Ferroelectric and multiferroic domain imaging by Laser-induced photoemission microscopy
NASA Astrophysics Data System (ADS)
Hoefer, Anke; Fechner, Michael; Duncker, Klaus; Mertig, Ingrid; Widdra, Wolf
2013-03-01
The ferroelectric as well as multiferroic surface domain structures of BaTiO3(001) and BiFeO3(001) are imaged based on photoemission electron microscopy (PEEM) by femtosecond laser threshold excitation under UHV conditions. For well-prepared BaTiO3(001), three ferroelectric domain types are clearly discriminable due to work function differences. At room temperature, the surface domains resemble the known ferroelectric domain structure of the bulk. Upon heating above the Curie point of 400 K, the specific surface domain pattern remains up to 500 K. Ab-initio calculations explain this observation by a remaining tetragonal distortion of the topmost unit cells stabilized by a surface relaxation. The (001) surface of the single-phase multiferroic BiFeO3 which is ferroelectric and antiferromagnetic, shows clear ferroelectric work function contrast in PEEM. Additionally, the multiferroic domains show significant linear dichroism. The observation of a varying dichroism for different ferroelectric domains can be explained based on the coupled ferroelectric-antiferromagnetic order in BiFeO3. It demonstrates multiferroic imaging of different domain types within a single, lab-based experiment.
NASA Astrophysics Data System (ADS)
Bhatt, Pramod; Mukadam, M. D.; Meena, S. S.; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Mandal, B. P.; Yusuf, S. M.
2017-03-01
The ferroelectric materials are mainly focused on pure inorganic oxides; however, the organic molecule based materials have recently attracted great attention because of their multifunctional properties. The mixing of oxalate and phenanthroline ligands with metal ions (Fe or Mn) at room temperature followed by hydrothermal treatment results in the formation of one-dimensional single chain molecular magnets which exhibit room temperature dielectric and ferroelectric behavior. The compounds are chiral in nature, and exhibit a ferroelectric behavior, attributed to the polar point group C2, in which they crystallized. The compounds are also associated with a dielectric loss and thus a relaxation process. The observed electric dipole moment, essential for a ferroelectricity, has been understood quantitatively in terms of lattice distortions at two different lattice sites within the crystal structure. The studied single chain molecular magnetic materials with room temperature ferroelectric and dielectric properties could be of great technological importance in non-volatile memory elements, and high-performance insulators.
Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon
2015-07-21
Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.
NASA Astrophysics Data System (ADS)
Finkel, Peter; Staruch, Margo
Phase transition-based electromechanical transduction permits achieving a non-resonant broadband mechanical energy conversion see (Finkel et al Actuators, 5 [1] 2. (2015)) , the idea is based on generation high energy density per cycle , at least 100x of magnitude larger than linear piezoelectric type generators in stress biased [011]cut relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal can generate reversible strain >0.35% at remarkably low fields (0.1 MV/m) for tens of millions of cycles. Recently we demonstrated that large strain and polarization rotation can be generated for over 40 x 106cycles with little fatigue by realization of reversible ferroelectric-ferroelectric phase transition in [011] cut PIN-PMN-PT relaxor ferroelectric single crystal while sweeping through the transition with a low applied electric field <0.18 MV/m under mechanical stress. This methodology was extended in the present work to propose magnetoelectric (ME) composite hybrid system comprised of highly magnetostrictive alloymFe81.4Ga18.6 (Galfenol), and lead indium niobate-lead magnesium niobate-lead titanate (PIN-PMN-PT) domain engineered relaxor ferroelectric single crystal. A small time-varying magnetic field applied to this system causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. ME coupling coefficient was fond to achieve 80 V/cm Oe near the FR-FO phase transition that is at least 100X of magnitude higher than any currently reported values.
Highly polarized single-c-domain single-crystal Pb(Mn,Nb)O(3)-PZT thin films.
Wasa, Kiyotaka; Adachi, Hideaki; Nishida, Ken; Yamamoto, Takashi; Matsushima, Tomoaki; Kanno, Isaku; Kotera, Hidetoshi
2012-01-01
In-plane unstrained single-c-domain/single-crystal thin films of PZT-based ternary ferroelectric perovskite, ξPb(Mn,Nb)O3-(1 - ξ)PZT, were grown on SrRuO(3)/Pt/MgO substrates using magnetron sputtering followed by quenching. The sputtered unstrained thin films exhibit unique ferroelectric properties: high coercive field, Ec > 180 kV/cm, large remanent polarization, P(r) = 100 μC/cm(2), small relative dielectric constants, ε* = 100 to 150, high Curie temperature, Tc = ~600 °C, and bulk-like large transverse piezoelectric constants, e31,f = -12.0 C/m(2) for PZT(48/52) at ξ = 0.06. The unstrained thin films are an ideal structure to extract the bulk ferroelectric properties. Their micro-structures and ferroelectric properties are discussed in relation to the potential applications for piezoelectric MEMS. © 2012 IEEE
NASA Astrophysics Data System (ADS)
Chen, Zibin; Hong, Liang; Wang, Feifei; An, Xianghai; Wang, Xiaolin; Ringer, Simon; Chen, Long-Qing; Luo, Haosu; Liao, Xiaozhou
2017-12-01
Ferroelectric materials have been extensively explored for applications in high-density nonvolatile memory devices because of their ferroelectric-ferroelastic domain-switching behavior under electric loading or mechanical stress. However, the existence of ferroelectric and ferroelastic backswitching would cause significant data loss, which affects the reliability of data storage. Here, we apply in situ transmission electron microscopy and phase-field modeling to explore the unique ferroelastic domain-switching kinetics and the origin of this in relaxor-based Pb (Mg1 /3Nb2 /3)O3-33 % PbTiO3 single-crystal pillars under electrical and mechanical stimulations. Results showed that the electric-mechanical hysteresis loop shifted for relaxor-based single-crystal pillars because of the low energy levels of domains in the material and the constraint on the pillars, resulting in various mechanically reversible and irreversible domain-switching states. The phenomenon can potentially be used for advanced bit writing and reading in nonvolatile memories, which effectively overcomes the backswitching problem and broadens the types of ferroelectric materials for nonvolatile memory applications.
New iron-based multiferroics with improper ferroelectricity
NASA Astrophysics Data System (ADS)
Peng, Jin; Zhang, Yang; Lin, Ling-Fang; Lin, Lin; Liu, Meifeng; Liu, Jun-Ming; Dong, Shuai
2018-06-01
In this contribution to the special issue on magnetoelectrics and their applications, we focus on some single phase multiferroics, which have been theoretically predicted and/or experimentally discovered by the authors in recent years. In these materials, iron is the common core element. However, these materials are conceptually different from the mostly-studied BiFeO3, since their ferroelectricity is improper. Our reviewed materials are not simply repeating one magnetoelectric mechanism, but cover multiple branches of improper ferroelectricity, including the magnetism-driven ferroelectrics, geometric ferroelectric, as well as electronic ferroelectric driven by charge ordering. In this sense, these iron-based improper ferroelectrics can be an encyclopaedic playground to explore the comprehensive physics of multiferroics and magnetoelectricity. Furthermore, the unique characteristics of iron’s 3d orbitals make some of their magnetoelectric properties quite prominent, comparing with the extensively-studied Mn-based improper multiferroics. In addition, these materials establish the crossover between multiferroics and other fields of functional materials, which enlarges the application scope of multiferroics.
NASA Astrophysics Data System (ADS)
Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Vápenka, David; Doleček, Roman; Vojtíšek, Petr; Sládek, Juraj; Lédl, Vít.
2016-11-01
We report on the development and implementation of the digital holographic tomography for the three-dimensio- nal (3D) observations of the domain patterns in the ferroelectric single crystals. Ferroelectric materials represent a group of materials, whose macroscopic dielectric, electromechanical, and elastic properties are greatly in uenced by the presence of domain patterns. Understanding the role of domain patterns on the aforementioned properties require the experimental techniques, which allow the precise 3D measurements of the spatial distribution of ferroelectric domains in the single crystal. Unfortunately, such techniques are rather limited at this time. The most frequently used piezoelectric atomic force microscopy allows 2D observations on the ferroelectric sample surface. Optical methods based on the birefringence measurements provide parameters of the domain patterns averaged over the sample volume. In this paper, we analyze the possibility that the spatial distribution of the ferroelectric domains can be obtained by means of the measurement of the wavefront deformation of the transmitted optical wave. We demonstrate that the spatial distribution of the ferroelectric domains can be determined by means of the measurement of the spatial distribution of the refractive index. Finally, it is demonstrated that the measurements of wavefront deformations generated in ferroelectric polydomain systems with small variations of the refractive index provide data, which can be further processed by means of the conventional tomographic methods.
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Ho, Fat D.
2004-01-01
A model of an n-channel ferroelectric field effect transistor has been developed based on both theoretical and empirical data. The model is based on an existing model that incorporates partitioning of the ferroelectric layer to calculate the polarization within the ferroelectric material. The model incorporates several new aspects that are useful to the user. It takes into account the effect of a non-saturating gate voltage only partially polarizing the ferroelectric material based on the existing remnant polarization. The model also incorporates the decay of the remnant polarization based on the time history of the FFET. A gate pulse of a specific voltage; will not put the ferroelectric material into a single amount of polarization for that voltage, but instead vary with previous state of the material and the time since the last change to the gate voltage. The model also utilizes data from FFETs made from different types of ferroelectric materials to allow the user just to input the material being used and not recreate the entire model. The model also allows the user to input the quality of the ferroelectric material being used. The ferroelectric material quality can go from a theoretical perfect material with little loss and no decay to a less than perfect material with remnant losses and decay. This model is designed to be used by people who need to predict the external characteristics of a FFET before the time and expense of design and fabrication. It also allows the parametric evaluation of quality of the ferroelectric film on the overall performance of the transistor.
Voltage control of magnetic single domains in Ni discs on ferroelectric BaTiO3
NASA Astrophysics Data System (ADS)
Ghidini, M.; Zhu, B.; Mansell, R.; Pellicelli, R.; Lesaine, A.; Moya, X.; Crossley, S.; Nair, B.; Maccherozzi, F.; Barnes, C. H. W.; Cowburn, R. P.; Dhesi, S. S.; Mathur, N. D.
2018-06-01
For 1 µm-diameter Ni discs on a BaTiO3 substrate, the local magnetization direction is determined by ferroelectric domain orientation as a consequence of growth strain, such that single-domain discs lie on single ferroelectric domains. On applying a voltage across the substrate, ferroelectric domain switching yields non-volatile magnetization rotations of 90°, while piezoelectric effects that are small and continuous yield non-volatile magnetization reversals that are non-deterministic. This demonstration of magnetization reversal without ferroelectric domain switching implies reduced fatigue, and therefore represents a step towards applications.
NASA Astrophysics Data System (ADS)
Shao, Yu-Tsun; Zuo, Jian-Min
Domain walls (DWs) play a critical role in determining the polarization switching behavior in relaxor-based ferroelectric crystals. The domains in relaxor-ferroelectric crystals consist of polar nanoregions (PNRs) and their interface is poorly understood. Here, we report an energy-filtered (EF-) scanning convergent beam electron diffraction (SCBED) study for the identification of PNRs and determination of their interface. With the aid of electro dynamical diffraction simulation, nanometer-sized PNRs having monoclinic Pm (MC) symmetry in single crystal PZN- 8%PT were identified. Lattice rotation vortices having an average radius of 7 nm at the 50° DWs were revealed by maps of crystal orientations, domain configurations, symmetry breaking. Such measurements suggest the merging of 2D and 1D topological defects, with implications for domain-switching mechanisms in relaxor ferroelectric crystals. The interplay between polarization, charge, and strain degrees of freedom suggests a complex landscape of topological defects in ferroelectrics that may be explored for a new form of nanoscale ferroelectric devices. Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign.
High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications
Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan
2014-01-01
Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222
NASA Astrophysics Data System (ADS)
Lente, M. H.; Moreira, E. N.; Garcia, D.; Eiras, J. A.; Neves, P. P.; Doriguetto, A. C.; Mastelaro, V. R.; Mascarenhas, Y. P.
2006-02-01
The understanding of the structural origin of relaxor ferroelectrics has been doubtlessly a long-standing puzzle in the field of ferroelectricity. Thus, motivated by the interest in improving the comprehension of this important issue, it a framework is proposed for explaining the origin of the relaxor state in ordinary ferroelectrics induced via the isovalent-ion substitution. Based on the martensitic transformation concepts, it is proposed that the continuous addition of isovalent ions in a so-called normal ferroelectric decreases considerably the elastic strain energy. This results in a gradual transformation of ferroelectric domain patterns from a micrometer polydomain structure (twins), through single domains, to nanometer-polar-“tweed” structures with glasslike behavior, that are, in turn, strongly driven by point defects and surface effects. The electrical interaction between these weakly coupled polar-tweed structures leads to a wide spectrum of relaxation times, thus resulting in a dielectric relaxation process, the signature of relaxor ferroelectrics.
The demonstration of significant ferroelectricity in epitaxial Y-doped HfO2 film
Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J.; Sakata, Osami; Funakubo, Hiroshi
2016-01-01
Ferroelectricity and Curie temperature are demonstrated for epitaxial Y-doped HfO2 film grown on (110) yttrium oxide-stabilized zirconium oxide (YSZ) single crystal using Sn-doped In2O3 (ITO) as bottom electrodes. The XRD measurements for epitaxial film enabled us to investigate its detailed crystal structure including orientations of the film. The ferroelectricity was confirmed by electric displacement filed – electric filed hysteresis measurement, which revealed saturated polarization of 16 μC/cm2. Estimated spontaneous polarization based on the obtained saturation polarization and the crystal structure analysis was 45 μC/cm2. This value is the first experimental estimations of the spontaneous polarization and is in good agreement with the theoretical value from first principle calculation. Curie temperature was also estimated to be about 450 °C. This study strongly suggests that the HfO2-based materials are promising for various ferroelectric applications because of their comparable ferroelectric properties including polarization and Curie temperature to conventional ferroelectric materials together with the reported excellent scalability in thickness and compatibility with practical manufacturing processes. PMID:27608815
Self-driven visible-blind photodetector based on ferroelectric perovskite oxides
NASA Astrophysics Data System (ADS)
Li, Jian-kun; Ge, Chen; Jin, Kui-juan; Du, Jian-yu; Yang, Jing-ting; Lu, Hui-bin; Yang, Guo-zhen
2017-04-01
Ultraviolet photodetectors have attracted considerable interest for a variety of applications in health, industry, and science areas. Self-driven visible-blind photodetectors represent an appealing type of sensor, due to the reduced size and high flexibility. In this work, we employed BaTiO3 (BTO) single crystals with a bandgap of 3.2 eV for the realization of a self-driven ultraviolet detector, by utilizing the ferroelectric properties of BTO. We found that the sign of the photocurrent can be reversed by flipping the ferroelectric polarization, which makes the photodetector suitable for electrical manipulation. The photoelectric performance of this photodetector was systematically investigated in terms of rectification character, stability of short-circuit photocurrent, spectral response, and transient photoelectric response. Particularly, the self-driven photodetectors based on BTO showed an ultrafast response time about 200 ps. It is expected that the present work can provide a route for the design of photodetectors based on ferroelectric oxides.
Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, F.; Zhu, Y.; Liu, S.
The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO 3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. Thismore » effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.« less
Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, F.; Zhu, Y.; Liu, S.
The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here in this paper we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO 3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent acrossmore » unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.« less
Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO 3
Chen, F.; Zhu, Y.; Liu, S.; ...
2016-11-22
The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here in this paper we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO 3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent acrossmore » unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.« less
NASA Astrophysics Data System (ADS)
Li, F. X.; Rajapakse, R. K. N. D.
2007-03-01
Saturated domain orientation textures of three types of pseudocubic (tetragonal, rhombohedral, and orthorhombic) ferroelectric ceramics after complete electric and uniaxial tension (compression) poling is studied analytically in this paper. A one-dimensional orientation distribution function (ODF) of the domain polar vectors is explicitly derived from the uniform inverse pole figures of the poling field axes on a stereographic projection with respect to the fixed crystallite coordinates. The analytical ODF is used to obtain the analytical solutions of saturated polarization and strain after electric/mechanical poling. Based on the closed form solution of the saturated domain orientation textures, the resultant intrinsic electromechanical properties of ferroelectric ceramics, which depend only on the ODF and properties of the corresponding single crystals, are obtained. The results show how the macroscopic symmetries of ferroelectric crystals change from 4mm (tetragonal), 3m (rhombohedral), and mm2 (orthorhombic) single crystals to a ∞mm (transversely isotropic) completely poled ceramic.
Mesopores induced zero thermal expansion in single-crystal ferroelectrics.
Ren, Zhaohui; Zhao, Ruoyu; Chen, Xing; Li, Ming; Li, Xiang; Tian, He; Zhang, Ze; Han, Gaorong
2018-04-24
For many decades, zero thermal expansion materials have been the focus of numerous investigations because of their intriguing physical properties and potential applications in high-precision instruments. Different strategies, such as composites, solid solution and doping, have been developed as promising approaches to obtain zero thermal expansion materials. However, microstructure controlled zero thermal expansion behavior via interface or surface has not been realized. Here we report the observation of an impressive zero thermal expansion (volumetric thermal expansion coefficient, -1.41 × 10 -6 K -1 , 293-623 K) in single-crystal ferroelectric PbTiO 3 fibers with large-scale faceted and enclosed mesopores. The zero thermal expansion behavior is attributed to a synergetic effect of positive thermal expansion near the mesopores due to the oxygen-based polarization screening and negative thermal expansion from an intrinsic ferroelectricity. Our results show that a fascinating surface construction in negative thermal expansion ferroelectric materials could be a promising strategy to realize zero thermal expansion.
Losses in Ferroelectric Materials
Liu, Gang; Zhang, Shujun; Jiang, Wenhua; Cao, Wenwu
2015-01-01
Ferroelectric materials are the best dielectric and piezoelectric materials known today. Since the discovery of barium titanate in the 1940s, lead zirconate titanate ceramics in the 1950s and relaxor-PT single crystals (such as lead magnesium niobate-lead titanate and lead zinc niobate-lead titanate) in the 1980s and 1990s, perovskite ferroelectric materials have been the dominating piezoelectric materials for electromechanical devices, and are widely used in sensors, actuators and ultrasonic transducers. Energy losses (or energy dissipation) in ferroelectrics are one of the most critical issues for high power devices, such as therapeutic ultrasonic transducers, large displacement actuators, SONAR projectors, and high frequency medical imaging transducers. The losses of ferroelectric materials have three distinct types, i.e., elastic, piezoelectric and dielectric losses. People have been investigating the mechanisms of these losses and are trying hard to control and minimize them so as to reduce performance degradation in electromechanical devices. There are impressive progresses made in the past several decades on this topic, but some confusions still exist. Therefore, a systematic review to define related concepts and clear up confusions is urgently in need. With this objective in mind, we provide here a comprehensive review on the energy losses in ferroelectrics, including related mechanisms, characterization techniques and collections of published data on many ferroelectric materials to provide a useful resource for interested scientists and engineers to design electromechanical devices and to gain a global perspective on the complex physical phenomena involved. More importantly, based on the analysis of available information, we proposed a general theoretical model to describe the inherent relationships among elastic, dielectric, piezoelectric and mechanical losses. For multi-domain ferroelectric single crystals and ceramics, intrinsic and extrinsic energy loss mechanisms are discussed in terms of compositions, crystal structures, temperature, domain configurations, domain sizes and grain boundaries. The intrinsic and extrinsic contributions to the total energy dissipation are quantified. In domain engineered ferroelectric single crystals and ceramics, polarization rotations, domain wall motions and mechanical wave scatterings at grain boundaries are believed to control the mechanical quality factors of piezoelectric resonators. We show that a thorough understanding on the kinetic processes is critical in analyzing energy loss behavior and other time-dependent properties in ferroelectric materials. At the end of the review, existing challenges in the study and control of losses in ferroelectric materials are analyzed, and future perspective in resolving these issues is discussed. PMID:25814784
Losses in Ferroelectric Materials.
Liu, Gang; Zhang, Shujun; Jiang, Wenhua; Cao, Wenwu
2015-03-01
Ferroelectric materials are the best dielectric and piezoelectric materials known today. Since the discovery of barium titanate in the 1940s, lead zirconate titanate ceramics in the 1950s and relaxor-PT single crystals (such as lead magnesium niobate-lead titanate and lead zinc niobate-lead titanate) in the 1980s and 1990s, perovskite ferroelectric materials have been the dominating piezoelectric materials for electromechanical devices, and are widely used in sensors, actuators and ultrasonic transducers. Energy losses (or energy dissipation) in ferroelectrics are one of the most critical issues for high power devices, such as therapeutic ultrasonic transducers, large displacement actuators, SONAR projectors, and high frequency medical imaging transducers. The losses of ferroelectric materials have three distinct types, i.e., elastic, piezoelectric and dielectric losses. People have been investigating the mechanisms of these losses and are trying hard to control and minimize them so as to reduce performance degradation in electromechanical devices. There are impressive progresses made in the past several decades on this topic, but some confusions still exist. Therefore, a systematic review to define related concepts and clear up confusions is urgently in need. With this objective in mind, we provide here a comprehensive review on the energy losses in ferroelectrics, including related mechanisms, characterization techniques and collections of published data on many ferroelectric materials to provide a useful resource for interested scientists and engineers to design electromechanical devices and to gain a global perspective on the complex physical phenomena involved. More importantly, based on the analysis of available information, we proposed a general theoretical model to describe the inherent relationships among elastic, dielectric, piezoelectric and mechanical losses. For multi-domain ferroelectric single crystals and ceramics, intrinsic and extrinsic energy loss mechanisms are discussed in terms of compositions, crystal structures, temperature, domain configurations, domain sizes and grain boundaries. The intrinsic and extrinsic contributions to the total energy dissipation are quantified. In domain engineered ferroelectric single crystals and ceramics, polarization rotations, domain wall motions and mechanical wave scatterings at grain boundaries are believed to control the mechanical quality factors of piezoelectric resonators. We show that a thorough understanding on the kinetic processes is critical in analyzing energy loss behavior and other time-dependent properties in ferroelectric materials. At the end of the review, existing challenges in the study and control of losses in ferroelectric materials are analyzed, and future perspective in resolving these issues is discussed.
Nanomechanics of Ferroelectric Thin Films and Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.
2016-08-31
The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined.more » These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.« less
Investigation of reduced (Srx,Ba1-x)Nb 2O6 as a ferroelectric-based thermoelectric
NASA Astrophysics Data System (ADS)
Bock, Jonathan A.
A comprehensive study of a novel type of thermoelectric - a heavily doped material from a ferroelectric base composition - is presented. Due to the low-lying optic modes and scattering of phonons at domain walls, ferroelectrics make interesting candidates for thermoelectrics. The example of (Srx,Ba1-x)Nb2O6-delta (SBN) is explored in detail due to a report of an impressive thermoelectric figure of merit in single crystals. The goal of this research is to understand the source of the large figure of merit in SBN. In attempts to do this, the electron transport mechanism, the coupling between electron transport and ferroelectricity, the phase equilibria, and the single crystalline thermoelectric properties were investigated under various reduction conditions. It was found that the electron transport properties of a normal ferroelectric SBN can be well explained by activation of electrons into the conduction band from a localized impurity band. SBN can be shifted between a normal and relaxor ferroelectric by changing the Sr:Ba ratio. This property of SBN was utilized to study the effect of relaxor ferroelectricity on electron transport. Within the relaxor ferroelectric regime, a change in the activation energy for electronic conduction and an abnormal temperature dependence of the Seebeck coefficient were found. These properties are attributed to Anderson localization caused by the relaxor ferroelectricity. This is not thought to be the cause of the large thermoelectric figure of merit. The electron transport-ferroelectric coupling was also studied in oxygen deficient (Bax,Sr1-x)TiO3-delta (BST). A metallic-like to nonmetallic transition occurs at the ferroelectric transition, and the temperature of the metallic-like to nonmetallic transition can be shifted via Sr doping. The temperature shift on Sr doping is equivalent to the shift in the paraelectric ferroelectric transition temperature in unreduced samples, showing that the ferroelectric transition is the cause of the metallic-like to nonmetallic transition. These results show that the thermoelectric properties found in SBN upon reduction are due to a change from (Srx,Ba1-x)Nb2O6-delta toward (Srx,Ba1-x)1.2Nb2O6-delta and the resulting carrier concentration associated with the additional Sr2+ and Ba2+ cations on the A-site. Relaxor ferroelectricity perturbs the electron transport, but is not a cause of enhanced thermoelectric properties. This points toward A-site doped tungsten bronze materials in general as interesting thermoelectric materials. Future work revolving around decreasing the octahedral tilt angle, increasing the d-orbital overlap, and determining the necessity of ferroelectric-thermoelectric coupling in relation to thermal conductivity could result in further optimization within this new interesting family of thermoelectric oxides. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Paterson, Alisa R.; Zhao, Jinyan; Liu, Zenghui; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang
2018-03-01
Complex perovskite PbTiO3-Bi(Me‧Me″)O3 solid solutions represent new materials systems that possess a higher Curie temperature (TC) than the relaxor-PbTiO3 solid solutions, and are useful for potential applications. To this end, novel ferroelectric single crystals of the (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 (PT-BZN) solid solution were successfully grown by the high-temperature solution growth (HTSG) method. Powder X-ray diffraction shows that the symmetry of the grown crystals is tetragonal. The dielectric permittivity and optical domain structures were characterized by dielectric measurements and polarized light microscopy, respectively, as a function of temperature, revealing a first-order ferroelectric-paraelectric phase transition at a TC of 436 ± 2 °C. Based on the TC, the average composition of the crystal platelet was estimated to be 0.58PT-0.42BZN. Piezoresponse force microscopy measurements of the phase and amplitude as a function of voltage reveal the complex polar domain structure and demonstrate the ferroelectric switching behaviour of these materials. These results suggest that the PT-BZN single crystals indeed form a new family of high TC piezo-/ferroelectric materials which are potentially useful for the fabrication of electromechanical transducers for high-temperature applications.
NASA Astrophysics Data System (ADS)
Gallagher, John A.
2016-04-01
The desired operating range of ferroelectric materials with compositions near the morphotropic phase boundary is limited by field induced phase transformations. In [001]C cut and poled relaxor ferroelectric single crystals the mechanically driven ferroelectric rhombohedral to ferroelectric orthorhombic phase transformation is hindered by antagonistic electrical loading. Instability around the phase transformation makes the current experimental technique for characterization of the large field behavior very time consuming. Characterization requires specialized equipment and involves an extensive set of measurements under combined electrical, mechanical, and thermal loads. In this work a mechanism-based model is combined with a more limited set of experiments to obtain the same results. The model utilizes a work-energy criterion that calculates the mechanical work required to induce the transformation and the required electrical work that is removed to reverse the transformation. This is done by defining energy barriers to the transformation. The results of the combined experiment and modeling approach are compared to the fully experimental approach and error is discussed. The model shows excellent predictive capability and is used to substantially reduce the total number of experiments required for characterization. This decreases the time and resources required for characterization of new compositions.
Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications.
Matsuo, Hiroki; Noguchi, Yuji; Miyayama, Masaru
2017-08-08
Photoferroelectrics offer unique opportunities to explore light energy conversion based on their polarization-driven carrier separation and above-bandgap voltages. The problem associated with the wide bandgap of ferroelectric oxides, i.e., the vanishingly small photoresponse under visible light, has been overcome partly by bandgap tuning, but the narrowing of the bandgap is, in principle, accompanied by a substantial loss of ferroelectric polarization. In this article, we report an approach, 'gap-state' engineering, to produce photoferroelectrics, in which defect states within the bandgap act as a scaffold for photogeneration. Our first-principles calculations and single-domain thin-film experiments of BiFeO 3 demonstrate that gap states half-filled with electrons can enhance not only photocurrents but also photovoltages over a broad photon-energy range that is different from intermediate bands in present semiconductor-based solar cells. Our approach opens a promising route to the material design of visible-light-active ferroelectrics without sacrificing spontaneous polarization.Overcoming the optical transparency of wide bandgap of ferroelectric oxides by narrowing its bandgap tends to result in a loss of polarization. By utilizing defect states within the bandgap, Matsuo et al. report visible-light-active ferroelectrics without sacrificing polarization.
Unravelling and controlling hidden imprint fields in ferroelectric capacitors
Liu, Fanmao; Fina, Ignasi; Bertacco, Riccardo; Fontcuberta, Josep
2016-01-01
Ferroelectric materials have a spontaneous polarization that can point along energetically equivalent, opposite directions. However, when ferroelectric layers are sandwiched between different metallic electrodes, asymmetric electrostatic boundary conditions may induce the appearance of an electric field (imprint field, Eimp) that breaks the degeneracy of the polarization directions, favouring one of them. This has dramatic consequences on functionality of ferroelectric-based devices such as ferroelectric memories or photodetectors. Therefore, to cancel out the Eimp, ferroelectric components are commonly built using symmetric contact configuration. Indeed, in this symmetric contact configuration, when measurements are done under time-varying electric fields of relatively low frequency, an archetypical symmetric single-step switching process is observed, indicating Eimp ≈ 0. However, we report here on the discovery that when measurements are performed at high frequency, a well-defined double-step switching is observed, indicating the presence of Eimp. We argue that this frequency dependence originates from short-living head-to-head or tail-to-tail ferroelectric capacitors in the device. We demonstrate that we can modulate Eimp and the life-time of head-to-head or tail-to-tail polarization configurations by adjusting the polarization screening charges by suitable illumination. These findings are of relevance to understand the effects of internal electric fields on pivotal ferroelectric properties, such as memory retention and photoresponse. PMID:27122309
Finite-size effects of hysteretic dynamics in multilayer graphene on a ferroelectric
Morozovska, Anna N.; Pusenkova, Anastasiia S.; Varenyk, Oleksandr V.; ...
2015-06-11
The origin and influence of finite-size effects on the nonlinear dynamics of space charge stored by multilayer graphene on a ferroelectric and resistivity of graphene channel were analyzed. In this paper, we develop a self-consistent approach combining the solution of electrostatic problems with the nonlinear Landau-Khalatnikov equations for a ferroelectric. The size-dependent behaviors are governed by the relations between the thicknesses of multilayer graphene, ferroelectric film, and the dielectric layer. The appearance of charge and electroresistance hysteresis loops and their versatility stem from the interplay of polarization reversal dynamics and its incomplete screening in an alternating electric field. These featuresmore » are mostly determined by the dielectric layer thickness. The derived analytical expressions for electric fields and space-charge-density distribution in a multilayer system enable knowledge-driven design of graphene-on-ferroelectric heterostructures with advanced performance. We further investigate the effects of spatially nonuniform ferroelectric domain structures on the graphene layers’ conductivity and predict its dramatic increase under the transition from multi- to single-domain state in a ferroelectric. Finally, this intriguing effect can open possibilities for the graphene-based sensors and explore the underlying physical mechanisms in the operation of graphene field-effect transistor with ferroelectric gating.« less
Elastic Domain Wall Waves in Ferroelectric Ceramics and Single Crystals
1988-07-01
properties of piezoelectric and electrostrictive types of ferroelectric ceramics and single crystals. This was for the purpose of shedding light on the...effectiveness and general characteristics of fabrication techniques, as well as exploring basic physical mechanisms playing a role in the technology of...routing and processing devices on small ferroelectric wafers, fabricated by simple inexpensive poling and biasing techniques. Such devices ma) be
Cao, Ye; Kalinin, Sergei V.
2016-12-15
Phase-field simulation (PFS) has revolutionized the understanding of domain structure and switching behavior in ferroelectric thin films and ceramics. Generally, PFS is based on the solution of (a set of) Landau-Ginzburg-Devonshire equations for a defined order parameter field(s) under physical boundary conditions (BCs) of fixed potential or charge. While well matched to the interfaces in bulk materials and devices, these BCs are generally not applicable to free ferroelectric surfaces. Here, we developed a self-consistent phase-field model with BCs based on electrochemical equilibria. We chose Pb(Zr 0.2Ti 0.8)O 3 ultrathin film consisting of (001) oriented single tetragonal domain ( Pz) asmore » a model system and systematically studied the effects of oxygen partial pressure, temperature, and surface ions on the ferroelectric state and compared it with the case of complete screening. We have further explored the polarization switching induced by the oxygen partial pressure and observed pronounced size effect induced by chemical screening. Finally, our paper thus helps to understand the emergent phenomena in ferroelectric thin films brought about by the electrochemical ionic surface compensations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ye; Kalinin, Sergei V.
Phase-field simulation (PFS) has revolutionized the understanding of domain structure and switching behavior in ferroelectric thin films and ceramics. Generally, PFS is based on the solution of (a set of) Landau-Ginzburg-Devonshire equations for a defined order parameter field(s) under physical boundary conditions (BCs) of fixed potential or charge. While well matched to the interfaces in bulk materials and devices, these BCs are generally not applicable to free ferroelectric surfaces. Here, we developed a self-consistent phase-field model with BCs based on electrochemical equilibria. We chose Pb(Zr 0.2Ti 0.8)O 3 ultrathin film consisting of (001) oriented single tetragonal domain ( Pz) asmore » a model system and systematically studied the effects of oxygen partial pressure, temperature, and surface ions on the ferroelectric state and compared it with the case of complete screening. We have further explored the polarization switching induced by the oxygen partial pressure and observed pronounced size effect induced by chemical screening. Finally, our paper thus helps to understand the emergent phenomena in ferroelectric thin films brought about by the electrochemical ionic surface compensations.« less
NASA Astrophysics Data System (ADS)
Wibowo, Arief Cahyo
Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination polymer ranging from 1D supramolecular structures to true 3D coordination polymers is covered in Chapter 4. The observation of a new 2D Kagome lattice and unique layered perovskite-type bismuth-based coordination polymers and their photoluminescence properties is the focus of Chapter 5. In chapters 6 and 7, a successful approach to implement our novel hybrid strategy for synthesizing enantiomerically pure single crystals consisting of Second Order Jahn Teller (SOJT)-possessing main group metal cations, specifically bismuth and tin, and homochiral ligands or unsymmetric ligands is discussed. The new MOMs with polar space groups exhibit second harmonic generation and have potential for ferroelectric properties.
NASA Astrophysics Data System (ADS)
Bhatt, Pramod; Mukadam, M. D.; Mandal, B. P.; Yusuf, S. M.
2018-04-01
The one-dimensional (1-D) single chain molecular magnet [{FeII(Δ)FeII(Λ)}0.5{CrII(Δ)CrII(Λ)}0.5(ox)2(phen)2] is hydrothermally synthesized using oxalate (ox) and phenanthroline (phen) ligands with transition metal ions (Fe and Cr). The compound is characterized using x-ray diffraction, dc magnetization measurements and P-E ferroelectric loop measurements. The diffraction analysis using Rietveld refinement confirms a single phase formation of the compound in monoclinic structure with space group of P21. The compound crystallizes in 1-D chain like structure containing two different crystallographic sites of metal ions (Δ- and Λ-), which are bridged by the ox ligand and Phen ligand. These two metals site are different in bond length and bond angles results lattice distortions. The lattice distortion induces ferroelectric behavior in the compound which is discussed in terms of lattice distortion induced dipole moments.
Ferroelectric Based High Power Components for L-Band Accelerator Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanareykin, Alex; Jing, Chunguang; Kostin, Roman
2018-01-16
We are developing a new electronic device to control the power in particle accelerators. The key technology is a new nanostructured material developed by Euclid that changes its properties with an applied electric field. Both superconducting and conventional accelerating structures require fast electronic control of the input rf power. A fast controllable phase shifter would allow for example the control of the rf power delivered to multiple accelerating cavities from a single power amplifier. Nonlinear ferroelectric microwave components can control the tuning or the input power coupling for rf cavities. Applying a bias voltage across a nonlinear ferroelectric changes itsmore » permittivity. This effect can be used to cause a phase change of a propagating rf signal or change the resonant frequency of a cavity. The key is the development of a low loss highly tunable ferroelectric material.« less
NASA Astrophysics Data System (ADS)
Liu, Xing; Fang, Bijun; Deng, Ji; Yan, Hong; Deng, Hao; Yue, Qingwen; Ding, Jianning; Zhao, Xiangyong; Luo, Haosu
2016-01-01
In this work, the temperature-dependent Raman spectra and electrical properties of the [001]-oriented 0.5 mol. % Mn-doped 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. All the unpoled and poled PIMNT-Mn single crystals experience a ferroelectric tetragonal phase to paraelectric cubic phase transition (FET-PC) around 183 °C (TC), which exhibits a second-order transition behavior. Whereas, the poled PIMNT-Mn single crystals exhibit another two dielectric anomalies around 130 °C (TRM) and 148 °C (TMT), in which the ferroelectric rhombohedral phase to ferroelectric monoclinic phase (FER-FEM) and the ferroelectric monoclinic phase to ferroelectric tetragonal phase (FEM-FET) transitions take place, respectively. Both the two ferroelectric phase transitions exhibit a first-order transition behavior. The discontinuous change of the phase degree (θ) and frequencies (fr and fa) around TRM suggest the occurrence of the FER-FEM phase transition in the poled PIMNT-Mn single crystals. The narrowing of the 510 cm-1 and 582 cm-1 Raman modes around the TRM, TMT, and TC temperatures shown in the temperature-dependent Raman spectra suggests their increased ordering of the local structure. The intensity ratio of I272 cm-1/I801 cm-1 increases obviously around the phase transition temperatures (TRM, TMT, and TC), indicating the reduction of the long-range order. The anomalous broadening of the 272 cm-1 Raman mode around the TRM, TMT, and TC temperatures indicates the occurrence of the successive ferroelectric phase transitions (FER-FEM, FEM-FET, and FET-PC) with increasing temperature in the poled PIMNT-Mn single crystals.
Enhanced electrocaloric cooling in ferroelectric single crystals by electric field reversal
NASA Astrophysics Data System (ADS)
Ma, Yang-Bin; Novak, Nikola; Koruza, Jurij; Yang, Tongqing; Albe, Karsten; Xu, Bai-Xiang
2016-09-01
An improved thermodynamic cycle is validated in ferroelectric single crystals, where the cooling effect of an electrocaloric refrigerant is enhanced by applying a reversed electric field. In contrast to the conventional adiabatic heating or cooling by on-off cycles of the external electric field, applying a reversed field is significantly improving the cooling efficiency, since the variation in configurational entropy is increased. By comparing results from computer simulations using Monte Carlo algorithms and experiments using direct electrocaloric measurements, we show that the electrocaloric cooling efficiency can be enhanced by more than 20% in standard ferroelectrics and also relaxor ferroelectrics, like Pb (Mg1 /3 /Nb2 /3)0.71Ti0.29O3 .
NASA Astrophysics Data System (ADS)
Cordero, F.
2018-03-01
A method is proposed for evaluating the potential piezoelectric response, that a ferroelectric material would exhibit after full poling, from elastic and dielectric measurements of the unpoled ceramic material. The method is based on the observation that the softening in a ferroelectric phase with respect to the paraelectric phase is of piezoelectric origin, and is tested on BaTiO3. The angular averages of the piezoelectric softening in unpoled ceramics are calculated for ferroelectric phases of different symmetries. The expression of the orientational average with the piezoelectric and dielectric constants of single crystal tetragonal BaTiO3 from the literature reproduces well the softening of the Young's modulus of unpoled ceramic BaTiO3, after a correction for the porosity. The agreement is good in the temperature region sufficiently far from the Curie temperature and from the transition to the orthorhombic phase, where the effect of fluctuations should be negligible, but deviations are found outside this region, and possible reasons for this are discussed. This validates the determination of the piezoelectric response by means of purely elastic measurements on unpoled samples. The method is indirect and, for quantitative assessments, requires the knowledge of the dielectric tensor. On the other hand, it does not require poling of the sample, and therefore is insensitive to inaccuracies from incomplete poling, and can even be used with materials that cannot be poled, for example, due to excessive electrical conductivity. While the proposed example of the Young's modulus of a ceramic provides an orientational average of all the single crystal piezoelectric constants, a Resonant Ultrasound Spectroscopy measurement of a single unpoled ceramic sample through the ferroelectric transition can in principle measure all the piezoelectric constants, together with the elastic ones.
BaTiO3-based nanolayers and nanotubes: first-principles calculations.
Evarestov, Robert A; Bandura, Andrei V; Kuruch, Dmitrii D
2013-01-30
The first-principles calculations using hybrid exchange-correlation functional and localized atomic basis set are performed for BaTiO(3) (BTO) nanolayers and nanotubes (NTs) with the structure optimization. Both the cubic and the ferroelectric BTO phases are used for the nanolayers and NTs modeling. It follows from the calculations that nanolayers of the different ferroelectric BTO phases have the practically identical surface energies and are more stable than nanolayers of the cubic phase. Thin nanosheets composed of three or more dense layers of (0 1 0) and (0 1 1[overline]) faces preserve the ferroelectric displacements inherent to the initial bulk phase. The structure and stability of BTO single-wall NTs depends on the original bulk crystal phase and a wall thickness. The majority of the considered NTs with the low formation and strain energies has the mirror plane perpendicular to the tube axis and therefore cannot exhibit ferroelectricity. The NTs folded from (0 1 1[overline]) layers may show antiferroelectric arrangement of Ti-O bonds. Comparison of stability of the BTO-based and SrTiO(3)-based NTs shows that the former are more stable than the latter. Copyright © 2012 Wiley Periodicals, Inc.
Tu, Zhengyuan; Wu, Menghao; Zeng, Xiao Cheng
2017-05-04
Coexistence of ferromagnetism and ferroelectricity in a single 2D material is highly desirable for integration of multifunctional units in 2D material-based circuits. We report theoretical evidence of C 6 N 8 H organic network as being the first 2D organic multiferroic material with coexisting ferromagnetic and ferroelectric properties. The ferroelectricity stems from multimode proton-transfer within the 2D C 6 N 8 H network, in which a long-range proton-transfer mode is enabled by the facilitation of oxygen molecule when the network is exposed to the air. Such oxygen-assisted ferroelectricity also leads to a high Curie temperature and coupling between ferroelectricity and ferromagnetism. We also find that hydrogenation and carbon doping can transform the 2D g-C 3 N 4 network from an insulator to an n-type/p-type magnetic semiconductor with modest bandgap. Akin to the dopant induced n/p channels in silicon wafer, a variety of dopant created functional units can be integrated into the g-C 3 N 4 wafer by design for nanoelectronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fei; Zhang, Shujun; Yang, Tiannan
The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric propertiesmore » is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.« less
Electrooptic crystal growth and properties
NASA Astrophysics Data System (ADS)
1994-02-01
A new member in the tungsten-bronze family of ferroelectric lead potassium niobate (PKN), with general formula Pb(1-x)K(2x)Nb2O6, has been grown as bulk single crystal. Growth of PKN with charge composition x = 0.23 has been achieved using the Czochralski technique of crystal pulling. Large diameter boules were grown in platinum crucibles at temperatures between 1280 and 1300 C. Crystallographic studies were conducted using x ray diffraction techniques. The samples were characterized for ferroelectric properties between 25 and 600 C and for optical absorption. This paper presents the crystal synthesis and the results of ferroelectric and optical characterization. Bulk single crystals of potassium tantalate niobate, KTa(1-x)Nb(x)O3, ferroelectric with different values of Ta/Nb ratios have been grown by temperature gradient transport technique (TGTT). A second attached paper presents the results of the crystal growth experiments, ferroelectric characterization techniques, and properties of potassium tantalate niobate crystals.
NASA Astrophysics Data System (ADS)
Lu, Zhongyuan; Serrao, Claudy; Khan, Asif Islam; You, Long; Wong, Justin C.; Ye, Yu; Zhu, Hanyu; Zhang, Xiang; Salahuddin, Sayeef
2017-07-01
We demonstrate non-volatile, n-type, back-gated, MoS2 transistors, placed directly on an epitaxial grown, single crystalline, PbZr0.2Ti0.8O3 (PZT) ferroelectric. The transistors show decent ON current (19 μA/μm), high on-off ratio (107), and a subthreshold swing of (SS ˜ 92 mV/dec) with a 100 nm thick PZT layer as the back gate oxide. Importantly, the ferroelectric polarization can directly control the channel charge, showing a clear anti-clockwise hysteresis. We have self-consistently confirmed the switching of the ferroelectric and corresponding change in channel current from a direct time-dependent measurement. Our results demonstrate that it is possible to obtain transistor operation directly on polar surfaces, and therefore, it should be possible to integrate 2D electronics with single crystalline functional oxides.
The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fei; Zhang, Shujun; Yang, Tiannan
The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric propertiesmore » is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.« less
The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals
Li, Fei; Zhang, Shujun; Yang, Tiannan; ...
2016-12-19
The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric propertiesmore » is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.« less
Magnetic glass-film based on single-nanosize 𝜺 -Fe2O3 nanoparticles
NASA Astrophysics Data System (ADS)
Yoshikiyo, Marie; Namai, Asuka; Nakagawa, Kosuke; Ohkoshi, Shin-ichi
2017-05-01
We report a magnetic thin film of single-nanosize ɛ-Fe2O3 in SiO2 matrix. The glass-film was prepared by sintering a silica coated iron oxide hydroxide on a quartz substrate in air. The glass-film consists of ɛ-Fe2O3 of 8.8 nm size, and its thickness was 570 nm (0.57 μm) with a roughness of 10 nm (0.01 μm). UV-vis spectrum showed that the glass-film has small absorbance of 0.043 at 500 nm. The magneto-optical effect was investigated, and Faraday ellipticity showed a magnetic hysteresis loop with a coercive field of 3.0 ± 0.2 kOe. Furthermore, single-nanosize ɛ-Fe2O3 without silica was prepared as a reference sample, and ferroelectricity was observed. Therefore, the present thin glass-film consists of single-nanosize ferroelectric-ferromagnetic nanoparticles.
Changing Dielectrics into Multiferroics---Alchemy Enabled by Strain
NASA Astrophysics Data System (ADS)
Schlom, Darrell
2011-03-01
Ferroelectric ferromagnets are exceedingly rare, fundamentally interesting multiferroic materials. The properties of what few compounds simultaneously exhibit these phenomena pale in comparison to useful ferroelectrics or ferromagnets: their spontaneous polarizations (Ps) or magnetizations (Ms) are smaller by a factor of 1000 or more. The same holds for (magnetic or electric) field-induced multiferroics. Recently, however, Fennie and Rabe proposed a new route to ferroelectric ferromagnets---transforming magnetically ordered insulators that are neither ferroelectric nor ferromagnetic, of which there are many, into ferroelectric ferromagnets using a single control parameter: strain. The system targeted, EuTi O3 , was predicted to simultaneously exhibit strong ferromagnetism (Ms ~ ~ ~7~μB /Eu) and strong ferroelectricity (Ps ~ ~ ~10~ μ C/cm2) under large biaxial compressive strain. These values are orders of magnitude higher than any known ferroelectric ferromagnet and rival the best materials that are solely ferroelectric or ferromagnetic. Hindered by the absence of an appropriate substrate to provide the desired compression, we show 3 both experimentally and theoretically the emergence of a multiferroic state under biaxial tension with the unexpected benefit that even lower misfits are required, thereby enabling higher quality crystalline films. The resulting genesis of a strong ferromagnetic ferroelectric points the way to high temperature manifestations of this spin-phonon coupling mechanism. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics. C.J. Fennie and K.M. Rabe, Phys. Rev. Lett. 97 (2006) 267602.
Analysis and design of ferroelectric-based smart antenna structures
NASA Astrophysics Data System (ADS)
Ramesh, Prashanth; Washington, Gregory N.
2009-03-01
Ferroelectrics in microwave antenna systems offer benefits of electronic tunability, compact size and light weight, speed of operation, high power-handling, low dc power consumption, and potential for low loss and cost. Ferroelectrics allow for the tuning of microwave devices by virtue of the nonlinear dependence of their dielectric permittivity on an applied electric field. Experiments on the field-polarization dependence of ferroelectric thin films show variation in dielectric permittivity of up to 50%. This is in contrast to the conventional dielectric materials used in electrical devices which have a relatively constant permittivity, indicative of the linear field-polarization curve. Ferroelectrics, with their variable dielectric constant introduce greater flexibility in correction and control of beam shapes and beam direction of antenna structures. The motivation behind this research is applying ferroelectrics to mechanical load bearing antenna structures, but in order to develop such structures, we need to understand not just the field-permittivity dependence, but also the coupled electro-thermo-mechanical behavior of ferroelectrics. In this paper, two models are discussed: a nonlinear phenomenological model relating the applied fields, strains and temperature to the dielectric permittivity based on the Devonshire thermodynamic framework, and a phenomenological model relating applied fields and temperature to the dielectric loss tangent. The models attempt to integrate the observed field-permittivity, strain-permittivity and temperature-permittivity behavior into one single unified model and extend the resulting model to better fit experimental data. Promising matches with experimental data are obtained. These relations, coupled with the expression for operating frequency vs. the permittivity are then used to understand the bias field vs. frequency behavior of the antenna. Finally, the effect of the macroscopic variables on the antenna radiation efficiency is discussed.
NASA Astrophysics Data System (ADS)
Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.
2015-03-01
Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.
Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials.
Grinberg, Ilya; West, D Vincent; Torres, Maria; Gou, Gaoyang; Stein, David M; Wu, Liyan; Chen, Guannan; Gallo, Eric M; Akbashev, Andrew R; Davies, Peter K; Spanier, Jonathan E; Rappe, Andrew M
2013-11-28
Ferroelectrics have recently attracted attention as a candidate class of materials for use in photovoltaic devices, and for the coupling of light absorption with other functional properties. In these materials, the strong inversion symmetry breaking that is due to spontaneous electric polarization promotes the desirable separation of photo-excited carriers and allows voltages higher than the bandgap, which may enable efficiencies beyond the maximum possible in a conventional p-n junction solar cell. Ferroelectric oxides are also stable in a wide range of mechanical, chemical and thermal conditions and can be fabricated using low-cost methods such as sol-gel thin-film deposition and sputtering. Recent work has shown how a decrease in ferroelectric layer thickness and judicious engineering of domain structures and ferroelectric-electrode interfaces can greatly increase the current harvested from ferroelectric absorber materials, increasing the power conversion efficiency from about 10(-4) to about 0.5 per cent. Further improvements in photovoltaic efficiency have been inhibited by the wide bandgaps (2.7-4 electronvolts) of ferroelectric oxides, which allow the use of only 8-20 per cent of the solar spectrum. Here we describe a family of single-phase solid oxide solutions made from low-cost and non-toxic elements using conventional solid-state methods: [KNbO3]1 - x[BaNi1/2Nb1/2O3 - δ]x (KBNNO). These oxides exhibit both ferroelectricity and a wide variation of direct bandgaps in the range 1.1-3.8 electronvolts. In particular, the x = 0.1 composition is polar at room temperature, has a direct bandgap of 1.39 electronvolts and has a photocurrent density approximately 50 times larger than that of the classic ferroelectric (Pb,La)(Zr,Ti)O3 material. The ability of KBNNO to absorb three to six times more solar energy than the current ferroelectric materials suggests a route to viable ferroelectric semiconductor-based cells for solar energy conversion and other applications.
Semiconductor-based, large-area, flexible, electronic devices
Goyal, Amit [Knoxville, TN
2011-03-15
Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.
Scalable ferroelectric MOS capacitors comprised of single crystalline SrZrxTi1-xO3 on Ge.
NASA Astrophysics Data System (ADS)
Moghadam, Reza; Xiao, Z.-Y.; Ahmadi-Majlan, K.; Grimley, E.; Ong, P. V.; Lebeau, J. M.; Chambers, S. A.; Hong, X.; Sushko, P.; Ngai, J. H.
The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to field-effect devices that require very little power to operate, or that possess both logic and memory functionalities. The development of metal-oxide-semiconductor (MOS) capacitors in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel is essential in order to realize such field-effect devices. Here we demonstrate that scalable, ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x = 0.7) that has been epitaxially grown on Ge. Single crystalline SrZrxTi1-xO3 exhibits characteristics that are ideal for a ferroelectric gate material, namely, a type-I band offset with respect to Ge, large coercive fields and polarization that can be enhanced with electric field. The latter characteristic stems from the relaxor nature of SrZrxTi1-xO3. These properties enable MOS capacitors with 5 nm thick SrZrxTi1-xO3 layers to exhibit a nearly 2 V wide hysteretic window in the capacitance-voltage characteristics. The realization of ferroelectric MOS capacitors with technologically relevant gate thicknesses opens the pathway to practical field effect devices. NSF DMR 1508530.
NASA Astrophysics Data System (ADS)
Zhuo, Fangping; Li, Qiang; Yan, Qingfeng; Zhang, Yiling; Wu, Hong-Hui; Xi, Xiaoqing; Chu, Xiangcheng; Cao, Wenwu
2017-10-01
Temperature induced phase transitions and electrocaloric effect (ECE) of (Pb,La)(Zr,Sn,Ti)O3 (PLZST) single crystals have been comprehensively studied. Based on the in situ evolution of domain structures and dielectric properties of the PLZST crystals, the phase transitions during heating are in the sequence of orthorhombic antiferroelectric → rhombohedral ferroelectric → cubic paraelectric. Coexistence of the negative and positive ECEs has been achieved in the PLZST single crystals. A negative ECE value of -1.26 °C and enhanced electrocaloric strength of -0.21 K mm/kV near the Curie temperature have been obtained. A modified Landau model gives a satisfactory description of the experimentally observed unusual ECE. Moreover, a temperature-electric field phase diagram is also established based on theoretical analysis. Our results will help people understand better the electrocaloric family, particularly on the negative and/or positive effect in antiferroelectrics and ferroelectrics.
NASA Astrophysics Data System (ADS)
Ohkubo, I.; Christen, H. M.; Kalinin, Sergei V.; Jellison, G. E.; Rouleau, C. M.; Lowndes, D. H.
2004-02-01
We have developed a multisample film growth method on a temperature-gradient substrate holder to quickly optimize the film growth temperature in pulsed-laser deposition. A smooth temperature gradient is achieved, covering a range of temperatures from 200 to 830 °C. In a single growth run, the optimal growth temperature for SrxBa1-xNb2O6 thin films on MgO(001) substrates was determined to be 750 °C, based on results from ellipsometry and piezoresponse force microscopy. Variations in optical properties and ferroelectric domains structures were clearly observed as function of growth temperature, and these physical properties can be related to their different crystalline quality. Piezoresponse force microscopy indicated the formation of uniform ferroelectric film for deposition temperatures above 750 °C. At 660 °C, isolated micron-sized ferroelectric islands were observed, while samples deposited below 550 °C did not exhibit clear piezoelectric contrast.
Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study
NASA Astrophysics Data System (ADS)
Liu, Xiang; Mi, Wen-Bo
2018-04-01
As a single-phase multiferroic material, Fe3O4 exhibits spontaneous ferroelectric polarization below 38 K. However, the nature of the ferroelectricity in Fe3O4 and effect of external disturbances such as strain on it remains ambiguous. Here, the spontaneous ferroelectric polarization of low-temperature monoclinic Fe3O4 was investigated by first-principles calculations. The pseudo-centrosymmetric Fe B42-Fe B43 pair has a different valence state. The noncentrosymmetric charge distribution results in ferroelectric polarization. The initial ferroelectric polarization direction is in the - x and - z directions. The ferroelectricity along the y axis is limited owing to the symmetry of the Cc space group. Both the ionic displacement and charge separation at the Fe B42-Fe B43 pair are affected by strain, which further influences the spontaneous ferroelectric polarization of monoclinic Fe3O4. The ferroelectric polarization along the z axis exhibits an increase of 45.3% as the strain changes from 6% to -6%.
NASA Astrophysics Data System (ADS)
Tan, Qiuhong; Wang, Qianjin; Liu, Yingkai; Yan, Hailong; Cai, Wude; Yang, Zhikun
2018-04-01
Ferroelectric field-effect transistors (FeFETs) with single-walled carbon nanotube (SWCNT) dominated micron-wide stripe patterned as channel, (Bi,Nd)4Ti3O12 films as insulator, and HfO2 films as defect control layer were developed and fabricated. The prepared SWCNT-FeFETs possess excellent properties such as large channel conductance, high on/off current ratio, high channel carrier mobility, great fatigue endurance performance, and data retention. Despite its thin capacitance equivalent thickness, the gate insulator with HfO2 defect control layer shows a low leakage current density of 3.1 × 10-9 A/cm2 at a gate voltage of - 3 V.
Tan, Qiuhong; Wang, Qianjin; Liu, Yingkai; Yan, Hailong; Cai, Wude; Yang, Zhikun
2018-04-27
Ferroelectric field-effect transistors (FeFETs) with single-walled carbon nanotube (SWCNT) dominated micron-wide stripe patterned as channel, (Bi,Nd) 4 Ti 3 O 12 films as insulator, and HfO 2 films as defect control layer were developed and fabricated. The prepared SWCNT-FeFETs possess excellent properties such as large channel conductance, high on/off current ratio, high channel carrier mobility, great fatigue endurance performance, and data retention. Despite its thin capacitance equivalent thickness, the gate insulator with HfO 2 defect control layer shows a low leakage current density of 3.1 × 10 -9 A/cm 2 at a gate voltage of - 3 V.
Flexible ferroelectric element based on van der Waals heteroepitaxy.
Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao
2017-06-01
We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems.
Flexible ferroelectric element based on van der Waals heteroepitaxy
Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao
2017-01-01
We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems. PMID:28630922
2011-01-01
In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7)O3 (PZT)] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM) and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data. PMID:21794156
Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon
2016-01-21
Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.
NASA Astrophysics Data System (ADS)
Huang, T.; Zhang, P.; Xu, L. P.; Chen, C.; Zhang, J. Z.; Hu, Z. G.; Luo, H. S.; Chu, J. H.
2016-10-01
Optical properties, electronic structures, and structural variations of x wt% cobalt (Co) doped Na0.5Bi0.5TiO3-6%BaTiO3 (x=0%, 0.5%, 0.8%) single crystals have been studied by temperature-dependent optical ellipsometry and Raman spectra from 250 to 650 K. Based on the temperature evolution of electronic transitions (Ecp1 and Ecp2) and the phonon modes involving Ti-O vibrations, two critical temperature points exhibit an increasing trend with Co dopants, which are related to structural variations for ferroelectric to anti-ferroelectric, and anti-ferroelectric to paraelectric transition, respectively. Additionally, distinguishing abnormal phonon behaviors can be observed from Raman spectra for the crystal of x=0.5% and 0.8%, which show reverse frequency shift of the modes involving Ti-O vibration. It can be ascribed to different relative concentration of Co2+ and Co3+ in the crystals, which has been confirmed by X-ray Photoelectron Spectroscopy data.
Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Das, Abhijit; Boruah, Bosanta R.
2014-04-01
In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.
Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels
NASA Astrophysics Data System (ADS)
Wang, Xudong; Liu, Chunsen; Chen, Yan; Wu, Guangjian; Yan, Xiao; Huang, Hai; Wang, Peng; Tian, Bobo; Hong, Zhenchen; Wang, Yutao; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Tang, Minghua; Zhou, Peng; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao; Li, Zheng
2017-06-01
Graphene and other two-dimensional materials have received considerable attention regarding their potential applications in nano-electronics. Here, we report top-gate nonvolatile memory field-effect transistors (FETs) with different layers of MoSe2 nanosheets channel gated by ferroelectric film. The conventional gate dielectric of FETs was replaced by a ferroelectric thin film that provides a ferroelectric polarization electric field, and therefore defined as an Fe-FET where the poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) was used as the gate dielectric. Among the devices with MoSe2 channels of different thicknesses, the device with a single layer of MoSe2 exhibited a large hysteresis of electronic transport with an over 105 write/erase ratio, and displayed excellent retention and endurance performance. The possible mechanism of the device’s good properties was qualitatively analyzed using band theory. Additionally, a comprehensive study comparing the memory properties of MoSe2 channels of different thicknesses is presented. Increasing the numbers of MoSe2 layers was found to cause a reduced memory window. However, MoSe2 thickness of 5 nm yielded a write/erase ratio of more than 103. The results indicate that, based on a Fe-FET structure, the combination of two-dimensional semiconductors and organic ferroelectric gate dielectrics shows good promise for future applications in nonvolatile ferroelectric memory.
Ferroelectric domain wall motion induced by polarized light
Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.
2015-01-01
Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918
Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching
Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; ...
2015-01-14
The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-lossmore » spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.« less
NASA Astrophysics Data System (ADS)
Marathe, Madhura; Renggli, Damian; Sanlialp, Mehmet; Karabasov, Maksim O.; Shvartsman, Vladimir V.; Lupascu, Doru C.; Grünebohm, Anna; Ederer, Claude
2017-07-01
We study the electrocaloric (EC) effect in bulk BaTiO3 (BTO) using molecular dynamics simulations of a first principles-based effective Hamiltonian, combined with direct measurements of the adiabatic EC temperature change in BTO single crystals. We examine in particular the dependence of the EC effect on the direction of the applied electric field at all three ferroelectric transitions, and we show that the EC response is strongly anisotropic. Most strikingly, an inverse caloric effect, i.e., a temperature increase under field removal, can be observed at both ferroelectric-ferroelectric transitions for certain orientations of the applied field. Using the generalized Clausius-Clapeyron equation, we show that the inverse effect occurs exactly for those cases where the field orientation favors the higher temperature/higher entropy phase. Our simulations show that temperature changes of around 1 K can, in principle, be obtained at the tetragonal-orthorhombic transition close to room temperature, even for small applied fields, provided that the applied field is strong enough to drive the system across the first-order transition line. Our direct EC measurements for BTO single crystals at the cubic-tetragonal and at the tetragonal-orthorhombic transitions are in good qualitative agreement with our theoretical predictions, and in particular confirm the occurrence of an inverse EC effect at the tetragonal-orthorhombic transition for electric fields applied along the [001] pseudocubic direction.
Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor
NASA Astrophysics Data System (ADS)
Shin, Hyun Wook; Son, Jong Yeog
2018-01-01
We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.
Future Development of Dense Ferroelectric Memories for Space Applications
NASA Technical Reports Server (NTRS)
Philpy, Stephen C.; Derbenwick, Gary F.
2001-01-01
The availability of high density, radiation tolerant, nonvolatile memories is critical for space applications. Ferroelectric memories, when fabricated with radiation hardened complementary metal oxide semiconductors (CMOS), can be manufactured and packaged to provide high density replacements for Flash memory, which is not radiation tolerant. Previous work showed ferroelectric memory cells to be resistant to single event upsets and proton irradiation, and ferroelectric storage capacitors to be resistant to neutron exposure. In addition to radiation hardness, the fast programming times, virtually unlimited endurance, and low voltage, low power operation make ferroelectric memories ideal for space missions. Previously, a commercial double level metal 64-kilobit ferroelectric memory was presented. Although the capabilities of radiation hardened wafer fabrication facilities lag behind those of the most modern commercial wafer fabrication facilities, several paths to achieving radiation tolerant, dense ferroelectric memories are emerging. Both short and long term solutions are presented in this paper. Although worldwide major semiconductor companies are introducing commercial ferroelectric memories, funding limitations must be overcome to proceed with the development of high density, radiation tolerant ferroelectric memories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelinck, G. H., E-mail: Gerwin.Gelinck@tno.nl; Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven; Breemen, A. J. J. M. van
Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.
Jung, Sungchul; Jeon, Youngeun; Jin, Hanbyul; Lee, Jung-Yong; Ko, Jae-Hyeon; Kim, Nam; Eom, Daejin; Park, Kibog
2016-01-01
An enormous amount of research activities has been devoted to developing new types of non-volatile memory devices as the potential replacements of current flash memory devices. Theoretical device modeling was performed to demonstrate that a huge change of tunnel resistance in an Edge Metal-Insulator-Metal (EMIM) junction of metal crossbar structure can be induced by the modulation of electric fringe field, associated with the polarization reversal of an underlying ferroelectric layer. It is demonstrated that single three-terminal EMIM/Ferroelectric structure could form an active memory cell without any additional selection devices. This new structure can open up a way of fabricating all-thin-film-based, high-density, high-speed, and low-power non-volatile memory devices that are stackable to realize 3D memory architecture. PMID:27476475
NASA Astrophysics Data System (ADS)
Burnett, T. L.; Weaver, P. M.; Blackburn, J. F.; Stewart, M.; Cain, M. G.
2010-08-01
The functional properties of ferroelectric ceramic bulk or thin film materials are strongly influenced by their nanostructure, crystallographic orientation, and structural geometry. In this paper, we show how, by combining textural analysis, through electron backscattered diffraction, with piezoresponse force microscopy, quantitative measurements of the piezoelectric properties can be made at a scale of 25 nm, smaller than the domain size. The combined technique is used to obtain data on the domain-resolved effective single crystal piezoelectric response of individual crystallites in Pb(Zr0.4Ti0.6)O3 ceramics. The results offer insight into the science of domain engineering and provide a tool for the future development of new nanostructured ferroelectric materials for memory, nanoactuators, and sensors based on magnetoelectric multiferroics.
NASA Astrophysics Data System (ADS)
Shkuratov, Sergey I.; Baird, Jason; Antipov, Vladimir G.; Hackenberger, Wesley; Luo, Jun; Zhang, Shujun; Lynch, Christopher S.; Chase, Jay B.; Jo, Hwan R.; Roberts, Christopher C.
2018-03-01
The development of relaxor ferroelectric single crystal technology is driven by the ability to tailor ferroelectric properties through domain engineering not achievable in polycrystalline materials. In this study, three types of domain-engineered rhombohedral Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals were subjected to transverse high strain rate loading. The experimental results indicate that the domain configuration has a significant effect on the stress-induced depolarization and the associated charge released. A complete depolarization of the single-domain crystals with 3m symmetry is observed, while multidomain crystals with 4mm and mm2 symmetries retain a fraction of their initial remanent polarization. The complete depolarization of single-domain crystals is unique without transition to a non-polar phase, with a stress-induced charge density of 0.48 C/m2. This is up to three times higher than that of the multidomain crystals and PbZrxTi1-xO3 ferroelectric ceramics that are critical for ultrahigh-power transducer applications. The main offering of this work is to propose a detailed mechanism for complete stress-induced depolarization in ferroelectric crystals which does not involve an intermediate transformation to a non-polar phase.
Ferroelectric memory evaluation and development system
NASA Astrophysics Data System (ADS)
Bondurant, David W.
Attention is given to the Ramtron FEDS-1, an IBM PC/AT compatible single-board 16-b microcomputer with 8-kbyte program/data memory implemented with nonvolatile ferroelectric dynamic RAM. This is the first demonstration of a new type of solid state nonvolatile read/write memory, the ferroelectric RAM (FRAM). It is suggested that this memory technology will have a significant impact on avionics system performance and reliability.
Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions.
Yamada, Hiroyuki; Garcia, Vincent; Fusil, Stéphane; Boyn, Sören; Marinova, Maya; Gloter, Alexandre; Xavier, Stéphane; Grollier, Julie; Jacquet, Eric; Carrétéro, Cécile; Deranlot, Cyrile; Bibes, Manuel; Barthélémy, Agnès
2013-06-25
Ferroelectric tunnel junctions enable a nondestructive readout of the ferroelectric state via a change of resistance induced by switching the ferroelectric polarization. We fabricated submicrometer solid-state ferroelectric tunnel junctions based on a recently discovered polymorph of BiFeO3 with giant axial ratio ("T-phase"). Applying voltage pulses to the junctions leads to the highest resistance changes (OFF/ON ratio >10,000) ever reported with ferroelectric tunnel junctions. Along with the good retention properties, this giant effect reinforces the interest in nonvolatile memories based on ferroelectric tunnel junctions. We also show that the changes in resistance scale with the nucleation and growth of ferroelectric domains in the ultrathin BiFeO3 (imaged by piezoresponse force microscopy), thereby suggesting potential as multilevel memory cells and memristors.
Ievlev, Anton; Kalinin, Sergei V.
2015-05-28
Ferroelectric materials are broadly considered for information storage due to extremely high storage and information processing densities they enable. To date, ferroelectric based data storage has invariably relied on formation of cylindrical domains, allowing for binary information encoding. Here we demonstrate and explore the potential of high-density encoding based on domain morphology. We explore the domain morphogenesis during the tip-induced polarization switching by sequences of positive and negative pulses in a lithium niobate single-crystal and demonstrate the principal of information coding by shape and size of the domains. We applied cross-correlation and neural network approaches for recognition of the switchingmore » sequence by the shape of the resulting domains and establish optimal parameters for domain shape recognition. These studies both provide insight into the highly non-trivial mechanism of domain switching and potentially establish a new paradigm for multilevel information storage and content retrieval memories. Furthermore, this approach opens a pathway to exploration of domain switching mechanisms via shape analysis.« less
Strong Dzyaloshinskii-Moriya Interaction and Origin of Ferroelectricity in Cu2OSeO3
NASA Astrophysics Data System (ADS)
Yang, Ji-Hui; Li, Zheng-Lu; Lu, Xuezeng; Gong, X. G.; Xiang, Hongjun; Whangbo, M.-H.; Wei, Su-Huai
2013-03-01
In this work, we try to understand the skyrmions recently observed experimentally in Cu2OSeO3 system, as well as its origin of ferroelectricity. Based on the spin Hamiltonian, we developed four-state-energy-mapping method to derive these spin interaction parameters. For this system, we found a very large ratio between the DM term and the symmetric exchange interaction. Besides, the spin arrangements in the ground state are found degenerate and the spin energy is independent of the propagation vector q. Taking these two factors into account, we explained the experimental observation of skyrmions to some extent. Then we built a model to describe the polarization of this system. By the symmetry analysis, the ferroelectricity is supposed to result from the spin single-site term, as is confirmed by direct calculations of our model. Using this model, we analyzed its ferroelectricity dependence of the spin arrangement and find the largest polarization happens when the spins are along <111> direction, in excellent agreement with the experimental results. NSFC, Special Funds for Major State Basic Research, Pujiang plan, FANEDD
NASA Astrophysics Data System (ADS)
Cai, Tian-Yi; Liu, Shi-Chen; Ju, Sheng; Liu, Cheng-You; Guo, Guang-Yu
2017-09-01
Ferroelectric oxides are attractive materials for constructing efficient solar cells. Nevertheless, a wide band gap of nearly 3.0 eV in these ferroelectric oxides would result in poor overall sunlight absorption and, hence, low energy conversion efficiency. Here, by systematic first-principles density-functional calculations, we demonstrate that double-perovskite semiconductors ScFe1-xCrxO3 (1 /6 ≤x ≤5 /6 ) with a narrow band gap of approximately 1.8 eV would simultaneously exhibit large ferroelectric polarization (100 μ C /cm2 ) and ferrimagnetic magnetization (170 emu/cm3 ). Within a Schottky-based model for a typical sandwich solar-cell structure, a power-conversion efficiency of 9.0% can be reached by neglecting all other sources of photovoltaicity in ferroelectric materials. This value is larger than the largest value of 8.1% observed in ferroelectric oxides. Furthermore, these double perovskites are found to be single-spin semiconductors, and the obtained photocurrent is fully spin polarized over almost the entire Sun spectrum. These fascinating advantages would make ScFex Cr1 -xO3 (1 /6 ≤x ≤5 /6 ) semiconductors promising candidates for highly efficient solar cells and spin photovoltaic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urushihara, Daisuke; Asaka, Toru, E-mail: asaka.toru@nitech.ac.jp; Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya 466-8555
We investigated the crystal structure and ferroelectric domains of Bi{sub 4}Ti{sub 3}O{sub 12} (BTO) by means of transmission electron microscopy (TEM) and single-crystal X-ray diffractometry. From the extinction rule, we determined that the space group in the ferroelectric phase of BTO is P1a1 rather than B2cb and B1a1 which have been proposed previously. We successfully refined the crystal structure based on the space group P1a1. The 180° and 90° ferroelectric domain structures were observed by the [001]-zone dark-field TEM imaging. In the 180° domain structure, we determined that one component of the polarization vector is parallel to the a-axis. Anmore » annular bright-field scanning transmission electron microscopy (ABF-STEM) was performed for the direct observation of the crystal structures. The ABF-STEM images displayed the contrasts with respect to every atomic position in spite of the highly distorted structure of BTO. We could evaluate the tilting and distortion of the [TiO{sub 6}] octahedra relatively. Therefore, we directly observed the ferroelectric displacements of Bi and Ti ions.« less
Mechanism of polarization switching in wurtzite-structured zinc oxide thin films
NASA Astrophysics Data System (ADS)
Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.; Kuwabara, Akihide; Shimizu, Takao; Yasui, Shintaro; Itoh, Mitsuru; Moriwake, Hiroki
2016-09-01
The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P63mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P63/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (Ec) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis lattice parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering Ec during polarization, with a 5% biaxial expansion resulting in a decrease of Ec to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.
Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics
Yang, Sang Mo; Morozovska, Anna N.; Kumar, Rajeev; ...
2017-05-01
Ferroelectricity on the nanoscale has been the subject of much fascination in condensed-matter physics for over half a century. In recent years, multiple reports claiming ferroelectricity in ultrathin ferroelectric films based on the formation of remnant polarization states, local electromechanical hysteresis loops, and pressure-induced switching were made. But, similar phenomena were reported for traditionally non-ferroelectric materials, creating a significant level of uncertainty in the field. We show that in nanoscale systems the ferroelectric state is fundamentally inseparable from the electrochemical state of the surface, leading to the emergence of a mixed electrochemical–ferroelectric state. We explore the nature, thermodynamics, and thicknessmore » evolution of such states, and demonstrate the experimental pathway to establish its presence. Our analysis reconciles multiple prior studies, provides guidelines for studies of ferroelectric materials on the nanoscale, and establishes the design paradigm for new generations of ferroelectric-based devices.« less
Quinuclidinium salt ferroelectric thin-film with duodecuple-rotational polarization-directions
NASA Astrophysics Data System (ADS)
You, Yu-Meng; Tang, Yuan-Yuan; Li, Peng-Fei; Zhang, Han-Yue; Zhang, Wan-Ying; Zhang, Yi; Ye, Heng-Yun; Nakamura, Takayoshi; Xiong, Ren-Gen
2017-04-01
Ferroelectric thin-films are highly desirable for their applications on energy conversion, data storage and so on. Molecular ferroelectrics had been expected to be a better candidate compared to conventional ferroelectric ceramics, due to its simple and low-cost film-processability. However, most molecular ferroelectrics are mono-polar-axial, and the polar axes of the entire thin-film must be well oriented to a specific direction to realize the macroscopic ferroelectricity. To align the polar axes, an orientation-controlled single-crystalline thin-film growth method must be employed, which is complicated, high-cost and is extremely substrate-dependent. In this work, we discover a new molecular ferroelectric of quinuclidinium periodate, which possesses six-fold rotational polar axes. The multi-axes nature allows the thin-film of quinuclidinium periodate to be simply prepared on various substrates including flexible polymer, transparent glasses and amorphous metal plates, without considering the crystallinity and crystal orientation. With those benefits and excellent ferroelectric properties, quinuclidinium periodate shows great potential in applications like wearable devices, flexible materials, bio-machines and so on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moghadam, Reza M.; Xiao, Zhiyong; Ahmadi-Majlan, Kamyar
The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to low-power field-effect devices that can be used for logic or memory. Essential to realizing such field-effect devices is the development of ferroelectric metal-oxide-semiconductor (MOS) capacitors, in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel. Here we demonstrate that ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x= 0.7) that has been epitaxially grown on Ge. We find that themore » ferroelectric properties of SrZrxTi1-xO3 are exceptionally robust, as gate layers as thin as 5 nm give rise to hysteretic capacitance-voltage characteristics that are 2 V in width. The development of ferroelectric MOS capacitors with gate thicknesses that are technologically relevant opens a pathway to realize scalable ferroelectric field-effect devices.« less
NASA Astrophysics Data System (ADS)
Debnath, Asim; Goswami, Debarghya; Mandal, Pradip Kumar
2018-04-01
Most of the liquid crystal display (LCD) devices starting from simplest wrist watches or calculators to complex laptops or flat TV sets are based on nematics. Although a tremendous improvement in the quality of display as well as reduction of manufacturing cost has taken place over the years, there are many issues which the LC industry is trying hard to address. Ferroelectric liquid crystals (FLC) are of current interest in the LCD industry since among various other advantages FLC based displays have micro-second order switching compared to milli-second order switching in nematic based displays. To meet the market demand much effort has been made to optimize the physical parameters of FLCs, such as temperature range, spontaneous polarization (PS), helical pitch (p), switching time (τ), tilt angle (θ) and rotational viscosity (γ). Multicomponent mixtures are, therefore, formulated to optimize all the required properties for practical applications since no single FLC compound can satisfy the above requirements. To the best of our knowledge electroclinic, ferroelectric and antiferroelectric liquid crystal mixtures have been formulated first time by any Indian group which have properties suitable for FLC based display devices and at par with mixtures used in the industry.
Frequency dependent polarisation switching in h-ErMnO3
NASA Astrophysics Data System (ADS)
Ruff, Alexander; Li, Ziyu; Loidl, Alois; Schaab, Jakob; Fiebig, Manfred; Cano, Andres; Yan, Zewu; Bourret, Edith; Glaum, Julia; Meier, Dennis; Krohns, Stephan
2018-04-01
We report an electric-field poling study of the geometrically-driven improper ferroelectric h-ErMnO3. From a detailed dielectric analysis, we deduce the temperature and the frequency dependent range for which single-crystalline h-ErMnO3 exhibits purely intrinsic dielectric behaviour, i.e., free from the extrinsic so-called Maxwell-Wagner polarisations that arise, for example, from surface barrier layers. In this regime, ferroelectric hysteresis loops as a function of frequency, temperature, and applied electric fields are measured, revealing the theoretically predicted saturation polarisation on the order of 5-6 μC/cm2. Special emphasis is put on frequency dependent polarisation switching, which is explained in terms of domain-wall movement similar to proper ferroelectrics. Controlling the domain walls via electric fields brings us an important step closer to their utilization in domain-wall-based electronics.
Sun, Yi-Lin; Xie, Dan; Xu, Jian-Long; Zhang, Cheng; Dai, Rui-Xuan; Li, Xian; Meng, Xiang-Jian; Zhu, Hong-Wei
2016-01-01
Double-gated field effect transistors have been fabricated using the SWCNT networks as channel layer and the organic ferroelectric P(VDF-TrFE) film spin-coated as top gate insulators. Standard photolithography process has been adopted to achieve the patterning of organic P(VDF-TrFE) films and top-gate electrodes, which is compatible with conventional CMOS process technology. An effective way for modulating the threshold voltage in the channel of P(VDF-TrFE) top-gate transistors under polarization has been reported. The introduction of functional P(VDF-TrFE) gate dielectric also provides us an alternative method to suppress the initial hysteresis of SWCNT networks and obtain a controllable ferroelectric hysteresis behavior. Applied bottom gate voltage has been found to be another effective way to highly control the threshold voltage of the networked SWCNTs based FETs by electrostatic doping effect. PMID:26980284
Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.
Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi
2014-06-11
Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.
A comparative study of the Aurivillius phase ferroelectrics CaBi 4Ti 4O 15 and BaBi 4Ti 4O 15
NASA Astrophysics Data System (ADS)
Tellier, J.; Boullay, Ph.; Manier, M.; Mercurio, D.
2004-06-01
The room temperature structures of the four-layer Aurivillius phase ferroelectrics CaBi 4Ti 4O 15 and BaBi 4Ti 4O 15 are determined by means of single crystal X-ray diffraction. Regarding the CaBi 4Ti 4O 15 phase, in agreement with the tolerance factor, a significant deformation of the perovskite blocks is observed. The rotation system of the octahedra is typical from even layer Aurivillius phases and leads to the use of the space group A2 1am. For the BaBi 4Ti 4O 15 phase, only a weak variation with respect to the F2 mm space group can be suggested from single crystal X-ray diffraction. A significant presence of Ba atoms in the [ M2O 2] slabs is confirmed in agreement with the previous works but specific Ba 2+ and Bi 3+ sites have to be considered due to the large difference in bounding requirement of these cations. Possible origins for the ferroelectric relaxor behavior of the Ba-based compound are discussed in view of the presented structural analyses.
NASA Astrophysics Data System (ADS)
Shkuratov, Sergey I.; Baird, Jason; Antipov, Vladimir G.; Talantsev, Evgueni F.; Chase, Jay B.; Hackenberger, Wesley; Luo, Jun; Jo, Hwan R.; Lynch, Christopher S.
2017-04-01
Relaxor ferroelectric single crystals have triggered revolution in electromechanical systems due to their superior piezoelectric properties. Here the results are reported on experimental studies of energy harvested from (1-y-x)Pb(In1/2Nb1/2)O3-(y)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 (PIN-PMN-PT) crystals under high strain rate loading. Precise control of ferroelectric properties through composition, size and crystallographic orientation of domains made it possible to identify single crystals that release up to three times more electric charge density than that produced by PbZr0.52Ti0.48O3 (PZT 52/48) and PbZr0.95Ti0.05O3 (PZT 95/5) ferroelectric ceramics under identical loading conditions. The obtained results indicate that PIN-PMN-PT crystals became completely depolarized under 3.9 GPa compression. It was found that the energy density generated in the crystals during depolarization in the high voltage mode is four times higher than that for PZT 52/48 and 95/5. The obtained results promise new single crystal applications in ultrahigh-power transducers that are capable of producing hundreds kilovolt pulses and gigawatt-peak power microwave radiation.
Shkuratov, Sergey I.; Baird, Jason; Antipov, Vladimir G.; Talantsev, Evgueni F.; Chase, Jay B.; Hackenberger, Wesley; Luo, Jun; Jo, Hwan R.; Lynch, Christopher S.
2017-01-01
Relaxor ferroelectric single crystals have triggered revolution in electromechanical systems due to their superior piezoelectric properties. Here the results are reported on experimental studies of energy harvested from (1-y-x)Pb(In1/2Nb1/2)O3–(y)Pb(Mg1/3Nb2/3)O3–(x)PbTiO3 (PIN-PMN-PT) crystals under high strain rate loading. Precise control of ferroelectric properties through composition, size and crystallographic orientation of domains made it possible to identify single crystals that release up to three times more electric charge density than that produced by PbZr0.52Ti0.48O3 (PZT 52/48) and PbZr0.95Ti0.05O3 (PZT 95/5) ferroelectric ceramics under identical loading conditions. The obtained results indicate that PIN-PMN-PT crystals became completely depolarized under 3.9 GPa compression. It was found that the energy density generated in the crystals during depolarization in the high voltage mode is four times higher than that for PZT 52/48 and 95/5. The obtained results promise new single crystal applications in ultrahigh-power transducers that are capable of producing hundreds kilovolt pulses and gigawatt-peak power microwave radiation. PMID:28440336
Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles.
Paik, Young Hun; Kojori, Hossein Shokri; Kim, Sung Jin
2016-02-19
We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe <100 nm of PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind.
Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles
NASA Astrophysics Data System (ADS)
Paik, Young Hun; Shokri Kojori, Hossein; Kim, Sung Jin
2016-02-01
We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe <100 nm of PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind.
NASA Astrophysics Data System (ADS)
Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon
2016-01-01
Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d
PLL jitter reduction by utilizing a ferroelectric capacitor as a VCO timing element.
Pauls, Greg; Kalkur, Thottam S
2007-06-01
Ferroelectric capacitors have steadily been integrated into semiconductor processes due to their potential as storage elements within memory devices. Polarization reversal within ferroelectric capacitors creates a high nonlinear dielectric constant along with a hysteresis profile. Due to these attributes, a phase-locked loop (PLL), when based on a ferroelectric capacitor, has the advantage of reduced cycle-to-cycle jitter. PLLs based on ferroelectric capacitors represent a new research area for reduction of oscillator jitter.
Chen, Fang; Ren, Zhaohui; Gong, Siyu; Li, Xiang; Shen, Ge; Han, Gaorong
2016-08-16
In this work, single-crystal and single-domain PbTiO3 nanoplates are employed as substrates to prepare Ag2 O/PbTiO3 composite materials through a photodeposition method. It is revealed that silver oxide nanocrystals with an average size of 63 nm are selectively deposited on the positive polar surface of the ferroelectric substrate. The possible mechanism leading to the formation of silver oxide is that silver ions are first reduced to silver and then oxidized by oxygen generation. The composite shows an efficient photodegradation performance towards rhodamine B (RhB) and methyl orange (MO) under visible-light irradiation. Such highly efficient photoactivity can be attributed to the ferroelectric polarization effect of the substrate, which promotes the separation of photogenerated electrons and holes at the interface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT
Evans, D.M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Arredondo, M.; Katiyar, R.S.; Gregg, J.M.; Scott, J.F.
2013-01-01
Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10−7 sm−1. PMID:23443562
Mechanism of polarization switching in wurtzite-structured zinc oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.
2016-09-05
The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P6{sub 3}mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P6{sub 3}/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (E{sub c}) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis latticemore » parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering E{sub c} during polarization, with a 5% biaxial expansion resulting in a decrease of E{sub c} to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.« less
Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; ...
2015-12-04
In the epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO 3/SrTiO 3 superlattices on SrTiO 3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effectsmore » of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO 3 substrates and 20 nm SrRuO 3 thin films on SrTiO 3 substrates. Our experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.« less
Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.; ...
2017-12-08
Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigated the role of the surface ions formation energy value on the polarization states and polarization reversal mechanisms, domain structure and corresponding phase diagrams of ferroelectric thin films. Using 3D finite elements modeling we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and poly- domain ferroelectric, ferroionic, antiferroionic and non-ferroelectric states as amore » function of surface ions formation energy, film thickness, applied voltage and temperature. We further map the analytical theory for 1D system onto effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. In conclusion, this approach allows performing the overview of the ferroionic system phase diagrams and exploring the specifics of switching and domain evolution phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.
Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigated the role of the surface ions formation energy value on the polarization states and polarization reversal mechanisms, domain structure and corresponding phase diagrams of ferroelectric thin films. Using 3D finite elements modeling we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and poly- domain ferroelectric, ferroionic, antiferroionic and non-ferroelectric states as amore » function of surface ions formation energy, film thickness, applied voltage and temperature. We further map the analytical theory for 1D system onto effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. In conclusion, this approach allows performing the overview of the ferroionic system phase diagrams and exploring the specifics of switching and domain evolution phenomena.« less
Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.
Qiao, Q.; Zhang, Y.; Contreras-Guerrero, Rocio; ...
2015-11-16
The integration of functional oxide thin-films on compound semiconductors can lead to a class of reconfigurable spin-based optoelectronic devices if defect-free, fully reversible active layers are stabilized. However, previous first-principles calculations predicted that SrTiO 3 thin filmsgrown on Si exhibit pinned ferroelectric behavior that is not switchable, due to the presence of interfacial vacancies. Meanwhile, piezoresponse force microscopy measurements have demonstrated ferroelectricity in BaTiO 3 grown on semiconductor substrates. The presence of interfacial oxygen vacancies in such complex-oxide/semiconductor systems remains unexplored, and their effect on ferroelectricity is controversial. We also use a combination of aberration-corrected scanning transmission electron microscopy andmore » first-principles density functional theory modeling to examine the role of interfacial oxygen vacancies on the ferroelectricpolarization of a BaTiO 3 thin filmgrown on GaAs. Moreover, we demonstrate that interfacial oxygen vacancies enhance the polar discontinuity (and thus the single domain, out-of-plane polarization pinning in BaTiO 3), and propose that the presence of surface charge screening allows the formation of switchable domains.« less
NASA Astrophysics Data System (ADS)
Wei, T.; Dong, Z.; Zhao, C. Z.; Guo, Y. Y.; Zhou, Q. J.; Li, Z. P.
2016-03-01
New unfilled tetragonal tungsten bronze (TTB) oxides, Ba5-5xSm5xTi5xNb10-5xO30 (BSTN-x), where 0.10 ≤ x ≤ 0.35, have been synthesized in this work. Their crystal structure was determined and analyzed based on Rietveld structural refinement. It is found that single TTB phase can be formed in a particular x range (i.e., 0.15 ≤ x ≤ 0.3) due to the competition interaction between tolerance factor and electronegativity difference. Furthermore, dielectric and ferroelectric results indicate that phase transitions and ferroelectric states are sensitive to x. Referring to the local chemistry, we suggest that the raise of vacancies at the A2-site compared with that of A1-site will intensely depress the normal ferroelectric phase and is in favor of relaxor ferroelectric state. Macroscopically, previous A-site size difference standpoint on fill TTB compounds cannot give a reasonable explanation about the variation of dielectric maximum temperature (Tm) for present BSTN-x compounds. Alternatively, tetragonality (c/a) is adopted which can well describe the variation of Tm in whole x range. In addition, one by one correspondence between tetragonality and electrical features can be found, and the compositions involving high c/a are usually stabilized in normal ferroelectric phase. It is believed that c/a is a more appropriate parameter to illustrate the variation of ferroelectric properties for unfilled TTB system.
Ferroelectricity in epitaxial Y-doped HfO2 thin film integrated on Si substrate
NASA Astrophysics Data System (ADS)
Lee, K.; Lee, T. Y.; Yang, S. M.; Lee, D. H.; Park, J.; Chae, S. C.
2018-05-01
We report on the ferroelectricity of a Y-doped HfO2 thin film epitaxially grown on Si substrate, with an yttria-stabilized zirconia buffer layer pre-deposited on the substrate. Piezoresponse force microscopy results show the ferroelectric domain pattern, implying the existence of ferroelectricity in the epitaxial HfO2 film. The epitaxially stabilized HfO2 film in the form of a metal-ferroelectric-insulator-semiconductor structure exhibits ferroelectric hysteresis with a clear ferroelectric switching current in polarization-voltage measurements. The HfO2 thin film also demonstrates ferroelectric retention comparable to that of current perovskite-based metal-ferroelectric-insulator-semiconductor structures.
Modelling of creep hysteresis in ferroelectrics
NASA Astrophysics Data System (ADS)
He, Xuan; Wang, Dan; Wang, Linxiang; Melnik, Roderick
2018-05-01
In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler-Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.
Stress effects in ferroelectric perovskite thin-films
NASA Astrophysics Data System (ADS)
Zednik, Ricardo Johann
The exciting class of ferroelectric materials presents the engineer with an array of unique properties that offer promise in a variety of applications; these applications include infra-red detectors ("night-vision imaging", pyroelectricity), micro-electro-mechanical-systems (MEMS, piezoelectricity), and non-volatile memory (NVM, ferroelectricity). Realizing these modern devices often requires perovskite-based ferroelectric films thinner than 100 nm. Two such technologically important material systems are (Ba,Sr)TiO3 (BST), for tunable dielectric devices employed in wireless communications, and Pb(Zr,Ti)O3 (PZT), for ferroelectric non-volatile memory (FeRAM). In general, the material behavior is strongly influenced by the mechanical boundary conditions imposed by the substrate and surrounding layers and may vary considerably from the known bulk behavior. A better mechanistic understanding of these effects is essential for harnessing the full potential of ferroelectric thin-films and further optimizing existing devices. Both materials share a common crystal structure and similar properties, but face unique challenges due to the design parameters of these different applications. Tunable devices often require very low dielectric loss as well as large dielectric tunability. Present results show that the dielectric response of BST thin-films can either resemble a dipole-relaxor or follow the accepted empirical Universal Relaxation Law (Curie-von Schweidler), depending on temperature. These behaviors in a single ferroelectric thin-film system are often thought to be mutually exclusive. In state-of-the-art high density FeRAM, the ferroelectric polarization is at least as important as the dielectric response. It was found that these properties are significantly affected by moderate biaxial tensile and compressive stresses which reversibly alter the ferroelastic domain populations of PZT at room temperature. The 90-degree domain wall motion observed by high resolution synchrotron x-ray diffraction indicates that a small effective restoring stress of about 1 MPa acts on the domain walls in these nano-crystalline PZT films. This insight allows reversible control of the ferroelectric and dielectric behavior of these important functional oxide materials, with important implications for associated integrated devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Ren-Ci; Nan, Ce-Wen, E-mail: jzw12@psu.edu, E-mail: cwnan@tsinghua.edu.cn; Wang, J. J., E-mail: jzw12@psu.edu, E-mail: cwnan@tsinghua.edu.cn
Based on phase field modeling and thermodynamic analysis, purely electric-field-driven magnetization reversal was shown to be possible in a multiferroic heterostructure of a square-shaped amorphous Co{sub 40}Fe{sub 40}B{sub 20} nanomagnet on top of a ferroelectric layer through electrostrain. The reversal is made possible by engineering the mutual interactions among the built-in uniaxial magnetic anisotropy, the geometry-dependent magnetic configuration anisotropy, and the magnetoelastic anisotropy. Particularly, the incorporation of the built-in uniaxial anisotropy made it possible to reverse magnetization with one single unipolar electrostrain pulse, which is simpler than previous designs involving the use of bipolar electrostrains and may alleviate ferroelectric fatigue.more » Critical conditions for triggering the magnetization reversal are identified.« less
1983-03-01
PLZT ceramics. Low temperature studies on pure and doped PZTs have given the first clear indi- cation of the intrinsic (averaged) single domain...8217 11 4.0 PYROELECTRIC MATERIALS 27 4.1 Micro Composites 27 4.2 ’ Doped ’ Tungsten Bronze and TGS Structure Single Crystals 28 5.0 FERROELECTRIC...differences in piezo- electric activity, coupling constant and permittivity between differently doped PZTs are extrinsic and freeze out at 4°K. Extending
Synthesis and ferroelectric properties of La-substituted PZFNT
NASA Astrophysics Data System (ADS)
Singh, Pratibha; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.; Kumar, Vinod; Pant, R. P.
2010-01-01
In this paper we are reporting a systematic study on ferroelectric properties of lanthanum (La) substituted modified lead zirconate titanate (PLZFNT) ceramics which were fabricated by mixed oxide process. La contents were varied in between 0 and 0.01 in steps of 0.0025. The X-ray diffraction study shows single phase for all samples. Silver electrode was deposited on flat surfaces of sintered discs for P-E (polarization vs. electric field) measurements. All compositions exhibited well-defined ferroelectric behavior at room temperature. Hysteresis loops were also recorded at different temperatures for all the compositions which showed typical variation of ferroelectric nature. The PLZFNT composition with 1 mol% of La showed the best retention behavior. The results are discussed.
NASA Astrophysics Data System (ADS)
Vasudevan, R. K.; Bogle, K. A.; Kumar, A.; Jesse, S.; Magaraggia, R.; Stamps, R.; Ogale, S. B.; Potdar, H. S.; Nagarajan, V.
2011-12-01
Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1-xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of ˜1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorenko, S.; Kohlstedt, H.; Pertsev, N. A., E-mail: pertsev.domain@mail.ioffe.ru
2014-09-21
Multiferroic composites and heterostructures comprising ferroelectric and ferromagnetic materials exhibit room-temperature magnetoelectric (ME) effects greatly exceeding those of single-phase magnetoelectrics known to date. Since these effects are mediated by the interfacial coupling between ferroic constituents, the ME responses may be enhanced by increasing the density of interfaces and improving their quality. A promising material system providing these features is a ferroelectric-ferromagnetic multilayer with epitaxial interfaces. In this paper, we describe theoretically the strain-mediated direct ME effect exhibited by free-standing multilayers composed of single-crystalline ferroelectric nanolayers interleaved by conducting ferromagnetic slabs. Using a nonlinear thermodynamic approach allowing for specific mechanical boundarymore » conditions of the problem, we first calculate the polarization states and dielectric properties of ferroelectric nanolayers in dependence on the lattice mismatch between ferroic constituents and their volume fractions. In these calculations, the ferromagnetic component is described by a model which combines linear elastic behavior with magnetic-field-dependent lattice parameters. Then the quasistatic ME polarization and voltage coefficients are evaluated using the theoretical strain sensitivity of ferroelectric polarization and measured effective piezomagnetic coefficients of ferromagnets. For Pb(Zr₀.₅Ti₀.₅)O₃-FeGaB and BaTiO₃-FeGaB multilayers, the ME coefficients are calculated numerically as a function of the FeGaB volume fraction and used to evaluate the output charge and voltage signals. It is shown that the multilayer geometry of a ferroelectric-ferromagnetic nanocomposite opens the way for a drastic enhancement of the output charge signal. This feature makes biferroic multilayers advantageous for the development of ultrasensitive magnetic-field sensors for technical and biomedical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.
2008-02-05
Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform infrared analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for pyroelectric detector applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresismore » measurements reveal an increase of coercive field due to the formation of single domain pattern.« less
Ferroelectric Phase Transformations for Energy Conversion and Storage Applications
NASA Astrophysics Data System (ADS)
Jo, Hwan Ryul
Ferroelectric materials possess a spontaneous polarization and actively respond to external mechanical, electrical, and thermal loads. Due to their coupled behavior, ferroelectric materials are used in products such as sensors, actuators, detectors, and transducers. However, most current applications rely on low-energy conversion that involves low magnitude fields. They utilize the low-field linear properties of ferroelectric materials (piezoelectric, pyroelectric) and do not take full advantage of the large-field nonlinear behavior (irreversible domain wall motion, phase transformations) that can occur in ferroelectric materials. When external fields exceed a certain critical level, a structural transformation of the crystal can occur. These phase transformations are accompanied by a much larger response than the linear piezoelectric and pyroelectric responses, by as much as a multiple of ten times in the magnitude. This makes the non-linear behavior in ferroelectric materials promising for energy harvesting and energy storage technologies which will benefit from large-energy conversion. Yet, the ferroelectric phase transformation behavior under large external fields have been less studied and only a few studies have been directed at utilizing this large material response in applications. This dissertation addresses the development ferroelectric phase transformation-based applications, with particular focus on the materials. Development of the ferroelectric phase transformation-based applications was approached in several steps. First, the phase transformation behavior was fully characterized and understood by measuring the phase transformation responses under mechanical, electrical, thermal, and combined loads. Once the behavior was well characterized, systems level applications were addressed. This required assessing the effect of the phase transformation behavior on system performance. The performance of ferroelectric devices is strongly dependent on material properties and phase transformation behavior which can be tailored by modifying the chemical composition, processing conditions, and the loading history (poling). This results in optimization of system performance by tailoring material properties and phase transformation behavior. This approach applied to three ferroelectric phase transformation-based applications: 1. Ferroelectric energy generation 2. Ferroelectric high-energy storage capacitor 3. Ferroelectric thermal energy harvesting. This dissertation has addressed tuning the large field properties for phase transformation-based systems.
Analysis and interpretation of diffraction data from complex, anisotropic materials
NASA Astrophysics Data System (ADS)
Tutuncu, Goknur
Most materials are elastically anisotropic and exhibit additional anisotropy beyond elastic deformation. For instance, in ferroelectric materials the main inelastic deformation mode is via domains, which are highly anisotropic crystallographic features. To quantify this anisotropy of ferroelectrics, advanced X-ray and neutron diffraction methods were employed. Extensive sets of data were collected from tetragonal BaTiO3, PZT and other ferroelectric ceramics. Data analysis was challenging due to the complex constitutive behavior of these materials. To quantify the elastic strain and texture evolution in ferroelectrics under loading, a number of data analysis techniques such as the single peak and Rietveld methods were used and their advantages and disadvantages compared. It was observed that the single peak analysis fails at low peak intensities especially after domain switching while the Rietveld method does not account for lattice strain anisotropy although it overcomes the low intensity problem via whole pattern analysis. To better account for strain anisotropy the constant stress (Reuss) approximation was employed within the Rietveld method and new formulations to estimate lattice strain were proposed. Along the way, new approaches for handling highly anisotropic lattice strain data were also developed and applied. All of the ceramics studied exhibited significant changes in their crystallographic texture after loading indicating non-180° domain switching. For a full interpretation of domain switching the spherical harmonics method was employed in Rietveld. A procedure for simultaneous refinement of multiple data sets was established for a complete texture analysis. To further interpret diffraction data, a solid mechanics model based on the self-consistent approach was used in calculating lattice strain and texture evolution during the loading of a polycrystalline ferroelectric. The model estimates both the macroscopic average response of a specimen and its hkl-dependent lattice strains for different reflections. It also tracks the number of grains (or domains) contributing to each reflection and allows for domain switching. The agreement between the model and experimental data was found to be satisfactory.
Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G
2016-09-14
We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.
NASA Astrophysics Data System (ADS)
Kirova, Natasha; Brazovskii, Serguei
2014-03-01
Ferroelectricity is a rising demand in fundamental and applied solid state physics. Ferroelectrics are used in microelectronics as active gate materials, in capacitors, electro-optical-acoustic modulators, etc. There is a particular demand for plastic ferroelectrics, e.g. as a sensor for acoustic imaging in medicine and beyond, in shapeable capacitors, etc. Microscopic mechanisms of ferroelectric polarization in traditional materials are typically ionic. In this talk we discuss the electronic ferroelectrics - carbon-based materials: organic crystals, conducting polymers and graphene nano-ribbons. The motion of walls, separating domains with opposite electric polarisation, can be influenced and manipulated by terahertz and infra-red range optics.
Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruverman, Alexei; Tsymbal, Evgeny Y.; Eom, Chang-Beom
2017-05-03
This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modelingmore » of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.« less
Incipient ferroelectricity of water molecules confined to nano-channels of beryl
NASA Astrophysics Data System (ADS)
Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.
2016-09-01
Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.
Xia, Wei; Peter, Christian; Weng, Junhui; Zhang, Jian; Kliem, Herbert; Jiang, Yulong; Zhu, Guodong
2017-04-05
Ferroelectric polymer based devices exhibit great potentials in low-cost and flexible electronics. To meet the requirements of both low voltage operation and low energy consumption, thickness of ferroelectric polymer films is usually required to be less than, for example, 100 nm. However, decrease of film thickness is also accompanied by the degradation of both crystallinity and ferroelectricity and also the increase of current leakage, which surely degrades device performance. Here we report one epitaxy method based on removable poly(tetrafluoroethylene) (PTFE) templates for high-quality fabrication of ordered ferroelectric polymer thin films. Experimental results indicate that such epitaxially grown ferroelectric polymer films exhibit well improved crystallinity, reduced current leakage and good resistance to electrical breakdown, implying their applications in high-performance and low voltage operated ferroelectric devices. On the basis of this removable PTFE template method, we fabricated organic semiconducting/ferroelectric blend resistive films which presented record electrical performance with operation voltage as low as 5 V and ON/OFF ratio up to 10 5 .
Ferroelectric tunnel junctions with multi-quantum well structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhijun; Zhang, Tianjin, E-mail: zhangtj@hubu.edu.cn; Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062
Ferroelectric tunnel junctions (FTJs) with multi-quantum well structures are proposed and the tunneling electroresistance (TER) effect is investigated theoretically. Compared with conventional FTJs with monolayer ferroelectric barriers, FTJs with single-well structures provide TER ratio improvements of one order of magnitude, while FTJs with optimized multi-well structures can enhance this improvement by another order of magnitude. It is believed that the increased resonant tunneling strength combined with appropriate asymmetry in these FTJs contributes to the improvement. These studies may help to fabricate FTJs with large TER ratio experimentally and put them into practice.
NASA Astrophysics Data System (ADS)
Vlahos, Eftihia; Lummen, Tom; Haislmaier, Ryan; Denev, Sava; Brooks, Charles; Biegalski, Michael; Schlom, Darrell; Eklund, Carl-Johan; Rabe, Karin; Fennie, Craig; Gopalan, Venkatraman
2011-03-01
Bulk CaTi O3 has a centrosymmetric point group and is not polar or ferroelectric. However, we present surprising results that show highly regular polar domains in single crystals of CaTi O3 . Confocal Second Harmonic Generation (SHG) and Raman imaging studies were carried out on perovskite CaTi O3 crystal surfaces. They reveal large, crystallographic polar domains at room temperature, with in-plane polarization components delineated by twin walls. SHG analysis indicates that the highest symmetry of the polar surface is m (space group P c) with polarization in the m plane. In addition, we present results of the polar domain structure imaged before and after the application of an external electric field. Finally, we present the SHG studies of CaTi O3 thin films grown using reactive Molecular Beam Epitaxy (MBE); these films are predicted by theory to be ferroelectric and are shown experimentally, both with SHG and in-plane dielectric measurements, to be ferroelectric for temperatures less than ~ 150 K with group symmetry mm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, T., E-mail: weitong.nju@gmail.com, E-mail: weitong-nju@163.com; Dong, Z.; Zhou, Q. J.
2016-03-28
New unfilled tetragonal tungsten bronze (TTB) oxides, Ba{sub 5−5x}Sm{sub 5x}Ti{sub 5x}Nb{sub 10−5x}O{sub 30} (BSTN-x), where 0.10 ≤ x ≤ 0.35, have been synthesized in this work. Their crystal structure was determined and analyzed based on Rietveld structural refinement. It is found that single TTB phase can be formed in a particular x range (i.e., 0.15 ≤ x ≤ 0.3) due to the competition interaction between tolerance factor and electronegativity difference. Furthermore, dielectric and ferroelectric results indicate that phase transitions and ferroelectric states are sensitive to x. Referring to the local chemistry, we suggest that the raise of vacancies at the A{sub 2}-site compared with that of A{sub 1}-sitemore » will intensely depress the normal ferroelectric phase and is in favor of relaxor ferroelectric state. Macroscopically, previous A-site size difference standpoint on fill TTB compounds cannot give a reasonable explanation about the variation of dielectric maximum temperature (T{sub m}) for present BSTN-x compounds. Alternatively, tetragonality (c/a) is adopted which can well describe the variation of T{sub m} in whole x range. In addition, one by one correspondence between tetragonality and electrical features can be found, and the compositions involving high c/a are usually stabilized in normal ferroelectric phase. It is believed that c/a is a more appropriate parameter to illustrate the variation of ferroelectric properties for unfilled TTB system.« less
Ferroelectric thin-film active sensors for structural health monitoring
NASA Astrophysics Data System (ADS)
Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan
2007-04-01
Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.
NASA Astrophysics Data System (ADS)
Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui
2018-05-01
Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.
Study of the photovoltaic effect in thin film barium titanate
NASA Technical Reports Server (NTRS)
Grannemann, W. W.; Dharmadhikari, V. S.
1982-01-01
Ferroelectric films of barium titanate were synthesized on silicon and quartz substrates, and the photoelectric effect in the structure consisting of metal deposited ferroelectric barium titanate film silicon was studied. A photovoltage with polarity that depends on the direction of the remanent polarization was observed. The deposition of BaTiO3 on silicon and fused quartz substrates was accomplished by an rf sputtering technique. A series of experiments to study the growth of ferroelectric BaTiO3 films on single crystal silicon and fused quartz substrates were conducted. The ferroelectric character in these films was found on the basis of evidence from the polarization electric field hysteresis loops, capacitance voltage and capacitance temperature techniques and from X-ray diffraction studies.
Stress-induced reversible and irreversible ferroelectric domain switching
NASA Astrophysics Data System (ADS)
Chen, Zibin; Huang, Qianwei; Wang, Feifei; Ringer, Simon P.; Luo, Haosu; Liao, Xiaozhou
2018-04-01
Ferroelectric materials have been extensively explored for applications in electronic devices because of their ferroelectric/ferroelastic domain switching behaviour under electric bias or mechanical stress. Recent findings on applying mechanical loading to manipulate reversible logical signals in non-volatile ferroelectric memory devices make ferroelectric materials more attractive to scientists and engineers. However, the dynamical microscopic structural behaviour of ferroelectric domains under stress is not well understood, which limits the applications of ferroelectric/ferroelastic switching in memory devices. Here, the kinetics of reversible and irreversible ferroelectric domain switching induced by mechanical stress in relaxor-based ferroelectrics was explored. In-situ transmission electron microscopy investigation revealed that 90° ferroelastic and 180° ferroelectric domain switching can be induced by low and high mechanical stresses. The nucleation and growth of nanoscale domains overwhelm the defect-induced pinning effect on the stable micro-domain walls. This study provides deep insights for exploring the mechanical kinetics for ferroelectric/ferroelastic domains and a clear pathway to overcome the domain pinning effect of defects in ferroelectrics.
Programmable Schottky Junctions Based on Ferroelectric Gated MoS2 Transistors
NASA Astrophysics Data System (ADS)
Xiao, Zhiyong; Song, Jingfeng; Drcharme, Stephen; Hong, Xia
We report a programmable Schottky junction based on MoS2 field effect transistors with a SiO2 back gate and a ferroelectric copolymer poly(vinylidene-fluoride-trifluorethylene) (PVDF) top gate. We fabricated mechanically exfoliated single layer MoS2 flakes into two point devices via e-beam lithography, and deposited on the top of the devices ~20 nm PVDF thin films. The polarization of the PVDF layer is controlled locally by conducting atomic force microscopy. The devices exhibit linear ID-VD characteristics when the ferroelectric gate is uniformly polarized in one direction. We then polarized the gate into two domains with opposite polarization directions, and observed that the ID-VD characteristics of the MoS2 channel can be modulated between linear and rectified behaviors depending on the back gate voltage. The nonlinear ID-VD relation emerges when half of the channel is in the semiconductor phase while the other half is in the metallic phase, and it can be well described by the thermionic emission model with a Schottky barrier of ~0.5 eV. The Schottky junction can be erased by re-write the entire channel in the uniform polarization state. Our study facilitates the development of programmable, multifunctional nanoelectronics based on layered 2D TMDs..
Room-temperature ferroelectricity in CuInP 2S 6 ultrathin flakes
Liu, Fucai; You, Lu; Seyler, Kyle L.; ...
