystals and orthogonal planar alignment by means of photo alignments. Both 1D and 2D gratings have been constructed. The proposed diffracting element provides fast response time of around 20 μs, contrast of 7000:1 and high diffraction efficiency, at the electric field of 6 V/μm. The saturated electro-optical (EO) states up to very high frequency (≈5 kHz) are the real advantage of the proposed switchable grating, which opens several opportunities to improve the quality of existing devices and to find new applications.

  6. Design Considerations of Fast-cycling Synchrotrons Based on Superconducting Transmission Line Magnets

    SciTech Connect

    Piekarz, H.; Hays, S.; Huang, Y.; Shiltsev, V.; /Fermilab

    2008-06-01

    Fast-cycling synchrotrons are key instruments for accelerator based nuclear and high-energy physics programs. We explore a possibility to construct fast-cycling synchrotrons by using super-ferric, {approx}2 Tesla B-field dipole magnets powered with a superconducting transmission line. We outline both the low temperature (LTS) and the high temperature (HTS) superconductor design options and consider dynamic power losses for an accelerator with operation cycle of 0.5 Hz. We also briefly outline possible power supply system for such accelerator, and discuss the quench protection system for the magnet string powered by a transmission line conductor.

  7. Fast polarization-state tracking scheme based on radius-directed linear Kalman filter.

    PubMed

    Yang, Yanfu; Cao, Guoliang; Zhong, Kangping; Zhou, Xian; Yao, Yong; Lau, Alan Pak Tao; Lu, Chao

    2015-07-27

    We propose and experimentally demonstrate a fast polarization tracking scheme based on radius-directed linear Kalman filter. It has the advantages of fast convergence and is inherently insensitive to phase noise and frequency offset effects. The scheme is experimentally compared to conventional polarization tracking methods on the polarization rotation angular frequency. The results show that better tracking capability with more than one order of magnitude improvement is obtained in the cases of polarization multiplexed QPSK and 16QAM signals. The influences of the filter tuning parameters on tracking performance are also investigated in detail.

  8. Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering.

    PubMed

    Pant, Ravi; Byrnes, Adam; Poulton, Christopher G; Li, Enbang; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Eggleton, Benjamin J

    2012-03-01

    We report the first (to our knowledge) demonstration of photonic chip based tunable slow and fast light via stimulated Brillouin scattering. Slow, fast, and negative group velocities were observed in a 7 cm long chalcogenide (As(2)S(3)) rib waveguide with a group index change ranging from ~-44 to +130, which results in a maximum delay of ~23 ns at a relatively low gain of ~23 dB. Demonstration of large tunable delays in a chip scale device opens up applications such as frequency sensing and true-time delay for a phased array antenna, where integration and delays ~10 ns are highly desirable.

  9. Detection of fast neutrons using detectors based on semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Zat'ko, B.; Sedlačková, K.; Dubecký, F.; Boháček, P.; Sekáčová, M.; Nečas, V.

    2011-12-01

    Detectors with AuZn square Schottky contact of the area of 2.5 × 2.5 mm2 were fabricated. On the back side, the whole area AuGeNi eutectic ohmic contact was evaporated. The thickness of the base material (semi-insulating GaAs) was 220 μm. The connection of 4 detectors in parallel was tested to get the detection area of 25 mm2. The 239Pu-Be fast neutron source with energies between 0.5 and 12 MeV was used in experimental measurements. We have investigated the optimal thickness of HDPE (high-density polyethylene) conversion layer for fast neutron detection. The spectra of the neutrons were measured by detectors covered by HDPE converter of different thicknesses. The fast neutron detection efficiency proved experimentally was compared with results from simulations performed by MCNPX (Monte Carlo N-Particle eXtended) code.

  10. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator.

    PubMed

    Bol, G H; Hissoiny, S; Lagendijk, J J W; Raaymakers, B W

    2012-03-07

    The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.

  11. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator

    NASA Astrophysics Data System (ADS)

    Bol, G. H.; Hissoiny, S.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2012-03-01

    The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.

  12. Case-based reasoning(CBR) model for ultra-fast cooling in plate mill

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Wang, Zhaodong; Wang, Guodong

    2014-11-01

    New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex because of optimizing the temperature control error generated by heat transfer mathematical model and process parameters. In order to simplify the system and improve the temperature control precision in ultra-fast cooling process, several existing models of case-based reasoning(CBR) model are reviewed. Combining with ultra-fast cooling process, a developed R5 CBR model is proposed, which mainly improves the case representation, similarity relation and retrieval module. Certainty factor is defined in semantics memory unit of plate case which provides not only internal data reliability but also product performance reliability. Similarity relation is improved by defined power index similarity membership function. Retrieval process is simplified and retrieval efficiency is improved apparently by windmill retrieval algorithm. The proposed CBR model is used for predicting the case of cooling strategy and its capability is superior to traditional process model. In order to perform comprehensive investigations on ultra-fast cooling process, different steel plates are considered for the experiment. The validation experiment and industrial production of proposed CBR model are carried out, which demonstrated that finish cooling temperature(FCT) error is controlled within ±25°C and quality rate of product is more than 97%. The proposed CBR model can simplify ultra-fast cooling system and give quality performance for steel product.

  13. CUORE and beyond: Bolometric techniques to explore inverted neutrino mass hierarchy

    SciTech Connect

    Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; De Biasi, A.; Deninno, M. M.; Di Domizio, S.; di Vacri, M. L.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; O’Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    2015-03-24

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130Te. With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130Te and possibly other double beta decay candidate nuclei.

  14. Bolometric kinetic inductance detector technology for sub-millimeter radiometric imaging

    NASA Astrophysics Data System (ADS)

    Hassel, Juha; Timofeev, Andrey V.; Vesterinen, Visa; Sipola, Hannu; Helistö, Panu; Aikio, Mika; Mäyrä, Aki; Grönberg, Leif; Luukanen, Arttu

    2015-10-01

    Radiometric sub-millimeter imaging is a candidate technology especially in security screening applications utilizing the property of radiation in the band of 0.2 - 1.0 THz to penetrate through dielectric substances such as clothing. The challenge of the passive technology is the fact that the irradiance corresponding to the blackbody radiation is very weak in this spectral band: about two orders of magnitude below that of the infrared band. Therefore the role of the detector technology is of ultimate importance to achieve sufficient sensitivity. In this paper we present results related to our technology relying on superconducting kinetic inductance detectors operating in a thermal (bolometric) mode. The detector technology is motivated by the fact that it is naturally suitable for scalable multiplexed readout systems, and operates with relatively simple cryogenics. We will review the basic concepts of the detectors, and provide experimental figures of merit. Furthermore, we will discuss the issues related to the scale-up of our detector technology into large 2D focal plane arrays.

  15. CUORE and beyond: Bolometric techniques to explore inverted neutrino mass hierarchy

    DOE PAGES

    Artusa, D. R.; Avignone, F. T.; Azzolini, O.; ...

    2015-03-24

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130Te. With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meVmore » (50–130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130Te and possibly other double beta decay candidate nuclei.« less

  16. Spatially resolved bolometric measurement and electron temperature measurement using diode arrays

    SciTech Connect

    Koguchi, H.; Shimada, T.; Asai, T.; Yagi, Y.; Hirano, Y.; Sakakita, H.

    2004-10-01

    In this article, the measurement system for the total radiation and electron temperature profiles to be installed in a reversed-field pinch machine, toroidal pinch experiment, RX [TPE-RX, R/a=1.72/0.45 m, Ipbolometric measurement in the range from visible light to soft x-ray. Two sets of the arrays are used for the soft-x ray and electron temperature measurements employing a double-filter method. We will use this system to investigate the plasma-wall interaction, radiation loss, and confinement properties in the core plasma region. We will extend the use of this system for tomographic analysis of electron temperature, a concept of which is also presented.

  17. Study of parylene-coated NaI(Tl) at low temperatures for bolometric applications

    NASA Astrophysics Data System (ADS)

    Coron, N.; Cuesta, C.; García, E.; Ginestra, C.; Girard, T. A.; de Marcillac, P.; Martínez, M.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Redon, T.; Sarsa, M. L.; Torres, L.; Valko, P.; Villar, J. A.

    2013-07-01

    NaI(Tl) is a widely-used scintillator at room temperature, and it is particularly interesting as a target for dark matter searches. Its hygroscopic character however makes it unsuitable for many applications, in particular for bolometric particle detection at very low temperature. Despite that, a NaI scintillating bolometer would provide unique features for dark matter detection, like β/γ background rejection through particle discrimination and thermal quenching factors for nuclear with respect to electron recoils close to one. With the long-term goal of developing a scintillating NaI bolometer, we have tested NaI(Tl) crystals coated by vapor-deposited poly-p-xylylene (parylene) and studied their optical and mechanical behavior in the mK range. We present X-ray excited scintillation spectra of a parylene-coated NaI(Tl) sample at 1.5, 4 and 77 K, and measurements of the light output as function of the temperature over the 1.5-300 K range. At 1.5 K the wavelength of maximum emission is observed at 325 nm. Thermoluminescence peaks are found at around 60, 95 and 150 K. Tests of mechanical and optical resistance to thermal cycles of 45 g parylene-coated NaI(Tl) cylinders are also presented, and the adequacy and effectiveness of this coating technique is discussed.

  18. The bolometric light curves and physical parameters of stripped-envelope supernovae

    DOE PAGES

    Prentice, S. J.; Mazzali, P. A.; Pian, E.; ...

    2016-02-08

    The optical and optical/near-infrared pseudo-bolometric light curves of 85 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity Lp , enabling the construction of a luminosity function. Subsequently, the mass of 56 Ni synthesized in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Analysis shows that host-galaxy extinction is an important factor in accurately determining luminosity values as it is significantly greater than Galactic extinction in most cases. It is found that broad-lined SNe Ic (SNe Ic-BL)more » and gamma-ray burst SNe are the most luminous subtypes with a combined median Lp , in erg s-1 , of log(Lp) = 43.00 compared to 42.51 for SNe Ic, 42.50 for SNe Ib, and 42.36 for SNe IIb. It is also found that SNe Ic-BL synthesize approximately twice the amount of 56Ni compared with SNe Ic, Ib, and IIb, with median MNi = 0.34, 0.16, 0.14, and 0.11 M ⊙ , respectively. SNe Ic-BL, and to a lesser extent SNe Ic, typically rise from L p /2 to L p more quickly than SNe Ib/IIb; consequently, their light curves are not as broad.« less

  19. Fast computer simulation of reconstructed image from rainbow hologram based on GPU

    NASA Astrophysics Data System (ADS)

    Shuming, Jiao; Yoshikawa, Hiroshi

    2015-10-01

    A fast computer simulation solution for rainbow hologram reconstruction based on GPU is proposed. In the commonly used segment Fourier transform method for rainbow hologram reconstruction, the computation of 2D Fourier transform on each hologram segment is very time consuming. GPU-based parallel computing can be applied to improve the computing speed. Compared with CPU computing, simulation results indicate that our proposed GPU computing can effectively reduce the computation time by as much as eight times.

  20. Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey

    NASA Astrophysics Data System (ADS)

    Lusso, E.; Comastri, A.; Simmons, B. D.; Mignoli, M.; Zamorani, G.; Vignali, C.; Brusa, M.; Shankar, F.; Lutz, D.; Trump, J. R.; Maiolino, R.; Gilli, R.; Bolzonella, M.; Puccetti, S.; Salvato, M.; Impey, C. D.; Civano, F.; Elvis, M.; Mainieri, V.; Silverman, J. D.; Koekemoer, A. M.; Bongiorno, A.; Merloni, A.; Berta, S.; Le Floc'h, E.; Magnelli, B.; Pozzi, F.; Riguccini, L.

    2012-09-01

    Bolometric luminosities and Eddington ratios of both X-ray selected broad-line (Type-1) and narrow-line (Type-2) active galactic nuclei (AGN) from the XMM-Newton survey in the Cosmic Evolution Survey field are presented. The sample is composed of 929 AGN (382 Type-1 AGN and 547 Type-2 AGN) and it covers a wide range of redshifts, X-ray luminosities and absorbing column densities. About 65 per cent of the sources are spectroscopically identified as either Type-1 or Type-2 AGN (83 and 52 per cent, respectively), while accurate photometric redshifts are available for the rest of the sample. The study of such a large sample of X-ray selected AGN with a high-quality multiwavelength coverage from the far-infrared (now with the inclusion of Herschel data at 100 and 160 μm) to the optical-ultraviolet allows us to obtain accurate estimates of bolometric luminosities, bolometric corrections and Eddington ratios. The kbol - Lbol relations derived in this work are calibrated for the first time against a sizable AGN sample, and rely on observed redshifts, X-ray luminosities and column density distributions. We find that kbol is significantly lower at high Lbol with respect to previous estimates by Marconi et al. and Hopkins et al. Black hole (BH) masses and Eddington ratios are available for 170 Type-1 AGN, while BH masses for Type-2 AGN are computed for 481 objects using the BH mass-stellar mass relation and the morphological information. We confirm a trend between kbol and λEdd, with lower hard X-ray bolometric corrections at lower Eddington ratios for both Type-1 and Type-2 AGN. We find that, on average, the Eddington ratio increases with redshift for all types of AGN at any given MBH, while no clear evolution with redshift is seen at any given Lbol.

  1. Scintillator-based diagnostic for fast ion loss measurements on DIII-D

    SciTech Connect

    Fisher, R. K.; Van Zeeland, M. A.; Pace, D. C.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Garcia-Munoz, M.

    2010-10-15

    A new scintillator-based fast ion loss detector has been installed on DIII-D with the time response (>100 kHz) needed to study energetic ion losses induced by Alfven eigenmodes and other MHD instabilities. Based on the design used on ASDEX Upgrade, the diagnostic measures the pitch angle and gyroradius of ion losses based on the position of the ions striking the two-dimensional scintillator. For fast time response measurements, a beam splitter and fiberoptics couple a portion of the scintillator light to a photomultiplier. Reverse orbit following techniques trace the lost ions to their possible origin within the plasma. Initial DIII-D results showing prompt losses and energetic ion loss due to MHD instabilities are discussed.

  2. Wide-bandwidth electron bolometric mixers - A 2DEG prototype and potential for low-noise THz receivers

    NASA Technical Reports Server (NTRS)

    Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.

    1993-01-01

    This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  3. A Universal Fast Algorithm for Sensitivity-Based Structural Damage Detection

    PubMed Central

    Yang, Q. W.; Liu, J. K.; Li, C. H.; Liang, C. F.

    2013-01-01

    Structural damage detection using measured response data has emerged as a new research area in civil, mechanical, and aerospace engineering communities in recent years. In this paper, a universal fast algorithm is presented for sensitivity-based structural damage detection, which can quickly improve the calculation accuracy of the existing sensitivity-based technique without any high-order sensitivity analysis or multi-iterations. The key formula of the universal fast algorithm is derived from the stiffness and flexibility matrix spectral decomposition theory. With the introduction of the key formula, the proposed method is able to quickly achieve more accurate results than that obtained by the original sensitivity-based methods, regardless of whether the damage is small or large. Three examples are used to demonstrate the feasibility and superiority of the proposed method. It has been shown that the universal fast algorithm is simple to implement and quickly gains higher accuracy over the existing sensitivity-based damage detection methods. PMID:24453815

  4. Identifying factors associated with fast food consumption among adolescents in Beijing China using a theory-based approach.

    PubMed

    Ma, R; Castellanos, D C; Bachman, J

    2016-07-01

    China is in the midst of the nutrition transition with increasing rates of obesity and dietary changes. One contributor is the increase in fast food chains within the country. The purpose of this study was to develop a theory-based instrument that explores influencing factors of fast food consumption in adolescents residing in Beijing, China. Cross-sectional study. Value expectancy and theory of planned behaviour were utilised to explore influencing factors of fast food consumption in the target population. There were 201 Chinese adolescents between the ages of 12 and 18. Cronbach's alpha correlation coefficients were used to examine internal reliability of the theory-based questionnaire. Bivariate correlations and a MANOVA were utilised to determine the relationship between theory-based constructs, body mass index (BMI)-for-age and fast food intake frequency as well as to determine differences in theory-based scores among fast food consumption frequency groupings. The theory-based questionnaire showed good reliability. Furthermore, there was a significant difference in the theory-based subcategory scores between fast food frequency groups. A significant positive correlation was observed between times per week fast food was consumed and each theory-based subscale score. Using BMI-for-age of 176 participants, 81% were normal weight and 19% were considered overweight or obese. Results showed consumption of fast food to be on average 1.50 ± 1.33 per week. The relationship between BMI-for-age and times per week fast food was consumed was not significant. As the nutrition transition continues and fast food chains expand, it is important to explore factors effecting fast food consumption in China. Interventions targeting influencing factors can be developed to encourage healthy dietary choice in the midst of this transition. Copyright © 2016. Published by Elsevier Ltd.

  5. Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-dm-30

    PubMed Central

    Voss, Andreas; Voss, Jochen; Lerche, Veronika

    2015-01-01

    Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modeling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss and Voss, 2007) for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability for different data sets. PMID:25870575

  6. Secured Fast Handoff in 802.11-Based Wireless Mesh Networks for Pervasive Internet Access

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Cao, Jiannong; Yan, Ye; Ji, Yusheng

    Authentication issue has been mostly ignored to ensure fast handoff in 802.11 Wireless Mesh Network (WMN). With the proliferation of WMNs in recent years for practical deployment, secured fast handoff has drawn much attention to enforce authenticated access while reduce the extra delay caused by enabling authentication operations. In this paper, we present an overview on the state-of-the-art advance in this field and tackle the problem from a practical perspective based on experiments and analysis on our real-world testbed HAWK. We propose a novel fast handoff scheme Network-assisted Radio Signature to eliminate probing delay by taking advantage of the characteristic of the actual dynamic topology about mesh routers in WMN. Moreover, we apply an optimistic authentication mechanism Dual Re-authentication to counteract the authentication delay while providing the secured wireless access. In this manner, we have reduced the end-to-end handoff delay of WMN back again to a level below 50ms to achieve secured handoff and support time-sensitive applications. We describe detailed mechanisms, simulation, implementation and experimental results. To our best knowledge, we are the first to achieve such an optimal performance of secured fast handoff.

  7. Study of wave-particle interaction between fast Magnetosonic and energetic electrons based on numerical simulation

    NASA Astrophysics Data System (ADS)

    Fu, S.

    2015-12-01

    There are many energetic electrons in the radiation belt of Earth. When the geomagnetic activity becomes stronger, the energy flux of energetic electrons will increase to more than ten times in the outer radiation belt, therefore it is very important to study how the energetic electrons generate and the lifetime of energetic electrons for space weather research. The acceleration of electrons in radiation belt is mainly depending on wave-particle interaction: the whistler mode chorus is the main driver for local acceleration mechanism, which could accelerate and loss energetic electrons; the geomagnetic pulsation ULF wave will cause energetic electron inward radial diffusion which will charge the electrons; recently observation results show us that the fast magnetosonic waves may also accelerate energetic electrons. For the reason that we try to study the wave-particle interaction between fast Magnetosonic and energetic electrons based on numerical simulation, in which the most important past is at the storm time the combination of highly warped Earth magnetic field and fast magnetosonic wave field will be applied for the electromagnetic environment of moving test particles. The energy, pitch angle and cross diffusion coefficients will be calculated respectively in this simulation to study how the electrons receive energy from fast magnetosonic wave. The diffusion coefficients within different dipole Earth magnetic field and non-dipole storm magnetic field are compared, while dynamics of electrons at selected initial energys are shown in our study.

  8. Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform

    NASA Astrophysics Data System (ADS)

    Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin

    2013-12-01

    Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.

  9. CerioFAST{trademark}: An acute toxicity test based on Ceriodaphnia dubia feeding behavior

    SciTech Connect

    Bitton, G.; Rhodes, K.; Koopman, B.

    1996-02-01

    The authors have developed a rapid acute toxicity test (CerioFAST{trademark}) based on suppression of feeding activity of Ceriodaphnia dubia in the presence of toxicants. The bioassay consists of a 1-h exposure period to a given toxicant. Yeast cells, stained with a fluorescent dye, are added 20 min before the end of the exposure period. Response to a toxic sample is indicated by the absence of fluorescence in the gut of the daphnids. CerioFAST was compared to the standard 48-h C. dubia acute bioassay, using heavy metals and organic compounds.CerioFAST EC50s of Cd, Cu, Pb, Ag, Zn, and carbofuran were in the 0.01--0.1-mg/L range, whereas EC50s of hexachloroethane, pentachlorophenol, trichlorophenol, and lindane were in the 1--10-mg/L range. CerioFAST EC50s of the heavy metals and organics were well correlated with Ec50s obtained with the 48-h C. dubia bioassay.

  10. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    NASA Astrophysics Data System (ADS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  11. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    PubMed Central

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-01

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217

  12. Fast traffic sign recognition with a rotation invariant binary pattern based feature.

    PubMed

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-19

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  13. Fast implementation of sparse iterative covariance-based estimation for source localization.

    PubMed

    Zhang, Qilin; Abeida, Habti; Xue, Ming; Rowe, William; Li, Jian

    2012-02-01

    Fast implementations of the sparse iterative covariance-based estimation (SPICE) algorithm are presented for source localization with a uniform linear array (ULA). SPICE is a robust, user parameter-free, high-resolution, iterative, and globally convergent estimation algorithm for array processing. SPICE offers superior resolution and lower sidelobe levels for source localization compared to the conventional delay-and-sum beamforming method; however, a traditional SPICE implementation has a higher computational complexity (which is exacerbated in higher dimensional data). It is shown that the computational complexity of the SPICE algorithm can be mitigated by exploiting the Toeplitz structure of the array output covariance matrix using Gohberg-Semencul factorization. The SPICE algorithm is also extended to the acoustic vector-sensor ULA scenario with a specific nonuniform white noise assumption, and the fast implementation is developed based on the block Toeplitz properties of the array output covariance matrix. Finally, numerical simulations illustrate the computational gains of the proposed methods.

  14. Flywheel-Based Fast Charging Station – FFCS for Electric Vehicles and Public Transportation

    NASA Astrophysics Data System (ADS)

    Gabbar, Hossam A.; Othman, Ahmed M.

    2017-08-01

    This paper demonstrates novel Flywheel-based Fast Charging Station (FFCS) for high performance and profitable charging infrastructures for public electric buses. The design criteria will be provided for fast charging stations. The station would support the private and open charging framework. Flywheel Energy storage system is utilized to offer advanced energy storage for charging stations to achieve clean public transportation, including electric buses with reducing GHG, including CO2 emission reduction. The integrated modelling and management system in the station is performed by a decision-based control platform that coordinates the power streams between the quick chargers, the flywheel storage framework, photovoltaic cells and the network association. There is a tidy exchange up between the capacity rate of flywheel framework and the power rating of the network association.”

  15. FPS-RAM: Fast Prefix Search RAM-Based Hardware for Forwarding Engine

    NASA Astrophysics Data System (ADS)

    Zaitsu, Kazuya; Yamamoto, Koji; Kuroda, Yasuto; Inoue, Kazunari; Ata, Shingo; Oka, Ikuo

    Ternary content addressable memory (TCAM) is becoming very popular for designing high-throughput forwarding engines on routers. However, TCAM has potential problems in terms of hardware and power costs, which limits its ability to deploy large amounts of capacity in IP routers. In this paper, we propose new hardware architecture for fast forwarding engines, called fast prefix search RAM-based hardware (FPS-RAM). We designed FPS-RAM hardware with the intent of maintaining the same search performance and physical user interface as TCAM because our objective is to replace the TCAM in the market. Our RAM-based hardware architecture is completely different from that of TCAM and has dramatically reduced the costs and power consumption to 62% and 52%, respectively. We implemented FPS-RAM on an FPGA to examine its lookup operation.

  16. Evolution of the Bolometric Temperature and Luminosity of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Myers, P. C.; Adams, F. C.; Chen, H.; Schaff, E.

    1998-01-01

    We model the broadband emission from a star-disk-envelope system to obtain expressions for the bolometric temperature Tbol and luminosity Lbol as functions of time, from the youngest class 0 protostars to stars on the zero-age main sequence. The model predicts evolution, driven by infall and contraction luminosity, in terms of position on the log Tbol-log Lbol diagram, a close analog of the H-R diagram. The evolutionary tracks depend on the envelope initial conditions, the main-sequence mass of the star, and the envelope dissipation timescale. The model Lbol rises due to infall and then falls due to contraction, while Tbol increases steadily toward the main sequence due to central heating and envelope dissipation. In order to smoothly join the protostellar and pre-main-sequence phases it is necessary to model the termination of infall as gradual rather than sudden. This change reduces the peak infall luminosity for the collapse of a singular isothermal sphere by a factor 4, bringing predicted infall luminosities into better agreement with observations. For stars of main-sequence mass 0.5 M⊙, the model decrease in Lbol from its peak value of ~3 L⊙ at Tbol ~ 250 K (class I) to ~0.4 L⊙ at Tbol ~ 3000 K (class II/III) closely matches the observed decrease in median Lbol for young stellar objects in Chamaeleon, Corona Australis, Lupus, Ophiuchus, and Taurus. The model should be useful for estimating the distributions of mass and age, and for describing the birth history, of stars younger than 1 Myr in well-studied complexes.

  17. The bolometric light curves and physical parameters of stripped-envelope supernovae

    SciTech Connect

    Prentice, S. J.; Mazzali, P. A.; Pian, E.; Gal-Yam, A.; Kulkarni, S. R.; Rubin, A.; Corsi, A.; Fremling, C.; Sollerman, J.; Yaron, O.; Arcavi, I.; Zheng, W.; Kasliwal, M. M.; Filippenko, A. V.; Cenko, S. B.; Cao, Y.; Nugent, P. E.

    2016-02-08

    The optical and optical/near-infrared pseudo-bolometric light curves of 85 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity Lp , enabling the construction of a luminosity function. Subsequently, the mass of 56 Ni synthesized in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Analysis shows that host-galaxy extinction is an important factor in accurately determining luminosity values as it is significantly greater than Galactic extinction in most cases. It is found that broad-lined SNe Ic (SNe Ic-BL) and gamma-ray burst SNe are the most luminous subtypes with a combined median Lp , in erg s-1 , of log(Lp) = 43.00 compared to 42.51 for SNe Ic, 42.50 for SNe Ib, and 42.36 for SNe IIb. It is also found that SNe Ic-BL synthesize approximately twice the amount of 56Ni compared with SNe Ic, Ib, and IIb, with median MNi = 0.34, 0.16, 0.14, and 0.11 M ⊙ , respectively. SNe Ic-BL, and to a lesser extent SNe Ic, typically rise from L p /2 to L p more quickly than SNe Ib/IIb; consequently, their light curves are not as broad.

  18. Performance study of the fast timing Cherenkov detector based on a microchannel plate PMT

    NASA Astrophysics Data System (ADS)

    Finogeev, D. A.; Grigoriev, V. A.; Kaplin, V. A.; Karavichev, O. V.; Karavicheva, T. L.; Konevskikh, A. S.; Kurepin, A. B.; Kurepin, A. N.; Loginov, V. A.; Mayevskaya, A. I.; Melikyan, Yu A.; Morozov, I. V.; Serebryakov, D. V.; Shabanov, A. I.; Slupecki, M.; Tikhonov, A. A.; Trzaska, W. H.

    2017-01-01

    Prototype of the fast timing Cherenkov detector, applicable in high-energy collider experiments, has been developed basing on the modified Planacon XP85012 MCP-PMT and fused silica radiators. We present the reasons and description of the MCP-PMT modification, timing and amplitude characteristics of the prototype including the summary of the detector’s response on particle hits at oblique angles and MCP-PMT performance at high illumination rates.

  19. Fast Nonlinear Optical Switch Based on Resonant Vanadium Pentoxide (V2O5) Metasurfaces

    DTIC Science & Technology

    2016-05-19

    Fast Nonlinear Optical Switch Based on Resonant Vanadium Pentoxide (V2O5) Metasurfaces Samad Jafar-Zanjani,1, a) Jierong Cheng,1, b) Vladimir...Dated: 19 May 2016) A novel low-profile nonlinear metasurface , consisting of a single-layer of vanadium pentoxide (V2O5), is proposed and numerically...investigated by a nonlinear full-wave finite-difference time-domain (FDTD) method. The metasurface acts as an ultrafast optical switch, being

  20. Accurate and fast fiber transfer delay measurement based on phase discrimination and frequency measurement

    NASA Astrophysics Data System (ADS)

    Dong, J. W.; Wang, B.; Gao, C.; Wang, L. J.

    2016-09-01

    An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The system achieves a high measurement accuracy of 0.2 ps with a 0.1 ps measurement resolution and a large dynamic range up to 50 km as well as no dead zone.

  1. Fast mode decision for multiview video coding based on depth maps

    NASA Astrophysics Data System (ADS)

    Cernigliaro, Gianluca; Jaureguizar, Fernando; Ortega, Antonio; Cabrera, Julián; García, Narciso

    2009-01-01

    A new fast mode decision (FMD) algorithm for multi-view video coding (MVC) is presented. One of the multiple views is encoded based on traditional methods, which provides a mode decision (MD) map, while encoding of the other views is based on the analysis of the homogeneity of the depth map. This approach reduces the burden of the rate-distortion (RD) motion analysis based on the availability of a depth map, which is assumed to be provided by the acquisition process. Although there is a slight decrease of performance in rate-distortion terms, there is a significant reduction in computational cost.

  2. Accelerated susceptibility-based positive contrast imaging of MR compatible metallic devices based on modified fast spin echo sequences

    NASA Astrophysics Data System (ADS)

    Shi, Caiyun; Xie, Guoxi; Zhang, Yongqin; Zhang, Xiaoyong; Chen, Min; Su, Shi; Dong, Ying; Liu, Xin; Ji, Jim

    2017-04-01

    This study aims to develop an accelerated susceptibility-based positive contrast MR imaging method for visualizing MR compatible metallic devices. A modified fast spin echo sequence is used to accelerate data acquisition. Each readout gradient in the modified fast spin echo is slightly shifted by a short distance T shift. Phase changes accumulated within T shift are then used to calculate the susceptibility map by using a kernel deconvolution algorithm with a regularized ℓ1 minimization. To evaluate the proposed fast spin echo method, three phantom experiments were conducted and compared to a spin echo based technique and the gold standard CT for visualizing biopsy needles and brachytherapy seeds. Compared to the spin echo based technique, the data sampling speed of the proposed method was faster by 2-4 times while still being able to accurately visualize and identify the location of the biopsy needle and brachytherapy seeds. These results were confirmed by CT images of the same devices. Results also demonstrated that the proposed fast spin echo method can achieve good visualization of the brachytherapy seeds in positive contrast and in different orientations. It is also capable of correctly differentiating brachytherapy seeds from other similar structures on conventional magnitude images.

  3. Moment feature based fast feature extraction algorithm for moving object detection using aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2015-01-01

    Fast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs) remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typically chosen based on improving detection rate rather than on providing fast and computationally less complex feature extraction methods. Because moving object detection using aerial images from UAVs involves motion as seen from a certain altitude, effective and fast feature extraction is a vital issue for optimum detection performance. This research proposes a two-layer bucket approach based on a new feature extraction algorithm referred to as the moment-based feature extraction algorithm (MFEA). Because a moment represents the coherent intensity of pixels and motion estimation is a motion pixel intensity measurement, this research used this relation to develop the proposed algorithm. The experimental results reveal the successful performance of the proposed MFEA algorithm and the proposed methodology.

  4. Fast and highly specific DNA-based multiplex detection on a solid support.

    PubMed

    Barišić, Ivan; Kamleithner, Verena; Schönthaler, Silvia; Wiesinger-Mayr, Herbert

    2015-01-01

    Highly specific and fast multiplex detection methods are essential to conduct reasonable DNA-based diagnostics and are especially important to characterise infectious diseases. More than 1000 genetic targets such as antibiotic resistance genes, virulence factors and phylogenetic markers have to be identified as fast as possible to facilitate the correct treatment of a patient. In the present work, we developed a novel ligation-based DNA probe concept that was combined with the microarray technology and used it for the detection of bacterial pathogens. The novel linear chain (LNC) probes identified all tested species correctly within 1 h based on their 16S rRNA gene in a 25-multiplex reaction. Genomic DNA was used directly as template in the ligation reaction identifying as little as 10(7) cells without any pre-amplification. The high specificity was further demonstrated characterising a single nucleotide polymorphism leading to no false positive fluorescence signals of the untargeted single nucleotide polymorphism (SNP) variants. In comparison to conventional microarray probes, the sensitivity of the novel LNC3 probes was higher by a factor of 10 or more. In summary, we present a fast, simple, highly specific and sensitive multiplex detection method adaptable for a wide range of applications.

  5. Fast and accurate grid representations for atom-based docking with partner flexibility.

    PubMed

    de Vries, Sjoerd J; Zacharias, Martin

    2017-06-30

    Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    NASA Astrophysics Data System (ADS)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  7. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    SciTech Connect

    Osipenko, M.; Ripani, M.; Ricco, G.; Caiffi, B.; Pompili, F.; Pillon, M.; Angelone, M.; Verona-Rinati, G.; Cardarelli, R.; Argiro, S.

    2015-07-01

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a {sup 6}Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of 10{sup 8} n/cm{sup 2}s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of 10{sup 6} n/cm{sup 2}s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10{sup 9} n/cm{sup 2}s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4. (authors)

  8. A fast preamplifier concept for SiPM-based time-of-flight PET detectors

    NASA Astrophysics Data System (ADS)

    Huizenga, J.; Seifert, S.; Schreuder, F.; van Dam, H. T.; Dendooven, P.; Löhner, H.; Vinke, R.; Schaart, D. R.

    2012-12-01

    Silicon photomultipliers (SiPMs) offer high gain and fast response to light, making them interesting for fast timing applications such as time-of-flight (TOF) PET. To fully exploit the potential of these photosensors, dedicated preamplifiers that do not deteriorate the rise time and signal-to-noise ratio are crucial. Challenges include the high sensor capacitance, typically >300 pF for a 3 mm×3 mm SiPM sensor, as well as oscillation issues. Here we present a preamplifier concept based on low noise, high speed transistors, designed for optimum timing performance. The input stage consists of a transimpedance common-base amplifier with a very low input impedance even at high frequencies, which assures a good linearity and avoids that the high detector capacitance affects the amplifier bandwidth. The amplifier has a fast timing output as well as a 'slow' energy output optimized for determining the total charge content of the pulse. The rise time of the amplifier is about 300 ps. The measured coincidence resolving time (CRT) for 511 keV photon pairs using the amplifiers in combination with 3 mm×3 mm SiPMs (Hamamatsu MPPC-S10362-33-050C) coupled to 3 mm×3 mm×5 mm LaBr3:Ce and LYSO:Ce crystals equals 95 ps FWHM and 138 ps FWHM, respectively.

  9. Fast entropy-based CABAC rate estimation for mode decision in HEVC.

    PubMed

    Chen, Wei-Gang; Wang, Xun

    2016-01-01

    High efficiency video coding (HEVC) seeks the best code tree configuration, the best prediction unit division and the prediction mode, by evaluating the rate-distortion functional in a recursive way and using a "try all and select the best" strategy. Further, HEVC only supports context adaptive binary arithmetic coding (CABAC), which has the disadvantage of being highly sequential and having strong data dependencies, as the entropy coder. So, the development of a fast rate estimation algorithm for CABAC-based coding has a great practical significance for mode decision in HEVC. There are three elementary steps in CABAC encoding process: binarization, context modeling, and binary arithmetic coding. Typical approaches to fast CABAC rate estimation simplify or eliminate the last two steps, but leave the binarization step unchanged. To maximize the reduction of computational complexity, we propose a fast entropy-based CABAC rate estimator in this paper. It eliminates not only the modeling and the coding steps, but also the binarization step. Experimental results demonstrate that the proposed estimator is able to reduce the computational complexity of the mode decision in HEVC by 9-23 % with negligible PSNR loss and BD-rate increment, and therefore exhibits applicability to practical HEVC encoder implementation.

  10. A fast and powerful release mechanism based on pulse heating of shape memory wires

    NASA Astrophysics Data System (ADS)

    Malka, Yoav; Shilo, Doron

    2017-09-01

    This article presents a novel actuator and a new concept for a release mechanism that are especially useful in applications that require fast motion of large masses over long distances. The actuator is based on ultra-fast pulse heating of NiTi wires, which provide a unique combination of large work per volume, short response time and enhanced energy efficiency. The release mechanism utilizes the fast and powerful actuator to form conditions in which the latch (safety pin) moves faster than the deployed device. As a result, the contact between these two masses is disconnected and the resulting friction forces are decreased to approximately zero. The actuator and release mechanism address the two major drawbacks of conventional shape memory alloy (SMA) actuators: slow actuation time and low energy efficiency. Using a dedicated setup, the experimental results validate the disconnection between the masses and map the effects of several variables on the performance of the actuator and release mechanism. In particular, we map the energetic efficiency and find the optimal operating conditions for a successful release using a minimal amount of input energy. At the optimal conditions, the actuator response time and the consumed input energy are smaller by an order of magnitude with respect to performances of previous SMA-based release mechanisms with comparable requirements.

  11. Improved FFT-based numerical inversion of Laplace transforms via fast Hartley transform algorithm

    NASA Technical Reports Server (NTRS)

    Hwang, Chyi; Lu, Ming-Jeng; Shieh, Leang S.

    1991-01-01

    The disadvantages of numerical inversion of the Laplace transform via the conventional fast Fourier transform (FFT) are identified and an improved method is presented to remedy them. The improved method is based on introducing a new integration step length Delta(omega) = pi/mT for trapezoidal-rule approximation of the Bromwich integral, in which a new parameter, m, is introduced for controlling the accuracy of the numerical integration. Naturally, this method leads to multiple sets of complex FFT computations. A new inversion formula is derived such that N equally spaced samples of the inverse Laplace transform function can be obtained by (m/2) + 1 sets of N-point complex FFT computations or by m sets of real fast Hartley transform (FHT) computations.

  12. Response of a Si-diode-based device to fast neutrons.

    PubMed

    Spurný, Frantisek

    2005-02-01

    Semiconductor devices based on a Si-detector are frequently used for charged particle's detection; one application being in the investigation of cosmic radiation fields. From the spectra of energy deposition events in such devices, the total energy deposited by the radiation in silicon can be derived. This contribution presents the results of studies concerning the response of this type of detector to fast neutrons. First, the spectrum of energy deposition was established in fast neutron radiation fields with average energies from 0.5 to 50 MeV. It was found that these spectra vary significantly with the neutron energy. The comparison with the spectra registered in photon beams permitted an estimation of the part of energy deposited that could be attributed to neutrons. It was found that this part increases rapidly with neutron energy. The possibilities to use this type of detector for neutron detection and dosimetry for radiation protection are analysed and discussed.

  13. Preconditioning based on Calderon's formulae for periodic fast multipole methods for Helmholtz' equation

    NASA Astrophysics Data System (ADS)

    Niino, Kazuki; Nishimura, Naoshi

    2012-01-01

    Solution of periodic boundary value problems is of interest in various branches of science and engineering such as optics, electromagnetics and mechanics. In our previous studies we have developed a periodic fast multipole method (FMM) as a fast solver of wave problems in periodic domains. It has been found, however, that the convergence of the iterative solvers for linear equations slows down when the solutions show anomalies related to the periodicity of the problems. In this paper, we propose preconditioning schemes based on Calderon's formulae to accelerate convergence of iterative solvers in the periodic FMM for Helmholtz' equations. The proposed preconditioners can be implemented more easily than conventional ones. We present several numerical examples to test the performance of the proposed preconditioners. We show that the effectiveness of these preconditioners is definite even near anomalies.

  14. Knowledge-based software system for fast yield loss detection in a semiconductor fab

    NASA Astrophysics Data System (ADS)

    Martin Santamaria, Victorino; Recio, Miguel; Merino, Miguel A.; Moreno, Julian; Fernandez, Almudena; Gonzalez, Gerardo; Sanchez, Guillermo; Barrios, Luis J.; del Castillo, Maria D.; Lemus, Lissette; Gonzalez, Angel L.

    1997-09-01

    The comparative analysis of process machines in terms of yield related metrics (such as probe and E-Test data, process and particle data,. ..) is a source of a great deal of information for yield improvement. With this aim we published on SPIE's Microelectronic Manufacturing an Advanced Software System to detect machine-related yield limitors using a comparative analysis. This paper presents the natural expansion of that Software System by converting it into a more knowledge-based tool for fast yield loss detection on a semiconductor fab. The new System performs, in an automatic mode, the comparison among machines for every single step selected in the fabrication routing. The detection of statistically significative differences among machines at every step is performed using algorithms that incorporate the overall analysts experience on our fab. The output of the System allows a fast detection and reaction to yield issues, mainly to those that are still on the initial or baseline stages.

  15. A fast multispectral light synthesiser based on LEDs and a diffraction grating

    PubMed Central

    Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož

    2016-01-01

    Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155

  16. Development of fast neutron radiography system based on portable neutron generator

    NASA Astrophysics Data System (ADS)

    Yi, Chia Jia; Nilsuwankosit, Sunchai

    2016-01-01

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  17. Development of fast neutron radiography system based on portable neutron generator

    SciTech Connect

    Yi, Chia Jia Nilsuwankosit, Sunchai

    2016-01-22

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  18. A fast quaternion-based orientation optimizer via virtual rotation for human motion tracking.

    PubMed

    Lee, Jung Keun; Park, Edward J

    2009-05-01

    For real-time ambulatory human motion tracking with low-cost inertial/magnetic sensors, a computationally efficient and robust algorithm for estimating orientation is critical. This paper presents a quaternion-based orientation optimizer for tracking human body motion, using triaxis rate gyro, accelerometer, and magnetometer signals. The proposed optimizer uses a Gauss-Newton (G-N) method for finding the best-fit quaternion. In order to decrease the computing time, the optimizer is formulated using a virtual rotation concept that allows very fast quaternion updates compared to the conventional G-N method. In addition, to guard against the effects of fast body motions and temporary ferromagnetic disturbances, a situational measurement vector selection procedure is adopted in conjunction with the G-N optimizer. The accuracy of orientation estimates is validated experimentally, using arm motion trials.

  19. Dynamical programming based turbulence velocimetry for fast visible imaging of tokamak plasma

    NASA Astrophysics Data System (ADS)

    Banerjee, Santanu; Zushi, H.; Nishino, N.; Mishra, K.; Onchi, T.; Kuzmin, A.; Nagashima, Y.; Hanada, K.; Nakamura, K.; Idei, H.; Hasegawa, M.; Fujisawa, A.

    2015-03-01

    An orthogonal dynamic programming (ODP) based particle image velocimetry (PIV) technique is developed to measure the time resolved flow field of the fluctuating structures at the plasma edge and scrape off layer (SOL) of tokamaks. This non-intrusive technique can provide two dimensional velocity fields at high spatial and temporal resolution from a fast framing image sequence and hence can provide better insights into plasma flow as compared to conventional probe measurements. Applicability of the technique is tested with simulated image pairs. Finally, it is applied to tangential fast visible images of QUEST plasma to estimate the SOL flow in inboard poloidal null-natural divertor configuration. This technique is also applied to investigate the intricate features of the core of the run-away dominated phase following the injection of a large amount of neutrals in the target Ohmic plasma. Development of the ODP-PIV code and its applicability on actual plasma images is reported.

  20. A fast multispectral light synthesiser based on LEDs and a diffraction grating

    NASA Astrophysics Data System (ADS)

    Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož

    2016-08-01

    Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy.

  1. The speed of feature-based attention: attentional advantage is slow, but selection is fast.

    PubMed

    Huang, Liqiang

    2010-12-01

    When paying attention to a feature (e.g., red), no attentional advantage is gained in perceiving items with this feature in very brief displays. Therefore, feature-based attention seems to be slow. In previous feature-based attention studies, attention has often been measured as the difference in performance in a secondary task. In our recent work on Boolean map theory (Huang & Pashler, 2007), we distinguished between 2 concepts that are often conflated with the term attention, namely the selection of information from stimulus and the following processing optimization (i.e., attentional advantage) of the selected stimulus. Attention, as examined in previous feature-based attention studies, only fits the definition of processing optimization, but does not fit the definition of selection of information. Therefore, it is open to question whether feature-based attention, when defined as selection, is fast or slow. In this study, I systematically measured the speed of feature-based attention in relation to both definitions. Attention was found to be slow (~100 ms) in terms of processing optimization (i.e., attentional advantage) but fast in terms of the selection of information (<50 ms). These results support the view that feature-based attention works by creating a spatial representation (i.e., a Boolean map; Huang & Pashler, 2007) for the stimulus of a feature and a processing optimization of the visual information residing in the region of this spatial representation.

  2. Variable disparity-motion estimation based fast three-view video coding

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo

    2009-02-01

    In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.

  3. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yin, Xindao; Shi, Luyao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis; Toumoulin, Christine

    2013-08-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors.

  4. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula

    NASA Astrophysics Data System (ADS)

    Shen, Fabin; Wang, Anbo

    2006-02-01

    The numerical calculation of the Rayleigh-Sommerfeld diffraction integral is investigated. The implementation of a fast-Fourier-transform (FFT) based direct integration (FFT-DI) method is presented, and Simpson's rule is used to improve the calculation accuracy. The sampling interval, the size of the computation window, and their influence on numerical accuracy and on computational complexity are discussed for the FFT-DI and the FFT-based angular spectrum (FFT-AS) methods. The performance of the FFT-DI method is verified by numerical simulation and compared with that of the FFT-AS method.

  5. A fast learning-based super-resolution method for copper strip defect image

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuo; Fan, Xinnan; Zhang, Xuewu

    2017-07-01

    In this paper, a fast pre-classified-based super-resolution model has been proposed to overcome the problems of degraded imaging in weak-target real-time detection system, specialized to copper defect detection. To accurately characterize the defected image, textural features based on the statistical function of gray-gradient are presented. Furthermore, to improve the effectiveness and practicality of the online detection, a concept of pre-classified learning is introduced and an edge smoothness rule is designed. Some experiments are carried out on defect images in different environments and the experimental results show the efficiency and effectiveness of the algorithm.

  6. A VLSI Architecture with Multiple Fast Store-Based Block Parallel Processing for Output Probability and Likelihood Score Computations in HMM-Based Isolated Word Recognition

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuhiro; Shimazaki, Ryo; Yamamoto, Masatoshi; Takagi, Kazuyoshi; Takagi, Naofumi

    This paper presents a memory-efficient VLSI architecture for output probability computations (OPCs) of continuous hidden Markov models (HMMs) and likelihood score computations (LSCs). These computations are the most time consuming part of HMM-based isolated word recognition systems. We demonstrate multiple fast store-based block parallel processing (MultipleFastStoreBPP) for OPCs and LSCs and present a VLSI architecture that supports it. Compared with conventional fast store-based block parallel processing (FastStoreBPP) and stream-based block parallel processing (StreamBPP) architectures, the proposed architecture requires fewer registers and less processing time. The processing elements (PEs) used in the FastStoreBPP and StreamBPP architectures are identical to those used in the MultipleFastStoreBPP architecture. From a VLSI architectural viewpoint, a comparison shows that the proposed architecture is an improvement over the others, through efficient use of PEs and registers for storing input feature vectors.

  7. Fast infrared response of YBCO thin films

    NASA Technical Reports Server (NTRS)

    Ballentine, P. H.; Kadin, A. M.; Donaldson, W. R.; Scofield, J. H.; Bajuk, L.

    1990-01-01

    The response to short infrared pulses of some epitaxial YBCO films prepared by sputter deposition and by electron-beam evaporation is reported. The response is found to be essentially bolometric on the ns timescale, with some indirect hints of nonequilibrium electron transport on the ps scale. Fast switching could be obtained either by biasing the switch close to the critical current or by cooling the film below about 20 K. These results are encouraging for potential application to a high-current optically-triggered opening switch.

  8. Development of hot-electron THz bolometric mixers using MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan; Karasik, Boris S.; Wolak, Matthaeus A.; Xi, X. X.

    2014-07-01

    Terahertz high-resolution spectroscopy of interstellar molecular clouds greatly relies on hot-electron superconducting bolometric (HEB) mixers. Current state-of-the-art receivers use mixer devices made from ultrathin (~ 3-5 nm) films of NbN with critical temperature ~ 9-11 K. Such mixers have been deployed on a number of groundbased, suborbital, and orbital platforms including the HIFI instrument on the Hershel Space Observatory. Despite its good sensitivity and well-established fabrication process, the NbN HEB mixer suffers from the narrow intermediate frequency (IF) bandwidth ~ 2-3 GHz and is limited to operation at liquid Helium temperature. As the heterodyne receivers are now trending towards "high THz" frequencies, the need in a larger IF bandwidth becomes more pressing since the same velocity resolution for a Doppler shifted line at 5 THz requires a 5-times greater IF bandwidth than at 1 THz. Our work is focusing on the realization of practical HEB mixers using ultrathin (10-20 nm) MgB2 films. They are prepared using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process yielding ultrathin films with critical temperature ~ 37-39 K. The expectation is that the combination of small thickness, high acoustic phonon transparency at the interface with the substrate, and very short electron-phonon relaxation time may lead to IF bandwidth ~ 10 GHz or even higher. SiC continues to be the most favorable substrate for MgB2 growth and as a result, a study has been conducted on the transparency of SiC at THz frequencies. FTIR measurements show that semi-insulating SiC substrates are at least as transparent as Si up to 2.5 THz. Currently films are passivated using a thin (10 nm) SiO2 layer which is deposited ex-situ via RF magnetron sputtering. Micron-sized spiral antenna-coupled HEB mixers have been fabricated using MgB2 films as thin as 10 nm. Fabrication was done using contact UV lithography and Ar Ion milling, with E-beam evaporated Au films deposited for the

  9. Superconducting Hot-Electron Bolometric Mixer Receivers, and Evolution of Ionized Nebulae

    NASA Astrophysics Data System (ADS)

    Kawamura, Hiroyuki Jonathan

    Receivers incorporating niobium nitride phonon-cooled hot-electron bolometric mixers have been constructed and characterized. The mixer elements are thin-film NbN microbridges with dimensions of ~4 nm thickness, 1-20 μm width and 1.5-4 μm length. These are incorporated in waveguide receivers operating at 200 GHz, 450 GHz, 660 GHz, and 900 GHz. Operating at 4.2 K, the double-sideband receiver noise temperatures in each frequency band were 750 K at 244 GHz, 410 K at 430 GHz, 483 K at 606 GHz, and 1150 K at 800 GHz, a an intermediate frequency of 1.4 GHz and 200 MHz bandwidth. The receiver noise temperature is generally less than 3 GHz K-1 for mixers most recently fabricated. The intermediate frequency bandwidth exceeds 2 GHz, and the local oscillator power for optimal mixing is ~1μW. In addition, the time-evolution of ionized nebulae was studied using difference maps generated by combining new high sensitivity Very Large Array radio interferometrer observations with archived data, separated by a time baseline of ~10 yr. The distances to two bright planetary nebulae are determined by detecting their expansion parallax: the distance to BD +30o3639 is 1.5 ± 0.4 kpc, and to NGC 6572 is 1.2 ± 0.4 kpc. These distances incorporate a new correction term, and are considerably more accurate than those reported previously. The difference mapping technique is for the first time used to study another class of objects, and applied to observe changes in two bright, well-studied compact H scII regions, W 3(OH) and NGC 7538. W 3(OH) is observed to expand at a rate of 3 km s-1, which although significantly smaller than the plasma sound speed, implies an age of ~3×103 yr. This measurement has important consequences for modeling evolution of compact H scII regions. In contrast NGC 7538 exhibits significant changes in the structure whose interpretation is difficult, but nevertheless suggest that structures observed in compact H scII regions are not static.

  10. Diesel Engine Valve Clearance Fault Diagnosis Based on Features Extraction Techniques and FastICA-SVM

    NASA Astrophysics Data System (ADS)

    Jing, Ya-Bing; Liu, Chang-Wen; Bi, Feng-Rong; Bi, Xiao-Yang; Wang, Xia; Shao, Kang

    2017-07-01

    Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastICA-SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.

  11. Fast Fourier transform based direct integration algorithm for the linear canonical transform

    NASA Astrophysics Data System (ADS)

    Wang, Dayong; Liu, Changgeng; Wang, Yunxin; Zhao, Jie

    2011-03-01

    The linear canonical transform(LCT) is a parameterized linear integral transform, which is the general case of many well-known transforms such as the Fourier transform(FT), the fractional Fourier transform(FRT) and the Fresnel transform(FST). These integral transforms are of great importance in wave propagation problems because they are the solutions of the wave equation under a variety of circumstances. In optics, the LCT can be used to model paraxial free space propagation and other quadratic phase systems such as lens and graded-index media. A number of algorithms have been presented to fast compute the LCT. When they are used to compute the LCT, the sampling period in the transform domain is dependent on that in the signal domain. This drawback limits their applicability in some cases such as color digital holography. In this paper, a Fast-Fourier-Transform-based Direct Integration algorithm(FFT-DI) for the LCT is presented. The FFT-DI is a fast computational method of the Direct Integration(DI) for the LCT. It removes the dependency of the sampling period in the transform domain on that in the signal domain. Simulations and experimental results are presented to validate this idea.

  12. Fast Fourier transform based direct integration algorithm for the linear canonical transform

    NASA Astrophysics Data System (ADS)

    Wang, Dayong; Liu, Changgeng; Wang, Yunxin; Zhao, Jie

    2010-07-01

    The linear canonical transform(LCT) is a parameterized linear integral transform, which is the general case of many well-known transforms such as the Fourier transform(FT), the fractional Fourier transform(FRT) and the Fresnel transform(FST). These integral transforms are of great importance in wave propagation problems because they are the solutions of the wave equation under a variety of circumstances. In optics, the LCT can be used to model paraxial free space propagation and other quadratic phase systems such as lens and graded-index media. A number of algorithms have been presented to fast compute the LCT. When they are used to compute the LCT, the sampling period in the transform domain is dependent on that in the signal domain. This drawback limits their applicability in some cases such as color digital holography. In this paper, a Fast-Fourier-Transform-based Direct Integration algorithm(FFT-DI) for the LCT is presented. The FFT-DI is a fast computational method of the Direct Integration(DI) for the LCT. It removes the dependency of the sampling period in the transform domain on that in the signal domain. Simulations and experimental results are presented to validate this idea.

  13. A CFD-based wind solver for a fast response transport and dispersion model

    SciTech Connect

    Gowardhan, Akshay A; Brown, Michael J; Pardyjak, Eric R; Senocak, Inanc

    2010-01-01

    In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources is difficult to disperse and may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. For these reasons it has become important to predict the flow field in urban street canyons. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a fast and reasonably accurate computational fluid dynamics (CFD) technique that solves the Navier-Stokes equations for complex urban areas has been developed called QUIC-CFD (Q-CFD). This technique represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. The paper details the solution procedure and validates this model for various simple and complex urban geometries.

  14. Fast ellipsometric measurements based on a single crystal photo-elastic modulator.

    PubMed

    Petkovšek, R; Petelin, Jaka; Možina, J; Bammer, F

    2010-09-27

    For quality control in high volume manufacturing of thin layers and for tracking of physical and chemical processes, ellipsometry is a common measurement technology. For such kinds of applications we present a novel approach of fast ellipsometric measurements. Instead of a conventional setup that uses a standard photo-elastic modulator, we use a 92 kHz Single Crystal Photo-Elastic Modulator (SCPEM), which is a LiTaO3 crystal with a size of 28 × 9 × 4 mm. This small, simple, and cost-effective solution also offers the advantage of direct control of the retardation via the current amplitude, which is important for repeatability of the measurements. Instead of a Lock-In Amplifier, an automated digital processing based on a fast analog to digital converter controlled by a highly flexible Field Programmable Gate Array is used. This and the extremely compact and efficient polarization modulation allow fast ellipsometric testing where the upper limit of measurement rates is mainly limited by the desired accuracy and repeatability of the measurements. The standard deviation that is related to the repeatability +/-0.002° for dielectric layers can be easily reached.

  15. Accelerated materials design of fast oxygen ionic conductors based on first principles calculations

    NASA Astrophysics Data System (ADS)

    He, Xingfeng; Mo, Yifei

    Over the past decades, significant research efforts have been dedicated to seeking fast oxygen ion conductor materials, which have important technological applications in electrochemical devices such as solid oxide fuel cells, oxygen separation membranes, and sensors. Recently, Na0.5Bi0.5TiO3 (NBT) was reported as a new family of fast oxygen ionic conductor. We will present our first principles computation study aims to understand the O diffusion mechanisms in the NBT material and to design this material with enhanced oxygen ionic conductivity. Using the NBT materials as an example, we demonstrate the computation capability to evaluate the phase stability, chemical stability, and ionic diffusion of the ionic conductor materials. We reveal the effects of local atomistic configurations and dopants on oxygen diffusion and identify the intrinsic limiting factors in increasing the ionic conductivity of the NBT materials. Novel doping strategies were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm-1 at 900 K compared to the experimental Mg doped compositions. Our results provide new avenues for the future design of the NBT materials and demonstrate the accelerated design of new ionic conductor materials based on first principles techniques. This computation methodology and workflow can be applied to the materials design of any (e.g. Li +, Na +) fast ion-conducting materials.

  16. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.

    PubMed

    Pujol-Vila, F; Vigués, N; Díaz-González, M; Muñoz-Berbel, X; Mas, J

    2015-05-15

    Global urban and industrial growth, with the associated environmental contamination, is promoting the development of rapid and inexpensive general toxicity methods. Current microbial methodologies for general toxicity determination rely on either bioluminescent bacteria and specific medium solution (i.e. Microtox(®)) or low sensitivity and diffusion limited protocols (i.e. amperometric microbial respirometry). In this work, fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics is presented, using Escherichia coli as a bacterial model. Ferricyanide reduction kinetic analysis (variation of ferricyanide absorption with time), much more sensitive than single absorbance measurements, allowed for direct and fast toxicity determination without pre-incubation steps (assay time=10 min) and minimizing biomass interference. Dual wavelength analysis at 405 (ferricyanide and biomass) and 550 nm (biomass), allowed for ferricyanide monitoring without interference of biomass scattering. On the other hand, refractive index (RI) matching with saccharose reduced bacterial light scattering around 50%, expanding the analytical linear range in the determination of absorbent molecules. With this method, different toxicants such as metals and organic compounds were analyzed with good sensitivities. Half maximal effective concentrations (EC50) obtained after 10 min bioassay, 2.9, 1.0, 0.7 and 18.3 mg L(-1) for copper, zinc, acetic acid and 2-phenylethanol respectively, were in agreement with previously reported values for longer bioassays (around 60 min). This method represents a promising alternative for fast and sensitive water toxicity monitoring, opening the possibility of quick in situ analysis.

  17. Is the idea of a fast block to polyspermy based on artifact?

    PubMed

    Dale, Brian

    2014-08-01

    This purpose of this review is to look at the experimental evidence, both kinetic and electrophysiological, that led to the hypothesis of a fast electrical block to polyspermy in sea urchin eggs. The idea of a fast partial block, forwarded in the 1950's, that would reduce the receptivity of the egg surface by 1/20th following its interaction with the fertilizing spermatozoon, was based on experiments that treated fertilization as a first order chemical reaction. Here, I outline the criticisms of the Rothschild theory and demonstrate that the hypothesis of a fast partial block to polyspermy is unfounded. Notwithstanding, it was suggested in the 1970's that the membrane depolarization, induced by the fertilizing spermatozoon, prevented the interaction of supernumerary spermatozoa, the fast electrical block to polyspermy. While trans-membrane voltage recording has permitted a better understanding of the sequence of events occurring at fertilization, there is no evidence that depolarization prevents the interaction of supernumerary spermatozoa. Sperm entry is prevented at positive and negative potentials, in the voltage clamp configuration, however this is an artifact caused by the currents injected into the egg employed to hold the voltage constant in a non-physiological range. At permissive voltages, around -20 mV, where the current required to hold the voltage is minimal, only one spermatozoon normally enters the egg. Thus, irrespective of the egg voltage, the fertilizing spermatozoon is, in any case, attached to a privileged interaction site that permits entry and distinguishes it from supernumerary spermatozoa. Competence for monospermy is acquired during oocyte maturation and data on cortical organization in echinoderm eggs points to the actin filament system for regulating sperm entry. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Raw data based image processing algorithm for fast detection of surface breaking cracks

    NASA Astrophysics Data System (ADS)

    Sruthi Krishna K., P.; Puthiyaveetil, Nithin; Kidangan, Renil; Unnikrishnakurup, Sreedhar; Zeigler, Mathias; Myrach, Philipp; Balasubramaniam, Krishnan; Biju, P.

    2017-02-01

    The aim of this work is to illustrate the contribution of signal processing techniques in the field of Non-Destructive Evaluation. A component's life evaluation is inevitably related to the presence of flaws in it. The detection and characterization of cracks prior to damage is a technologically and economically significant task and is of very importance when it comes to safety-relevant measures. The Laser Thermography is the most effective and advanced thermography method for Non-Destructive Evaluation. High capability for the detection of surface cracks and for the characterization of the geometry of artificial surface flaws in metallic samples of laser thermography is particularly encouraging. This is one of the non-contacting, fast and real time detection method. The presence of a vertical surface breaking crack will disturb the thermal footprint. The data processing method plays vital role in fast detection of the surface and sub-surface cracks. Currently in laser thermographic inspection lacks a compromising data processing algorithm which is necessary for the fast crack detection and also the analysis of data is done as part of post processing. In this work we introduced a raw data based image processing algorithm which results precise, better and fast crack detection. The algorithm we developed gives better results in both experimental and modeling data. By applying this algorithm we carried out a detailed investigation variation of thermal contrast with crack parameters like depth and width. The algorithm we developed is applied for various surface temperature data from the 2D scanning model and also validated credibility of algorithm with experimental data.

  19. Fast calculation with point-based method to make CGHs of the polygon model

    NASA Astrophysics Data System (ADS)

    Ogihara, Yuki; Ichikawa, Tsubasa; Sakamoto, Yuji

    2014-02-01

    Holography is one of the three-dimensional technology. Light waves from an object are recorded and reconstructed by using a hologram. Computer generated holograms (CGHs), which are made by simulating light propagation using a computer, are able to represent virtual object. However, an enormous amount of computation time is required to make CGHs. There are two primary methods of calculating CGHs: the polygon-based method and the point-based method. In the polygon-based method with Fourier transforms, CGHs are calculated using a fast Fourier transform (FFT). The calculation of complex objects composed of multiple polygons requires as many FFTs, so unfortunately the calculation time become enormous. In contrast, in the point-based method, it is easy to express complex objects, an enormous calculation time is still required. Graphics processing units (GPUs) have been used to speed up the calculations of point-based method. Because a GPU is specialized for parallel computation and CGH calculation can be calculated independently for each pixel. However, expressing a planar object by the point-based method requires a signi cant increase in the density of points and consequently in the number of point light sources. In this paper, we propose a fast calculation algorithm to express planar objects by the point-based method with a GPU. The proposed method accelerate calculation by obtaining the distance between a pixel and the point light source from the adjacent point light source by a difference method. Under certain speci ed conditions, the difference between adjacent object points becomes constant, so the distance is obtained by only an additions. Experimental results showed that the proposed method is more effective than the polygon-based method with FFT when the number of polygons composing an objects are high.

  20. Fast orthogonal search method to estimate upper arm Hill-based muscle model parameters.

    PubMed

    Mountjoy, Katherine C; Hashtrudi-Zaad, Keyvan; Morin, Evelyn L

    2008-01-01

    We propose a methodology to estimate subject-specific physiological parameters of Hill-based models of upper arm muscles. The methodology uses Hill-type candidate functions in the Fast Orthogonal Search (FOS) method to predict force at the wrist during elbow flexion and extension. To this end, surface EMG data from three muscles of the upper arm were recorded from 5 subjects as they performed isometric contractions at different elbow joint angles. Estimated muscle activation level and joint angle were utilized as inputs to the FOS model to obtain subject-specific estimates of optimal joint angle the Gaussian shape parameter for the force-length relationship for each muscle.

  1. Fast Reactor Based on the Self-Sustained Regime of Nuclear Burning Wave

    NASA Astrophysics Data System (ADS)

    Fomin, S. P.; Mel'nik, Yu. P.; Pilipenko, V. V.; Shul'ga, N. F.

    An approach for description of the space-time evolution of self-organizing nuclear burning wave regime in a critical fast neutron reactor has been developed in the effective multigroup approximation. It is based on solving the non-stationary neutron diffusion equation together with the fuel burn-up equations and the equations of nuclear kinetics for delayed neutron precursor nuclei. The calculations have been carried out in the plane one-dimensional model for a two-zone homogeneous reactor with the metal U-Pu fuel, the Na coolant and constructional material Fe.

  2. Fast and accurate marker-based projective registration method for uncalibrated transmission electron microscope tilt series.

    PubMed

    Lee, Ho; Lee, Jeongjin; Shin, Yeong Gil; Lee, Rena; Xing, Lei

    2010-06-21

    This paper presents a fast and accurate marker-based automatic registration technique for aligning uncalibrated projections taken from a transmission electron microscope (TEM) with different tilt angles and orientations. Most of the existing TEM image alignment methods estimate the similarity between images using the projection model with least-squares metric and guess alignment parameters by computationally expensive nonlinear optimization schemes. Approaches based on the least-squares metric which is sensitive to outliers may cause misalignment since automatic tracking methods, though reliable, can produce a few incorrect trajectories due to a large number of marker points. To decrease the influence of outliers, we propose a robust similarity measure using the projection model with a Gaussian weighting function. This function is very effective in suppressing outliers that are far from correct trajectories and thus provides a more robust metric. In addition, we suggest a fast search strategy based on the non-gradient Powell's multidimensional optimization scheme to speed up optimization as only meaningful parameters are considered during iterative projection model estimation. Experimental results show that our method brings more accurate alignment with less computational cost compared to conventional automatic alignment methods.

  3. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  4. A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine †

    PubMed Central

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-01

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427

  5. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine.

    PubMed

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-15

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.