2016-08-11
In this study, two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP 2S 6 (CIPS) with a transition temperature of ~320 K. Switchable polarization is observed in thin CIPS of ~4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio ofmore » ~100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity.« less
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
Liu, Fucai; You, Lu; Seyler, Kyle L.; Li, Xiaobao; Yu, Peng; Lin, Junhao; Wang, Xuewen; Zhou, Jiadong; Wang, Hong; He, Haiyong; Pantelides, Sokrates T.; Zhou, Wu; Sharma, Pradeep; Xu, Xiaodong; Ajayan, Pulickel M.; Wang, Junling; Liu, Zheng
2016-01-01
Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ∼320 K. Switchable polarization is observed in thin CIPS of ∼4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ∼100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity. PMID:27510418
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
NASA Astrophysics Data System (ADS)
Liu, Fucai; You, Lu; Seyler, Kyle L.; Li, Xiaobao; Yu, Peng; Lin, Junhao; Wang, Xuewen; Zhou, Jiadong; Wang, Hong; He, Haiyong; Pantelides, Sokrates T.; Zhou, Wu; Sharma, Pradeep; Xu, Xiaodong; Ajayan, Pulickel M.; Wang, Junling; Liu, Zheng
2016-08-01
Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ~320 K. Switchable polarization is observed in thin CIPS of ~4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ~100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity.
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes.
Liu, Fucai; You, Lu; Seyler, Kyle L; Li, Xiaobao; Yu, Peng; Lin, Junhao; Wang, Xuewen; Zhou, Jiadong; Wang, Hong; He, Haiyong; Pantelides, Sokrates T; Zhou, Wu; Sharma, Pradeep; Xu, Xiaodong; Ajayan, Pulickel M; Wang, Junling; Liu, Zheng
2016-08-11
Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ∼320 K. Switchable polarization is observed in thin CIPS of ∼4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ∼100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity.
Theoretical model for thin ferroelectric films and the multilayer structures based on them
NASA Astrophysics Data System (ADS)
Starkov, A. S.; Pakhomov, O. V.; Starkov, I. A.
2013-06-01
A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.
NASA Astrophysics Data System (ADS)
Ruiz-Fuertes, J.; Gomis, O.; Segura, A.; Bettinelli, M.; Burianek, M.; Mühlberg, M.
2018-01-01
In this letter, we have investigated the electronic structure of AxBa1-xNb2O6 relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to paraelelectric phase transition at 4 GPa, the light scattering produced by micro- and nano-ferroelectric domains at 3.3 eV in Ca0.28Ba0.72Nb2O6 has been probed. The direct bandgap remains virtually constant under compression with a drop of only 0.01 eV around the phase transition. Interestingly, we have also found that light scattering by the polar nanoregions in the paraelectric phase is comparable to the dispersion due to ferroelectric microdomains in the ferroelectric state. Finally, we have obtained that the bulk modulus of the ferroelectric phase of Ca0.28Ba0.72Nb2O6 is B0 = 222(9) GPa.
NASA Astrophysics Data System (ADS)
Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Kim, Dae Ho
2009-06-01
Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of ˜11.5 μC/cm2. Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.
NASA Astrophysics Data System (ADS)
Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.; Morozovsky, Nicholas V.; Vasudevan, Rama K.; Strikha, Maksym V.; Kalinin, Sergei V.
2017-12-01
Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigate the role of the surface ion formation energy on the polarization states and its reversal mechanisms, domain structure, and corresponding phase diagrams of ferroelectric thin films. Using 3D finite element modeling, we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and the dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and polydomain ferroelectric, ferroionic, antiferroionic, and nonferroelectric states as a function of surface ion formation energy, film thickness, applied voltage, and temperature. We further map the analytical theory for 1D systems onto an effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. This approach allows us to perform an overview of the ferroionic system phase diagrams and explore the specifics of polarization reversal and domain evolution phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, Gaoyang; Charles, Nenian; Shi, Jing
2017-09-11
The double perovskite CaMnTi2O6, is a rare A site ordered perovskite oxide that exhibits a sizable ferroelectric polarization and relatively high Curie temperature. Using first-principles calculations combined with detailed symmetry analyses, we identify the origin of the ferroelectricity in CaMnTi2O6. We further explore the material properties of CaMnTi2O6, including its ferroelectric polarization, dielectric and piezoelectric responses, magnetic order, electronic structure, and optical absorption coefficient. It is found that CaMnTi2O6 exhibits room-temperature-stable ferroelectricity and moderate piezoelectric responses. Moreover, CaMnTi2O6 is predicted to have a semiconducting energy band gap similar to that of BiFeO3, and its band gap can further be tuned-viamore » distortions of the planar Mn-O bond lengths. CaMnTi2O6 exemplifies a new class of single-phase semiconducting ferroelectric perovskites for potential applications in ferroelectric photovoltaic solar cells.« less
NASA Astrophysics Data System (ADS)
Liu, Shi; Cohen, R. E.
2017-08-01
The role of defects in solids of mixed ionic-covalent bonds such as ferroelectric oxides is complex. Current understanding of defects on ferroelectric properties at the single-defect level remains mostly at the empirical level, and the detailed atomistic mechanisms for many defect-mediated polarization-switching processes have not been convincingly revealed quantum mechanically. We simulate the polarization-electric field (P-E) and strain-electric field (ɛ-E) hysteresis loops for BaTiO3 in the presence of generic defect dipoles with large-scale molecular dynamics and provide a detailed atomistic picture of the defect dipole-enhanced electromechanical coupling. We develop a general first-principles-based atomistic model, enabling a quantitative understanding of the relationship between macroscopic ferroelectric properties and dipolar impurities of different orientations, concentrations, and dipole moments. We find that the collective orientation of dipolar defects relative to the external field is the key microscopic structure feature that strongly affects materials hardening/softening and electromechanical coupling. We show that a small concentration (≈0.1 at. %) of defect dipoles dramatically improves electromechanical responses. This offers the opportunity to improve the performance of inexpensive polycrystalline ferroelectric ceramics through defect dipole engineering for a range of applications including piezoelectric sensors, actuators, and transducers.
NASA Astrophysics Data System (ADS)
Miyata, Yusuke; Yoshimura, Takeshi; Ashida, Atsushi; Fujimura, Norifumi
2016-04-01
Si-based metal-ferroelectric-semiconductor (MFS) capacitors have been fabricated using poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as a ferroelectric gate. The pinhole-free P(VDF-TrFE) thin films with high resistivity were able to be prepared by spin-coating directly onto hydrogen-terminated Si. The capacitance-voltage (C-V) characteristics of the ferroelectric gate field effect transistor (FeFET) using this MFS structure clearly show butterfly-shaped hysteresis originating from the ferroelectricity, indicating carrier modulation on the Si surface at gate voltages below 2 V. The drain current-gate voltage (I D-V G) characteristics also show counterclockwise hysteresis at gate voltages below 5 V. This is the first report on the low-voltage operation of a Si-based FeFET using P(VDF-TrFE) as a gate dielectric. This organic gate FeFET without any insulator layer at the ferroelectric/Si interface should be one of the promising devices for overcoming the critical issues of the FeFET, such as depolarization field and a decrease in the gate voltage.
The interface between ferroelectric and 2D material for a Ferroelectric Field-Effect Transistor
NASA Astrophysics Data System (ADS)
Park, Nahee; Kang, Haeyong; Lee, Sang-Goo; Lee, Young Hee; Suh, Dongseok
We have studied electrical property of ferroelectric field-effect transistor which consists of graphene on hexagonal Boron-Nitride (h-BN) gated by a ferroelectric, PMN-PT (i.e. (1-x)Pb(Mg1/3Nb2/3) O3-xPbTiO3) single-crystal substrate. The PMN-PT was expected to have an effect on polarization field into the graphene channel and to induce a giant amount of surface charge. The hexagonal Boron-Nitride (h-BN) flake was directly exfoliated on the PMN-PT substrate for preventing graphene from directly contacting on the PMN-PT substrate. It can make us to observe the effect of the interface between ferroelectric and 2D material on the device operation. Monolayer graphene as 2D channel material, which was confirmed by Raman spectroscopy, was transferred on top of the hexagonal Boron-Nitride (h-BN) by using the conventional dry-transfer method. Here, we can demonstrate that the structure of graphene/hexagonal-BN/ferroelectric field-effect transistor makes us to clearly understand the device operation as well as the interface between ferroelectric and 2D materials by inserting h-BN between them. The phenomena such as anti-hysteresis, current saturation behavior, and hump-like increase of channel current, will be discussed by in terms of ferroelectric switching, polarization-assisted charge trapping.
NASA Astrophysics Data System (ADS)
Heidler, Jonas; Yang, Sheng; Feng, Xinliang; Müllen, Klaus; Asadi, Kamal
2018-06-01
Memories based on graphene that could be mass produced using low-cost methods have not yet received much attention. Here we demonstrate graphene ferroelectric (dual-gate) field effect transistors. The graphene has been obtained using electrochemical exfoliation of graphite. Field-effect transistors are realized using a monolayer of graphene flakes deposited by the Langmuir-Blodgett protocol. Ferroelectric field effect transistor memories are realized using a random ferroelectric copolymer poly(vinylidenefluoride-co-trifluoroethylene) in a top gated geometry. The memory transistors reveal ambipolar behaviour with both electron and hole accumulation channels. We show that the non-ferroelectric bottom gate can be advantageously used to tune the on/off ratio.
Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors
NASA Astrophysics Data System (ADS)
Haridasan, Vrinda
Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband rejection, and constant bandwidth is designed, simulated, fabricated and measured. The filters are fabricated using barium strontium titanate (BST) varactors. Electromagnetic simulations and measured results of the tunable two-pole ferroelectric filter are analyzed to explore the origins of high insertion loss in ferroelectric filters. The results indicate that the high-permittivity of the BST (a ferroelectric) not only makes the filters tunable and compact, but also increases the conductive loss of the ferroelectric-based tunable resonators which translates into high insertion loss in ferroelectric filters.
Vasudevan, Rama K.; Balke, Nina; Maksymovych, Peter; ...
2017-05-01
Here, ferroelectric materials have remained one of the major focal points of condensed matter physics and materials science for over 50 years. In the last 20 years, the development of voltage-modulated scanning probe microscopy techniques, exemplified by Piezoresponse force microscopy (PFM) and associated time- and voltage spectroscopies, opened a pathway to explore these materials on a single-digit nanometer level. Consequently, domain structures and walls and polarization dynamics can now be imaged in real space. More generally, PFM has allowed studying electromechanical coupling in a broad variety of materials ranging from ionics to biological systems.
Ionic displacement induced ferroelectricity in multiferroic Cr doped ZnO
NASA Astrophysics Data System (ADS)
Tiwari, Jeetendra Kumar; Ali, Nasir; Ghosh, Subhasis
2018-05-01
Cr doped ZnO thin film was grown on quartz substrate using RF magnetron sputtering. Room temperature magnetic and ferroelectric properties of Cr doped ZnO were investigated. It is shown that ZnO becomes ferromagnetic upon Cr doping. It is considered that breaking of centrosymmetry due strain developed by doping of Cr should be responsible for the ferroelectricity. These films were characterized by X-ray diffraction (XRD), which shows that the films possess crystalline structure with preferred orientation along the (002) crystal plane and there is no extra peak due to Cr i.e. single phase.
NASA Astrophysics Data System (ADS)
Vlahos, Eftihia; Kumar, Amit; Denev, Sava; Brooks, Charles; Schlom, Darrell; Eklund, Carl-Johan; Rabe, Karin M.; Fennie, Craig J.; Gopalan, Venkatraman
2009-03-01
Calcium titanate, CaTiO3 is not a ferroelectric in its bulk form. However, first principles calculations predict that biaxially tensile strained CaTiO3 thin films should become ferroelectric. Here, we indeed confirm that strained CaTiO3 films become ferroelectric with a Curie temperature of ˜125K. Optical second harmonic generation (SHG) measurements, polarization studies, and in-situ electric-field measurements for a number of films with different strain values will be presented: CaTiO3/DyScO3(110), CaTiO3/SrTiO3 (100),CaTiO3/GdScO3/NdGaO3(110), CaTiO3/LaSrAlO3(001) as well as for a single crystal CaTiO3. From these studies, we conclude that strained CaTiO3 films are ferroelectric with a point group symmetry of mm2, and show reversible domain switching characteristics under an electric field. We also present results of variable temperature piezoelectric force microscopy for imaging the polar domains in the ferroelectric phase. These results suggest that strain is a valuable tool for inducing polar, long range ferroelectric order in even non-polar ceramic materials such as CaTiO3.
Incipient ferroelectricity of water molecules confined to nano-channels of beryl
Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.
2016-01-01
Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices. PMID:27687693
Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran
2013-01-01
Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion.
Chen, Jun; Wang, Fangfang; Huang, Qingzhen; Hu, Lei; Song, Xiping; Deng, Jinxia; Yu, Ranbo; Xing, Xianran
2013-01-01
Control of negative thermal expansion is a fundamentally interesting topic in the negative thermal expansion materials in order for the future applications. However, it is a challenge to control the negative thermal expansion in individual pure materials over a large scale. Here, we report an effective way to control the coefficient of thermal expansion from a giant negative to a near zero thermal expansion by means of adjusting the spontaneous volume ferroelectrostriction (SVFS) in the system of PbTiO3-(Bi,La)FeO3 ferroelectrics. The adjustable range of thermal expansion contains most negative thermal expansion materials. The abnormal property of negative or zero thermal expansion previously observed in ferroelectrics is well understood according to the present new concept of spontaneous volume ferroelectrostriction. The present studies could be useful to control of thermal expansion of ferroelectrics, and could be extended to multiferroic materials whose properties of both ferroelectricity and magnetism are coupled with thermal expansion. PMID:23949238
Diffuse Scattering from Lead-Containing Ferroelectric Perovskite Oxides
Goossens, D. J.
2013-01-01
Ferroelectric materials rely on some type of non-centrosymmetric displacement correlations to give rise to a macroscopic polarisation. These displacements can show short-range order (SRO) that is reflective of the local chemistry, and so studying it reveals important information about how the structure gives rise to the technologically useful properties. A key means of exploring this SRO is diffuse scattering. Conventional structural studies use Bragg peak intensitiesto determine the average structure. In a single crystal diffuse scattering (SCDS) experiment, the coherent scattered intensity is measured at non-integer Miller indices, and can be used to examine the population of local configurations. Thismore » is because the diffuse scattering is sensitive to two-body averages, whereas the Bragg intensity gives single-body averages. This review outlines key results of SCDS studies on several materials and explores the similarities and differences in their diffuse scattering. Random strains are considered, as are models based on a phonon-like picture or a more local-chemistry oriented picture. Limitations of the technique are discussed.« less
Eiras, José A; Gerbasi, Rosimeire B Z; Rosso, Jaciele M; Silva, Daniel M; Cótica, Luiz F; Santos, Ivair A; Souza, Camila A; Lente, Manuel H
2016-03-08
Lead free piezoelectric materials are being intensively investigated in order to substitute lead based ones, commonly used in many different applications. Among the most promising lead-free materials are those with modified NaNbO₃, such as (K, Na)NbO₃ (KNN) and (Ba, Na)(Ti, Nb)O₃ (BTNN) families. From a ceramic processing point of view, high density single phase KNN and BTNN ceramics are very difficult to sinter due to the volatility of the alkaline elements, the narrow sintering temperature range and the anomalous grain growth. In this work, Spark Plasma Sintering (SPS) and high-energy ball milling (HEBM), following heat treatments (calcining and sintering), in oxidative (O₂) atmosphere have been used to prepare single phase highly densified KNN ("pure" and Cu 2+ or Li 1+ doped), with theoretical densities ρ th > 97% and BTNN ceramics (ρ th - 90%), respectively. Using BTTN ceramics with a P 4 mm perovskite-like structure, we showed that by increasing the NaNbO₃ content, the ferroelectric properties change from having a relaxor effect to an almost "normal" ferroelectric character, while the tetragonality and grain size increase and the shear piezoelectric coefficients ( k 15 , g 15 and d 15 ) improve. For KNN ceramics, the results reveal that the values for remanent polarization as well as for most of the coercive field are quite similar among all compositions. These facts evidenced that Cu 2+ may be incorporated into the A and/or B sites of the perovskite structure, having both hardening and softening effects.
NASA Astrophysics Data System (ADS)
Benson, Yerima; de, Dilip
In this paper we report the first EPR observation and theoretical explanation of orthorhombic Jahn-Teller effect in Cu(II) doped single crystal of ferroelectric cadmium ammonium sulphate: Cu(II):Cd2(NH4)2 (SO4)3 . The isotropic EPR spectra of the 2D ion (in regular octahedral symmetry) at higher temperature becomes anisotropic at low temperature with clear manifestation of orthorhombic g and hyperfine tensors at 15 K. The static Jahn-Teller(JT) effect can only be explained theoretically by assuming the three JT potential wells energetically inequivalent, unlike the potential wells in most of the Cu(II) doped crystalline materials where JT effect manifests. The measured splitting of the JT potential wells in this ferroelectric crystal fall in the sub millimeter wave region pointing to possible application of the material.
Epitaxial cuprate superconductor/ferroelectric heterostructures.
Ramesh, R; Inam, A; Chan, W K; Wilkens, B; Myers, K; Remschnig, K; Hart, D L; Tarascon, J M
1991-05-17
Thin-film heterostructures of Bi(4)Ti(3)O(12)Bi(2)Sr(2)CuO(6+x), have been grown on single crystals of SrTiO(3), LaAlO(3), and MgAl(2)O(4) by pulsed laser deposition. X-ray diffraction studies show the presence of c-axis orientation only; Rutherford backscattering experiments show the composition to be close to the nominal stoichiometry. The films are ferroelectric and exhibit a symmetric hysteresis loop. The remanent polarization was 1.0 microcoulomb per square centimeter, and the coercive field was 2.0 x 10(5) volts per centimeter. Similar results were obtained with YBa(2)Cu(3)O(7-x) and Bi(2)Sr(2)CaCu(2)O(8+x), and single-crystal Bi(2)Sr(2)CuO(6+x)as the bottom electrodes. These films look promising for use as novel, lattice-matched, epitaxial ferroelectric film/electrode heterostructures in nonvolatile memory applications.
Robust ferroelectricity in two-dimensional SbN and BiP.
Liu, Chang; Wan, Wenhui; Ma, Jie; Guo, Wei; Yao, Yugui
2018-05-03
Based on first-principles calculations, we discover two new two-dimensional (2D) ferroelectric materials SbN and BiP. Both of them are stable in a phosphorene-like structure and maintain their ferroelectricity above room temperature. Till date, SbN has the largest in-plane spontaneous polarization of about 7.81 × 10-10 C m-1 ever found in 2D ferroelectric materials, and it can retain its ferroelectricity until melting at about 1700 K. The spontaneous polarizations and switching barriers can easily be tuned by strains. Additionally, the ferroelectricity can still be maintained in their multilayers. These advantages make SbN and BiP promising candidate materials for future integrated ferroelectric devices.
Chen, Zibin; Hong, Liang; Wang, Feifei; Ringer, Simon P; Chen, Long-Qing; Luo, Haosu; Liao, Xiaozhou
2017-01-06
Heterogeneous ferroelastic transition that produces hierarchical 90° tetragonal nanodomains via mechanical loading and its effect on facilitating ferroelectric domain switching in relaxor-based ferroelectrics were explored. Combining in situ electron microscopy characterization and phase-field modeling, we reveal the nature of the transition process and discover that the transition lowers by 40% the electrical loading threshold needed for ferroelectric domain switching. Our results advance the fundamental understanding of ferroelectric domain switching behavior.
Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond
Tan, Liang Z.; Zheng, Fan; Young, Steve M.; ...
2016-08-26
Here, the bulk photovoltaic effect (BPVE) refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPVE is decidedly different from the typical p–n junction-based photovoltaic mechanism in heterogeneous materials. Recently, there has been renewed interest in ferroelectric materials for solar energy conversion, inspired by the discovery of above-bandgap photovoltages in ferroelectrics, the invention of low bandgap ferroelectric materials and the rapidly improving power conversion efficiency of metal halide perovskites. However, as long as the nature of the BPVE and its dependence on composition and structure remain poorlymore » understood, materials engineering and the realisation of its true potential will be hampered. In this review article, we survey the history, development and recent progress in understanding the mechanisms of BPVE, with a focus on the shift current mechanism, an intrinsic BPVE that is universal to all materials lacking inversion symmetry. In addition to explaining the theory of shift current, materials design opportunities and challenges will be discussed for future applications of the BPVE.« less
Recent patents on perovskite ferroelectric nanostructures.
Zhu, Xinhua
2009-01-01
Ferroelectric oxide materials with a perovskite structure have promising applications in electronic devices such as random access memories, sensors, actuators, infrared detectors, and so on. Recent advances in science and technology of ferroelectrics have resulted in the feature sizes of ferroelectric-based electronic devices entering into nanoscale dimensions. At nanoscale perovskite ferroelectric materials exhibit a pronounced size effect manifesting itself in a significant deviation of the properties of low-dimensional structures from the bulk and film counterparts. One-dimensional perovskite ferroelectric nanotube/nanowire systems, offer fundamental scientific opportunities for investigating the intrinsic size effects in ferroelectrics. In the past several years, much progress has been made both in fabrication and physical property testing of perovskite ferroelectric nanostructures. In the first part of this paper, the recent patents and literatures for fabricating ferroelectric nanowires, nanorods, nanotubes, and nanorings with promising features, are reviewed. The second part deals with the recent advances on the physical property testing of perovskite ferroelectric nanostructures. The third part summarizes the recently patents and literatures about the microstructural characterizations of perovskite ferroelectric nanostructures, to improve their crystalline quality, morphology and uniformity. Finally, we conclude this review with personal perspectives towards the potential future developments of perovskite ferroelectric nanostructures.
On the persistence of polar domains in ultrathin ferroelectric capacitors.
Zubko, Pavlo; Lu, Haidong; Bark, Chung-Wung; Martí, Xavi; Santiso, José; Eom, Chang-Beom; Catalan, Gustau; Gruverman, Alexei
2017-07-19
The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO 3 films sandwiched between the most habitual perovskite electrodes, SrRuO 3 , on top of the most used perovskite substrate, SrTiO 3 . We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO 3 capacitors. We show that even the high screening efficiency of SrRuO 3 electrodes is still insufficient to stabilize polarization in SrRuO 3 /BaTiO 3 /SrRuO 3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.
NASA Astrophysics Data System (ADS)
Kalinin, Sergei
Ferroelectricity on the nanoscale has remained a subject of much fascination in condensed matter physics for the last several decades. It is well-recognized that stability of the ferroelectric state necessitates effective polarization screening, and hence screening mechanism and screening charge dynamics become strongly coupled to ferroelectric phase stability and domain behavior. Previously, the role of the screening charge in macroscopic ferroelectrics was observed in phenomena such as potential retention above Curie temperature, back switching of ferroelectric domains, and chaos and intermittency during domain switching. In the last several years, multiple reports claiming ferroelectricity in ultrathin ferroelectrics based on formation of remanent polarization states, local hysteresis loops, and pressure induced switching were made. However, similar phenomena were reported for traditionally non-ferroelectric materials, creating significant level of uncertainty in the field. We pose that in the nanoscale systems, the ferroelectric state is fundamentally inseparable from electrochemical state of the surface, leading to emergence of coupled electrochemical-ferroelectric states. I will present the results of experimental and theoretical work exploring the basic mechanisms of emergence of these coupled states including the basic theory and phase-field formulation for domain evolution. I further discuss the thermodynamics and thickness evolution of this state, and demonstrate the experimental pathway to establish its presence based on spectroscopic version of piezoresponse force microscopy. Finally, the role of chemical screening on domain dynamics is explored using phase-field modelling. This analysis reconciles multiple prior studies, and set forward the predictive pathways for new generations of ferroelectric devices and applications. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE, and was conducted at the Center for Nanophase Materials Sciences, sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division.
Bretos, Iñigo; Jiménez, Ricardo; Tomczyk, Monika; Rodríguez-Castellón, Enrique; Vilarinho, Paula M.; Calzada, M. Lourdes
2016-01-01
Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound ─ morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT) ─ are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm−2 is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics. PMID:26837240
Bretos, Iñigo; Jiménez, Ricardo; Tomczyk, Monika; Rodríguez-Castellón, Enrique; Vilarinho, Paula M; Calzada, M Lourdes
2016-02-03
Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound--morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT)--are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm(-2) is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics.
Local switching of two-dimensional superconductivity using the ferroelectric field effect
NASA Astrophysics Data System (ADS)
Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.
2006-05-01
Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.
Magnetoelectric control of spin-chiral ferroelectric domains in a triangular lattice antiferromagnet
NASA Astrophysics Data System (ADS)
Kimura, Kenta; Nakamura, Hiroyuki; Ohgushi, Kenya; Kimura, Tsuyoshi
2008-10-01
We have grown single crystals of a triangular lattice antiferromagnet (TLA), CuCrO2 , and investigated the correlation between magnetic and dielectric properties. Two magnetic phase transitions are observed at TN2≈24.2K and TN1≈23.6K . It was found that ferroelectric polarization along the triangular lattice plane develops at TN1 , suggesting that the system undergoes a transition into an out-of-plane 120° spin-chiral phase at TN1 . The TLA provides an opportunity for unique magnetoelectric control of spin-chiral ferroelectric domain structures by means of electric and/or magnetic fields.
Multi Resonance Shear Mode Transducers
2016-11-21
burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing...ABSTRACT Crystallographic engineering of single crystal relaxor-based ferroelectrics was used to design broadband, compact, high power, low frequency...using multiple d36 crystal geometries or combinations of d36 and other crystal cuts. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17
Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr 0.2 Ti 0.8)O3 films.
Pantel, Daniel; Goetze, Silvana; Hesse, Dietrich; Alexe, Marin
2011-07-26
Spontaneous polarization of ferroelectric materials has been for a long time proposed as binary information support, but it suffers so far from destructive readout. A nondestructive resistive readout of the ferroelectric polarization state in a metal-ferroelectric-metal capacitor would thus be advantageous for data storage applications. Combing conducting force microscopy and piezoelectric force microscopy, we unambiguously show that ferroelectric polarization direction and resistance state are correlated for epitaxial ferroelectric Pb(Zr(0.2)Ti(0.8))O(3) nanoscale capacitors prepared by self-assembly methods. For intermediate ferroelectric layer thickness (∼9 nm) sandwiched between copper and La(0.7)Sr(0.3)MnO(3) electrodes we achieved giant electroresistance with a resistance ratio of >1500 and high switching current densities (>10 A/cm(2)) necessary for effective resistive readout. The present approach uses metal-ferroelectric-metal devices at room temperature and, therefore, significantly advances the use of ferroelectric-based resistive switching.
Ferroelectric memory based on molybdenum disulfide and ferroelectric hafnium oxide
NASA Astrophysics Data System (ADS)
Yap, Wui Chung; Jiang, Hao; Xia, Qiangfei; Zhu, Wenjuan
Recently, ferroelectric hafnium oxide (HfO2) was discovered as a new type of ferroelectric material with the advantages of high coercive field, excellent scalability (down to 2.5 nm), and good compatibility with CMOS processing. In this work, we demonstrate, for the first time, 2D ferroelectric memories with molybdenum disulfide (MoS2) as the channel material and aluminum doped HfO2 as the ferroelectric gate dielectric. A 16 nm thick layer of HfO2, doped with 5.26% aluminum, was deposited via atomic layer deposition (ALD), then subjected to rapid thermal annealing (RTA) at 1000 °C, and the polarization-voltage characteristics of the resulting metal-ferroelectric-metal (MFM) capacitors were measured, showing a remnant polarization of 0.6 μC/cm2. Ferroelectric memories with embedded ferroelectric hafnium oxide stacks and monolayer MoS2 were fabricated. The transfer characteristics after program and erase pulses revealed a clear ferroelectric memory window. In addition, endurance (up to 10,000 cycles) of the devices were tested and effects associated with ferroelectric materials, such as the wake-up effect and polarization fatigue, were observed. This research can potentially lead to advances of 2D materials in low-power logic and memory applications.
Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells.
Wei, Jing; Zhao, Yicheng; Li, Heng; Li, Guobao; Pan, Jinlong; Xu, Dongsheng; Zhao, Qing; Yu, Dapeng
2014-11-06
The power conversion efficiency (PCE) of CH3NH3PbX3 (X = I, Br, Cl) perovskite solar cells has been developed rapidly from 6.5 to 18% within 3 years. However, the anomalous hysteresis found in I-V measurements can cause an inaccurate estimation of the efficiency. We attribute the phenomena to the ferroelectric effect and build a model based on the ferroelectric diode to explain it. The ferroelectric effect of CH3NH3PbI3-xClx is strongly suggested by characterization methods and the E-P (electrical field-polarization) loop. The hysteresis in I-V curves is found to greatly depend on the scan range as well as the velocity, which is well explained by the ferroelectric diode model. We also find that the current signals show exponential decay in ∼10 s under prolonged stepwise measurements, and the anomalous hysteresis disappears using these stabilized current values. The experimental results accord well with the model based on ferroelectric properties and prove that prolonged stepwise measurement is an effective way to evaluate the real efficiency of perovskite solar cells. Most importantly, this work provides a meaningful perspective that the ferroelectric effect (if it really exists) should be paid special attention in the optimization of perovskite solar cells.
Electrostatic micromotor based on ferroelectric ceramics
NASA Astrophysics Data System (ADS)
Baginsky, I. L.; Kostsov, E. G.
2004-11-01
A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.
NASA Astrophysics Data System (ADS)
Tumarkin, A. V.; Tepina, E. R.; Nenasheva, E. A.; Kartenko, N. F.; Kozyrev, A. B.
2012-06-01
The electrophysical properties of bulk ceramics based on Ba x Sr1 - x TiO3 solid solutions with a Mg-containing additive and planar variconds based on ferroelectric films obtained by the ion-plasma sputtering of targets with different elemental compositions are studied. Controllability n( U) = C(0)/ C( U) and the dielectric loss tangent (tanδ) of ferroelectric variconds are measured as functions of the elemental composition of the ferroelectric. The figure of merit of the variconds is estimated, and the film composition providing the best electrophysical parameters is determined.
Ferroelectric Schottky diode behavior from a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta structure
NASA Astrophysics Data System (ADS)
Pintilie, Lucian; Stancu, Viorica; Trupina, L.; Pintilie, Ioana
2010-08-01
A single ferroelectric Schottky diode was obtained on a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta (SRO-PZT20/80-Ta) structure in which the SRO-PZT20/80 interface is the rectifying contact and the PZT20/80-Ta interface behaves as a quasiohmic contact. Both the capacitance-voltage (C-V) and the current-voltage (I-V) characteristics show the memory effect due to the ferroelectric polarization. However, retention studies had revealed that only the “down” orientation of ferroelectric polarization is stable in time (polarization oriented from top to bottom contact). The analysis of the experimental results suggests that the PZT20/80 is n type and that the stable orientation of polarization is related to the presence of a depletion region at the SRO-PZT20/80 Schottky interface.
Jin Hu, Wei; Wang, Zhihong; Yu, Weili; Wu, Tom
2016-01-01
Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresistance as large as 105. Furthermore, the FTJ memory states could be modulated by light illumination, which is accompanied by a hysteretic photovoltaic effect. These complimentary effects are attributed to the bias- and light-induced modulation of the tunnel barrier, both in height and width, at the semiconductor/ferroelectric interface. Overall, the highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs. PMID:26924259
Crystal Structure and Ferroelectric Properties of ε-Ga2O3 Films Grown on (0001)-Sapphire.
Mezzadri, Francesco; Calestani, Gianluca; Boschi, Francesco; Delmonte, Davide; Bosi, Matteo; Fornari, Roberto
2016-11-21
The crystal structure and ferroelectric properties of ε-Ga 2 O 3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga 2 O 3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga 3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P6 3 mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga 2 O 3 [10-10] direction being parallel to the Al 2 O 3 direction [11-20], yielding a lattice mismatch of about 4.1%.
NASA Astrophysics Data System (ADS)
Zhang, Haiwu; Chen, Chao; Zhao, Xiangyong; Deng, Hao; Li, Long; Lin, Di; Li, Xiaobing; Ren, Bo; Luo, Haosu; Yan, Jun
2013-11-01
Bi deficient, Mn doped 0.92(Na0.5Bi0.5)TiO3-0.08(K0.5Bi0.5)TiO3 single crystals were grown by carefully controlled top-seeded solution growth method. Local structures were investigated by transmission electron microscopy. The site occupation and valence state of manganese were characterized by electron paramagnetic resonance spectrum. The leakage current density in the as-grown single crystals is effectively depressed. The introduced defect complexes suppress the temperature induced phase transformation, increasing the depolarization temperature (165 °C) and thermal stability of ferroelectric properties.
NASA Astrophysics Data System (ADS)
Morozovska, Anna N.; Kurchak, Anatolii I.; Strikha, Maksym V.
2017-11-01
p -n junctions in graphene on ferroelectric substrates have been actively studied, but the impact of the piezoelectric effect in ferroelectric substrate with ferroelectric domain walls (FDWs) on graphene characteristics was not considered. Because of the piezoeffect, ferroelectric domain stripes with opposite spontaneous polarizations elongate or contract depending on the polarity of voltage applied to the substrate. We show that the alternating piezoelectric displacement of the ferroelectric domain surfaces can lead to the alternate stretching and separation of graphene areas at the steps between elongated and contracted domains. Graphene separation at FDWs induced by the piezoeffect can cause unusual effects. In particular, the conductance of the graphene channel in a field-effect transistor increases significantly because electrons in the stretched section scatter on acoustic phonons. At the same time, the graphene conductance is determined by ferroelectric spontaneous polarization and varies greatly in the presence of FDWs. The revealed piezomechanism of graphene conductance control is promising for next generations of graphene-based field-effect transistors, modulators, electrical transducers, and piezoresistive elements. Also, our results propose the method of suspended graphene fabrication based on the piezoeffect in a ferroelectric substrate that does not require any additional technological procedures.
NASA Astrophysics Data System (ADS)
Qiao, Huimin; He, Chao; Yuan, Feifei; Wang, Zujian; Li, Xiuzhi; Liu, Ying; Guo, Haiyan; Long, Xifa
2018-04-01
The acceptor doped relaxor-based ferroelectric materials are useful for high power applications such as probes in ultrasound-guided high intensity focused ultrasound therapy. In addition, a high Curie temperature is desired because of wider temperature usage and improved temperature stability. Previous investigations have focused on Pb(Mg1/3Nb2/3)O3-PbTiO3 and Pb(Zn1/3Nb2/3)O3-PbTiO3 systems, which have a ultrahigh piezoelectric coefficient and dielectric constant, but a relatively low Curie temperature. It is desirable to study the binary relaxor-based system with a high Curie temperature. Therefore, Pb(In1/2Nb1/2)O3-PbTiO3 (PINT) single crystals were chosen to study the Mn-doped influence on their electrical properties and domain configuration. The evolution of ferroelectric hysteresis loops for doped and virgin samples exhibit the pinning effect in Mn-doped PINT crystals. The relaxation behaviors of doped and virgin samples are studied by fit of the modified Curie-Weiss law and Volgel-Fucher relation. In addition, a short-range correlation length was fitted to study the behavior of polar nanoregions based on the domain configuration obtained by piezoresponse force microscopy. Complex domain structures and smaller short-range correlation lengths (100-150 nm for Mn-doped PINT and >400 nm for pure PINT) were obtained in the Mn-doped PINT single crystals.
Eiras, José A.; Gerbasi, Rosimeire B. Z.; Rosso, Jaciele M.; Silva, Daniel M.; Cótica, Luiz F.; Santos, Ivair A.; Souza, Camila A.; Lente, Manuel H.
2016-01-01
Lead free piezoelectric materials are being intensively investigated in order to substitute lead based ones, commonly used in many different applications. Among the most promising lead-free materials are those with modified NaNbO3, such as (K, Na)NbO3 (KNN) and (Ba, Na)(Ti, Nb)O3 (BTNN) families. From a ceramic processing point of view, high density single phase KNN and BTNN ceramics are very difficult to sinter due to the volatility of the alkaline elements, the narrow sintering temperature range and the anomalous grain growth. In this work, Spark Plasma Sintering (SPS) and high-energy ball milling (HEBM), following heat treatments (calcining and sintering), in oxidative (O2) atmosphere have been used to prepare single phase highly densified KNN (“pure” and Cu2+ or Li1+ doped), with theoretical densities ρth > 97% and BTNN ceramics (ρth ~ 90%), respectively. Using BTTN ceramics with a P4mm perovskite-like structure, we showed that by increasing the NaNbO3 content, the ferroelectric properties change from having a relaxor effect to an almost “normal” ferroelectric character, while the tetragonality and grain size increase and the shear piezoelectric coefficients (k15, g15 and d15) improve. For KNN ceramics, the results reveal that the values for remanent polarization as well as for most of the coercive field are quite similar among all compositions. These facts evidenced that Cu2+ may be incorporated into the A and/or B sites of the perovskite structure, having both hardening and softening effects. PMID:28773304
Ferroelectric/Semiconductor Tunable Microstrip Patch Antenna Developed
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2001-01-01
A lithographically printed microwave antenna that can be switched and tuned has been developed. The structure consists of a rectangular metallic "patch" radiator patterned on a thin ferroelectric film that was grown on high-resistivity silicon. Such an antenna may one day enable a single-phased array aperture to transmit and receive signals at different frequencies, or it may provide a simple way to reconfigure fractal arrays for communications and radar applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghonge, S.G.; Goo, E.; Ramesh, R.
1994-12-31
TEM and X-ray diffraction studies of PZT, PLZT, lead titanate and bismuth titanate ferroelectric thin films and YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}(YBCO), Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}(BSCCO) and La{sub 0.5}Sr{sub 0.5}CoO{sub 3}(LSCO) electrically conductive oxide thin films, that are sequentially deposited by pulsed laser ablation, show that these films may be deposited epitaxially onto LaAlO{sub 3}(LAO) or Si substrates. The conductive oxides are promising candidates for use is electrodes in place of metal electrodes in integrated ferroelectric device applications. The oxide electrodes are more chemically compatible with the ferroelectric films. High resolution electron microscopy his been used to investigate the interfacemore » between the ferroelectric and metal oxide thin films and no reaction was detected. Epitaxial growth is possible due to the similar crystal structures and the small lattice mismatch. The lattice mismatch that is present causes the domains in the ferroelectric films to be preferentially oriented and in the case of lead titanate, the film is single domain. These films may also have potential applications in integrated optical devices.« less
Simultaneous Stress and Field Control of Sustainable Switching of Ferroelectric Phases
Finkel, P.; Staruch, M.; Amin, A.; Ahart, M.; Lofland, S.E.
2015-01-01
In ferroelectrics, manifestation of a strong electromechanical coupling is attributed to both engineered domain morphology and phase transformations. However, realization of large sustainable and reversible strains and polarization rotation has been limited by fatigue, nonlinearity and hysteresis losses. Here, we demonstrate that large strain and polarization rotation can be generated for over 40 × 106 cycles with little fatigue by realization of a reversible ferroelectric-ferroelectric phase transition in [011] cut Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) relaxor ferroelectric single crystal. Direct tuning of this effect through combination of stress and applied electric field, confirmed both macroscopically and microscopically with x-ray and Raman scattering, reveals the local symmetry while sweeping through the transition with a low applied electric field (<0.2 MV/m) under mechanical stress. The observed change in local symmetry as determined by x-ray scattering confirms a proposed polarization rotation mechanism corresponding to a transition between rhombohedral and orthorhombic phases. These results shed more light onto the nature of this reversible transformation between two ferroelectric phases and advance towards the development of a wide range of ferroic and multiferroic devices. PMID:26345729
NASA Astrophysics Data System (ADS)
Niu, Li-Wei; Chen, Chang-Le; Dong, Xiang-Lei; Xing, Hui; Luo, Bing-Cheng; Jin, Ke-Xin
2016-10-01
Multiferroic materials, showing the coexistence and coupling of ferroelectric and magnetic orders, are of great technological and fundamental importance. However, the limitation of single phase multiferroics with robust magnetization and polarization hinders the magnetoelectric effect from being applied practically. Magnetic frustration, which can induce ferroelectricity, gives rise to multiferroic behavior. In this paper, we attempt to construct an artificial magnetically frustrated structure comprised of manganites to induce ferroelectricity. A disordered stacking of manganites is expected to result in frustration at interfaces. We report here that a tri-color multilayer structure comprised of non-ferroelectric La0.9Ca0.1MnO3(A)/Pr0.85Ca0.15MnO3(B)/Pr0.85Sr0.15MnO3(C) layers with the disordered arrangement of ABC-ACB-CAB-CBA-BAC-BCA is prepared to form magnetoelectric multiferroics. The multilayer film exhibits evidence of ferroelectricity at room temperature, thus presenting a candidate for multiferroics. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301, 61078057, 51172183, 51402240, and 51471134), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JQ5125), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015ZY078).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dong; Asadi, Kamal; Blom, Paul W. M.
A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O{sub 3}. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention wasmore » measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.« less
K-Band Reflectarray Antenna Based on Ferroelectric Thin Films: What Have We Learned so Far
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Romanofsky, Robert; Mueller, Carl H.; VanKeuls, Fred
2002-01-01
The Applied RF Technology Branch of the NASA Glenn Research Center, Cleveland, Ohio, has an on-going effort in the area of thin film ferroelectric technology for microwave applications. Particular attention has been given to developing ferroelectric phase shifters for the implementation and experimental demonstration of an electronically steerable reflectarray antenna. In the process of optimizing these material to fit the implementation requirements of the aforementioned antenna, we have accumulated a great deal of information and knowledge in areas such as the effect of the composition of the ferroelectric thin films on phase shifter performance, self assembled monolayers (SAMs) in the metallic/ferroelectric interface and their impact on phase shifter performance, correlation between microstructure and microwave properties, and the effect of selective etching on the overall performance of a thin film-ferroelectric based microwave component, amongst others. We will discuss these issues and will provide an up-dade of the current development status of the reflect-array antenna.
Flexible graphene-PZT ferroelectric nonvolatile memory.
Lee, Wonho; Kahya, Orhan; Toh, Chee Tat; Ozyilmaz, Barbaros; Ahn, Jong-Hyun
2013-11-29
We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 μC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.
Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen
2015-01-01
We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined. PMID:26657622
Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions.
Soni, Rohit; Petraru, Adrian; Meuffels, Paul; Vavra, Ondrej; Ziegler, Martin; Kim, Seong Keun; Jeong, Doo Seok; Pertsev, Nikolay A; Kohlstedt, Hermann
2014-11-17
Among recently discovered ferroelectricity-related phenomena, the tunnelling electroresistance (TER) effect in ferroelectric tunnel junctions (FTJs) has been attracting rapidly increasing attention owing to the emerging possibilities of non-volatile memory, logic and neuromorphic computing applications of these quantum nanostructures. Despite recent advances in experimental and theoretical studies of FTJs, many questions concerning their electrical behaviour still remain open. In particular, the role of ferroelectric/electrode interfaces and the separation of the ferroelectric-driven TER effect from electrochemical ('redox'-based) resistance-switching effects have to be clarified. Here we report the results of a comprehensive study of epitaxial junctions comprising BaTiO(3) barrier, La(0.7)Sr(0.3)MnO(3) bottom electrode and Au or Cu top electrodes. Our results demonstrate a giant electrode effect on the TER of these asymmetric FTJs. The revealed phenomena are attributed to the microscopic interfacial effect of ferroelectric origin, which is supported by the observation of redox-based resistance switching at much higher voltages.
Ferroelectricity and tunneling electroresistance effect in asymmetric ferroelectric tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, L. L.; Wang, J., E-mail: jianwang@hku.hk
2016-06-14
We report the investigation on the ferroelectricity and tunneling electroresistance (TER) effect in PbTiO{sub 3} (PTO)-based ferroelectric tunnel junctions (FTJs) using first-principles calculations. For symmetric FTJs, we have calculated the average polarizations of PTO film and effective screening lengths of different metal electrodes for a number of FTJs, which is useful for experimental research. For asymmetric FTJs, significant asymmetric ferroelectric displacements in PTO film are observed, which is attributed to the intrinsic field generated by the two dissimilar electrodes. Moreover, by performing quantum transport calculations on those asymmetric FTJs, a sizable TER effect is observed. It is found that themore » asymmetry of ferroelectric displacements in PTO barrier, which is determined by the difference of work functions of the electrodes, controls the observed TER effect. Our results will help unravel the TER mechanism of asymmetric FTJs in most experiments and will be useful for the designing of FTJ-based devices.« less
Electrostrain in excess of 1% in polycrystalline piezoelectrics
NASA Astrophysics Data System (ADS)
Narayan, Bastola; Malhotra, Jaskaran Singh; Pandey, Rishikesh; Yaddanapudi, Krishna; Nukala, Pavan; Dkhil, Brahim; Senyshyn, Anatoliy; Ranjan, Rajeev
2018-05-01
Piezoelectric actuators transform electrical energy into mechanical energy, and because of their compactness, quick response time and accurate displacement, they are sought after in many applications. Polycrystalline piezoelectric ceramics are technologically more appealing than single crystals due to their simpler and less expensive processing, but have yet to display electrostrain values that exceed 1%. Here we report a material design strategy wherein the efficient switching of ferroelectric-ferroelastic domains by an electric field is exploited to achieve a high electrostrain value of 1.3% in a pseudo-ternary ferroelectric alloy system, BiFeO3-PbTiO3-LaFeO3. Detailed structural investigations reveal that this electrostrain is associated with a combination of several factors: a large spontaneous lattice strain of the piezoelectric phase, domain miniaturization, a low-symmetry ferroelectric phase and a very large reverse switching of the non-180° domains. This insight for the design of a new class of polycrystalline piezoceramics with high electrostrains may be useful to develop alternatives to costly single-crystal actuators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endres, Florian, E-mail: florian.endres@ltm.uni-erlangen.de; Steinmann, Paul, E-mail: paul.steinmann@ltm.uni-erlangen.de
2016-01-14
Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phasemore » using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains.« less
Single-domain multiferroic BiFeO 3 films
Kuo, Chang -Yang; Hu, Z.; Yang, J. C.; ...
2016-09-01
The strong coupling between antiferromagnetism and ferroelectricity at room temperature found in BiFeO 3 generates high expectations for the design and development of technological devices with novel functionalities. However, the multi-domain nature of the material tends to nullify the properties of interest and complicates the thorough understanding of the mechanisms that are responsible for those properties. Here we report the realization of a BiFeO 3 material in thin film form with single-domain behaviour in both its magnetism and ferroelectricity: the entire film shows its antiferromagnetic axis aligned along the crystallographic b axis and its ferroelectric polarization along the c axis.more » With this we are able to reveal that the canted ferromagnetic moment due to the Dzyaloshinskii–Moriya interaction is parallel to the a axis. Moreover, by fabricating a Co/BiFeO 3 heterostructure, we demonstrate that the ferromagnetic moment of the Co film does couple directly to the canted moment of BiFeO 3.« less
NASA Astrophysics Data System (ADS)
Mahesh, M. L. V.; Bhanu Prasad, V. V.; James, A. R.
2016-04-01
Barium zirconium titanate, Ba(Zr0.15Ti0.85)O3 nano-crystalline powders were synthesized using high energy ball milling. The calcined powders were compacted adopting two different approaches viz. the conventional uniaxial pressing and cold-isostatic pressing (CIP) and the compacts were sintered at 1350 °C. A single phase perovskite structure was observed in both cases. BZT ceramics compacted using CIP technique exhibited enhanced dielectric and ferroelectric properties compared to ceramics compacted by uniaxial pressing. The polarization current peaks have been used in this paper as an experimental evidence to prove the existence of ferroelectricity in the BZT ceramics under study. The peak polarization current was found to be ~700% higher in case of cold iso-statically compacted ceramics. Similarly electric field induces strain showed a maximum strain ( S max) of 0.08% at an electric field of 28 kV/cm. The dielectric and ferroelectric properties observed are comparable to single crystals of the same material.
Trepakov, V. A.; Kvyatkovskii, O. E.; Savinov, M. E.; ...
2016-10-01
The unusual behavior of the low-frequency (10 Hz–1 MHz) permittivity in single crystals of ferroelectric multiferroic TbMnO3 has been experimentally and theoretically studied in detail in the region of the narrow temperature peak of the permittivity, associated with the ferroelectric phase transition (T C ~ 27.4 K). It has been found that the ε c(ω, T) maximum sharply decreases with increasing measured field frequency, while the temperature position of the maximum is independent of frequency. It has been shown that the observed features of the polarization response can be satisfactorily described within the Landau–Khalatnikov polarization relaxation theory.
Ferroelectricity and antiferroelectricity of doped thin HfO2-based films.
Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Kim, Yu Jin; Moon, Taehwan; Kim, Keum Do; Müller, Johannes; Kersch, Alfred; Schroeder, Uwe; Mikolajick, Thomas; Hwang, Cheol Seong
2015-03-18
The recent progress in ferroelectricity and antiferroelectricity in HfO2-based thin films is reported. Most ferroelectric thin film research focuses on perovskite structure materials, such as Pb(Zr,Ti)O3, BaTiO3, and SrBi2Ta2O9, which are considered to be feasible candidate materials for non-volatile semiconductor memory devices. However, these conventional ferroelectrics suffer from various problems including poor Si-compatibility, environmental issues related to Pb, large physical thickness, low resistance to hydrogen, and small bandgap. In 2011, ferroelectricity in Si-doped HfO2 thin films was first reported. Various dopants, such as Si, Zr, Al, Y, Gd, Sr, and La can induce ferro-electricity or antiferroelectricity in thin HfO2 films. They have large remanent polarization of up to 45 μC cm(-2), and their coercive field (≈1-2 MV cm(-1)) is larger than conventional ferroelectric films by approximately one order of magnitude. Furthermore, they can be extremely thin (<10 nm) and have a large bandgap (>5 eV). These differences are believed to overcome the barriers of conventional ferroelectrics in memory applications, including ferroelectric field-effect-transistors and three-dimensional capacitors. Moreover, the coupling of electric and thermal properties of the antiferroelectric thin films is expected to be useful for various applications, including energy harvesting/storage, solid-state-cooling, and infrared sensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J. A. L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J.
2016-05-01
Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain ‘ideal’ conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro.
A lead-halide perovskite molecular ferroelectric semiconductor
Liao, Wei-Qiang; Zhang, Yi; Hu, Chun-Li; Mao, Jiang-Gao; Ye, Heng-Yun; Li, Peng-Fei; Huang, Songping D.; Xiong, Ren-Gen
2015-01-01
Inorganic semiconductor ferroelectrics such as BiFeO3 have shown great potential in photovoltaic and other applications. Currently, semiconducting properties and the corresponding application in optoelectronic devices of hybrid organo-plumbate or stannate are a hot topic of academic research; more and more of such hybrids have been synthesized. Structurally, these hybrids are suitable for exploration of ferroelectricity. Therefore, the design of molecular ferroelectric semiconductors based on these hybrids provides a possibility to obtain new or high-performance semiconductor ferroelectrics. Here we investigated Pb-layered perovskites, and found the layer perovskite (benzylammonium)2PbCl4 is ferroelectric with semiconducting behaviours. It has a larger ferroelectric spontaneous polarization Ps=13 μC cm−2 and a higher Curie temperature Tc=438 K with a band gap of 3.65 eV. This finding throws light on the new properties of the hybrid organo-plumbate or stannate compounds and provides a new way to develop new semiconductor ferroelectrics. PMID:26021758
FAST TRACK COMMUNICATION: Ferroelectricity in low-symmetry biaxial nematic liquid crystals
NASA Astrophysics Data System (ADS)
Osipov, Mikhail A.; Gorkunov, Maxim V.
2010-09-01
Order parameters and phenomenological theory for both high- and low-symmetry biaxial nematic phases are presented and it is predicted that the chiral low-symmetry biaxial phase must be ferroelectric. This conclusion is based on general symmetry arguments and on the results of the Landau-de Gennes theory. The microscopic mechanism of the ferroelectric ordering in this chiral biaxial phase is illustrated using a simple molecular model based on dispersion interactions between biaxial molecules of low symmetry. Similar to the chiral smectic C* phase, the ferroelectricity in the chiral biaxial nematic phase is improper, i.e., polarization is not a primary order parameter and is not determined by dipolar interactions. Ferroelectric ordering in biaxial nematics may be found, in principle, in materials composed of chiral analogues of the tetrapod molecules which are known to exhibit biaxial phases.
Ferroelectric Properties of La Substituted PZT Ceramics
NASA Astrophysics Data System (ADS)
Rani, Rekha; Juneja, J. K.; Raina, K. K.; Prakash, Chandra
2011-11-01
For the present study, La substituted PZT ceramics having compositional formula Pb1-3x/2LaxZr0.65Ti0.35O3 were prepared by conventional solid state method. La content was varied from x = 0 to 0.03 in the steps of 0.01. XRD analyses of all the samples were done and were found to have single phase with rhombohedral structure. In this paper, we are reporting the variation in ferroelectric properties of Pb1-3x/2LaxZr0.65Ti0.35O3 by varying La content. P-E hysteresis loops were recorded using P-E loop tracer based on Sawyer- Tower circuit for all the samples at 20 Hz. Increase in coercive field (Ec), remanant polarization (Pr), saturation polarization (Ps) and squareness ratio (Pr/Ps) was observed with increase in x.
NASA Astrophysics Data System (ADS)
Ko, Jae-Hyeon; Kim, Tae Hyun; Roleder, K.; Rytz, D.; Kojima, Seiji
2011-09-01
The acoustic anomalies and precursor dynamics of high-quality barium titanate single crystals were investigated by Brillouin light scattering and the birefringence measurements in the paraelectric phase above the cubic-to-tetragonal ferroelectric phase transition temperature (Tc). Two elastic stiffness coefficients C11 and C44, the related sound velocities, and their absorption coefficients were determined from Tc to 400∘C for the first time. The longitudinal acoustic (LA) mode showed a substantial softening over a wide temperature range above Tc which was accompanied by a remarkable increase in the acoustic damping as well as growth of central peaks. The broad central peak (CP) exhibited a two-mode and one-mode behavior in the paraelectric and ferroelectric phase, respectively, which was consistent with recent far-infrared reflectivity measurements and first-principle-based calculations [Ponomareva , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.77.012102 77, 012102 (2008)]. The acoustic anomalies and CP behavior were correlated with the anomalous birefringence, piezoelectric effect, and the deviation of the Curie-Weiss law observed from the same crystal. This strongly indicates similarity between the dynamics of polar clusters in typical ferroelectrics and the dynamics of polar nanoregions in relaxors, consistent with recent acoustic emission measurements [Dul’kin , Appl. Phys. Lett.APPLAB0003-695110.1063/1.3464968 97, 032903 (2010)]. The relaxation times estimated from the central peak and the LA mode anomalies exhibited similar temperature dependences with comparable orders of magnitude, indicating that the polarization fluctuations due to the precursor polar clusters couples to the LA mode through density fluctuations. All these anomalies share common microscopic origin, correlated Ti off-centered motions forming polar clusters having local symmetry breaking in the paraelectric phase. The existence of the polar clusters were directly evidenced by the temperature evolution of the precise birefringence map. The narrow central peak within ±5 GHz proposed before was not confirmed to exist in the present study.
Design of a Multi-Level/Analog Ferroelectric Memory Device
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.
2006-01-01
Increasing the memory density and utilizing the dove1 characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used as a reference to determine the amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. It is predicted that each memory cell may be able to store 8 bits or more. The design is based on data taken from actual ferroelectric transistors. Although the circuit has not been fabricated, a prototype circuit is now under construction. The design of this circuit is different than multi-level FLASH or silicon transistor circuits. The differences between these types of circuits are described in this paper. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.
NASA Astrophysics Data System (ADS)
Kong, Y. C.; Xue, F. S.; Zhou, J. J.; Li, L.; Chen, C.; Li, Y. R.
2009-06-01
The control effect of the ferroelectric polarization on the two-dimensional electron gas (2DEG) in a ferroelectric/AlGaN/GaN metal-ferroelectric-semiconductor (MFS) structure is theoretically analyzed by a self-consistent approach. With incorporating the hysteresis nature of the ferroelectric into calculation, the nature of the control effect is disclosed, where the 2DEG density is depleted/restored after poling/depoling operation on the MFS structure. The orientation of the ferroelectric polarization is clarified to be parallel to that of the AlGaN barrier, which, based on an electrostatics analysis, is attributed to the pinning effect of the underlying polarization. Reducing the thickness of the AlGaN barrier from 25 nm to 20 nm leads to an improved control modulation of the 2DEG density from 36.7% to 54.1%.
Tunable electroresistance and electro-optic effects of transparent molecular ferroelectrics
Zhang, Zhuolei; Li, Peng-Fei; Tang, Yuan-Yuan; ...
2017-08-30
Recent progress in molecular ferroelectrics (MOFEs) has been overshadowed by the lack of high-quality thin films for device integration. We report a water-based air-processable technique to prepare large-area MOFE thin films, controlled by supersaturation growth at the liquid-air interface under a temperature gradient and external water partial pressure. We used this technique to fabricate ImClO4 thin films and found a large, tunable room temperature electroresistance: a 20-fold resistance variation upon polarization switching. The as-grown films are transparent and consist of a bamboo-like structure of (more » $$2,\\overline{1},0$$) and ($$1,0,\\overline{2}$$) structural variants of R3m symmetry with a reversible polarization of 6.7 μC/cm 2. The resulting ferroelectric domain structure leads to a reversible electromechanical response of d 33 = 38.8 pm/V. Polarization switching results in a change of the refractive index, n, of single domains, $$\\frac{Δn}{n}$$ = 0.3. The remarkable combination of these characteristics renders MOFEs a prime candidate material for new nanoelectronic devices. The information that we present in this work will open a new area of MOFE thin-film technologies.« less
Tunable electroresistance and electro-optic effects of transparent molecular ferroelectrics
Zhang, Zhuolei; Li, Peng-Fei; Tang, Yuan-Yuan; Wilson, Andrew J.; Willets, Katherine; Wuttig, Manfred; Xiong, Ren-Gen; Ren, Shenqiang
2017-01-01
Recent progress in molecular ferroelectrics (MOFEs) has been overshadowed by the lack of high-quality thin films for device integration. We report a water-based air-processable technique to prepare large-area MOFE thin films, controlled by supersaturation growth at the liquid-air interface under a temperature gradient and external water partial pressure. We used this technique to fabricate ImClO4 thin films and found a large, tunable room temperature electroresistance: a 20-fold resistance variation upon polarization switching. The as-grown films are transparent and consist of a bamboo-like structure of (2,1¯,0) and (1,0,2¯) structural variants of R3m symmetry with a reversible polarization of 6.7 μC/cm2. The resulting ferroelectric domain structure leads to a reversible electromechanical response of d33 = 38.8 pm/V. Polarization switching results in a change of the refractive index, n, of single domains, Δnn=0.3. The remarkable combination of these characteristics renders MOFEs a prime candidate material for new nanoelectronic devices. The information that we present in this work will open a new area of MOFE thin-film technologies. PMID:28875167
Towards multicaloric effect with ferroelectrics
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Guangzu; Li, Qi; Bellaiche, Laurent; Scott, James F.; Dkhil, Brahim; Wang, Qing
2016-12-01
Utilizing thermal changes in solid-state materials strategically offers caloric-based alternatives to replace current vapor-compression technology. To make full use of multiple forms of the entropy and achieve higher efficiency for designs of cooling devices, the multicaloric effect appears as a cutting-edge concept encouraging researchers to search for multicaloric materials with outstanding caloric properties. Here we report the multicaloric effect in BaTi O3 single crystals driven simultaneously by mechanical and electric fields and described via a thermodynamic phenomenological model. It is found that the multicaloric behavior is mainly dominated by the mechanical field rather than the electric field, since the paraelectric-to-ferroelectric transition is more sensitive to mechanical field than to electric field. The use of uniaxial stress competes favorably with pressure due to its much higher caloric strength and negligible elastic thermal change. It is revealed that multicaloric response can be significantly larger than just the sum of mechanocaloric and electrocaloric effects in temperature regions far above the Curie temperature but cannot exceed this limit near the Curie temperature. Our results also show the advantage of the multicaloric effect over the mechanically mediated electrocaloric effect or electrically mediated mechanocaloric effect. Our findings therefore highlight the importance of ferroelectric materials to develop multicaloric cooling.
Smart Core-Shell Nanowire Architectures for Multifunctional Nanoscale Devices
2014-02-16
Andrew R. Akbashev, Peter K. Davies, Jonathan E. Spanier, Andrew M. Rappe. Perovskite oxides for visible- light -absorbing ferroelectric and...without loss of polar character. Shown for a single phase solid solution ferroelectric oxide perovskite (K,Ba),(Ni,Nb)O_(3-delta), this material...exhibits a compositionally tunable and direct band gap in the range of 1.1 – 3.8 eV, with potential for novel nonlinear light -matter applications in addition
Temperature Compensated Piezoelectric Materials
1982-09-01
modeling of the dielectric, elas- tic, piezoelectric and thermoelectric properties of a simple proper ferroelec- tric. In the thermodynamic...COMPOSITIONS 61 5.1 Growth of Sro.sBao.sNbaOe Thin Films 61 5.2 Growth of SraKNbsOis Thin Films 63 6.0 STRUCTURAL.AND FERROELECTRIC PROPERTIES OF...Transitions 75 6.4 Ferroelectric Data 77 6.5 Concl usi ons 82 7.0 PHOTOREFRACTIVE PROPERTIES OF SBN SINGLE CRYSTALS 85 8.0 PUBLICATIONS AND
Tetragonal CH3NH3PbI3 is ferroelectric
Bar-Elli, Omri; Meirzadeh, Elena; Kaslasi, Hadar; Peleg, Yagel; Hodes, Gary; Lubomirsky, Igor; Oron, Dan; Ehre, David; Cahen, David
2017-01-01
Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI3). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI3 is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI3 (unlike MAPbBr3) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material’s relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity’s hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI3, we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material’s noncentrosymmetry. We note that the material’s ferroelectric nature, can, but need not be important in a PV cell at room temperature. PMID:28588141
Single gate p-n junctions in graphene-ferroelectric devices
NASA Astrophysics Data System (ADS)
Hinnefeld, J. Henry; Xu, Ruijuan; Rogers, Steven; Pandya, Shishir; Shim, Moonsub; Martin, Lane W.; Mason, Nadya
2016-05-01
Graphene's linear dispersion relation and the attendant implications for bipolar electronics applications have motivated a range of experimental efforts aimed at producing p-n junctions in graphene. Here we report electrical transport measurements of graphene p-n junctions formed via simple modifications to a PbZr0.2Ti0.8O3 substrate, combined with a self-assembled layer of ambient environmental dopants. We show that the substrate configuration controls the local doping region, and that the p-n junction behavior can be controlled with a single gate. Finally, we show that the ferroelectric substrate induces a hysteresis in the environmental doping which can be utilized to activate and deactivate the doping, yielding an "on-demand" p-n junction in graphene controlled by a single, universal backgate.
NASA Astrophysics Data System (ADS)
Ochoa, Diego Alejandro; García, Jose Eduardo
2016-04-01
The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.
NASA Astrophysics Data System (ADS)
Luo, Laihui; Dietze, Matthias; Solterbeck, Claus-Henning; Luo, Haosu; Es-Souni, Mohammed
2013-12-01
Single crystals based on solid solutions of lead-magnesium-niobate (PMN) and lead titanate (PT) have emerged as highly promising multifunctional systems combining piezoelectric, pyroelectric, and electro-optic properties that surpass by far those of the best known lead-zirkonium-titanate ceramics. In this paper we present new findings on how the phase transition temperature and the dielectric and ferroelectric properties can be tuned depending on crystal composition, orientation, and thermoelectrical treatment. Mn-doped and pure 0.72PbMg1/3Nb2/3O3-0.28PbTiO3 (0.72PMN-0.28PT) single crystals with ⟨111⟩ and ⟨001⟩ orientations were investigated. A special attention was devoted to field cooling (FC), i.e., cooling under electric field from different temperatures. The results illustrate different findings that were not reported before: the Curie temperature, i.e., ferroelectric-paraelectric transition temperature, is enhanced after field cooling of the Mn-doped, ⟨001⟩-oriented crystal while such a shift is not observed in the ⟨111⟩-oriented and the non-doped crystals. In addition, substantial polarization suppression occurs in the Mn-doped crystals upon FC from high temperature regardless of orientation. Based on piezoforce microscopy of the domain structure that shows suppression of domain growth following field cooling from 200 °C, we propose a mechanism for polarization suppression based on domain pinning by charged defects. The practical importance of our results lies in showing the opportunity offered by a proper choice of crystal composition and poling conditions for tuning the functional properties of PMN-PT single crystals for a specific application. This should contribute to the understanding of their properties towards advanced sensor and transducers devices.
NASA Astrophysics Data System (ADS)
Kim, Won-Ho; Kwon, Jin-Hyuk; Park, Gyeong-Tae; Kim, Jae-Hyun; Bae, Jin-Hyuk; Zhang, Xue; Park, Jaehoon
2014-09-01
Organic ferroelectric capacitors were fabricated using pentacene and poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as an organic semiconductor and a ferroelectric material, respectively. A paraelectric poly(vinyl cinnamate) layer was adopted as an interlayer between the PVDF-TrFE layer and the bottom electrode. The paraelectric interlayer induced a depolarization field opposite to the direction of the polarization formed in the ferroelectric PVDF-TrFE insulator, thereby suppressing spontaneous polarization. As a result, the Mott-Schottky model could be used to evaluate, from the extracted flat-band voltages, the density of the charge trapped in the organic ferroelectric capacitors.
Discovery of stable skyrmionic state in ferroelectric nanocomposites
NASA Astrophysics Data System (ADS)
Nahas, Y.; Prokhorenko, S.; Louis, L.; Gui, Z.; Kornev, I.; Bellaiche, L.
2015-10-01
Non-coplanar swirling field textures, or skyrmions, are now widely recognized as objects of both fundamental interest and technological relevance. So far, skyrmions were amply investigated in magnets, where due to the presence of chiral interactions, these topological objects were found to be intrinsically stabilized. Ferroelectrics on the other hand, lacking such chiral interactions, were somewhat left aside in this quest. Here we demonstrate, via the use of a first-principles-based framework, that skyrmionic configuration of polarization can be extrinsically stabilized in ferroelectric nanocomposites. The interplay between the considered confined geometry and the dipolar interaction underlying the ferroelectric phase instability induces skyrmionic configurations. The topological structure of the obtained electrical skyrmion can be mapped onto the topology of domain-wall junctions. Furthermore, the stabilized electrical skyrmion can be as small as a few nanometers, thus revealing prospective skyrmion-based applications of ferroelectric nanocomposites.
Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix
NASA Astrophysics Data System (ADS)
Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.
2018-01-01
Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition in PbTiO3 nanocrystals and suppressing in BaTiO3 inclusions some transformations occurring in their bulk counterpart. The constructed phase maps open the possibility to calculate dielectric properties of strained PbTiO3 and BaTiO3 nanocrystals and ferroelectric nanocomposites comprising such crystallites.
NASA Astrophysics Data System (ADS)
Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang; Pitike, Krishna C.; Sohn, Changhee; Nakhmanson, Serge M.; Takoudis, Christos G.; Lee, Ho Nyung; Tonelli, Rachel; Gardner, Jonathan; Scott, James F.; Katiyar, Ram S.; Hong, Seungbum
2018-02-01
Tin titanate (SnTi O3 ) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the S n2 + to S n4 + . In the present paper, we show two things: first, perovskite phase SnTi O3 can be prepared by atomic-layer deposition directly onto p -type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p -type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTi O3 . Our films showed well-saturated, square, and repeatable hysteresis loops of around 3 μ C /c m2 remnant polarization at room temperature, as detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt /SnTi O3/Si /SnTi O3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. This is a lead-free room-temperature ferroelectric oxide of potential device application.
Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang; ...
2018-02-20
Tin titanate (SnTiO 3) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the Sn 2+ to Sn 4+. In the present paper, we show two things: first, perovskite phase SnTiO 3 can be prepared by atomic-layer deposition directly onto p-type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p-type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTiO 3. Our films showed well-saturated, square, and repeatable hysteresis loops of around 3μC/cm 2 remnant polarization at room temperature, asmore » detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt/SnTiO 3/Si/SnTiO 3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. In conclusion, this is a lead-free room-temperature ferroelectric oxide of potential device application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang
Tin titanate (SnTiO 3) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the Sn 2+ to Sn 4+. In the present paper, we show two things: first, perovskite phase SnTiO 3 can be prepared by atomic-layer deposition directly onto p-type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p-type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTiO 3. Our films showed well-saturated, square, and repeatable hysteresis loops of around 3μC/cm 2 remnant polarization at room temperature, asmore » detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt/SnTiO 3/Si/SnTiO 3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. In conclusion, this is a lead-free room-temperature ferroelectric oxide of potential device application.« less
Ferroelectrics under the Synchrotron Light: A Review.
Fuentes-Cobas, Luis E; Montero-Cabrera, María E; Pardo, Lorena; Fuentes-Montero, Luis
2015-12-30
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO₃ perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure-function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.
NASA Astrophysics Data System (ADS)
Dipti; Juneja, J. K.; Singh, Sangeeta; Raina, K. K.; Prakash, Chandra
2013-12-01
The perovskite Pb(1-x)BaxZr0.55Ti0.45O3 material (x=0.00, 0.01, 0.02, 0.03, 0.05, and 0.07) was synthesized by solid state reaction route. Green bodies were sintered at 1250 °C. All samples were subjected to X-ray diffraction analysis and they were found to be in single phase. Dielectric properties were studied as a function of temperature and frequency. Ferroelectric properties were studied as a function of temperature. Remnant polarization, saturation polarization and coercive field were determined for all the samples using ferroelectric loops. Piezoelectric properties such as d33 and electromechanical coupling factor (kp) were also measured at room temperature for all samples.
NASA Astrophysics Data System (ADS)
Yang, B. B.; Song, D. P.; Wei, R. H.; Tang, X. W.; Hu, L.; Yang, J.; Song, W. H.; Dai, J. M.; Zhu, X. B.; Sun, Y. P.
2018-05-01
Bi7Fe3-xNixTi3O21 thin films were prepared by chemical solution deposition on Pt/Ti/SiO2/Si substrates. The Ni doping effects on the dielectric, leakage, ferroelectric and magnetic properties were investigated. Coexistence of ferroelectric and ferromagnetic properties at room-temperature was observed in the Bi7Fe2NiTi3O21 thin film with a remnant polarization 2Pr of 36.4 μC/cm2 and a remnant magnetization 2Mr of 3.9 emu/cm3. The dielectric and leakage properties were discussed in detailed. The results will provide important information to explore single-phase multiferroic materials.
Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez Moyet, Richard; Rossetti, George A., E-mail: george.rossetti-jr@uconn.edu; Stace, Joseph
Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]{sub C}-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequencymore » up-conversion.« less
Bandlike Transport in Ferroelectric-Based Organic Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Laudari, A.; Guha, S.
2016-10-01
The dielectric constant of polymer-ferroelectric dielectrics may be tuned by changing the temperature, offering a platform for monitoring changes in interfacial transport with the polarization strength in organic field-effect transistors (FETs). Temperature-dependent transport studies of FETs are carried out from a solution-processed organic semiconductor, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), using both ferroelectric- and nonferroelectric-gate insulators. Nonferroelectric dielectric-based TIPS-pentacene FETs show a clear activated transport, in contrast to the ferroelectric dielectric polymer, poly(vinylidene fluoride-trifluoroethylene), where a negative temperature coefficient of the mobility is observed in the ferroelectric temperature range. The current-voltage (I -V ) characteristics from TIPS-pentacene diodes signal a space-charge-limited conduction (SCLC) for a discrete set of trap levels, suggesting that charge injection and transport occurs through regions of ordering in the semiconductor. The carrier mobility extracted from temperature-dependent I -V characteristics from the trap-free SCLC region shows a negative coefficient beyond 200 K, similar to the trend observed in FETs with the ferroelectric dielectric. At moderate temperatures, the polarization-fluctuation-dominant transport inherent in a ferroelectric dielectric, in conjunction with the nature of traps, results in an effective detrapping of the shallow-trap states into more mobile states in TIPS-pentacene.
Polarization induced optical and electrical control of 2D materials by ferroelectrics
NASA Astrophysics Data System (ADS)
Zafar, Zainab; You, Yumeng
Integration of 2D semiconductors with ferroelectrics can provide a route towards control of polarization-switching by piezoelectric effect, allowing the realization of exciting features of next-generation optoelectronic devices. However, a fundamental understanding of spectroscopic investigation based on ferroelectric switching in ferroelectric/2D heterostructures remains elusive. Here, we demonstrate mechanical writing of nanoscale domains in ferroelectric thin film coupled with 2D materials, facilitated by piezoresponse force microscope (PFM). We propose the use of typical Raman/PL imaging to predict the effect of phase change of ferroelectric on 2D materials. Mechanical writing not only controls the local doping region, but also tunes the transport properties of the channel, as confirmed by its electrical characterization. By Raman/PL spectroscopy, we have identified the domain pattern of different polarizations in terms of amplitude modification of thin ferroelectric and possible shifts in wavenumber/energy of the emission peaks of 2D materials. Therefore, the sensitivity of spectroscopic imaging well corroborates the efficacy of mechanical writing for synthesizing ferroelectric gated 2D devices. Southeast University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tao; Du, Zehui; Tamura, Nobumichi
(1-x)Pb(Zn 1/3Nb 2/3)O 3-xPbTiO 3 ((1-x)PZN-xPT in short) is one of the most important piezoelectric materials. In this study, we extensively investigated (1-x)PZN-xPT (x = 0.07–0.11) ferroelectric single crystals using in-situ synchrotron μXRD, complemented by TEM and PFM, to correlate microstructures with phase transitions. The results reveal that (i) at 25°C, the equilibrium state of (1-x)PZN-xPT is a metastable orthorhombic phase for x = 0.07 and 0.08, while it shows coexistence of orthorhombic and tetragonal phases for x = 0.09 and x = 0.11, with all ferroelectric phases accompanied by ferroelastic domains; (ii) upon heating, the phase transformation in xmore » = 0.07 is Orthorhombic → Monoclinic → Tetragonal → Cubic. The coexistence of ferroelectric tetragonal and paraelectric cubic phases was in-situ observed in x = 0.08 above Curie temperature (T C), and (iii) phase transition can be explained by the evolution of the ferroelectric and ferroelastic domains. These results disclose that (1-x)PZN-xPT are in an unstable regime, which is possible factor for its anomalous dielectric response and high piezoelectric coefficient.« less
Li, Tao; Du, Zehui; Tamura, Nobumichi; ...
2017-11-10
(1-x)Pb(Zn 1/3Nb 2/3)O 3-xPbTiO 3 ((1-x)PZN-xPT in short) is one of the most important piezoelectric materials. In this study, we extensively investigated (1-x)PZN-xPT (x = 0.07–0.11) ferroelectric single crystals using in-situ synchrotron μXRD, complemented by TEM and PFM, to correlate microstructures with phase transitions. The results reveal that (i) at 25°C, the equilibrium state of (1-x)PZN-xPT is a metastable orthorhombic phase for x = 0.07 and 0.08, while it shows coexistence of orthorhombic and tetragonal phases for x = 0.09 and x = 0.11, with all ferroelectric phases accompanied by ferroelastic domains; (ii) upon heating, the phase transformation in xmore » = 0.07 is Orthorhombic → Monoclinic → Tetragonal → Cubic. The coexistence of ferroelectric tetragonal and paraelectric cubic phases was in-situ observed in x = 0.08 above Curie temperature (T C), and (iii) phase transition can be explained by the evolution of the ferroelectric and ferroelastic domains. These results disclose that (1-x)PZN-xPT are in an unstable regime, which is possible factor for its anomalous dielectric response and high piezoelectric coefficient.« less
Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator.
Gupta, Manoj Kumar; Lee, Ju-Hyuck; Lee, Keun Young; Kim, Sang-Woo
2013-10-22
Here, we report the synthesis of lead-free single-crystalline two-dimensional (2D) vanadium(V)-doped ZnO nanosheets (NSs) and their application for high-performance flexible direct current (DC) power piezoelectric nanogenerators (NGs). The vertically aligned ZnO nanorods (NRs) converted to NS networks by V doping. Piezoresponse force microscopy studies reveal that vertical V-doped ZnO NS exhibit typical ferroelectricity with clear phase loops, butterfly, and well-defined hysteresis loops with a piezoelectric charge coefficient of up to 4 pm/V, even in 2D nanostructures. From pristine ZnO NR-based NGs, alternating current (AC)-type output current was observed, while from V-doped ZnO NS-based NGs, a DC-type output current density of up to 1.0 μAcm(-2) was surprisingly obtained under the same vertical compressive force. The growth mechanism, ferroelectric behavior, charge inverted phenomena, and high piezoelectric output performance observed from the V-doped ZnO NS are discussed in terms of the formation of an ionic layer of [V(OH)4(-)], permanent electric dipole, and the doping-induced resistive behavior of ZnO NS.
Interplay between ferroelectric and resistive switching in doped crystalline HfO2
NASA Astrophysics Data System (ADS)
Max, Benjamin; Pešić, Milan; Slesazeck, Stefan; Mikolajick, Thomas
2018-04-01
Hafnium oxide is widely used for resistive switching devices, and recently it has been discovered that ferroelectricity can be established in (un-)doped hafnium oxide as well. Previous studies showed that both switching mechanisms are influenced by oxygen vacancies. For resistive switching, typically amorphous oxide layers with an asymmetric electrode configuration are used to create a gradient of oxygen vacancies. On the other hand, ferroelectric switching is performed by having symmetric electrodes and requires crystalline structures. The coexistence of both effects has recently been demonstrated. In this work, a detailed analysis of the reversible interplay of both switching mechanisms within a single capacitor cell is investigated. First, ferroelectric switching cycles were applied in order to drive the sample into the fatigued stage characterized by increased concentration of oxygen vacancies in the oxide layer. Afterwards, a forming step that is typical for the resistive switching devices was utilized to achieve a soft breakdown. In the next step, twofold alternation between the high and low resistance state is applied to demonstrate the resistive switching behavior of the device. Having the sample in the high resistance state with a ruptured filament, ferroelectric switching behavior is again shown within the same stack. Interestingly, the same endurance as before was observed without a hard breakdown of the device. Therefore, an effective sequence of ferroelectric—resistive—ferroelectric switching is realized. Additionally, the dependence of the forming, set, and reset voltage on the ferroelectric cycling stage (pristine, woken-up and fatigued) is analyzed giving insight into the physical device operation.
Dielectric properties of layered perovskite Sr1-xAxBi2Nb2O9 ferroelectrics (A=La, Ca and x=0,0.1)
NASA Astrophysics Data System (ADS)
Forbess, M. J.; Seraji, S.; Wu, Y.; Nguyen, C. P.; Cao, G. Z.
2000-05-01
In this letter, we report an experimental study on the influences of 10 at. % Ca2+ and La3+ doping on dielectric properties and dc conductivity of SrBi2Nb2O9 ferroelectric ceramics. All the samples were made by two-step solid-state reaction sintering at temperatures up to 1150 °C for 0.5-1 h in air. X-ray diffraction analysis indicated that single-phase layered perovskite ferroelectrics were obtained and no appreciable secondary phase was found. The Curie point was found to increase from 418 °C without doping to 475 °C with Ca2+ doping and to 480 °C with La3+ doping. Dielectric constants, loss tangent, and dc conductivity of SrBi2Nb2O9 ferroelectrics doped with Ca2+ and La3+ were studied and the relationships among doping, crystal structure, and dielectric properties were discussed.
Four-state non-volatile memory in a multiferroic spin filter tunnel junction
NASA Astrophysics Data System (ADS)
Ruan, Jieji; Li, Chen; Yuan, Zhoushen; Wang, Peng; Li, Aidong; Wu, Di
2016-12-01
We report a spin filter type multiferroic tunnel junction with a ferromagnetic/ferroelectric bilayer barrier. Memory functions of a spin filter magnetic tunnel junction and a ferroelectric tunnel junction are combined in this single device, producing four non-volatile resistive states that can be read out in a non-destructive manner. This concept is demonstrated in a LaNiO3/Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 all-oxide tunnel junction. The ferromagnetic insulator Pr0.8Ca0.2MnO3 serves as the spin filter and the ferromagnetic metal La0.7Sr0.3MnO3 is the spin analyzer. The ferroelectric polarization reversal in the BaTiO3 barrier switches the tunneling barrier height to produce a tunneling electroresistance. The ferroelectric switching also modulates the spin polarization and the spin filtering efficiency in Pr0.8Ca0.2MnO3.
Małuszyńska, Hanna; Czarnecki, Piotr; Czarnecka, Anna; Pająk, Zdzisław
2012-04-01
Pyridinium chlorochromate, [C(5)H(5)NH](+)[ClCrO(3)](-) (hereafter referred to as PyClCrO(3)), was studied by X-ray diffraction, differential scanning calorimetry (DSC) and dielectric methods. Studies reveal three reversible phase transitions at 346, 316 and 170 K with the following phase sequence: R ̅3m (I) → R3m (II) → Cm (III) → Cc (IV), c' = 2c. PyClCrO(3) is the first pyridinium salt in which all four phases have been successfully characterized by a single-crystal X-ray diffraction method. Structural results together with dielectric and calorimetric studies allow the classification of the two intermediate phases (II) and (III) as ferroelectric with the Curie point at 346 K, and the lowest phase (IV) as most probably ferroelectric. The ferroelectric hysteresis loop was observed only in phase (III). The high ionic conductivity hindered its observation in phase (II).
Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes.
Zhou, Yu; Wu, Di; Zhu, Yihan; Cho, Yujin; He, Qing; Yang, Xiao; Herrera, Kevin; Chu, Zhaodong; Han, Yu; Downer, Michael C; Peng, Hailin; Lai, Keji
2017-09-13
Piezoelectric and ferroelectric properties in the two-dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In 2 Se 3 nanoflakes. The noncentrosymmetric R3m symmetry of the α-In 2 Se 3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In 2 Se 3 nanoflakes with thicknesses down to ∼10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In 2 Se 3 , one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.
NASA Astrophysics Data System (ADS)
Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang
2012-03-01
We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.
NASA Astrophysics Data System (ADS)
Zhang, Haiwu; Zhao, Xiangyong; Deng, Hao; Chen, Chao; Lin, Di; Li, Xiaobing; Yan, Jun; Luo, Haosu
2014-02-01
Eu3+-doped Na0.5Bi0.5TiO3 (Eu:NBT) single crystals were grown by a top-seeded solution growth method. Photoluminescence emission and excitation spectra of Eu:NBT were investigated. The two transitions in 7F0 → 5D0 excitation spectra reveal that Eu3+ ions were incorporated into two adjacent crystallographic sites in NBT, i.e., Bi3+ and Na+ sites. The former has a symmetrical surrounding, while the later has a disordered environment, which was confirmed by decay curve measurements. The dielectric dispersion behavior was depressed and the piezoelectric and ferroelectric properties were improved after Eu doping.
Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic
NASA Astrophysics Data System (ADS)
Mundy, Julia A.; Brooks, Charles M.; Holtz, Megan E.; Moyer, Jarrett A.; Das, Hena; Rébola, Alejandro F.; Heron, John T.; Clarkson, James D.; Disseler, Steven M.; Liu, Zhiqi; Farhan, Alan; Held, Rainer; Hovden, Robert; Padgett, Elliot; Mao, Qingyun; Paik, Hanjong; Misra, Rajiv; Kourkoutis, Lena F.; Arenholz, Elke; Scholl, Andreas; Borchers, Julie A.; Ratcliff, William D.; Ramesh, Ramamoorthy; Fennie, Craig J.; Schiffer, Peter; Muller, David A.; Schlom, Darrell G.
2016-09-01
Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.
Negative capacitance in multidomain ferroelectric superlattices
NASA Astrophysics Data System (ADS)
Zubko, Pavlo; Wojdeł, Jacek C.; Hadjimichael, Marios; Fernandez-Pena, Stéphanie; Sené, Anaïs; Luk'Yanchuk, Igor; Triscone, Jean-Marc; Íñiguez, Jorge
2016-06-01
The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors. However, experimental demonstrations of this phenomenon remain contentious. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation, but the effect of domains on negative capacitance has received little attention. Here we report negative capacitance in a model system of multidomain ferroelectric-dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.
Polarization and interface charge coupling in ferroelectric/AlGaN/GaN heterostructure
NASA Astrophysics Data System (ADS)
Zhang, Min; Kong, Yuechan; Zhou, Jianjun; Xue, Fangshi; Li, Liang; Jiang, Wenhai; Hao, Lanzhong; Luo, Wenbo; Zeng, Huizhong
2012-03-01
Asymmetrical shift behaviors of capacitance-voltage (C-V) curve with opposite direction are observed in two AlGaN/GaN metal-ferroelectric-semiconductor (MFS) heterostructures with Pb(Zr,Ti)O3 and LiNbO3 gate dielectrics. By incorporating the switchable polar nature of the ferroelectric into a self-consistent calculation, the coupling effect between the ferroelectric and the interface charges is disclosed. The opposite initial orientation of ferroelectric dipoles determined by the interface charges is essentially responsible for the different C-V characteristics. A critical fixed charge density of -1.27 × 1013cm-2 is obtained, which plays a key role in the dependence of the C-V characteristic on the ferroelectric polarization. The results pave the way for design of memory devices based on MFS structure with heteropolar interface.
Ferroelectric symmetry-protected multibit memory cell
NASA Astrophysics Data System (ADS)
Baudry, Laurent; Lukyanchuk, Igor; Vinokur, Valerii M.
2017-02-01
The tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valued non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing.
Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films
NASA Astrophysics Data System (ADS)
Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong
2018-04-01
In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.
The possible magnetoelectric coupling induced by adsorption in SnTe films
NASA Astrophysics Data System (ADS)
Fu, Zhaoming; Liu, Meng; Zhang, Na; An, Yipeng; Yang, Zongxian
2018-01-01
Based on the recent discovery of the stable in-plane spontaneous polarization in SnTe films. We report the possible magnetoelectric (ME) coupling induced by adsorption in SnTe films by performing density functional calculations. Firstly, we investigate the adsorption-induced magnetic behaviors on the two-dimensional SnTe monolayer. Five kinds of adatoms (H, B, C, N and O) are taken into account. It is found that the SnTe with adsorbing H and B have nonzero magnetic moments and good stability. Secondly, the coexistence of the ferromagnetism and ferroelectrics (i.e. multiferroics) is observed in H-adsorbed SnTe. The magnetoelectric coupling in this system is studied by calculating the poralazition in different magnetic structures (antiferromagnetic and ferroelectric). According to our study, we propose that it is a possible method obtaining the multiferroicity and ME coupling to modify the SnTe films by chemical adsorption of single atoms.
Electric field control of spin transfer torque in multiferroic tunnel junctions
NASA Astrophysics Data System (ADS)
Useinov, Artur; Kalitsov, Alan; Velev, Julian; Kioussis, Nicholas
2014-03-01
Based on model calculations we predict that the spin transfer torque (STT) in magnetic tunnel junctions with ferroelectric barriers can be strongly influenced by the saturated polarization of the barrier. The STT in such multiferroic tunnel junctions is calculated within the non-equilibrium Keldysh formalism generalized for non-collinear transport and implemented in the framework of a single-band tight-binding (TB) model. We calculate the bias dependence of both the in-plane (T∥) and out-of-plane (T⊥) components of STT as a function of the ferroelectric polarization (P) in the barrier. We find that the components of STT strongly depend on both the magnitude and the direction of the polarization. In particular switching of the polarization direction can dramatically alter the value of the STT and can even lead to a change of sign of T∥ and the voltage-induced part of T⊥. The effect is proportional to the magnitude of the polarization.
Single gate p-n junctions in graphene-ferroelectric devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinnefeld, J. Henry; Mason, Nadya, E-mail: nadya@illinois.edu; Xu, Ruijuan
Graphene's linear dispersion relation and the attendant implications for bipolar electronics applications have motivated a range of experimental efforts aimed at producing p-n junctions in graphene. Here we report electrical transport measurements of graphene p-n junctions formed via simple modifications to a PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} substrate, combined with a self-assembled layer of ambient environmental dopants. We show that the substrate configuration controls the local doping region, and that the p-n junction behavior can be controlled with a single gate. Finally, we show that the ferroelectric substrate induces a hysteresis in the environmental doping which can be utilized to activatemore » and deactivate the doping, yielding an “on-demand” p-n junction in graphene controlled by a single, universal backgate.« less
Enhanced electrical properties in bilayered ferroelectric thin films
NASA Astrophysics Data System (ADS)
Zhang, Hao; Long, WeiJie; Chen, YaQing; Guo, DongJie
2013-03-01
Sr2Bi4Ti5O18 (SBTi) single layered and Sr2Bi4Ti5O18/Pb(Zr0.53Ti0.47)O3 (SBTi/PZT) bilayered thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD). The related structural characterizations and electrical properties have been comparatively investigated. X-ray diffraction reveals that both films have crystallized into perovskite phases and scanning electron microscopy shows the sharp interfaces. Both films show well-saturated ferroelectric hysteresis loops, however, compared with the single layered SBTi films, the SBTi/PZT bilayered films have significantly increased remnant polarization ( P r) and decreased coercive field ( E c), with the applied field of 260 kV/cm. The measured P r and E c of SBTi and SBTi/PZT films were 7.9 μC/cm2, 88.1 kV/cm and 13.0 μC/cm2, 51.2 kV/cm, respectively. In addition, both films showed good fatigue-free characteristics, the switchable polarization decreased by 9% and 11% of the initial values after 2.2×109 switching cycles for the SBTi single layered films and the SBTi/PZT bilayered films, respectively. Our results may provide some guidelines for further optimization of multilayered ferroelectric thin films.
Potentials and challenges of integration for complex metal oxides in CMOS devices and beyond
NASA Astrophysics Data System (ADS)
Kim, Y.; Pham, C.; Chang, J. P.
2015-02-01
This review focuses on recent accomplishments on complex metal oxide based multifunctional materials and the potential they hold in advancing integrated circuits. It begins with metal oxide based high-κ materials to highlight the success of their integration since 45 nm complementary metal-oxide-semiconductor (CMOS) devices. By simultaneously offering a higher dielectric constant for improved capacitance as well as providing a thicker physical layer to prevent the quantum mechanical tunnelling of electrons, high-κ materials have enabled the continued down-scaling of CMOS based devices. The most recent technology driver has been the demand to lower device power consumption, which requires the design and synthesis of novel materials, such as complex metal oxides that exhibit remarkable tunability in their ferromagnetic, ferroelectric and multiferroic properties. These properties make them suitable for a wide variety of applications such as magnetoelectric random access memory, radio frequency band pass filters, antennae and magnetic sensors. Single-phase multiferroics, while rare, offer unique functionalities which have motivated much scientific and technological research to ascertain the origins of their multiferroicity and their applicability to potential devices. However, due to the weak magnetoelectric coupling for single-phase multiferroics, engineered multiferroic composites based on magnetostrictive ferromagnets interfacing piezoelectrics or ferroelectrics have shown enhanced multiferroic behaviour from effective strain coupling at the interface. In addition, nanostructuring of the ferroic phases has demonstrated further improvement in the coupling effect. Therefore, single-phase and engineered composite multiferroics consisting of complex metal oxides are reviewed in terms of magnetoelectric coupling effects and voltage controlled ferromagnetic properties, followed by a review on the integration challenges that need to be overcome to realize the materials’ full potential.
NASA Astrophysics Data System (ADS)
Yap, Wui Chung; Jiang, Hao; Liu, Jialun; Xia, Qiangfei; Zhu, Wenjuan
2017-07-01
In this letter, we demonstrate ferroelectric memory devices with monolayer molybdenum disulfide (MoS2) as the channel material and aluminum (Al)-doped hafnium oxide (HfO2) as the ferroelectric gate dielectric. Metal-ferroelectric-metal capacitors with 16 nm thick Al-doped HfO2 are fabricated, and a remnant polarization of 3 μC/cm2 under a program/erase voltage of 5 V is observed. The capability of potential 10 years data retention was estimated using extrapolation of the experimental data. Ferroelectric transistors based on embedded ferroelectric HfO2 and MoS2 grown by chemical vapor deposition are fabricated. Clockwise hysteresis is observed at low program/erase voltages due to slow bulk traps located near the 2D/dielectric interface, while counterclockwise hysteresis is observed at high program/erase voltages due to ferroelectric polarization. In addition, the endurances of the devices are tested, and the effects associated with ferroelectric materials, such as the wake-up effect and polarization fatigue, are observed. Reliable writing/reading in MoS2/Al-doped HfO2 ferroelectric transistors over 2 × 104 cycles is achieved. This research can potentially lead to advances of two-dimensional (2D) materials in low-power logic and memory applications.
Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO{sub 2}/TiN stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernikova, A. G.; Kuzmichev, D. S.; Negrov, D. V.
2016-06-13
We report the possibility of employment of low temperature (≤330 °C) plasma-enhanced atomic layer deposition for the formation of both electrodes and hafnium-oxide based ferroelectric in the metal-insulator-metal structures. The structural and ferroelectric properties of La doped HfO{sub 2}-based layers and its evolution with the change of both La content (2.1, 3.7 and 5.8 at. %) and the temperature of the rapid thermal processing (550–750 °C) were investigated in detail. Ferroelectric properties emerged only for 2.1 and 3.7 at. % of La due to the structural changes caused by the given doping levels. Ferroelectric properties were also found to depend strongly on annealing temperature,more » with the most robust ferroelectric response for lowest La concentration and intermediate 650 °C annealing temperature. The long term wake-up effect and such promising endurance characteristics as 3 × 10{sup 8} switches by bipolar voltage cycles with 30 μs duration and ± 3 MV/cm amplitude without any decrease of remnant polarization value were demonstrated.« less
Relaxor Ferroelectric Single Crystal Based Hybrid Actuator for Underwater Acoustic Noise Generation
2002-05-01
low pres- sure and low flow rate applications [6] [7] [8] [9] [12] such as drug dispensing and microdosing [13] [14] [15]. The higher performing of...as microdosing of fluids. This paper introduces the development a novel class of micromachined transducers called solid- state micro-hydraulic...are mostly geared towards small flow/force applications such as microdosing of fluids. This paper introduces the development a novel class of
Conduction at a ferroelectric interface
Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; ...
2014-11-05
Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr₀̣.₂Ti₀.₈O₃-LaNiO₃ where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, inmore » one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less
Ambience-sensitive optical refraction in ferroelectric nanofilms of NaNbO3.
Tyunina, Marina; Chvostova, Dagmar; Pacherova, Oliva; Kocourek, Tomas; Jelinek, Miroslav; Jastrabik, Lubomir; Dejneka, Alexander
2014-08-01
Optical index of refraction n is studied by spectroscopic ellipsometry in epitaxial nanofilms of NaNbO 3 with thickness ∼10 nm grown on different single-crystal substrates. The index n in the transparency spectral range ( n ≈ 2.1 - 2.2) exhibits a strong sensitivity to atmospheric-pressure gas ambience. The index n in air exceeds that in an oxygen ambience by δn ≈ 0.05 - 0.2. The thermo-optical behaviour n ( T ) indicates ferroelectric state in the nanofilms. The ambience-sensitive optical refraction is discussed in terms of fundamental connection between refraction and ferroelectric polarization in perovskites, screening of depolarizing field on surfaces of the nanofilms, and thermodynamically stable surface reconstructions of NaNbO 3 .
Origin of dielectric relaxor behavior in PVDF-based copolymer and terpolymer films
NASA Astrophysics Data System (ADS)
Pramanick, Abhijit; Osti, Naresh C.; Jalarvo, Niina; Misture, Scott T.; Diallo, Souleymane Omar; Mamontov, Eugene; Luo, Y.; Keum, Jong-Kahk; Littrell, Ken
2018-04-01
Relaxor ferroelectrics exhibit frequency-dispersion of their dielectric permittivity peak as a function of temperature, the origin of which has been widely debated. Microscopic understanding of such behavior for polymeric ferroelectrics has presented new challenges since unlike traditional ceramic ferroelectrics, dielectric relaxation in polymers is a consequence of short-range molecular dynamics that are difficult to measure directly. Here, through careful analysis of atomic-level H-atom dynamics as determined by Quasi-elastic Neutron Scattering (QENS), we show that short-range molecular dynamics within crystalline domains cannot explain the macroscopic frequency-dispersion of dielectric properties observed in prototypical polyvinylidene-fluoride (PVDF)-based relaxor ferroelectrics. Instead, from multiscale quantitative microstructural characterization, a clear correlation between the amount of crystalline-amorphous interfaces and dielectric relaxation is observed, which indicates that such interfaces play a central role. These results provide critical insights into the role of atomic and microscopic structures towards relaxor behavior in ferroelectric polymers, which will be important for their future design.
Analysis of the Measurement and Modeling of a Digital Inverter Based on a Ferroelectric Transistor
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Sayyah, Rana; Ho, Fat D.
2009-01-01
The use of ferroelectric materials for digital memory devices is widely researched and implemented, but ferroelectric devices also possess unique characteristics that make them have interesting and useful properties in digital circuits. Because ferroelectric transistors possess the properties of hysteresis and nonlinearity, a digital inverter containing a FeFET has very different characteristics than one with a traditional FET. This paper characterizes the properties of the measurement and modeling of a FeFET based digital inverter. The circuit was set up using discrete FeFETs. The purpose of this circuit was not to produce a practical integrated circuit that could be inserted directly into existing digital circuits, but to explore the properties and characteristics of such a device and to look at possible future uses. Input and output characteristics are presented, as well as timing measurements. Comparisons are made between the ferroelectric device and the properties of a standard digital inverter. Potential benefits and possible uses of such a device are presented.
Performance of thin-film ferroelectric capacitors for EMC decoupling.
Li, Huadong; Subramanyam, Guru
2008-12-01
This paper studied the effects of thin-film ferroelectrics as decoupling capacitors for electromagnetic compatibility applications. The impedance and insertion loss of PZT capacitors were measured and compared with the results from commercial off-the-shelf capacitors. An equivalent circuit model was extracted from the experimental results, and a considerable series resistance was found to exist in ferroelectric capacitors. This resistance gives rise to the observed performance difference around series resonance between ferroelectric PZT capacitors and normal capacitors. Measurements on paraelectric (Ba,Sr)TiO(3)-based integrated varactors do not show this significant resistance. Some analyses were made to investigate the mechanisms, and it was found that it can be due to the hysteresis in the ferroelectric thin films.
Ferroelectric symmetry-protected multibit memory cell
Baudry, Laurent; Lukyanchuk, Igor; Vinokur, Valerii M.
2017-02-08
Here, the tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valuedmore » non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing.« less
A novel readout integrated circuit for ferroelectric FPA detector
NASA Astrophysics Data System (ADS)
Bai, Piji; Li, Lihua; Ji, Yulong; Zhang, Jia; Li, Min; Liang, Yan; Hu, Yanbo; Li, Songying
2017-11-01
Uncooled infrared detectors haves some advantages such as low cost light weight low power consumption, and superior reliability, compared with cryogenically cooled ones Ferroelectric uncooled focal plane array(FPA) are being developed for its AC response and its high reliability As a key part of the ferroelectric assembly the ROIC determines the performance of the assembly. A top-down design model for uncooled ferroelectric readout integrated circuit(ROIC) has been developed. Based on the optical thermal and electrical properties of the ferroelectric detector the RTIA readout integrated circuit is designed. The noise bandwidth of RTIA readout circuit has been developed and analyzed. A novel high gain amplifier, a high pass filter and a low pass filter circuits are designed on the ROIC. In order to improve the ferroelectric FPA package performance and decrease of package cost a temperature sensor is designed on the ROIC chip At last the novel RTIA ROIC is implemented on 0.6μm 2P3M CMOS silicon techniques. According to the experimental chip test results the temporal root mean square(RMS)noise voltage is about 1.4mV the sensitivity of the on chip temperature sensor is 0.6 mV/K from -40°C to 60°C the linearity performance of the ROIC chip is better than 99% Based on the 320×240 RTIA ROIC, a 320×240 infrared ferroelectric FPA is fabricated and tested. Test results shows that the 320×240 RTIA ROIC meets the demand of infrared ferroelectric FPA.
NASA Astrophysics Data System (ADS)
Hou, Xu; Li, Huiyu; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie
2018-03-01
The electrocaloric properties of ferroelectrics are highly dependent on the domain structure in the materials. For nanoscale ferroelectric materials, the domain structure is greatly influenced by the geometric configuration of the system. Using a real-space phase field model based on the Ginzburg-Landau theory, we investigate the effect of geometric configurations on the electrocaloric properties of nanoscale ferroelectric materials. The ferroelectric hysteresis loops under different temperatures are simulated for the ferroelectric nano-metamaterials with square, honeycomb, and triangular Archimedean geometric configurations. The adiabatic temperature changes (ATCs) for three ferroelectric nano-metamaterials under different electric fields are calculated from the Maxwell relationship based on the hysteresis loops. It is found that the honeycomb specimen exhibits the largest ATC of Δ T = 4.3 °C under a field of 391.8 kV/cm among three geometric configurations, whereas the square specimen has the smallest ATC of Δ T = 2.7 °C under the same electric field. The different electrocaloric properties for three geometric configurations stem from the different domain structures. There are more free surfaces perpendicular to the electric field in the square specimen than the other two specimens, which restrict more polarizations perpendicular to the electric field, resulting in a small ATC. Due to the absence of free surfaces perpendicular to the electric field in the honeycomb specimen, the change of polarization with temperature in the direction of the electric field is more easy and thus leads to a large ATC. The present work suggests a novel approach to obtain the tunable electrocaloric properties in nanoscale ferroelectric materials by designing their geometric configurations.
NASA Astrophysics Data System (ADS)
Teodorescu, Cristian M.; Pintilie, Lucian; Apostol, Nicoleta G.; Costescu, Ruxandra M.; Lungu, George A.; Hrib, LuminiÅ£a.; Trupinǎ, Lucian; Tǎnase, Liviu C.; Bucur, Ioana C.; Bocîrnea, Amelia E.
2017-09-01
The positions of the low energy electron diffraction (LEED) spots from ferroelectric single crystal films depend on its polarization state, due to electric fields generated outside of the sample. One may derive the surface potential energy, yielding the depth where the mobile charge carriers compensating the depolarization field are located (δ ). On ferroelectric Pb (Zr ,Ti ) O3 (001) samples, surface potential energies are between 6.7 and 10.6 eV, and δ values are unusually low, in the range of 1.8 ±0.4 Å . When δ is introduced in the values of the band bending inside the ferroelectric, a considerably lower value of the dielectric constant and/or of the polarization near the surface than their bulk values is obtained, evidencing either that the intrinsic `dielectric constant' of the material has this lower value or the existence of a `dead layer' at the free surface of clean ferroelectric films. The inwards polarization of these films is explained in the framework of the present considerations by the formation of an electron sheet on the surface. Possible explanations are suggested for discrepancies between the values found for surface potential energies from LEED experiments and those derived from the transition between mirror electron microscopy and low energy electron microscopy.
CuInP₂S₆ Room Temperature Layered Ferroelectric.
Belianinov, A; He, Q; Dziaugys, A; Maksymovych, P; Eliseev, E; Borisevich, A; Morozovska, A; Banys, J; Vysochanskii, Y; Kalinin, S V
2015-06-10
We explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V-likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. The existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing "graphene family".
Ferroelectrics under the Synchrotron Light: A Review
Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis
2015-01-01
Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814
NASA Astrophysics Data System (ADS)
Jiang, Limei; Xu, Xiaofei; Zhou, Yichun
2016-12-01
With the development of the integrated circuit technology and decreasing of the device size, ferroelectric films used in nano ferroelectric devices become thinner and thinner. Along with the downscaling of the ferroelectric film, there is an increasing influence of two strain gradient related terms. One is the strain gradient elasticity and the other one is flexoelectricity. To investigate the interrelationship between flexoelectricity and strain gradient elasticity and their combined effect on the domain structure in ferroelectric nanofilms, a phase field model of flexoelectricity and strain gradient elasticity on the ferroelectric domain evolution is developed based on Mindlin's theory of strain-gradient elasticity. Weak form is derived and implemented in finite element formulations for numerically solving the model equations. The simulation results show that upper bounds for flexoelectric coefficients can be enhanced by increasing strain gradient elasticity coefficients. While a large flexoelectricity that exceeds the upper bound can induce a transition from a ferroelectric state to a modulated/incommensurate state, a large enough strain gradient elasticity may lead to a conversion from an incommensurate state to a ferroelectric state. Strain gradient elasticity and the flexoelectricity have entirely opposite effects on polarization. The observed interrelationship between the strain gradient elasticity and flexoelectricity is rationalized by an analytical solution of the proposed theoretical model. The model proposed in this paper could help us understand the mechanism of phenomena observed in ferroelectric nanofilms under complex electromechanical loads and provide some guides on the practical application of ferroelectric nanofilms.
Ultrafast light-induced symmetry changes in single BaTiO 3 nanowires
Kuo, Yi -Hong; Nah, Sanghee; He, Kai; ...
2017-01-23
The coupling of light to nanoscale ferroelectric materials enables novel means of controlling their coupled degrees of freedom and engineering new functionality. Here we present femtosecond time-resolution nonlinear-optical measurements of light-induced dynamics within single ferroelectric barium titanate nanowires. By analyzing the time-dependent and polarization-dependent second harmonic intensity generated by the nanowire, we identify its crystallographic orientation and then make use of this information in order to probe its dynamic structural response and change in symmetry. Here, we show that photo-excitation leads to ultrafast, non-uniform modulations in the second order nonlinear susceptibility tensor, indicative of changes in the local symmetry ofmore » the nanostructure occurring on sub-picosecond time-scales.« less
Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.
2016-01-01
In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity. PMID:26864779
Yamakawa, H; Miyamoto, T; Morimoto, T; Yada, H; Kinoshita, Y; Sotome, M; Kida, N; Yamamoto, K; Iwano, K; Matsumoto, Y; Watanabe, S; Shimoi, Y; Suda, M; Yamamoto, H M; Mori, H; Okamoto, H
2016-02-11
In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity.
Wang, Qing; Ma, Chuanguo; Wang, Feifei; Liu, Bao; Chen, Jianwei; Luo, Haosu; Wang, Tao; Shi, Wangzhou
2016-03-01
A plate-shaped piezoelectric transformer was designed and fabricated using ternary relaxor ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O3-Pb(In(1/2)Nb(1/2))O3-PbTiO3. Both the input and output sections utilized the transverse-extensional vibration mode. The frequency and load dependences of the electrical properties for the proposed transformer were systematically studied. Results indicated that under a matching load resistance of 14.9 kΩ, a maximum output power of 2.56 W was obtained with the temperature rise less than 5 °C. The corresponding power density reached up to 50 W/cm(3). This ternary single-crystal transformer had potential applications in compact-size converters requiring high power density.
Ferroelectric self-assembled molecular materials showing both rectifying and switchable conductivity
Gorbunov, Andrey V.; Garcia Iglesias, Miguel; Guilleme, Julia; Cornelissen, Tim D.; Roelofs, W. S. Christian; Torres, Tomas; González-Rodríguez, David; Meijer, E. W.; Kemerink, Martijn
2017-01-01
Advanced molecular materials that combine two or more physical properties are typically constructed by combining different molecules, each being responsible for one of the properties required. Ideally, single molecules could take care of this combined functionality, provided they are self-assembled correctly and endowed with different functional subunits whose strong electronic coupling may lead to the emergence of unprecedented and exciting properties. We present a class of disc-like semiconducting organic molecules that are functionalized with strong dipolar side groups. Supramolecular organization of these materials provides long-range polar order that supports collective ferroelectric behavior of the side groups as well as charge transport through the stacked semiconducting cores. The ferroelectric polarization in these supramolecular polymers is found to couple to the charge transport and leads to a bulk conductivity that is both switchable and rectifying. An intuitive model is developed and found to quantitatively reproduce the experimental observations. In a larger perspective, these results highlight the possibility of modulating material properties using the large electric fields associated with ferroelectric polarization. PMID:28975150
Magnetically-induced ferroelectricity in the (ND4)2[FeCl5(D2O)] molecular compound
Alberto Rodríguez-Velamazán, José; Fabelo, Óscar; Millán, Ángel; Campo, Javier; Johnson, Roger D.; Chapon, Laurent
2015-01-01
The number of magnetoelectric multiferroic materials reported to date is scarce, as magnetic structures that break inversion symmetry and induce an improper ferroelectric polarization typically arise through subtle competition between different magnetic interactions. The (NH4)2[FeCl5(H2O)] compound is a rare case where such improper ferroelectricity has been observed in a molecular material. We have used single crystal and powder neutron diffraction to obtain detailed solutions for the crystal and magnetic structures of (NH4)2[FeCl5(H2O)], from which we determined the mechanism of multiferroicity. From the crystal structure analysis, we observed an order-disorder phase transition related to the ordering of the ammonium counterion. We have determined the magnetic structure below TN, at 2 K and zero magnetic field, which corresponds to a cycloidal spin arrangement with magnetic moments contained in the ac-plane, propagating parallel to the c-axis. The observed ferroelectricity can be explained, from the obtained magnetic structure, via the inverse Dzyaloshinskii-Moriya mechanism. PMID:26417890
Magnetic and Ferroelectric Anisotropy in Multiferroic FeVO4
NASA Astrophysics Data System (ADS)
Abdelhamid, Ehab; Dixit, Ambesh; Kimura, Kenta; Kimura, Tsuyoshi; Jayakumar, Onattu; Naik, Vaman; Naik, Ratna; Lawes, Gavin; Nadgorny, Boris
FeVO4 has been studied as a model system for understanding the magnetoelectric interaction mechanisms in low symmetry multiferroics. Triclinic FeVO4 is characterized by two antiferromagnetic phase transitions, occurring at TN 1 = 22 K and TN 2 = 15 K, with the latter transition signaling a break in the space inversion symmetry, accompanied by the development of a non-collinear magnetic order which induces ferroelectricity. Earlier measurements on polycrystalline FeVO4 doped with magnetic (Cr and Mn) as well as non magnetic (Zn) dopants indicate the stability of the two antiferromagnetic transition temperatures. In this work, single crystals of both undoped and doped FeVO4 were grown from flux. To track the changes in lattice parameters induced by changing the doping concentration (measured by EDAX), XRD and Raman spectra were obtained. By recording the magnetization along two different crystal orientations, we were able to confirm the easy magnetic axis in this structure. Finally, we obtain the crystal's ferroelectric polarization along two different directions in an attempt to further understand the mechanism responsible for the ferroelectric transition. This work is supported by the NSF under DMR-1306449.