  6. OnlineCall: fast online parameter estimation and base calling for illumina's next-generation sequencing.

    PubMed

    Das, Shreepriya; Vikalo, Haris

    2012-07-01

    Next-generation DNA sequencing platforms are becoming increasingly cost-effective and capable of providing enormous number of reads in a relatively short time. However, their accuracy and read lengths are still lagging behind those of conventional Sanger sequencing method. Performance of next-generation sequencing platforms is fundamentally limited by various imperfections in the sequencing-by-synthesis and signal acquisition processes. This drives the search for accurate, scalable and computationally tractable base calling algorithms capable of accounting for such imperfections. Relying on a statistical model of the sequencing-by-synthesis process and signal acquisition procedure, we develop a computationally efficient base calling method for Illumina's sequencing technology (specifically, Genome Analyzer II platform). Parameters of the model are estimated via a fast unsupervised online learning scheme, which uses the generalized expectation-maximization algorithm and requires only 3 s of running time per tile (on an Intel i7 machine @3.07GHz, single core)-a three orders of magnitude speed-up over existing parametric model-based methods. To minimize the latency between the end of the sequencing run and the generation of the base calling reports, we develop a fast online scalable decoding algorithm, which requires only 9 s/tile and achieves significantly lower error rates than the Illumina's base calling software. Moreover, it is demonstrated that the proposed online parameter estimation scheme efficiently computes tile-dependent parameters, which can thereafter be provided to the base calling algorithm, resulting in significant improvements over previously developed base calling methods for the considered platform in terms of performance, time/complexity and latency. A C code implementation of our algorithm can be downloaded from http://www.cerc.utexas.edu/OnlineCall/.

  7. OnlineCall: fast online parameter estimation and base calling for illumina's next-generation sequencing

    PubMed Central

    Das, Shreepriya; Vikalo, Haris

    2012-01-01

    Motivation: Next-generation DNA sequencing platforms are becoming increasingly cost-effective and capable of providing enormous number of reads in a relatively short time. However, their accuracy and read lengths are still lagging behind those of conventional Sanger sequencing method. Performance of next-generation sequencing platforms is fundamentally limited by various imperfections in the sequencing-by-synthesis and signal acquisition processes. This drives the search for accurate, scalable and computationally tractable base calling algorithms capable of accounting for such imperfections. Results: Relying on a statistical model of the sequencing-by-synthesis process and signal acquisition procedure, we develop a computationally efficient base calling method for Illumina's sequencing technology (specifically, Genome Analyzer II platform). Parameters of the model are estimated via a fast unsupervised online learning scheme, which uses the generalized expectation–maximization algorithm and requires only 3 s of running time per tile (on an Intel i7 machine @3.07GHz, single core)—a three orders of magnitude speed-up over existing parametric model-based methods. To minimize the latency between the end of the sequencing run and the generation of the base calling reports, we develop a fast online scalable decoding algorithm, which requires only 9 s/tile and achieves significantly lower error rates than the Illumina's base calling software. Moreover, it is demonstrated that the proposed online parameter estimation scheme efficiently computes tile-dependent parameters, which can thereafter be provided to the base calling algorithm, resulting in significant improvements over previously developed base calling methods for the considered platform in terms of performance, time/complexity and latency. Availability: A C code implementation of our algorithm can be downloaded from http://www.cerc.utexas.edu/OnlineCall/ Contact: hvikalo@ece.utexas.edu Supplementary information

  8. XCO2 Retrieval Errors from a PCA-based Approach to Fast Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Somkuti, Peter; Boesch, Hartmut; Natraj, Vijay; Kopparla, Pushkar

    2017-04-01

    Multiple-scattering radiative transfer (RT) calculations are an integral part of forward models used to infer greenhouse gas concentrations in the shortwave-infrared spectral range from satellite missions such as GOSAT or OCO-2. Such calculations are, however, computationally expensive and, combined with the recent growth in data volume, necessitate the use of acceleration methods in order to make retrievals feasible on an operational level. The principle component analysis (PCA)-based approach to fast radiative transfer introduced by Natraj et al. 2005 is a spectral binning method, in which the many line-by-line monochromatic calculations are replaced by a small set of representative ones. From the PCA performed on the optical layer properties for a scene-dependent atmosphere, the results of the representative calculations are mapped onto all spectral points in the given band. Since this RT scheme is an approximation, the computed top-of-atmosphere radiances exhibit errors compared to the "full" line-by-line calculation. These errors ultimately propagate into the final retrieved greenhouse gas concentrations, and their magnitude depends on scene-dependent parameters such as aerosol loadings or viewing geometry. An advantage of this method is the ability to choose the degree of accuracy by increasing or decreasing the number of empirical orthogonal functions used for the reconstruction of the radiances. We have performed a large set of global simulations based on real GOSAT scenes and assess the retrieval errors induced by the fast RT approximation through linear error analysis. We find that across a wide range of geophysical parameters, the errors are for the most part smaller than ± 0.2 ppm and ± 0.06 ppm (out of roughly 400 ppm) for ocean and land scenes respectively. A fast RT scheme that produces low errors is important, since regional biases in XCO2 even in the low sub-ppm range can cause significant changes in carbon fluxes obtained from inversions

  9. Profiling Fast Healthcare Interoperability Resources (FHIR) of Family Health History based on the Clinical Element Models

    PubMed Central

    Lee, Jaehoon; Hulse, Nathan C.; Wood, Grant M.; Oniki, Thomas A.; Huff, Stanley M.

    2016-01-01

    In this study we developed a Fast Healthcare Interoperability Resources (FHIR) profile to support exchanging a full pedigree based family health history (FHH) information across multiple systems and applications used by clinicians, patients, and researchers. We used previously developed clinical element models (CEMs) that are capable of representing the FHH information, and derived essential data elements including attributes, constraints, and value sets. We analyzed gaps between the FHH CEM elements and existing FHIR resources. Based on the analysis, we developed a profile that consists of 1) FHIR resources for essential FHH data elements, 2) extensions for additional elements that were not covered by the resources, and 3) a structured definition to integrate patient and family member information in a FHIR message. We implemented the profile using an open-source based FHIR framework and validated it using patient-entered FHH data that was captured through a locally developed FHH tool. PMID:28269871

  10. Profiling Fast Healthcare Interoperability Resources (FHIR) of Family Health History based on the Clinical Element Models.

    PubMed

    Lee, Jaehoon; Hulse, Nathan C; Wood, Grant M; Oniki, Thomas A; Huff, Stanley M

    2016-01-01

    In this study we developed a Fast Healthcare Interoperability Resources (FHIR) profile to support exchanging a full pedigree based family health history (FHH) information across multiple systems and applications used by clinicians, patients, and researchers. We used previously developed clinical element models (CEMs) that are capable of representing the FHH information, and derived essential data elements including attributes, constraints, and value sets. We analyzed gaps between the FHH CEM elements and existing FHIR resources. Based on the analysis, we developed a profile that consists of 1) FHIR resources for essential FHH data elements, 2) extensions for additional elements that were not covered by the resources, and 3) a structured definition to integrate patient and family member information in a FHIR message. We implemented the profile using an open-source based FHIR framework and validated it using patient-entered FHH data that was captured through a locally developed FHH tool.

  11. GA-Based Autonomous Design of Robust Fast and Precise Positioning Considering Machine Stand Vibration Suppression

    NASA Astrophysics Data System (ADS)

    Ito, Kazuaki; Nagata, Ryo; Iwasaki, Makoto; Matsui, Nobuyuki

    This paper presents a novel Genetic Algorithm (GA)-based autonomous compensator design and position command shaping considering the stand vibration suppression for the fast-response and high-precision positioning of mechatronic systems. The positioning system is mainly composed of a robust 2-degrees-of-freedom (2DOF) controller based on the coprime factorization description. The feedback compensator based on H∞ design framework in the 2DOF controller ensures the robustness against the variations of resonant vibration mode. The feedforward compensator and position command, on the other hand, can be autonomously designed by the optimization capability of GA, in order to achieve the desired positioning performance and to suppress the machine stand vibration. The effectiveness of the proposed optimal design has been verified by experiments using a table drive system with ball screw.

  12. Scintillating bolometric technique for the neutrino-less double beta decay search: The LUCIFER/CUPID-0 experiment

    NASA Astrophysics Data System (ADS)

    Casali, N.; Artusa, D. R.; Bellini, F.; Biassoni, M.; Brofferio, C.; Bucci, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Domizio, S. Di; Vacri, M. L. di; Ferroni, F.; Gironi, L.; Gotti, C.; Keppel, G.; Maino, M.; Martinez, M.; Morganti, S.; Nagorny, S.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pozzi, S.; Pirro, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.

    2017-02-01

    CUPID is a proposed future tonne-scale bolometric neutrino-less double beta decay (0 νββ) experiment to probe the Majorana nature of neutrinos and discover lepton number violation in the so-called inverted hierarchy region of the neutrino mass. In order to improve the sensitivity with respect to the current bolometric experiments, the source mass must be increased and the backgrounds in the region of interest must be dramatically reduced. The background suppression can be achieved discriminating β / γ against α events by means of the different light yield produced in the interactions within a scintillating bolometer. The increase in the number of 0 νββ emitters demands for crystals grown with enriched material. LUCIFER/CUPID-0, the first demonstrator of CUPID, aims at running the first array of enriched scintillating Zn82Se bolometers (total mass of about 7 kg of 82Se) with a background level as low as 10-3 counts/(keV kg y) in the energy region of interest. We present the results of the first measurement performed on three Zn82Se enriched scintillating bolometers operated deep underground in the Hall C of the Laboratori Nazionali del Gran Sasso.

  13. Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns

    PubMed Central

    2013-01-01

    Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected

  14. Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns.

    PubMed

    Meyer, Fernando; Kurtz, Stefan; Beckstette, Michael

    2013-07-17

    It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented

  15. Distributed Function Mining for Gene Expression Programming Based on Fast Reduction

    PubMed Central

    Deng, Song; Yue, Dong; Yang, Le-chan; Fu, Xiong; Feng, Ya-zhou

    2016-01-01

    For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining. PMID:26751200

  16. Fast and robust chromatic dispersion estimation based on temporal auto-correlation after digital spectrum superposition.

    PubMed

    Yao, Shuchang; Eriksson, Tobias A; Fu, Songnian; Johannisson, Pontus; Karlsson, Magnus; Andrekson, Peter A; Ming, Tang; Liu, Deming

    2015-06-15

    We investigate and experimentally demonstrate a fast and robust chromatic dispersion (CD) estimation method based on temporal auto-correlation after digital spectrum superposition. The estimation process is fast, because neither tentative CD scanning based on CD compensation nor specific cost function calculations are used. Meanwhile, the proposed CD estimation method is robust against polarization mode dispersion (PMD), amplified spontaneous emission (ASE) noise and fiber nonlinearity. Furthermore, the proposed CD estimation method can be used for various modulation formats and digital pulse shaping technique. Only 4096 samples are necessary for CD estimation of single carrier either 112 Gbps DP-QPSK or 224 Gbps DP-16QAM signal with various pulse shapes. 8192 samples are sufficient for the root-raised-cosine pulse with roll-off factor of 0.1. As low as 50 ps/nm standard deviation together with a worst estimation error of about 160 ps/nm is experimentally obtained for 7×112 Gbps DP-QPSK WDM signal after the transmission through 480 km to 9120 km single mode fiber (SMF) loop using different launch powers.

  17. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA.

    PubMed

    Ba, Dexin; Wang, Benzhang; Zhou, Dengwang; Yin, Mingjing; Dong, Yongkang; Li, Hui; Lu, Zhiwei; Fan, Zhigang

    2016-05-02

    We propose and demonstrate a dynamic Brillouin optical fiber sensing based on the multi-slope assisted fast Brillouin optical time-domain analysis (F-BOTDA), which enables the measurement of a large strain with real-time data processing. The multi-slope assisted F-BOTDA is realized based on the double-slope demodulation and frequency-agile modulation, which significantly increases the measurement range compared with the single- or double- slope assisted F-BOTDA, while maintaining the advantage of fast data processing and being suitable for real-time on-line monitoring. A maximum strain variation up to 5000με is measured in a 32-m fiber with a spatial resolution of ~1m and a sampling rate of 1kHz. The frequency of the strain is 12.8Hz, which is limited by the rotation rate of the motor used to load the force on the fiber. Furthermore, the influence of the frequency difference between two adjacent probe tones on the measurement error is studied theoretically and experimentally for optimization. For a Brillouin gain spectrum with a 78-MHz width, the optimum frequency difference is ~40MHz. The measurement error of Brillouin frequency shift is less than 3MHz over the whole measurement range (241MHz).

  18. Fiber based fast sparse sampling x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Lun, Michael; Li, Changqing

    2017-02-01

    Super fine collimated x-ray beam based x-ray luminescence computed tomography (XLCT) has the potential to reconstruct the deeply embedded targets with a spatial resolution of hundreds of micrometers. However, due to the low x-ray photon utilization efficiency and low optical signal sensitivity of the electron multiplying charge coupled device (EMCCD) camera, XLCT usually requires a long measurement time. To overcome this limitation, we propose a fiber based, fast XLCT design, in which optical fiber bundles are applied to collect the emitted optical photons on the phantom surface. Highly sensitive photomultiplier tubes (PMT) with a cooling unit and pre-amplifier are used to measure the photons from the fiber bundles. The PMT outputs are collected by a high-speed data acquisition board. A linear scan is estimated to take about 130 seconds, thus for an XLCT scan with 6 projections, we require 13 minutes for each section, which makes it feasible to have a whole body scan of XLCT. To validate our design, numerical simulations and phantom experiments have been performed. In numerical simulation studies, we have investigated the effect of the number of optical fiber bundle on the XLCT reconstruction. We found that one optical fiber bundle is sufficient to reconstruct the deeply embedded targets if measurements from 6 projections are used. Phantom experiments with multiple targets have been performed to validate the proposed fast XLCT imaging.

  19. Fast Electromagnetic Analysis of MRI Transmit RF Coils Based on Accelerated Integral Equation Methods.

    PubMed

    Villena, Jorge Fernandez; Polimeridis, Athanasios G; Eryaman, Yigitcan; Adalsteinsson, Elfar; Wald, Lawrence L; White, Jacob K; Daniel, Luca

    2016-11-01

    A fast frequency domain full-wave electromagnetic simulation method is introduced for the analysis of MRI coils loaded with the realistic human body models. The approach is based on integral equation methods decomposed into two domains: 1) the RF coil array and shield, and 2) the human body region where the load is placed. The analysis of multiple coil designs is accelerated by introducing the precomputed magnetic resonance Green functions (MRGFs), which describe how the particular body model used responds to the incident fields from external sources. These MRGFs, which are precomputed once for a given body model, can be combined with any integral equation solver and reused for the analysis of many coil designs. This approach provides a fast, yet comprehensive, analysis of coil designs, including the port S-parameters and the electromagnetic field distribution within the inhomogeneous body. The method solves the full-wave electromagnetic problem for a head array in few minutes, achieving a speed up of over 150 folds with root mean square errors in the electromagnetic field maps smaller than 0.4% when compared to the unaccelerated integral equation-based solver. This enables the characterization of a large number of RF coil designs in a reasonable time, which is a first step toward an automatic optimization of multiple parameters in the design of transmit arrays, as illustrated in this paper, but also receive arrays.

  20. A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range

    DOE PAGES

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne; ...

    2017-06-08

    We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH4)2SO2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less

  1. Predictive-based cross line for fast motion estimation in MPEG-4 videos

    NASA Astrophysics Data System (ADS)

    Fang, Hui; Jiang, Jianmin

    2004-05-01

    Block-based motion estimation is widely used in the field of video compression due to its feature of high processing speed and competitive compression efficiency. In the chain of compression operations, however, motion estimation still remains to be the most time-consuming process. As a result, any improvement in fast motion estimation will enable practical applications of MPEG techniques more efficient and more sustainable in terms of both processing speed and computing cost. To meet the requirements of real-time compression of videos and image sequences, such as video conferencing, remote video surveillance and video phones etc., we propose a new search algorithm and achieve fast motion estimation for MPEG compression standards based on existing algorithm developments. To evaluate the proposed algorithm, we adopted MPEG-4 and the prediction line search algorithm as the benchmarks to design the experiments. Their performances are measured by: (i) reconstructed video quality; (ii) processing time. The results reveal that the proposed algorithm provides a competitive alternative to the existing prediction line search algorithm. In comparison with MPEG-4, the proposed algorithm illustrates significant advantages in terms of processing speed and video quality.

  2. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display.

    PubMed

    Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia

    2013-01-01

    In the holographic three-dimensional (3D) display, the numerical synthesis of the computer-generated holograms needs tremendous calculation. To solve the problem, a fast polygon-based method based on two-dimensional Fourier analysis of 3D affine transformation is proposed. From one primitive polygon, the proposed method calculates the diffracted optical field of each arbitrary polygon in the 3D model, where the pseudo-inverse matrix, the interpolation, and the compensation of the power spectral density are employed. The proposed method could save the computation time in the hologram synthesis since it does not need the fast Fourier transform for each polygonal surface and the additional diffusion computation. The numerical simulation and the optical experimental results are presented to demonstrate the effectiveness of the method. The results reveal the proposed method could reconstruct the 3D scene with the solid effect and without the depth limitation. The factors that influence the image quality are discussed, and the thresholds are proposed to ensure the reconstruction quality.

  3. Distributed Function Mining for Gene Expression Programming Based on Fast Reduction.

    PubMed

    Deng, Song; Yue, Dong; Yang, Le-chan; Fu, Xiong; Feng, Ya-zhou

    2016-01-01

    For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining.

  4. Sample pretreatment and nucleic acid-based detection for fast diagnosis utilizing microfluidic systems.

    PubMed

    Wang, Jung-Hao; Wang, Chih-Hung; Lee, Gwo-Bin

    2012-06-01

    Recently, micro-electro-mechanical-systems (MEMS) technology and micromachining techniques have enabled miniaturization of biomedical devices and systems. Not only do these techniques facilitate the development of miniaturized instrumentation for biomedical analysis, but they also open a new era for integration of microdevices for performing accurate and sensitive diagnostic assays. A so-called "micro-total-analysis-system", which integrates sample pretreatment, transport, reaction, and detection on a small chip in an automatic format, can be realized by combining functional microfluidic components manufactured by specific MEMS technologies. Among the promising applications using microfluidic technologies, nucleic acid-based detection has shown considerable potential recently. For instance, micro-polymerase chain reaction chips for rapid DNA amplification have attracted considerable interest. In addition, microfluidic devices for rapid sample pretreatment prior to nucleic acid-based detection have also achieved significant progress in the recent years. In this review paper, microfluidic systems for sample preparation, nucleic acid amplification and detection for fast diagnosis will be reviewed. These microfluidic devices and systems have several advantages over their large-scale counterparts, including lower sample/reagent consumption, lower power consumption, compact size, faster analysis, and lower per unit cost. The development of these microfluidic devices and systems may provide a revolutionary platform technology for fast sample pretreatment and accurate, sensitive diagnosis.

  5. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery

    NASA Astrophysics Data System (ADS)

    Ali Raza, Syed Raza; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-10-01

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03801g

  6. TH-E-BRE-08: GPU-Monte Carlo Based Fast IMRT Plan Optimization

    SciTech Connect

    Li, Y; Tian, Z; Shi, F; Jiang, S; Jia, X

    2014-06-15

    Purpose: Intensity-modulated radiation treatment (IMRT) plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC) methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow. Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, rough beamlet dose calculations is conducted with only a small number of particles per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final Result. Results: For a lung case with 5317 beamlets, 10{sup 5} particles per beamlet in the first round, and 10{sup 8} particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec. Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.

  7. Impact of the Bienestar School-Based Diabetes Mellitus Prevention Program on Fasting Capillary Glucose Levels

    PubMed Central

    Treviño, Roberto P.; Yin, Zenong; Hernandez, Arthur; Hale, Daniel E.; Garcia, Oralia A.; Mobley, Connie

    2005-01-01

    Objective To evaluate the impact of a school-based diabetes mellitus prevention program on low-income fourth-grade Mexican American children. Design A randomized controlled trial with 13 intervention and 14 control schools. Setting Elementary schools in inner-city neighborhoods in San Antonio, Tex. Participants Eighty percent of participants were Mexican American and 94% were from economically disadvantaged households. Baseline and follow-up measures were collected from 1419 (713 intervention and 706 control) and 1221 (619 intervention and 602 control) fourth-grade children, respectively. Intervention The Bienestar Health Program consists of a health class and physical education curriculum, a family program, a school cafeteria program, and an after-school health club. The objectives are to decrease dietary saturated fat intake, increase dietary fiber intake, and increase physical activity. Main Outcome Measures The primary end point was fasting capillary glucose level, and the secondary end points were percentage of body fat, physical fitness level, dietary fiber intake, and dietary saturated fat intake. Fasting capillary glucose level, bioelectric impedance, modified Harvard step test, three 24-hour dietary recalls, weight, and height were collected at baseline and 8 months later. Results Children in the intervention arm attended an average of 32 Bienestar sessions. Mean fasting capillary glucose levels decreased in intervention schools and increased in control schools after adjusting for covariates (−2.24 mg/dL [0.12 mmol/L]; 95% confidence interval, −6.53 to 2.05 [−0.36 to 0.11 mmol/L]; P = .03). Fitness scores (P = .04) and dietary fiber intake (P = .009) significantly increased in intervention children and decreased in control children. Percentage of body fat (P = .56) and dietary saturated fat intake (P = .52) did not differ significantly between intervention and control children. Conclusion This intervention showed some positive results, but additional

  8. Simple and fast rail wear measurement method based on structured light

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Sun, Junhua; Wang, Heng; Zhang, Guangjun

    2011-11-01

    In this paper, a fast and accurate rail wear measurement method based on simple equipments is presented. The inner rail profile is measured by a line structured light vision sensor. Using the centers of the big and small circle from the rail waist profile as control points, the measured rail profile is registered to the reference profile. The rail wear, including the vertical and horizontal rail wear, is computed by comparing the registered measured profile with the reference profile. The method has three key contributions: (1) the rail waist light stripe center points in the images are located fast and accurately by first tracking the region containing the rail waist light stripe using the Kalman filter and then computing the sub-pixel precision image coordinates by Hessian matrix at pixels. (2) The rail waist profile is segmented automatically into arcs of big and small circles by thresholding the normal angle curve of the measured rail waist profile. The centers of the two circles are used as control points for registering the measured rail profile to the reference profile. (3) The fast location of rail wear points in the images is realized by projecting the rail wear constraint points to the image, which simplifies the problem of computing rail wear from 2d image processing to 1d searching along the line segment connecting two rail wear constraint points. Experiments show that the proposed method can achieve 500 fps measurement frequency. At a train speed of 350 km/h, the interval between two consecutive measurements is about 190 mm. The system is tested on a real running train, and the measurement results are compared with those rail wear measured manually by special gage. The RMS errors of vertical and horizontal rail wears are 0.34 and 0.30 mm, respectively.

  9. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Politano, Antonio; Knap, Wojciech; Vitiello, Miriam S

    2016-02-05

    The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be "engineered" from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5-8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting.

  10. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response

    NASA Astrophysics Data System (ADS)

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Politano, Antonio; Knap, Wojciech; Vitiello, Miriam S.

    2016-02-01

    The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be “engineered” from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5–8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting.

  11. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response

    PubMed Central

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Politano, Antonio; Knap, Wojciech; Vitiello, Miriam S.

    2016-01-01

    The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be “engineered” from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5–8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting. PMID:26847823

  12. Heteroepitaxy of Nd(0.67)Sr(0.33)MnO3 on silicon for bolometric x-ray detector application.

    PubMed

    Yong, G J; Kolagani, Rajeswari M; Adhikari, S; Drury, O B; Gardner, C; Bionta, R M; Friedrich, S

    2010-11-01

    We have recently reported the design concept and sensor fabrication for a novel bolometric x-ray detector based on a rare earth manganite material for application as a total energy monitor for the Linac Coherent Light Source (LCLS) free electron laser at the Stanford Linear Accelerator Center (SLAC). The detector employs epitaxial thin films of Nd(0.67)Sr(0.33)MnO(3) grown on Si by pulsed laser deposition. In this paper we report details of the fabrication of the actual detector, its response characteristics under photon illumination from LCLS, and improvements in the growth scheme of the sensor material on Si using a buffer/template layer scheme that employs yttria-stabilized zirconia, cerium oxide (CeO(2)), and bismuth titanate (Bi(4)Ti(3)O(12)). The thermal sensor response changes linearly with the energy of an optical calibration laser as expected, and the signals from optical and x-ray pulses at LCLS are very similar, thereby validating the design concept. To the best of our knowledge, the LCLS detector application reported here is the first practical use of colossal magnetoresistive manganite bolometers.

  13. Fast vaccine design and development based on correlates of protection (COPs)

    PubMed Central

    van Els, Cécile; Mjaaland, Siri; Næss, Lisbeth; Sarkadi, Julia; Gonczol, Eva; Smith Korsholm, Karen; Hansen, Jon; de Jonge, Jørgen; Kersten, Gideon; Warner, Jennifer; Semper, Amanda; Kruiswijk, Corine; Oftung, Fredrik

    2014-01-01

    New and reemerging infectious diseases call for innovative and efficient control strategies of which fast vaccine design and development represent an important element. In emergency situations, when time is limited, identification and use of correlates of protection (COPs) may play a key role as a strategic tool for accelerated vaccine design, testing, and licensure. We propose that general rules for COP-based vaccine design can be extracted from the existing knowledge of protective immune responses against a large spectrum of relevant viral and bacterial pathogens. Herein, we focus on the applicability of this approach by reviewing the established and up-coming COPs for influenza in the context of traditional and a wide array of new vaccine concepts. The lessons learnt from this field may be applied more generally to COP-based accelerated vaccine design for emerging infections. PMID:25424803

  14. A fast and low-power microelectromechanical system-based non-volatile memory device

    PubMed Central

    Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E. B.; Park, Yung Woo

    2011-01-01

    Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559

  15. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  16. Sensor fault diagnosis for fast steering mirror system based on Kalman filter

    NASA Astrophysics Data System (ADS)

    Wang, Hongju; Bao, Qiliang; Yang, Haifeng; Tao, Sunjie

    2015-10-01

    In this paper, to improve the reliability of a two-axis fast steering mirror system with minimum hardware consumption, a fault diagnosis method based on Kalman filter was developed. The dynamics model of the two-axis FSM was established firstly, and then the state-space form of the FSM was adopted. A bank of Kalman filters for fault detection was designed based on the state-space form. The effects of the sensor faults on the innovation sequence were investigated, and a decision approach called weighted sum-squared residual (WSSR) was adopted to isolate the sensor faults. Sensor faults could be detected and isolated when the decision statistics changed. Experimental studies on a prototype system show that the faulty sensor can be isolated timely and accurately. Meanwhile, the mathematical model of FSM system was used to design fault diagnosis scheme in the proposed method, thus the consumption of the hardware and space is decreased.

  17. Correlated image set compression system based on new fast efficient algorithm of Karhunen-Loeve transform

    NASA Astrophysics Data System (ADS)

    Musatenko, Yurij S.; Kurashov, Vitalij N.

    1998-10-01

    The paper presents improved version of our new method for compression of correlated image sets Optimal Image Coding using Karhunen-Loeve transform (OICKL). It is known that Karhunen-Loeve (KL) transform is most optimal representation for such a purpose. The approach is based on fact that every KL basis function gives maximum possible average contribution in every image and this contribution decreases most quickly among all possible bases. So, we lossy compress every KL basis function by Embedded Zerotree Wavelet (EZW) coding with essentially different loss that depends on the functions' contribution in the images. The paper presents new fast low memory consuming algorithm of KL basis construction for compression of correlated image ensembles that enable our OICKL system to work on common hardware. We also present procedure for determining of optimal losses of KL basic functions caused by compression. It uses modified EZW coder which produce whole PSNR (bitrate) curve during the only compression pass.

  18. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  19. Fast fabrication of curved microlens array using DMD-based lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Zhimin; Gao, Yiqing; Luo, Ningning; Zhong, Kejun

    2016-01-01

    Curved microlens array is the core element of the biologically inspired artificial compound eye. Many existing fabrication processes remain expensive and complicated, which limits a broad range of application of the artificial compound eye. In this paper, we report a fast fabrication method for curved microlens array by using DMD-based maskless lithography. When a three-dimensional (3D) target curved profile is projected into a two-dimensional (2D) mask, arbitrary curved microlens array can be flexibly and efficiently obtained by utilizing DMD-based lithography. In order to verify the feasibility of this method, a curved PDMS microlens array with 90 micro lenslets has been fabricated. The physical and optical characteristics of the fabricated microlens array suggest that this method is potentially suitable for applications in artificial compound eye.

  20. Region-based image denoising through wavelet and fast discrete curvelet transform

    NASA Astrophysics Data System (ADS)

    Gu, Yanfeng; Guo, Yan; Liu, Xing; Zhang, Ye

    2008-10-01

    Image denoising always is one of important research topics in the image processing field. In this paper, fast discrete curvelet transform (FDCT) and undecimated wavelet transform (UDWT) are proposed for image denoising. A noisy image is first denoised by FDCT and UDWT separately. The whole image space is then divided into edge region and non-edge regions. After that, wavelet transform is performed on the images denoised by FDCT and UDWT respectively. Finally, the resultant image is fused through using both of edge region wavelet cofficients of the image denoised by FDCT and non-edge region wavelet cofficients of the image denoised by UDWT. The proposed method is validated through numerical experiments conducted on standard test images. The experimental results show that the proposed algorithm outperforms wavelet-based and curvelet-based image denoising methods and preserve linear features well.

  1. Fast QRS Detection with an Optimized Knowledge-Based Method: Evaluation on 11 Standard ECG Databases

    PubMed Central

    Elgendi, Mohamed

    2013-01-01

    The current state-of-the-art in automatic QRS detection methods show high robustness and almost negligible error rates. In return, the methods are usually based on machine-learning approaches that require sufficient computational resources. However, simple-fast methods can also achieve high detection rates. There is a need to develop numerically efficient algorithms to accommodate the new trend towards battery-driven ECG devices and to analyze long-term recorded signals in a time-efficient manner. A typical QRS detection method has been reduced to a basic approach consisting of two moving averages that are calibrated by a knowledge base using only two parameters. In contrast to high-accuracy methods, the proposed method can be easily implemented in a digital filter design. PMID:24066054

  2. Optimal placement of fast cut back units based on the theory of cellular automata and agent

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Yan, Feng

    2017-06-01

    The thermal power generation units with the function of fast cut back could serve power for auxiliary system and keep island operation after a major blackout, so they are excellent substitute for the traditional black-start power sources. Different placement schemes for FCB units have different influence on the subsequent restoration process. Considering the locality of the emergency dispatching rules, the unpredictability of specific dispatching instructions and unexpected situations like failure of transmission line energization, a novel deduction model for network reconfiguration based on the theory of cellular automata and agent is established. Several indexes are then defined for evaluating the placement schemes for FCB units. The attribute weights determination method based on subjective and objective integration and grey relational analysis are combinatorically used to determine the optimal placement scheme for FCB unit. The effectiveness of the proposed method is validated by the test results on the New England 10-unit 39-bus power system.

  3. Fast intensity-modulated arc therapy based on 2-step beam segmentation

    SciTech Connect

    Bratengeier, Klaus; Gainey, Mark; Sauer, Otto A.; Richter, Anne; Flentje, Michael

    2011-01-15

    Purpose: Single or few arc intensity-modulated arc therapy (IMAT) is intended to be a time saving irradiation method, potentially replacing classical intensity-modulated radiotherapy (IMRT). The aim of this work was to evaluate the quality of different IMAT methods with the potential of fast delivery, which also has the possibility of adapting to the daily shape of the target volume. Methods: A planning study was performed. Novel double and triple IMAT techniques based on the geometrical analysis of the target organ at risk geometry (2-step IMAT) were evaluated. They were compared to step and shoot IMRT reference plans generated using direct machine parameter optimization (DMPO). Volumetric arc (VMAT) plans from commercial preclinical software (SMARTARC) were used as an additional benchmark to classify the quality of the novel techniques. Four cases with concave planning target volumes (PTV) with one dominating organ at risk (OAR), viz., the PTV/OAR combination of the ESTRO Quasimodo phantom, breast/lung, spine metastasis/spinal cord, and prostate/rectum, were used for the study. The composite objective value (COV) and other parameters representing the plan quality were studied. Results: The novel 2-step IMAT techniques with geometry based segment definition were as good as or better than DMPO and were superior to the SMARTARC VMAT techniques. For the spine metastasis, the quality measured by the COV differed only by 3%, whereas the COV of the 2-step IMAT for the other three cases decreased by a factor of 1.4-2.4 with respect to the reference plans. Conclusions: Rotational techniques based on geometrical analysis of the optimization problem (2-step IMAT) provide similar or better plan quality than DMPO or the research version of SMARTARC VMAT variants. The results justify pursuing the goal of fast IMAT adaptation based on 2-step IMAT techniques.

  4. Development of a fast radiation detector based on barium fluoride scintillation crystal

    SciTech Connect

    Han, Hetong; Zhang, Zichuan; Weng, Xiufeng; Liu, Junhong; Zhang, Kan; Li, Gang; Guan, Xingyin

    2013-07-15

    Barium fluoride (BaF{sub 2}) is an inorganic scintillation material used for the detection of X/gamma radiation due to its relatively high density, equivalent atomic number, radiation hardness, and high luminescence. BaF{sub 2} has a potential capacity to be used in gamma ray timing experiments due to the prompt decay emission components. It is known that the light output from BaF{sub 2} has three decay components: two prompt of those at approximately 195 nm and 220 nm with a decay constant around 600-800 ps and a more intense, slow component at approximately 310 nm with a decay constant around 630 ns which hinders fast timing experiments. We report here the development of a fast radiation detector based on a BaF{sub 2} scintillation crystal employing a special optical filter device, a multiple reflection multi-path ultraviolet region short-wavelength pass light guides (MRMP-short pass filter) by using selective reflection technique, for which the intensity of the slow component is reduced to less than 1%. The methods used for this study provide a novel way to design radiation detector by utilizing scintillation crystal with several emission bands.

  5. Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner

    PubMed Central

    Mu, Ying; Niedre, Mark

    2015-01-01

    Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT. PMID:26417526

  6. Fast multichannel astronomical photometer based on silicon photo multipliers mounted at the Telescopio Nazionale Galileo

    NASA Astrophysics Data System (ADS)

    Ambrosino, Filippo; Meddi, Franco; Rossi, Corinne; Sclavi, Silvia; Nesci, Roberto; Bruni, Ivan; Ghedina, Adriano; Riverol, Luis; Di Fabrizio, Luca

    2014-07-01

    The realization of low-cost instruments with high technical performance is a goal that deserves efforts in an epoch of fast technological developments. Such instruments can be easily reproduced and therefore allow new research programs to be opened in several observatories. We realized a fast optical photometer based on the SiPM (Silicon Photo Multiplier) technology, using commercially available modules. Using low-cost components, we developed a custom electronic chain to extract the signal produced by a commercial MPPC (Multi Pixel Photon Counter) module produced by Hamamatsu Photonics to obtain sub-millisecond sampling of the light curve of astronomical sources (typically pulsars). We built a compact mechanical interface to mount the MPPC at the focal plane of the TNG (Telescopio Nazionale Galileo), using the space available for the slits of the LRS (Low Resolution Spectrograph). On February 2014 we observed the Crab pulsar with the TNG with our prototype photometer, deriving its period and the shape of its light curve, in very good agreement with the results obtained in the past with other much more expensive instruments. After the successful run at the telescope we describe here the lessons learned and the ideas that burst to optimize this instrument and make it more versatile.

  7. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.

    PubMed

    Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-11-21

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.

  8. A fast Monte Carlo code for proton transport in radiation therapy based on MCNPX.

    PubMed

    Jabbari, Keyvan; Seuntjens, Jan

    2014-07-01

    An important requirement for proton therapy is a software for dose calculation. Monte Carlo is the most accurate method for dose calculation, but it is very slow. In this work, a method is developed to improve the speed of dose calculation. The method is based on pre-generated tracks for particle transport. The MCNPX code has been used for generation of tracks. A set of data including the track of the particle was produced in each particular material (water, air, lung tissue, bone, and soft tissue). This code can transport protons in wide range of energies (up to 200 MeV for proton). The validity of the fast Monte Carlo (MC) code is evaluated with data MCNPX as a reference code. While analytical pencil beam algorithm transport shows great errors (up to 10%) near small high density heterogeneities, there was less than 2% deviation of MCNPX results in our dose calculation and isodose distribution. In terms of speed, the code runs 200 times faster than MCNPX. In the Fast MC code which is developed in this work, it takes the system less than 2 minutes to calculate dose for 10(6) particles in an Intel Core 2 Duo 2.66 GHZ desktop computer.

  9. A fast Monte Carlo code for proton transport in radiation therapy based on MCNPX

    PubMed Central

    Jabbari, Keyvan; Seuntjens, Jan

    2014-01-01

    An important requirement for proton therapy is a software for dose calculation. Monte Carlo is the most accurate method for dose calculation, but it is very slow. In this work, a method is developed to improve the speed of dose calculation. The method is based on pre-generated tracks for particle transport. The MCNPX code has been used for generation of tracks. A set of data including the track of the particle was produced in each particular material (water, air, lung tissue, bone, and soft tissue). This code can transport protons in wide range of energies (up to 200 MeV for proton). The validity of the fast Monte Carlo (MC) code is evaluated with data MCNPX as a reference code. While analytical pencil beam algorithm transport shows great errors (up to 10%) near small high density heterogeneities, there was less than 2% deviation of MCNPX results in our dose calculation and isodose distribution. In terms of speed, the code runs 200 times faster than MCNPX. In the Fast MC code which is developed in this work, it takes the system less than 2 minutes to calculate dose for 106 particles in an Intel Core 2 Duo 2.66 GHZ desktop computer. PMID:25190994

  10. Cygrid: A fast Cython-powered convolution-based gridding module for Python

    NASA Astrophysics Data System (ADS)

    Winkel, B.; Lenz, D.; Flöer, L.

    2016-06-01

    Context. Data gridding is a common task in astronomy and many other science disciplines. It refers to the resampling of irregularly sampled data to a regular grid. Aims: We present cygrid, a library module for the general purpose programming language Python. Cygrid can be used to resample data to any collection of target coordinates, although its typical application involves FITS maps or data cubes. The FITS world coordinate system standard is supported. Methods: The regridding algorithm is based on the convolution of the original samples with a kernel of arbitrary shape. We introduce a lookup table scheme that allows us to parallelize the gridding and combine it with the HEALPix tessellation of the sphere for fast neighbor searches. Results: We show that for n input data points, cygrids runtime scales between O(n) and O(nlog n) and analyze the performance gain that is achieved using multiple CPU cores. We also compare the gridding speed with other techniques, such as nearest-neighbor, and linear and cubic spline interpolation. Conclusions: Cygrid is a very fast and versatile gridding library that significantly outperforms other third-party Python modules, such as the linear and cubic spline interpolation provided by SciPy. http://https://github.com/bwinkel/cygrid

  11. Fast phase unwrapping algorithm based on region partition for structured light vision measurement

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Su, Hang

    2014-04-01

    Phase unwrapping is a key problem of phase-shifting profilometry vision measurement for complex object surface shapes. The simple path-following phase unwrapping algorithm is fast but has serious unwrapping error for complex shapes. The Goldstein+flood phase unwrapping algorithm can handle some complex shape object measurement; however, it is time consuming. We propose a fast phase unwrapping algorithm based on region partition according to a quality map of wrapped phase. In this algorithm, wrapped phase image is divided into several regions using partition thresholds, which are determined according to histogram of quality value. Each region is unwrapped by using a simple path-following phase algorithm and several groups with different priorities are generated. These groups are merged according to their priorities from high to low order and a final absolute phase is obtained. The proposed method is applied to wrapped phase images of three objects with and without noise. Experiments show that the proposed method is much faster, more accurate, and robust to noise than the Goldstein+flood algorithm in unwrapping complex phase image.

  12. Fast template matching based on grey prediction for real-time object tracking

    NASA Astrophysics Data System (ADS)

    Lv, Mingming; Hou, Yuanlong; Liu, Rongzhong; Hou, Runmin

    2017-02-01

    Template matching is a basic algorithm for image processing, and real-time is a crucial requirement of object tracking. For real-time tracking, a fast template matching algorithm based on grey prediction is presented, where computation cost can be reduced dramatically by minimizing search range. First, location of the tracked object in the current image is estimated by Grey Model (GM). GM(1,1), which is the basic model of grey prediction, can use some known information to foretell the location. Second, the precise position of the object in the frame is computed by template matching. Herein, Sequential Similarity Detection Algorithm (SSDA) with a self-adaptive threshold is employed to obtain the matching position in the neighborhood of the predicted location. The role of threshold in SSDA is important, as a proper threshold can make template matching fast and accurate. Moreover, a practical weighted strategy is utilized to handle scale and rotation changes of the object, as well as illumination changes. The experimental results show the superior performance of the proposed algorithm over the conventional full-search method, especially in terms of executive time.

  13. Beam test results of a 16 ps timing system based on ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Cartiglia, N.; Staiano, A.; Sola, V.; Arcidiacono, R.; Cirio, R.; Cenna, F.; Ferrero, M.; Monaco, V.; Mulargia, R.; Obertino, M.; Ravera, F.; Sacchi, R.; Bellora, A.; Durando, S.; Mandurrino, M.; Minafra, N.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gkougkousis, E.; Grabas, H.; Gruey, B.; Labitan, C. A.; Losakul, R.; Luce, Z.; McKinney-Martinez, F.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, E.; Wilder, M.; Woods, N.; Zatserklyaniy, A.; Pellegrini, G.; Hidalgo, S.; Carulla, M.; Flores, D.; Merlos, A.; Quirion, D.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Zavrtanik, M.

    2017-04-01

    In this paper we report on the timing resolution obtained in a beam test with pions of 180 GeV/c momentum at CERN for the first production of 45 μm thick Ultra-Fast Silicon Detectors (UFSD). UFSD are based on the Low-Gain Avalanche Detector (LGAD) design, employing n-on-p silicon sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction. The UFSD used in this test had a pad area of 1.7 mm2. The gain was measured to vary between 5 and 70 depending on the sensor bias voltage. The experimental setup included three UFSD and a fast trigger consisting of a quartz bar readout by a SiPM. The timing resolution was determined by doing Gaussian fits to the time-of-flight of the particles between one or more UFSD and the trigger counter. For a single UFSD the resolution was measured to be 34 ps for a bias voltage of 200 V, and 27 ps for a bias voltage of 230 V. For the combination of 3 UFSD the timing resolution was 20 ps for a bias voltage of 200 V, and 16 ps for a bias voltage of 230 V.

  14. A fast continuous magnetic field measurement system based on digital signal processors

    SciTech Connect

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; Maroussov, V.; Nehring, R.; Nogiec, J.; Orris, D.; Poukhov, O.; Prakoshyn, F.; Schlabach, P.; Tompkins, J.C.; /Fermilab

    2005-09-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements.

  15. Understanding and eliminating the fast creep problem in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Civale, Leonardo; Eley, Serena; Maiorov, Boris; Miura, Masashi

    One surprising characteristic of Fe-based superconductors is that they exhibit flux creep rates (S) as large as, or larger than, those found in oxide high temperature superconductors (HTS). This very fast vortex dynamics appears to be inconsistent with the estimate of the influence of the thermal fluctuations as quantified by the Ginzburg number (Gi), which measures the ratio of the thermal energy to the condensation energy in an elemental superconducting volume. In particular, compounds of the AFe2As2 family (``122'') have Gi ~10-5 to 10-4, so S could be expected to lie between that of low Tc materials (where typically Gi ~ 10-8) and HTS such as YBa2Cu3O7 (Gi ~ 10-2) , as indeed occurs in other superconductors with intermediate fluctuations, such as MgB2 (Gi ~10-6 to 10-4) . We have found the solution to this puzzle: the fast creep rates in 122 compounds are due to non-optimized pinning landscapes. Initial evidence comes from our previous studies showing that the introduction of additional disorder by irradiation decreases creep significantly in 122 single crystals, although still remaining well above the ideal limit. We now have new evidence from 122 thin films demonstrating that S can be reduced to the lower limit set by Gi by appropriate engineering of the pinning landscape.

  16. Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies

    PubMed Central

    Sayyari, Erfan; Mirarab, Siavash

    2016-01-01

    Species tree reconstruction is complicated by effects of incomplete lineage sorting, commonly modeled by the multi-species coalescent model (MSC). While there has been substantial progress in developing methods that estimate a species tree given a collection of gene trees, less attention has been paid to fast and accurate methods of quantifying support. In this article, we propose a fast algorithm to compute quartet-based support for each branch of a given species tree with regard to a given set of gene trees. We then show how the quartet support can be used in the context of the MSC to compute (1) the local posterior probability (PP) that the branch is in the species tree and (2) the length of the branch in coalescent units. We evaluate the precision and recall of the local PP on a wide set of simulated and biological datasets, and show that it has very high precision and improved recall compared with multi-locus bootstrapping. The estimated branch lengths are highly accurate when gene tree estimation error is low, but are underestimated when gene tree estimation error increases. Computation of both the branch length and local PP is implemented as new features in ASTRAL. PMID:27189547

  17. Autonomous celestial navigation based on Earth ultraviolet radiance and fast gradient statistic feature extraction

    NASA Astrophysics Data System (ADS)

    Lu, Shan; Zhang, Hanmo

    2016-01-01

    To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.

  18. Fast multistation water/fat imaging at 3T using DREAM-based RF shimming.

    PubMed

    Hooijmans, Melissa T; Dzyubachyk, Oleh; Nehrke, Kay; Koken, Peter; Versluis, Maarten J; Kan, Hermien E; Börnert, Peter

    2015-07-01

    To show the effect, efficiency, and image quality improvements achievable by Dual Refocusing Echo Acquisition Mode (DREAM)-based B1+ shimming in whole-body magnetic resonance imaging (MRI) at 3T using the example of water/fat imaging. 3D multistation, dual-echo mDixon gradient echo imaging was performed in 10 healthy subjects on a clinical 3T dual-transmit MRI system using station-to-station adapted B1+ shimming based on fast DREAM B1+ mapping. Whole-body data were obtained using conventional quadrature excitation and station-by-station adapted DREAM-based B1+ shimmed excitation, along with the corresponding B1+ maps for both excitation modes to assess image quality and radiofrequency (RF) performance. Station-dependent DREAM-based B1+ shimming showed significantly improved image quality in the stations covering the upper legs, pelvis, and upper body region for all subjects (P < 0.02). This finding is supported by corresponding B1+ maps showing an improved B1+ homogeneity and a more precise flip angle in the DREAM-based B1+ shimmed excitation (P < 0.01). Furthermore, the very short dual-channel DREAM B1+ mapping times of less than 2 seconds facilitate quick B1+ shimming. Station-dependent DREAM-based B1+ shimming improved RF performance and image quality and is therefore a promising technique for whole-body multistation imaging applications. © 2014 Wiley Periodicals, Inc.

  19. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2012-07-01

    Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.

  20. An optimized fast image resizing method based on content-aware

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Gao, Kun; Wang, Kewang; Xu, Tingfa

    2014-11-01

    In traditional image resizing theory based on interpolation, the prominent object may cause distortion, and the image resizing method based on content-aware has become a research focus in image processing because the prominent content and structural features of images are considered in this method. In this paper, we present an optimized fast image resizing method based on content-aware. Firstly, an appropriate energy function model is constructed on the basis of image meshes, and multiple energy constraint templates are established. In addition, this paper deducts the image saliency constraints, and then the problem of image resizing is used to reformulate a kind of convex quadratic program task. Secondly, a method based on neural network is presented in solving the problem of convex quadratic program. The corresponding neural network model is constructed; moreover, some sufficient conditions of the neural network stability are given. Compared with the traditional numerical algorithm such as iterative method, the neural network method is essentially parallel and distributed, which can expedite the calculation speed. Finally, the effects of image resizing by the proposed method and traditional image resizing method based on interpolation are compared by adopting MATLAB software. Experiment results show that this method has a higher performance of identifying the prominent object, and the prominent features can be preserved effectively after the image is resized. It also has the advantages of high portability and good real-time performance with low visual distortion.

  1. PCM-Based Durable Write Cache for Fast Disk I/O

    SciTech Connect

    Liu, Zhuo; Wang, Bin; Carpenter, Patrick; Li, Dong; Vetter, Jeffrey S; Yu, Weikuan

    2012-01-01

    Flash based solid-state devices (FSSDs) have been adopted within the memory hierarchy to improve the performance of hard disk drive (HDD) based storage system. However, with the fast development of storage-class memories, new storage technologies with better performance and higher write endurance than FSSDs are emerging, e.g., phase-change memory (PCM). Understanding how to leverage these state-of-the-art storage technologies for modern computing systems is important to solve challenging data intensive computing problems. In this paper, we propose to leverage PCM for a hybrid PCM-HDD storage architecture. We identify the limitations of traditional LRU caching algorithms for PCM-based caches, and develop a novel hash-based write caching scheme called HALO to improve random write performance of hard disks. To address the limited durability of PCM devices and solve the degraded spatial locality in traditional wear-leveling techniques, we further propose novel PCM management algorithms that provide effective wear-leveling while maximizing access parallelism. We have evaluated this PCM-based hybrid storage architecture using applications with a diverse set of I/O access patterns. Our experimental results demonstrate that the HALO caching scheme leads to an average reduction of 36.8% in execution time compared to the LRU caching scheme, and that the SFC wear leveling extends the lifetime of PCM by a factor of 21.6.

  2. A fast density-based clustering algorithm for real-time Internet of Things stream.

    PubMed

    Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.

  3. A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream

    PubMed Central

    Ying Wah, Teh

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753

  4. Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition

    NASA Astrophysics Data System (ADS)

    Heisler, Ismael A.; Moca, Roberta; Camargo, Franco V. A.; Meech, Stephen R.

    2014-06-01

    We report an improved experimental scheme for two-dimensional electronic spectroscopy (2D-ES) based solely on conventional optical components and fast data acquisition. This is accomplished by working with two choppers synchronized to a 10 kHz repetition rate amplified laser system. We demonstrate how scattering and pump-probe contributions can be removed during 2D measurements and how the pump probe and local oscillator spectra can be generated and saved simultaneously with each population time measurement. As an example the 2D-ES spectra for cresyl violet were obtained. The resulting 2D spectra show a significant oscillating signal during population evolution time which can be assigned to an intramolecular vibrational mode.

  5. Fast prediction unit selection method for HEVC intra prediction based on salient regions

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Dai, Ming; Zhao, Chun-lei; Xiong, Jing-ying

    2016-07-01

    In order to reduce the computational complexity of the high efficiency video coding (HEVC) standard, a new algorithm for HEVC intra prediction, namely, fast prediction unit (PU) size selection method for HEVC based on salient regions is proposed in this paper. We first build a saliency map for each largest coding unit (LCU) to reduce its texture complexity. Secondly, the optimal PU size is determined via a scheme that implements an information entropy comparison among sub-blocks of saliency maps. Finally, we apply the partitioning result of saliency map on the original LCUs, obtaining the optimal partitioning result. Our algorithm can determine the PU size in advance to the angular prediction in intra coding, reducing computational complexity of HEVC. The experimental results show that our algorithm achieves a 37.9% reduction in encoding time, while producing a negligible loss in Bjontegaard delta bit rate ( BDBR) of 0.62%.

  6. Behavioral features recognition and oestrus detection based on fast approximate clustering algorithm in dairy cows

    NASA Astrophysics Data System (ADS)

    Tian, Fuyang; Cao, Dong; Dong, Xiaoning; Zhao, Xinqiang; Li, Fade; Wang, Zhonghua

    2017-06-01

    Behavioral features recognition was an important effect to detect oestrus and sickness in dairy herds and there is a need for heat detection aid. The detection method was based on the measure of the individual behavioural activity, standing time, and temperature of dairy using vibrational sensor and temperature sensor in this paper. The data of behavioural activity index, standing time, lying time and walking time were sent to computer by lower power consumption wireless communication system. The fast approximate K-means algorithm (FAKM) was proposed to deal the data of the sensor for behavioral features recognition. As a result of technical progress in monitoring cows using computers, automatic oestrus detection has become possible.

  7. Fast depth decision for HEVC inter prediction based on spatial and temporal correlation

    NASA Astrophysics Data System (ADS)

    Chen, Gaoxing; Liu, Zhenyu; Ikenaga, Takeshi

    2016-07-01

    High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the compression accuracy, the partition sizes ranging is from 4x4 to 64x64 in HEVC. However, the manifold partition sizes dramatically increase the encoding complexity. This paper proposes a fast depth decision based on spatial and temporal correlation. Spatial correlation utilize the code tree unit (CTU) Splitting information and temporal correlation utilize the motion vector predictor represented CTU in inter prediction to determine the maximum depth in each CTU. Experimental results show that the proposed method saves about 29.1% of the original processing time with 0.9% of BD-bitrate increase on average.

  8. Low-Power, Fast, Selective Nanoparticle-based Hydrogen Sulfide Gas Sensor

    NASA Astrophysics Data System (ADS)

    Sussman, Allen; Mickelson, William; Zettl, A.

    2012-02-01

    We demonstrate a small, fast, low-cost, low-power, highly sensitive and selective nanomaterials-based gas sensor that can operate under extreme temperature and humidity conditions. Gas sensors in industrial use today, on the other hand, suffer from high cost, high power consumption, lack of portability and/or inoperability in very dry or hot regions. The sensing substrate is a network of nanoparticles whose conductance is monitored. The sensor shows high sensitivity to hydrogen sulfide (H2S), but it does not have significant cross sensitivities to H2O or CH4, two gases likely to be seen in industrial operation, and is not sensitive to the high temperatures also likely to be seen. Such a sensor has the potential to enable significant advances in the fields of personal, broad area, and mobile monitoring of gases, such as environmental pollutants or toxic or flammable gases.

  9. A fast and accurate image-based measuring system for isotropic reflection materials

    NASA Astrophysics Data System (ADS)

    Kim, Duck Bong; Kim, Kang Yeon; Park, Kang Su; Seo, Myoung Kook; Lee, Kwan H.

    2008-08-01

    We present a novel image-based BRDF (Bidirectional Reflectance Distribution Function) measurement system for materials that have isotropic reflectance properties. Our proposed system is fast due to simple set up and automated operations. It also provides a wide angular coverage and noise reduction capability so that it achieves accuracy that is needed for computer graphics applications. We test the uniformity and constancy of the light source and the reciprocity of the measurement system. We perform a photometric calibration of HDR (High Dynamic Range) camera to recover an accurate radiance map from each HDR image. We verify our proposed system by comparing it with a previous imagebased BRDF measurement system. We demonstrate the efficiency and accuracy of our proposed system by generating photorealistic images of the measured BRDF data that include glossy blue, green plastics, gold coated metal and gold metallic paints.

  10. Analysis of Nickel Based Hardfacing Materials Manufactured by Laser Cladding for Sodium Fast Reactor

    NASA Astrophysics Data System (ADS)

    Aubry, P.; Blanc, C.; Demirci, I.; Dal, M.; Malot, T.; Maskrot, H.

    For improving the operational capacity, the maintenance and the decommissioning of the future French Sodium Fast Reactor ASTRID which is under study, it is asked to find or develop a cobalt free hardfacing alloy and the associated manufacturing process that will give satisfying wear performances. This article presents recent results obtained on some selected nickel-based hardfacing alloys manufactured by laser cladding, particularly on Tribaloy 700 alloy. A process parameter search is made and associated the microstructural analysis of the resulting clads. A particular attention is made on the solidification of the main precipitates (chromium carbides, boron carbides, Laves phases,…) that will mainly contribute to the wear properties of the material. Finally, the wear resistance of some samples is evaluated in simple wear conditions evidencing promising results on tribology behavior of Tribaloy 700.

  11. Proton linac for hospital-based fast neutron therapy and radioisotope production

    SciTech Connect

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.; Rush Univ., Chicago, IL; Science Applications International Corp., Princeton, NJ; Fermi National Accelerator Lab., Batavia, IL )

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab.

  12. Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and Envelop Spectrum

    PubMed Central

    Lv, Yong; Zhu, Qinglin; Yuan, Rui

    2015-01-01

    The nonlocal means (NL-Means) method that has been widely used in the field of image processing in recent years effectively overcomes the limitations of the neighborhood filter and eliminates the artifact and edge problems caused by the traditional image denoising methods. Although NL-Means is very popular in the field of 2D image signal processing, it has not received enough attention in the field of 1D signal processing. This paper proposes a novel approach that diagnoses the fault of a rolling bearing based on fast NL-Means and the envelop spectrum. The parameters of the rolling bearing signals are optimized in the proposed method, which is the key contribution of this paper. This approach is applied to the fault diagnosis of rolling bearing, and the results have shown the efficiency at detecting roller bearing failures. PMID:25585105

  13. A fast autofocus sharpness function of microvision system based on the Robert function and Gauss fitting.

    PubMed

    Sha, Xiaopeng; Wang, Pu; Shan, Peng; Li, Huiguang; Li, Zhiquan

    2017-06-29

    For the microvision system, a new autofocus evaluation function based on the Robert function is proposed by increasing the threshold value. Compared with the traditional evaluation function, the new focus function reduces the local extreme value and increases the steepness of the focusing curve. According to the characteristics of the focusing evaluation function, the focus curve can be divided into two stages: the gentle area and the steep area. In the gentle area, there will be set a large step-length to realize the fast search. In the steep area, the data will be fitted by Gauss method, and on the basis of the fitting results, the motor of microvision system was directly driven to achieve the focal plane and this method has been improved in real-time and accuracy. © 2017 Wiley Periodicals, Inc.

  14. Fast Dynamic Meshing Method Based on Delaunay Graph and Inverse Distance Weighting Interpolation

    NASA Astrophysics Data System (ADS)

    Wang, Yibin; Qin, Ning; Zhao, Ning

    2016-06-01

    A novel mesh deformation technique is developed based on the Delaunay graph mapping method and the inverse distance weighting (IDW) interpolation. The algorithm maintains the advantages of the efficiency of Delaunay-graph-mapping mesh deformation while possess the ability for better controlling the near surface mesh quality. The Delaunay graph is used to divide the mesh domain into a number of sub-domains. On each of the sub-domains, the inverse distance weighting interpolation is applied to build a much smaller sized translation matrix between the original mesh and the deformed mesh, resulting a similar efficiency for the mesh deformation as compared to the fast Delaunay graph mapping method. The paper will show how the near-wall mesh quality is controlled and improved by the new method while the computational time is compared with the original Delaunay graph mapping method.

  15. Nanowire humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Pérez-Herrera, R.; Lopez-Aldaba, A.; López Bautista, M. C.; Esteban, O.; López-Amo, M.

    2015-09-01

    In this paper, a new sensor system for relative humidity measurements based on its interaction with the evanescent field of a nanowire is presented. The interrogation of the sensing head is carried out by monitoring the fast Fourier transform phase variations of one of the nanowire interference frequencies. This method is independent of the signal amplitude and also avoids the necessity of tracking the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a wide humidity range (20%-70% relative humidity) with a maximum sensitivity achieved of 0.14rad/% relative humidity. Finally, due to the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  16. Relative humidity multi-point optical sensors system based on fast Fourier multiplexing technique

    NASA Astrophysics Data System (ADS)

    Lopez-Aldaba, A.; Lopez-Torres, D.; Elosua, C.; Auguste, J.-L.; Jamier, R.; Roy, P.; Arregui, F. J.; Lopez-Amo, M.

    2017-04-01

    In this paper, a new multipoint optical fiber system for relative humidity measurements based on SnO2-FP (Fabry-Pérot) sensing heads and an optical interrogator as single active device is presented and characterized. The interrogation of the sensing heads is carried out by monitoring the Fast Fourier Transform phase variations of the FP (Fabry-Pérot) interference frequencies. This method allows to multiplex several sensors with different wavelength spacing interference pattern. The sensors operate within a wide humidity range (20%-90% relative humidity) with low crosstalk between them. Five sensing heads have been measured using two different channels of the optical interrogator. The availability of four channels in the interrogator allows to multiplex a higher number of sensors, reducing proportionally the cost of each sensing point.

  17. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction.

    PubMed

    Anzellini, S; Dewaele, A; Mezouar, M; Loubeyre, P; Morard, G

    2013-04-26

    Earth's core is structured in a solid inner core, mainly composed of iron, and a liquid outer core. The temperature at the inner core boundary is expected to be close to the melting point of iron at 330 gigapascal (GPa). Despite intensive experimental and theoretical efforts, there is little consensus on the melting behavior of iron at these extreme pressures and temperatures. We present static laser-heated diamond anvil cell experiments up to 200 GPa using synchrotron-based fast x-ray diffraction as a primary melting diagnostic. When extrapolating to higher pressures, we conclude that the melting temperature of iron at the inner core boundary is 6230 ± 500 kelvin. This estimation favors a high heat flux at the core-mantle boundary with a possible partial melting of the mantle.

  18. Fast Restoration Based on Alternative Wavelength Paths in a Wide Area Optical IP Network

    NASA Astrophysics Data System (ADS)

    Matera, Francesco; Rea, Luca; Venezia, Matteo; Capanna, Lorenzo; Del Prete, Giuseppe

    In this article we describe an experimental investigation of IP network restoration based on wavelength recovery. We propose a procedure for metro and wide area gigabit Ethernet networks that allows us to route the wavelength in case of link failure to another existing link by exploiting wavelength division multiplexing in the fiber. Such a procedure is obtained by means of an optical switch that is managed by a loss-of-light signal that is generated by a router in case of link failure. Such a method has been tested in an IP network consisting of three core routers with optical gigabit Ethernet interfaces connected by means of 50-km-long single-mode fibers between Rome and Pomezia. Compared with other conventional restoration techniques, such as OSPF and MPLS, our method -in very fast (20 ms) and is compatible with real-time TV services and low-cost chips.

  19. A fast image retrieval method based on SVM and imbalanced samples in filtering multimedia message spam

    NASA Astrophysics Data System (ADS)

    Chen, Zhang; Peng, Zhenming; Peng, Lingbing; Liao, Dongyi; He, Xin

    2011-11-01

    With the swift and violent development of the Multimedia Messaging Service (MMS), it becomes an urgent task to filter the Multimedia Message (MM) spam effectively in real-time. For the fact that most MMs contain images or videos, a method based on retrieving images is given in this paper for filtering MM spam. The detection method used in this paper is a combination of skin-color detection, texture detection, and face detection, and the classifier for this imbalanced problem is a very fast multi-classification combining Support vector machine (SVM) with unilateral binary decision tree. The experiments on 3 test sets show that the proposed method is effective, with the interception rate up to 60% and the average detection time for each image less than 1 second.

  20. A robust and fast line segment detector based on top-down smaller eigenvalue analysis

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Lu, Xiaoqing

    2014-01-01

    In this paper, we propose a robust and fast line segment detector, which achieves accurate results with a controlled number of false detections and requires no parameter tuning. It consists of three steps: first, we propose a novel edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input image; second, we propose a top-down scheme based on smaller eigenvalue analysis to extract line segments within each obtained edge segment; third, we employ Desolneux et al.'s method to reject false detections. Experiments demonstrate that it is very efficient and more robust than two state of the art methods—LSD and EDLines.

  1. A fast response variable optical attenuator based on blue phase liquid crystal.

    PubMed

    Zhu, Ge; Wei, Bing-yan; Shi, Liang-yu; Lin, Xiao-wen; Hu, Wei; Huang, Zhang-di; Lu, Yan-qing

    2013-03-11

    Blue phase liquid crystals (BPLCs) are promising candidates for next generation display thanks to their fast response and quasi-isotropic optical properties. By taking these advantages, we propose to introduce the material into fiber-optic applications. As an example, a BPLC based variable optical attenuator (VOA) is demonstrated with a polarization independent design. The device shows normally-off feature when no field is applied. Response time down to submillisecond scale is achieved in switching between two arbitrary attenuation states. The attenuation range is also measured from 1480 to 1550 nm, which cover the whole telecomm S-band and part of the C-band. The overall performances reach the requirements for practical use; while still have room for further improvement. Through this example, the applicability of BPLC in fiber-optic devices is presented, which may impel the development of many other photonic applications from infrared to even microwave regions.

  2. Project FAST.

    ERIC Educational Resources Information Center

    Essexville-Hampton Public Schools, MI.

    Described are components of Project FAST (Functional Analysis Systems Training) a nationally validated project to provide more effective educational and support services to learning disordered children and their regular elementary classroom teachers. The program is seen to be based on a series of modules of delivery systems ranging from mainstream…

  3. CRBLASTER: A Fast Parallel-Processing Program for Cosmic Ray Rejection in Space-Based Observations

    NASA Astrophysics Data System (ADS)

    Mighell, K.

    Many astronomical image analysis tasks are based on algorithms that can be described as being embarrassingly parallel - where the analysis of one subimage generally does not affect the analysis of another subimage. Yet few parallel-processing astrophysical image-analysis programs exist that can easily take full advantage of today's fast multi-core servers costing a few thousands of dollars. One reason for the shortage of state-of-the-art parallel processing astrophysical image-analysis codes is that the writing of parallel codes has been perceived to be difficult. I describe a new fast parallel-processing image-analysis program called CRBLASTER which does cosmic ray rejection using van Dokkum's L.A.Cosmic algorithm. CRBLASTER is written in C using the industry standard Message Passing Interface library. Processing a single 800 x 800 Hubble Space Telescope Wide-Field Planetary Camera 2 (WFPC2) image takes 1.9 seconds using 4 processors on an Apple Xserve with two dual-core 3.0-GHz Intel Xeons; the efficiency of the program running with the 4 cores is 82%. The code has been designed to be used as a software framework for the easy development of parallel-processing image-analysis programs using embarrassing parallel algorithms; all that needs to be done is to replace the core image processing task (in this case the C function that performs the L.A.Cosmic algorithm) with an alternative image analysis task based on a single processor algorithm. I describe the design and implementation of the program and then discuss how it could possibly be used to quickly do time-critical analysis applications such as those involved with space surveillance or do complex calibration tasks as part of the pipeline processing of images from large focal plane arrays.

  4. A fast and scalable content transfer protocol (FSCTP) for VANET based architecture

    NASA Astrophysics Data System (ADS)

    Santamaria, A. F.; Scala, F.; Sottile, C.; Tropea, M.; Raimondo, P.

    2016-05-01

    In the modern Vehicular Ad-hoc Networks (VANET) based systems even more applications require lot of data to be exchanged among vehicles and infrastructure entities. Due to mobility issues and unplanned events that may occurs it is important that contents should be transferred as fast as possible by taking into account consistence of the exchanged data and reliability of the connections. In order to face with these issues, in this work we propose a new transfer data protocol called Fast and Scalable Content Transfer Protocol (FSCTP). This protocol allows a data transfer by using a bidirectional channel among content suppliers and receivers exploiting several cooperative sessions. Each session will be based on User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) to start and manage data transfer. Often in urban area the VANET scenario is composed of several vehicle and infrastructures points. The main idea is to exploit ad-hoc connections between vehicles to reach content suppliers. Moreover, in order to obtain a faster data transfer, more than one session is exploited to achieve a higher transfer rate. Of course it is important to manage data transfer between suppliers to avoid redundancy and resource wastages. The main goal is to instantiate a cooperative multi-session layer efficiently managed in a VANET environment exploiting the wide coverage area and avoiding common issues known in this kind of scenario. High mobility and unstable connections between nodes are some of the most common issues to address, thus a cooperative work between network, transport and application layers needs to be designed.