Ferroelectric properties of composites containing BaTiO 3 nanoparticles of various sizes
NASA Astrophysics Data System (ADS)
Adam, Jens; Lehnert, Tobias; Klein, Gabi; McMeeking, Robert M.
2014-01-01
Size effects, including the occurrence of superparaelectric phases associated with small scale, are a significant research topic for ferroelectrics. Relevant phenomena have been explored in detail, e.g. for homogeneous, thin ferroelectric films, but the related effects associated with nanoparticles are usually only inferred from their structural properties. In contrast, this paper describes all the steps and concepts necessary for the direct characterization and quantitative assessment of the ferroelectric properties of as-synthesized and as-received nanoparticles. The method adopted uses electrical polarization measurements on polymer matrix composites containing ferroelectric nanoparticles. It is applied to ten different BaTiO3 particle types covering a size range from 10 nm to 0.8 μm. The influence of variations of particle characteristics such as tetragonality and dielectric constant is considered based on measurements of these properties. For composites containing different particle types a clearly differing polarization behaviour is found. For decreasing particle size, increasing electric field is required to achieve a given level of polarization. The size dependence of a measure related to the coercive field revealed by this work is qualitatively in line with the state of the knowledge for ferroelectrics having small dimensions. For the first time, such results and size effects are described based on data from experiments on collections of actual nanoparticles.
Ambience-sensitive optical refraction in ferroelectric nanofilms of NaNbO3
Tyunina, Marina; Chvostova, Dagmar; Pacherova, Oliva; Kocourek, Tomas; Jelinek, Miroslav; Jastrabik, Lubomir; Dejneka, Alexander
2014-01-01
Optical index of refraction n is studied by spectroscopic ellipsometry in epitaxial nanofilms of NaNbO3 with thickness ∼10 nm grown on different single-crystal substrates. The index n in the transparency spectral range (n ≈ 2.1 – 2.2) exhibits a strong sensitivity to atmospheric-pressure gas ambience. The index n in air exceeds that in an oxygen ambience by δn ≈ 0.05 – 0.2. The thermo-optical behaviour n(T) indicates ferroelectric state in the nanofilms. The ambience-sensitive optical refraction is discussed in terms of fundamental connection between refraction and ferroelectric polarization in perovskites, screening of depolarizing field on surfaces of the nanofilms, and thermodynamically stable surface reconstructions of NaNbO3. PMID:27877702
Light-Activated Gigahertz Ferroelectric Domain Dynamics
NASA Astrophysics Data System (ADS)
Akamatsu, Hirofumi; Yuan, Yakun; Stoica, Vladimir A.; Stone, Greg; Yang, Tiannan; Hong, Zijian; Lei, Shiming; Zhu, Yi; Haislmaier, Ryan C.; Freeland, John W.; Chen, Long-Qing; Wen, Haidan; Gopalan, Venkatraman
2018-03-01
Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO3 are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20 ×106 V /m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.
NASA Astrophysics Data System (ADS)
Matyjasik, S.; Shaldin, Yu. V.
2013-11-01
The experimental variations in the spontaneous polarization ΔPs(T) and pyroelectric coefficient γs(T) for Gd2(MoO4)3 (GMO) and Tb2(MoO4)3 (TMO) at low temperatures reported here differ from those for intrinsic ferroelectrics. A fundamental difference is found in the repolarization behavior of samples of GMO and TMO at fixed temperatures of 300 and 4.2 K. While the single domain formation temperature essentially has no effect on the measurements for TMO, a fundamental difference is observed in the case of GMO: single domain formation in the latter at 4.2 K leads to an order of magnitude increase in ΔPs at T > 85 K and distinct anomalies are observed in γs(T), at one of which the pyroelectric coefficient reaches a record peak of 3 × 10-4 C/(m2.K) at T = 25 K. At T = 200 K the pyroelectric coefficients equal -1.45 and -1.8 in units of 10-6 C/(m2.K). Based on these results and taking published data on the rotational structural transformation in the (001) plane and symmetry considerations into account, we propose a crystal physical model for GMO-type improper ferroelectrics consisting of four mesotetrahedra, each of which is made up of three different types (a, b, c) of MoO4 coordination tetrahedra. The physical significance of the pseudodeviator coefficient Q12*, which initiates the phase transition at T > 433 K from one non-centrally symmetric phase (mm2) into another (4¯2m), is discussed in terms of this model.
NASA Astrophysics Data System (ADS)
Schilling, A.; Adams, T.; Bowman, R. M.; Gregg, J. M.
2007-01-01
As part of a study into the properties of ferroelectric single crystals at nanoscale dimensions, the effects that focused ion beam (FIB) processing can have, in terms of structural damage and ion implantation, on perovskite oxide materials has been examined, and a post-processing procedure developed to remove such effects. Single crystal material of the perovskite ferroelectric barium titanate (BaTiO3) has been patterned into thin film lamellae structures using a FIB microscope. Previous work had shown that FIB patterning induced gallium impregnation and associated creation of amorphous layers in a surface region of the single crystal material some 20 nm thick, but that both recrystallization and expulsion of gallium could be achieved through thermal annealing in air. Here we confirm this observation, but find that thermally induced gallium expulsion is associated with the formation of gallium-rich platelets on the surface of the annealed material. These platelets are thought to be gallium oxide. Etching using nitric and hydrochloric acids had no effect on the gallium-rich platelets. Effective platelet removal involved thermal annealing at 700 °C for 1 h in a vacuum followed by 1 h in oxygen, and then a post-annealing low-power plasma clean in an Ar/O atmosphere. Similar processing is likely to be necessary for the full recovery of post FIB-milled nanostructures in oxide ceramic systems in general.
Zhuo, Fangping; Li, Qiang; Gao, Jinghan; Yan, Qingfeng; Zhang, Yiling; Xi, Xiaoqing; Chu, Xiangcheng
2017-05-31
(Pb,La)(Zr,Sn,Ti)O 3 (PLZST) single crystals with their chemical composition located at the tetragonal antiferroelectric region are grown via the flux method in a PbO-PbF 2 -B 2 O 3 mixture. Segregation of the Ti 4+ component in the as-grown crystals is observed due to the strong affinity between the oxygen anion and Ti 4+ ions. The critical electric field of the antiferroelectric to ferroelectric phase transition is determined to be about 0.5 kV mm -1 . The electric field induced ferroelectric phase transforms back into the antiferroelectric phase at a depolarization temperature of 125 °C. Anisotropy of the harvested energy density and electrocaloric behaviors are achieved for the [100], [110] and [111]-oriented PLZST crystals. Based on the thermodynamic theory approach, all the abovementioned behaviors originate from the anisotropic total entropy change. Enhanced electrocaloric strength (0.3 K mm kV -1 ) and the harvested energy density of 0.62 J cm -3 are obtained in the [111]-oriented PLZST crystals. Our results demonstrate the competence of PLZST single crystals for cooling devices and pyroelectric energy harvesting and provide new opportunities to improve energy harvesting density and electrocaloric properties via the anisotropic structural layout, which make the PLZST crystals attractive for solid state cooling devices and energy conversion technologies.
Ferroelectric-ferromagnetic coupling in hexagonal YMnO3 film
NASA Astrophysics Data System (ADS)
Cheng, Shaobo; Li, Menglei; Deng, Shiqing; Bao, Shanyong; Tang, Peizhe; Duan, Wenhui; Ma, Jing; Nan, Cewen; Zhu, Jing
Simultaneously achieving ferroelectricity and ferromagnetism in a single phase material is an important research topic in recent decades. Here, we demonstrate that with the modulation of oxygen vacancies, the ferroelectric-ferromagnetic coupling can be realized in the typical hexagonal manganite: YMnO3. The first-principal calculations are used to reveal the importance of oxygen vacancies on the alterations of magnetic behaviors for YMnO3. In order to obtain net magnetic moments, the on-top oxygen vacancies of MnO5 clusters should be created, thus the initial 2D spin frustration structure of Mn ions will be broken. By growing YMnO3 film on Al2O3 substrate, large in-plane compressive strain is induced, thus we can experimentally realize the on-top oxygen vacancies. With the help of SQUID and spherical aberration corrected TEM, the magnetic moments are experimentally measured and the correlations between the crystal structures and magnetic properties can be clearly understood. Our findings may pave a way for future applications of single phase multiferroic materials. National 973 Project of China (2015CB654902, 2011CB606405) and Chinese National Natural Science Foundation (11374174, 51390471).
CH3NH3PbI3 perovskites: Ferroelasticity revealed.
Strelcov, Evgheni; Dong, Qingfeng; Li, Tao; Chae, Jungseok; Shao, Yuchuan; Deng, Yehao; Gruverman, Alexei; Huang, Jinsong; Centrone, Andrea
2017-04-01
Ferroelectricity has been proposed as a plausible mechanism to explain the high photovoltaic conversion efficiency in organic-inorganic perovskites; however, convincing experimental evidence in support of this hypothesis is still missing. Identifying and distinguishing ferroelectricity from other properties, such as piezoelectricity, ferroelasticity, etc., is typically nontrivial because these phenomena can coexist in many materials. In this work, a combination of microscopic and nanoscale techniques provides solid evidence for the existence of ferroelastic domains in both CH 3 NH 3 PbI 3 polycrystalline films and single crystals in the pristine state and under applied stress. Experiments show that the configuration of CH 3 NH 3 PbI 3 ferroelastic domains in single crystals and polycrystalline films can be controlled with applied stress, suggesting that strain engineering may be used to tune the properties of this material. No evidence of concomitant ferroelectricity was observed. Because grain boundaries have an impact on the long-term stability of organic-inorganic perovskite devices, and because the ferroelastic domain boundaries may differ from regular grain boundaries, the discovery of ferroelasticity provides a new variable to consider in the quest for improving their stability and enabling their widespread adoption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Hongchen; Sun, Yao; Zhou, Xilong
Cellular electrets polymer is a new ferroelectret material exhibiting large piezoelectricity and has attracted considerable attentions in researches and industries. Property characterization is very important for this material and current investigations are mostly on macroscopic properties. In this work, we conduct nanoscale piezoelectric and ferroelectric characterizations of cellular polypropylene (PP) films using piezoresponse force microscopy (PFM). First, both the single-frequency PFM and dual-frequency resonance-tracking PFM testings were conducted on the cellular PP film. The localized piezoelectric constant d{sub 33} is estimated to be 7–11pC/N by correcting the resonance magnification with quality factor and it is about one order lower thanmore » the macroscopic value. Next, using the switching spectroscopy PFM (SS-PFM), we studied polarization switching behavior of the cellular PP films. Results show that it exhibits the typical ferroelectric-like phase hysteresis loops and butterfly-shaped amplitude loops, which is similar to that of a poly(vinylidene fluoride) (PVDF) ferroelectric polymer film. However, both the phase and amplitude loops of the PP film are intensively asymmetric, which is thought to be caused by the nonzero remnant polarization after poling. Then, the D-E hysteresis loops of both the cellular PP film and PVDF film were measured by using the same wave form as that used in the SS-PFM, and the results show significant differences. Finally, we suggest that the ferroelectric-like behavior of cellular electrets films should be distinguished from that of typical ferroelectrics, both macroscopically and microscopically.« less
Nondestructive Memory Elements Based on Polymeric Langmuir-Blodgett Thin Films
NASA Astrophysics Data System (ADS)
Reece, T. J.; Ducharme, S.
2007-03-01
Ferroelectric field effect transistors (FeFETs) have attracted much attention recently because of their low power consumption and fast nondestructive readout. Among the ferroelectric thin films used in FET devices; the ferroelectric copolymer of polyvinylidene fluoride, PVDF (C2H2F2), with trifluoroethylene, TrFE (C2HF3), has distinct advantages, including low dielectric constant, low processing temperature, low cost and compatibility with organic semiconductors. By employing the Langmuir-Blodgett technique, we are able to deposit films as thin as 1.8 nm. We discuss the characterization, modeling and fabrication of metal-ferroelectric-insulator-semiconductor (MFIS) structures incorporating these films.
NASA Astrophysics Data System (ADS)
Liu, Xiaoyan; Kitamura, Kenji; Yu, Qiuming; Xu, Jiajie; Osada, Minoru; Takahiro, Nagata; Li, Jiangyu; Cao, Guozhong
2013-10-01
This work describes novel surface-enhanced Raman scattering (SERS) substrates based on ferroelectric periodically poled LiNbO3 templates. The templates comprise silver nanoparticles (AgNPs), the size and position of which are tailored by ferroelectric lithography. The substrate has uniform and large sampling areas that show SERS effective with excellent signal reproducibility, for which the fabrication protocol is advantageous in its simplicity. We demonstrate ferroelectric-based SERS substrates with particle sizes ranging from 30 to 70 nm and present tunable SERS effect from Raman active 4-mercaptopyridine molecules attached to AgNPs when excited by a laser source at 514 nm.
NASA Astrophysics Data System (ADS)
Bi, Han; Sun, Qingqing; Zhao, Xuebing; You, Wenbin; Zhang, David Wei; Che, Renchao
2018-04-01
Recently, non-volatile semiconductor memory devices using a ferroelectric Hf0.5Zr0.5O2 film have been attracting extensive attention. However, at the nano-scale, the phase structure remains unclear in a thin Hf0.5Zr0.5O2 film, which stands in the way of the sustained development of ferroelectric memory nano-devices. Here, a series of electron microscopy evidences have illustrated that the interfacial strain played a key role in inducing the orthorhombic phase and the distorted tetragonal phase, which was the origin of the ferroelectricity in the Hf0.5Zr0.5O2 film. Our results provide insight into understanding the association between ferroelectric performances and microstructures of Hf0.5Zr0.5O2-based systems.
NASA Astrophysics Data System (ADS)
Somaily, H.; Kolesnik, S.; Mais, J.; Brown, D.; Chapagain, K.; Dabrowski, B.; Chmaissem, O.
2018-05-01
We report the structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr1 -xB axMn O3 perovskites. Employing a specially designed multistep reduction-oxidation synthesis technique, we have synthesized Sr1 -xB axMn O3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under nonequilibrium conditions. Understanding the multiferroic interplay with structure in Sr1 -xB axMn O3 is of great importance as it opens the door wide to the development of newer materials from the parent (A A' ) (B B' ) O3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below the ferroelectric Curie temperature TC and the Néel temperature TN. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P 4 m m space group, which gives rise to a large electric dipole moment Ps, in the z direction, of 18.4 and 29.5 μ C /c m2 for x =0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below TN. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions, which is necessary for stabilizing the ferroelectric phase.
NASA Astrophysics Data System (ADS)
Guo, Hanzheng
Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some well-accepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated. For the initial poling process, microstructural origins for the piezoelectricity development in the three most promising lead-free piezoceramic systems were investigated. For the non-ergodic relaxor ferroelectric compositions ( x = 6% - 9%) in the (1-x)(Bi1/2Na 1/2)TiO3-xBaTiO3 system, well-developed piezoelectricity was realized at poling fields far below the coercive field and phase transition field. Such an unusual behavior is attributed to the electric field-induced irreversible P4bm nanodomains coalescence into thin lamellar domains prior to the phase transition. In the (K0.5 Na0.5)NbO3-based ceramics, as demonstrated by an archetypical polymorphic phase boundary (PPB) composition of 0.948(K 0.5Na0.5)NbO3-0.052LiSbO3, the origin of the excellent piezoelectric performance is due to a tilted monoclinic phase that emerges from the tetragonal and orthorhombic PPB at the poling fields beyond 14 kV/cm. This monoclinic phase, as manifested by the appearance of blotchy domains and 1/2{oeo} superlattice diffraction spots, was determined to possess a Pm symmetry with a 0b+c0 oxygen octahedra tilting and antiparallel cation displacements. For the PPB composition of x = 0.5 in the (1-x)Ba(Zr0.2Ti0.8 )O3-x(Ba0.7Ca0.3)TiO 3 solid solution system, the original multi-domain state was found to transform into a unique single-domain state with orthorhombic symmetry at very moderate poling fields of 3 6 kV/cm. This single-domain state is suggested to be primarily responsible for the observed large piezoelectricity due to its significant elastic softening. In the electrical reversal process, a highly unusual phenomenon of electric field-induced ferroelectric-to-relaxor phase transition was directly observed in a lead-free composition of [(Bi1/2Na1/2)0.95 Ba0.05]0.98La0.02TiO3. It is manifested by the disruption of large ferroelectric domains with long range polar order into polar nanodomains with short range orders when the polarity of electric field is reversed. This observation was further rationalized by a phenomenological model that takes the large difference in kinetics between the phase transition and the polarization reversal processes into account. During the electrical cycling process, the microstructural mechanisms for electric fatigue behaviors of two ceramics were investigated. In 0.7Pb(Mg 1/3Nb2/3)O3-0.3PbTiO3, the frozen domain configuration after 103 cycles is responsible for the pronounced functionality degradation. Both seed inhibition and domain wall pinning mechanisms were suggested to be the reasons for the observed fatigue behavior. In the polycrystalline ceramic of [(Bi1/2Na1/2)0.95Ba 0.05]0.98La0.02TiO3, a novel phenomenological mechanism of domain fragmentation was found in addition to the domain wall pinning mechanism. Domain fragmentation contributes to the switchable polarization reduction by breaking the long-range polar orders, as visualized by the decomposition of large domains into domain fragments upon bipolar electrical cycling.
Zhang, Shujun; Li, Fei; Jiang, Xiaoning; Kim, Jinwook; Luo, Jun; Geng, Xuecang
2015-03-01
Relaxor-PbTiO 3 (PT) based ferroelectric crystals with the perovskite structure have been investigated over the last few decades due to their ultrahigh piezoelectric coefficients ( d 33 > 1500 pC/N) and electromechanical coupling factors ( k 33 > 90%), far outperforming state-of-the-art ferroelectric polycrystalline Pb(Zr,Ti)O 3 ceramics, and are at the forefront of advanced electroacoustic applications. In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint. Opportunities come from not only the ultrahigh properties, specifically coupling and piezoelectric coefficients, but through novel vibration modes and crystallographic/domain engineering. Figure of merits (FOMs) of crystals with various compositions and phases were established for various applications, including medical ultrasonic transducers, underwater transducers, acoustic sensors and tweezers. For each device application, recent developments in relaxor-PT ferroelectric crystals were surveyed and compared with state-of-the-art polycrystalline piezoelectrics, with an emphasis on their strong anisotropic features and crystallographic uniqueness, including engineered domain - property relationships. This review starts with an introduction on electroacoustic transducers and the history of piezoelectric materials. The development of the high performance relaxor-PT single crystals, with a focus on their uniqueness in transducer applications, is then discussed. In the third part, various FOMs of piezoelectric materials for a wide range of ultrasound applications, including diagnostic ultrasound, therapeutic ultrasound, underwater acoustic and passive sensors, tactile sensors and acoustic tweezers, are evaluated to provide a thorough understanding of the materials' behavior under operational conditions. Structure-property-performance relationships are then established. Finally, the impacts and challenges of relaxor-PT crystals are summarized to guide on-going and future research in the development of relaxor-PT crystals for the next generation electroacoustic transducers.
Zhang, Shujun; Li, Fei; Jiang, Xiaoning; Kim, Jinwook; Luo, Jun; Geng, Xuecang
2014-01-01
Relaxor-PbTiO3 (PT) based ferroelectric crystals with the perovskite structure have been investigated over the last few decades due to their ultrahigh piezoelectric coefficients (d33 > 1500 pC/N) and electromechanical coupling factors (k33 > 90%), far outperforming state-of-the-art ferroelectric polycrystalline Pb(Zr,Ti)O3 ceramics, and are at the forefront of advanced electroacoustic applications. In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint. Opportunities come from not only the ultrahigh properties, specifically coupling and piezoelectric coefficients, but through novel vibration modes and crystallographic/domain engineering. Figure of merits (FOMs) of crystals with various compositions and phases were established for various applications, including medical ultrasonic transducers, underwater transducers, acoustic sensors and tweezers. For each device application, recent developments in relaxor-PT ferroelectric crystals were surveyed and compared with state-of-the-art polycrystalline piezoelectrics, with an emphasis on their strong anisotropic features and crystallographic uniqueness, including engineered domain - property relationships. This review starts with an introduction on electroacoustic transducers and the history of piezoelectric materials. The development of the high performance relaxor-PT single crystals, with a focus on their uniqueness in transducer applications, is then discussed. In the third part, various FOMs of piezoelectric materials for a wide range of ultrasound applications, including diagnostic ultrasound, therapeutic ultrasound, underwater acoustic and passive sensors, tactile sensors and acoustic tweezers, are evaluated to provide a thorough understanding of the materials’ behavior under operational conditions. Structure-property-performance relationships are then established. Finally, the impacts and challenges of relaxor-PT crystals are summarized to guide on-going and future research in the development of relaxor-PT crystals for the next generation electroacoustic transducers. PMID:25530641
The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2.
Goh, Youngin; Jeon, Sanghun
2018-08-17
Ferroelectric tunnel junctions (FTJs) have attracted research interest as promising candidates for non-destructive readout non-volatile memories. Unlike conventional perovskite FTJs, hafnia FTJs offer many advantages in terms of scalability and CMOS compatibility. However, so far, hafnia FTJs have shown poor endurance and relatively low resistance ratios and these have remained issues for real device applications. In our study, we fabricated HfZrO(HZO)-based FTJs with various electrodes (TiN, Si, SiGe, Ge) and improved the memory performance of HZO-based FTJs by using the asymmetry of the charge screening lengths of the electrodes. For the HZO-based FTJ with a Ge substrate, the effective barrier afforded by this FTJ can be electrically modulated because of the space charge-limited region formed at the ferroelectric/semiconductor interface. The optimized HZO-based FTJ with a Ge bottom electrode presents excellent ferroelectricity with a high remnant polarization of 18 μC cm -2 , high tunneling electroresistance value of 30, good retention at 85 °C and high endurance of 10 7 . The results demonstrate the great potential of HfO 2 -based FTJs in non-destructive readout non-volatile memories.
CuInP 2S 6 Room Temperature Layered Ferroelectric
Belianinov, Alex; He, Qian; Dziaugys, Andrius; ...
2015-05-01
In this paper, we explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP 2S 6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleavedmore » bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V—likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. Finally, the existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing “graphene family”.« less
Characteristics Of Ferroelectric Logic Gates Using a Spice-Based Model
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.
2005-01-01
A SPICE-based model of an n-channel ferroelectric field effect transistor has been developed based on both theoretical and empirical data. This model was used to generate the I-V characteristic of several logic gates. The use of ferroelectric field effect transistors in memory circuits is being developed by several organizations. The use of FFETs in other circuits, both analog and digital needs to be better understood. The ability of FFETs to have different characteristics depending on the initial polarization can be used to create logic gates. These gates can have properties not available to standard CMOS logic gates, such as memory, reconfigurability and memory. This paper investigates basic properties of FFET logic gates. It models FFET inverter, NAND gate and multi-input NAND gate. The I-V characteristics of the gates are presented as well as transfer characteristics and timing. The model used is a SPICE-based model developed from empirical data from actual Ferroelectric transistors. It simulates all major characteristics of the ferroelectric transistor, including polarization, hysteresis and decay. Contrasts are made of the differences between FFET logic gates and CMOS logic gates. FFET parameters are varied to show the effect on the overall gate. A recodigurable gate is investigated which is not possible with CMOS circuits. The paper concludes that FFETs can be used in logic gates and have several advantages over standard CMOS gates.
Physical properties of new binary antiferroelectric liquid crystal mixtures
NASA Astrophysics Data System (ADS)
Fitas, Jakub; Jaworska-Gołąb, Teresa; Deptuch, Aleksandra; Tykarska, Marzena; Kurp, Katarzyna; Żurowska, Magdalena; Marzec, Monika
2018-02-01
Three newly prepared binary mixtures exhibiting chiral tilted smectic phases have been studied using differential scanning calorimetry, dielectric spectroscopy and electro-optic method, as well as X-ray diffraction. Broad temperature range of ferroelectric and antiferroelectric phases was detected in these mixtures and temperature dependence of spontaneous polarization, tilt angle and switching time were measured for all of them. It's occurred that all of the studied mixtures are orthoconic antiferroelectric liquid crystals. Based on the X-ray diffraction results, the temperature dependence of layer thickness in the paraelectric, ferroelectric and antiferroelectric phases was found. By using dielectric spectroscopy, Goldstone mode was identified in the ferroelectric phase, while antiphase fluctuations of azimuthal angle have been found in the antiferroelectric phase. Based on the results of the complementary methods, the transition temperatures were found as well as the order of the para-ferroelectric phase transition was determined as non-continuous one with critical parameter β equal to ca. 0.25.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurchak, Anatolii I.; Eliseev, Eugene A.; Kalinin, Sergei V.
The p - n junction dynamics induced in a graphene channel by stripe-domain nucleation, motion, and reversal in a ferroelectric substrate is explored using a self-consistent approach based on Landau-Ginzburg-Devonshire phenomenology combined with classical electrostatics. Relatively low gate voltages are required to induce the hysteresis of ferroelectric polarization and graphene charge in response to the periodic gate voltage. Pronounced nonlinear hysteresis of graphene conductance with a wide memory window corresponds to high amplitudes of gate voltage. Also, we reveal the extrinsic size effect in the dependence of the graphene-channel conductivity on its length. We predict that the top-gate–dielectric-layer–graphene-channel–ferroelectric-substrate nanostructure consideredmore » here can be a promising candidate for the fabrication of the next generation of modulators and rectifiers based on the graphene p - n junctions.« less
HS-SPM Mapping of Ferroelectric Domain Dynamics with Combined Nanoscale and Nanosecond Resolution
NASA Astrophysics Data System (ADS)
Polomoff, Nicholas Alexander
The unique properties of ferroelectric materials have been applied for a wide variety of device applications. In particular, properties such as spontaneous polarization and domain structure hysteresis at room temperature have rendered its application in nonvolatile memory devices such as FeRAMs. Along with the ever-present drive for smaller memory devices is the demand that they have increased operating speeds, longer retention times, lower power requirements and better overall reliability. It is therefore pertinent that further investigation of the dynamics, kinetics and mechanisms involved with ferroelectric domain polarization reversal at nanoscale lengths and temporal durations be conducted to optimize future ferroelectric based nonvolatile memory devices. Accordingly High Speed Piezoforce Microscopy (HSPFM) will be employed to directly investigate and observe the dynamic nucleation and growth progression of ferroelectric domain polarization reversal processes in thin epitaxial deposited PZT films. The capabilities of HSPFM will allow for in-situ direct observation of nascent dynamic domain polarization reversal events with nanoscale resolution. Correlations and characterization of the thin ferroelectric film samples will be made based on the observed polarization reversal dynamics and switching mechanism with respect to their varying strain states, compositions, and/or orientations. Electrical pulsing schemes will also be employed to enhance the HSPFM procedure to achieve nanoscale temporal resolution of nascent domain nucleation and growth events. A unique pulsing approach is also proposed, and tested, to improve power consumption during switching. Finally, artificial defects will be introduced into the PZT thin film by fabricating arrays of indentations with different shapes and loads. These controlled indents will result in the introduction of different stress states of compression and tension into the ferroelectric thin film. It is hypothesized that these different stress states will have a dramatic effect upon the polarization reversal process, domain nucleation and growth dynamics, as well as the device's overall performance. It is the aim of the research presented in this dissertation to leverage the superior lateral and temporal resolution of the HSPFM technique to observe the influence that a variety of different variables have upon polarization reversal and dynamic ferroelectric domain behavior in attempt to propose conventions in which such variables can be employed for the development of high functioning and overall better operating ferroelectric based devices.
Kobayashi, Kensuke; Horiuchi, Sachio; Ishibashi, Shoji; Kagawa, Fumitaka; Murakami, Youichi; Kumai, Reiji
2014-12-22
Three polymorphic forms of 6,6'-dimethyl-2,2'-bipyridinium chloranilate crystals were characterized to understand the origin of polarization properties and the thermal stability of ferroelectricity. According to the temperature-dependent permittivity, differential scanning calorimetry, and X-ray diffraction, structural phase transitions were found in all polymorphs. Notably, the ferroelectric α-form crystal, which has the longest hydrogen bond (2.95 Å) among the organic acid/base-type supramolecular ferroelectrics, transformed from a polar structure (space group, P21) into an anti-polar structure (space group, P21/c) at 378 K. The non-ferroelectric β- and γ-form crystals also exhibited structural rearrangements around hydrogen bonds. The hydrogen-bonded geometry and ferroelectric properties were compared with other supramolecular ferroelectrics. A positive relationship between the phase-transition temperature (TC ) and hydrogen-bond length (
Pressure induced phase transitions studies using advanced synchrotron techniques
NASA Astrophysics Data System (ADS)
Liu, Haozhe; Liu, Lisa; Zhao, Jinggeng; HIT Overseas Collaborative Base at Argonne Collaboration
2013-06-01
In this presentation, the joint effort on high pressure research through program of Harbin Institute of Technology (HIT) Overseas Collaborative Base at Argonne will be introduced. Selected research projects on pressure induced phase transitions at room temperature and high/low temperature conditions, such as A2B3 type topological insulators, iron arsenide superconductors, piezoelectric/ferroelectric materials, ABO3 type single crystals and metallic glasses, will be presented. Recent development on imaging and diffraction tomography techniques in diamond anvil cell will be reviewed as well.
Optical effects induced by epitaxial tension in lead titanate
NASA Astrophysics Data System (ADS)
Dejneka, A.; Chvostova, D.; Pacherova, O.; Kocourek, T.; Jelinek, M.; Tyunina, M.
2018-01-01
Single-crystal-type epitaxial films of perovskite oxide ferroelectrics are attractive for integrated photonic applications because of the remarkable optical properties and effects in ferroelectrics. The properties of the films may be influenced by epitaxial strain arising from the film-substrate mismatch. Here, dramatic strain-induced changes of the absorption and refraction are experimentally detected by spectroscopic ellipsometry in epitaxial films of archetypical ferroelectric PbTiO3. Comparison of the properties of a tensile-strained film with those of reference films and crystals reveals that epitaxial tension produces blueshifts of the primary above-bandgap absorption peaks by 1 eV and a decrease in the refractive index by 0.5 in the transparent spectral range. The obtained quadratic electrooptic and effective elastooptic coefficients exceed the bulk values by orders of magnitude. The experimental observations prove that epitaxy is a powerful tool for engineering unprecedented optical properties that may enable future photonics innovations.
Ievlev, Anton; Alikin, Denis O.; Morozovska, A. N.; ...
2014-12-15
Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching in the non-polar cuts of uniaxial ferroelectrics. In this case, in-plane component of polarization vector switches, allowing for detailed observations of resultant domain morphologies. We observe surprising variability of resultant domain morphologies stemming from fundamental instability of formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling vertical tip position allows the polarity of the switching to be controlled. This represents very unusual formmore » of symmetry breaking where mechanical motion in vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.« less
Ferroelectric properties of substituted barium titanate ceramics
NASA Astrophysics Data System (ADS)
Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.
2009-06-01
Barium titanate (BT) is among the most studied ferroelectric material which has been used in various forms, e.g. bulk, thin and thick film, powder, in a number of applications. In order to achieve a material with desired properties, it is modified with a variety of substituents. Most common substituents have been strontium, calcium and zirconium. Here we report studies on lead and zirconium substituted BT. The material series with compositional formula Ba 0.80Pb 0.20Ti 1-xZr xO 3 with, 0< x<0.1 was chosen for investigations. The material was synthesized by solid state reaction method. Reacted powder compacted in form of circular discs were sintered in the range of 1300 °C. All the samples were subjected to X-ray analysis and found to be single phase. Ferroelectric properties were studied as a function of composition and temperature. Pr/ Ps ratio was determined. It was found to decrease with increase in x.
Effect of Sm on dielectric, ferroelectric and piezoelectric properties of BPTNZ system
NASA Astrophysics Data System (ADS)
Kumar, Parveen; Juneja, J. K.; Prakash, Chandra; Raina, K. K.; Singh, Sangeeta
2013-10-01
Study on structural, dielectric and ferroelectric properties of Sm substituted BPTNZ system with compositional formula Ba0.80-xSmxPb0.20Zr0.10Ti0.90O3+0.5% Nb2O5 by weight, (x=0 to 0.01 in the steps of 0.0025) was done. Conventional solid state method was adopted for the synthesis of the samples. The single phase was confirmed by X-ray diffraction (XRD) analysis. Scanning electron microscopy was done for microstructural analysis. The dielectric properties were measured as a function of temperature and frequency. Ferroelectric P-E loops were recorded for all the samples at room temperature. Piezoelectric parameters such as ‘d33’ and electromechanical coupling coefficient ‘kp’ were also measured at room temperature for all the samples. The relationship between properties and structure of the prepared ceramics was established and results are discussed here.
NASA Astrophysics Data System (ADS)
Sinha, Nidhi; Goel, Neeti; Singh, B. K.; Gupta, M. K.; Kumar, Binay
2012-06-01
Pure and dye doped (0.1 and 0.2 mol%) Triglycine Sulfate (TGS) single crystals were grown by slow evaporation technique. A pyramidal coloring pattern, along with XRD and FT-IR studies confirmed the dye doping. Decrease in dielectric constant and increase in Curie temperature (Tc) were observed with increasing doping concentration. Low absorption cut off (231 nm) and high optical transparency (>90%) resulting in large band gap was observed in UV-VIS studies. In addition, strong hyper-luminescent emission bands at 350 and 375 nm were observed in which the relative intensity were found to be reversed as a result of doping. In P-E hysteresis loop studies, a higher curie temperature and an improved and more uniform figure of merit over a large region of the ferroelectric phase were observed. The improved dielectric, optical and ferroelectric/pyroelectric properties make the dye doped TGS crystals better candidate for various opto- and piezo-electronics applications.
Light-activated Gigahertz Ferroelectric Domain Dynamics
Akamatsu, Hirofumii; Yuan, Yakun; Stoica, Vladimir A.; ...
2018-02-26
Using time- and spatially-resolved hard X-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO 3 are simultaneously captured on sub-nanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photo-induced electric field of up to 20 million volts per meter is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling (DPFM) method is developed that reveals the microscopic origin of these dynamics, leading to GHz polarization andmore » elastic waves travelling in the crystal with sonic speeds and spatially varying frequencies. The advance of spatiotemporal imaging and dynamical modeling tools open opportunities of disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains« less
NASA Astrophysics Data System (ADS)
Pertsev, N. A.; Zembilgotov, A. G.; Waser, R.
1998-08-01
The effective dielectric, piezoelectric, and elastic constants of polycrystalline ferroelectric materials are calculated from single-crystal data by an advanced method of effective medium, which takes into account the piezoelectric interactions between grains in full measure. For bulk BaTiO3 and PbTiO3 polarized ceramics, the dependences of material constants on the remanent polarization are reported. Dielectric and elastic constants are computed also for unpolarized c- and a-textured ferroelectric thin films deposited on cubic or amorphous substrates. It is found that the dielectric properties of BaTiO3 and PbTiO3 polycrystalline thin films strongly depend on the type of crystal texture. The influence of two-dimensional clamping by the substrate on the dielectric and piezoelectric responses of polarized films is described quantitatively and shown to be especially important for the piezoelectric charge coefficient of BaTiO3 films.
Optical Properties of Ferroelectric Epitaxial K0.5Na0.5NbO3 Films in Visible to Ultraviolet Range
Pacherova, O.; Kocourek, T.; Jelinek, M.; Dejneka, A.; Tyunina, M.
2016-01-01
The complex index of refraction in the spectral range of 0.74 to 4.5 eV is studied by variable-angle spectroscopic ellipsometry in ferroelectric K0.5Na0.5NbO3 films. The 20-nm-thick cube-on-cube-type epitaxial films are grown on SrTiO3(001) and DyScO3(011) single-crystal substrates. The films are transparent and exhibit a significant difference between refractive indices Δn = 0.5 at photon energies below 3 eV. The energies of optical transitions are in the range of 3.15–4.30 eV and differ by 0.2–0.3 eV in these films. The observed behavior is discussed in terms of lattice strain and strain-induced ferroelectric polarization in epitaxial perovskite oxide films. PMID:27074042
NASA Astrophysics Data System (ADS)
Katranchev, Boyko; Petrov, Minko
2016-02-01
Microtextural polarization, phase transitions, and electro-optical effects are studied in a series of nanocomposites, grown by mixing alkyloxybenzoic acids (nOBAs), displaying hydrogen-bonded dimeric liquid crystal (LC) state, with non-mesogens (single-walled carbon nanotubes (SWCNTs), perfluorooctanoic acid) or mesogens (bent-core LC compound D14F3). Each of the studied nanocomposites, in which the nOBA serves as a matrix, forms complexes with bent-shaped dimeric, caused by the interaction between the dopant structural units and the dimer rings. This feature, coordinated with the surface anchoring, bulk and electrical effects, leads to drastic reduction of the LC system symmetry. As a result, transitions from achiral (characteristic for the pristine nOBA) to chiral states (including ferroelectric smectic C with C2 symmetry and ferroelectric smectic CG with the lowest C1 triclinic one) take place. The functionalization of the SWCNTs causes drastic increase of the ferroelectricity.
Piezo-generated charge mapping revealed through direct piezoelectric force microscopy.
Gomez, A; Gich, M; Carretero-Genevrier, A; Puig, T; Obradors, X
2017-10-24
While piezoelectric and ferroelectric materials play a key role in many everyday applications, there are still a number of open questions related to their physics. To enhance our understanding of piezoelectrics and ferroelectrics, nanoscale characterization is essential. Here, we develop an atomic force microscopy based mode that obtains a direct quantitative analysis of the piezoelectric coefficient d 33 . We report nanoscale images of piezogenerated charge in a thick single crystal of periodically poled lithium niobate (PPLN), a bismuth ferrite (BiFO 3 ) thin film, and lead zirconate titanate (PZT) by applying a force and recording the current produced by these materials. The quantification of d 33 coefficients for PPLN (14 ± 3 pC per N) and BFO (43 ± 6 pC per N) is in agreement with the values reported in the literature. Even stronger evidence of the reliability of the method is provided by an equally accurate measurement of the significantly larger d 33 of PZT.
Large field-induced-strain at high temperature in ternary ferroelectric crystals
Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.
2016-01-01
The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908
Complex Electric-Field Induced Phenomena in Ferroelectric/Antiferroelectric Nanowires
NASA Astrophysics Data System (ADS)
Herchig, Ryan Christopher
Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies on the electrical and mechanical boundary conditions, as well as a dependence of the transition temperatures on the diameter of the nanowire. Antiferroelectricity also exists at the nanoscale and, due to the proximity in energy of the ferroelectric and antiferroelectric phases, a phase transition from the ferroelectric to the antiferroelectric phase can be facilitated through the application of the appropriate mechanical and electrical boundary conditions. While much progress has been made over the past several decades to understand the nature of ferroelectricity/antiferroelectricity in nanowires, many questions remain unanswered. In particular, little is known about how the truncated dimensions affect the soft mode frequency dynamics or how various electrical and mechanical boundary conditions might change the nature of the phase transitions in these ferroelectric nanowires. Could nanowires offer a distinct advantage for solid state cooling applications? Few studies have been done to elucidate the fundamental physics of antiferroelectric nanowires. How the polarization in ferroelectric nanowires responds to a THz electric field remains relatively underexplored as well. In this work, the aim is to to develop and use computational tools that allow first-principles-based modeling of electric-field-induced phenomena in ferroelectric/antiferroelectric nanowires in order to address the aforementioned questions. (Abstract shortened by ProQuest.).
Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.
Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong
2016-08-31
Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances.
On bistable states retention in ferroelectric Langmuir-Blodgett films
NASA Astrophysics Data System (ADS)
Geivandov, A. R.; Palto, S. P.; Yudin, S. G.; Fridkin, V. M.; Blinov, L. M.; Ducharme, S.
2003-08-01
A new insight into the nature of ferroelectricity is emerging from the study of ultra-thin ferroelectric films prepared of poly(vinylidene fluoride with trifluoroethylene) copolymer using Langmuir-Blodgett (LB) technique. Unique properties of these films indicate the existence of two-dimensional ferroelectricity. The retention of two polarized states in ferroelectric polymer LB films is studied using nonlinear dielectric spectroscopy. The technique is based on phase sensitive measurements of nonlinear dielectric spectroscopy. The amplitude of the current response at the 2nd harmonic of the applied voltage is proportional to the magnitude of the remnant polarization, while its phase gives the sign. We have found that 10 - 20 mm thick LB films can show fast switching time and long retention of the two polarized states. Nevertheless, LB films show a pronounced asymmetry in switching to the opposite states. Possible mechanisms of such behavior are discussed.
Polarization fatigue of organic ferroelectric capacitors
Zhao, Dong; Katsouras, Ilias; Li, Mengyuan; Asadi, Kamal; Tsurumi, Junto; Glasser, Gunnar; Takeya, Jun; Blom, Paul W. M.; de Leeuw, Dago M.
2014-01-01
The polarization of the ferroelectric polymer P(VDF-TrFE) decreases upon prolonged cycling. Understanding of this fatigue behavior is of great technological importance for the implementation of P(VDF-TrFE) in random-access memories. However, the origin of fatigue is still ambiguous. Here we investigate fatigue in thin-film capacitors by systematically varying the frequency and amplitude of the driving waveform. We show that the fatigue is due to delamination of the top electrode. The origin is accumulation of gases, expelled from the capacitor, under the impermeable top electrode. The gases are formed by electron-induced phase decomposition of P(VDF-TrFE), similar as reported for inorganic ferroelectric materials. When the gas barrier is removed and the waveform is adapted, a fatigue-free ferroelectric capacitor based on P(VDF-TrFE) is realized. The capacitor can be cycled for more than 108 times, approaching the programming cycle endurance of its inorganic ferroelectric counterparts. PMID:24861542
Tunnel junctions with multiferroic barriers
NASA Astrophysics Data System (ADS)
Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert
2007-04-01
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La0.1Bi0.9MnO3 (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.
Tunnel junctions with multiferroic barriers.
Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert
2007-04-01
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La(0.1)Bi(0.9)MnO(3) (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2 nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.
Imprint control of BaTiO 3 thin films via chemically induced surface polarization pinning
Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J.; ...
2016-02-22
Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO 3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectricmore » phase in BTO tunnel junctions. Here, we conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baudry, Laurent; Lukyanchuk, Igor; Vinokur, Valerii M.
Here, the tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valuedmore » non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing.« less
Efficiency of thermoelectric conversion in ferroelectric film capacitive structures
NASA Astrophysics Data System (ADS)
Volpyas, V. A.; Kozyrev, A. B.; Soldatenkov, O. I.; Tepina, E. R.
2012-06-01
Thermal heating/cooling conditions for metal-insulator-metal structures based on barium strontium titanate ferroelectric films are studied by numerical methods with the aim of their application in capacitive thermoelectric converters. A correlation between the thermal and capacitive properties of thin-film ferroelectric capacitors is considered. The time of the temperature response and the rate of variation of the capacitive properties of the metal-insulator-metal structures are determined by analyzing the dynamics of thermal processes. Thermophysical calculations are carried out that take into consideration the real electrical properties of barium strontium titanate ferroelectric films and allow estimation of thermal modulation parameters and the efficiency of capacitive thermoelectric converters on their basis.
Enhanced energy harvesting in commercial ferroelectric materials
NASA Astrophysics Data System (ADS)
Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul
2014-04-01
Ferroelectric materials are used in a number of applications ranging from simple sensors and actuators to ferroelectric random access memories (FRAMs), transducers, health monitoring system and microelectronics. The multiphysical coupling ability possessed by these materials has been established to be useful for energy harvesting applications. However, conventional energy harvesting techniques employing ferroelectric materials possess low energy density. This has prevented the successful commercialization of ferroelectric based energy harvesting systems. In this context, the present study aims at proposing a novel approach for enhanced energy harvesting using commercially available ferroelectric materials. This technique was simulated to be used for two commercially available piezoelectric materials namely PKI-552 and APCI-840, soft and hard lead-zirconate-titanate (PZT) pervoskite ceramics, respectively. It was observed that a maximum energy density of 348 kJm-3cycle-1 can be obtained for cycle parameters of (0-1 ton compressive stress and 1-25 kV.cm-1 electric field) using APCI-840. The reported energy density is several hundred times larger than the maximum energy density reported in the literature for vibration harvesting systems.
NASA Astrophysics Data System (ADS)
Vineetha, P.; Shanmuga Priya, B.; Venkata Saravanan, K.
2018-04-01
Ferroelectric ceramics are the key components in piezoelectric devices used today, thus long term reliability is a major industrial concern. The two important things that have to be considered in the ferroelectric material based device are aging and fatigue. The first one describes degradation with time whereas the later one is characterized by the change of material property during electrical loading. In the present work ferroelectric polarization and bipolar fatigue properties of undoped and ZnO doped lead free (K0.5Na0.5)(Nb0.7Ta0.3)O3 (KNNT) ceramics prepared by solid state reaction method were investigated. X-ray diffraction analysis of the samples reveal perovskite monoclinic phase along with the secondary phase of K2Nb4O11. The ferroelectric studies indicate that ZnO addition reduce fatigue as well as a well saturated hysteresis loop is obtained. The results reveal that addition of ZnO enhances the ferroelectric properties of KNNT ceramics.
NASA Astrophysics Data System (ADS)
Qiu, J. H.; Jiang, Q.
2007-02-01
A phenomenological Landau-Devonshine theory is used to describe the effects of external mechanical loading on equilibrium polarization states and dielectric properties in epitaxial ferroelectric thin films grown on dissimilar orthorhombic substrates which induce anisotropic misfit strains in the film plane. The calculation focuses on single-domain perovskite BaTiO3 and PbTiO3 thin films on the assumption that um1=-um2. Compared with the phase diagrams without external loading, the characteristic features of "misfit strain-misfit strain" phase diagrams at room temperature are the presence of paraelectric phase and the strain-induced ferroelectric to paraelectric phase transition. Due to the external loading, the "misfit strain-stress" and "stress-temperature" phase diagrams also have drastic changes, especially for the vanishing of paraelectric phase in "misfit strain-stress" phase map and the appearance of possible ferroelectric phases. We also investigate the dielectric properties and the tunability of both BaTiO3 and PbTiO3 thin films. We find that the external stress dependence of phase diagrams and dielectric properties largely depends on strain anisotropy as well.
Study of the structure and ferroelectric behavior of BaBi4-xLaxTi4O15 ceramics
NASA Astrophysics Data System (ADS)
Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.
2015-06-01
The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi4-xLaxTi4O15 (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi2O2)2+ layers of BaBi4Ti4O15 ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La3+ ions prefer to substitute A-site Bi3+ ions in the perovskite layers while for higher x values, La3+ ions get incorporated into the (Bi2O2)2+ layers. A critical La content of x ˜ 0.2 in BaBi4-xLaxTi4O15 is seen to exhibit a large remnant polarization (Pr) with low coercive field (Ec). The improvement in the ferroelectric properties of La substituted BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.
Study of the structure, dielectric and ferroelectric behavior of BaBi4+δTi4O15 ceramics
NASA Astrophysics Data System (ADS)
Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.
2016-05-01
The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi4+δTi4O15 (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (Tm) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (Pr ~ 12.5 µC/cm2), low coercive fields (Ec ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d33 ~ 29 pC/N) is achieved in poled BaBi4Ti4O15 ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.
Li, Lina; Sun, Zhihua; Wang, Peng; Hu, Weida; Wang, Sasa; Ji, Chengmin; Hong, Maochun; Luo, Junhua
2017-09-25
Two-dimensional (2D) layered hybrid perovskites have shown great potential in optoelectronics, owing to their unique physical attributes. However, 2D hybrid perovskite ferroelectrics remain rare. The first hybrid ferroelectric with unusual 2D multilayered perovskite framework, (C 4 H 9 NH 3 ) 2 (CH 3 NH 3 ) 2 Pb 3 Br 10 (1), has been constructed by tailored alloying of the mixed organic cations into 3D prototype of CH 3 NH 3 PbBr 3 . Ferroelectricity is created through molecular reorientation and synergic ordering of organic moieties, which are unprecedented for the known 2D multilayered hybrid perovskites. Single-crystal photodetectors of 1 exhibit fascinating performances, including extremely low dark currents (ca. 10 -12 A), large on/off current ratios (ca. 2.5×10 3 ), and very fast response rate (ca. 150 μs). These merits are superior to integrated detectors of other 2D perovskites, and compete with the most active CH 3 NH 3 PbI 3 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostol, Nicoleta Georgiana, E-mail: nicoleta.apostol@infim.ro
2014-11-24
This work reports on the use of X-ray photoelectron spectroscopy to quantify band bending at ferroelectric free surfaces and at their interfaces with metals. Surfaces exhibiting out-of-plane ferroelectric polarization are characterized by a band bending, due to the formation of a dipole layer at the surface, composed by the uncompensated polarization charges (due to ionic displacement) and to the depolarization charge sheet of opposite sign, composed by mobile charge carriers, which migrate near surface, owing to the depolarization electric field. To this surface band bending due to out-of-plane polarization states, metal-semiconductor Schottky barriers must be considered additionally when ferroelectrics aremore » covered by metal layers. It is found that the net band bending is not always an algebraic sum of the two effects discussed above, since sometimes the metal is able to provide additional charge carriers, which are able to fully compensate the surface charge of the ferroelectric, up to the vanishing of the ferroelectric band bending. The two cases which will be discussed in more detail are Au and Cu deposited by molecular beam epitaxy on PbZr{sub 0.2}Ti{sub 0.8}O{sub 3}(001) single crystal thin layers, prepared by pulsed laser deposition. Gold forms unconnected nanoparticles, and their effect on the band bending is the apparition of a Schottky band bending additional to the band bending due to the out-of-plane polarization. Copper, starting with a given thickness, forms continuous metal layers connected to the ground of the system, and provide electrons in sufficient quantity to compensate the band bending due to the out-of-plane polarization.« less
NASA Astrophysics Data System (ADS)
Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.
2017-01-01
Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the third aspect are presented here, while an accompanying paper of this work reports findings on the first two aspects. In this paper, the competing effects of crystallographic texture and template seed volume fraction on the dielectric and piezoelectric properties of ferroelectric polycrystals are investigated. The phase field model of ferroelectric composites consisting of template seeds embedded in matrix grains is developed to simulate domain evolution, polarization-electric field (P-E), and strain-electric field (ɛ-E) hysteresis loops. The coercive field, remnant polarization, dielectric permittivity, piezoelectric coefficient, and dissipation factor are studied as a function of grain texture and template seed volume fraction. It is found that, while crystallographic texture significantly improves the polycrystal properties towards those of single crystals, a higher volume fraction of template seeds tends to decrease the electromechanical properties, thus canceling the advantage of ferroelectric polycrystals textured by templated grain growth processing. This competing detrimental effect is shown to arise from the composite effect, where the template phase possesses material properties inferior to the matrix phase, causing mechanical clamping and charge accumulation at inter-phase interfaces between matrix and template inclusions. The computational results are compared with complementary experiments, where good agreement is obtained.
Jie, Wenjing; Hao, Jianhua
2014-06-21
Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.
NASA Astrophysics Data System (ADS)
Jie, Wenjing; Hao, Jianhua
2014-05-01
Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.
NASA Astrophysics Data System (ADS)
Swedberg, Elena
Ferroelectric and antiferroelectric ultrathin films have attracted a lot of attention recently due to their remarkable properties and their potential to allow for device miniaturization in numerous applications. However, when the ferroelectric films are scaled down, it brings about an unavoidable depolarizing field. A partial surface charge compensation allows to control the residual depolarizing field and manipulate the properties of ultrathin ferroelectric films. In this dissertation we take advantage of atomistic first-principles-based simulations to expand our understanding of the role of the partial surface charge compensation in the properties of ferroelectric and antiferroelectric ultrathin films. The application of our computational methodology to study the effect of the partial surface charge compensation in ferroelectric ultrathin films led to the prediction that, depending on the quality of the surface charge compensation, ferroelectric thin films respond to an electric field in a qualitatively different manner. They can be tuned to behave like a linear dielectric, a ferroelectric or even an antiferroelectric. This effect was shown to exist in films with different mechanical boundary conditions and different crystal symmetries. There are a number of potential applications where such properties of ferroelectric thin films can be used. One of these potential applications is energy storage. We will show that, in the antiferroelectric regime, ferroelectric thin films exhibit drastic enhancement of energy storage density which is a desirable property. One of the most promising applications of ferroelectric ultrathin films that emerged only recently is the harvesting of the giant electrocaloric effect. Interestingly, despite numerous studies of the electrocaloric effect in ferroelectric thin films, it is presently unknown how a residual depolarizing field affects the electrocaloric properties of such films. Application of state-of-the-art computational methods to investigate the electrocaloric effect in ferroelectric films with partial surface charge compensation led to the prediction that the residual depolarizing field can perform a dual role in the electrocaloric effect in these films. When the depolarizing field creates competition between the monodomain and nanodomain states, we predict an enhancement of the electrocaloric effect due to the frustration that increases the entropy of the state and therefore the electrocaloric temperature change. On the other hand, when the depolarizing field leads to a formation of nanodomains, thin films either exhibit a small electrocaloric effect or lose their electrocaloric properties altogether to the irreversible nanodomain motion. When the residual depolarizing field is weak enough to permit the formation of monodomain phases, the electrocaloric effect is significantly reduced as compared to bulk. We believe that our findings could potentially reveal additional opportunities to optimize solid state cooling technology. While the electrocaloric effect has been a popular topic of interest in recent years [12], there still exists numerous gaps in the fundamental understanding of the effect. In particular, it is presently unknown whether the scaling laws, known to exist for magnetocaloric materials, can be applied to ferroelectric and antiferroelectric electrocalorics. We predict the existence of scaling laws for low-field electrocaloric temperature change in antiferroelectric and ferroelectric materials. With the help of first-principles-based simulations, we showed computationally that the scaling laws exist for antiferroelectric PbZrO3 along with ferroelectrics PbTiO3, BaTiO 3 and KNbO3. Additional evidence of the scaling laws existence are provided using experimental data from the literature. Interestingly, our studies on ferroelectric films predicted the existence of antiferroelectric behavior in ultrathin films with partial surface charge compensation. One may wonder whether it is possible to stabilize the ferroelectric phase in antiferroelectric films and what role the surface charge screening would play in such a transition. Motivated to address these fundamental questions, we used computational experiments to study antiferroelectric ultrathin films with a residual depolarizing field. Our studies led to the following predictions. We found that PbZrO3 thin films exhibit the ferroelectric phase upon scaling down and under the condition of efficient surface charge compensation. We also found a strong competition between the antiferroelectric and ferroelectric phases for the thin films of the critical size associated with antiferroelectric-ferroelectric phase transition. This finding motivated us to study the electrocaloric effect in PbZrO3 thin films with antiferroelectric-ferroelectric phase competition. We found that high tunability of the phase transition by the electric field leads to a wide range of temperatures associated with a strong electrocaloric effect. In addition, we found that epitaxial strain provides further tunability to the electrocaloric properties. In summary, our studies led to a broader and deeper understanding of the abundantly many roles surface charge compensation plays in ultrathin ferroelectrics and antiferroelectrics.