  5. [Research on fast classification based on LIBS technology and principle component analyses].

    PubMed

    Yu, Qi; Ma, Xiao-Hong; Wang, Rui; Zhao, Hua-Feng

    2014-11-01

    Laser-induced breakdown spectroscopy (LIBS) and the principle component analysis (PCA) were combined to study aluminum alloy classification in the present article. Classification experiments were done on thirteen different kinds of standard samples of aluminum alloy which belong to 4 different types, and the results suggested that the LIBS-PCA method can be used to aluminum alloy fast classification. PCA was used to analyze the spectrum data from LIBS experiments, three principle components were figured out that contribute the most, the principle component scores of the spectrums were calculated, and the scores of the spectrums data in three-dimensional coordinates were plotted. It was found that the spectrum sample points show clear convergence phenomenon according to the type of aluminum alloy they belong to. This result ensured the three principle components and the preliminary aluminum alloy type zoning. In order to verify its accuracy, 20 different aluminum alloy samples were used to do the same experiments to verify the aluminum alloy type zoning. The experimental result showed that the spectrum sample points all located in their corresponding area of the aluminum alloy type, and this proved the correctness of the earlier aluminum alloy standard sample type zoning method. Based on this, the identification of unknown type of aluminum alloy can be done. All the experimental results showed that the accuracy of principle component analyses method based on laser-induced breakdown spectroscopy is more than 97.14%, and it can classify the different type effectively. Compared to commonly used chemical methods, laser-induced breakdown spectroscopy can do the detection of the sample in situ and fast with little sample preparation, therefore, using the method of the combination of LIBS and PCA in the areas such as quality testing and on-line industrial controlling can save a lot of time and cost, and improve the efficiency of detection greatly.

  6. Fast, Background-Free DNA-PAINT Imaging Using FRET-Based Probes.

    PubMed

    Auer, Alexander; Strauss, Maximilian T; Schlichthaerle, Thomas; Jungmann, Ralf

    2017-10-11

    DNA point accumulation in nanoscale topography (DNA-PAINT) enables super-resolution microscopy by harnessing the predictable, transient hybridization between short dye-labeled "imager" and complementary target-bound "docking" strands. DNA-PAINT microscopy allows sub-5 nm spatial resolution, spectrally unlimited multiplexing, and quantitative image analysis. However, these abilities come at the cost of nonfluorogenic imager strands, also emitting fluorescence when not bound to their docking strands. This has thus far prevented rapid image acquisition with DNA-PAINT, as the blinking rate of probes is limited by an upper-bound of imager strand concentrations, which in turn is dictated by the necessity to facilitate the detection of single-molecule binding events over the background of unbound, freely diffusing probes. To overcome this limitation and enable fast, background-free DNA-PAINT microscopy, we here introduce FRET-based imaging probes, alleviating the concentration-limit of imager strands and speeding up image acquisition by several orders of magnitude. We assay two approaches for FRET-based DNA-PAINT (or FRET-PAINT) using either fixed or transient acceptor dyes in combination with transiently binding donor-labeled DNA strands and achieve high-quality super-resolution imaging on DNA origami structures in a few tens of seconds. Finally, we also demonstrate the applicability of FRET-PAINT in a cellular environment by performing super-resolution imaging of microtubules in under 30 s. FRET-PAINT combines the advantages of conventional DNA-PAINT with fast image acquisition times, facilitating the potential study of dynamic processes.

  7. Fast GPU-based absolute intensity determination for energy-dispersive X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Alghabi, F.; Send, S.; Schipper, U.; Abboud, A.; Pietsch, U.; Kolb, A.

    2016-01-01

    This paper presents a novel method for fast determination of absolute intensities in the sites of Laue spots generated by a tetragonal hen egg-white lysozyme crystal after exposure to white synchrotron radiation during an energy-dispersive X-ray Laue diffraction experiment. The Laue spots are taken by means of an energy-dispersive X-ray 2D pnCCD detector. Current pnCCD detectors have a spatial resolution of 384 × 384 pixels of size 75 × 75 μm2 each and operate at a maximum of 400 Hz. Future devices are going to have higher spatial resolution and frame rates. The proposed method runs on a computer equipped with multiple Graphics Processing Units (GPUs) which provide fast and parallel processing capabilities. Accordingly, our GPU-based algorithm exploits these capabilities to further analyse the Laue spots of the sample. The main contribution of the paper is therefore an alternative algorithm for determining absolute intensities of Laue spots which are themselves computed from a sequence of pnCCD frames. Moreover, a new method for integrating spectral peak intensities and improved background correction, a different way of calculating mean count rate of the background signal and also a new method for n-dimensional Poisson fitting are presented.We present a comparison of the quality of results from the GPU-based algorithm with the quality of results from a prior (base) algorithm running on CPU. This comparison shows that our algorithm is able to produce results with at least the same quality as the base algorithm. Furthermore, the GPU-based algorithm is able to speed up one of the most time-consuming parts of the base algorithm, which is n-dimensional Poisson fitting, by a factor of more than 3. Also, the entire procedure of extracting Laue spots' positions, energies and absolute intensities from a raw dataset of pnCCD frames is accelerated by a factor of more than 3.

  8. Navigating the Shift to Value-Based Reimbursement: How Fast Is Too Fast, and How Slow Is Too Slow?

    PubMed

    Greeter, Aimee

    2016-01-01

    Providers are struggling to understand how the macro-level changes occurring in the healthcare industry will affect them on a micro-level, especially as they pertain to the shift toward value-based reimbursement. This article presents a guide to physicians and practice administration, in both the private and hospital-employed practice setting, on how to effectively manage this shift from fee-for-volume to fee-for-value. It analyzes new reimbursement models, population health management trends, and second-generation alignment and compensation models to help the reader understand practical tactics and overarching strategies to prepare for the changing method of reimbursement in the health-care industry. The goal of this article is to provide clarity for decision-makers as they embrace the fee-for-value shift in a historically and predominantly fee-for-service environment.

  9. A fast region-based active contour model for boundary detection of echocardiographic images.

    PubMed

    Saini, Kalpana; Dewal, M L; Rohit, Manojkumar

    2012-04-01

    This paper presents the boundary detection of atrium and ventricle in echocardiographic images. In case of mitral regurgitation, atrium and ventricle may get dilated. To examine this, doctors draw the boundary manually. Here the aim of this paper is to evolve the automatic boundary detection for carrying out segmentation of echocardiography images. Active contour method is selected for this purpose. There is an enhancement of Chan-Vese paper on active contours without edges. Our algorithm is based on Chan-Vese paper active contours without edges, but it is much faster than Chan-Vese model. Here we have developed a method by which it is possible to detect much faster the echocardiographic boundaries. The method is based on the region information of an image. The region-based force provides a global segmentation with variational flow robust to noise. Implementation is based on level set theory so it easy to deal with topological changes. In this paper, Newton-Raphson method is used which makes possible the fast boundary detection.

  10. Compressive sensing for seismic data reconstruction via fast projection onto convex sets based on seislet transform

    NASA Astrophysics Data System (ADS)

    Gan, Shuwei; Wang, Shoudong; Chen, Yangkang; Chen, Xiaohong; Huang, Weiling; Chen, Hanming

    2016-07-01

    According to the compressive sensing (CS) theory in the signal-processing field, we proposed a new CS approach based on a fast projection onto convex sets (POCS) algorithm with sparsity constraint in the seislet transform domain. The seislet transform appears to be the sparest among the state-of-the-art sparse transforms. The FPOCS can obtain much faster convergence than conventional POCS (about two thirds of conventional iterations can be saved), while maintaining the same recovery performance. The FPOCS can obtain faster and better performance than FISTA for relatively cleaner data but will get slower and worse performance than FISTA, which becomes a reference to decide which algorithm to use in practice according the noise level in the seismic data. The seislet transform based CS approach can achieve obviously better data recovery results than f - k transform based scenarios, considering both signal-to-noise ratio (SNR), local similarity comparison, and visual observation, because of a much sparser structure in the seislet transform domain. We have used both synthetic and field data examples to demonstrate the superior performance of the proposed seislet-based FPOCS approach.

  11. PRIMAL: Fast and Accurate Pedigree-based Imputation from Sequence Data in a Founder Population

    PubMed Central

    Livne, Oren E.; Han, Lide; Alkorta-Aranburu, Gorka; Wentworth-Sheilds, William; Abney, Mark; Ober, Carole; Nicolae, Dan L.

    2015-01-01

    Founder populations and large pedigrees offer many well-known advantages for genetic mapping studies, including cost-efficient study designs. Here, we describe PRIMAL (PedigRee IMputation ALgorithm), a fast and accurate pedigree-based phasing and imputation algorithm for founder populations. PRIMAL incorporates both existing and original ideas, such as a novel indexing strategy of Identity-By-Descent (IBD) segments based on clique graphs. We were able to impute the genomes of 1,317 South Dakota Hutterites, who had genome-wide genotypes for ~300,000 common single nucleotide variants (SNVs), from 98 whole genome sequences. Using a combination of pedigree-based and LD-based imputation, we were able to assign 87% of genotypes with >99% accuracy over the full range of allele frequencies. Using the IBD cliques we were also able to infer the parental origin of 83% of alleles, and genotypes of deceased recent ancestors for whom no genotype information was available. This imputed data set will enable us to better study the relative contribution of rare and common variants on human phenotypes, as well as parental origin effect of disease risk alleles in >1,000 individuals at minimal cost. PMID:25735005

  12. PRIMAL: Fast and accurate pedigree-based imputation from sequence data in a founder population.

    PubMed

    Livne, Oren E; Han, Lide; Alkorta-Aranburu, Gorka; Wentworth-Sheilds, William; Abney, Mark; Ober, Carole; Nicolae, Dan L

    2015-03-01

    Founder populations and large pedigrees offer many well-known advantages for genetic mapping studies, including cost-efficient study designs. Here, we describe PRIMAL (PedigRee IMputation ALgorithm), a fast and accurate pedigree-based phasing and imputation algorithm for founder populations. PRIMAL incorporates both existing and original ideas, such as a novel indexing strategy of Identity-By-Descent (IBD) segments based on clique graphs. We were able to impute the genomes of 1,317 South Dakota Hutterites, who had genome-wide genotypes for ~300,000 common single nucleotide variants (SNVs), from 98 whole genome sequences. Using a combination of pedigree-based and LD-based imputation, we were able to assign 87% of genotypes with >99% accuracy over the full range of allele frequencies. Using the IBD cliques we were also able to infer the parental origin of 83% of alleles, and genotypes of deceased recent ancestors for whom no genotype information was available. This imputed data set will enable us to better study the relative contribution of rare and common variants on human phenotypes, as well as parental origin effect of disease risk alleles in >1,000 individuals at minimal cost.

  13. Sparsity-based fast CGH generation using layer-based approach for 3D point cloud model

    NASA Astrophysics Data System (ADS)

    Kim, Hak Gu; Jeong, Hyunwook; Ro, Yong Man

    2017-03-01

    Computer generated hologram (CGH) is becoming increasingly important for a 3-D display in various applications including virtual reality. In the CGH, holographic fringe patterns are generated by numerically calculating them on computer simulation systems. However, a heavy computational cost is required to calculate the complex amplitude on CGH plane for all points of 3D objects. This paper proposes a new fast CGH generation based on the sparsity of CGH for 3D point cloud model. The aim of the proposed method is to significantly reduce computational complexity while maintaining the quality of the holographic fringe patterns. To that end, we present a new layer-based approach for calculating the complex amplitude distribution on the CGH plane by using sparse FFT (sFFT). We observe the CGH of a layer of 3D objects is sparse so that dominant CGH is rapidly generated from a small set of signals by sFFT. Experimental results have shown that the proposed method is one order of magnitude faster than recently reported fast CGH generation.

  14. The bolometric light curve of SN 1987A. I - Results from ESO and CTIO U to Q0 photometry

    NASA Astrophysics Data System (ADS)

    Suntzeff, Nicholas B.; Bouchet, Patrice

    1990-02-01

    The UV, optical, and IR (UVOIR) bolometric luminosity curve of SN 1987A was derived from ESO, CTIO, and NASA Kuiper Airborne Observatory spectrophotometry for days 1-903 since outburst. It is found that the sum of this UVOIR flux and the high-energy flux predicted by models is consistent with the energy liberated by 0.071 solar mass of Co-56, with no need for additional energy sources for days 126-903 since outburst. By day 400, the flux at wavelegths larger than 5 microns was found to increase rapidly, and by day 650, the UVOIR flux shifted from the optical to a thermal IR source with a temperature of 200-300 K. The optical colors began to fade more rapidly at the time the FIR flux increased, consistent with dust formation local to the supernova.

  15. Effects of simulation-based practice on focused assessment with sonography for trauma (FAST) window identification, acquisition, and diagnosis.

    PubMed

    Chung, Gregory K W K; Gyllenhammer, Ruth G; Baker, Eva L; Savitsky, Eric

    2013-10-01

    We compared the effects of simulator-based virtual ultrasound scanning practice with classroom-based ultrasound scanning practice on participants' knowledge of focused assessment with sonography for trauma (FAST) window quadrants and interpretation, and on participants' performance on live patient FAST examinations. Novices with little or no ultrasound training experience received simulation-based practice (n = 24) or classroom-based practice (n = 24). Participants who received simulation-based practice scored significantly higher on interpreting static images of FAST windows. On live patient examinations where participants scanned the right upper quadrant (RUQ), left upper quadrant (LUQ), and suprapubic quadrant of a normal patient and an ascites-positive patient, the classroom-based practice condition had a shorter scan time for the LUQ and a higher number of participants attaining high-quality window on the RUQ (normal patient only) and suprapubic quadrant (positive patient only) and correct window interpretation on the LUQ (normal patient only). Overall, classroom-based practice appeared to promote physical acquisition skills and simulator-based practice appeared to promote window interpretation skills. Accurate window interpretation is critical to identification of blunt abdominal trauma injuries. The simulator used (SonoSimulator) appears promising as a training tool to increase probe time and to increase exposure to FAST windows reflecting various anatomy and disease states.

  16. A Fast Multi-Object Extraction Algorithm Based on Cell-Based Connected Components Labeling

    NASA Astrophysics Data System (ADS)

    Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku

    We describe a cell-based connected component labeling algorithm to calculate the 0th and 1st moment features as the attributes for labeled regions. These can be used to indicate their sizes and positions for multi-object extraction. Based on the additivity in moment features, the cell-based labeling algorithm can label divided cells of a certain size in an image by scanning the image only once to obtain the moment features of the labeled regions with remarkably reduced computational complexity and memory consumption for labeling. Our algorithm is a simple-one-time-scan cell-based labeling algorithm, which is suitable for hardware and parallel implementation. We also compared it with conventional labeling algorithms. The experimental results showed that our algorithm is faster than conventional raster-scan labeling algorithms.

  17. Fast B1 mapping based on interleaved-three-flip-angle (ITFA) excitation.

    PubMed

    Kang, Lae Hoon; Kim, Dong Eun; Lee, Soo Yeol

    2013-11-01

    Fast B1 mapping based on short-TR sequences is prone to T1-induced errors. The purpose of this study is to develop a novel fast B1 mapping method that is less prone to T1-induced errors. The authors acquired three gradient echoes by applying three RF pulses of different flip angles in an interleaved manner. The new method, named interleaved-three-flip-angle (ITFA) method, employs a short TR for fast scan. Since the pixel intensity of the gradient echo images is dependent on both B1 and T1, the authors could compute a B1 map from the three gradient echo images with excluding the T1-effects. The authors simulated the proposed B1 mapping method for various T1 values, and they found optimal flip angles for ITFA experiments for a given repetition time. To evaluate the B1 mapping performance, the authors made a human-brain-mimicking phantom that had six compartments with different T1 and T2. The authors performed B1 mapping experiments at 3T on the phantom and a volunteer using the ITFA method, the actual flip angle imaging (AFI) method, and the double angle method (DAM), and then, the authors compared the B1 mapping results. Using a birdcage coil as a transceiver at 3T, the authors performed ITFA scans of the phantom and a volunteer with TR of 60 ms and the nominal flips angles of (25°, 70°, 80°). The authors also performed AFI scans with TR1/TR2 of 30/150 ms and the nominal flip angle of 60°. In both the phantom and human head imaging performed with the same scan times for ITFA and AFI, ITFA showed smaller average B1 errors than AFI when they were compared to DAM. ITFA excitations made it possible to reduce the T1-effects on B1 mapping of the human-brain-mimicking phantom and the human brain at 3T. The authors expect the ITFA method can be used for B1 shimming once the optimal flip angles have been predetermined for the target imaging region and for the preferred TR.

  18. Evidence-based case report: acute diabetic complication risks of Ramadan fasting in type 2 diabetics.

    PubMed

    Iskandar, William J; Handjaja, C T; Salama, N; Anasy, N; Ardianto, M F; Kusumadewi, D

    2013-07-01

    to investigate causal relationship between Ramadan fasting and acute diabetic complications in adult controlled type 2 diabetics. a Pubmed's Clinical Queries and Embase search was conducted and resulted in 2 useful articles: 1 systematic review and 1 cohort study to be critically appraised. the incidence of acute diabetic complications is higher during Ramadan, with the relative risk for adult type 2 diabetics who fast during Ramadan is 1.36 and number needed to harm 50. Ramadan fasting was related with acute diabetic complications in adult controlled type 2 diabetics, but the risk was only slightly higher. It is acceptable for type 2 diabetics to fast during Ramadan.

  19. Infrared image guidance for ground vehicle based on fast wavelet image focusing and tracking

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2009-08-01

    We studied the infrared image guidance for ground vehicle based on the fast wavelet image focusing and tracking. Here we uses the image of the uncooled infrared imager mounted on the two axis gimbal system and the developed new auto focusing algorithm on the Daubechies wavelet transform. The developed new focusing algorithm on the Daubechies wavelet transform processes the result of the high pass filter effect to meet the direct detection of the objects. This new focusing gives us the distance information of the outside world smoothly, and the information of the gimbal system gives us the direction of objects in the outside world to match the sense of the spherical coordinate system. We installed this system on the hand made electric ground vehicle platform powered by 24VDC battery. The electric vehicle equips the rotary encoder units and the inertia rate sensor units to make the correct navigation process. The image tracking also uses the developed newt wavelet focusing within several image processing. The size of the hand made electric ground vehicle platform is about 1m long, 0.75m wide, 1m high, and 50kg weight. We tested the infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking using the electric vehicle indoor and outdoor. The test shows the good results by the developed infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking.

  20. A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images.

    PubMed

    Gao, Hang; Choi, Hon Fai; Claus, Piet; Boonen, Steven; Jaecques, Siegfried; Van Lenthe, G Harry; Van der Perre, Georges; Lauriks, Walter; D'hooge, Jan

    2009-02-01

    This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).

  1. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  2. Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Bi, Renzhe; Ho, Jun Hui; Thong, Patricia S. P.; Soo, Khee-Chee; Lee, Kijoon

    2012-09-01

    Diffuse correlation spectroscopy (DCS) is an emerging noninvasive technique that probes the deep tissue blood flow, by using the time-averaged intensity autocorrelation function of the fluctuating diffuse reflectance signal. We present a fast Fourier transform (FFT)-based software autocorrelator that utilizes the graphical programming language LabVIEW (National Instruments) to complete data acquisition, recording, and processing tasks. The validation and evaluation experiments were conducted on an in-house flow phantom, human forearm, and photodynamic therapy (PDT) on mouse tumors under the acquisition rate of ˜400 kHz. The software autocorrelator in general has certain advantages, such as flexibility in raw photon count data preprocessing and low cost. In addition to that, our FFT-based software autocorrelator offers smoother starting and ending plateaus when compared to a hardware correlator, which could directly benefit the fitting results without too much sacrifice in speed. We show that the blood flow index (BFI) obtained by using a software autocorrelator exhibits better linear behavior in a phantom control experiment when compared to a hardware one. The results indicate that an FFT-based software autocorrelator can be an alternative solution to the conventional hardware ones in DCS systems with considerable benefits.

  3. Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge

    2017-08-01

    A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.

  4. Sensitive and Fast Humidity Sensor Based on A Redox Conducting Supramolecular Ionic Material for Respiration Monitoring.

    PubMed

    Yan, Hailong; Zhang, Li; Yu, Ping; Mao, Lanqun

    2017-01-03

    Real-time monitoring of respiratory rate (RR) is highly important for human health, clinical diagnosis, and fundamental scientific research. Exhaled humidity-based RR monitoring has recently attracted increased attention because of its accuracy and portability. Here, we report a new design of an exhaled humidity sensor for the real-time monitoring of the RR based on a synthetic redox conducting supramolecular ionic material (SIM). The humidity-dependent conducting SIM is prepared by ionic self-assembly in aqueous solutions of electroactive 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,10-bis(3-methylimidazolium-1-yl) decane (C10(mim)2). By taking full advantage of the high hygroscopicity and water stability arising from the ionic and hydrophobic interactions between two building blocks (i.e., ABTS and C10(mim)2), the SIM-based humidity sensor exhibits both high sensitivity (less than 0.1% relative humidity) and fast response time (∼37 ms). These excellent properties allow this humidity sensor to noninvasively monitor the RRs of not only humans but also rats that have a much faster RR and much smaller tidal volume than humans. Moreover, this sensor could also be efficiently used for the real-time monitoring of the recovery process of rats from anesthesia.

  5. Design of fast earth-return trajectories from a lunar base

    NASA Astrophysics Data System (ADS)

    Anhorn, Walter

    1991-09-01

    The Apollo Lunar Program utilized efficient transearth trajectories which employed parking orbits in order to minimize energy requirements. This thesis concentrates on a different type of transearth trajectory. These are direct-ascent, hyperbolic trajectories which omit the parking orbits in order to achieve short flight times to and from a future lunar base. The object of the thesis is the development of a three-dimensional transearth trajectory model and associated computer program for exploring trade-offs between flight-time and energy, given various mission constraints. The program also targets the Moon with a hyperbolic trajectory, which can be used for targeting Earth impact points. The first-order model is based on an Earth-centered conic and a massless spherical Moon, using MathCAD version 3.0. This model is intended as the basis for future patched-conic formulations for the design of fast Earth-return trajectories. Applications include placing nuclear deterrent arsenals on the Moon, various space support related activities, and finally protection against Earth-threatening asteroids and comets using lunar bases.

  6. Robust and fast license plate detection based on the fusion of color and edge feature

    NASA Astrophysics Data System (ADS)

    Cai, De; Shi, Zhonghan; Liu, Jin; Hu, Chuanping; Mei, Lin; Qi, Li

    2014-11-01

    Extracting a license plate is an important stage in automatic vehicle identification. The degradation of images and the computation intense make this task difficult. In this paper, a robust and fast license plate detection based on the fusion of color and edge feature is proposed. Based on the dichromatic reflection model, two new color ratios computed from the RGB color model are introduced and proved to be two color invariants. The global color feature extracted by the new color invariants improves the method's robustness. The local Sobel edge feature guarantees the method's accuracy. In the experiment, the detection performance is good. The detection results show that this paper's method is robust to the illumination, object geometry and the disturbance around the license plates. The method can also detect license plates when the color of the car body is the same as the color of the plates. The processing time for image size of 1000x1000 by pixels is nearly 0.2s. Based on the comparison, the performance of the new ratios is comparable to the common used HSI color model.

  7. A fast algorithm for voxel-based deterministic simulation of X-ray imaging

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhao, Hua-Xia; Cho, Sang-Hyun; Choi, Jung-Gil; Kim, Myoung-Hee

    2008-04-01

    Deterministic method based on ray tracing technique is known as a powerful alternative to the Monte Carlo approach for virtual X-ray imaging. The algorithm speed is a critical issue in the perspective of simulating hundreds of images, notably to simulate tomographic acquisition or even more, to simulate X-ray radiographic video recordings. We present an algorithm for voxel-based deterministic simulation of X-ray imaging using voxel-driven forward and backward perspective projection operations and minimum bounding rectangles (MBRs). The algorithm is fast, easy to implement, and creates high-quality simulated radiographs. As a result, simulated radiographs can typically be obtained in split seconds with a simple personal computer. Program summaryProgram title: X-ray Catalogue identifier: AEAD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 416 257 No. of bytes in distributed program, including test data, etc.: 6 018 263 Distribution format: tar.gz Programming language: C (Visual C++) Computer: Any PC. Tested on DELL Precision 380 based on a Pentium D 3.20 GHz processor with 3.50 GB of RAM Operating system: Windows XP Classification: 14, 21.1 Nature of problem: Radiographic simulation of voxelized objects based on ray tracing technique. Solution method: The core of the simulation is a fast routine for the calculation of ray-box intersections and minimum bounding rectangles, together with voxel-driven forward and backward perspective projection operations. Restrictions: Memory constraints. There are three programs in all. A. Program for test 3.1(1): Object and detector have axis-aligned orientation; B. Program for test 3.1(2): Object in arbitrary orientation; C. Program for test 3.2: Simulation of X-ray video

  8. GPU-based fast Monte Carlo dose calculation for proton therapy.

    PubMed

    Jia, Xun; Schümann, Jan; Paganetti, Harald; Jiang, Steve B

    2012-12-07

    Accurate radiation dose calculation is essential for successful proton radiotherapy. Monte Carlo (MC) simulation is considered to be the most accurate method. However, the long computation time limits it from routine clinical applications. Recently, graphics processing units (GPUs) have been widely used to accelerate computationally intensive tasks in radiotherapy. We have developed a fast MC dose calculation package, gPMC, for proton dose calculation on a GPU. In gPMC, proton transport is modeled by the class II condensed history simulation scheme with a continuous slowing down approximation. Ionization, elastic and inelastic proton nucleus interactions are considered. Energy straggling and multiple scattering are modeled. Secondary electrons are not transported and their energies are locally deposited. After an inelastic nuclear interaction event, a variety of products are generated using an empirical model. Among them, charged nuclear fragments are terminated with energy locally deposited. Secondary protons are stored in a stack and transported after finishing transport of the primary protons, while secondary neutral particles are neglected. gPMC is implemented on the GPU under the CUDA platform. We have validated gPMC using the TOPAS/Geant4 MC code as the gold standard. For various cases including homogeneous and inhomogeneous phantoms as well as a patient case, good agreements between gPMC and TOPAS/Geant4 are observed. The gamma passing rate for the 2%/2 mm criterion is over 98.7% in the region with dose greater than 10% maximum dose in all cases, excluding low-density air regions. With gPMC it takes only 6-22 s to simulate 10 million source protons to achieve ∼1% relative statistical uncertainty, depending on the phantoms and energy. This is an extremely high efficiency compared to the computational time of tens of CPU hours for TOPAS/Geant4. Our fast GPU-based code can thus facilitate the routine use of MC dose calculation in proton therapy.

  9. GPU-based fast Monte Carlo dose calculation for proton therapy

    NASA Astrophysics Data System (ADS)

    Jia, Xun; Schümann, Jan; Paganetti, Harald; Jiang, Steve B.

    2012-12-01

    Accurate radiation dose calculation is essential for successful proton radiotherapy. Monte Carlo (MC) simulation is considered to be the most accurate method. However, the long computation time limits it from routine clinical applications. Recently, graphics processing units (GPUs) have been widely used to accelerate computationally intensive tasks in radiotherapy. We have developed a fast MC dose calculation package, gPMC, for proton dose calculation on a GPU. In gPMC, proton transport is modeled by the class II condensed history simulation scheme with a continuous slowing down approximation. Ionization, elastic and inelastic proton nucleus interactions are considered. Energy straggling and multiple scattering are modeled. Secondary electrons are not transported and their energies are locally deposited. After an inelastic nuclear interaction event, a variety of products are generated using an empirical model. Among them, charged nuclear fragments are terminated with energy locally deposited. Secondary protons are stored in a stack and transported after finishing transport of the primary protons, while secondary neutral particles are neglected. gPMC is implemented on the GPU under the CUDA platform. We have validated gPMC using the TOPAS/Geant4 MC code as the gold standard. For various cases including homogeneous and inhomogeneous phantoms as well as a patient case, good agreements between gPMC and TOPAS/Geant4 are observed. The gamma passing rate for the 2%/2 mm criterion is over 98.7% in the region with dose greater than 10% maximum dose in all cases, excluding low-density air regions. With gPMC it takes only 6-22 s to simulate 10 million source protons to achieve ˜1% relative statistical uncertainty, depending on the phantoms and energy. This is an extremely high efficiency compared to the computational time of tens of CPU hours for TOPAS/Geant4. Our fast GPU-based code can thus facilitate the routine use of MC dose calculation in proton therapy.

  10. A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.

    PubMed

    Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua

    2016-05-01

    Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fast pixel-based optical proximity correction based on nonparametric kernel regression

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Wu, Bingliang; Song, Zhiyang; Jiang, Shangliang; Li, Yanqiu

    2014-10-01

    Optical proximity correction (OPC) is a resolution enhancement technique extensively used in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the layout is divided into small pixels, which are then iteratively modified until the simulated print image on the wafer matches the desired pattern. However, the increasing complexity and size of modern integrated circuits make PBOPC techniques quite computationally intensive. This paper focuses on developing a practical and efficient PBOPC algorithm based on a nonparametric kernel regression, a well-known technique in machine learning. Specifically, we estimate the OPC patterns based on the geometric characteristics of the original layout corresponding to the same region and a series of training examples. Experimental results on metal layers show that our proposed approach significantly improves the speed of a current professional PBOPC software by a factor of 2 to 3, and may further reduce the mask complexity.

  12. Effect of sputtering pressure on microstructure and bolometric properties of Nb:TiO{sub 2−x} films for infrared image sensor applications

    SciTech Connect

    Reddy, Y. Ashok Kumar Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul

    2016-01-28

    This study aims to investigate the influence of the sputtering pressure (P{sub S}) on Nb:TiO{sub 2−x} films to enhance the bolometric properties. A decrease in the growth rate with the sputtering pressure was perceived in amorphous Nb:TiO{sub 2−x} films. The incorporation of oxygen with P{sub S} was confirmed in an X-ray photo electron spectroscopy analysis. The electrical resistivity was increased with an increase in P{sub S} due to a decrease in the number of oxygen vacancies. The linear I-V characteristics confirmed the ohmic contact behavior between the Nb:TiO{sub 2−x} layer and the electrode material. The present investigation finds that the sample with lower resistivity has good bolometric properties with low noise and high universal bolometric parameters. Finally, the Nb:TiO{sub 2−x} sample deposited at a sputtering pressure of 2 mTorr shows better bolometric properties than other materials for infrared image sensor applications.

  13. FAST: FAST Analysis of Sequences Toolbox

    PubMed Central

    Lawrence, Travis J.; Kauffman, Kyle T.; Amrine, Katherine C. H.; Carper, Dana L.; Lee, Raymond S.; Becich, Peter J.; Canales, Claudia J.; Ardell, David H.

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought. PMID:26042145

  14. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Ghaffarian, Salar

    2014-11-01

    This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.

  15. Effect of fasting and acute heat stress on body temperature, blood acid-base and electrolyte status in chickens.

    PubMed

    Ait-Boulahsen, A; Garlich, J D; Edens, F W

    1989-01-01

    1. The tolerance of chickens to acute heat stress, evaluated by the time required to reach the critical body temperature (Tr) of 44.5 degrees C, was markedly enhanced as the period of fasting was extended. 2. Fasting reduced the rates of heat-induced changes in blood acid-base and electrolyte status. 3. Changes in Tr were correlated with changes in blood pH, pCO2, [Cl-] and [Pi] but not with changes in [Na+] or [K+]. 4. Blood acid-base and electrolyte status were related to Tr rather than time of exposure to heat stress.

  16. Fast optimization method based on the diffuser dot density for uniformity of the backlight module.

    PubMed

    Huang, Bing-Le; Guo, Tai-Liang

    2016-02-20

    A fast optimization method based on the diffuser dot density (DDD) for uniformity of the backlight module (BLM) is proposed in the paper. First, the relationship between the efficiency of the light emerging and the DDD is analyzed, and then a simulation model that is employed to acquire a serial of simulating data is constructed. Second, a mathematic method to profit the relationship is adopted, and a polynomial relationship is derived. Finally, an algorithm to adjust the DDD and optimize the uniformity of the BLM based on the DDD is constructed. The simulation results prove that only by three times optimization, the uniformity of the BLM can reach 85.6%, and the experimental result indicates that the algorithm proposed in the paper can improve the uniformity rapidly. The final experimental result is that the uniformity of the third optimization reaches 77.4%, which satisfies the target 75% in the phase of designing the BLM. Compared to the conventional optimization method, the method can speed up the procedure and lower the expense of developing the BLM in fabricating the liquid-crystal display.