NASA Astrophysics Data System (ADS)
Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo
2016-03-01
Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.
Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo
2016-03-08
Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.
Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo
2016-01-01
Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833
Yuan, Shuoguo; Yang, Zhibin; Xie, Chao; Yan, Feng; Dai, Jiyan; Lau, Shu Ping; Chan, Helen L W; Hao, Jianhua
2016-12-01
A vertical graphene heterostructure field-effect transistor (VGHFET) using an ultrathin ferroelectric film as a tunnel barrier is developed. The heterostructure is capable of providing new degrees of tunability and functionality via coupling between the ferroelectricity and the tunnel current of the VGHFET, which results in a high-performance device. The results pave the way for developing novel atomic-scale 2D heterostructures and devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomenzo, Patrick D.; Nishida, Toshikazu, E-mail: nishida@ufl.edu; Takmeel, Qanit
Ferroelectric HfO{sub 2}-based thin films, which can exhibit ferroelectric properties down to sub-10 nm thicknesses, are a promising candidate for emerging high density memory technologies. As the ferroelectric thickness continues to shrink, the electrode-ferroelectric interface properties play an increasingly important role. We investigate the TaN interface properties on 10 nm thick Si-doped HfO{sub 2} thin films fabricated in a TaN metal-ferroelectric-metal stack which exhibit highly asymmetric ferroelectric characteristics. To understand the asymmetric behavior of the ferroelectric characteristics of the Si-doped HfO{sub 2} thin films, the chemical interface properties of sputtered TaN bottom and top electrodes are probed with x-ray photoelectron spectroscopy. Ta-Omore » bonds at the bottom electrode interface and a significant presence of Hf-N bonds at both electrode interfaces are identified. It is shown that the chemical heterogeneity of the bottom and top electrode interfaces gives rise to an internal electric field, which causes the as-grown ferroelectric domains to preferentially polarize to screen positively charged oxygen vacancies aggregated at the oxidized bottom electrode interface. Electric field cycling is shown to reduce the internal electric field with a concomitant increase in remanent polarization and decrease in relative permittivity. Through an analysis of pulsed transient switching currents, back-switching is observed in Si-doped HfO{sub 2} thin films with pinched hysteresis loops and is shown to be influenced by the internal electric field.« less
Ferroelectric domain structure of anisotropically strained NaNbO3 epitaxial thin films
NASA Astrophysics Data System (ADS)
Schwarzkopf, J.; Braun, D.; Schmidbauer, M.; Duk, A.; Wördenweber, R.
2014-05-01
NaNbO3 thin films have been grown under anisotropic biaxial strain on several oxide substrates by liquid-delivery spin metalorganic chemical vapor deposition. Compressive lattice strain of different magnitude, induced by the deposition of NaNbO3 films with varying film thickness on NdGaO3 single crystalline substrates, leads to modifications of film orientation and phase symmetry, which are similar to the phase transitions in Pb-containing oxides near the morphotropic phase boundary. Piezoresponse force microscopy measurements exhibit large out-of-plane polarization components, but no distinctive domain structure, while C-V measurements indicate relaxor properties in these films. When tensile strain is provoked by the epitaxial growth on DyScO3, TbScO3, and GdScO3 single crystalline substrates, NaNbO3 films behave rather like a normal ferroelectric. The application of these rare-earth scandate substrates yields well-ordered ferroelectric stripe domains of the type a1/a2 with coherent domain walls aligned along the [001] substrate direction as long as the films are fully strained. With increasing plastic lattice relaxation, initially, a 2D domain pattern with still exclusively in-plane electric polarization, and finally, domains with in-plane and out-of-plane polar components evolve.
Polarization reversal due to charge injection in ferroelectric films
NASA Astrophysics Data System (ADS)
Bühlmann, S.; Colla, E.; Muralt, P.
2005-12-01
The origin of a recently reported peculiar phenomenon—polarization reversal against the applied electric field in ferroelectric thin films [M. Aplanalp and P. Günter, Ferroelectrics 258, 3 (2001), T. Morita and Y. Cho, Appl. Phys. Lett. 84, 257 (2004)]—has been identified. The phenomenon is observed when poling a ferroelectric film with a large electric field applied to a conductive tip of an atomic force microscope (AFM). The effect seems to be of quite general nature as it has been observed on BaTiO3 [Aplanalp , Phys. Rev. Lett. 86, 5799 (2001)] as well as on LiTaO3 films [I. Morita and Y. Cho Appl. Phys. Lett. 84, 257 (2004)]. It was proposed that this switching is provoked by mechanical stress due to the Maxwell force between tip and bottom electrode [Aplanalp , Phys. Rev. Lett. 86, 5799 (2001)]. We have studied the same phenomenon in PbZr0.4Ti0.6O3 (PZT) thin films, deposited as epitaxial film on conductive, Nb-doped SrTiO3 single crystals. New experimental evidence strongly supports a different explanation. The poling process is accompanied by considerable charge injection leading to important space charges inside the ferroelectric film. These charges finally can lead, for given conditions, to a polarization reversal when the applied voltage to the conductive AFM tip is set to zero. Two analytical models are proposed to explain field inversion in the upper part of the film.
Optimization of Ferroelectric Ceramics by Design at the Microstructure Level
NASA Astrophysics Data System (ADS)
Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.
2010-05-01
Ferroelectric materials show remarkable physical behaviors that make them essential for many devices and have been extensively studied for their applications of nonvolatile random access memory (NvRAM) and high-speed random access memories. Although ferroelectric ceramics (polycrystals) present ease in manufacture and in compositional modifications and represent the widest application area of materials, computational and theoretical studies are sparse owing to many reasons including the large number of constituent atoms. Macroscopic properties of ferroelectric polycrystals are dominated by the inhomogeneities at the crystallographic domain/grain level. Orientation of grains/domains is critical to the electromechanical response of the single crystalline and polycrystalline materials. Polycrystalline materials have the potential of exhibiting better performance at a macroscopic scale by design of the domain/grain configuration at the domain-size scale. This suggests that piezoelectric properties can be optimized by a proper choice of the parameters which control the distribution of grain orientations. Nevertheless, this choice is complicated and it is impossible to analyze all possible combinations of the distribution parameters or the angles themselves. Hence we have implemented the stochastic optimization technique of simulated annealing combined with the homogenization for the optimization problem. The mathematical homogenization theory of a piezoelectric medium is implemented in the finite element method (FEM) by solving the coupled equilibrium electrical and mechanical fields. This implementation enables the study of the dependence of the macroscopic electromechanical properties of a typical crystalline and polycrystalline ferroelectric ceramic on the grain orientation.
Giant electrocaloric effect in a cracked ferroelectrics
NASA Astrophysics Data System (ADS)
Huang, Cheng; Yang, Hai-Bing; Gao, Cun-Fa
2018-04-01
The electrocaloric effect (ECE) is the temperature change in a material induced by electrical field variation under adiabatic condition. Considering an external electric load applied on a cracked ferroelectric solid, a non-uniform electric field would be induced at the crack tip, and thus, incompatible strain field and local stress concentration would be generated around it. Furthermore, the enormous strain energy and the electrostatic energy would affect the polarization switching of the ferroelectric solid, important for the electrocaloric response. In this paper, the large negative and positive ECEs in a ferroelectric sheet with a conducting crack are investigated by the phase field method with the consideration of time-dependent Ginzburg-Landau equation. The numerical calculations indicated that the polarization field generates a sharp rise during the domain transition from polydomain to monodomain under a certain electric load. Large negative ECEs, about -10.21 K and -7.55 K, are obtained at 135 °C and 85 °C, respectively. The domain transition temperature is much lower than the Curie temperature, which enlarges the existence scope of the large ECE in ferroelectrics. The results also imply that the domain transition from a multi-domain state to a single domain takes place with the minimization of total free energy, which involves the courses of the electric field, stress field, temperature, and polarization interaction. Therefore, the non-uniform distributions of the stress-electric fields induced by the crack play an important role in ECE.
NASA Astrophysics Data System (ADS)
Huang, Weichuan; Liu, Yukuai; Luo, Zhen; Hou, Chuangming; Zhao, Wenbo; Yin, Yuewei; Li, Xiaoguang
2018-06-01
The ferroelectric domain reversal dynamics and the corresponding resistance switching as well as the memristive behaviors in epitaxial BiFeO3 (BFO, ~150 nm) based multiferroic heterojunctions were systematically investigated. The ferroelectric domain reversal dynamics could be described by the nucleation-limited-switching model with the Lorentzian distribution of logarithmic domain-switching times. By engineering the domain states, multi and even continuously tunable resistances states, i.e. memristive states, could be non-volatilely achieved. The resistance switching speed can be as fast as 30 ns in the BFO-based multiferroic heterojunctions with a write voltage of ~20 V. By reducing the thickness of BFO, the La0.6Sr0.4MnO3/BFO (~5 nm)/La0.6Sr0.4MnO3 multiferroic tunnel junction (MFTJ) shows an even a quicker switching speed (20 ns) with a much lower operation voltage (~4 V). Importantly, the MFTJ exhibits a tunable interfacial magnetoelectric coupling related to the ferroelectric domain switching dynamics. These findings enrich the potential applications of multiferroic BFO based devices in high-speed, low-power, and high-density memories as well as future neuromorphic computational architectures.
Domain wall roughness and creep in nanoscale crystalline ferroelectric polymers
NASA Astrophysics Data System (ADS)
Xiao, Z.; Poddar, Shashi; Ducharme, Stephen; Hong, X.
2013-09-01
We report piezo-response force microscopy studies of the static and dynamic properties of domain walls (DWs) in 11 to 36 nm thick films of crystalline ferroelectric poly(vinylidene-fluoride-trifluorethylene). The DW roughness exponent ζ ranges from 0.39 to 0.48 and the DW creep exponent μ varies from 0.20 to 0.28, revealing an unexpected effective dimensionality of ˜1.5 that is independent of film thickness. Our results suggest predominantly 2D ferroelectricity in the layered polymer and we attribute the fractal dimensionality to DW deroughening due to the correlations between the in-plane and out-of-plane polarization, an effect that can be exploited to achieve high lateral domain density for developing nanoscale ferroelectrics-based applications.
Interesting properties of ferroelectric Pb(Zr0.5Ti0.5)O3 nanotube array embedded in matrix medium
NASA Astrophysics Data System (ADS)
Adhikari, Rajendra; Fu, Huaxiang
2013-07-01
Finite-temperature first-principles based simulations are used to determine the structural and polarization properties of ferroelectric Pb(Zr0.5Ti0.5)O3 (PZT) nanotube array embedded in matrix medium of different ferroelectric strengths. Various interesting properties are found, including (i) that the system can behave either 3D-like, or 2D-like, or 1D-like; and (ii) the existence of an unusual structural phase in which 180° stripe domain coexists with vortex. Furthermore, we show in PZT tube array that a vortex phase can spontaneously transform into a ferroelectric phase of polarization by temperature alone, without applying external electric fields. Microscopic insights for understanding these properties are provided.
Measurement of Ferroelectric Films in MFM and MFIS Structures
NASA Astrophysics Data System (ADS)
Anderson, Jackson D.
For many years ferroelectric memory has been used in applications requiring low power, yet mainstream adoption has been stifled due to integration and scaling issues. With the renewed interest in these devices due to the recent discovery of ferroelectricity in HfO2, it is imperative that the properties of these films are well understood. To aid that end, a ferroelectric analysis package has been developed and released on GitHub and PyPI under a creative commons non-commercial share-alike license. This package contains functions for visualization and analysis of data from polarization, leakage current, and FORC measurements as well as basic modeling capability. Functionality is verified via the analysis of lead zirconate titanate (PZT) capacitors, where a multi-domain simulation based on an experimental Preisach density shows decent agreement despite measurement noise. The package is then used in the analysis of ferroelectric HfO2 films deposited in metal-ferroelectric-metal (MFM) and metal-ferroelectric-insulator-semiconductor (MFIS) stacks. 13.5 nm HfO2 films deposited on a semiconductor surface are shown to have a coercive voltage of 2.5 V, rather than the 1.9 V of the film in an MFM stack. This value further increases to 3-5 V when a lightly doped semiconductor depletion and inversion capacitance is added to the stack. The magnitude of this change is more than can be accounted for from the 10% voltage drop across the interfacial oxide layer, indicating that the modified surface properties are impacting the formation of the ferroelectric phase during anneal. In light of this, care should be taken to map out ferroelectric HfO2 properties using the particular physical stack that will be used, rather than using an MFM stack as a proxy.
Performance Measurement of a Multi-Level/Analog Ferroelectric Memory Device Design
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.
2007-01-01
Increasing the memory density and utilizing the unique characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes the characterization of a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used a reference to determinethe amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. This paper presents measurements of an actual prototype memory cell. This prototype is not a complete implementation of a device, but instead, a prototype of the storage and retrieval portion of an actual device. The performance of this prototype is presented with the projected performance of the overall device. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.
Strain-controlled skyrmion creation and propagation in ferroelectric/ferromagnetic hybrid wires
NASA Astrophysics Data System (ADS)
Li, Zhi; Zhang, Youguang; Huang, Yangqi; Wang, Chengxiang; Zhang, Xichao; Liu, Yan; Zhou, Yan; Kang, Wang; Koli, Shradha Chandrashekhar; Lei, Na
2018-06-01
The control of magnetic skyrmion creation and pinning through strain is studied by micromagnetic simulations. A single stable skyrmion can be created by a vertical strain pulse on Pd/Fe/Ir hybrid structure on Pb(Zr1-xTix)O3 nanowire with -1.8 V pulse voltage from 1.2 ns to 2.0 ns. Then the skyrmion is pinned by the vertical strain independent of the polarity during its propagation in the wire driven by the current. The proposed device integrates strain-controlled skyrmion creation and pinning in a single nanowire structure, which would open a new route for skyrmion-based memory and logic devices with ultra-low power consumption.
Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics
NASA Astrophysics Data System (ADS)
Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, Ph.; Glaum, J.; Knapp, M.; Eckert, J.; Hoffman, M.
2014-09-01
Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less intense and more diffuse anomaly in the atomic displacement parameter of lead. The time dependence of the ferroelectric response on a structural level down to 250 μs confirms this interpretation in the time scale of the piezolectric strain response.
Development and characterization of a ferroelectric non-volatile memory for flexible electronics
NASA Astrophysics Data System (ADS)
Mao, Duo
Flexible electronics have received significant attention recently because of the potential applications in displays, sensors, radio frequency identification (RFID) tags and other integrated circuits. Electrically addressable non-volatile memory is a key component for these applications. The major challenges are to fabricate the memory at a low temperature compatible with plastic substrates while maintaining good device reliability, by being compatible with process as needed to integrate with other electronic components for system-on-chip applications. In this work, ferroelectric capacitors fabricated at low temperature were developed. Based on that, a ferroelectric random access memory (FRAM) for flexible electronics was developed and characterized. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer was used as a ferroelectric material and a photolithographic process was developed to fabricate ferroelectric capacitors. Different characterization methods including atomic force microscopy, x-ray diffraction and Fourier-transform infrared reflection-absorption spectroscopy were used to study the material properties of the P(VDF-TrFE) film. The material properties were correlated with the electrical characteristics of the ferroelectric capacitors. To understand the polarization switching behavior of the P(VDF-TrFE) ferroelectric capacitors, a Nucleation-Limited-Switching (NLS) model was used to study the switching kinetics. The switching kinetics were characterized over the temperature range from -60 °C to 100 °C. Fatigue characteristics were studied at different electrical stress voltages and frequencies to evaluate the reliability of the ferroelectric capacitor. The degradation mechanism is attributed to the increase of the activation field and the suppression of the switchable polarization. To develop a FRAM circuit for flexible electronics, an n-channel thin film transistor (TFT) based on CdS as the semiconductor was integrated with a P(VDF-TrFE) ferroelectric capacitor for a one-transistor-one-capacitor (1T1C) memory cell. The 1T1C devices were fabricated at low temperature and demonstrated a memory window (DeltaVBL) of 2.3 V and 3.5 V, depending on the device dimensions. Next, FRAM arrays (4-bit, 16-bit and 64-bit) based on the two-transistor-two-capacitor (2T2C) memory cell architecture were designed and fabricated using a photolithographic process with 9 masks. The fabricated FRAM arrays were packaged in 28-pin ceramic packages. The read/write schemes were developed and the FRAM arrays show successful program and erase with a memory window of approximately 1 V at the output of the sense amplifier.
Ferroelectric-like hysteresis loop originated from non-ferroelectric effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Bora; Seol, Daehee; Lee, Shinbuhm
Piezoresponse force microscopy (PFM) has provided advanced nanoscale understanding and analysis of ferroelectric and piezoelectric properties. In PFM-based studies, electromechanical strain induced by the converse piezoelectric effect is probed and analyzed as a PFM response. However, electromechanical strain can also arise from several non-piezoelectric origins that may lead to a misinterpretation of the observed response. Among them, electrostatic interaction can significantly affect the PFM response. Nonetheless, previous studies explored solely the influence of electrostatic interaction on the PFM response under the situation accompanied with polarization switching. Here, we show the influence of the electrostatic interaction in the absence of polarizationmore » switching by using unipolar voltage sweep. The obtained results reveal that the electromechanical neutralization between piezoresponse of polarization and electrostatic interaction plays a crucial role in the observed ferroelectric-like hysteresis loop despite the absence of polarization switching. Furthermore, our work can provide a basic guideline for the correct interpretation of the hysteresis loop in PFM-based studies.« less
Ferroelectric-like hysteresis loop originated from non-ferroelectric effects
Kim, Bora; Seol, Daehee; Lee, Shinbuhm; ...
2016-09-06
Piezoresponse force microscopy (PFM) has provided advanced nanoscale understanding and analysis of ferroelectric and piezoelectric properties. In PFM-based studies, electromechanical strain induced by the converse piezoelectric effect is probed and analyzed as a PFM response. However, electromechanical strain can also arise from several non-piezoelectric origins that may lead to a misinterpretation of the observed response. Among them, electrostatic interaction can significantly affect the PFM response. Nonetheless, previous studies explored solely the influence of electrostatic interaction on the PFM response under the situation accompanied with polarization switching. Here, we show the influence of the electrostatic interaction in the absence of polarizationmore » switching by using unipolar voltage sweep. The obtained results reveal that the electromechanical neutralization between piezoresponse of polarization and electrostatic interaction plays a crucial role in the observed ferroelectric-like hysteresis loop despite the absence of polarization switching. Furthermore, our work can provide a basic guideline for the correct interpretation of the hysteresis loop in PFM-based studies.« less
Electric field cycling behavior of ferroelectric hafnium oxide.
Schenk, Tony; Schroeder, Uwe; Pešić, Milan; Popovici, Mihaela; Pershin, Yuriy V; Mikolajick, Thomas
2014-11-26
HfO2 based ferroelectrics are lead-free, simple binary oxides with nonperovskite structure and low permittivity. They just recently started attracting attention of theoretical groups in the fields of ferroelectric memories and electrostatic supercapacitors. A modified approach of harmonic analysis is introduced for temperature-dependent studies of the field cycling behavior and the underlying defect mechanisms. Activation energies for wake-up and fatigue are extracted. Notably, all values are about 100 meV, which is 1 order of magnitude lower than for conventional ferroelectrics like lead zirconate titanate (PZT). This difference is mainly atttributed to the one to two orders of magnitude higher electric fields used for cycling and to the different surface to volume ratios between the 10 nm thin films in this study and the bulk samples of former measurements or simulations. Moreover, a new, analog-like split-up effect of switching peaks by field cycling is discovered and is explained by a network model based on memcapacitive behavior as a result of defect redistribution.
Ievlev, Anton V.; Maksymovych, Petro; Trassin, Morgan; ...
2016-10-11
Domain formation and ferroelectric switching is fundamentally inseparable from polarization screening, which on free surfaces can be realized via band bending and ionic adsorption. In the latter case, polarization switching is intrinsically coupled to the surface electrochemical phenomena, and the electrochemical stage can control kinetics and induce long-range interactions. However, despite extensive evidence towards the critical role of surface electrochemistry, little is known about the nature of the associated processes. Here we combine SPM tip induce polarization switching and secondary ion mass spectrometry to explore the evolution of chemical state of ferroelectric during switching. Surprisingly, we find that even pristinemore » surfaces contain ions (e.g. Cl -) that are not anticipated based on chemistry of the system and processing. In the ferroelectric switching regime, we find surprising changes in surface chemistry, including redistribution of base cations. Finally, at higher voltages in the electroforming regime significant surface deformation was observed and associated with a strong ion intermixing.« less
NASA Astrophysics Data System (ADS)
Tombak, Ali
The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.
Nucleation kinetics of urea succinic acid –ferroelectric single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhivya, R.; Voohrees College, Vellore-632014, Tamilnadu; Vizhi, R. Ezhil, E-mail: rezhilvizhi@vit.ac.in, E-mail: revizhi@gmail.com
2015-06-24
Single crystals of Urea Succinic Acid (USA) were grown by slow cooling technique. The crystalline system was confirmed by powder X-ray diffraction. The metastable zonewidth were carried out for various temperatures i.e., 35°, 40°, 45° and 50°C. The induction period is experimentally determined and various nucleation parameters have been estimated.
Controllable Photovoltaic Effect of Microarray Derived from Epitaxial Tetragonal BiFeO3 Films.
Lu, Zengxing; Li, Peilian; Wan, Jian-Guo; Huang, Zhifeng; Tian, Guo; Pan, Danfeng; Fan, Zhen; Gao, Xingsen; Liu, Jun-Ming
2017-08-16
Recently, the ferroelectric photovoltaic (FePV) effect has attracted great interest due to its potential in developing optoelectronic devices such as solar cell and electric-optical sensors. It is important for actual applications to realize a controllable photovoltaic process in ferroelectric-based materials. In this work, we prepared well-ordered microarrays based on epitaxially tetragonal BiFeO 3 (T-BFO) films by the pulsed laser deposition technique. The polarization-dependent photocurrent image was directly observed by a conductive atomic force microscope under ultraviolet illumination. By choosing a suitable buffer electrode layer and controlling the ferroelectric polarization in the T-BFO layer, we realized the manipulation of the photovoltaic process. Moreover, based on the analysis of the band structure, we revealed the mechanism of manipulating the photovoltaic process and attributed it to the competition between two key factors, i.e., the internal electric field caused by energy band alignments at interfaces and the depolarization field induced by the ferroelectric polarization in T-BFO. This work is very meaningful for deeply understanding the photovoltaic process of BiFeO 3 -based devices at the microscale and provides us a feasible avenue for developing data storage or logic switching microdevices based on the FePV effect.
On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2
NASA Astrophysics Data System (ADS)
Fengler, F. P. G.; Hoffmann, M.; Slesazeck, S.; Mikolajick, T.; Schroeder, U.
2018-05-01
Manifold research has been done to understand the detailed mechanisms behind the performance instabilities of ferroelectric capacitors based on hafnia. The wake-up together with the imprint might be the most controversially discussed phenomena so far. Among crystallographic phase change contributions and oxygen vacancy diffusion, electron trapping as the origin has been discussed recently. In this publication, we provide evidence that the imprint is indeed caused by electron trapping into deep states at oxygen vacancies. This impedes the ferroelectric switching and causes a shift of the hysteresis. Moreover, we show that the wake-up mechanism can be caused by a local imprint of the domains in the pristine state by the very same root cause. The various domain orientations together with an electron trapping can cause a constriction of the hysteresis and an internal bias field in the pristine state. Additionally, we show that this local imprint can even cause almost anti-ferroelectric like behavior in ferroelectric films.
Ferroelectric control of metal-insulator transition
NASA Astrophysics Data System (ADS)
He, Xu; Jin, Kui-juan; Ge, Chen; Ma, Zhong-shui; Yang, Guo-zhen
2016-03-01
We propose a method of controlling the metal-insulator transition of one perovskite material at its interface with another ferroelectric material based on first principle calculations. The operating principle is that the rotation of oxygen octahedra tuned by the ferroelectric polarization can modulate the superexchange interaction in this perovskite. We designed a tri-color superlattice of (BiFeO3)N/LaNiO3/LaTiO3, in which the BiFeO3 layers are ferroelectric, the LaNiO3 layer is the layer of which the electronic structure is to be tuned, and LaTiO3 layer is inserted to enhance the inversion asymmetry. By reversing the ferroelectric polarization in this structure, there is a metal-insulator transition of the LaNiO3 layer because of the changes of crystal field splitting of the Ni eg orbitals and the bandwidth of the Ni in-plane eg orbital. It is highly expected that a metal-transition can be realized by designing the structures at the interfaces for more materials.
Electrical and structural investigations, and ferroelectric domains in nanoscale structures
NASA Astrophysics Data System (ADS)
Alexe, Marin
2005-03-01
Generally speaking material properties are expected to change as the characteristic dimension of a system approaches at the nanometer scale. In the case of ferroelectric materials fundamental problems such as the super-paraelectric limit, influence of the free surface and/or of the interface and bulk defects on ferroelectric switching, etc. arise when scaling the systems into the sub-100 nm range. In order to study these size effects, fabrication methods of high quality nanoscale ferroelectric crystals as well as AFM-based investigations methods have been developed in the last few years. The present talk will briefly review self-patterning and self- assembly fabrication methods, including chemical routes, morphological instability of ultrathin films, and self-assembly lift-off, employed up to the date to fabricate ferroelectric nanoscale structures with lateral size in the range of few tens of nanometers. Moreover, in depth structural and electrical investigations of interfaces performed to differentiate between intrinsic and extrinsic size effects will be also presented.
Zhang, Tingting; Lei, Wanying; Liu, Ping; ...
2015-04-23
Structure–function correlations are a central theme in heterogeneous (photo)catalysis. In this study, the geometric and electronic structure of perovskite ferroelectric KNbO 3 nanowires with respective orthorhombic and monoclinic polymorphs have been systematically addressed. By virtue of aberration-corrected scanning transmission electron microscopy, we directly visualize surface photocatalytic active sites, measure local atomic displacements at an accuracy of several picometers, and quantify ferroelectric polarization combined with first-principles calculations. The photoreactivity of the as-prepared KNbO 3 nanowires is assessed toward aqueous rhodamine B degradation under UV light. A synergy between the ferroelectric polarization and electronic structure in photoreactivity enhancement is uncovered, which accountsmore » for the prominent reactivity order: orthorhombic > monoclinic. Additionally, by identifying new photocatalytic products, rhodamine B degradation pathways involving N-deethylation and conjugated structure cleavage are proposed. The findings not only provide new insights into the structure–photoreactivity relationships in perovskite ferroelectric photocatalysts, but also have broad implications in perovskite-based water splitting and photovoltaics, among others.« less
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; VanKeuls, Fred W.; Subramanyam, Guru; Mueller, Carl H.; Romanofsky, Robert R.; Rosado, Gerardo
2000-01-01
The application of thin ferroelectric films for frequency and phase agile components is the topic of interest of many research groups worldwide. Consequently, proof-of-concepts (POC) of different tunable microwave components using either (HTS, metal)/ferroelectric thin film/dielectric heterostructures or (thick, thin) film "flip-chip" technology have been reported. Either as ferroelectric thin film characterization tools or from the point of view of circuit implementation approach, both configurations have their respective advantages and limitations. However, we believe that because of the progress made so far using the heterostructure (i.e., multilayer) approach, and due to its intrinsic features such as planar configuration and monolithic integration, a study on the correlation of circuit geometry aspects and ferroelectric material properties could accelerate the insertion of this technology into working systems. In this paper, we will discuss our study performed on circuits based on microstrip lines at frequencies above 10 GHz, where the multilayer configuration offers greater ease of insertion due to circuit's size reduction. Modeled results of relevant circuit parameters such as the characteristic impedance, effective dielectric constant, and attenuation as a function of ferroelectric film's dielectric constant, tans, and thickness, will be presented for SrTiO3 and Ba(x)Sr(1-x)TiO3 ferroelectric films. A comparison between the modeled and experimental data for some of these parameters will be presented.
NASA Astrophysics Data System (ADS)
Varga, T.; Kumar, A.; Vlahos, E.; Denev, S.; Park, M.; Hong, S.; Sanehira, T.; Wang, Y.; Fennie, C. J.; Streiffer, S. K.; Ke, X.; Schiffer, P.; Gopalan, V.; Mitchell, J. F.
2009-07-01
We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below ˜120K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.
Giant Rashba spin splitting in Bi bilayer induced by a 2D ferroelectric substrate
NASA Astrophysics Data System (ADS)
Zhu, Jianbao; Xiao, Di; Zhu, Wenguang
Based on density functional theory calculations, we discover that a Bi layer when placed on the top of a recently predicted 2D ferroelectric material with spontaneous out-of-plane electric polarization can exhibit giant Rashba-type spin splitting of over 200 meV, while the whole system still remains semiconducting. In addition, the magnitude of the Rashba spin splitting can be tuned by switching the diploe orientation of the 2D ferroelectric substrate. This finding provides a promising 2D material system for spintronics.
Varga, T; Kumar, A; Vlahos, E; Denev, S; Park, M; Hong, S; Sanehira, T; Wang, Y; Fennie, C J; Streiffer, S K; Ke, X; Schiffer, P; Gopalan, V; Mitchell, J F
2009-07-24
We report the magnetic and electrical characteristics of polycrystalline FeTiO_{3} synthesized at high pressure that is isostructural with acentric LiNbO_{3} (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below approximately 120 K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.
An Intrinsically Switchable Ladder-Type Ferroelectric BST-on-Si Composite FBAR Filter.
Lee, Seungku; Mortazawi, Amir
2016-03-01
This paper presents a ladder-type bulk acoustic wave (BAW) intrinsically switchable filter based on ferroelectric thin-film bulk acoustic resonators (FBARs). The switchable filter can be turned on and off by the application of an external bias voltage due to the electrostrictive effect in thin-film ferroelectrics. In this paper, Barium Strontium Titanate (BST) is used as the ferroelectric material. A systematic design approach for switchable ladder-type ferroelectric filters is provided based on required filter specifications. A switchable filter is implemented in the form of a BST-on-Si composite structure to control the effective electromechanical coupling coefficient of FBARs. As an experimental verification, a 2.5-stage intrinsically switchable BST-on-Si composite FBAR filter is designed, fabricated, and measured. Measurement results for a typical BST-on-Si composite FBAR show a resonator mechanical quality factor (Q(m)) of 971, as well as a (Q(m)) × f of 2423 GHz. The filter presented here provides a measured insertion loss of 7.8 dB, out-of-band rejection of 26 dB, and fractional bandwidth of 0.33% at 2.5827 GHz when the filter is in the on state at a dc bias of 40 V. In its off state, the filter exhibits an isolation of 31 dB.
Domains in Ferroelectric Nanostructures
NASA Astrophysics Data System (ADS)
Gregg, Marty
2010-03-01
Ferroelectric materials have great potential in influencing the future of small scale electronics. At a basic level, this is because ferroelectric surfaces are charged, and so interact strongly with charge-carrying metals and semiconductors - the building blocks for all electronic systems. Since the electrical polarity of the ferroelectric can be reversed, surfaces can both attract and repel charges in nearby materials, and can thereby exert complete control over both charge distribution and movement. It should be no surprise, therefore, that microelectronics industries have already looked very seriously at harnessing ferroelectric materials in a variety of applications, from solid state memory chips (FeRAMs) to field effect transistors (FeFETs). In all such applications, switching the direction of the polarity of the ferroelectric is a key aspect of functional behavior. The mechanism for switching involves the field-induced nucleation and growth of domains. Domain coarsening, through domain wall propagation, eventually causes the entire ferroelectric to switch its polar direction. It is thus the existence and behavior of domains that determine the switching response, and ultimately the performance of the ferroelectric device. A major issue, associated with the integration of ferroelectrics into microelectronic devices, has been that the fundamental properties associated with ferroelectrics, when in bulk form, appear to change quite dramatically and unpredictably when at the nanoscale: new modes of behaviour, and different functional characteristics from those seen in bulk appear. For domains, in particular, the proximity of surfaces and boundaries have a dramatic effect: surface tension and depolarizing fields both serve to increase the equilibrium density of domains, such that minor changes in scale or morphology can have major ramifications for domain redistribution. Given the importance of domains in dictating the overall switching characteristics of a device, the need to fully understand how size and morphology affect domain behaviour in small scale ferroelectrics is obvious. In this talk, observations from a programme of study examining domains in meso and nano-scale BaTiO3 shapes, that have been cut directly from bulk single crystal using focused ion beam milling, will be presented. In general, the equilibrium static domain configurations that occur appear to be the result of a simultaneous desire to minimize both the macroscopic strain and depolarizing fields developed on cooling through the Curie Temperature. While such governing factors might be obvious, the specific patterns that result as a function of morphology are often non-intuitive, and a series of images of domains in nanodots, rods and wires will be presented and rationalised. In addition, the nature in which morphological factors influence domain dynamics during switching will be discussed, with particular focus on axial switching in nanowires, and the manner in which local surface perturbations (such as notches and antinotches) affect domain wall propagation. In collaboration with Alina Schilling, Li-Wu Chang, Mark McMillen, Raymond McQuaid, and Leo McGilly, Queen's University Belfast; Gustau Catalan, Universitat Autonoma de Barcelona; and James Scott, University of Cambridge.
NASA Astrophysics Data System (ADS)
Ćwikiel, K.; Matlak, M.
2006-03-01
We comment the Letter 'A novel experimental method: electrochemical detection of phase transition in ferroelectric single crystals', Chem. Phys. Lett. 384 (2004) 262 by K. Gatner and R. Jakubas. We indicate that the method used in this Letter is not 'A novel method' but the application of the method described in Refs. [M. Matlak, M. Pietruszka, E. Rówiński, Phys. Rev. B 63 (2001) 52101; M. Matlak, M. Pietruszka, E. Rówiński, Phys. Stat. Sol. A 184 (2001) 335; W. Gaweł, E. Zaleska, Z. Sztuba, Met. Sci. Eng. A 324 (2002) 255], well known to Gatner, but not cited in the commented Letter. Additionally Gatner, cooperating with us, has used our TGS samples and published the results in the commented Letter without our knowledge and permission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Lei; School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028; Wang, Yumei, E-mail: wangym@iphy.ac.cn
2015-03-16
Using the advanced spherical aberration-corrected high angle annular dark field scanning transmission electron microscope imaging techniques, we investigated atomic-scale structural features of domain walls and domain patterns in YMnO{sub 3} single crystal. Three different types of interlocked ferroelectric-antiphase domain walls and two abnormal topological four-state vortex-like domain patterns are identified. Each ferroelectric domain wall is accompanied by a translation vector, i.e., 1/6[210] or −1/6[210], demonstrating its interlocked nature. Different from the four-state vortex domain patterns caused by a partial edge dislocation, two four-state vortex-like domain configurations have been obtained at atomic level. These observed phenomena can further extend our understandingmore » of the fascinating vortex domain patterns in multiferroic hexagonal rare-earth manganites.« less
Dynamic Observation of Brain-Like Learning in a Ferroelectric Synapse Device
NASA Astrophysics Data System (ADS)
Nishitani, Yu; Kaneko, Yukihiro; Ueda, Michihito; Fujii, Eiji; Tsujimura, Ayumu
2013-04-01
A brain-like learning function was implemented in an electronic synapse device using a ferroelectric-gate field effect transistor (FeFET). The FeFET was a bottom-gate type FET with a ZnO channel and a ferroelectric Pb(Zr,Ti)O3 (PZT) gate insulator. The synaptic weight, which is represented by the channel conductance of the FeFET, is updated by applying a gate voltage through a change in the ferroelectric polarization in the PZT. A learning function based on the symmetric spike-timing dependent synaptic plasticity was implemented in the synapse device using the multilevel weight update by applying a pulse gate voltage. The dynamic weighting and learning behavior in the synapse device was observed as a change in the membrane potential in a spiking neuron circuit.
Toroidal ferroelectricity in PbTiO3 nanoparticles.
Stachiotti, M G; Sepliarsky, M
2011-04-01
We report from first-principles-based atomistic simulations that ferroelectricity can be sustained in PbTiO(3) nanoparticles of only a few lattice constants in size as a result of a toroidal ordering. We find that size-induced topological transformations lead to the stabilization of a ferroelectric bubble by the alignment of vortex cores along a closed path. These transformations, which are driven by the aspect ratio of the nanostructure, change the topology of the polarization field, producing a rich variety of polar configurations. For sufficiently flat nanostructures, a multibubble state bridges the gap between 0D nanodots and 2D ultrathin films. The thermal properties of the ferroelectric bubbles indicate that this state is suitable for the development of nanometric devices. © 2011 American Physical Society
NASA Technical Reports Server (NTRS)
Subramanyam, Guru; Vignesparamoorthy, Sivaruban; Mueller, Carl; VanKeuls, Fred; Warner, Joseph; Miranda, Felix A.
2001-01-01
The main purpose of this work is to study the effect of a selectively etched ferroelectric thin film layer on the performance of an electrically tunable filter. An X-band tunable filter was designed, fabricated and tested on a selectively etched Barium Strontium Titanate (BSTO) ferroelectric thin film layer. Tunable filters with varying lengths of BSTO thin-film in the input and output coupling gaps were modeled, as well as experimentally tested. Experimental results showed that filters with coupling gaps partially filled with BSTO maintained frequency tunability and improved the insertion loss by approx. 2dB. To the best of our knowledge, these results represent the first experimental demonstration of the advantages of selective etching in the performance of thin film ferroelectric-based tunable microwave components.
Integration of SrBi2Ta2O9 thin films for high density ferroelectric random access memory
NASA Astrophysics Data System (ADS)
Wouters, D. J.; Maes, D.; Goux, L.; Lisoni, J. G.; Paraschiv, V.; Johnson, J. A.; Schwitters, M.; Everaert, J.-L.; Boullart, W.; Schaekers, M.; Willegems, M.; Vander Meeren, H.; Haspeslagh, L.; Artoni, C.; Caputa, C.; Casella, P.; Corallo, G.; Russo, G.; Zambrano, R.; Monchoix, H.; Vecchio, G.; Van Autryve, L.
2006-09-01
Ferroelectric random access memory (FeRAM) is an attractive candidate technology for embedded nonvolatile memory, especially in applications where low power and high program speed are important. Market introduction of high-density FeRAM is, however, lagging behind standard complementary metal-oxide semiconductor (CMOS) because of the difficult integration technology. This paper discusses the major integration issues for high-density FeRAM, based on SrBi2Ta2O9 (strontium bismuth tantalate or SBT), in relation to the fabrication of our stacked cell structure. We have worked in the previous years on the development of SBT-FeRAM integration technology, based on a so-called pseudo-three-dimensional (3D) cell, with a capacitor that can be scaled from quasi two-dimensional towards a true three-dimensional capacitor where the sidewalls will importantly contribute to the signal. In the first phase of our integration development, we integrated our FeRAM cell in a 0.35μm CMOS technology. In a second phase, then, possibility of scaling of our cell is demonstrated in 0.18μm technology. The excellent electrical and reliability properties of the small integrated ferroelectric capacitors prove the feasibility of the technology, while the verification of the potential 3D effect confirms the basic scaling potential of our concept beyond that of the single-mask capacitor. The paper outlines the different material and technological challenges, and working solutions are demonstrated. While some issues are specific to our own cell, many are applicable to different stacked FeRAM cell concepts, or will become more general concerns when more developments are moving into 3D structures.
NASA Astrophysics Data System (ADS)
Naumova, I. I.; Evlanova, N. F.; Blokhin, S. A.; Lavrishchev, S. V.
1998-04-01
Using selective chemical etching, scanning electron microscope (SEM) and wave dispersive X-ray (WDX) microanalysis we showed that the ferroelectric domain walls coincide with the maxima and minima Nd-impurity modulation in a periodically poled Nd : Mg : LiNbO 3 crystal grown by the Czochralski method along the normal to the (0 1 1¯ 2) face. Asymmetric form of the Nd-modulation produces nonequal positive and negative domains for one period. Variations of instantaneous rate of growth were estimated for facet and nonfacet crystal region in the framework of Burton-Prim-Slichter theory.
Continuum analysis of the nucleus growth of reverse domains in large ferroelectric crystals
NASA Astrophysics Data System (ADS)
Neumeister, Peter; Balke, Herbert; Lupascu, Doru C.
2009-04-01
Polarization reversal in ferroelectrics arises due to domain nucleation and domain wall motion. The nucleation of reverse domains at crystal boundaries is the fundamental initiation process observed in single crystals. The classical continuum approach by Landauer determines an insurmountable energy barrier to extrinsic domain nucleation. We rediscuss the continuum approach. Predetermined surface states are found to be a misleading concept. Alternate energy contributions, for example, due to a dead layer or due to charge injection as well as reduced domain wall energy and anisotropy of domain wall energy, have to be included into a convincing picture of domain nucleation.
Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal
NASA Astrophysics Data System (ADS)
Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.
2010-01-01
Single crystals of Iminodiacetic acid (HN(CH 2COOH) 2) doped Triglycine sulphate (IDATGS) has been grown from aqueous solution at constant temperature by slow evaporation technique. The concentration of the dopant in the TGS solution was 2 mol%. The X-ray diffraction analysis indicates that there is significant change in the lattice parameters compared to pure TGS crystal. The IDATGS crystal has larger transition temperature and observed higher and uniform figure of merit over most part of the ferroelectric phase. These crystals also exhibit higher internal bias field and micro-hardness number compared to pure TGS. Therefore IDATGS may be a potential material for IR detectors.
Matrix-addressed analog ferroelectric memory
NASA Astrophysics Data System (ADS)
Lemons, R. A.; Grogan, J. K.; Thompson, J. S.
1980-08-01
A matrix addressed analog memory which uses multiple ferroelectric domain walls to address columns of words, is demonstrated. It is shown that the analog information is stored as a pattern in the metallization on the surface of the crystal, making a read-only memory. The pattern is done photolithographically in a way compatible with the simultaneous fabrication of many devices. Attention is given to the performance results, noting that the advantage of the device is that analog information can be stored with a high density in a single mask step. Finally, it is shown that potential applications are in systems which require repetitive output from a limited vocabulary of spoken words.
Dielectric and structural properties of ferroelectric betaine arsenate films
NASA Astrophysics Data System (ADS)
Balashova, E. V.; Krichevtsov, B. B.; Zaitseva, N. V.; Yurko, E. I.; Svinarev, F. B.
2014-12-01
Ferroelectric films of betaine arsenate and partially deuterated betaine arsenate have been grown by evaporation on LiNbO3, α-Al2O3, and NdGaO3 substrates with a preliminarily deposited structure of interdigitated electrodes, as well as on the Al/glass substrate. This paper presents the results of the examination of the block structure of the films in a polarizing microscope, the X-ray diffraction analysis of their crystal structure, and the investigation of the dielectric properties in a measuring field oriented both parallel and perpendicular to the plane of the film. The transition of the films to the ferroelectric state at T = T c is accompanied by anomalies of the capacitance of the structure, an increase in the dielectric loss, and the appearance of dielectric hysteresis loops. The growth of the films from a solution of betaine arsenate in a heavy water leads to an increase in the ferroelectric transition temperature from T c = 119 K in the films without deuterium to T c = 149 K, which corresponds to the degree of deuteration of approximately 60-70%. The dielectric and structural properties of the films are compared with those of the betaine arsenate single crystals and the previously studied films of betaine phosphite and glycine phosphite.
Voltage Drop in a Ferroelectric Single Layer Capacitor by Retarded Domain Nucleation.
Kim, Yu Jin; Park, Hyeon Woo; Hyun, Seung Dam; Kim, Han Joon; Kim, Keum Do; Lee, Young Hwan; Moon, Taehwan; Lee, Yong Bin; Park, Min Hyuk; Hwang, Cheol Seong
2017-12-13
Ferroelectric (FE) capacitor is a critical electric component in microelectronic devices. Among many of its intriguing properties, the recent finding of voltage drop (V-drop) across the FE capacitor while the positive charges flow in is especially eye-catching. This finding was claimed to be direct evidence that the FE capacitor is in negative capacitance (NC) state, which must be useful for (infinitely) high capacitance and ultralow voltage operation of field-effect transistors. Nonetheless, the NC state corresponds to the maximum energy state of the FE material, so it has been widely accepted in the community that the material alleviates that state by forming ferroelectric domains. This work reports a similar V-drop effect from the 150 nm thick epitaxial BaTiO 3 ferroelectric thin film, but the interpretation was completely disparate; the V-drop can be precisely simulated by the reverse domain nucleation and propagation of which charge effect cannot be fully compensated for by the supplied charge from the external charge source. The disappearance of the V-drop effect was also observed by repeated FE switching only up to 10 cycles, which can hardly be explained by the involvement of the NC effect. The retained reverse domain nuclei even after the subsequent poling can explain such behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Y.; Cao, S. X.; Ren, W., E-mail: renwei@shu.edu.cn
2015-08-17
Multiferroic materials which simultaneously exhibit electric polarization and magnetism have attracted more and more attention due to their novel physical properties and promising applications. Here, we report the magnetic and ferroelectric properties of single phase perovskite manganites Dy{sub 0.7}Sr{sub 0.3}MnO{sub 3} and Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3} by varying temperature and magnetic field. Our results reveal that there exist spin reversal and strong antiferromagnetic pinning effects in both compounds, as well as negative magnetization in Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3}. Moreover, upon Sr-doping, spontaneous electric polarizations have been observed and the maximum polarization value of Dy{sub 0.7}Sr{sub 0.3}MnO{sub 3} is about 1000 μC/m{supmore » 2} while Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3} reaches to 2000 μC/m{sup 2}. The onset of the ferroelectric transition temperature is enhanced to be around 60 K. Our results indicate that the antiferromagnetic coupling is relevant to the ferroelectric properties of these fascinating multiferroic systems.« less
Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E
2017-08-17
Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.
Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan
2016-02-20
Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data.
Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations.
Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki
2016-01-27
Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.
Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation
NASA Astrophysics Data System (ADS)
Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.
2016-06-01
The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg-Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.
Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations
NASA Astrophysics Data System (ADS)
Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki
2016-01-01
Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.
Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator
NASA Astrophysics Data System (ADS)
Spanier, Jonathan E.; Fridkin, Vladimir M.; Rappe, Andrew M.; Akbashev, Andrew R.; Polemi, Alessia; Qi, Yubo; Gu, Zongquan; Young, Steve M.; Hawley, Christopher J.; Imbrenda, Dominic; Xiao, Geoffrey; Bennett-Jackson, Andrew L.; Johnson, Craig L.
2016-09-01
Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less than a tenth of the solar spectrum, the power conversion efficiency of the BPVE device under 1 sun illumination exceeds the Shockley-Queisser limit for a material of this bandgap. We present data for devices that feature a single-tip electrode contact and an array with 24 tips (total planar area of 1 × 1 μm2) capable of generating a current density of 17 mA cm-2 under illumination of AM1.5 G. In summary, the BPVE at the nanoscale provides an exciting new route for obtaining high-efficiency photovoltaic solar energy conversion.
Lead salt room-temperature MWIR FPA
NASA Astrophysics Data System (ADS)
Murphy, Paul F.; Jost, Steven R.; Barrett, John L.; Reese, Dan; Winn, Michael L.
2001-10-01
The development of low-cost uncooled thermal LWIR FPAs is resulting in the emergence of a new generation of infrared sensors for applications where affordability is the prerequisite for volume production. Both ferroelectric detector arrays and silicon-based microbolometers are finding numerous applications from gun sights to automotive FLIRs. There would be significant interest in a similar uncooled offering in the MWIR, but to date, thermal detectors have lacked sufficient sensitivity. The existing uncooled MWIR photon detector technology, based on polycrystalline lead salts, has been relegated to single-element detectors and relatively small linear arrays due to the high dark current and the stigma of being a 50-year-old technology.
Unusual Ferroelectricity in Two-Dimensional Perovskite Oxide Thin Films.
Lu, Jinlian; Luo, Wei; Feng, Junsheng; Xiang, Hongjun
2018-01-10
Two-dimensional (2D) ferroelectricity have attracted much attention due to their applications in novel miniaturized devices such as nonvolatile memories, field effect transistors, and sensors. Since most of the commercial ferroelectric (FE) devices are based on ABO 3 perovskite oxides, it is important to investigate the properties of 2D ferroelectricity in perovskite oxide thin films. Here, based on density functional theory (DFT) calculations, we find that there exist three kinds of in-plane FE states that originate from different microscopic mechanisms: (i) a proper FE state with the polarization along [110] due to the second-order Jahn-Teller effect related to the B ion with empty d-orbitals; (ii) a robust FE state with the polarization along [100] induced by the surface effect; (iii) a hybrid improper FE state with the polarization along [110] that is induced by the trilinear coupling between two rotational modes and the A-site displacement. Interestingly, the ferroelectricity in the latter two cases becomes stronger along with decreasing the thin film thickness, in contrast to the usual behavior. Moreover, the latter two FE states are compatible with magnetism since their stability does not depend on the occupation of the d-orbitals of the B-ion. These two novel 2D FE mechanisms provide new avenues to design 2D multiferroics, as we demonstrated in SrVO and CaFeO thin film cases. Our work not only reveals new physical mechanisms of 2D ferroelectricity in perovskite oxide thin films but also provides a new route to design the high-performance 2D FE and multiferroics.
NASA Astrophysics Data System (ADS)
Reece, Timothy James
Ferroelectric field effect transistors (FeFETs) have attracted much attention recently because of their ability to combine high speed, low power consumption, and fast nondestructive readout with the potential for high density nonvolatile memory. The polarization of the ferroelectric is used to switch the channel at the silicon surface between states of high and low conductance. Among the ferroelectric thin films used in FET devices; the ferroelectric copolymer of Polyvinylidene fluoride, PVDF (C2H2F 2), with trifluoroethylene, TrFE (C2HF3), has distinct advantages, including low dielectric constant, low processing temperature, low cost and compatibility with organic semiconductors. By employing the Langmuir-Blodgett technique, films as thin as 1.8 nm can be deposited, reducing the operating voltage. An MFIS structure consisting of aluminum, 170 nm P(VDF-TrFE), 100 nm silicon oxide and n-type silicon exhibited low leakage current (˜1x10 -8 A/cm2), a large memory window (4.2 V) and operated at 35 Volts. The operating voltage was lowered through use of high k insulators like cerium oxide. A sample consisting of 25 nm P(VDF-TrFE), 30 nm cerium oxide and p-type silicon exhibited a 1.9 V window with 7 Volt gate amplitude. The leakage current in this case was considerably higher (1x10 -6 A/cm2). The characterization, modeling, and fabrication of metal-ferroelectricinsulator semiconductor (MFIS) structures based on these films are discussed.
Constitutive relations of ferroelectric ceramics
NASA Astrophysics Data System (ADS)
Su, Yu
The objective of this thesis is to obtain a better understanding on the fundamental constitutive behavior of ferroelectric ceramics based on the physics of phase transition, micromechanics of heterogeneous materials, and principles of irreversible thermodynamics. Within this framework, a self-consistent model is developed to investigate the electromechanical responses of ferroelectric polycrystals under temperature change and electromechanical loading. Cooling of a paraelectric crystal below its curie temperature Tc would result in spontaneous polarization, whereas electromechanical loading on a poled crystal could lead to domain switch. Domain growth and reorientation inside ferroelectric crystals are studied in light of these phase transition and domain switch. In this process, the change of the effective elastic, dielectric and piezoelectric constants during the evolution of microstructures are examined. In addition, hysteresis loops for the electric displacement and other related phenomena are computed under cyclic electric load. On top of all methods implemented in this work, the kinetic equation derived from the irreversible thermodynamics is the key to study the domain evolution in ferroelectric crystals. The kinetic relation not only governs the growth of new domain in a ferroelectric crystal, but it also determines the onset of phase transition. This characteristic is used to study the effect of hydrostatic pressure on the shift of Curie temperature of a ferroelectric crystal. Based on the derived expressions, it is observed that the deriving force can increase or decrease upon applied hydrostatic mechanical loading, depending on the change of electromechanical moduli, eigenstrain and electro-polarization. Several typical cases are computed and it is found that the change of the electromechanical moduli during phase transformation plays the key role in the shift of Curie temperature. Since ferroelectric ceramics are in a polycrystal form, a self-consistent model is used to examine the issues involved. In this model, each grain is represented by a spherical inclusion embedded in an infinitely extended piezoelectric matrix, and the inclusion further possesses an eigenstrain and eigen polarization. Secant relations between the polycrystal-matrix and the embedded inclusion are established by extending Hill's [1] incremental relations. An iterative computational program is developed for this self-consistent model.
NASA Astrophysics Data System (ADS)
Kuribayashi, T.; Motoyama, T.; Arashida, Y.; Katayama, I.; Takeda, J.
2018-05-01
We demonstrate that single-shot pump-probe imaging spectroscopy with an echelon mirror enables us to disclose the ferroelectric phonon-polariton dynamics across a wide temperature range from 10 K to 375 K while avoiding the photorefractive effects that appear prominently at low temperatures. The E-mode phonon-polaritons corresponding to the two transverse optical modes, TO1 and TO3, up to ˜7 THz were induced in LiNbO3 through an impulsive stimulated Raman scattering process. Subsequently, using single-shot pump-probe imaging spectroscopy over a minimal cumulative time, we successfully visualized the phonon-polariton dynamics in time-wavelength space even at low temperatures. We found that the phase-matching condition significantly affected the observed temperature-dependent phonon-polariton frequency shift. The anharmonicity of the TO1 and TO3 modes was then evaluated based on an anharmonic model involving higher-order interactions with acoustic phonons while eliminating the influence of the frequency shift due to the phase-matching condition. The observed wavenumber-dependent damping rate was analyzed by considering the bilinear coupling of the TO1 or TO3 modes with the thermally activated relaxation mode. We found that the phonon-polariton with a higher frequency and wavenumber had a higher damping rate at high temperatures because of its frequent interaction with the thermally activated relaxation mode and acoustic phonons. The TO3 mode displayed greater bilinear coupling than the TO1 mode, which may also have contributed to the observed high damping rate. Thus, using our unique single-shot spectroscopy technique, we could reveal the overall anharmonic characteristics of the E-mode phonon-polaritons arising from both the acoustic phonons and the relaxation mode.
NASA Astrophysics Data System (ADS)
Zhang, Zhang; Chen, Jianwei; Xu, Jialin; Li, Xiaobing; Luo, Haosu
2017-12-01
The temperature and electric-field induced phase transition behavior and dielectric, piezoelectric, and ferroelectric properties of [001]-oriented 0.23Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.3PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. Dielectric performance analysis and temperature-dependent Raman spectra show three apparent ferroelectric phase transition temperatures around 120 °C(TR-M),145 °C(TM-T), and 170 °C(TT-C), respectively. In addition, the temperature dependence of the relative Raman intensities of Lorentzian peaks indicates the poled PIMNT-Mn single crystals exhibit rhombohedral(R) → monoclinic(M) → tetragonal(T) → cubic(C) phase transition path. The electrical properties of the PIMNT-Mn single crystals such as the longitudinal electrostrictive coefficient (Q), the converse piezoelectric constant (d33), and the maximum strain value (Smax%) have changed abnormally around the phase transition temperatures (TR-M and TM-T).
Strain tuning of electronic structure in Bi 4Ti 3O 12-LaCoO 3 epitaxial thin films
Choi, Woo Seok; Lee, Ho Nyung
2015-05-08
In this study, we investigated the crystal and electronic structures of ferroelectric Bi 4Ti 3O 12 single-crystalline thin films site-specifically substituted with LaCoO 3 (LCO). The epitaxial films were grown by pulsed laser epitaxy on NdGaO 3 and SrTiO 3 substrates to vary the degree of strain. With increasing the LCO substitution, we observed a systematic increase in the c-axis lattice constant of the Aurivillius phase related with the modification of pseudo-orthorhombic unit cells. These compositional and structural changes resulted in a systematic decrease in the band gap, i.e., the optical transition energy between the oxygen 2p and transition-metal 3dmore » states, based on a spectroscopic ellipsometry study. In particular, the Co 3d state seems to largely overlap with the Ti t 2g state, decreasing the band gap. Interestingly, the applied tensile strain facilitates the band-gap narrowing, demonstrating that epitaxial strain is a useful tool to tune the electronic structure of ferroelectric transition-metal oxides.« less
NMR evidence of charge fluctuations in multiferroic CuBr2
NASA Astrophysics Data System (ADS)
Wang, Rui-Qi; Zheng, Jia-Cheng; Chen, Tao; Wang, Peng-Shuai; Zhang, Jin-Shan; Cui, Yi; Wang, Chao; Li, Yuan; Xu, Sheng; Yuan, Feng; Yu, Wei-Qiang
2018-03-01
We report combined magnetic susceptibility, dielectric constant, nuclear quadruple resonance (NQR), and zero-field nuclear magnetic resonance (NMR) measurements on single crystals of multiferroics CuBr2. High quality of the sample is demonstrated by the sharp magnetic and magnetic-driven ferroelectric transition at {T}{{N}}={T}{{C}}≈ 74 K. The zero-field 79Br and 81Br NMR are resolved below T N. The spin-lattice relaxation rates reveal charge fluctuations when cooled below 60 K. Evidences of an increase of NMR linewidth, a reduction of dielectric constant, and an increase of magnetic susceptibility are also seen at low temperatures. These data suggest an emergent instability which competes with the spiral magnetic ordering and the ferroelectricity. Candidate mechanisms are discussed based on the quasi-one-dimensional nature of the magnetic system. Project supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant No. 11374364), the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University, China (Grant No. 14XNLF08).
NASA Astrophysics Data System (ADS)
Li, Guannan; Huang, Xiaokun; Hu, Jingsan; Zhang, Weiyi
2017-04-01
Based on the first-principles total-energy calculation, we have studied the shear-strain gradient effect on the polarization reversal of ferroelectric BaTiO3 thin films. By calculating the energies of double-domain supercells for different electric polarization, shear-strain gradients, and domain-wall displacement, we extracted, in addition to the domain-wall energy, the polarization energy, elastic energy, and flexoelectric coefficient of a single domain. The constructed Landau-Devonshire phenomenological theory yields a critical shear-strain gradient of 9.091 ×107/m (or a curvature radius (R ) of 110 Å) for reversing the 180∘ domain at room temperature, which is on the same order of the experimentally estimated value of 3.333 ×107/m (R =300 Å ). In contrast to the commonly used linear response theory, the flexoelectric coefficient derived from fitting the total energy to a Landau-Devonshire energy functional does not depend on the specific pseudopotential. Thus, our method offers an alternative numerical approach to study the flexoelectric effect.
NASA Astrophysics Data System (ADS)
Sasaki, T.; Hafuri, M.; Suda, T.; Nakano, M.; Funada, K.; Ohta, M.; Terazono, T.; Le, K. V.; Naka, Y.
2017-08-01
Effect of ferroelectricity on the photorefractive effect of ferroelectric liquid crystal blends was investigated. The photorefractive effect of ferroelectric liquid crystal blends strongly depend on the ferroelectricity of the blend. We have prepared a series of ferroelectric liquid crystal blends that contains several concentrations of a chiral compound while keeping a constant concentration of a photoconductive moiety. The photorefractive properties of the ferroelectric liquid crystal blends were discussed with relations to the ferroelectric properties of the blends.
Anomalous domain inversion in LiNbO3 single crystals investigated by scanning probe microscopy
NASA Astrophysics Data System (ADS)
Lilienblum, M.; Soergel, E.
2011-09-01
Ferroelectric domains were written in lithium niobate (LiNbO3) single crystals by applying voltage pulses to the tip of a scanning force microscope. The generated domains are subsequently imaged by piezoresponse force microscopy. As it has been previously observed not only full domains but also doughnut-shaped ones arise from tip-based domain formation. In this contribution, we present our experiments which were carried out with 10-20 μm thin LiNbO3 single crystals. We show that by choosing appropriate writing parameters, domains of predetermined shape (full or doughnut) can be reliably generated. In addition to the duration and the amplitude of the voltage pulse the moment of the retraction of the tip from the sample surface was found to be a crucial parameter for reproducible domain formation.
NASA Astrophysics Data System (ADS)
Guha, Suchismita; Laudari, Amrit
2017-08-01
The ferroelectric nature of polymer ferroelectrics such as poly(vinylidene fluoride) (PVDF) has been known for over 45 years. However, its role in interfacial transport in organic/polymeric field-effect transistors (FETs) is not that well understood. Dielectrics based on PVDF and its copolymers are a perfect test-bed for conducting transport studies where a systematic tuning of the dielectric constant with temperature may be achieved. The charge transport mechanism in an organic semiconductor often occurs at the intersection of band-like coherent motion and incoherent hopping through localized states. By choosing two small molecule organic semiconductors - pentacene and 6,13 bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) - along with a copolymer of PVDF (PVDF-TrFe) as the dielectric layer, the transistor characteristics are monitored as a function of temperature. A negative coefficient of carrier mobility is observed in TIPS-pentacene upwards of 200 K with the ferroelectric dielectric. In contrast, TIPS-pentacene FETs show an activated transport with non-ferroelectric dielectrics. Pentacene FETs, on the other hand, show a weak temperature dependence of the charge carrier mobility in the ferroelectric phase of PVDF-TrFE, which is attributed to polarization fluctuation driven transport resulting from a coupling of the charge carriers to the surface phonons of the dielectric layer. Further, we show that there is a strong correlation between the nature of traps in the organic semiconductor and interfacial transport in organic FETs, especially in the presence of a ferroelectric dielectric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y., E-mail: yxc238@psu.edu; Randall, C. A.; Chen, L. Q.
2014-05-05
A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO{sub 3}/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO{sub 3} containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from −1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount tomore » 10{sup 2}. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.« less
Ferroelectric materials for applications in sensor protection
NASA Astrophysics Data System (ADS)
Bhalla, Amar S.; Cross, L. Eric
1995-07-01
The focus of this program has been upon producing and characterizing new functional materials whose properties can be fine tuned to provide eye sensor protection against laser threats and to suit a range of optoelectronic device applications. Material systems that maximize orientational anisotropy (for use in scattering mode systems) and systems that minimize orientational anisotropy (for use in high field modulators and field induced photorefractive applications) were both approached. Relaxor ferroelectric tungsten bronze single crystals (Sr,Ba)Nb2O6 and (Pb,Ba)Nb2O6 solid solution families and relaxor ferroelectric perovskite (1-x)Pb(Mg(1/3)Nb(2/3))O(3-x)PbTiO3 (PMN-PT) families, were studied extensively. The unique capabilities of a laser heated pedestal growth (LHPG) system were utilized for growth of new materials in single crystal fiber form that produces crystals of long interaction length for optical wave in the crystal and high crystal perfection with maximized properties along chosen directions. Hot uniaxial pressing, hot forging, or appropriate solid state reaction processing methods were used to produce transparent polycrystalline ceramics to provide low scattering, high anisotropy ceramics or high scattering, high anisotropy ceramics. This final report summarizes significant results produced from this program through combination of experimental and crystal chemistry approaches in this field, delineates conclusions drawn from the research, and provides recommendations for future research.
NASA Astrophysics Data System (ADS)
Welke, M.; Huth, P.; Dabelow, K.; Gorgoi, M.; Schindler, K.-M.; Chassé, A.; Denecke, R.
2018-05-01
In BaTiO3 the phase transition from tetragonal to cubic is connected with the disappearance of the ferroelectric polarization. In photoelectron spectroscopy huge transient shifts in the binding energies of all core-level photoemission lines have been observed while heating and cooling through the Curie temperature. Excitation energies from 2 keV to 6 keV have been used to show this to be a bulk effect and not a surface effect alone. These observations are discussed in terms of charging, which results from the disappearance of the ferroelectric polarization. This mechanism has previously been proposed as the origin of electron emission in ferroelectric materials. Besides the jump-like shifts, additional permanent shifts in binding energies have been observed for the tetragonal and the cubic phase. These experimental shifts have been related to theoretical ones from ab initio calculations. In addition to BaTiO3 single crystals, systems with CoFe2O4 and NiFe2O4 overlayers on BaTiO3 have been investigated. The low conductivity of these layers sets them apart from metallic overlayers like Fe or Co, where the shifts are suppressed. This difference adds further support for charging as the origin of the effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali
We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thinmore » films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.« less
Promising ferroelectricity in 2D group IV tellurides: a first-principles study
NASA Astrophysics Data System (ADS)
Wan, Wenhui; Liu, Chang; Xiao, Wende; Yao, Yugui
2017-09-01
Based on the first-principles calculations, we investigated the ferroelectric properties of two-dimensional (2D) Group-IV tellurides XTe (X = Si, Ge, and Sn), with a focus on GeTe. 2D Group-IV tellurides energetically prefer an orthorhombic phase with a hinge-like structure and an in-plane spontaneous polarization. The intrinsic Curie temperature Tc of monolayer GeTe is as high as 570 K and can be raised quickly by applying a tensile strain. An out-of-plane electric field can effectively decrease the coercive field for the reversal of polarization, extending its potential for regulating the polarization switching kinetics. Moreover, for bilayer GeTe, the ferroelectric phase is still the ground state. Combined with these advantages, 2D GeTe is a promising candidate material for practical integrated ferroelectric applications.
Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials
Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki
2015-01-01
Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research. PMID:26424484
Atomic-level simulation of ferroelectricity in perovskite solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepliarsky, M.; Instituto de Fisica Rosario, CONICET-UNR, Rosario,; Phillpot, S. R.
2000-06-26
Building on the insights gained from electronic-structure calculations and from experience obtained with an earlier atomic-level method, we developed an atomic-level simulation approach based on the traditional Buckingham potential with shell model which correctly reproduces the ferroelectric phase behavior and dielectric and piezoelectric properties of KNbO{sub 3}. This approach now enables the simulation of solid solutions and defected systems; we illustrate this capability by elucidating the ferroelectric properties of a KTa{sub 0.5}Nb{sub 0.5}O{sub 3} random solid solution. (c) 2000 American Institute of Physics.
Molecular ferroelectrics: where electronics meet biology.
Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen
2013-12-28
In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.
Molecular ferroelectrics: where electronics meet biology
Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen
2013-01-01
In the last several years, we have witnessed significant advances in molecular ferroelectrics, with ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by overview on the fundamentals of ferroelectricity. Latest development in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also noted. PMID:24018952
A Model for Ferroelectric Phase Shifters
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Qureshi, A. Haq
2000-01-01
Novel microwave phase shifters consisting of coupled microstrip lines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.
NASA Technical Reports Server (NTRS)
Subramanyam, Guru; VanKeuls, Fred W.; Miranda, Felix A.; Canedy, Chadwick L.; Aggarwal, Sanjeev; Venkatesan, Thirumalai; Ramesh, Ramamoorthy
2000-01-01
The correlation of electric field and critical design parameters such as the insertion loss, frequency ability return loss, and bandwidth of conductor/ferroelectric/dielectric microstrip tunable K-band microwave filters is discussed in this work. This work is based primarily on barium strontium titanate (BSTO) ferroelectric thin film based tunable microstrip filters for room temperature applications. Two new parameters which we believe will simplify the evaluation of ferroelectric thin films for tunable microwave filters, are defined. The first of these, called the sensitivity parameter, is defined as the incremental change in center frequency with incremental change in maximum applied electric field (EPEAK) in the filter. The other, the loss parameter, is defined as the incremental or decremental change in insertion loss of the filter with incremental change in maximum applied electric field. At room temperature, the Au/BSTO/LAO microstrip filters exhibited a sensitivity parameter value between 15 and 5 MHz/cm/kV. The loss parameter varied for different bias configurations used for electrically tuning the filter. The loss parameter varied from 0.05 to 0.01 dB/cm/kV at room temperature.
Wu, Zhenyue; Ji, Chengmin; Li, Lina; Kong, Jintao; Sun, Zhihua; Zhao, Sangen; Wang, Sasa; Hong, Maochun; Luo, Junhua
2018-05-11
Cesium-lead halide perovskites (e.g. CsPbBr 3 ) have gained attention because of their rich physical properties, but their bulk ferroelectricity remains unexplored. Herein, by alloying flexible organic cations into the cubic CsPbBr 3 , we design the first cesium-based two-dimensional (2D) perovskite ferroelectric material with both inorganic alkali metal and organic cations, (C 4 H 9 NH 3 ) 2 CsPb 2 Br 7 (1). Strikingly, 1 shows a high Curie temperature (T c =412 K) above that of BaTiO 3 (ca. 393 K) and notable spontaneous polarization (ca. 4.2 μC cm -2 ), triggered by not only the ordering of organic cations but also atomic displacement of inorganic Cs + ions. To our knowledge, such a 2D bilayered Cs + -based metal-halide perovskite ferroelectric material with inorganic and organic cations is unprecedented. 1 also shows photoelectric semiconducting behavior with large "on/off" ratios of photoconductivity (>10 3 ). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Effects of Architecture and Process on the Hardness of Programmable Technologies
NASA Technical Reports Server (NTRS)
Katz, Richard; Wang, J. J.; Reed, R.; Kleyner, I.; DOrdine, M.; McCollum, J,; Cronquist, B.; Howard, J.
1999-01-01
Architecture and process, combined, significantly affect the hardness of programmable technologies. The effects of high energy ions, ferroelectric memory architectures, and shallow trench isolation are investigated. A detailed single event latchup (SEL) study has been performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auciello, O.; Dey, S.; Paz de Araujo, C.
2011-05-01
The science and technology of ferroelectric thin films and their applications have attracted many researchers and experienced tremendous progress in the past 20 years. The recent worldwide increase in commercial applications of ferroelectric devices such as smart cards based on nonvolatile ferroelectric random access memories is a symbol of both the maturity and the acceptance of the technology. The 21st International Symposium on Integrated Ferroelectrics (ISIF 2009), held on September 22 to October 2, 2009 in Colorado Springs, CO, provided a forum for the academic and national laboratories research community and industry to present and share their new findings, achievements,more » and opinions on integrated ferroelectrics and their applications. The International Symposium on Integrated Ferroelectrics hosted the ISIF 2009. This was the first year where the ISIF held the conference in its new format under the name of International Symposium on Integrated Functionalities. The General Chairs of the ISIF in consultation with the Advisory Board and the ISIF community decided to revise the focus of the conference in order to broaden the scope to the science and technology of multifunctional materials and devices. This decision was taken in view that a new paradigm in materials, materials integration, and devices is emerging with a view to the development of a new generation of micro- and nanoscale multifunctional devices. The program included three plenary presentations on diverse topics such as 'The Role of Nonvolatile Memory in Ubiquitous Computing,' 'Ferroelectrics and High Density Memory Technology,' 'Nanoscale Ferroelectrics and Interfaces: Size Effects,' four tutorial lectures on diverse topics, such as 'Magnetic Memory Applications,' 'Ferroelectrics and Ferroelectric Devices,' 'Challenges for High-K Dielectrics on High Mobility Channels,' 'Solar Cell Materials,' one poster session, and eight oral sessions. Thanks to the great efforts made by the ISIF organization committee and the session chairs, the conference successfully achieved its objectives and the work presented reflected very well the most recent advances of integrated ferroelectrics and their applications, as well as advances in other areas related to the new theme of Integrated Functionalities. Many aspects of ferroelectric, piezoelectric, high-K dielectric, magnetic, and phase change materials, including the science and technology of these materials in thin film form, integration with other thin film materials (metals or oxide electrodes), and fabrication of micro- and nanostructures based on these heterostructure layers, and device architecture and physics, were addressed from the experimental point of view. Work on theory and computer simulations of the mentioned materials and devices were discussed also with a view to the promising applications to multifunctional devices. In addition, the ISIF 2009 featured discussions of alternative nonvolatile memory concepts and materials, such as phase change memories, research on multiferroics and magnetoelectric materials, ferroelectric photovoltaics, and new directions on the science of perovskites such as biomolecular/polarizable interfaces, and bio-ferroelectric and other oxide interfaces. Following the standard submission and peer review process of Journal of Applied Physics, the selected papers presented in ISIF 2009 in Colorado Springs are published in this special issue. We believe that the papers in this special issue represent the forefront contributions to ISIF 2009 in the various areas of fundamental and applied science of integrated ferroelectrics and functionalities and their applications. We would like to take this opportunity to thank the following organizations and companies for their support and sponsorship for ISIF 2009, namely: Aixact Systems GMBH, Radiant Technologies, Symetrix Corporation, and Taylor and Francis Publishers. We would also like to thank the conference and session chairs, advisory and organizing committee members for their hard work that resulted in a very successful ISIF 2009, now in its new future-looking modality of Integrated Functionalities.« less
Downscaling ferroelectric field effect transistors by using ferroelectric Si-doped HfO2
NASA Astrophysics Data System (ADS)
Martin, Dominik; Yurchuk, Ekaterina; Müller, Stefan; Müller, Johannes; Paul, Jan; Sundquist, Jonas; Slesazeck, Stefan; Schlösser, Till; van Bentum, Ralf; Trentzsch, Martin; Schröder, Uwe; Mikolajick, Thomas
2013-10-01
Throughout the 22 nm technology node HfO2 is established as a reliable gate dielectric in contemporary complementary metal oxide semiconductor (CMOS) technology. The working principle of ferroelectric field effect transistors FeFET has also been demonstrated for some time for dielectric materials like Pb[ZrxTi1-x]O3 and SrBi2Ta2O9. However, integrating these into contemporary downscaled CMOS technology nodes is not trivial due to the necessity of an extremely thick gate stack. Recent developments have shown HfO2 to have ferroelectric properties, given the proper doping. Moreover, these doped HfO2 thin films only require layer thicknesses similar to the ones already in use in CMOS technology. This work will show how the incorporation of Si induces ferroelectricity in HfO2 based capacitor structures and finally demonstrate non-volatile storage in nFeFETs down to a gate length of 100 nm. A memory window of 0.41 V can be retained after 20,000 switching cycles. Retention can be extrapolated to 10 years.
NASA Astrophysics Data System (ADS)
Song, Zhiwei; Li, Gang; Xiong, Ying; Cheng, Chuanpin; Zhang, Wanli; Tang, Minghua; Li, Zheng; He, Jiangheng
2018-05-01
A memory device with a Pt/SrBi2Ta2O9(SBT)/Pt(111) structure was shown to have excellent combined ferroelectricity and resistive switching properties, leading to higher multistate storage memory capacity in contrast to ferroelectric memory devices. In this device, SBT polycrystalline thin films with significant (115) orientation were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates using CVD (chemical vapor deposition) method. Measurement results of the electric properties exhibit reproducible and reliable ferroelectricity switching behavior and bipolar resistive switching effects (BRS) without an electroforming process. The ON/OFF ratio of the resistive switching was found to be about 103. Switching mechanisms for the low resistance state (LRS) and high resistance state (HRS) currents are likely attributed to the Ohmic and space charge-limited current (SCLC) behavior, respectively. Moreover, the ferroelectricity and resistive switching effects were found to be mutually independent, and the four logic states were obtained by controlling the periodic sweeping voltage. This work holds great promise for nonvolatile multistate memory devices with high capacity and low cost.
Ferroelectric control of a Mott insulator
Yamada, Hiroyuki; Marinova, Maya; Altuntas, Philippe; Crassous, Arnaud; Bégon-Lours, Laura; Fusil, Stéphane; Jacquet, Eric; Garcia, Vincent; Bouzehouane, Karim; Gloter, Alexandre; Villegas, Javier E.; Barthélémy, Agnès; Bibes, Manuel
2013-01-01
The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its “supertetragonal” phase. Upon polarization reversal of the BiFeO3 gate, the CaMnO3 channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO3 thicknesses and explain them by the electrostatic doping of the CaMnO3 layer and the presence of a fixed dipole at the CaMnO3/BiFeO3 interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices. PMID:24089020
Multiscale Modeling and Process Optimization for Engineered Microstructural Complexity
2007-10-26
R. C. Rogan, E. Üstündag, M. R. Daymond and V. Knoblauch Ferroelastic Behavior of PZT -Based Ferroelectric Ceramics , Materials Science Forum, 404...Bhattacharya, Materials Science Seminar, University of Southern California, 2003. 42. R.C. Rogan, Texture and Strain Analysis of PZT by In-Situ...Annual Meeting of the American Ceramic Society, St. Louis, MO; May 2002. 44. R. Rogan, Ferroelastic Behavior of PZT -Based Ferroelectric Ceramics , 6th
Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank
2015-01-01
We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials. PMID:26202946
NASA Astrophysics Data System (ADS)
Xu, Jing; Jiang, Shu-Ye; Zhang, Min; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei
2018-03-01
A negative capacitance field-effect transistor (NCFET) built with hafnium-based oxide is one of the most promising candidates for low power-density devices due to the extremely steep subthreshold swing (SS) and high on-state current induced by incorporating the ferroelectric material in the gate stack. Here, we demonstrated a two-dimensional (2D) back-gate NCFET with the integration of ferroelectric HfZrOx in the gate stack and few-layer MoS2 as the channel. Instead of using the conventional TiN capping metal to form ferroelectricity in HfZrOx, the NCFET was fabricated on a thickness-optimized Al2O3/indium tin oxide (ITO)/HfZrOx/ITO/SiO2/Si stack, in which the two ITO layers sandwiching the HfZrOx film acted as the control back gate and ferroelectric gate, respectively. The thickness of each layer in the stack was engineered for distinguishable optical identification of the exfoliated 2D flakes on the surface. The NCFET exhibited small off-state current and steep switching behavior with minimum SS as low as 47 mV/dec. Such a steep-slope transistor is compatible with the standard CMOS fabrication process and is very attractive for 2D logic and sensor applications and future energy-efficient nanoelectronic devices with scaling power supply.
Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N; Hudait, Mantu K; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank
2015-07-23
We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.
NASA Astrophysics Data System (ADS)
Kumar, Manasvi; Sharifi Dehsari, Hamed; Anwar, Saleem; Asadi, Kamal
2018-03-01
Organic bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers have emerged as promising candidates for non-volatile information storage for low-cost solution processable electronics. One of the bottlenecks impeding upscaling is stability and reliable operation of the array in air. Here, we present a memory array fabricated with an air-stable amine-based semiconducting polymer. Memory diode fabrication and full electrical characterizations were carried out in atmospheric conditions (23 °C and 45% relative humidity). The memory diodes showed on/off ratios greater than 100 and further exhibited robust and stable performance upon continuous write-read-erase-read cycles. Moreover, we demonstrate a 4-bit memory array that is free from cross-talk with a shelf-life of several months. Demonstration of the stability and reliable air operation further strengthens the feasibility of the resistance switching in ferroelectric memory diodes for low-cost applications.
Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan
2016-01-01
Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data. PMID:26907290
Investigations on Sm- and Nb-SUBSTITUTED PZT Ceramics
NASA Astrophysics Data System (ADS)
Prakash, Chandra; Juneja, J. K.
In the present paper, we report the effect of Samarium substitution and Niobium doping on the properties of a PZT(52:48). The properties studied are: structural, dielectric and ferroelectric. The samples with chemical formula Pb0.99Sm0.01Zr0.52Ti0.48O3 were prepared by solid-state dry ceramic method. Small amount (0.5 wt%) of Nb2O5 was also added. X-ray diffraction (XRD) analysis showed formation of a single phase with tetragonal structure. Dielectric properties were studied as a function of temperature and frequency. Transition temperature, Tc, was determined from dielectric constant versus temperature plot. The material shows well-defined ferroelectric (PE) hysteresis loop.
NASA Astrophysics Data System (ADS)
Es-Sakhi, Azzedin D.
Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in sub-nanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor's Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the concept of negative capacitance. The new field effect transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field Effect Transistor (SOF-FET). This proposal is a promising methodology for future ultra-low-power applications, because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers subthreshold swing significantly lower than 60mV/decade and reduced threshold voltage to form a conducting channel. The SOF-FET can also solve the issue of junction leakage (due to the presence of unipolar junction between the top plate of the negative capacitance and the diffused areas that form the transistor source and drain). In this device the charge hungry ferroelectric film already limits the leakage.
Fabrication of PVDF-TrFE based bilayered PbTiO3/PVDF-TrFE films capacitor
NASA Astrophysics Data System (ADS)
Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Annuar, I.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.
2016-07-01
Development of high performance capacitor is reaching towards new generation where the ferroelectric materials take places as the active dielectric layer. The motivation of this study is to produce high capacitance device with long life cycle. This was configured by preparing bilayered films where lead titanate as an active dielectric layer and stacked with the top dielectric layer, poly(vinyledenefluoride-trifluoroethylene). Both of them are being referred that have one in common which is ferroelectric behavior. Therefore the combination of ceramic and polymer ferroelectric material could perform optimum dielectric characteristic for capacitor applications. The fabrication was done by simple sol-gel spin coating method that being varied at spinning speed property for polymer layers, whereas maintaining the ceramic layer. The characterization of PVDF-TrFE/PbTiO3 was performed according to metal-insulator-metal stacked capacitor measurement which includes structural, dielectric, and ferroelectric measurement.
WFL: Microwave Applications of Thin Ferroelectric Films
NASA Technical Reports Server (NTRS)
Romanofsky, Robert
2013-01-01
We have developed a family of tunable microwave circuits, operating from X- through Ka-band, based on laser ablated BaxSr1-xTiO films on lanthanum aluminate and magnesium oxide substrates. Circuits include voltage controlled oscillators, filters, phase shifters and antennas. A review of the basic theory of operation of these devices will be presented along with measured performance. Emphasis has been on low-loss phase shifters to enable a new phased array architecture. The critical role of phase shifter loss and transient response in reflectarray antennas will be discussed. The Ferroelectric Reflectarray Critical Components Space Experiment was launched on the penultimate Space Shuttle, STS-134, in May of 2011. It included a bank of ferroelectric phase shifters with two different stoichiometries as well as ancillary electronics. The experiment package and status will be reported. In addition, unusual results of a Van der Pauw measurement involving a ferroelectric film grown on buffered high resisitivity silicon will be discussed.
A Theoretical Model for Thin Film Ferroelectric Coupled Microstripline Phase Shifters
NASA Technical Reports Server (NTRS)
Romanofsky, R. R.; Quereshi, A. H.
2000-01-01
Novel microwave phase shifters consisting of coupled microstriplines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.
NASA Astrophysics Data System (ADS)
Zhu, Q. X.; Wang, W.; Zhao, X. Q.; Li, X. M.; Wang, Y.; Luo, H. S.; Chan, H. L. W.; Zheng, R. K.
2012-05-01
Tensiled La0.5Sr0.5CoO3 (LSCO) thin films were epitaxially grown on piezoelectric 0.67Pb (Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) single-crystal substrates. Due to the epitaxial nature of the interface, the lattice strain induced by ferroelectric poling or the converse piezoelectric effect in the PMN-PT substrate is effectively transferred to the LSCO film and thus reduces the tensile strain of the film, giving rise to a decrease in the resistivity of the LSCO film. We discuss these strain effects within the framework of the spin state transition of Co3+ ions and modification of the electronic bandwidth that is relevant to the induced strain. By simultaneously measuring the strain and the resistivity, quantitative relationship between the resistivity and the strain was established for the LSCO film. Both theoretical calculation and experimental results demonstrate that the ferroelectric field effect at room temperature in the LSCO/PMN-PT field-effect transistor is minor and could be neglected. Nevertheless, with decreasing temperature, the ferroelectric field effect competes with the strain effect and plays a more and more important role in influencing the electronic transport properties of the LSCO film, which we interpreted as due to the localization of charge carriers at low temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khokhar, Anita, E-mail: mails4anita@gmail.com, E-mail: goyalphy@gmail.com; Goyal, Parveen K., E-mail: mails4anita@gmail.com, E-mail: goyalphy@gmail.com; Sreenivas, K.
2016-05-23
The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi{sub 4+δ}Ti{sub 4}O{sub 15} (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (T{sub m}) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (P{sub r} ~ 12.5 µC/cm{sup 2}), low coercive fields (E{sub c} ~ 26 kV/cm) aremore » measured and a high piezoelectric coefficient (d{sub 33} ~ 29 pC/N) is achieved in poled BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.« less
Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi
Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarizationmore » rotations in relaxor-based ferroelectric PMN-xPT {(1 x)[Pb(Mg 1/3Nb 2/3)O 3] xPbTiO 3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.« less
Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations
Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi; Parshall, Daniel E.; Lynn, Jeffrey W.; Christianson, Andrew D.; Stonaha, Paul J.; Specht, Eliot D.; Budai, John D.
2016-01-01
Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 − x)[Pb(Mg1/3Nb2/3)O3] – xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening. PMID:27652338
Zhao, Qiang; Wang, Hanlin; Ni, Zhenjie; Liu, Jie; Zhen, Yonggang; Zhang, Xiaotao; Jiang, Lang; Li, Rongjin; Dong, Huanli; Hu, Wenping
2017-09-01
Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low-cost and easy-fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half-selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm 2 V -1 s -1 (average) for 2,6-diphenylanthracene (DPA) and electron mobility of 0.124 cm 2 V -1 s -1 (average) for N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN 2 ) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric-based pixelated memory module fabrication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations
Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi; ...
2016-09-01
Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarizationmore » rotations in relaxor-based ferroelectric PMN-xPT {(1 x)[Pb(Mg 1/3Nb 2/3)O 3] xPbTiO 3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.« less
Tailoring Electronic Properties in Semiconducting Perovskite Materials through Octahedral Control
NASA Astrophysics Data System (ADS)
Choquette, Amber K.
Perovskite oxides, which take the chemical formula ABO 3, are a very versatile and interesting materials family, exhibiting properties that include ferroelectricity, ferromagnetism, mixed ionic/electronic conductivity, metal-insulator behavior and multiferroicity. Key to these functionalities is the network of BO6 corner-connected octahedra, which are known to distort and rotate, directly altering electronic and ferroic properties. By controlling the BO6 octahedral distortions and rotations through cationic substitutions, the use of strain engineering, or through the formation of superlattice structures, the functional properties of perovskites can be tuned. Motivating the use of structure-driven design in oxide heterostructures is the prediction of hybrid improper ferroelectricity in A'BO3/ABO3 superlattices. Two key design rules to realizing hybrid improper ferroelectricity are the growth of high quality superlattice structures with odd periodicities of the A / A' layers, and the control of the octahedral rotation pattern. My work explores the rotational response in perovskite oxides to strain and interface effects in thin films of RFeO3 ( R = La, Eu). I demonstrate a synchrotron x-ray diffraction technique to identify the rotation pattern that is present in the films. I then establish substrate imprinting as a key tool for controlling the rotation patterns in heterostructures, providing a means to realize the necessary structural variants of the predicted hybrid improper ferroelectricity in superlattices. In addition, by pairing measured diffraction data with a structure factor calculation, I demonstrate how one can extract both A-site and oxygen atomic positions in single crystal perovskite oxide films. Finally, I show results from (LaFeO 3)n/(EuFeO3)n superlattices (n = 1-5), synthesized to test the motivating predictions of hybrid improper ferroelectricity in oxide superlattices.
NASA Astrophysics Data System (ADS)
H, Dhaouadi; R, Zgueb; O, Riahi; F, Trabelsi; T, Othman
2016-05-01
In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the (E,T) phase diagram of the studied product can be obtained. In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.
Thermostable ferroelectric capacitors based on graded films of barium strontium titanate
NASA Astrophysics Data System (ADS)
Tumarkin, A. V.; Razumov, S. V.; Volpyas, V. A.; Gagarin, A. G.; Odinets, A. A.; Zlygostov, M. V.; Sapego, E. N.
2017-10-01
The influence of the pressure of working gas during the ion-plasma sputtering on properties of deposited ferroelectric barium strontium titanate coatings has been experimentally studied. Variations in the of pressure of the working gas during deposition allows the component composition of the deposited layer to be changed, which leads to the diffusion of the phase transition and the improvement of temperature stability of properties of ferroelectric film. The gradation of layers has an impact on the temperature of the dielectric permittivity maximum, the shape of the dependence of the capacity on temperature, and the capacitance-voltage characteristics of the capacitor structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Qi; Zhu, Fang-Yuan; Cheng, Li-Qian
Crystallographic structure of sol-gel-processed lead-free (K,Na)NbO{sub 3} (KNN) epitaxial films on [100]-cut SrTiO{sub 3} single-crystalline substrates was investigated for a deeper understanding of its piezoelectric response. Lattice parameter measurement by high-resolution X-ray diffraction and transmission electron microscopy revealed that the orthorhombic KNN films on SrTiO{sub 3} (100) surfaces are [010] oriented (b-axis-oriented) rather than commonly identified c-axis orientation. Based on the crystallographic orientation and corresponding ferroelectric domain structure investigated by piezoresponse force microscopy, the superior piezoelectric property along b-axis of epitaxial KNN films than other orientations can be explained.
Zhang, Guangzu; Zhang, Xiaoshan; Yang, Tiannan; Li, Qi; Chen, Long-Qing; Jiang, Shenglin; Wang, Qing
2015-07-28
The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.
Jalarvo, N.; Pramanick, A.; Do, C.; ...
2015-08-28
Here, we present a comparative study of proton dynamics in unpoled non-ferroelectric polymer polyvinylidene fluoride (PVDF) and in its trifluoroethylene containing ferroelectric copolymer (with 70/30 molar proportion), using quasi-elastic neutron scattering. The neutron data reveal the existence of two distinct types of molecular motions in the temperature range investigated. Moreover, the slower motion, which is characterized in details here, is ascribed to protons jump diffusion along the polymeric carbon chains, while the faster motion could be attributed to localized rotational motion of methylene groups. At temperatures below the Curie point (T-c similar to 385 K) of the composite polymer, themore » slower diffusive mode experiences longer relaxation times in the ferroelectric blend than in the bare PVDF, although the net corresponding diffusion coefficient remains comparatively the same in both polymers with characteristic activation energy of E-A approximate to 27-33 kJ/mol. This arises because of a temperature dependent jump length r(0), which we observe to be effectively longer in the copolymer, possibly due to the formation of ordered ferroelectric domains below Tc. Above Tc, there is no appreciable difference in r(0) between the two systems. Our observation directly relates the known dependence of Tc on molar ratio to changes in r(0), providing fundamental insight into the ferroelectric properties of PVDF-based copolymers.« less
NASA Astrophysics Data System (ADS)
Yu, H. F.; Zeng, H. R.; Ma, X. D.; Chu, R. Q.; Li, G. R.; Luo, H. S.; Yin, Q. R.
2005-01-01
The mechanical and electrical response of Pb (Mg1/3Nb2/3)- O3-PbTiO3 single crystals to micro-indentation are investigated using the newly developed low frequency scanning probe acoustic microscopy which is based on the atomic force microscope. There are three ways to release the stress produced by indentation. Plastic deformation emerged directly underneath the indentor and along the indentation diagonals. In addition, indentation-induced micro-cracks and new non-180° domain structures which are perpendicular to each other are also observed in the indented surface. Based on the experimental results, the relationship between the cracks and the domain patterns was discussed.
Optimal configuration of microstructure in ferroelectric materials by stochastic optimization
NASA Astrophysics Data System (ADS)
Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.
2010-07-01
An optimization procedure determining the ideal configuration at the microstructural level of ferroelectric (FE) materials is applied to maximize piezoelectricity. Piezoelectricity in ceramic FEs differs significantly from that of single crystals because of the presence of crystallites (grains) possessing crystallographic axes aligned imperfectly. The piezoelectric properties of a polycrystalline (ceramic) FE is inextricably related to the grain orientation distribution (texture). The set of combination of variables, known as solution space, which dictates the texture of a ceramic is unlimited and hence the choice of the optimal solution which maximizes the piezoelectricity is complicated. Thus, a stochastic global optimization combined with homogenization is employed for the identification of the optimal granular configuration of the FE ceramic microstructure with optimum piezoelectric properties. The macroscopic equilibrium piezoelectric properties of polycrystalline FE is calculated using mathematical homogenization at each iteration step. The configuration of grains characterized by its orientations at each iteration is generated using a randomly selected set of orientation distribution parameters. The optimization procedure applied to the single crystalline phase compares well with the experimental data. Apparent enhancement of piezoelectric coefficient d33 is observed in an optimally oriented BaTiO3 single crystal. Based on the good agreement of results with the published data in single crystals, we proceed to apply the methodology in polycrystals. A configuration of crystallites, simultaneously constraining the orientation distribution of the c-axis (polar axis) while incorporating ab-plane randomness, which would multiply the overall piezoelectricity in ceramic BaTiO3 is also identified. The orientation distribution of the c-axes is found to be a narrow Gaussian distribution centered around 45°. The piezoelectric coefficient in such a ceramic is found to be nearly three times as that of the single crystal. Our optimization model provide designs for materials with enhanced piezoelectric performance, which would stimulate further studies involving materials possessing higher spontaneous polarization.
Smart Materials for Electromagnetic and Optical Applications
NASA Astrophysics Data System (ADS)
Ramesh, Prashanth
The research presented in this dissertation focuses on the development of solid-state materials that have the ability to sense, act, think and communicate. Two broad classes of materials, namely ferroelectrics and wideband gap semiconductors were investigated for this purpose. Ferroelectrics possess coupled electromechanical behavior which makes them sensitive to mechanical strains and fluctuations in ambient temperature. Use of ferroelectrics in antenna structures, especially those subject to mechanical and thermal loads, requires knowledge of the phenomenological relationship between the ferroelectric properties of interest (especially dielectric permittivity) and the external physical variables, viz. electric field(s), mechanical strains and temperature. To this end, a phenomenological model of ferroelectric materials based on the Devonshire thermodynamic theory was developed. This model was then used to obtain a relationship expressing the dependence of the dielectric permittivity on the mechanical strain, applied electric field and ambient temperature. The relationship is shown to compare well with published experimental data and other related models in literature. A model relating ferroelectric loss tangent to the applied electric field and temperature is also discussed. Subsequently, relationships expressing the dependence of antenna operating frequency and radiation efficiency on those external physical quantities are described. These relationships demonstrate the tunability of load-bearing antenna structures that integrate ferroelectrics when they are subjected to mechanical and thermal loads. In order to address the inability of ferroelectrics to integrate microelectronic devices, a feature needed in a material capable of sensing, acting, thinking and communicating, the material Gallium Nitride (GaN) is pursued next. There is an increasing utilization of GaN in the area of microelectronics due to the advantages it offers over other semiconductors. This dissertation demonstrates GaN as a candidate material well suited for novel microelectromechanical systems. The potential of GaN for MEMS is demonstrated via the design, analysis, fabrication, testing and characterization of an optical microswitch device actuated by piezoelectric and electrostrictive means. The piezoelectric and electrostrictive properties of GaN and its differences from common piezoelectrics are discussed before elaborating on the device configuration used to implement the microswitch device. Next, the development of two recent fabrication technologies, Photoelectrochemical etch and Bias-enabled Dark Electrochemical etch, used to realize the 3-dimensional device structure in GaN are described in detail. Finally, an ultra-low-cost, laser-based, non-contact approach to test and characterize the microswitch device is described, followed by the device testing results.
Visible to short wavelength infrared In2Se3-nanoflake photodetector gated by a ferroelectric polymer
NASA Astrophysics Data System (ADS)
Wu, Guangjian; Wang, Xudong; Wang, Peng; Huang, Hai; Chen, Yan; Sun, Shuo; Shen, Hong; Lin, Tie; Wang, Jianlu; Zhang, Shangtao; Bian, Lifeng; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao
2016-09-01
Photodetectors based on two-dimensional (2D) transition-metal dichalcogenides have been studied extensively in recent years. However, the detective spectral ranges, dark current and response time are still unsatisfactory, even under high gate and source-drain bias. In this work, the photodetectors of In2Se3 have been fabricated on a ferroelectric field effect transistor structure. Based on this structure, high performance photodetectors have been achieved with a broad photoresponse spectrum (visible to 1550 nm) and quick response (200 μs). Most importantly, with the intrinsic huge electric field derived from the polarization of ferroelectric polymer (P(VDF-TrFE)) gating, a low dark current of the photodetector can be achieved without additional gate bias. These studies present a crucial step for further practical applications for 2D semiconductors.
Completely explosive ultracompact high-voltage nanosecond pulse-generating system
NASA Astrophysics Data System (ADS)
Shkuratov, Sergey I.; Talantsev, Evgueni F.; Baird, Jason; Rose, Millard F.; Shotts, Zachary; Altgilbers, Larry L.; Stults, Allen H.
2006-04-01
A conventional pulsed power technology has been combined with an explosive pulsed power technology to produce an autonomous high-voltage power supply. The power supply contained an explosive-driven high-voltage primary power source and a power-conditioning stage. The ultracompact explosive-driven primary power source was based on the physical effect of shock-wave depolarization of high-energy Pb (Zr52Ti48)O3 ferroelectric material. The volume of the energy-carrying ferroelectric elements in the shock-wave ferroelectric generators (SWFEGs) varied from 1.2 to 2.6cm3. The power-conditioning stage was based on the spiral vector inversion generator (VIG). The SWFEG-VIG system demonstrated successful operation and good performance. The amplitude of the output voltage pulse of the SWFEG-VIG system exceeded 90kV, with a rise time of 5.2ns.
Non-volatile memory based on the ferroelectric photovoltaic effect
Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling
2013-01-01
The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique. PMID:23756366
Domain and phase change contributions to response in high strain piezoelectric actuators
NASA Astrophysics Data System (ADS)
Cross, L. Eric
2000-09-01
Current solid state actuators are briefly compared to traditional actuator technologies to highlight the major need for enhanced strain capability. For the ferroelectric piezoelectric polycrystal ceramics, the balance of evidence suggests a large entrinsic contribution to the field induced strain from ferroelectric-ferroelastic domain wall motion. Here-to-fore the intrinsic single domain contribution has been derived indirectly from phenomenological analysis. Now, new evidence of a stable monoclinic phase at compositions very close to the MPB suggest that the previous assessment will need to be revised. Actuator behavior in the new lead zinc niobate-lead titanate (PZN:PT) single crystal shows most unusual anisotropic behavior. For 111 oriented field poled crystals in the rhombohedral phase normal low induced strain is observed. For 001 field poled crystals however massive (0.6%) quasi-linear anhysteritic strain can be induced. Since the 001 oriented field in the rhombohedral phase can not drive ferroelastic domain walls it is suggested that the strain must be intrinsic. The suggestion is that it is due to an induced monoclinic phase in which the Ps vector tilts under increasing field up to more than 20° from 111, before the vector switches to the tetragonal 001 direction. Such a polarization rotation mechanism has also been suggested by Fu and Cohen. Calculations of induced single domain strain using measured electrostriction constants agree well with observed behavior. Recent measurements by Park et al. and Wada et al. on single crystal BaTiO3 show strongly enhanced piezoelectricity at temperatures near the ferroelectric phase transitions. Of particular relevance is the inverse experiment forcing the tetragonal over to the rhombohedral phase with high 111 oriented field. From this result it is suggested that both cubic and dodecahedral mirrors participate in the reorientation through orthorhombic to the rhombohedral state giving rise to different value of the induced d33 at different field levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somaily, H.; Kolesnik, S.; Mais, J.
Here, we report a comprehensive structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr 1-xBa xMnO 3 perovskites. Employing a specially designed multi-step reduction-oxidation synthesis technique, we describe the successful synthesis of previously unknown Sr 1-xBa xMnO 3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under non-equilibrium conditions. Understanding the multiferroic interplay with structure in Sr 1-xBa xMnO 3 is of great importance as it opens the door wide to the development of newer materials from the parent (AA’)(BB’)more » O 3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below T C and T N. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P4mm space group which gives rise to a large electric dipole moment P s, in the z-direction, of 18.4 and 29.5 µC/cm 2 for x = 0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below T N. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions which is necessary for stabilizing the ferroelectric phase.« less
Anomalous permittivity in fine-grain barium titanate
NASA Astrophysics Data System (ADS)
Ostrander, Steven Paul
Fine-grain barium titanate capacitors exhibit anomalously large permittivity. It is often observed that these materials will double or quadruple the room temperature permittivity of a coarse-grain counterpart. However, aside from a general consensus on this permittivity enhancement, the properties of the fine-grain material are poorly understood. This thesis examines the effect of grain size on dielectric properties of a self-consistent set of high density undoped barium titanate capacitors. This set included samples with grain sizes ranging from submicron to ˜20 microns, and with densities generally above 95% of the theoretical. A single batch of well characterized powder was milled, dry-pressed then isostatically-pressed. Compacts were fast-fired, but sintering temperature alone was used to control the grain size. With this approach, the extrinsic influences are minimized within the set of samples, but more importantly, they are normalized between samples. That is, with a single batch of powder and with identical green processing, uniform impurity concentration is expected. The fine-grain capacitors exhibited a room temperature permittivity of ˜5500 and dielectric losses of ˜2%. The Curie-temperature decreased by {˜}5sp°C from that of the coarse-grain material, and the two ferroelectric-ferroelectric phase transition temperatures increased by {˜}10sp°C. The grain size induced permittivity enhancement was only active in the tetragonal and orthorhombic phases. Strong dielectric anomalies were observed in samples with grain size as small as {˜}0.4\\ mum. It is suggested that the strong first-order character observed in the present data is related to control of microstructure and stoichiometry. Grain size effects on conductivity losses, ferroelectric losses, ferroelectric dispersion, Maxwell-Wagner dispersion, and dielectric aging of permittivity and loss were observed. For the fine-grain material, these observations suggest the suppression of domain wall motion below the Curie transition, and the suppression of conductivity above the Curie transition.
Somaily, H.; Kolesnik, S.; Mais, J.; ...
2018-05-17
Here, we report a comprehensive structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr 1-xBa xMnO 3 perovskites. Employing a specially designed multi-step reduction-oxidation synthesis technique, we describe the successful synthesis of previously unknown Sr 1-xBa xMnO 3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under non-equilibrium conditions. Understanding the multiferroic interplay with structure in Sr 1-xBa xMnO 3 is of great importance as it opens the door wide to the development of newer materials from the parent (AA’)(BB’)more » O 3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below T C and T N. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P4mm space group which gives rise to a large electric dipole moment P s, in the z-direction, of 18.4 and 29.5 µC/cm 2 for x = 0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below T N. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions which is necessary for stabilizing the ferroelectric phase.« less
Modeling and Implementation of HfO2-based Ferroelectric Tunnel Junctions
NASA Astrophysics Data System (ADS)
Pringle, Spencer Allen
HfO2-based ferroelectric tunnel junctions (FTJs) represent a unique opportunity as both a next-generation digital non-volatile memory and as synapse devices in braininspired logic systems, owing to their higher reliability compared to filamentary resistive random-access memory (ReRAM) and higher speed and lower power consumption compared to competing devices, including phase-change memory (PCM) and state-of-the-art FTJ. Ferroelectrics are often easier to deposit and have simpler material structure than films for magnetic tunnel junctions (MTJs). Ferroelectric HfO2 also enables complementary metal-oxide-semiconductor (CMOS) compatibility, since lead zirconate titanate (PZT) and BaTiO3-based FTJs often are not. No other groups have yet demonstrated a HfO2-based FTJ (to best of the author's knowledge) or applied it to a suitable system. For such devices to be useful, system designers require models based on both theoretical physical analysis and experimental results of fabricated devices in order to confidently design control systems. Both the CMOS circuitry and FTJs must then be designed in layout and fabricated on the same die. This work includes modeling of proposed device structures using a custom python script, which calculates theoretical potential barrier heights as a function of material properties and corresponding current densities (ranging from 8x103 to 3x10-2 A/cm 2 with RHRS/RLRS ranging from 5x105 to 6, depending on ferroelectric thickness). These equations were then combined with polynomial fits of experimental timing data and implemented in a Verilog-A behavioral analog model in Cadence Virtuoso. The author proposes tristate CMOS control systems, and circuits, for implementation of FTJ devices as digital memory and presents simulated performance. Finally, a process flow for fabrication of FTJ devices with CMOS is presented. This work has therefore enabled the fabrication of FTJ devices at RIT and the continued investigation of them as applied to any appropriate systems.
Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites
Zhai, Kun; Wu, Yan; Shen, Shipeng; ...
2017-09-12
Multiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba 2-x Sr x Mg 2Fe 12O 22 family with magnetization, ferroelectricity andmore » neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.« less
Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Kun; Wu, Yan; Shen, Shipeng
Multiferroics materials, which exhibit coupled magnetic and ferroelectric properties, have attracted tremendous research interest because of their potential in constructing next-generation multifunctional devices. The application of single-phase multiferroics is currently limited by their usually small magnetoelectric effects. Here, we report the realization of giant magnetoelectric effects in a Y-type hexaferrite Ba 0.4Sr 1.6Mg 2Fe 12O 22 single crystal, which exhibits record-breaking direct and converse magnetoelectric coefficients and a large electric-field-reversed magnetization. We have uncovered the origin of the giant magnetoelectric effects by a systematic study in the Ba 2-x Sr x Mg 2Fe 12O 22 family with magnetization, ferroelectricity andmore » neutron diffraction measurements. With the transverse spin cone symmetry restricted to be two-fold, the one-step sharp magnetization reversal is realized and giant magnetoelectric coefficients are achieved. Our study reveals that tuning magnetic symmetry is an effective route to enhance the magnetoelectric effects also in multiferroic hexaferrites.« less
Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals
Alikin, Denis O.; Ievlev, Anton; Turigin, Anton P.; ...
2015-05-05
Currently ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to investigation of the domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate allows us to study the forward growthmore » with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. Lastly, to explain experimental results we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.« less
Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering.
Xie, Lin; Li, Linze; Heikes, Colin A; Zhang, Yi; Hong, Zijian; Gao, Peng; Nelson, Christopher T; Xue, Fei; Kioupakis, Emmanouil; Chen, Longqing; Schlom, Darrel G; Wang, Peng; Pan, Xiaoqing
2017-08-01
Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO 3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO 3 film is abnormally increased up to ≈90-100 µC cm -2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi 2 O 3 - x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tiered deposition of sub-5 nm ferroelectric Hf1-xZrxO2 films on metal and semiconductor substrates
NASA Astrophysics Data System (ADS)
Walters, Glen; Shekhawat, Aniruddh; Rudawski, Nicholas G.; Moghaddam, Saeed; Nishida, Toshikazu
2018-05-01
Using a tiered deposition approach, Hf1-xZrxO2 (HZO) films with varying atomic layer deposition (ALD) cycles from 36 to 52 cycles were grown on Ge, Ir, and TiN substrates in single runs and annealed at 500 °C. 40 ALD cycle films grown on Ir exhibit a switched polarization (Psw) of 13 μC/cm2, while those grown on Ge and TiN did not exhibit measurable Psw values until 44 and 52 ALD cycles, respectively. High-resolution cross-sectional transmission electron microscopy confirmed these results; the ferroelectric films are crystalline with defined lattice fringes, while non-ferroelectric films remain amorphous. 52 ALD cycle 1:1 HZO grown on Ge had the highest Psw of all the films fabricated at 39 μC/cm2, while the 1:1 HZO grown on TiN displayed continuous wake-up and no fatigue up to 1010 cycles with the Psw increasing from <1 μC/cm2 to 21 μC/cm2.
NASA Astrophysics Data System (ADS)
Sahoo, Kishor Kumar; Singh Rajput, Shailendra; Gupta, Rajeev; Roy, Amritendu; Garg, Ashish
2018-02-01
We report the ferroelectric properties of pulsed laser deposited thin films of Nd and Ru co-doped bismuth titanate (Bi4-x Nd x Ti3-y Ru y O12). Structural analysis of the as-grown films, using x-ray diffraction, showed a single-phase formation with a polycrystalline structure. In comparison to un-doped and Nd-doped films, ferroelectric measurements on co-doped films demonstrated improved properties with remnant polarization (P r) ~ 12.5 µC cm-2 and an enhanced electrical fatigue life for Bi3.25Nd0.75Ti2.8Ru0.20O12 films. The enhancement in remanent polarization is attributed to microscopic changes, such as local structural distortion and the modification of the dynamical/effective charges on constituent ions due to chemical strain upon simultaneous Bi- (A) and Ti- (B) site doping with Nd and Ru, which has a far stronger effect than only A-site doping with Nd. Piezoresponse force microscopy further confirmed the polar structure and domain switching at nanoscale. The films exhibit small yet finite magnetization at 10 K resulting from strain.
Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics
NASA Astrophysics Data System (ADS)
Tanwar, Amit; Sreenivas, K.; Gupta, Vinay
2009-04-01
High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.