  17. Fast video shot boundary detection based on SVD and pattern matching.

    PubMed

    Lu, Zhe-Ming; Shi, Yong

    2013-12-01

    Video shot boundary detection (SBD) is the first and essential step for content-based video management and structural analysis. Great efforts have been paid to develop SBD algorithms for years. However, the high computational cost in the SBD becomes a block for further applications such as video indexing, browsing, retrieval, and representation. Motivated by the requirement of the real-time interactive applications, a unified fast SBD scheme is proposed in this paper. We adopted a candidate segment selection and singular value decomposition (SVD) to speed up the SBD. Initially, the positions of the shot boundaries and lengths of gradual transitions are predicted using adaptive thresholds and most non-boundary frames are discarded at the same time. Only the candidate segments that may contain the shot boundaries are preserved for further detection. Then, for all frames in each candidate segment, their color histograms in the hue-saturation-value) space are extracted, forming a frame-feature matrix. The SVD is then performed on the frame-feature matrices of all candidate segments to reduce the feature dimension. The refined feature vector of each frame in the candidate segments is obtained as a new metric for boundary detection. Finally, cut and gradual transitions are identified using our pattern matching method based on a new similarity measurement. Experiments on TRECVID 2001 test data and other video materials show that the proposed scheme can achieve a high detection speed and excellent accuracy compared with recent SBD schemes.

  18. Fast k-space-based evaluation of imaging properties of ultrasound apertures

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Dapp, R.; Hardt, M.; Henning, P. A.; Ruiter, N. V.

    2011-03-01

    At the Karlsruhe Institute of Technology (KIT) a three-dimensional ultrasound computer tomography (3D USCT) system for early breast cancer diagnosis is being developed. This method promises reproducible volume images of the female breast in 3D. Initial measurements and a simulation based optimization method, which took several physical properties into account, led to a new aperture setup. Yet this simulation is computational too demanding to systematically evaluate the different 'virtual' apertures which can be achieved by rotation and lifting of the system. In optics a Fourier based approach is available to simulate imaging systems as linear systems. For the two apertures used in our project and one hypothetical linear array aperture this concept was evaluated and compared to a reference simulation. An acceptable conformity between the new approach and the reference simulation could be shown. With this approach a fast evaluation of optimal 'virtual' apertures for specific measurement objects and imaging constraints can be carried out within an acceptable time constraint.

  19. Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation.

    PubMed

    Linaro, Daniele; Storace, Marco; Giugliano, Michele

    2011-03-01

    Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here.

  20. a Fast Segmentation Algorithm for C-V Model Based on Exponential Image Sequence Generation

    NASA Astrophysics Data System (ADS)

    Hu, J.; Lu, L.; Xu, J.; Zhang, J.

    2017-09-01

    For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1) the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2) the initial value of SDF (Signal Distance Function) and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3) the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.

  1. A fast and exhaustive method for heterogeneity and epistasis analysis based on multi-objective optimization.

    PubMed

    Li, Xiong

    2017-09-15

    The existing epistasis analysis approaches have been criticized mainly for their: (i) ignoring heterogeneity during epistasis analysis; (ii) high computational costs; and (iii) volatility of performances and results. Therefore, they will not perform well in general, leading to lack of reproducibility and low power in complex disease association studies. In this work, a fast scheme is proposed to accelerate exhaustive searching based on multi-objective optimization named ESMO for concurrently analyzing heterogeneity and epistasis phenomena. In ESMO, mutual entropy and Bayesian network approaches are combined for evaluating epistatic SNP combinations. In order to be compatible with heterogeneity of complex diseases, we designed an adaptive framework based on non-dominant sort and top k selection algorithm with improved time complexity O(k*M*N) . Moreover, ESMO is accelerated by strategies such as trading space for time, calculation sharing and parallel computing. Finally, ESMO is nonparametric and model-free. We compared ESMO with other recent or classic methods using different evaluating measures. The experimental results show that our method not only can quickly handle epistasis, but also can effectively detect heterogeneity of complex population structures. https://github.com/XiongLi2016/ESMO/tree/master/ESMO-common-master . lx_hncs@163.com.

  2. Readjoiner: a fast and memory efficient string graph-based sequence assembler

    PubMed Central

    2012-01-01

    Background Ongoing improvements in throughput of the next-generation sequencing technologies challenge the current generation of de novo sequence assemblers. Most recent sequence assemblers are based on the construction of a de Bruijn graph. An alternative framework of growing interest is the assembly string graph, not necessitating a division of the reads into k-mers, but requiring fast algorithms for the computation of suffix-prefix matches among all pairs of reads. Results Here we present efficient methods for the construction of a string graph from a set of sequencing reads. Our approach employs suffix sorting and scanning methods to compute suffix-prefix matches. Transitive edges are recognized and eliminated early in the process and the graph is efficiently constructed including irreducible edges only. Conclusions Our suffix-prefix match determination and string graph construction algorithms have been implemented in the software package Readjoiner. Comparison with existing string graph-based assemblers shows that Readjoiner is faster and more space efficient. Readjoiner is available at http://www.zbh.uni-hamburg.de/readjoiner. PMID:22559072

  3. Fast intersection detection algorithm for PC-based robot off-line programming

    NASA Astrophysics Data System (ADS)

    Fedrowitz, Christian H.

    1994-11-01

    This paper presents a method for fast and reliable collision detection in complex production cells. The algorithm is part of the PC-based robot off-line programming system of the University of Siegen (Ropsus). The method is based on a solid model which is managed by a simplified constructive solid geometry model (CSG-model). The collision detection problem is divided in two steps. In the first step the complexity of the problem is reduced in linear time. In the second step the remaining solids are tested for intersection. For this the Simplex algorithm, which is known from linear optimization, is used. It computes a point which is common to two convex polyhedra. The polyhedra intersect, if such a point exists. Regarding the simplified geometrical model of Ropsus the algorithm runs also in linear time. In conjunction with the first step a resultant collision detection algorithm is found which requires linear time in all. Moreover it computes the resultant intersection polyhedron using the dual transformation.

  4. A Fast Radiative Transfer Model for the Meteor- M satellite-based hyperspectral IR sounders

    NASA Astrophysics Data System (ADS)

    Uspensky, A. B.; Rublev, A. N.; Rusin, E. V.; Pyatkin, V. P.

    2014-12-01

    The methodological and computational aspects of Fast Radiative Transfer Model (FRTM) development designed for the analysis and validation of the data of measurements using satellite-based instrument-hyperspectral IR sounders of high spectral resolution—are considered. A description of the FRTM is given for the analysis and modeling of the measurements by the IRFS-2 IR Fourier spectrometer for polarorbiting meteorological satellites of the Meteor-M series based on the known RTTOV FRTM. Computational efficiency is estimated and the results of the verification of developed FRTM are presented. They were obtained from a comparison of model simulations with exact line-by-line calculations for the IRFS-2 IR sounder. The increase in computational performance and the accuracy of the FRTM, caused by the application of the algorithms of the principal components method, are discussed. The construction of radiative models, which use the algorithm of the Monte Carlo method and are applicable for the analysis and modeling of the data of IR sounders under conditions of cloudiness in the instrument field of view, is considered.

  5. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform.

    PubMed

    Zhang, Wang; Su, Tao

    2016-09-22

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed.

  6. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform

    PubMed Central

    Zhang, Wang; Su, Tao

    2016-01-01

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed. PMID:27669242

  7. Reversible, Fast, and Wide-Range Oxygen Sensor Based on Nanostructured Organometal Halide Perovskite.

    PubMed

    Stoeckel, Marc-Antoine; Gobbi, Marco; Bonacchi, Sara; Liscio, Fabiola; Ferlauto, Laura; Orgiu, Emanuele; Samorì, Paolo

    2017-10-01

    Nanostructured materials characterized by high surface-volume ratio hold the promise to constitute the active materials for next-generation sensors. Solution-processed hybrid organohalide perovskites, which have been extensively used in the last few years for optoelectronic applications, are characterized by a self-assembled nanostructured morphology, which makes them an ideal candidate for gas sensing. Hitherto, detailed studies of the dependence of their electrical characteristics on the environmental atmosphere have not been performed, and even the effect of a ubiquitous gas such as O2 has been widely overlooked. Here, the electrical response of organohalide perovskites to oxygen is studied. Surprisingly, a colossal increase (3000-fold) in the resistance of perovskite-based lateral devices is found when measured in a full oxygen atmosphere, which is ascribed to a trap healing mechanism originating from an O2 -mediated iodine vacancies filling. A variation as small as 70 ppm in the oxygen concentration can be detected. The effect is fast (<400 ms) and fully reversible, making organohalide perovskites ideal active materials for oxygen sensing. The effect of oxygen on the electrical characteristics of organohalide perovskites must be taken into deep consideration for the design and optimization of any other perovskite-based (opto-) electronic device working in ambient conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Estimates for Pu-239 loadings in burial ground culverts based on fast/slow neutron measurements

    SciTech Connect

    Winn, W.G.; Hochel, R.C.; Hofstetter, K.J.; Sigg, R.A.

    1989-08-15

    This report provides guideline estimates for Pu-239 mass loadings in selected burial ground culverts. The relatively high recorded Pu-239 contents of these culverts have been appraised as suspect relative to criticality concerns, because they were assayed only with the solid waste monitor (SWM) per gamma-ray counting. After 1985, subsequent waste was also assayed with the neutron coincidence counter (NCC), and a comparison of the assay methods showed that the NCC generally yielded higher assays than the SWM. These higher NCC readings signaled a need to conduct non-destructive/non-intrusive nuclear interrogations of these culverts, and a technical team conducted scoping measurements to illustrate potential assay methods based on neutron and/or gamma counting. A fast/slow neutron method has been developed to estimate the Pu-239 in the culverts. In addition, loading records include the SWM assays of all Pu-239 cuts of some of the culvert drums and these data are useful in estimating the corresponding NCC drum assays from NCC vs SWM data. Together, these methods yield predictions based on direct measurements and statistical inference.

  9. Fast searching measurement of absolute displacement based on submicron-aperture fiber point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Daodang; Wang, Zhichao; Liang, Rongguang; Kong, Ming; Zhao, Jun; Zhao, Jufeng; Mo, Linhai; Li, Wei

    2017-06-01

    The submicron-aperture fiber point-diffraction interferometer (SFPDI) can be applied to realize the measurement of three-dimensional absolute displacement within large range, in which the performance of point-diffraction wavefront and numerical iterative algorithm for displacement reconstruction determines the achievable measurement accuracy, reliability and efficiency of the system. A method based on fast searching particle swarm optimization (FS-PSO) algorithm is proposed to realize the rapid measurement of three-dimensional absolute displacement. Based on the SFPDI with two submicron-aperture fiber pairs, FS-PSO method and the corresponding model of the SFPDI, the measurement accuracy, reliability and efficiency of the SFPDI system are significantly improved, making it more feasible for practical application. The effect of point-diffraction wavefront error on the measurement is analyzed. The error of pointdiffraction wavefront obtained in the experiment is in the order of 1×10-4λ (the wavelength λ is 532 nm), and the corresponding displacement measurement error is smaller than 0.03 μm. Both the numerical simulation and comparison experiments have been carried out to demonstrate the accuracy and feasibility of the proposed SFPDI system, high measurement accuracy in the order of 0.1 μm, convergence rate ( 90.0%) and efficiency have been realized with the proposed method, providing a feasible way to measure three-dimensional absolute displacement in the case of no guide rail.

  10. Cloning of expansin genes in ramie (Boehmeria nivea L.) based on universal fast walking.

    PubMed

    Chen, Jie; Dai, Lunjin; Wang, Bo; Liu, Lijun; Peng, Dingxiang

    2015-09-10

    Gene cloning is the first step to study the expression profiles and functions of a particular gene; considerable cloning methods have been developed. Expansin, thought to involve in the cell-wall modification events, was not cloned in ramie (Boehmeria nivea L.), which is one of the most important bast fiber crops with little conducted molecular research, especially on its fiber development. Studying the expansin gene family will uncover its possible relationship with ramie fiber development and other growth events. As a result, five expansin genes were cloned with full-length and their sequence information was investigated. Additionally, the phylogenetic analysis was conducted, which suggested that the cloned genes belong to the α-subfamily, and these genes expressed differently during ramie fiber developmental process. In this study, we aimed to apply a strategy for cloning novel full-length genes from genomic DNA of ramie, based on using degenerate primers, touchdown polymerase chain reaction and universal fast walking protocols. By cloning five full-length expansin genes, we believe the polymerase chain reaction-based gene cloning strategy could be applied to general gene studies in ramie and other crops. Copyright © 2015. Published by Elsevier B.V.

  11. Fast Wavelet Based Functional Models for Transcriptome Analysis with Tiling Arrays

    PubMed Central

    Clement, Lieven; De Beuf, Kristof; Thas, Olivier; Vuylsteke, Marnik; Irizarry, Rafael A.; Crainiceanu, Ciprian M.

    2013-01-01

    For a better understanding of the biology of an organism, a complete description is needed of all regions of the genome that are actively transcribed. Tiling arrays are used for this purpose. They allow for the discovery of novel transcripts and the assessment of differential expression between two or more experimental conditions such as genotype, treatment, tissue, etc. In tiling array literature, many efforts are devoted to transcript discovery, whereas more recent developments also focus on differential expression. To our knowledge, however, no methods for tiling arrays have been described that can simultaneously assess transcript discovery and identify differentially expressed transcripts. In this paper, we adopt wavelet based functional models to the context of tiling arrays. The high dimensionality of the data triggered us to avoid inference based on Bayesian MCMC methods. Instead, we introduce a fast empirical Bayes method that provides adaptive regularization of the functional effects. A simulation study and a case study illustrate that our approach is well suited for the simultaneous assessment of transcript discovery and differential expression in tiling array studies, and that it outperforms methods that accomplish only one of these tasks. PMID:22499683

  12. Specification of hierarchical-model-based fast quarter-pixel motion estimation

    NASA Astrophysics Data System (ADS)

    Cho, Junsang; Suh, Jung W.; Jeon, Gwanggil; Jeong, Jechang

    2010-06-01

    We propose a robust and fast quarter-pixel motion estimation algorithm. This algorithm is an advanced version of the previously proposed model-based quarter-pixel motion estimation (MBQME). MBQME has many advantages in computational complexity, running speed, and hardware implementations. But it has the problem that it does not find the quarter-pixel positions that locate beyond the half-pixel positions. That is one of limitations of model-based motion estimation methods, and it leads to both peak-SNR degradation and bit-rate increase. To solve this problem, we propose a hierarchical mathematical model with minimum interpolations. Through this model, we can determine a motion vector at every quarter-pixel point, which is perfectly compatible with the quarter-pixel motion estimation method within international video coding standards such as MPEG-4 and H.264/AVC. The simulation results show that the proposed method yields almost the same or even better peak-SNR performance than that of full-search quarter-pixel motion estimation, with much lower computational complexity.

  13. Fast-Response and Flexible Nanocrystal-Based Humidity Sensor for Monitoring Human Respiration and Water Evaporation on Skin.

    PubMed

    Kano, Shinya; Kim, Kwangsoo; Fujii, Minoru

    2017-06-23

    We develop a fast-response and flexible nanocrystal-based humidity sensor for real-time monitoring of human activity: respiration and water evaporation on skin. A silicon-nanocrystal film is formed on a polyimide film by spin-coating the colloidal solution and is used as a flexible and humidity-sensitive material in a humidity sensor. The flexible nanocrystal-based humidity sensor shows a high sensitivity; current through the nanocrystal film changes by 5 orders of magnitude in the relative humidity range of 8-83%. The response/recovery time of the sensor is 40 ms. Thanks to the fast response and recovery time, the sensor can monitor human respiration and water evaporation on skin in real time. Due to the flexibility and the fast response/recovery time, the sensor is promising for application in personal health monitoring as well as environmental monitoring.

  14. Accurate calculation and Matlab based fast realization of merit function's Hesse matrix for the design of multilayer optical coating

    NASA Astrophysics Data System (ADS)

    Wu, Su-Yong; Long, Xing-Wu; Yang, Kai-Yong

    2009-09-01

    To improve the current status of home multilayer optical coating design with low speed and poor efficiency when a large layer number occurs, the accurate calculation and fast realization of merit function’s gradient and Hesse matrix is pointed out. Based on the matrix method to calculate the spectral properties of multilayer optical coating, an analytic model is established theoretically. And the corresponding accurate and fast computation is successfully achieved by programming with Matlab. Theoretical and simulated results indicate that this model is mathematically strict and accurate, and its maximal precision can reach floating-point operations in the computer, with short time and fast speed. Thus it is very suitable to improve the optimal search speed and efficiency of local optimization methods based on the derivatives of merit function. It has outstanding performance in multilayer optical coating design with a large layer number.

  15. Fast computation of Hessian-based enhancement filters for medical images.

    PubMed

    Yang, Shih-Feng; Cheng, Ching-Hsue

    2014-10-01

    This paper presents a method for fast computation of Hessian-based enhancement filters, whose conditions for identifying particular structures in medical images are associated only with the signs of Hessian eigenvalues. The computational costs of Hessian-based enhancement filters come mainly from the computation of Hessian eigenvalues corresponding to image elements to obtain filter responses, because computing eigenvalues of a matrix requires substantial computational effort. High computational cost has become a challenge in the application of Hessian-based enhancement filters. Using a property of the characteristic polynomial coefficients of a matrix and the well-known Routh-Hurwitz criterion in control engineering, it is shown that under certain conditions, the response of a Hessian-based enhancement filter to an image element can be obtained without having to compute Hessian eigenvalues. The computational cost can thus be reduced. Experimental results on several medical images show that the method proposed in this paper can reduce significantly the number of computations of Hessian eigenvalues and the processing times of images. The percentage reductions of the number of computations of Hessian eigenvalues for enhancing blob- and tubular-like structures in two-dimensional images are approximately 90% and 65%, respectively. For enhancing blob-, tubular-, and plane-like structures in three-dimensional images, the reductions are approximately 97%, 75%, and 12%, respectively. For the processing times, the percentage reductions for enhancing blob- and tubular-like structures in two-dimensional images are approximately 31% and 7.5%, respectively. The reductions for enhancing blob-, tubular-, and plane-like structures in three-dimensional images are approximately 68%, 55%, and 3%, respectively.

  16. Fast Mean-Shift Based Classification of Very High Resolution Images: Application to Forest Cover Mapping

    NASA Astrophysics Data System (ADS)

    Boukir, S.; Jones, S.; Reinke, K.

    2012-07-01

    This paper presents a new unsupervised classification method which aims to effectively and efficiently map remote sensing data. The Mean-Shift (MS) algorithm, a non parametric density-based clustering technique, is at the core of our method. This powerful clustering algorithm has been successfully used for both the classification and the segmentation of gray scale and color images during the last decade. However, very little work has been reported regarding the performance of this technique on remotely sensed images. The main disadvantage of the MS algorithm lies on its high computational costs. Indeed, it is based on an optimization procedure to determine the modes of the pixels density. To investigate the MS algorithm in the difficult context of very high resolution remote sensing imagery, we use a fast version of this algorithm which has been recently proposed, namely the Path-Assigned Mean Shift (PAMS). This algorithm is up to 5 times faster than other fast MS algorithms while inducing a low loss in quality compared to the original MS version. To compensate for this loss, we propose to use the K modes (cluster centroids) obtained after convergence of the PAMS algorithm as an initialization of a K-means clustering algorithm. The latter converges very quickly to a refined solution to the underlying clustering problem. Furthermore, it does not suffer the main drawback of the classic K-means algorithm (the number of clusters K needs to be specified) as K is automatically determined via the MS mode-seeking procedure. We demonstrate the effectiveness of this two-stage clustering method in performing automatic classification of aerial forest images. Both individual bands and band combination trails are presented. When compared to the classical PAMS algorithm, our technique is better in terms of classification quality. The improvement in classification is significant both visually and statistically. The whole classification process is performed in a few seconds on

  17. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.

    PubMed

    Boschitsch, Alexander H; Fenley, Marcia O

    2011-05-10

    An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous

  18. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids

    PubMed Central

    Boschitsch, Alexander H.; Fenley, Marcia O.

    2011-01-01

    An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent – analytical solutions are available for this case, thus allowing rigorous

  19. (abstract) A Low-Cost Mission to 2060 Chiron Based on the Pluto Fast Flyby

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Salvo, C. G.; Wallace, R. A.; Weinstein, S. S.; Weissman, P. R.

    1994-01-01

    The Pluto Fast Flyby-based mission to Chiron described in this paper is a low cost, scientifically rewarding, focused mission in the outer solar system. The proposed mission will make a flyby of 2060 Chiron, an active 'comet' with over 10(sup 4) times the mass of Halley, and an eccentric, Saturn-crossing orbit which ranges from 8.5 to 19 AU. This mission concept achieves the flyby 4.2 years after launch on a direct trajectory from Earth, is independent of Jupiter launch windows, and fits within Discovery cost guidelines. This mission offers the scientific opportunity to examine a class of object left unsampled by the trail-blazing Mariners, Pioneers, Voyagers, and missions to Halley. Spacecraft reconnaissance of Chiron addresses unique objectives relating to cometary science, other small bodies, the structure of quasi-bound atmospheres on modest-sized bodies, and the origin of primitive bodies and the giant planets. Owing to Chiron's large size (180based on the opportunity to use the planned Pluto Flyby spare spacecraft and a Proton Expendable Launch Vehicle (ELV) (the pluto spacecraft is being designed to be compatible with a Proton launch). Backup

  20. (abstract) A Low-Cost Mission to 2060 Chiron Based on the Pluto Fast Flyby

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Salvo, C. G.; Wallace, R. A.; Weinstein, S. S.; Weissman, P. R.

    1994-01-01

    The Pluto Fast Flyby-based mission to Chiron described in this paper is a low cost, scientifically rewarding, focused mission in the outer solar system. The proposed mission will make a flyby of 2060 Chiron, an active 'comet' with over 10(sup 4) times the mass of Halley, and an eccentric, Saturn-crossing orbit which ranges from 8.5 to 19 AU. This mission concept achieves the flyby 4.2 years after launch on a direct trajectory from Earth, is independent of Jupiter launch windows, and fits within Discovery cost guidelines. This mission offers the scientific opportunity to examine a class of object left unsampled by the trail-blazing Mariners, Pioneers, Voyagers, and missions to Halley. Spacecraft reconnaissance of Chiron addresses unique objectives relating to cometary science, other small bodies, the structure of quasi-bound atmospheres on modest-sized bodies, and the origin of primitive bodies and the giant planets. Owing to Chiron's large size (180based on the opportunity to use the planned Pluto Flyby spare spacecraft and a Proton Expendable Launch Vehicle (ELV) (the pluto spacecraft is being designed to be compatible with a Proton launch). Backup

  1. The relationship between contrast, resolution and detectability in accelerator-based fast neutron radiography

    SciTech Connect

    Ambrosi, R. M.; Watterson, J. I. W.

    1999-06-10

    Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability.

  2. An open source software for fast grid-based data-mining in spatial epidemiology (FGBASE).

    PubMed

    Baker, David M; Valleron, Alain-Jacques

    2014-10-30

    Examining whether disease cases are clustered in space is an important part of epidemiological research. Another important part of spatial epidemiology is testing whether patients suffering from a disease are more, or less, exposed to environmental factors of interest than adequately defined controls. Both approaches involve determining the number of cases and controls (or population at risk) in specific zones. For cluster searches, this often must be done for millions of different zones. Doing this by calculating distances can lead to very lengthy computations. In this work we discuss the computational advantages of geographical grid-based methods, and introduce an open source software (FGBASE) which we have created for this purpose. Geographical grids based on the Lambert Azimuthal Equal Area projection are well suited for spatial epidemiology because they preserve area: each cell of the grid has the same area. We describe how data is projected onto such a grid, as well as grid-based algorithms for spatial epidemiological data-mining. The software program (FGBASE), that we have developed, implements these grid-based methods. The grid based algorithms perform extremely fast. This is particularly the case for cluster searches. When applied to a cohort of French Type 1 Diabetes (T1D) patients, as an example, the grid based algorithms detected potential clusters in a few seconds on a modern laptop. This compares very favorably to an equivalent cluster search using distance calculations instead of a grid, which took over 4 hours on the same computer. In the case study we discovered 4 potential clusters of T1D cases near the cities of Le Havre, Dunkerque, Toulouse and Nantes. One example of environmental analysis with our software was to study whether a significant association could be found between distance to vineyards with heavy pesticide. None was found. In both examples, the software facilitates the rapid testing of hypotheses. Grid-based algorithms for mining

  3. Fast simulation of x-ray projections of spline-based surfaces using an append buffer.

    PubMed

    Maier, Andreas; Hofmann, Hannes G; Schwemmer, Chris; Hornegger, Joachim; Keil, Andreas; Fahrig, Rebecca

    2012-10-07

    Many scientists in the field of x-ray imaging rely on the simulation of x-ray images. As the phantom models become more and more realistic, their projection requires high computational effort. Since x-ray images are based on transmission, many standard graphics acceleration algorithms cannot be applied to this task. However, if adapted properly, the simulation speed can be increased dramatically using state-of-the-art graphics hardware. A custom graphics pipeline that simulates transmission projections for tomographic reconstruction was implemented based on moving spline surface models. All steps from tessellation of the splines, projection onto the detector and drawing are implemented in OpenCL. We introduced a special append buffer for increased performance in order to store the intersections with the scene for every ray. Intersections are then sorted and resolved to materials. Lastly, an absorption model is evaluated to yield an absorption value for each projection pixel. Projection of a moving spline structure is fast and accurate. Projections of size 640 × 480 can be generated within 254 ms. Reconstructions using the projections show errors below 1 HU with a sharp reconstruction kernel. Traditional GPU-based acceleration schemes are not suitable for our reconstruction task. Even in the absence of noise, they result in errors up to 9 HU on average, although projection images appear to be correct under visual examination. Projections generated with our new method are suitable for the validation of novel CT reconstruction algorithms. For complex simulations, such as the evaluation of motion-compensated reconstruction algorithms, this kind of x-ray simulation will reduce the computation time dramatically.

  4. Fast Simulation of X-ray Projections of Spline-based Surfaces using an Append Buffer

    PubMed Central

    Maier, Andreas; Hofmann, Hannes G.; Schwemmer, Chris; Hornegger, Joachim; Keil, Andreas; Fahrig, Rebecca

    2012-01-01

    Many scientists in the field of x-ray imaging rely on the simulation of x-ray images. As the phantom models become more and more realistic, their projection requires high computational effort. Since x-ray images are based on transmission, many standard graphics acceleration algorithms cannot be applied to this task. However, if adapted properly, simulation speed can be increased dramatically using state-of-the-art graphics hardware. A custom graphics pipeline that simulates transmission projections for tomographic reconstruction was implemented based on moving spline surface models. All steps from tessellation of the splines, projection onto the detector, and drawing are implemented in OpenCL. We introduced a special append buffer for increased performance in order to store the intersections with the scene for every ray. Intersections are then sorted and resolved to materials. Lastly, an absorption model is evaluated to yield an absorption value for each projection pixel. Projection of a moving spline structure is fast and accurate. Projections of size 640×480 can be generated within 254 ms. Reconstructions using the projections show errors below 1 HU with a sharp reconstruction kernel. Traditional GPU-based acceleration schemes are not suitable for our reconstruction task. Even in the absence of noise, they result in errors up to 9 HU on average, although projection images appear to be correct under visual examination. Projections generated with our new method are suitable for the validation of novel CT reconstruction algorithms. For complex simulations, such as the evaluation of motion-compensated reconstruction algorithms, this kind of x-ray simulation will reduce the computation time dramatically. Source code is available at http://conrad.stanford.edu/ PMID:22975431

  5. Fast and powerful heritability inference for family-based neuroimaging studies

    PubMed Central

    Ganjgahi, Habib; Winkler, Anderson M.; Glahn, David C.; Blangero, John; Kochunov, Peter; Nichols, Thomas E.

    2015-01-01

    Heritability estimation has become an important tool for imaging genetics studies. The large number of voxel- and vertex-wise measurements in imaging genetics studies presents a challenge both in terms of computational intensity and the need to account for elevated false positive risk because of the multiple testing problem. There is a gap in existing tools, as standard neuroimaging software cannot estimate heritability, and yet standard quantitative genetics tools cannot provide essential neuroimaging inferences, like family-wise error corrected voxel-wise or cluster-wiseP-values. Moreover, available heritability tools rely on P-values that can be inaccurate with usual parametric inference methods. In this work we develop fast estimation and inference procedures for voxel-wise heritability, drawing on recent methodological results that simplify heritability likelihood computations (Blangero etal., 2013). We review the family of score and Wald tests and propose novel inference methods based on explained sum of squares of an auxiliary linear model. To address problems with inaccuracies with the standard results used to find P-values, we propose four different permutation schemes to allow semi-parametric inference (parametric likelihood-based estimation, non-parametric sampling distribution). In total, we evaluate 5 different significance tests for heritability, with either asymptotic parametric or permutation-basedP-value computations. We identify a number of tests that are both computationally efficient and powerful, making them ideal candidates for heritability studies in the massive data setting. We illustrate our method on fractional anisotropy measures in 859 subjects from the Genetics of Brain Structure study. PMID:25812717

  6. Fast estimation of lacustrine groundwater discharge volumes based on stable water isotopes

    NASA Astrophysics Data System (ADS)

    Lewandowski, Jörg; Gercken, Jasper; Premke, Katrin; Meinikmann, Karin

    2017-04-01

    Lake eutrophication is still a severe problem in many parts of the world, commonly due to anthropogenic sources of nutrients such as fertilizer, manure or sewage. Improved quantification of nutrient inputs to lakes is required to address this problem. One possible input path for nutrients is lacustrine groundwater discharge (LGD). However, LGD has often been disregarded in water and nutrient budgets of lakes although some studies reveal an extraordinary importance of LGD for phosphorus inputs. The aim of the present study is to identify lakes that receive large LGD volumes compared to other input paths. Such lakes are more prone to high groundwater-borne nutrient inputs than lakes with small LGD volumes. . The simple and fast approach used in the present study is based on the fact that evaporation of surface water causes an enrichment of heavier isotopes in lake and river water while precipitation and groundwater are lighter and have similar isotopic signatures. The isotopic signature of lake water depends on a) the isotopic signature of its inputs and b) the lakés residence time (the longer the more enriched with heavier isotopes). In the present study we used the citizen science project "Tatort Gewässer" to let people collect lake water samples all over Germany. Based on additional information we identified lakes without or with small (compared to the lake volume) aboveground inflows. Based on the isotopic signatures of these lakes and additional background information such as the mean depth we could identify lakes in which groundwater is an important component of the water balance. The results will be used as a basis of intense research on groundwater-driven lake eutrophication.

  7. Fast simulation of x-ray projections of spline-based surfaces using an append buffer

    NASA Astrophysics Data System (ADS)

    Maier, Andreas; Hofmann, Hannes G.; Schwemmer, Chris; Hornegger, Joachim; Keil, Andreas; Fahrig, Rebecca

    2012-10-01

    Many scientists in the field of x-ray imaging rely on the simulation of x-ray images. As the phantom models become more and more realistic, their projection requires high computational effort. Since x-ray images are based on transmission, many standard graphics acceleration algorithms cannot be applied to this task. However, if adapted properly, the simulation speed can be increased dramatically using state-of-the-art graphics hardware. A custom graphics pipeline that simulates transmission projections for tomographic reconstruction was implemented based on moving spline surface models. All steps from tessellation of the splines, projection onto the detector and drawing are implemented in OpenCL. We introduced a special append buffer for increased performance in order to store the intersections with the scene for every ray. Intersections are then sorted and resolved to materials. Lastly, an absorption model is evaluated to yield an absorption value for each projection pixel. Projection of a moving spline structure is fast and accurate. Projections of size 640 × 480 can be generated within 254 ms. Reconstructions using the projections show errors below 1 HU with a sharp reconstruction kernel. Traditional GPU-based acceleration schemes are not suitable for our reconstruction task. Even in the absence of noise, they result in errors up to 9 HU on average, although projection images appear to be correct under visual examination. Projections generated with our new method are suitable for the validation of novel CT reconstruction algorithms. For complex simulations, such as the evaluation of motion-compensated reconstruction algorithms, this kind of x-ray simulation will reduce the computation time dramatically.

  8. SU-E-T-806: Very Fast GPU-Based IMPT Dose Computation

    SciTech Connect

    Sullivan, A; Brand, M

    2015-06-15

    Purpose: Designing particle therapy treatment plans is a dosimetrist-in-the-loop optimization wherein the conflicting constraints of achieving a desired tumor dose distribution must be balanced against the need to minimize the dose to nearby OARs. IMPT introduces an additional, inner, numerical optimization step in which the dosimetrist’s current set of constraints are used to determine the weighting of beam spots. Very fast dose calculations are needed to enable the dosimetrist to perform many iterations of the outer optimization in a commercially reasonable time. Methods: We have developed a GPU-based convolution-type dose computation algorithm that more accurately handles heterogeneities than earlier algorithms by redistributing energy from dose computed in a water volume. The depth dependence of the beam size is handled by pre-processing Bragg curves using a weighted superposition of Gaussian bases. Additionally, scattering, the orientation of treatment ports, and the non-parallel propagation of beams are handled by large, but sparse, energy-redistribution matrices that implement affine transforms. Results: We tested our algorithm using a brain tumor dataset with 1 mm voxels and a single treatment port from the patient’s anterior through the sinuses. The resulting dose volume is 100 × 100 × 230 mm with 66,200 beam spots on a 3 × 3 × 2 mm grid. The dose computation takes <1 msec on a GeForce GTX Titan GPU with the Gamma passing rate for 2mm/2% criterion of 99.1% compared to dose calculated by an alternative dose algorithm based on pencil beams. We will present comparisons to Monte Carlo dose calculations. Conclusion: Our high-speed dose computation method enables the IMPT spot weights to be optimized in <1 second, resulting in a nearly instantaneous response to user changes to dose constraints. This permits the creation of higher quality plans by allowing the dosimetrist to evaluate more alternatives in a short period of time.