Pyroelectric property of SrTiO3/Si ferroelectric-semiconductor heterojunctions near room temperature
NASA Astrophysics Data System (ADS)
Bai, Gang; Wu, Dongmei; Xie, Qiyun; Guo, Yanyan; Li, Wei; Deng, Licheng; Liu, Zhiguo
2015-12-01
A nonlinear thermodynamic formalism is developed to calculate the pyroelectric property of epitaxial single domain SrTiO3/Si heterojunctions by taking into account the thermal expansion misfit strain at different temperatures. It has been demonstrated that the crucial role was played by the contribution associated with the structure order parameter arising from the rotations of oxygen octahedral on pyroelectricity. A dramatic decrease in the pyroelectric coefficient due to the strong coupling between the polarization and the structure order parameter is found at ferroelectric TF1-TF2 phase transition. At the same time, the thermal expansion mismatch between film and substrate is also found to provide an additional weak decrease of pyroelectricity. The analytic relationship of the out-of-plane pyroelectric coefficient and dielectric constant of ferroelectric phases by considering the thermal expansion of thin films and substrates has been determined for the first time. Our research provides another avenue for the investigation of the pyroelectric effects of ferroic thin films, especially, such as antiferroelectric and multiferroic materials having two or more order parameters.
Electric Field Controlled Magnetism in BiFeO3/Ferromagnet Films
NASA Astrophysics Data System (ADS)
Barry, M.; Lee, K.; Chu, Y. H.; Yang, P. L.; Martin, L. W.; Jenkins, C. A.; Ramesh, R.; Scholl, A.; Doran, A.
2007-03-01
BiFeO3 is the only single phase room temperature multiferroic that is currently known. Not only does it have applications as a lead-free replacement for ferroelectric memory cells and piezoelectric sensors, but its interactions with other materials are now attracting a great deal of attention. Its multiferroic nature has potential in the field of exchange bias, where it could allow electric-field control of the ferromagnetic (FM) magnetization. In order to understand this coupling, an understanding of the magnetization in BiFeO3 is necessary. X-ray linear and circular dichroism images were obtained using a high spatial resolution photoelectron emission microscope (PEEM), allowing elemental specificity and surface sensitivity. A piezoelectric force microscope (PFM) was used to map the ferroelectric state in micron-sized regions of the films, which were then probed using crystallographic measurements and temperature dependent PEEM measurements. Temperature dependent structural measurements allow decoupling of the two order parameters, ferroelectric and magnetic, contributing to the photoemission signal. Careful analysis of linear and circular dichroism images allows determination of magnetic directions in BiFeO3 and FM layers.
Hollandites as a new class of multiferroics
Liu, Shuangyi; Akbashev, Andrew R.; Yang, Xiaohao; Liu, Xiaohua; Li, Wanlu; Zhao, Lukas; Li, Xue; Couzis, Alexander; Han, Myung-Geun; Zhu, Yimei; Krusin-Elbaum, Lia; Li, Jackie; Huang, Limin; Billinge, Simon J. L.; Spanier, Jonathan E.; O'Brien, Stephen
2014-01-01
Discovery of new complex oxides that exhibit both magnetic and ferroelectric properties is of great interest for the design of functional magnetoelectrics, in which research is driven by the technologically exciting prospect of controlling charges by magnetic fields and spins by applied voltages, for sensors, 4-state logic, and spintronics. Motivated by the notion of a tool-kit for complex oxide design, we developed a chemical synthesis strategy for single-phase multifunctional lattices. Here, we introduce a new class of multiferroic hollandite Ba-Mn-Ti oxides not apparent in nature. BaMn3Ti4O14.25, designated BMT-134, possesses the signature channel-like hollandite structure, contains Mn4+ and Mn3+ in a 1:1 ratio, exhibits an antiferromagnetic phase transition (TN ~ 120 K) with a weak ferromagnetic ordering at lower temperatures, ferroelectricity, a giant dielectric constant at low frequency and a stable intrinsic dielectric constant of ~200 (1-100 MHz). With evidence of correlated antiferromagnetic and ferroelectric order, the findings point to an unexplored family of structures belonging to the hollandite supergroup with multifunctional properties, and high potential for developing new magnetoelectric materials. PMID:25160888
Interfacial coupling in multiferroic BiFeO3 and ferromagnetic La2/3Sr1/3MnO3 thin films
NASA Astrophysics Data System (ADS)
Dominguez, C.; E Ordoñez, J.; E Gomez, M.
2017-12-01
Antiferromagnetic/Ferromagnetic coupling mechanics have been studying by growing successfully BiFeO3/La2/3Sr1/3MnO3 bilayers on SrTiO3 single crystals by using rf and dc sputtering technique at pure oxygen pressures. We have investigated the magnetic behaviour of this samples, field cooling loops evidence interfacial coupling effect when antiferromagnetic ferroelectric BiFeO3 is placed in contact with ferromagnetic La2/3Sr1/3MnO3 indicate by the shift of the magnetization loop to negative values of the applied magnetic field. Our samples exhibited an exchange bias of 76Oe at 5K after field cooling the sample under 5000Oe. Temperature dependence of the exchange bias field showed exponential decay. The BFO/LSMO bilayer exhibits excellent ferroelectric behaviour (Ps=65μC/cm2 at 4V and 100Hz). Coexistence of ferroelectric and ferromagnetic properties in the BFO/LSMO bilayer make it a promising candidate system for applications where the magnetoelectric behaviour is required.
Recent Progress in Understanding the Shock Response of Ferroelectric Ceramics*
NASA Astrophysics Data System (ADS)
Setchell, Robert E.
2001-06-01
Ferroelectric ceramics exhibit a permanent remanent polarization, and the use of shock depoling of these materials to achieve pulsed sources of electrical power was proposed in the late 1950s. During the following twenty years, extensive studies were conducted to examine the shock response of ferroelectric ceramics primarily based on lead zirconate titanate (PZT). Under limited conditions, relatively simple analytical models were found to adequately describe the observed electrical behavior. In general, however, the studies indicated a complex behavior involving finite-rate depoling kinetics with stress and field dependencies. Dielectric relaxation and shock-induced conductivity were also suggested. Unfortunately, few experimental studies were undertaken over the next twenty years, and the development of more comprehensive models was inhibited. In recent years, a strong interest in advancing numerical simulation capabilities has motivated new experimental studies and corresponding model development. More than seventy gas gun experiments have examined several ferroelectric ceramics, with most experiments on lead zirconate titanate having a Zr:Ti ratio of 95:5 and modified with 2ferroelectric but is near an antiferroelectric phase boundary, and depoling results from a shock-driven phase transition. Experiments have examined unpoled, normally poled, and axially poled PZT 95/5 over broad ranges of shock pressure and peak electric field. The extensive base of new data provides quantitative insights into the stress and field dependencies of depoling kinetics and dielectric properties, and is being actively utilized to develop and refine material response models used in numerical simulations of pulsed power devices.
Domain alignment within ferroelectric/dielectric PbTiO 3 /SrTiO 3 superlattice nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joonkyu; Mangeri, John; Zhang, Qingteng
The ferroelectric domain pattern within lithographically defined PbTiO 3/SrTiO 3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau–Ginzburg–Devonshire model show that the preferred direction of the alignment resultsmore » from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Thus, our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.« less
NASA Astrophysics Data System (ADS)
Hagiwara, Manabu; Ehara, Yoshitaka; Novak, Nikola; Khansur, Neamul H.; Ayrikyan, Azatuhi; Webber, Kyle G.; Fujihara, Shinobu
2017-07-01
The temperature evolution of polar order in an A -site complex perovskite (B i1 /2K1 /2)Ti O3 (BKT) has been investigated by measurements of dielectric permittivity, depolarization current, and stress-stain curves at elevated temperatures. Upon cooling from high temperatures, BKT first enters a relaxor state and then spontaneously transforms into a ferroelectric state. The analyses of temperature and frequency dependence of permittivity have revealed that polar nanoregions of the relaxor phase appear at temperatures higher than 560°C, and also that their freezing at 296°C triggers the spontaneous relaxor-ferroelectric transition. We discuss the key factors determining the development of long-range polar order in A -site complex perovskites through a comparison with the relaxor (B i1 /2N a1 /2)Ti O3 . We also show that application of biasing electric fields and compressive stresses to BKT favors its ferroelectric phase, resulting in a significant shift of the relaxor-ferroelectric transition temperature towards higher temperatures. Based on the obtained results, electric field-temperature and stress-temperature phase diagrams are firstly determined for BKT.
NASA Astrophysics Data System (ADS)
Chen, Y. Q.; Xu, X. B.; Lei, Z. F.; Y Liao, X.; Wang, X.; Zeng, C.; En, Y. F.; Huang, Y.
2015-01-01
A metal-ferroelectric (SrBi2Ta2O9)-insulator (HfTaO)-semiconductor capacitor was fabricated, and the temperature dependence of its electrical properties was investigated. Within the temperature range of 300-220 K, the maximum memory window is up to 1.26 V, and it could be attributed to a higher coercive field of the ferroelectric film at a lower temperature, which is induced by the deeper and more box-shaped potential well based on the defect-domain interaction model. The memory window decreases with increasing temperature from 300 to 400 K, and the larger sweep voltage leads to a smaller memory window at a higher temperature, which could be attributed to temperature-dependent polarization of the ferroelectric film and charge injection from an Si substrate of the capacitor. With the temperature increasing from 220 to 400 K, the leakage current density increases with temperature by about one order, and the corresponding conduction mechanism is discussed. The results could provide useful guidelines for design and application of ferroelectric memory.
Domain alignment within ferroelectric/dielectric PbTiO 3 /SrTiO 3 superlattice nanostructures
Park, Joonkyu; Mangeri, John; Zhang, Qingteng; ...
2018-01-22
The ferroelectric domain pattern within lithographically defined PbTiO 3/SrTiO 3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron X-ray nanobeam diffraction reveals that the spontaneously formed 180° ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of X-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20° with respect to the edges. Computational studies based on a time-dependent Landau–Ginzburg–Devonshire model show that the preferred direction of the alignment resultsmore » from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Thus, our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Ayan; Khan, Gobinda Gopal, E-mail: gobinda.gk@gmail.com; Chaudhuri, Arka
Multifunctional BiFeO{sub 3} nanostructure anchored TiO{sub 2} nanotubes are fabricated by coupling wet chemical and electrochemical routes. BiFeO{sub 3}/TiO{sub 2} nano-heterostructure exhibits white-light-induced ferroelectricity at room temperature. Studies reveal that the photogenerated electrons trapped at the domain/grain boundaries tune the ferroelectric polarization in BiFeO{sub 3} nanostructures. The photon controlled saturation and remnant polarization opens up the possibility to design ferroelectric devices based on BiFeO{sub 3.} The nano-heterostructure also exhibits substantial photovoltaic effect and rectifying characteristics. Photovoltaic property is found to be correlated with the ferroelectric polarization. Furthermore, the nonvolatile resistive switching in BiFeO{sub 3}/TiO{sub 2} nano-heterostructure has been studied, whichmore » demonstrates that the observed resistive switching is most likely caused by the electric-field-induced carrier injection/migration and trapping/detrapping process at the hetero-interfaces. Therefore, BiFeO{sub 3}/TiO{sub 2} nano-heterostructure coupled with logic, photovoltaics and memory characteristics holds promises for long-term technological applications in nanoelectronics devices.« less
NASA Astrophysics Data System (ADS)
Sakai, Shigeki; Zhang, Wei; Takahashi, Mitsue
2017-04-01
In metal-ferroelectric-insulator-semiconductor gate stacks of ferroelectric-gate field effect transistors (FeFETs), it is impossible to directly obtain curves of polarization versus electric field (P f-E f) in the ferroelectric layer. The P f-E f behavior is not simple, i.e. the P f-E f curves are hysteretic and nonlinear, and the hysteresis curve width depends on the electric field scan amplitude. Unless the P f-E f relation is known, the field E f strength cannot be solved when the voltage is applied between the gate meal and the semiconductor substrate, and thus P f-E f cannot be obtained after all. In this paper, the method for disclosing the relationships among the polarization peak-to-peak amplitude (2P mm_av), the electric field peak-to-peak amplitude (2E mm_av), and the memory window (E w) in units of the electric field is presented. To get P mm_av versus E mm_av, FeFETs with different ferroelectric-layer thicknesses should be prepared. Knowing such essential physical parameters is helpful and in many cases enough to quantitatively understand the behavior of FeFETs. The method is applied to three groups. The first one consists of SrBi2Ta2O9-based FeFETs. The second and third ones consist of Ca x Sr1-x Bi2Ta2O9-based FeFETs made by two kinds of annealing. The method can clearly differentiate the characters of the three groups. By applying the method, ferroelectric relationships among P mm_av, E mm_av, and E w are well classified in the three groups according to the difference of the material kinds and the annealing conditions. The method also evaluates equivalent oxide thickness (EOT) of a dual layer of a deposited high-k insulator and a thermally-grown SiO2-like interfacial layer (IL). The IL thickness calculated by the method is consistent with cross-sectional image of the FeFETs observed by a transmission electron microscope. The method successfully discloses individual characteristics of the ferroelectric and the insulator layers hidden in the gate stack of a FeFET.
NASA Astrophysics Data System (ADS)
Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk
2018-05-01
We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.
Ferroelectric translational antiphase boundaries in nonpolar materials
Wei, Xian-Kui; Tagantsev, Alexander K.; Kvasov, Alexander; Roleder, Krystian; Jia, Chun-Lin; Setter, Nava
2014-01-01
Ferroelectric materials are heavily used in electro-mechanics and electronics. Inside the ferroelectric, domain walls separate regions in which the spontaneous polarization is differently oriented. Properties of ferroelectric domain walls can differ from those of the domains themselves, leading to new exploitable phenomena. Even more exciting is that a non-ferroelectric material may have domain boundaries that are ferroelectric. Many materials possess translational antiphase boundaries. Such boundaries could be interesting entities to carry information if they were ferroelectric. Here we show first that antiphase boundaries in antiferroelectrics may possess ferroelectricity. We then identify these boundaries in the classical antiferroelectric lead zirconate and evidence their polarity by electron microscopy using negative spherical-aberration imaging technique. Ab initio modelling confirms the polar bi-stable nature of the walls. Ferroelectric antiphase boundaries could make high-density non-volatile memory; in comparison with the magnetic domain wall memory, they do not require current for operation and are an order of magnitude thinner. PMID:24398704
NASA Astrophysics Data System (ADS)
Zaman, Arif; Malik, Rizwan Ahmed; Maqbool, Adnan; Hussain, Ali; Ahmed, Tanveer; Song, Tae Kwon; Kim, Won-Jeong; Kim, Myong-Ho
2018-03-01
Crystal structure, dielectric, ferroelectric, piezoelectric, and electric field-induced strain properties of lead-free Nb-modified 0.96Bi0.5K0.5TiO3-0.04Bi(Mg0.5Ti0.5)O3 (BKT-BMT) piezoelectric ceramics were investigated. Crystal structure analysis showed a gradual phase transition from tetragonal to pseudocubic phase with increasing Nb content. The optimal piezoelectric property of small-signal d 33 was enhanced up to ˜ 68 pC/N with a lower coercive field ( E c) of ˜ 22 kV/cm and an improved remnant polarization ( P r) of ˜ 13 μC/cm2 for x = 0.020. A relaxor-like behavior with a frequency-dependent Curie temperature T m was observed, and a high T m around 320°C was obtained in the investigated system. This study suggests that the ferroelectric properties of BKT-BMT was significantly improved by means of Nb substitution. The possible shift of depolarization temperature T d toward high temperature T m may have triggered the spontaneous relaxor to ferroelectric phase transition with long-range ferroelectric order without any traces of a nonergodic relaxor state in contradiction with Bi0.5Na0.5TiO3-based systems. The possible enhancement in ferroelectric and piezoelectric properties near the critical composition x = 0.020 may be attributed to the increased anharmonicity of lattice vibrations which may facilitate the observed phase transition from a low-symmetry tetragonal to a high-symmetry cubic phase with a decrease in the lattice anisotropy of an undoped sample. This highly flexible (at a unit cell level) narrow compositional range triggers the enhancement of d 33 and P r values.
NASA Astrophysics Data System (ADS)
Xiao, Zhiyong
In this dissertation, I present the scanning microscopy and electrical transport studies of ferroelectric thin films and ferroic/2D van der Waals heterostructures. Based on the conducting probe atomic force microscopy and piezo-response force microscopy (PFM) studies of the static and dynamic behavior of ferroelectric domain walls (DW), we found that the ferroelectric polymer poly(vinylidene-fluoride-trifluorethylene) P(VDF-TrFE) is composed of two-dimensional (2D) ferroelectric monolayers (MLs) that are weakly coupled to each other. We also observed polarization asymmetry in epitaxial thin films of ferroelectric Pb(Zr,Ti)O3, which is attributed to the screening properties of the underlying conducting oxide. PFM studies also reveal ferroelectric relaxor-type behavior in ultrathin Sr(Zr,Ti)O3 films epitaxially deposited on Ge. We exploited scanning-probe-controlled domain patterning in a P(VDF-TrFE) top layer to induce nonvolatile modulation of the conduction characteristic of ML molybdenum disulfide (MoS2) between a transistor and a junction state. In the presence of a DW, MoS2 exhibits rectified Ids-Vds (IV) characteristics that are well described by the thermionic emission model. This approach can be applied to a wide range of van der Waals materials to design various functional homojunctions and nanostructures. We also studied the interfacial charge transfer effect between graphene and magnetoelectric Cr2O3 via electrostatic force microscopy and Kelvin probe force microscopy, which reveal p-type doping with up to 150 meV shift of the Fermi level. The graphene/Cr2O3 heterostructure is promising for developing magnetoelectric graphene transistors for spintronic applications.
Enhancement of electrical properties in polycrystalline BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Yun, Kwi Young; Ricinschi, Dan; Kanashima, Takeshi; Okuyama, Masanori
2006-11-01
Ferroelectric BiFeO3 thin films were grown on Pt /TiO2/SiO2/Si substrates by pulsed-laser deposition. From the x-ray diffraction analysis, the BiFeO3 thin films consist of perovskite single phase, and the crystal structure shows the tetragonal structure with a space group P4mm. The BiFeO3 thin films show enhanced electrical properties with low leakage current density value of ˜10-4A /cm2 at a maximum applied voltage of 31V. This enhanced electrical resistivity allowed the authors to obtain giant ferroelectric polarization values such as saturation polarizations of 110 and 166μC/cm2 at room temperature and 80K, respectively.
A Mesoscopic Electromechanical Theory of Ferroelectric Films and Ceramics
NASA Astrophysics Data System (ADS)
Li, Jiangyu; Bhattacharya, Kaushik
2002-08-01
We present a multi-scale modelling framework to predict the effective electromechanical behavior of ferroelectric ceramics and thin films. This paper specifically focuses on the mesoscopic scale and models the effects of domains and domain switching taking into account intergranular constraints. Starting from the properties of the single crystal and the pre-poling granular texture, the theory predicts the domain patterns, the post-poling texture, the saturation polarization, saturation strain and the electromechanical moduli. We demonstrate remarkable agreement with experimental data. The theory also explains the superior electromechanical property of PZT at the morphotropic phase boundary. The paper concludes with the application of the theory to predict the optimal texture for enhanced electromechanical coupling factors and high-strain actuation in selected materials.
Single-Molecule Toroics in Ising-type lanthanide molecular clusters
NASA Astrophysics Data System (ADS)
Chibotaru, Liviu
2015-03-01
Alkali metal trichlorocuprates (M3 CuCl3 : M =K+ , Tl+ and NH4+) have received considerable attention as a unique system of gapped/gapless quantum magnets. However, their possible multiferroelectricity, as both magnets and ferroelectrics, have not been reported. Such a finding would add a new dimension to their utility as memory storage elements. Here we report the discovery of ferroelectricity in NH4 CuCl3 , and several of its mixed lattices with K. In this talk, we present details of our crystal growth, x-ray diffraction studies of lattice authenticity and purity, dielectric, specific heat with and without fields, magnetic susceptibility, pulsed fields, and EPR characterization of these novel materials. Theoretical studies of the new findings should be fruitful.
NASA Astrophysics Data System (ADS)
Sambasiva Rao, K.; Murali Krishna, P.; Madhava Prasad, D.; Lee, Joon Hyung
Ferroelectric, hysteresis, impedance spectroscopy parameters, AC conductivity, and piezoelectric properties in the ceramics of Pb0.74K0.52Nb2O6 and Pb0.74K0.13Sm0.13Nb2O6 have been studied. X-ray diffraction study reveals single phase with the orthorhombic structure. The samples were characterized for ferroelectric and impedance spectroscopy properties from room temperature to 600°C. Cole-Cole plots (Z″ versus Z‧) are drawn at different temperatures. The results obtained are analyzed to understand the conductivity mechanism in both the samples. The piezoelectric constant d33 has been found to be 96 × 10-12 C/N in PKN.
NASA Astrophysics Data System (ADS)
Jang, Kyungmin; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-02-01
We have investigated the gate stack scalability and energy efficiency of double-gate negative-capacitance FET (DGNCFET) with a CMOS-compatible ferroelectric HfO2 (FE:HfO2). Analytic model-based simulation is conducted to investigate the impacts of ferroelectric characteristic of FE:HfO2 and gate stack thickness on the I on/I off ratio of DGNCFET. DGNCFET has wider design window for the gate stack where higher I on/I off ratio can be achieved than DG classical MOSFET. Under a process-induced constraint with sub-10 nm gate length (L g), FE:HfO2-based DGNCFET still has a design point for high I on/I off ratio. With an optimized gate stack thickness for sub-10 nm L g, FE:HfO2-based DGNCFET has 2.5× higher energy efficiency than DG classical MOSFET even at ultralow operation voltage of sub-0.2 V.
Thin layer composite unimorph ferroelectric driver and sensor
NASA Technical Reports Server (NTRS)
Hellbaum, Richard F. (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Jalink, Jr., Antony (Inventor); Rohrbach, Wayne W. (Inventor); Simpson, Joycelyn O. (Inventor)
2004-01-01
A method for forming ferroelectric wafers is provided. A prestress layer is placed on the desired mold. A ferroelectric wafer is placed on top of the prestress layer. The layers are heated and then cooled, causing the ferroelectric wafer to become prestressed. The prestress layer may include reinforcing material and the ferroelectric wafer may include electrodes or electrode layers may be placed on either side of the ferroelectric layer. Wafers produced using this method have greatly improved output motion.
Thin Layer Composite Unimorph Ferroelectric Driver and Sensor
NASA Technical Reports Server (NTRS)
Helbaum, Richard F. (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Jalink, Antony, Jr. (Inventor); Rohrbach, Wayne W. (Inventor); Simpson, Joycelyn O. (Inventor)
1995-01-01
A method for forming ferroelectric wafers is provided. A prestress layer is placed on the desired mold. A ferroelectric wafer is placed on top of the prestress layer. The layers are heated and then cooled, causing the ferroelectric wafer to become prestressed. The prestress layer may include reinforcing material and the ferroelectric wafer may include electrodes or electrode layers may be placed on either side of the ferroelectric layer. Wafers produced using this method have greatly improved output motion.
NASA Astrophysics Data System (ADS)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.
2018-03-01
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).
Hu, Ting; Wu, Haiping; Zeng, Haibo; Deng, Kaiming; Kan, Erjun
2016-12-14
Ferroelectrics have many significant applications in electric devices, such as capacitor or random-access memory, tuning the efficiency of solar cell. Although atomic-thick ferroelectrics are the necessary components for high-density electric devices or nanoscale devices, the development of such materials still faces a big challenge because of the limitation of intrinsic mechanism. Here, we reported that in-plane atomic-thick ferroelectricity can be induced by vertical electric field in phosphorene nanoribbons (PNRs). Through symmetry arguments, we predicted that ferroelectric direction is perpendicular to the direction of external electric field and lies in the plane. Further confirmed by the comprehensive first-principles calculations, we showed that such ferroelectricity is induced by the electron-polarization, which is different from the structural distortion in traditional ferroelectrics and the recent experimental discovery of in-plane atomic-thick ferroelectrics (Science 2016, 353, 274). Moreover, we found that the value of electronic polarization in bilayer is much larger than that in monolayer. Our results show that electron-polarization ferroelectricity maybe the most promising candidate for atomic-thick ferroelectrics.
Re-entrant relaxor ferroelectricity of methylammonium lead iodide
Guo, Haiyan; Liu, Peixue; Zheng, Shichao; ...
2016-09-24
In this paper, we have performed a piezoresponse force microscopy (PFM) study on methylammonium lead iodide (MAPbI 3) thin films in normal (non-resonance, non-band-excitation) contact mode. In contrast to the ferroelectric Pb 0.76Ca 0.24TiO 3 (PCT) control sample, a typical ferroelectric response was not observed. However, a nonlinear electric field dependence of the local PFM amplitude was found in MAPbI 3, similar to PCT. An analysis combining results on structure, dielectric dispersion, and weak ferroelectricity demonstrates that MAPbI 3 is actually a re-entrant relaxor ferroelectric which, upon cooling, enters into a relaxor phase below its ferroelectric phase transition at ~327more » K, due to the balance between the long range ferroelectric order and structural methylammonium group orientational disorder. The ferroelectricity at room temperature is compromised due to the re-entrant relaxor behavior, causing the poor polarization retention or weak ferroelectricity. Finally, our findings essentially conciliate the conflicting experimental results on MAPbI 3's ferroelectricity and are beneficial both for basic understanding as well as for device applications.« less
Enhanced ferroelectric polarization and possible morphotrophic phase boundary in PZT-based alloys
Parker, David S.; Singh, David; McGuire, Michael A.; ...
2016-05-16
We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr 0.5Ti 0.5O 3) with BZnT (BiZn 0.5Ti 0.5O 3) and BZnZr (BiZn 0.5Zr 0.5O 3), focusing on atomic displacements, ferroelectric polarization, and elastic stability. From theory we find that the 75-25 PZT-BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c/a ratios. Elastic stability calculations find the structures to be essentiallymore » stable. Lastly, experiments indicate the feasibility of sample synthesis within this alloy system, although measurements do not find significant polarization, probably due to a large coercive field.« less
Shi, Liangyu; Srivastava, Abhishek Kumar; Wai Tam, Alwin Ming; Chigrinov, Vladimir Grigorievich; Kwok, Hoi Sing
2017-09-01
We reveal a 2D-3D switchable lens unit that is based on a polarization-sensitive microlens array and a polarization selector unit made of an electrically suppressed helix ferroelectric liquid crystal (ESHFLC) cell. The ESHFLCs offer a high contrast ratio (∼10k∶1) between the crossed polarizers at a low applied electric field (∼1.7 V/μm) with a small switching time (<50 μs). A special driving scheme, to switch between a 2D and 3D mode, has been developed to avoid unwanted issues related to DC accumulation in the ferroelectric liquid crystal without affecting its optical quality. The proposed lens unit is characterized by low power consumption, ultrafast response, and 3D crosstalk <5%, and can therefore find application in TVs, cell phones, etc.
Learning through ferroelectric domain dynamics in solid-state synapses
NASA Astrophysics Data System (ADS)
Boyn, Sören; Grollier, Julie; Lecerf, Gwendal; Xu, Bin; Locatelli, Nicolas; Fusil, Stéphane; Girod, Stéphanie; Carrétéro, Cécile; Garcia, Karin; Xavier, Stéphane; Tomas, Jean; Bellaiche, Laurent; Bibes, Manuel; Barthélémy, Agnès; Saïghi, Sylvain; Garcia, Vincent
2017-04-01
In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.
Positive-Negative Birefringence in Multiferroic Layered Metasurfaces.
Khomeriki, R; Chotorlishvili, L; Tralle, I; Berakdar, J
2016-11-09
We uncover and identify the regime for a magnetically and ferroelectrically controllable negative refraction of a light-traversing multiferroic, oxide-based metastructure consisting of alternating nanoscopic ferroelectric (SrTiO 3 ) and ferromagnetic (Y 3 Fe 2 (FeO 4 ) 3 , YIG) layers. We perform analytical and numerical simulations based on discretized, coupled equations for the self-consistent Maxwell/ferroelectric/ferromagnetic dynamics and obtain a biquadratic relation for the refractive index. Various scenarios of ordinary and negative refraction in different frequency ranges are analyzed and quantified by simple analytical formula that are confirmed by full-fledge numerical simulations. Electromagnetic waves injected at the edges of the sample are propagated exactly numerically. We discovered that, for particular GHz frequencies, waves with different polarizations are characterized by different signs of the refractive index, giving rise to novel types of phenomena such as a positive-negative birefringence effect and magnetically controlled light trapping and accelerations.
Lee, Young Tack; Kwon, Hyeokjae; Kim, Jin Sung; Kim, Hong-Hee; Lee, Yun Jae; Lim, Jung Ah; Song, Yong-Won; Yi, Yeonjin; Choi, Won-Kook; Hwang, Do Kyung; Im, Seongil
2015-10-27
Two-dimensional van der Waals (2D vdWs) materials are a class of new materials that can provide important resources for future electronics and materials sciences due to their unique physical properties. Among 2D vdWs materials, black phosphorus (BP) has exhibited significant potential for use in electronic and optoelectronic applications because of its allotropic properties, high mobility, and direct and narrow band gap. Here, we demonstrate a few-layered BP-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. Experiments showed that our BP-based ferroelectric transistors operate satisfactorily at room temperature in ambient air and exhibit a clear memory window. Unlike conventional ambipolar BP transistors, our ferroelectric transistors showed only p-type characteristics due to the carbon-fluorine (C-F) dipole effect of the P(VDF-TrFE) layer, as well as the highest linear mobility value of 1159 cm(2) V(-1) s(-1) with a 10(3) on/off current ratio. For more advanced memory applications beyond unit memory devices, we implemented two memory inverter circuits, a resistive-load inverter circuit and a complementary inverter circuit, combined with an n-type molybdenum disulfide (MoS2) nanosheet. Our memory inverter circuits displayed a clear memory window of 15 V and memory output voltage efficiency of 95%.
Ultraviolet Electrically Injected Light Sources With Epitaxial ZnO-Based Heterojunctions
2007-08-01
ohmic contacts to ZnO , UV photoconductors, and thin film transistors . The integration of ferroelectric oxide thin films with ZnO was also investigated... transistors . The integration of ferroelectric oxide thin films with ZnO was also investigated, as a potential means of locally inverting ZnO to p-type, and to...low contact resistivity ......................... 8 ZnO Thin Film Transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalarvo, N., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov; Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; Pramanick, A., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov
2015-08-24
We present a comparative study of proton dynamics in unpoled non-ferroelectric polymer polyvinylidene fluoride (PVDF) and in its trifluoroethylene containing ferroelectric copolymer (with 70/30 molar proportion), using quasi-elastic neutron scattering. The neutron data reveal the existence of two distinct types of molecular motions in the temperature range investigated. The slower motion, which is characterized in details here, is ascribed to protons jump diffusion along the polymeric carbon chains, while the faster motion could be attributed to localized rotational motion of methylene groups. At temperatures below the Curie point (T{sub c} ∼ 385 K) of the composite polymer, the slower diffusive mode experiences longermore » relaxation times in the ferroelectric blend than in the bare PVDF, although the net corresponding diffusion coefficient remains comparatively the same in both polymers with characteristic activation energy of E{sub A} ≈ 27–33 kJ/mol. This arises because of a temperature dependent jump length r{sub 0}, which we observe to be effectively longer in the copolymer, possibly due to the formation of ordered ferroelectric domains below T{sub c}. Above T{sub c}, there is no appreciable difference in r{sub 0} between the two systems. This observation directly relates the known dependence of T{sub c} on molar ratio to changes in r{sub 0}, providing fundamental insight into the ferroelectric properties of PVDF-based copolymers.« less
Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading
NASA Astrophysics Data System (ADS)
Kozinov, S.; Kuna, M.
2018-07-01
The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.
Subtractive fabrication of ferroelectric thin films with precisely controlled thickness
NASA Astrophysics Data System (ADS)
Ievlev, Anton V.; Chyasnavichyus, Marius; Leonard, Donovan N.; Agar, Joshua C.; Velarde, Gabriel A.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro; Ovchinnikova, Olga S.
2018-04-01
The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.
Subtractive fabrication of ferroelectric thin films with precisely controlled thickness.
Ievlev, Anton V; Chyasnavichyus, Marius; Leonard, Donovan N; Agar, Joshua C; Velarde, Gabriel A; Martin, Lane W; Kalinin, Sergei V; Maksymovych, Petro; Ovchinnikova, Olga S
2018-04-02
The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.
Subtractive fabrication of ferroelectric thin films with precisely controlled thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ievlev, Anton; Chyasnavichyus, Marius; Leonard, Donovan N.
The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy tomore » a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Lastly, our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.« less
Subtractive fabrication of ferroelectric thin films with precisely controlled thickness
Ievlev, Anton; Chyasnavichyus, Marius; Leonard, Donovan N.; ...
2018-02-22
The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy tomore » a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Lastly, our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Bag, Pallab
2014-09-15
Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phasemore » transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.« less
Probing non-collinear magnetism in Ca1-xSrxMn7O12 films by neutron scattering
NASA Astrophysics Data System (ADS)
Huon, Amanda; Grutter, Alexander; Kirby, Brian; Disseler, Steven; Borchers, Julie; Liu, Yaohua; Tian, Wei; Herklotz, Andreas; Lee, Ho Nyung; Fitzsimmons, Michael; May, Steven
CaMn7O12 has been reported to be a single-phase multiferroic quadruple manganite that exhibits both ferroelectricity and helical magnetism below 90 K, but presently no experimental data from bulk or thin films have demonstrated coupling between these two ordering types. Herein, we synthesized epitaxial Ca1-xSrxMn7O12 thin films grown by oxide molecular beam epitaxy and pulsed laser deposition. We utilized neutrons to map out the non-collinear magnetic wavevectors as a function of temperature. To verify whether this coupling is present in our thin films we performed both magnetic and electric field studies. The results highlight the scientific opportunities in using chemical pressure and strain to modify non-collinear magnetism and better understand the link between ferroelectricity and helical magnetism. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under Contract Number DE-SC0014664.
Advanced Research Projects Agency on Materials Preparation and Characterization Research
Briefly summarized is research concerned with such topics as: Preparation of silica glass from amorphous silica; Glass structure by Raman ...ferroelectrics; Silver iodide crystals; Vapor phase growth; Refractory optical host materials; Hydroxyapatite ; Calcite; Characterization of single crystals with a double crystal spectrometer; Characterization of residual strain.
Nanodomain Engineering in Ferroelectric Capacitors with Graphene Electrodes.
Lu, Haidong; Wang, Bo; Li, Tao; Lipatov, Alexey; Lee, Hyungwoo; Rajapitamahuni, Anil; Xu, Ruijuan; Hong, Xia; Farokhipoor, Saeedeh; Martin, Lane W; Eom, Chang-Beom; Chen, Long-Qing; Sinitskii, Alexander; Gruverman, Alexei
2016-10-12
Polarization switching in ferroelectric capacitors is typically realized by application of an electrical bias to the capacitor electrodes and occurs via a complex process of domain structure reorganization. As the domain evolution in real devices is governed by the distribution of the nucleation centers, obtaining a domain structure of a desired configuration by electrical pulsing is challenging, if not impossible. Recent discovery of polarization reversal via the flexoelectric effect has opened a possibility for deterministic control of polarization in ferroelectric capacitors. In this paper, we demonstrate mechanical writing of arbitrary-shaped nanoscale domains in thin-film ferroelectric capacitors with graphene electrodes facilitated by a strain gradient induced by a tip of an atomic force microscope (AFM). A phase-field modeling prediction of a strong effect of graphene thickness on the threshold load required to initiate mechanical switching has been confirmed experimentally. Deliberate voltage-free domain writing represents a viable approach for development of functional devices based on domain topology and electronic properties of the domains and domain walls.
Fabrication of PVDF-TrFE based bilayered PbTiO{sub 3}/PVDF-TrFE films capacitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurbaya, Z., E-mail: nurbayazainal@gmail.com; Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur; Wahid, M. H.
2016-07-06
Development of high performance capacitor is reaching towards new generation where the ferroelectric materials take places as the active dielectric layer. The motivation of this study is to produce high capacitance device with long life cycle. This was configured by preparing bilayered films where lead titanate as an active dielectric layer and stacked with the top dielectric layer, poly(vinyledenefluoride-trifluoroethylene). Both of them are being referred that have one in common which is ferroelectric behavior. Therefore the combination of ceramic and polymer ferroelectric material could perform optimum dielectric characteristic for capacitor applications. The fabrication was done by simple sol-gel spin coatingmore » method that being varied at spinning speed property for polymer layers, whereas maintaining the ceramic layer. The characterization of PVDF-TrFE/PbTiO3 was performed according to metal-insulator-metal stacked capacitor measurement which includes structural, dielectric, and ferroelectric measurement.« less
NASA Astrophysics Data System (ADS)
Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo
2016-06-01
Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems.
Photovoltaic-Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System.
Ma, Nan; Zhang, Kewei; Yang, Ya
2017-12-01
Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7-4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8-20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near-UV irradiations. Here, a ferroelectric BaTiO 3 film-based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light-induced photovoltaic-pyroelectric coupled effect. A self-powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Satellite Test of Radiation Impact on Ramtron 512K FRAM
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Sayyah, Rana; Sims, W. Herb; Varnavas, Kosta A.; Ho, Fat D.
2009-01-01
The Memory Test Experiment is a space test of a ferroelectric memory device on a low Earth orbit satellite. The test consists of writing and reading data with a ferroelectric based memory device. Any errors are detected and are stored on board the satellite. The data is send to the ground through telemetry once a day. Analysis of the data can determine the kind of error that was found and will lead to a better understanding of the effects of space radiation on memory systems. The test will be one of the first flight demonstrations of ferroelectric memory in a near polar orbit which allows testing in a varied radiation environment. The memory devices being tested is a Ramtron Inc. 512K memory device. This paper details the goals and purpose of this experiment as well as the development process. The process for analyzing the data to gain the maximum understanding of the performance of the ferroelectric memory device is detailed.
NASA Astrophysics Data System (ADS)
Nechaev, V. N.; Viskovatykh, A. V.
2018-06-01
The behavior of the previously observed inhomogeneous polarized states in ferroelectric inclusions of the nanocomposite is analyzed in detail. The domain structure of ferroelectric particles depends on the temperature and nature of interaction with the dielectric matrix. The possibility of controlling the domain structure in ferroelectric particles using an external electric field is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khokhar, Anita, E-mail: mails4anita@gmail.com; Sreenivas, K.; Goyal, Parveen K.
2015-06-24
The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi{sub 2}O{sub 2}){sup 2+} layers of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La{sup 3+} ions prefer to substitute A-site Bi{sup 3+} ions in the perovskite layers while for higher x values, La{sup 3+} ions get incorporatedmore » into the (Bi{sub 2}O{sub 2}){sup 2+} layers. A critical La content of x ∼ 0.2 in BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} is seen to exhibit a large remnant polarization (P{sub r}) with low coercive field (E{sub c}). The improvement in the ferroelectric properties of La substituted BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.« less
Novel Photovoltaic Devices Using Ferroelectric Material and Colloidal Quantum Dots
NASA Astrophysics Data System (ADS)
Paik, Young Hun
As the global concern for the financial and environmental costs of traditional energy resources increases, research on renewable energy, most notably solar energy, has taken center stage. Many alternative photovoltaic (PV) technologies for 'the next generation solar cell' have been extensively studied to overcome the Shockley-Queisser 31% efficiency limit as well as tackle the efficiency vs. cost issues. This dissertation focuses on the novel photovoltaic mechanism for the next generation solar cells using two inorganic nanomaterials, nanocrystal quantum dots and ferroelectric nanoparticles. Lead zirconate titanate (PZT) materials are widely studied and easy to synthesize using solution based chemistry. One of the fascinating properties of the PZT material is a Bulk Photovoltaic effect (BPVE). This property has been spotlighted because it can produce very high open circuit voltage regardless of the electrical bandgap of the materials. However, the poor optical absorption of the PZT materials and the required high temperature to form the ferroelectric crystalline structure have been obstacles to fabricate efficient photovoltaic devices. Colloidal quantum dots also have fascinating optical and electrical properties such as tailored absorption spectrum, capability of the bandgap engineering due to the wide range of material selection and quantum confinement, and very efficient carrier dynamics called multiple exciton generations. In order to utilize these properties, many researchers have put numerous efforts in colloidal quantum dot photovoltaic research and there has been remarkable progress in the past decade. However, several drawbacks are still remaining to achieve highly efficient photovoltaic device. Traps created on the large surface area, low carrier mobility, and lower open circuit voltage while increasing the absorption of the solar spectrum is main issues of the nanocrystal based photovoltaic effect. To address these issues and to take the advantages of the two materials, this dissertation focused on material synthesis for low cost solution process for both materials, fabrication of various device structures and electrical/optical characterization to understand the underlying physics. We successfully demonstrated lead sulfide quantum dots (PbS QDs) and lead zirconate titanate nanoparticles (PZT NPs) in an aqueous solution and fabricated a photosensitive device. Solution based low-temperature process was used to fabricate a PbS QD and a PZT NP device. We exhibited a superior photoresponse and ferroelectric photovoltaic properties with the novel PZT NP device and studied the physics on domain wall effect and internal polarity effect. PZT NP was mainly investigated because PZT NP device is the first report as a photosensitive device with a successful property demonstration, as we know of. PZT's crystalline structure and the size of the nanocrystals were studied using X-ray diffraction and TEM (Transmission electron microscopy) respectively. We observed < 100 nm of PZT NPs and this result matched with DLS (dynamic light scattering) measurement. We fabricated ferroelectric devices using the PZT NPs for the various optical and electrical characterizations and verified ferroelectric properties including ferroelectric hysteresis loop. We also observed a typical ferroelectric photovoltaic effect from a PZT NP based device which was fabricated on an ITO substrate. We synthesized colloidal quantum dots (CQD) with the inexpensive soluble process. Fabricated PbS QD was used for the hybrid device with PZT thin films. J-V measured and the result shows superior open circuit voltage characteristics compared to conventional PbS QD PV devices, and resulting the improvement of the solar cell efficiency. This Ferroelectrics and Quantum Dots (FE-QDs) device also the first trial and the success as we know of.
NASA Astrophysics Data System (ADS)
Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael
2012-09-01
Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomenamore » in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.« less
Characterization of Hybrid Ferroelectric/HTS Thin Films for Tunable Microwave Components
NASA Technical Reports Server (NTRS)
Winters, M. D.; Mueller, C. H.; Bhasin, K. B.; Miranda, F. A.
1996-01-01
Since the discovery of High-Temperature-Superconductors (HTS) in 1986, a diversity of HTS-based microwave components has been demonstrated. Because of their low conductor losses, HTS-based components are very attractive for integration into microwave circuits for space communication systems. Recent advancements have made deposition of ferroelectric thin films onto HTS thin films possible. Due to the sensitivity of the ferroelectric's dielectric constant (epsilon(sub r)) to an externally applied electric field (E), ferroelectric/superconducting structures could be used in the fabrication of low loss, tunable microwave components. In this paper, we report on our study of Ba(0.5)Sr(0.5)TiO3/YBa2Cu3O(7-delta) and Ba(0.08)Sr(0.92)TiO3/YBa2Cu3O(7-delta) ferroelectric/superconducting thin films on lanthanum aluminate (LaAlO3) substrates. For the (Ba:Sr, 0.50:0.50) epitaxial sample, a epsilon(sub r) of 425 and a loss tangent (tan delta) of 0.040 were measured at 298 K, 1.0 MHz, and zero applied E. For the same sample, a epsilon(sub r) of 360 and tan delta of 0.036 were obtained at 77 K, 1.0 MHz, and zero applied E. Variations in epsilon(sub r) from 180 to 360 were observed over an applied E range of 0V/cm less than or equal to E less than or equal to 5.62 x 10(exp 4) V/cm with little change in tan delta. However, the range of epsilon(sub r) variation for the polycrystalline (Ba:Sr, 0.08:0.92) sample over 0V/cm less than or equal to E less than or equal to 4.00 x 10(exp 4) V/cm was only 3.6 percent while tan delta increased markedly. These results indicate that a lack of epitaxy between the ferroelectric and superconducting layers decreases tuning and increases microwave losses.
Recent Progress in Understanding the Shock Response of Ferroelectric Ceramics
NASA Astrophysics Data System (ADS)
Setchell, R. E.
2002-07-01
Ferroelectric ceramics exhibit a permanent remanent polarization, and shock depoling of these materials to achieve pulsed sources of electrical power was proposed in the late 1950s. During the following twenty years, extensive studies were conducted to examine the shock response of ferroelectric ceramics primarily based on lead zirconate titanate (PZT). Under limited conditions, relatively simple analytical models were found to adequately describe the observed electrical behavior. A more complex behavior was indicated over broader conditions, however, resulting in the incorporation of shock-induced conductivity and dielectric relaxation into analytical models. Unfortunately, few experimental studies were undertaken over the next twenty years, and the development of more comprehensive models was inhibited. In recent years, a strong interest in advancing numerical simulation capabilities has motivated new experimental studies and corresponding model development. More than seventy gas gun experiments have examined several ferroelectric ceramics, with most experiments on lead zirconate titanate having a Zr:Ti ratio of 95:5 and modified with 2% niobium (PZT 95/5). This material is nominally ferroelectric but is near an antiferroelectric phase boundary, and depoling results from a shock-driven phase transition. Experiments have examined unpoled, normally poled, and axially poled PZT 95/5 over broad ranges of shock pressure and peak electric field. The extensive base of new data provides quantitative insights into both the stress and field dependencies of depoling kinetics, and the significance of pore collapse at higher stresses. The results are being actively utilized to develop and refine material response models used in numerical simulations of pulsed power devices.
Laser Fabrication of Polymer Ferroelectric Nanostructures for Nonvolatile Organic Memory Devices.
Martínez-Tong, Daniel E; Rodríguez-Rodríguez, Álvaro; Nogales, Aurora; García-Gutiérrez, Mari-Cruz; Pérez-Murano, Francesc; Llobet, Jordi; Ezquerra, Tiberio A; Rebollar, Esther
2015-09-09
Polymer ferroelectric laser-induced periodic surface structures (LIPSS) have been prepared on ferroelectric thin films of a poly(vinylidene fluoride-trifluoroethylene) copolymer. Although this copolymer does not absorb light at the laser wavelength, LIPSS on the copolymer can be obtained by forming a bilayer with other light-absorbing polymers. The ferroelectric nature of the structured bilayer was proven by piezoresponse force microscopy measurements. Ferroelectric hysteresis was found on both the bilayer and the laser-structured bilayer. We show that it is possible to write ferroelectric information at the nanoscale. The laser-structured ferroelectric bilayer showed an increase in the information storage density of an order of magnitude, in comparison to the original bilayer.
Ferroelectrics for semiconductor devices
NASA Astrophysics Data System (ADS)
Sayer, M.; Wu, Z.; Vasant Kumar, C. V. R.; Amm, D. T.; Griswold, E. M.
1992-11-01
The technology for the implementation of the integration of thin film ferroelectrics with silicon processing for various devices is described, and factors affecting the integration of ferroelectric films with semiconductor processing are discussed. Consideration is also given to film properties, the properties of electrode materials and structures, and the phenomena of ferroelectric fatigue and aging. Particular attention is given to the nonmemory device application of ferroelectrics.
NASA Astrophysics Data System (ADS)
Wong, C. K.; Poon, Y. M.; Shin, F. G.
2003-01-01
Explicit formulas were derived for the effective piezoelectric stress coefficients of a 0-3 composite of ferroelectric spherical particles in a ferroelectric matrix which were then combined to give the more commonly used strain coefficients. Assuming that the elastic stiffness of the inclusion phase is sufficiently larger than that of the matrix phase, the previously derived explicit expressions for the case of a low volume concentration of inclusion particles [C. K. Wong, Y. M. Poon, and F. G. Shin, Ferroelectrics 264, 39 (2001); J. Appl. Phys. 90, 4690 (2001)] were "transformed" analytically by an effective medium theory (EMT) with appropriate approximations, to suit the case of a more concentrated suspension. Predictions of the EMT expressions were compared with the experimental values of composites of lead zirconate titanate ceramic particles dispersed in polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene copolymer, reported by Furukawa [IEEE Trans. Electr. Insul. 24, 375 (1989)] and by Ng et al. [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1308 (2000)] respectively. Fairly good agreement was obtained. Comparisons with other predictions, including the predictions given by numerically solving the EMT scheme, were also made. It was found that the analytic and numeric EMT schemes agreed with each other very well for an inclusion of volume fraction not exceeding 60%.
Direct Probing of Polarization Charge at Nanoscale Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Owoong; Seol, Daehee; Lee, Dongkyu
Ferroelectric materials possess spontaneous polarization that can be used for multiple applications. Owing to a long-term development of reducing the sizes of devices, the preparation of ferroelectric materials and devices is entering the nanometer-scale regime. In order to evaluate the ferroelectricity, there is a need to investigate the polarization charge at the nanoscale. Nonetheless, it is generally accepted that the detection of polarization charges using a conventional conductive atomic force microscopy (CAFM) without a top electrode is not feasible because the nanometer-scale radius of an atomic force microscopy (AFM) tip yields a very low signal-to-noise ratio. But, the detection ismore » unrelated to the radius of an AFM tip and, in fact, a matter of the switched area. In this work, the direct probing of the polarization charge at the nanoscale is demonstrated using the positive-up-negative-down method based on the conventional CAFM approach without additional corrections or circuits to reduce the parasitic capacitance. The polarization charge densities of 73.7 and 119.0 µC cm -2 are successfully probed in ferroelectric nanocapacitors and thin films, respectively. The results we obtained show the feasibility of the evaluation of polarization charge at the nanoscale and provide a new guideline for evaluating the ferroelectricity at the nanoscale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Maksymovych, Petro; Jesse, Stephen
Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through chargemore » injection and electrostatic forces on the tip. In this paper, we will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In conclusion, we apply the developed measurement protocols to an unknown ferroelectric material.« less
Balke, Nina; Maksymovych, Petro; Jesse, Stephen; ...
2015-06-02
Ferroelectricity in functional materials remains one of the most fascinating areas of modern science in the past several decades. In the last several years, the rapid development of piezoresponse force microscopy (PFM) and spectroscopy revealed the presence of electromechanical hysteresis loops and bias-induced remnant polar states in a broad variety of materials including many inorganic oxides, polymers, and biosystems. In many cases, this behavior was interpreted as the ample evidence for ferroelectric nature of the system. Here, we systematically analyze PFM responses on ferroelectric and nonferroelectric materials and demonstrate that mechanisms unrelated to ferroelectricity can induce ferroelectric-like characteristics through chargemore » injection and electrostatic forces on the tip. In this paper, we will focus on similarities and differences in various PFM measurement characteristics to provide an experimental guideline to differentiate between ferroelectric material properties and charge injection. In conclusion, we apply the developed measurement protocols to an unknown ferroelectric material.« less
Friction imprint effect in mechanically cleaved BaTiO{sub 3} (001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Christian J.; Maryland Nanocenter, University of Maryland, College Park, Maryland 20742; Ebeling, Daniel
2014-09-28
Adsorption, chemisorption, and reconstruction at the surfaces of ferroelectric materials can all contribute toward the pinning of ferroelectric polarization, which is called the electrical imprint effect. Here, we show that the opposite is also true: freshly cleaved, atomically flat surfaces of (001) oriented BaTiO{sub 3} exhibit a persistent change in surface chemistry that is driven by ferroelectric polarization. This surface modification is explored using lateral force microscopy (LFM), while the ferroelectric polarization is probed using piezoresponse force microscopy. We find that immediately after cleaving BaTiO{sub 3}, LFM reveals friction contrast between ferroelectric domains. We also find that this surface modificationmore » remains after the ferroelectric domain distribution is modified, resulting in an imprint of the original ferroelectric domain distribution on the sample surface. This friction imprint effect has implications for surface patterning as well as ferroelectric device operation and failure.« less
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2007-01-01
Though there are a few examples of scanning phased array antennas that have flown successfully in space, the quest for low-cost, high-efficiency, large aperture microwave phased arrays continues. Fixed and mobile applications that may be part of a heterogeneous exploration communication architecture will benefit from the agile (rapid) beam steering and graceful degradation afforded by phased array antennas. The reflectarray promises greater efficiency and economy compared to directly-radiating varieties. Implementing a practical scanning version has proven elusive. The ferroelectric reflectarray, under development and described herein, involves phase shifters based on coupled microstrip patterned on Ba(x)Sr(1-x)TiO3 films, that were laser ablated onto LaAlO3 substrates. These devices outperform their semiconductor counterparts from X- through and K-band frequencies. There are special issues associated with the implementation of a scanning reflectarray antenna, especially one realized with thin film ferroelectric phase shifters. This paper will discuss these issues which include: relevance of phase shifter loss; modulo 2(pi) effects and phase shifter transient effects on bit error rate; scattering from the ground plane; presentation of a novel hybrid ferroelectric-semiconductor phase shifter; and the effect of mild radiation exposure on phase shifter performance.
Proof-of-principle Experiment of a Ferroelectric Tuner for the 1.3 GHz Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi,E.M.; Hahn, H.; Shchelkunov, S. V.
2009-01-01
A novel tuner has been developed by the Omega-P company to achieve fast control of the accelerator RF cavity frequency. The tuner is based on the ferroelectric property which has a variable dielectric constant as function of applied voltage. Tests using a Brookhaven National Laboratory (BNL) 1.3 GHz electron gun cavity have been carried out for a proof-of-principle experiment of the ferroelectric tuner. Two different methods were used to determine the frequency change achieved with the ferroelectric tuner (FT). The first method is based on a S11 measurement at the tuner port to find the reactive impedance change when themore » voltage is applied. The reactive impedance change then is used to estimate the cavity frequency shift. The second method is a direct S21 measurement of the frequency shift in the cavity with the tuner connected. The estimated frequency change from the reactive impedance measurement due to 5 kV is in the range between 3.2 kHz and 14 kHz, while 9 kHz is the result from the direct measurement. The two methods are in reasonable agreement. The detail description of the experiment and the analysis are discussed in the paper.« less
Alikin, Denis; Turygin, Anton; Kholkin, Andrei; Shur, Vladimir
2017-01-01
Recent advances in the development of novel methods for the local characterization of ferroelectric domains open up new opportunities not only to image, but also to control and to create desired domain configurations (domain engineering). The morphotropic and polymorphic phase boundaries that are frequently used to increase the electromechanical and dielectric performance of ferroelectric ceramics have a tremendous effect on the domain structure, which can serve as a signature of complex polarization states and link local and macroscopic piezoelectric and dielectric responses. This is especially important for the study of lead-free ferroelectric ceramics, which is currently replacing traditional lead-containing materials, and great efforts are devoted to increasing their performance to match that of lead zirconate titanate (PZT). In this work, we provide a short overview of the recent progress in the imaging of domain structure in two major families of ceramic lead-free systems based on BiFeO3 (BFO) and (Ka0.5Na0.5)NbO3 (KNN). This can be used as a guideline for the understanding of domain processes in lead-free piezoelectric ceramics and provide further insight into the mechanisms of structure–property relationship in these technologically important material families. PMID:28772408