  9. RELATIONSHIP BETWEEN THE KINETIC POWER AND BOLOMETRIC LUMINOSITY OF JETS: LIMITATION FROM BLACK HOLE X-RAY BINARIES, ACTIVE GALACTIC NUCLEI, AND GAMMA-RAY BURSTS

    SciTech Connect

    Ma, Renyi; Hou, Shujin; Xie, Fu-Guo E-mail: fgxie@shao.ac.cn

    2014-01-01

    The correlation between the kinetic power P {sub jet} and intrinsic bolometric luminosity L {sub jet} of jets may reveal the underlying jet physics in various black hole systems. Based on the recent work by Nemmen et al., we re-investigate this correlation with additional sources of black hole X-ray binaries (BXBs) in hard/quiescent states and low-luminosity active galactic nuclei (LLAGNs). The new sample includes 29 sets of data from 7 BXBs and 20 LLAGNs, with P {sub jet} and L {sub jet} being derived from spectral modeling of the quasi-simultaneous multi-band spectra under the accretion jet scenario. Compared to previous works, the range of luminosity is now enlarged to more than 20 decades, i.e., from ∼10{sup 31} erg s{sup –1} to ∼10{sup 52} erg s{sup –1}, which allows for better constraining of the correlation. One notable result is that the jets in BXBs and LLAGNs almost follow the same P {sub jet}-L {sub jet} correlation that was obtained from blazars and gamma-ray bursts. The slope indices we derived are 1.03 ± 0.01 for the whole sample, 0.85 ± 0.06 for the BXB subsample, 0.71 ± 0.11 for the LLAGN subsample, and 1.01 ± 0.05 for the LLAGN-blazar subsample, respectively. The correlation index around unit implies the independence of jet efficiency on the luminosity or kinetic power. Our results may further support the hypothesis that similar physical processes exist in the jets of various black hole systems.

  10. A Low-Cost and Fast Real-Time PCR System Based on Capillary Convection.

    PubMed

    Qiu, Xianbo; Ge, Shengxiang; Gao, Pengfei; Li, Ke; Yang, Yongliang; Zhang, Shiyin; Ye, Xiangzhong; Xia, Ningshao; Qian, Shizhi

    2017-02-01

    A low-cost and fast real-time PCR system in a pseudo-isothermal manner with disposable capillary tubes based on thermal convection for point-of-care diagnostics is developed and tested. Once stable temperature gradient along the capillary tube has been established, a continuous circulatory flow or thermal convection inside the capillary tube will repeatedly transport PCR reagents through temperature zones associated with the DNA denaturing, annealing, and extension stages of the reaction. To establish stable temperature gradient along the capillary tube, a dual-temperature heating strategy with top and bottom heaters is adopted here. A thermal waveguide is adopted for precise maintenance of the temperature of the top heater. An optimized optical network is developed for monitoring up to eight amplification units for real-time fluorescence detection. The system performance was demonstrated with repeatable detection of influenza A (H1N1) virus nucleic acid targets with a limit of detection of 1.0 TCID50/mL within 30 min.

  11. A Fast Framework for Abrupt Change Detection Based on Binary Search Trees and Kolmogorov Statistic

    PubMed Central

    Qi, Jin-Peng; Qi, Jie; Zhang, Qing

    2016-01-01

    Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper, we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD, are constructed by multilevel Haar Wavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the proposed BSTKS can detect abrupt change more quickly and efficiently than KS, t-statistic (t), and Singular-Spectrum Analyses (SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric time series signals. PMID:27413364

  12. Support vector machine based classification of fast Fourier transform spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Lazarevic, Aleksandar; Pokrajac, Dragoljub; Marcano, Aristides; Melikechi, Noureddine

    2009-02-01

    Fast Fourier transform spectroscopy has proved to be a powerful method for study of the secondary structure of proteins since peak positions and their relative amplitude are affected by the number of hydrogen bridges that sustain this secondary structure. However, to our best knowledge, the method has not been used yet for identification of proteins within a complex matrix like a blood sample. The principal reason is the apparent similarity of protein infrared spectra with actual differences usually masked by the solvent contribution and other interactions. In this paper, we propose a novel machine learning based method that uses protein spectra for classification and identification of such proteins within a given sample. The proposed method uses principal component analysis (PCA) to identify most important linear combinations of original spectral components and then employs support vector machine (SVM) classification model applied on such identified combinations to categorize proteins into one of given groups. Our experiments have been performed on the set of four different proteins, namely: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor 2 and Osteopontin. Our proposed method of applying principal component analysis along with support vector machines exhibits excellent classification accuracy when identifying proteins using their infrared spectra.

  13. On Using a Fast Multipole Method-based Poisson Solver in anApproximate Projection Method

    SciTech Connect

    Williams, Sarah A.; Almgren, Ann S.; Puckett, E. Gerry

    2006-03-28

    Approximate projection methods are useful computational tools for solving the equations of time-dependent incompressible flow.Inthis report we will present a new discretization of the approximate projection in an approximate projection method. The discretizations of divergence and gradient will be identical to those in existing approximate projection methodology using cell-centered values of pressure; however, we will replace inversion of the five-point cell-centered discretization of the Laplacian operator by a Fast Multipole Method-based Poisson Solver (FMM-PS).We will show that the FMM-PS solver can be an accurate and robust component of an approximation projection method for constant density, inviscid, incompressible flow problems. Computational examples exhibiting second-order accuracy for smooth problems will be shown. The FMM-PS solver will be found to be more robust than inversion of the standard five-point cell-centered discretization of the Laplacian for certain time-dependent problems that challenge the robustness of the approximate projection methodology.

  14. Error-Based Observer of a Charge Couple Device Tracking Loop for Fast Steering Mirror

    PubMed Central

    Tang, Tao; Deng, Chao; Yang, Tao; Zhong, Daijun; Ren, Ge; Huang, Yongmei; Fu, Chengyu

    2017-01-01

    The charge couple device (CCD) tracking loop of a fast steering mirror (FSM) is usually used to stabilize line of sight (LOS). High closed-loop bandwidth facilitates good performance. However, low-rate sample and time delay of the CCD greatly limit the high control bandwidth. This paper proposes an error-based observer (EBO) to improve the low-frequency performance of the CCD tracking system. The basic idea is by combining LOS error from the CCD and the controller output to produce the high-gain observer, forwarding into the originally closed-loop control system. This proposed EBO can improve the system both in target tracking and disturbance suppression due to LOS error from the CCD’s sensing of the two signals. From a practical engineering view, the closed-loop stability and robustness of the EBO system are investigated on the condition of gain margin and phase margin of the open-loop transfer function. Two simulations of CCD experiments are provided to verify the benefits of the proposed algorithm. PMID:28264504

  15. Fast and precise dense grid size measurement method based on coaxial dual optical imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Jiping; Peng, Xiang; Yu, Jiping; Hao, Jian; Diao, Yan; Song, Tao; Li, Ameng; Lu, Xiaowei

    2015-10-01

    Test sieves with dense grid structure are widely used in many fields, accurate gird size calibration is rather critical for success of grading analysis and test sieving. But traditional calibration methods suffer from the disadvantages of low measurement efficiency and shortage of sampling number of grids which could lead to quality judgment risk. Here, a fast and precise test sieve inspection method is presented. Firstly, a coaxial imaging system with low and high optical magnification probe is designed to capture the grid images of the test sieve. Then, a scaling ratio between low and high magnification probes can be obtained by the corresponding grids in captured images. With this, all grid dimensions in low magnification image can be obtained by measuring few corresponding grids in high magnification image with high accuracy. Finally, by scanning the stage of the tri-axis platform of the measuring apparatus, whole surface of the test sieve can be quickly inspected. Experiment results show that the proposed method can measure the test sieves with higher efficiency compare to traditional methods, which can measure 0.15 million grids (gird size 0.1mm) within only 60 seconds, and it can measure grid size range from 20μm to 5mm precisely. In a word, the presented method can calibrate the grid size of test sieve automatically with high efficiency and accuracy. By which, surface evaluation based on statistical method can be effectively implemented, and the quality judgment will be more reasonable.

  16. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    PubMed

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-03-09

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.

  17. Metadyn View: Fast web-based viewer of free energy surfaces calculated by metadynamics

    NASA Astrophysics Data System (ADS)

    Hošek, Petr; Spiwok, Vojtěch

    2016-01-01

    Metadynamics is a highly successful enhanced sampling technique for simulation of molecular processes and prediction of their free energy surfaces. An in-depth analysis of data obtained by this method is as important as the simulation itself. Although there are several tools to compute free energy surfaces from metadynamics data, they usually lack user friendliness and a build-in visualization part. Here we introduce Metadyn View as a fast and user friendly viewer of bias potential/free energy surfaces calculated by metadynamics in Plumed package. It is based on modern web technologies including HTML5, JavaScript and Cascade Style Sheets (CSS). It can be used by visiting the web site and uploading a HILLS file. It calculates the bias potential/free energy surface on the client-side, so it can run online or offline without necessity to install additional web engines. Moreover, it includes tools for measurement of free energies and free energy differences and data/image export.

  18. Fast-dissolving tablets of glyburide based on ternary solid dispersions with PEG 6000 and surfactants.

    PubMed

    Cirri, Marzia; Maestrelli, Francesca; Corti, Giovanna; Mura, Paola; Valleri, Maurizio

    2007-04-01

    Marketed glyburide tablets present unsatisfying dissolution profiles that give rise to variable bioavailability. With the purpose of developing a fast-dissolving tablet formulation able to assure a complete drug dissolution, we investigated the effect of the addition to a reference tablet formulation of different types (anionic and nonionic) and amounts of hydrophilic surfactants, as well as the use of a new technique, based on ternary solid dispersions of the drug with an hydrophilic carrier (polyethylene glycol [PEG] 6000) and a surfactant. Tablets were prepared by direct compression or previous wet granulation of suitable formulations containing the drug with each surfactant or drug:PEG:surfactant ternary dispersions at different PEG:surfactant w/w ratios. The presence of surfactants significantly increased (p<0.01) the drug dissolution rate, but complete drug dissolution was never achieved. On the contrary, in all cases tablets containing ternary solid dispersions achieved 100% dissolved drug within 60 min. The best product was the 10:80:10 w/w ternary dispersion with PEG 6000 and sodium laurylsulphate, showing a dissolution efficiency 5.5-fold greater than the reference tablet formulation and 100% drug dissolution after only 20 min.

  19. A Fast Framework for Abrupt Change Detection Based on Binary Search Trees and Kolmogorov Statistic.

    PubMed

    Qi, Jin-Peng; Qi, Jie; Zhang, Qing

    2016-01-01

    Change-Point (CP) detection has attracted considerable attention in the fields of data mining and statistics; it is very meaningful to discuss how to quickly and efficiently detect abrupt change from large-scale bioelectric signals. Currently, most of the existing methods, like Kolmogorov-Smirnov (KS) statistic and so forth, are time-consuming, especially for large-scale datasets. In this paper, we propose a fast framework for abrupt change detection based on binary search trees (BSTs) and a modified KS statistic, named BSTKS (binary search trees and Kolmogorov statistic). In this method, first, two binary search trees, termed as BSTcA and BSTcD, are constructed by multilevel Haar Wavelet Transform (HWT); second, three search criteria are introduced in terms of the statistic and variance fluctuations in the diagnosed time series; last, an optimal search path is detected from the root to leaf nodes of two BSTs. The studies on both the synthetic time series samples and the real electroencephalograph (EEG) recordings indicate that the proposed BSTKS can detect abrupt change more quickly and efficiently than KS, t-statistic (t), and Singular-Spectrum Analyses (SSA) methods, with the shortest computation time, the highest hit rate, the smallest error, and the highest accuracy out of four methods. This study suggests that the proposed BSTKS is very helpful for useful information inspection on all kinds of bioelectric time series signals.

  20. A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting

    NASA Astrophysics Data System (ADS)

    Jan, Chia-Ming; Lin, Ying-Chieh

    2016-03-01

    This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.

  1. Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene

    NASA Astrophysics Data System (ADS)

    Jessop, David S.; Sol, Christian W. O.; Xiao, Long; Kindness, Stephen J.; Braeuninger-Weimer, Philipp; Lin, Hungyen; Griffiths, Jonathan P.; Ren, Yuan; Kamboj, Varun S.; Hofmann, Stephan; Zeitler, J. Axel; Beere, Harvey E.; Ritchie, David A.; Degl'Innocenti, Riccardo

    2016-02-01

    The growing interest in terahertz (THz) technologies in recent years has seen a wide range of demonstrated applications, spanning from security screening, non-destructive testing, gas sensing, to biomedical imaging and communication. Communication with THz radiation offers the advantage of much higher bandwidths than currently available, in an unallocated spectrum. For this to be realized, optoelectronic components capable of manipulating THz radiation at high speeds and high signal-to-noise ratios must be developed. In this work we demonstrate a room temperature frequency dependent optoelectronic amplitude modulator working at around 2 THz, which incorporates graphene as the tuning medium. The architecture of the modulator is an array of plasmonic dipole antennas surrounded by graphene. By electrostatically doping the graphene via a back gate electrode, the reflection characteristics of the modulator are modified. The modulator is electrically characterized to determine the graphene conductivity and optically characterization, by THz time-domain spectroscopy and a single-mode 2 THz quantum cascade laser, to determine the optical modulation depth and cut-off frequency. A maximum optical modulation depth of ~ 30% is estimated and is found to be most (least) sensitive when the electrical modulation is centered at the point of maximum (minimum) differential resistivity of the graphene. A 3 dB cut-off frequency > 5 MHz, limited only by the area of graphene on the device, is reported. The results agree well with theoretical calculations and numerical simulations, and demonstrate the first steps towards ultra-fast, graphene based THz optoelectronic devices.

  2. Fast and Green - CO2 Based Extraction, Isolation, and Quantification of Phenolic Styrax Constituents.

    PubMed

    Scheuba, Johanna; Wronski, Valerie-Katharina; Rollinger, Judith M; Grienke, Ulrike

    2017-08-01

    In this study the first supercritical fluid based protocol for the extraction, analysis, and isolation of six polar compounds, i.e., o-vanillin (1), styracin (2), vanillin (3), trans-cinnamic acid (4), vanillic acid (5), and shikimic acid (6), was developed. First, eight styrax resin products (R1-R8) obtained from various Liquidambar tree species, which are known to contain compounds 2-6, were extracted with a 1 : 1 mixture of supercritical CO2 and EtOH. Within 4 minutes, the compounds were successfully baseline separated on an Acquity UPC(2) BEH 2-EP (3.0 × 100 mm, 1.7 µm) column using a mobile phase of supercritical CO2 and MeOH with 0.1 % phosphoric acid. The compounds were quantified and the method was validated according to current ICH guidelines. Scaling up to preparative supercritical fluid chromatography using a Viridis BEH 2-EP (10 × 250 mm, 5 µm) column allowed for a fast separation and isolation of the selected constituents 2 and 4 from R6 within 7 minutes. This supercritical fluid protocol is easily adaptable to compounds of similar polarity. The increase in speed and its environmental friendliness underline its superiority over conventional set-ups. Georg Thieme Verlag KG Stuttgart · New York.

  3. A Generalized Grid-Based Fast Multipole Method for Integrating Helmholtz Kernels.

    PubMed

    Parkkinen, Pauli; Losilla, Sergio A; Solala, Eelis; Toivanen, Elias A; Xu, Wen-Hua; Sundholm, Dage

    2017-02-14

    A grid-based fast multipole method (GB-FMM) for optimizing three-dimensional (3D) numerical molecular orbitals in the bubbles and cube double basis has been developed and implemented. The present GB-FMM method is a generalization of our recently published GB-FMM approach for numerically calculating electrostatic potentials and two-electron interaction energies. The orbital optimization is performed by integrating the Helmholtz kernel in the double basis. The steep part of the functions in the vicinity of the nuclei is represented by one-center bubbles functions, whereas the remaining cube part is expanded on an equidistant 3D grid. The integration of the bubbles part is treated by using one-center expansions of the Helmholtz kernel in spherical harmonics multiplied with modified spherical Bessel functions of the first and second kind, analogously to the numerical inward and outward integration approach for calculating two-electron interaction potentials in atomic structure calculations. The expressions and algorithms for massively parallel calculations on general purpose graphics processing units (GPGPU) are described. The accuracy and the correctness of the implementation has been checked by performing Hartree-Fock self-consistent-field calculations (HF-SCF) on H2, H2O, and CO. Our calculations show that an accuracy of 10(-4) to 10(-7) Eh can be reached in HF-SCF calculations on general molecules.

  4. High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation.

    PubMed

    Zhu, Yunhui; Lee, Myungjun; Neifeld, Mark A; Gauthier, Daniel J

    2011-01-17

    We demonstrate a 5-GHz-broadband tunable slow-light device based on stimulated Brillouin scattering in a standard highly-nonlinear optical fiber pumped by a noise-current-modulated laser beam. The noisemodulation waveform uses an optimized pseudo-random distribution of the laser drive voltage to obtain an optimal flat-topped gain profile, which minimizes the pulse distortion and maximizes pulse delay for a given pump power. In comparison with a previous slow-modulation method, eye-diagram and signal-to-noise ratio (SNR) analysis show that this broadband slow-light technique significantly increases the fidelity of a delayed data sequence, while maintaining the delay performance. A fractional delay of 0.81 with a SNR of 5.2 is achieved at the pump power of 350 mW using a 2-km-long highly nonlinear fiber with the fast noise-modulation method, demonstrating a 50% increase in eye-opening and a 36% increase in SNR in the comparison.

  5. A fast SPAD-based small animal imager for early-photon diffuse optical tomography.

    PubMed

    Mu, Ying; Niedre, Mark

    2014-01-01

    Photon scatter is the dominant light transport process in biological tissue and is well understood to degrade imaging performance in near-infrared diffuse optical tomography. Measurement of photons arriving at early times following a short laser pulse is considered to be an effective method to improve this limitation, i.e. by systematically selecting photons that have experienced fewer scattering events. Previously, we tested the performance of single photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media and showed that it outperformed photo-multiplier tube (PMT) systems in similar configurations, principally due to its faster temporal response. In this paper, we extended this work and developed a fast SPAD-based time-resolved diffuse optical tomography system. As a first validation of the instrument, we scanned an optical phantom with multiple absorbing inclusions and measured full time-resolved data at 3240 scan points per axial slice. We performed image reconstruction with very early-arriving photon data and showed significant improvements compared to time-integrated data. Extension of this work to mice in vivo and measurement of time-resolved fluorescence data is the subject of ongoing research.

  6. 128-point memory-based architecture for a fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Chen, Chuen-Yau; Huang, Chun-Kai

    2013-02-01

    In this article, we take advantage of the merits of a one-sixteenth circle storage technique, radix-2 and radix-2/4/8 algorithms to implement a 128-point memory-based architecture for a fast Fourier transform processor. The one-sixteenth circle storage technique results in reducing 50% of the size of a look-up table (LUT) for storing the twiddle factors. The combination of radix-2 and radix-2/4/8 algorithms results in reducing the number of twiddle factors and allowing the processor to possess a regular architecture which is suitable for hardware implementation. This design has been synthesised by Altera Quartus II 6.0. The experimental results indicate that this design needs only 65,169 ALUTs for LUT. The operating frequency is 59.76 MHz. The signal-to-noise ratios for the real and imaginary parts of the output signal are 67.72 dB and 68.55 dB, respectively.

  7. EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm.

    PubMed

    Robinson, Neethu; Vinod, A P; Ang, Kai Keng; Tee, Keng Peng; Guan, Cuntai T

    2013-08-01

    A brain-computer interface (BCI) acquires brain signals, extracts informative features, and translates these features to commands to control an external device. This paper investigates the application of a noninvasive electroencephalography (EEG)-based BCI to identify brain signal features in regard to actual hand movement speed. This provides a more refined control for a BCI system in terms of movement parameters. An experiment was performed to collect EEG data from subjects while they performed right-hand movement at two different speeds, namely fast and slow, in four different directions. The informative features from the data were obtained using the Wavelet-Common Spatial Pattern (W-CSP) algorithm that provided high-temporal-spatial-spectral resolution. The applicability of these features to classify the two speeds and to reconstruct the speed profile was studied. The results for classifying speed across seven subjects yielded a mean accuracy of 83.71% using a Fisher Linear Discriminant (FLD) classifier. The speed components were reconstructed using multiple linear regression and significant correlation of 0.52 (Pearson's linear correlation coefficient) was obtained between recorded and reconstructed velocities on an average. The spatial patterns of the W-CSP features obtained showed activations in parietal and motor areas of the brain. The results achieved promises to provide a more refined control in BCI by including control of movement speed.

  8. A Fast Method to Predict Distributions of Binary Black Hole Masses Based on Gaussian Process Regression

    NASA Astrophysics Data System (ADS)

    Yun, Yuqi; Zevin, Michael; Sampson, Laura; Kalogera, Vassiliki

    2017-01-01

    With more observations from LIGO in the upcoming years, we will be able to construct an observed mass distribution of black holes to compare with binary evolution simulations. This will allow us to investigate the physics of binary evolution such as the effects of common envelope efficiency and wind strength, or the properties of the population such as the initial mass function.However, binary evolution codes become computationally expensive when running large populations of binaries over a multi-dimensional grid of input parameters, and may simulate accurately only for a limited combination of input parameter values. Therefore we developed a fast machine-learning method that utilizes Gaussian Mixture Model (GMM) and Gaussian Process (GP) regression, which together can predict distributions over the entire parameter space based on a limited number of simulated models. Furthermore, Gaussian Process regression naturally provides interpolation errors in addition to interpolation means, which could provide a means of targeting the most uncertain regions of parameter space for running further simulations.We also present a case study on applying this new method to predicting chirp mass distributions for binary black hole systems (BBHs) in Milky-way like galaxies of different metallicities.

  9. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning of thick tissues

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Chung; Chang, Chia-Yuan; Yen, Wei-Chung; Chen, Shean-Jen

    2012-10-01

    Conventional multiphoton microscopy employs beam scanning; however, in this study a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. The microscope integrates a 10 kHz repetition rate ultrafast amplifier featuring strong instantaneous peak power (maximum 400 μJ/pulse at 90 fs pulse width) with a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled device camera. This configuration can produce multiphoton excited images with an excitation area larger than 200 × 100 μm2 at a frame rate greater than 100 Hz. Brownian motions of fluorescent microbeads as small as 0.5 μm have been instantaneously observed with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Moreover, we combine the widefield multiphoton microscopy with structure illuminated technique named HiLo to reject the background scattering noise to get better quality for bioimaging.

  10. Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response.

    PubMed

    Lu, Jue; Do, Inhwan; Drzal, Lawrence T; Worden, Robert M; Lee, Ilsoon

    2008-09-23

    We report the novel fabrication of a highly sensitive, selective, fast responding, and affordable amperometric glucose biosensor using exfoliated graphite nanoplatelets (xGnPs) decorated with Pt and Pd nanoparticles. Nafion was used to solubilize metal-decorated graphite nanoplatelets, and a simple cast method with high content organic solvent (85 wt %) was used to prepare the biosensors. The addition of precious metal nanoparticles such as platinum (Pt) and palladium (Pd) to xGnP increased the electroactive area of the electrode and substantially decreased the overpotential in the detection of hydrogen peroxide. The Pt-xGnP glucose biosensor had a sensitivity of 61.5+/-0.6 microA/(mM x cm(2)) and gave a linear response up to 20 mM. The response time and detection limit (S/N=3) were determined to be 2 s and 1 microM, respectively. Therefore, this novel glucose biosensor based on the Pt nanoparticle coated xGnP is among the best reported to date in both sensing performance and production cost. In addition, the effects of metal nanoparticle loading and the particle size on the biosensor performance were systematically investigated.

  11. Fast-response humidity-sensing films based on methylene blue aggregates formed on nanoporous semiconductor films

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryota; Katoh, Ryuzi

    2016-05-01

    We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.

  12. 3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Meng, X.; Guo, L.; Liu, G.

    2011-12-01

    In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and

  13. Evaluation and application of a fast module in a PLC based interlock and control system

    NASA Astrophysics Data System (ADS)

    Zaera-Sanz, M.

    2009-08-01

    The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of μseconds. Siemens has introduced a ``so called'' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.

  14. How Fast Is Fast?

    ERIC Educational Resources Information Center

    Korn, Abe

    1994-01-01

    Presents an activity that enables students to answer for themselves the question of how fast a body must travel before the nonrelativistic expression must be replaced with the correct relativistic expression by deciding on the accuracy required in describing the kinetic energy of a body. (ZWH)

  15. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination.

  16. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-01-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  17. Fast valve based on double-layer eddy-current repulsion for disruption mitigation in Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhuang, H D; Zhang, X D

    2015-05-01

    A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.

  18. Fast GC-FID based metabolic fingerprinting of Japanese green tea leaf for its quality ranking prediction.

    PubMed

    Jumtee, Kanokwan; Bamba, Takeshi; Fukusaki, Eiichiro

    2009-07-01

    There is a need of reliable, rapid, and cost-effective analysis technique to evaluate food and crop compositions, which are important to improve their qualities and quantities. Prior to fast GC-FID development, metabolic fingerprints, and predictive models obtained from a conventional GC-FID were evaluated by comparison to those derived from GC-TOF-MS. A similar chromatographic pattern with higher sensitivity of polyphenol compounds including epicatechin gallate (ECg) and epigallocatechin gallate (EGCg) had been achieved by using conventional GC-FID. Fast gas chromatograph coupled with flame ionization detector (GC-FID) has been carried out with 10 m x 0.18 mm id x 0.20 microm df capillary column. The analysis time per sample was reduced to less than 14 min compared to those of a conventional GC-FID (38 min) and GC-TOF-MS (28 min). The fast GC-FID also offered reliable retention time reproducibility without significant loss of peak resolution. Projections to latent structures by means of partial least squares (PLS) with orthogonal signal correction filtering (OSC) was applied to the fast GC-FID data. The predictive model showed good model fit and predictability with RMSEP of 3.464, suggesting that fast GC-FID based metabolic fingerprinting could be an alternative method for the prediction of Japanese green tea quality.

  19. A fast color image enhancement algorithm based on Max Intensity Channel.

    PubMed

    Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui

    2014-03-30

    In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details.

  20. Fast in-situ tool inspection based on inverse fringe projection and compact sensor heads

    NASA Astrophysics Data System (ADS)

    Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard

    2016-11-01

    Inspection of machine elements is an important task in production processes in order to ensure the quality of produced parts and to gather feedback for the continuous improvement process. A new measuring system is presented, which is capable of performing the inspection of critical tool geometries, such as gearing elements, inside the forming machine. To meet the constraints on sensor head size and inspection time imposed by the limited space inside the machine and the cycle time of the process, the measuring device employs a combination of endoscopy techniques with the fringe projection principle. Compact gradient index lenses enable a compact design of the sensor head, which is connected to a CMOS camera and a flexible micro-mirror based projector via flexible fiber bundles. Using common fringe projection patterns, the system achieves measuring times of less than five seconds. To further reduce the time required for inspection, the generation of inverse fringe projection patterns has been implemented for the system. Inverse fringe projection speeds up the inspection process by employing object-adapted patterns, which enable the detection of geometry deviations in a single image. Two different approaches to generate object adapted patterns are presented. The first approach uses a reference measurement of a manufactured tool master to generate the inverse pattern. The second approach is based on a virtual master geometry in the form of a CAD file and a ray-tracing model of the measuring system. Virtual modeling of the measuring device and inspection setup allows for geometric tolerancing for free-form surfaces by the tool designer in the CAD-file. A new approach is presented, which uses virtual tolerance specifications and additional simulation steps to enable fast checking of metric tolerances. Following the description of the pattern generation process, the image processing steps required for inspection are demonstrated on captures of gearing geometries.

  1. A fast method based on NESTA to accurately reconstruct CT image from highly undersampled projection measurements.

    PubMed

    He, Zhijie; Qiao, Quanbang; Li, Jun; Huang, Meiping; Zhu, Shouping; Huang, Liyu

    2016-11-22

    The CT image reconstruction algorithm based compressed sensing (CS) can be formulated as an optimization problem that minimizes the total-variation (TV) term constrained by the data fidelity and image nonnegativity. There are a lot of solutions to this problem, but the computational efficiency and reconstructed image quality of these methods still need to be improved. To investigate a faster and more accurate mathematical algorithm to settle TV term minimization problem of CT image reconstruction. A Nesterov's algorithm (NESTA) is a fast and accurate algorithm for solving TV minimization problem, which can be ascribed to the use of most notably Nesterov's smoothing technique and a subtle averaging of sequences of iterates, which has been shown to improve the convergence properties of standard gradient-descent algorithms. In order to demonstrate the superior performance of NESTA on computational efficiency and image quality, a comparison with Simultaneous Algebraic Reconstruction Technique-TV (SART-TV) and Split-Bregman (SpBr) algorithm is made using a digital phantom study and two physical phantom studies from highly undersampled projection measurements. With only 25% of conventional full-scan dose and, NESTA method reduces the average CT number error from 51.76HU to 9.98HU on Shepp-Logan phantom and reduces the average CT number error from 50.13HU to 0.32HU on Catphan 600 phantom. On an anthropomorphic head phantom, the average CT number error is reduced from 84.21HU to 1.01HU in the central uniform area. To the best of our knowledge this is the first work that apply the NESTA method into CT reconstruction based CS. Research shows that this method is of great potential, further studies and optimization are necessary.

  2. CFMDS: CUDA-based fast multidimensional scaling for genome-scale data.

    PubMed

    Park, Sungin; Shin, Soo-Yong; Hwang, Kyu-Baek

    2012-01-01

    Multidimensional scaling (MDS) is a widely used approach to dimensionality reduction. It has been applied to feature selection and visualization in various areas. Among diverse MDS methods, the classical MDS is a simple and theoretically sound solution for projecting data objects onto a low dimensional space while preserving the original distances among them as much as possible. However, it is not trivial to apply it to genome-scale data (e.g., microarray gene expression profiles) on regular desktop computers, because of its high computational complexity. We implemented a highly-efficient software application, called CFMDS (CUDA-based Fast MultiDimensional Scaling), which produces an approximate solution of the classical MDS based on CUDA (compute unified device architecture) and the divide-and-conquer principle. CUDA is a parallel computing architecture exploiting the power of the GPU (graphics processing unit). The principle of divide-and-conquer was adopted for circumventing the small memory problem of usual graphics cards. Our application software has been tested on various benchmark datasets including microarrays and compared with the classical MDS algorithms implemented using C# and MATLAB. In our experiments, CFMDS was more than a hundred times faster for large data than such general solutions. Regarding the quality of dimensionality reduction, our approximate solutions were as good as those from the general solutions, as the Pearson's correlation coefficients between them were larger than 0.9. CFMDS is an expeditious solution for the data dimensionality reduction problem. It is especially useful for efficient processing of genome-scale data consisting of several thousands of objects in several minutes.

  3. Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal.

    PubMed

    Chen, Jun Xiang; Pan, Kuan Lun; Yu, Sheng Jen; Yen, Shaw Yi; Chang, Moo Been

    2017-07-26

    In this study, the concept of fast SCR for NO reduction with NH3 as reducing agent is realized via the combination of nonthermal plasma (NTP) with Mn-based catalyst. Experimental results indicate that 10% wt. Mn-Ce-Ni/TiO2 possesses better physical and chemical properties of surface, resulting in higher NO removal efficiency if compared with 10% wt. Mn-Ce/TiO2 and 10% wt. Mn-Ce-Cu/TiO2. Mn-Ce-Ni/TiO2 of 10% wt. achieves 100% NOx conversion at 150 °C, while 10% wt. Mn-Ce/TiO2 and 10% wt. Mn-Ce-Cu/TiO2 need to be operated at a temperature above 200 °C for 100% NOx conversion. However, NO conversion achieved with 10% wt. Mn-Ce-Ni/TiO2 is significantly reduced as H2O(g) and SO2 are introduced into the SCR system simultaneously. Further, two-stage system (SCR with DBD) is compared with the catalyst-alone for NOx conversion and N2 selectivity. The results indicate that 100% NOx conversion can be achieved with two-stage system at 100 °C, while N2 selectivity reaches 80%. Importantly, NOx conversion achieved with two-stage system could maintain >95% in the presence of C2H4, CO, SO2, and H2O(g), indicating that two-stage system has better tolerance for complicated gas composition. Overall, this study demonstrates that combining NTP with Mn-based catalyst is effective in reducing NOx emission at a low temperature (≤200 °C) and has good potential for industrial application.

  4. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    PubMed

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A combinatorial chemistry method for fast screening of perovskite-based NO oxidation catalyst.

    PubMed

    Yoon, Dal Young; Lim, Eunho; Kim, Young Jin; Cho, Byong K; Nam, In-Sik; Choung, Jin Woo; Yoo, Seungbeom

    2014-11-10

    A fast parallel screening method based on combinatorial chemistry (combichem) has been developed and applied in the screening tests of perovskite-based oxide (PBO) catalysts for NO oxidation to hit a promising PBO formulation for the oxidation of NO to NO2. This new method involves three consecutive steps: oxidation of NO to NO2 over a PBO catalyst, adsorption of NOx onto the PBO and K2O/Al2O3, and colorimetric assay of the NOx adsorbed thereon. The combichem experimental data have been used for determining the oxidation activity of NO over PBO catalysts as well as three critical parameters, such as the adsorption efficiency of K2O/Al2O3 for NO2 (α) and NO (β), and the time-average fraction of NO included in the NOx feed stream (ξ). The results demonstrated that the amounts of NO2 produced over PBO catalysts by the combichem method under transient conditions correlate well with those from a conventional packed-bed reactor under steady-state conditions. Among the PBO formulations examined, La0.5Ag0.5MnO3 has been identified as the best chemical formulation for oxidation of NO to NO2 by the present combichem method and also confirmed by the conventional packed-bed reactor tests. The superior efficiency of the combichem method for high-throughput catalyst screening test validated in this study is particularly suitable for saving the time and resources required in developing a new formulation of PBO catalyst whose chemical composition may have an enormous number of possible variations.

  6. A fast video clip retrieval algorithm based on VA-file

    NASA Astrophysics Data System (ADS)

    Liu, Fangjie; Dong, DaoGuo; Miao, Xiaoping; Xue, XiangYang

    2003-12-01

    Video clip retrieval is a significant research topic of content-base multimedia retrieval. Generally, video clip retrieval process is carried out as following: (1) segment a video clip into shots; (2) extract a key frame from each shot as its representative; (3) denote every key frame as a feature vector, and thus a video clip can be denoted as a sequence of feature vectors; (4) retrieve match clip by computing the similarity between the feature vector sequence of a query clip and the feature vector sequence of any clip in database. To carry out fast video clip retrieval the index structure is indispensable. According to our literature survey, S2-tree [17] is the one and only index structure having been applied to support video clip retrieval, which combines the characteristics of both X-tree and Suffix-tree and converts the series vectors retrieval to string matching. But S2-tree structure will not be applicable if the feature vector's dimension is beyond 20, because the X-tree itself cannot be used to sustain similarity query effectively when dimensions of vectors are beyond 20. Furthermore, it cannot support flexible similarity definitions between two vector sequences. VA-file represents the vector approximately by compressing the original data and it maintains the original order when representing vectors in a sequence, which is a very valuable merit for vector sequences matching. In this paper, a new video clip similarity model as well as video clip retrieval algorithm based on VA-File are proposed. The experiments show that our algorithm incredibly shortened the retrieval time compared to sequential scanning without index structure.

  7. Determinants of Fast Food Consumption among Iranian High School Students Based on Planned Behavior Theory

    PubMed Central

    Sharifirad, Gholamreza; Yarmohammadi, Parastoo; Azadbakht, Leila; Morowatisharifabad, Mohammad Ali; Hassanzadeh, Akbar

    2013-01-01

    Objective. This study was conducted to identify some factors (beliefs and norms) which are related to fast food consumption among high school students in Isfahan, Iran. We used the framework of the theory planned behavior (TPB) to predict this behavior. Subjects & Methods. Cross-sectional data were available from high school students (n = 521) who were recruited by cluster randomized sampling. All of the students completed a questionnaire assessing variables of standard TPB model including attitude, subjective norms, perceived behavior control (PBC), and the additional variables past behavior, actual behavior control (ABC). Results. The TPB variables explained 25.7% of the variance in intentions with positive attitude as the strongest (β = 0.31, P < 0.001) and subjective norms as the weakest (β = 0.29, P < 0.001) determinant. Concurrently, intentions accounted for 6% of the variance for fast food consumption. Past behavior and ABC accounted for an additional amount of 20.4% of the variance in fast food consumption. Conclusion. Overall, the present study suggests that the TPB model is useful in predicting related beliefs and norms to the fast food consumption among adolescents. Subjective norms in TPB model and past behavior in TPB model with additional variables (past behavior and actual behavior control) were the most powerful predictors of fast food consumption. Therefore, TPB model may be a useful framework for planning intervention programs to reduce fast food consumption by students. PMID:23936635

  8. Determinants of fast food consumption among Iranian high school students based on planned behavior theory.

    PubMed

    Sharifirad, Gholamreza; Yarmohammadi, Parastoo; Azadbakht, Leila; Morowatisharifabad, Mohammad Ali; Hassanzadeh, Akbar

    2013-01-01

    This study was conducted to identify some factors (beliefs and norms) which are related to fast food consumption among high school students in Isfahan, Iran. We used the framework of the theory planned behavior (TPB) to predict this behavior. Cross-sectional data were available from high school students (n = 521) who were recruited by cluster randomized sampling. All of the students completed a questionnaire assessing variables of standard TPB model including attitude, subjective norms, perceived behavior control (PBC), and the additional variables past behavior, actual behavior control (ABC). The TPB variables explained 25.7% of the variance in intentions with positive attitude as the strongest (β = 0.31, P < 0.001) and subjective norms as the weakest (β = 0.29, P < 0.001) determinant. Concurrently, intentions accounted for 6% of the variance for fast food consumption. Past behavior and ABC accounted for an additional amount of 20.4% of the variance in fast food consumption. Overall, the present study suggests that the TPB model is useful in predicting related beliefs and norms to the fast food consumption among adolescents. Subjective norms in TPB model and past behavior in TPB model with additional variables (past behavior and actual behavior control) were the most powerful predictors of fast food consumption. Therefore, TPB model may be a useful framework for planning intervention programs to reduce fast food consumption by students.

  9. A no-reference perceptual blurriness metric based fast super-resolution of still pictures using sparse representation

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Seok; Bae, Sung-Ho; Kim, Munchurl

    2015-03-01

    In recent years, perceptually-driven super-resolution (SR) methods have been proposed to lower computational complexity. Furthermore, sparse representation based super-resolution is known to produce competitive high-resolution images with lower computational costs compared to other SR methods. Nevertheless, super-resolution is still difficult to be implemented with substantially low processing power for real-time applications. In order to speed up the processing time of SR, much effort has been made with efficient methods, which selectively incorporate elaborate computation algorithms for perceptually sensitive image regions based on a metric, such as just noticeable distortion (JND). Inspired by the previous works, we first propose a novel fast super-resolution method with sparse representation, which incorporates a no-reference just noticeable blur (JNB) metric. That is, the proposed fast super-resolution method efficiently generates super-resolution images by selectively applying a sparse representation method for perceptually sensitive image areas which are detected based on the JNB metric. Experimental results show that our JNB-based fast super-resolution method is about 4 times faster than a non-perceptual sparse representation based SR method for 256× 256 test LR images. Compared to a JND-based SR method, the proposed fast JNB-based SR method is about 3 times faster, with approximately 0.1 dB higher PSNR and a slightly higher SSIM value in average. This indicates that our proposed perceptual JNB-based SR method generates high-quality SR images with much lower computational costs, opening a new possibility for real-time hardware implementations.

  10. Terahertz-optical-asymmetric-demultiplexer (TOAD)-based arithmetic units for ultra-fast optical information processing

    NASA Astrophysics Data System (ADS)

    Cherri, Abdallah K.

    2010-04-01

    In this paper, designs of ultra-fast all-optical based Terahertz-optical-asymmetric-demultiplexer (TOAD)-based devices are reported. Using TOAD switches, adders/subtracters units are demonstrated. The high speed is achieved due to the use of the nonlinear optical materials and the nonbinary modified signed-digit (MSD) number representation. The proposed all-optical circuits are compared in terms of numbers TOAD switches, optical amplifiers and wavelength converters.

  11. Evaluation of prototype 100mK bolometric detector for Planck Surveyor

    NASA Astrophysics Data System (ADS)

    Sudiwala, R. V.; Maffei, B.; Griffin, M. J.; Haynes, C. V.; Ade, P. A. R.; Bhatia, R. S.; Turner, A. D.; Bock, J. J.; Lange, A. E.; Beeman, J. W.

    2000-04-01

    The High-Frequency Instrument (HFI) for the Planck Surveyor mission will measure anisotropies of the Cosmic Microwave Background (CMB) down to scales of 6 arcmin and to an accuracy of /ΔT/T=2×10-6. Channels ranging in frequency from 100 to 857GHz will use 100mK spider web bolometer detectors with NTD Ge thermistors. The detectors must be photon noise limited and fast enough to preserve signal information at the 1r.p.m. scan rate of the satellite. The prime low-frequency CMB channels at 143 and 217GHz are the most technically demanding owing to the lower background limited NEPs. For the 143GHz channel the requirements are that the time constant /τ<5.7 ms and the NEPbol <1.53×10-17 WHz-1/2 including contribution from amplifier noise. We present here thermal, electrical and optical data on a prototype detector which, although optimised for the 100GHz channel, satisfies most of the requirements of the more demanding 143GHz channel. The measurements are consistent with ideal thermal behaviour of the detector over the appropriate bias and temperature ranges for optimum performance. From optically blanked electrical measurements we determined the dependence of resistance and thermal conductance on temperature over a wide range, 70-200mK. The optical responsivity and NEP were measured under photon background conditions similar to those expected in flight. Measurements of speed of response as a function of bias at different temperatures allowed us to determine the variation of total heat capacity with temperature. Extrapolation of these data show that in principal performance for all the Planck HFI channels can be met.

  12. A new approximate fast method of computing the scattering from multilayer rough surfaces based on the Kirchhoff approximation

    NASA Astrophysics Data System (ADS)

    Tian, Jiasheng; Tong, Jian; Shi, Jian; Gui, Liangqi

    2017-02-01

    In this paper a new approximate fast method of calculating the bistatic-scattering coefficients of a multilayer structure with random rough interfaces was presented based on the Kirchhoff Approximation (KA) and the electromagnetic theory of stratified media. First, the electromagnetic scattering from a Gauss rough metal or dielectric surface was calculated by KA method and method of moment (MOM), and the effectiveness of KA method was confirmed and verified. Second, a new approximate fast method was presented to calculate electromagnetic scattering from a multilayer-random-rough surface based on electromagnetic reflection from multilayer parallel surfaces and KA. The calculated results by the new method were in good agreements with those by MOM, especially near the specular point. Finally, a comparison of the new method and MOM was carried out in consuming computing time, memory resources, and complexity. The comparison indicated that the new approximate method was faster by about 30-150 times than MOM. The new approximate fast method could avoid a large matrix inversion and greatly reduce the computation time and memory resources and thus improve the computational efficiency. It was an effective approximation fast analyzing method of electromagnetic scattering from multilayer rough surfaces.

  13. Audio video based fast fixed-point independent vector analysis for multisource separation in a room environment

    NASA Astrophysics Data System (ADS)

    Liang, Yanfeng; Naqvi, Syed Mohsen; Chambers, Jonathon A.

    2012-12-01

    Fast fixed-point independent vector analysis (FastIVA) is an improved independent vector analysis (IVA) method, which can achieve faster and better separation performance than original IVA. As an example IVA method, it is designed to solve the permutation problem in frequency domain independent component analysis by retaining the higher order statistical dependency between frequencies during learning. However, the performance of all IVA methods is limited due to the dimensionality of the parameter space commonly encountered in practical frequency-domain source separation problems and the spherical symmetry assumed with the source model. In this article, a particular permutation problem encountered in using the FastIVA algorithm is highlighted, namely the block permutation problem. Therefore a new audio video based fast fixed-point independent vector analysis algorithm is proposed, which uses video information to provide a smart initialization for the optimization problem. The method cannot only avoid the ill convergence resulting from the block permutation problem but also improve the separation performance even in noisy and high reverberant environments. Different multisource datasets including the real audio video corpus AV16.3 are used to verify the proposed method. For the evaluation of the separation performance on real room recordings, a new pitch based evaluation criterion is also proposed.

  14. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  15. Family-Joining: A Fast Distance-Based Method for Constructing Generally Labeled Trees

    PubMed Central

    Kalaghatgi, Prabhav; Pfeifer, Nico; Lengauer, Thomas

    2016-01-01

    The widely used model for evolutionary relationships is a bifurcating tree with all taxa/observations placed at the leaves. This is not appropriate if the taxa have been densely sampled across evolutionary time and may be in a direct ancestral relationship, or if there is not enough information to fully resolve all the branching points in the evolutionary tree. In this article, we present a fast distance-based agglomeration method called family-joining (FJ) for constructing so-called generally labeled trees in which taxa may be placed at internal vertices and the tree may contain polytomies. FJ constructs such trees on the basis of pairwise distances and a distance threshold. We tested three methods for threshold selection, FJ-AIC, FJ-BIC, and FJ-CV, which minimize Akaike information criterion, Bayesian information criterion, and cross-validation error, respectively. When compared with related methods on simulated data, FJ-BIC was among the best at reconstructing the correct tree across a wide range of simulation scenarios. FJ-BIC was applied to HIV sequences sampled from individuals involved in a known transmission chain. The FJ-BIC tree was found to be compatible with almost all transmission events. On average, internal branches in the FJ-BIC tree have higher bootstrap support than branches in the leaf-labeled bifurcating tree constructed using RAxML. 36% and 25% of the internal branches in the FJ-BIC tree and RAxML tree, respectively, have bootstrap support greater than 70%. To the best of our knowledge the method presented here is the first attempt at modeling evolutionary relationships using generally labeled trees. PMID:27436007

  16. A New Ticket-Based Authentication Mechanism for Fast Handover in Mesh Network.

    PubMed

    Lai, Yan-Ming; Cheng, Pu-Jen; Lee, Cheng-Chi; Ku, Chia-Yi

    2016-01-01

    Due to the ever-growing popularity mobile devices of various kinds have received worldwide, the demands on large-scale wireless network infrastructure development and enhancement have been rapidly swelling in recent years. A mobile device holder can get online at a wireless network access point, which covers a limited area. When the client leaves the access point, there will be a temporary disconnection until he/she enters the coverage of another access point. Even when the coverages of two neighboring access points overlap, there is still work to do to make the wireless connection smoothly continue. The action of one wireless network access point passing a client to another access point is referred to as the handover. During handover, for security concerns, the client and the new access point should perform mutual authentication before any Internet access service is practically gained/provided. If the handover protocol is inefficient, in some cases discontinued Internet service will happen. In 2013, Li et al. proposed a fast handover authentication mechanism for wireless mesh network (WMN) based on tickets. Unfortunately, Li et al.'s work came with some weaknesses. For one thing, some sensitive information such as the time and date of expiration is sent in plaintext, which increases security risks. For another, Li et al.'s protocol includes the use of high-quality tamper-proof devices (TPDs), and this unreasonably high equipment requirement limits its applicability. In this paper, we shall propose a new efficient handover authentication mechanism. The new mechanism offers a higher level of security on a more scalable ground with the client's privacy better preserved. The results of our performance analysis suggest that our new mechanism is superior to some similar mechanisms in terms of authentication delay.

  17. A New Ticket-Based Authentication Mechanism for Fast Handover in Mesh Network

    PubMed Central

    Lai, Yan-Ming; Cheng, Pu-Jen; Lee, Cheng-Chi; Ku, Chia-Yi

    2016-01-01

    Due to the ever-growing popularity mobile devices of various kinds have received worldwide, the demands on large-scale wireless network infrastructure development and enhancement have been rapidly swelling in recent years. A mobile device holder can get online at a wireless network access point, which covers a limited area. When the client leaves the access point, there will be a temporary disconnection until he/she enters the coverage of another access point. Even when the coverages of two neighboring access points overlap, there is still work to do to make the wireless connection smoothly continue. The action of one wireless network access point passing a client to another access point is referred to as the handover. During handover, for security concerns, the client and the new access point should perform mutual authentication before any Internet access service is practically gained/provided. If the handover protocol is inefficient, in some cases discontinued Internet service will happen. In 2013, Li et al. proposed a fast handover authentication mechanism for wireless mesh network (WMN) based on tickets. Unfortunately, Li et al.’s work came with some weaknesses. For one thing, some sensitive information such as the time and date of expiration is sent in plaintext, which increases security risks. For another, Li et al.’s protocol includes the use of high-quality tamper-proof devices (TPDs), and this unreasonably high equipment requirement limits its applicability. In this paper, we shall propose a new efficient handover authentication mechanism. The new mechanism offers a higher level of security on a more scalable ground with the client’s privacy better preserved. The results of our performance analysis suggest that our new mechanism is superior to some similar mechanisms in terms of authentication delay. PMID:27171160

  18. An index-based algorithm for fast on-line query processing of latent semantic analysis

    PubMed Central

    Li, Pohan; Wang, Wei

    2017-01-01

    Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm. PMID:28520747

  19. Diagnostic Performance of a Lattice Boltzmann-Based Method for Fast CT-Fractional Flow Reserve.

    PubMed

    Giannopoulos, Andreas; Tang, Anji; Ge, Yin; Cheezum, Michael; Steigner, Michael; Fujimoto, Shinichiro; Kumamaru, Kanako; Chiappino, Dante; Della Latta, Daniele; Berti, Sergio; Chiappino, Sara; Rybicki, Frank; Melchionna, Simone; Mitsouras, Dimitrios

    2017-06-27

    Fractional flow reserve (FFR) estimated from coronary computed tomography angiography (CT-FFR) offers non-invasive detection of lesion-specific ischemia. We developed and validated a fast CT-FFR algorithm utilizing the Lattice-Boltzmann Method for blood flow simulation (LBM CT-FFR). 64 patients from 3 institutions with clinically-indicated CTA and invasive FFR measurement were retrospectively analyzed. CT-FFR was performed using an on-site tool interfacing with a commercial Lattice-Boltzmann fluid dynamics cloud-based platform. Diagnostic accuracy of LBM CT-FFR≤0.8 and percent diameter stenosis >50% by CTA to detect invasive FFR≤0.8 were compared using area under the receiver operating characteristic curve (AUC). 60 patients successfully underwent LBM CT-FFR analysis; 29 of 73 lesions in 69 vessels had invasive FFR≤0.8. Total time to perform LBM CT-FFR was 40±10 min. Compared to invasive FFR, LBM CT-FFR had good correlation (r=0.64), small bias (0.009) and good limits of agreement (-0.223 to 0.206). The AUC of LBM CT-FFR (AUC=0.894, 95% confidence interval [CI]: 0.792- 0.996) was significantly higher than CTA (AUC=0.685, 95% CI: 0.576-0.794) to detect FFR≤0.8 (p=0.0021). Per-lesion specificity, sensitivity, accuracy of LBM CT-FFR were 97.7%, 79.3%, and 90.4%, respectively. LBM CT-FFR has very good diagnostic accuracy to detect lesion-specific ischemia (FFR≤0.8) and can be performed in less than 1 hour.

  20. Family-Joining: A Fast Distance-Based Method for Constructing Generally Labeled Trees.

    PubMed

    Kalaghatgi, Prabhav; Pfeifer, Nico; Lengauer, Thomas

    2016-10-01

    The widely used model for evolutionary relationships is a bifurcating tree with all taxa/observations placed at the leaves. This is not appropriate if the taxa have been densely sampled across evolutionary time and may be in a direct ancestral relationship, or if there is not enough information to fully resolve all the branching points in the evolutionary tree. In this article, we present a fast distance-based agglomeration method called family-joining (FJ) for constructing so-called generally labeled trees in which taxa may be placed at internal vertices and the tree may contain polytomies. FJ constructs such trees on the basis of pairwise distances and a distance threshold. We tested three methods for threshold selection, FJ-AIC, FJ-BIC, and FJ-CV, which minimize Akaike information criterion, Bayesian information criterion, and cross-validation error, respectively. When compared with related methods on simulated data, FJ-BIC was among the best at reconstructing the correct tree across a wide range of simulation scenarios. FJ-BIC was applied to HIV sequences sampled from individuals involved in a known transmission chain. The FJ-BIC tree was found to be compatible with almost all transmission events. On average, internal branches in the FJ-BIC tree have higher bootstrap support than branches in the leaf-labeled bifurcating tree constructed using RAxML. 36% and 25% of the internal branches in the FJ-BIC tree and RAxML tree, respectively, have bootstrap support greater than 70%. To the best of our knowledge the method presented here is the first attempt at modeling evolutionary relationships using generally labeled trees.

  1. Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

    SciTech Connect

    Acharya, Naresh; Baone, Chaitanya; Veda, Santosh; Dai, Jing; Chaudhuri, Nilanjan; Leonardi, Bruno; Sanches-Gasca, Juan; Diao, Ruisheng; Wu, Di; Huang, Zhenyu; Zhang, Yu; Jin, Shuangshuang; Zheng, Bin; Chen, Yousu

    2014-12-31

    Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed

  2. Fast-Running Aeroelastic Code Based on Unsteady Linearized Aerodynamic Solver Developed

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Keith, T., Jr.

    2003-01-01

    The NASA Glenn Research Center has been developing aeroelastic analyses for turbomachines for use by NASA and industry. An aeroelastic analysis consists of a structural dynamic model, an unsteady aerodynamic model, and a procedure to couple the two models. The structural models are well developed. Hence, most of the development for the aeroelastic analysis of turbomachines has involved adapting and using unsteady aerodynamic models. Two methods are used in developing unsteady aerodynamic analysis procedures for the flutter and forced response of turbomachines: (1) the time domain method and (2) the frequency domain method. Codes based on time domain methods require considerable computational time and, hence, cannot be used during the design process. Frequency domain methods eliminate the time dependence by assuming harmonic motion and, hence, require less computational time. Early frequency domain analyses methods neglected the important physics of steady loading on the analyses for simplicity. A fast-running unsteady aerodynamic code, LINFLUX, which includes steady loading and is based on the frequency domain method, has been modified for flutter and response calculations. LINFLUX, solves unsteady linearized Euler equations for calculating the unsteady aerodynamic forces on the blades, starting from a steady nonlinear aerodynamic solution. First, we obtained a steady aerodynamic solution for a given flow condition using the nonlinear unsteady aerodynamic code TURBO. A blade vibration analysis was done to determine the frequencies and mode shapes of the vibrating blades, and an interface code was used to convert the steady aerodynamic solution to a form required by LINFLUX. A preprocessor was used to interpolate the mode shapes from the structural dynamic mesh onto the computational dynamics mesh. Then, we used LINFLUX to calculate the unsteady aerodynamic forces for a given mode, frequency, and phase angle. A postprocessor read these unsteady pressures and

  3. Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-09-01

    Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.

  4. Fast microbubble dwell-time based ultrasonic molecular imaging approach for quantification and monitoring of angiogenesis in cancer

    PubMed Central

    Pysz, Marybeth A.; Guracar, Ismayil; Tian, Lu

    2012-01-01

    Purpose To develop and test a fast ultrasonic molecular imaging technique for quantification and monitoring of angiogenesis in cancer. Materials and methods A new software algorithm measuring the dwell time of contrast microbubbles in near real-time (henceforth, fast method) was developed and integrated in a clinical ultrasound system. In vivo quantification and monitoring of tumor angiogenesis during anti-VEGF antibody therapy was performed in human colon cancer xenografts in mice (n=20) using the new fast method following administration of vascular endothelial growth factor receptor 2 (VEGFR2)-targeted contrast microbubbles. Imaging results were compared with a traditional destruction/replenishment approach (henceforth, traditional method) in an intra-animal comparison. Results There was excellent correlation (R2=0.93; P<0.001) between the fast method and the traditional method in terms of VEGFR2-targeted in vivo ultrasonic molecular imaging with significantly higher (P=0.002) imaging signal in colon cancer xenografts using VEGFR2-targeted compared to control non-targeted contrast microbubbles. The new fast method was highly reproducible (ICC=0.87). Following anti-angiogenic therapy, ultrasonic molecular imaging signal decreased by an average of 41±10%, whereas imaging signal increased by an average of 54±8% in non-treated tumors over a 72-hour period. Decreased VEGFR2 expression levels following anti-VEGF therapy were confirmed on ex vivo immunofluorescent staining. Conclusions Fast ultrasonic molecular imaging based on dwell time microbubble signal measurements correlates well with the traditional measurement method, and allows reliable in vivo monitoring of anti-angiogenic therapy in human colon cancer xenografts. The improved work-flow afforded by the new quantification approach may facilitate clinical translation of ultrasonic molecular imaging. PMID:22943043

  5. Sub 10 ns fast switching and resistance control in lateral GeTe-based phase-change memory

    NASA Astrophysics Data System (ADS)

    Yin, You; Zhang, Yulong; Takehana, Yousuke; Kobayashi, Ryota; Zhang, Hui; Hosaka, Sumio

    2016-06-01

    In this study, we investigated the fast switching and resistance control in a lateral GeTe-based phase-change memory (PCM). The resistivity of GeTe as a function of annealing temperature showed that it changed by more than 6 orders of magnitude in a very narrow temperature range. X-ray diffraction patterns of GeTe films indicated that GeTe had only one crystal structure, that is, face-centered cubic. It was demonstrated that the lateral device with a top conducting layer had a good performance. The operation characteristics of the GeTe-based lateral PCM device showed that it could be operated even when sub-10-ns voltage pulses were applied, making it much faster than a Ge2Sb2Te5-based device. The device resistance was successfully controlled by applying a staircase-like pulse, which enables the device to be used for fast multilevel storage.

  6. Low-temperature thermal conductivity measurements of Al2O3 ceramic for use in bolometric particle detector

    NASA Astrophysics Data System (ADS)

    Drobizhev, Alexey

    2013-04-01

    Bolometric particle detectors for rare weak processes operate at temperatures as low as 10mK and are background-dependent, so radiopure structural materials such as alumina ceramic (Al2O3) are of interest, and their thermal properties in the very low temperature regime must be understood. Our experiments are conducted in a dilution refrigerator, with heaters being used to create temperature gradients across elongated alumina samples of different cross-sectional geometries mounted in copper clamps, with one end thermalized on the 10mK plate of the cryostat. Temperatures of both ends are measured with RuO2 resistance thermometers, and thermal conductivity k(T) can be determined using the relationship dQdt =Alk(T)dT, where dQdt is heating power, A is cross-sectional area of the sample, l is its length, and T is temperature. Absolute values and temperature dependence of thermal conductivity of the alumina samples were measured and compared to well-investigated single-crystal sapphire properties. Thermal conductivity of other materials of interest was also investigated; the results will be presented.

  7. An Upper Limit on the Ratio Between the Extreme Ultraviolet and the Bolometric Luminosities of Stars Hosting Habitable Planets

    NASA Astrophysics Data System (ADS)

    Sengupta, Sujan

    2016-06-01

    A large number of terrestrial planets in the classical habitable zone of stars of different spectral types have already been discovered and many are expected to be discovered in the near future. However, owing to the lack of knowledge on the atmospheric properties, the ambient environment of such planets are unknown. It is known that sufficient amount of Extreme Ultraviolet (EUV) radiation from the star can drive hydrodynamic outflow of hydrogen that may drag heavier species from the atmosphere of the planet. If the rate of mass loss is sufficiently high, then substantial amount of volatiles would escape causing the planet to become uninhabitable. Considering energy-limited hydrodynamical mass loss with an escape rate that causes oxygen to escape alongwith hydrogen, an upper limit for the ratio between the EUV and the bolometric luminosities of stars which constrains the habitability of planets around them is presented here. Application of the limit to planet-hosting stars with known EUV luminosities implies that many M-type of stars should not have habitable planets around them.

  8. Comprehensive physics-based compact model for fast p-i-n diode using MATLAB and Simulink

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Fu, Guicui; Zhang, Dong

    2016-07-01

    In this study, a physics-based model for the fast p-i-n diode is proposed. The model is based on the 1-D Fourier-based solution of ambipolar diffusion equation (ADE) implemented in MATLAB and Simulink. The physical characteristics of fast diode design concepts such as local lifetime control (LLC), emitter control (EMCON) and deep field stop are taken into account. Based on these fast diode design concepts, the ADE is solved for all injection levels instead of high-level injection only as usually done. The variation of high-level lifetime due to local lifetime control is also included in the solution. With the deep field stop layer taken into consideration, the depletion behavior in the N-base during reverse recovery is redescribed. Some physical effects such as avalanche generation and carrier recombination in the depletion region are also taken into account. To be self contained, a parameter extraction method is proposed to extract all the parameters of the model. In the end, the static and reverse recovery experiments for a commercial EMCON diode and a LLC diode are used to validate the proposed model. The simulation results are compared with experiment results and good agreement is obtained.

  9. Fast and thermal neutron radiographies based on a compact neutron generator

    NASA Astrophysics Data System (ADS)

    Fantidis, Jacob G.; Dimitrios, Bandekas V.; Constantinos, Potolias; Nick, Vordos

    2012-09-01

    Fast neutrons that are produced via compact neutron generators have been used for thermal and fast neutron radiographies. In order to investigate objects with different sizes and produce radiographs of variable qualities, the proposed facility has been considered with a wide range of values for the parameters characterizing the thermal and fast neutron radiographies. The proposed system is designed according to article 4 of the Restriction of Hazardous Substances Directive 2002/95/EC, hence, excluded the use of cadmium and lead, and has been simulated using the MCNP4B code. The Monte Carlo calculations were carried out using three different neutron sources: deuterium-deuterium, deuterium-tritium, and tritium-tritium neutron generators.

  10. Identification of fast-steering mirror based on chicken swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Deng, Chao; Zhang, Chao; Mao, Yao

    2017-06-01

    According to the transfer function identification method of fast steering mirror exists problems which estimate the initial value is complicated in the process of using, put forward using chicken swarm algorithm to simplify the identification operation, reducing the workload of identification. chicken swarm algorithm is a meta heuristic intelligent population algorithm, which shows global convergence is efficient in the identification experiment, and the convergence speed is fast. The convergence precision is also high. Especially there are many parameters are needed to identificate in the transfer function without considering the parameters estimation problem. Therefore, compared with the traditional identification methods, the proposed approach is more convenient, and greatly achieves the intelligent design of fast steering mirror control system in enginerring application, shorten time of controller designed.

  11. A tetrode based fast pulsed microwave source for electron cyclotron resonance breakdown experiments

    SciTech Connect

    Yadav, Vipin K.; Sathyanarayana, K.; Purohit, D.; Bora, D.

    2007-02-15

    To study electron cylotron resonance (ECR) breakdown and afterglow plasma in an experimental linear plasma system, a pulsed microwave source with rapid rise and fall of microwave power is desired. A pulsed microwave source with fast rise and fall capability for ECR breakdown experiments has been designed and tested for performance in the system. A tetrode, controlled by a modulator card, is used as a fast switch to initiate microwave power from a conventional magnetron operating at 2.45 GHz. The typical rise time of microwave power is {approx}3 {mu}s and a fall time of {approx}10 {mu}s. Using this scheme in a realistic pulsed microwave source at 800 W power, ECR breakdown of neutral gas is achieved and the plasma delay and fall time are observed from the plasma density measurements using a Langmuir probe. The design details of the fast rise pulsed microwave source are presented in this article with initial experimental results.

  12. Fast neural network surrogates for very high dimensional physics-based models in computational oceanography.

    PubMed

    van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M

    2007-05-01

    We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.

  13. Fast restoration approach for motion blurred image based on deconvolution under the blurring paths

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Song, Jie; Hua, Xia

    2015-12-01

    For the real-time motion deblurring, it is of utmost importance to get a higher processing speed with about the same image quality. This paper presents a fast Richardson-Lucy motion deblurring approach to remove motion blur which rotates blurred image under blurring paths. Hence, the computational time is reduced sharply by using one-dimensional Fast Fourier Transform in one-dimensional Richardson-Lucy method. In order to obtain accurate transformational results, interpolation method is incorporated to fetch the gray values. Experiment results demonstrate that the proposed approach is efficient and effective to reduce motion blur under the blur paths.

  14. Metal Optics Based nanoLEDs: In Search of a Fast, Efficient, Nanoscale Light Emitter

    NASA Astrophysics Data System (ADS)

    Eggleston, Michael Scott

    Since the invention of the laser, stimulated emission has been the de facto king of optical communication. Lasers can be directly modulated at rates as high as 50GHz, much faster than a typical solid state light-emitting diode (LED) that is limited by spontaneous emission to <1GHz. Unfortunately, lasers have a severe scaling problem; they require large cavities operated at high power to achieve efficient lasing. A properly designed LED can be made arbitrarily small and still operate with high-efficiency. On-chip interconnects is an area that is in desperate need of a high-speed, low-power optical emitter that can enable on-chip links to replace current high-loss metal wires. In this work, I will show that by utilizing proper antenna design, a nanoLED can be created that is faster than a laser while still operating at >50% efficiency. I start by formulating an optical antenna circuit model whose elements are based completely off of antenna geometry. This allows for intuitive antenna design and suggests that rate enhancements up to ~3,000x are possible while keeping antenna efficiency >50%. Such a massive speed-up in spontaneous emission would enable an LED that can be directly modulated at 100's of GHz, much faster than any laser. I then use the circuit model to design an arch-dipole antenna, a dipole antenna with an inductive arch across the feedgap. I experimentally demonstrate a free-standing arch-dipole based nanoLED with rate enhancement of 115x and 66% antenna efficiency. Because the emitter is InGaAsP, a common III-V material, I experimentally show that this device can be easily and efficiently coupled into an InP waveguide. Experimental coupling efficiencies up to 70% are demonstrated and directional antennas are employed that offer front to back emission ratios of 3:1. Finally, I show that a nanoLED can still have high quantum yield by using a transition metal dichalcogenide, WSe2, as the emitter material. By coupling a monolayer of WSe2 to a cavity

  15. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy.

    PubMed

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-07

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were o